WO2019048319A1 - Kinetic turbopump with speed-varying device for a closed circuit, particularly of the rankine cycle type, notably for a motor vehicle - Google Patents
Kinetic turbopump with speed-varying device for a closed circuit, particularly of the rankine cycle type, notably for a motor vehicle Download PDFInfo
- Publication number
- WO2019048319A1 WO2019048319A1 PCT/EP2018/073300 EP2018073300W WO2019048319A1 WO 2019048319 A1 WO2019048319 A1 WO 2019048319A1 EP 2018073300 W EP2018073300 W EP 2018073300W WO 2019048319 A1 WO2019048319 A1 WO 2019048319A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- turbine
- turbopump
- pump
- shaft
- carried
- Prior art date
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D13/00—Pumping installations or systems
- F04D13/02—Units comprising pumps and their driving means
- F04D13/028—Units comprising pumps and their driving means the driving means being a planetary gear
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K23/00—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
- F01K23/02—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
- F01K23/06—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
- F01K23/065—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle the combustion taking place in an internal combustion piston engine, e.g. a diesel engine
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K23/00—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
- F01K23/02—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
- F01K23/06—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
- F01K23/10—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K25/00—Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
- F01K25/08—Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D13/00—Pumping installations or systems
- F04D13/02—Units comprising pumps and their driving means
- F04D13/04—Units comprising pumps and their driving means the pump being fluid driven
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2260/00—Function
- F05D2260/40—Transmission of power
- F05D2260/403—Transmission of power through the shape of the drive components
- F05D2260/4031—Transmission of power through the shape of the drive components as in toothed gearing
- F05D2260/40311—Transmission of power through the shape of the drive components as in toothed gearing of the epicyclical, planetary or differential type
Definitions
- the present invention relates to a kinetic turbopump for a closed circuit, in particular of a Rankine cycle type, for example a kinetic turbopump for a closed circuit, in particular of the Rankine cycle type. , especially for a motor vehicle.
- kinetic turbopump an assembly formed by a pump and a turbine.
- the pump has the particularity that its rotor carries a multiplicity of radial fins to form an impeller whose effect is the setting in rotation and the acceleration of the fluid in liquid condition.
- the turbine which is connected to the pump on the same shaft, consists of a stator part having a fixed blade called diffuser to convert the fluid pressure into a vapor condition into kinetic energy. This kinetic energy is then converted into mechanical energy through a moving blade of the rotor part of the turbine.
- the blades of the turbine consist of radial fins for the relaxation of the fluid which is ejected
- a Rankine cycle is a thermodynamic cycle by which heat from an external heat source is transmitted to a closed circuit that contains a working fluid. During the cycle, the working fluid undergoes phase changes (liquid / vapor).
- This type of cycle is generally broken down into a step during which the working fluid used in liquid form is compressed isentropically, followed by a step where the compressed liquid fluid is heated and vaporized in contact with a heat source.
- This steam is then relaxed, in another step, in an expansion machine, then, in a final step, this expanded steam is cooled and condensed in contact with a cold source.
- the circuit comprises at least one pump for circulating and compressing the fluid in liquid form, a heat exchanger evaporator which is swept by a hot fluid to effect the at least partial vaporization of the compressed fluid, an expansion machine for relaxing the steam, such as a turbine, which converts the energy of this vapor into another energy, such as an energy mechanical or electrical, and a heat exchanger-condenser by which the heat contained in the steam is transferred to a cold source, usually outside air, or a cooling water circuit, which sweeps this condenser, to transform this steam in a fluid in liquid form.
- the fluid used is generally water but other types of fluids, for example organic fluids or mixtures of organic fluids, can also be used.
- the cycle is then called Organic Rankine Cycle or ORC (Organic Rankine Cycle).
- the working fluids may be butane, ethanol, hydrofluorocarbons, ammonia, carbon dioxide, etc.
- the hot fluid for vaporizing the compressed fluid can come from various hot sources, such as a coolant (a combustion engine, an industrial process, a furnace, etc. .), hot gases resulting from combustion (fumes from an industrial process, a boiler, exhaust gas from a combustion engine or turbine, etc.), heat flow from solar thermal collectors or a geothermal source, etc.
- a coolant a combustion engine, an industrial process, a furnace, etc. .
- hot gases resulting from combustion gas from an industrial process, a boiler, exhaust gas from a combustion engine or turbine, etc.
- heat flow from solar thermal collectors or a geothermal source etc.
- the pump and the turbine are combined in one piece to form a compact turbopump.
- the shaft of this turbopump which is common to the pump and the turbine, can be rotated in several ways.
- the shaft is coupled to the crankshaft of the internal combustion engine, generally by a belt surrounding a pulley placed on this crankshaft and another pulley of link placed on this shaft, being controlled by a controlled-control coupling.
- This device thus makes it possible to turn the turbine, for a functioning configuration in a Rankine cycle circuit, in a first direction of rotation so that it acts as a turbine while being associated with the pump contained in this turbopump or, in a reverse direction of rotation, for an operating configuration in an air conditioning circuit, so that the turbine operates as a pump while being disconnected from the pump of the turbopump.
- the present invention provides a turbopump that allows the turbine to have a significantly higher rotational speed than that of the combustion engine while having a pump rotation speed lower than that of the turbine.
- the efficiency of the pump is improved by this moderate speed while the efficiency of the turbine is improved by the use of a higher speed.
- the present invention relates to a turbopump comprising a stationary housing comprising a kinetic pump with a pump rotor carried by a pump shaft and a turbine housing a turbine rotor carried by a turbine shaft.
- the pump shaft is separated from the turbine shaft and in that said turbopump comprises a speed variation device for generating a difference in rotational speed between the pump shaft and the turbine shaft.
- said turbopump comprises a speed variation device for reducing the speed of rotation of the pump shaft relative to the turbine shaft or for multiplying the speed of rotation of the shaft. of turbine relative to the pump shaft.
- the pump and turbine shafts are substantially parallel to one another.
- the speed variation device comprises a gear wheel carried by the pump shaft and a pinion carried by the turbine shaft.
- the pump and turbine shafts are substantially coaxial with each other.
- the speed variation device comprises an epicyclic gear train.
- the sun gear of the epicyclic gear is carried by the turbine shaft.
- the planet carrier of the epicyclic gear is carried by a fixed wall of the turbopump housing.
- the planet carrier of the epicyclic gear is carried by the pump shaft.
- the ring of the epicyclic gear is carried by a fixed wall of the turbopump housing.
- the ring of the epicyclic gear is carried by the pump shaft.
- it comprises a connecting pulley carried by the pump shaft.
- the turbopump comprises a controlled-controlled coupling for connecting the connecting pulley and the pump shaft.
- the turbopump comprises a speed variation means between the turbine shaft and a connecting pulley.
- the invention comprises an electric machine driving the pump shaft.
- the invention relates to an application of a turbopump according to one of the preceding characteristics to a closed circuit, in particular of the Rankine or ORC (Organic Rankine Cycle) type.
- FIG. 1 which shows a sectional view of an embodiment of a turbopump according to the invention
- FIG. 2 which is a sectional view of another embodiment of a turbopump according to the invention.
- FIG. 1 shows a turbopump 10 for a closed circuit, in particular of the Rankine cycle type, in particular for a motor vehicle.
- the turbopump 10 which is here a kinetic turbopump, comprises a stationary housing 12 which houses the rotating part 14 (or rotor) of a means for circulating and compressing a fluid 1 6, called a pump, carried by a pump shaft.
- pump 18 and another fixed housing 12 'housing the rotating part 20 (or rotor) of a means of expansion of a compressed fluid 22, said turbine, carried by a turbine shaft 24.
- the turbopump has the particularity that the two shafts 18 and 24 are separated from one another and are placed above one another substantially parallel to each other. the other.
- the two shafts are separated (or distinct) from one another and are connected to one another by a speed variation device 26 which makes it possible to generate a speed difference of rotation between the pump shaft and the turbine shaft.
- the function of the speed variation device is to multiply the speed of rotation between the pump shaft and the turbine shaft when the pump shaft gives the rotational speed pulse or to reduce the speed. rotation between the turbine and the pump when the turbine shaft generates the rotation speed, as will be explained in detail in the following description.
- the speed variation device comprises a gear train 28 with a gear wheel 30, of large diameter, carried by the pump shaft 18 and which cooperates with a pinion 32, of smaller diameter than that of the wheel, carried by the turbine shaft 24, the wheel and the pinion being advantageously placed in the same vertical plane.
- the difference in diameter between the wheel and the pinion thus makes it possible to produce a speed ratio between the two shafts, this speed ratio preferably being between 2 and 6 in the context of the present invention.
- This turbopump also comprises a link pulley 34 which is rotatably connected to the pump shaft 18 through a controlled-control coupling 36, here an electromagnetic type clutch.
- This pulley is controlled in rotation by a band closed on itself, such as a chain or a connecting belt 38.
- This band is advantageously connected to a crankshaft pulley which is connected in rotation with the crankshaft of an internal combustion engine (not shown).
- An alternative is to replace the mechanical connection (pulley and electromagnetic clutch) by an electric generator so as to constitute a turbo-pump-generator.
- turbopump as described above can be used in many fields, such as oilfields, aeronautics, automobiles ...
- This turbopump finds its application more particularly with a closed circuit, in particular of Rankine cycle type 40 as illustrated in FIG.
- This Rankine cycle closed circuit is advantageously of the ORC (Organic Rankine Cycle) type and uses an organic working fluid or mixtures of organic fluids, such as butane, ethanol and hydrofluorocarbons.
- ORC Organic Rankine Cycle
- closed circuit can also operate with a fluid such as ammonia, water, carbon dioxide ...
- the outlet 42 of the pump 1 6 is connected to an inlet 44 of a heat exchanger 46, called evaporator, which is traversed by the working fluid compressed by the pump and through which the working fluid reaches the outlet 48 of this evaporator in the form of compressed steam.
- evaporator a heat exchanger 46
- This evaporator is also traversed by a hot source 50, in liquid or gaseous form so as to transfer its heat to the working fluid.
- This hot source makes it possible to carry out the vaporization of the fluid and can come from various hot sources, such as a cooling liquid of a combustion engine, an industrial process, a furnace, hot gases resulting from combustion (exhaust gas from a combustion engine, fumes from an industrial process, a boiler, or a turbine, etc.), heat flux from solar thermal collectors, geothermal source, etc.
- the outlet of the evaporator is connected to an inlet 52 of the turbine 22 to admit the working fluid in the form of vapor compressed at high pressure, this fluid emerging through an outlet 54 of this turbine in the form of low-pressure vapor pressure.
- the outlet of the turbine is connected to an inlet 56 of a cooling exchanger 58, or condenser, which makes it possible to transform the low-pressure vapor it receives into a low-pressure liquid fluid to introduce it to an inlet 60 of the pump.
- This condenser is swept by a cold source, usually a flow of ambient air or cooling water, so as to cool the expanded steam so that it condenses and turns into a liquid.
- a cold source usually a flow of ambient air or cooling water
- the shaft 18 is coupled to the connecting pulley 34 of the turbopump by the clutch 36.
- the rotational movement of the crankshaft is then transmitted to the connecting pulley 34 by the connecting belt 38. This movement of rotation is then relayed back to the pump shaft and the pump rotor.
- the toothed wheel 30 meshes with the pinion 32.
- the shaft 24 of the turbine rotates at a speed greater than that of the pump shaft and thus the turbine rotates at a higher speed than that of the pump.
- the speed variation device 26 thus has a speed multiplier function between the pump and the turbine.
- the turbine After this start-up phase, the turbine produces more power than the consumption of the pump and consequently this turbine then becomes the generating element of rotational movement to the detriment of the pump.
- the internal combustion engine is still operational and the shaft 18 is coupled to the pulley 34 of the turbopump via the clutch 36.
- the power generated by the turbine 22 is transmitted to the pinion 32 which transmits it to the toothed wheel 30 and then to the pulley 34 of the turbopump.
- the power of the pulley 34 is then transmitted by the belt 38 to the crankshaft pulley which will bring extra power to the crankshaft and therefore to the internal combustion engine. This goes therefore to assist the work requested the engine and thus reduce the fuel consumption of the engine.
- the speed variation device 26 has a speed reduction function between the turbine shaft and the pump shaft.
- the turbopump 1 which is also a kinetic turbopump, comprises a fixed housing 1 12 which houses a rotor 1 14 of a pump 1 1 6 carried by a pump shaft 1 18, and a rotor 120 of a turbine 1 22 carried a turbine shaft 124.
- the shafts of the pump and the turbine are separated from each other while being in the extension of one another, and preferably coaxially.
- the shaft of the pump 1 18 coaxially passes through the shaft of the turbine 124, which is thus hollow, to open beyond the turbine.
- the two shafts are connected to one another by a speed variation device 1 26.
- This device also makes it possible to generate a difference in speed of rotation between the pump shaft and the turbine shaft.
- the function of the speed variation device is to multiply the speed of rotation between the pump shaft and the turbine shaft when the pump shaft gives the speed pulse. rotating or reducing the speed of rotation between the turbine and the pump when the turbine shaft generates the rotational speed as will be explained in detail in the following description.
- This speed variation device comprises an epicyclic gear train 128 whose sun gear 130 is carried by the hollow shaft of the turbine 124, whose ring 132 is carried by the pump shaft 1 18, and whose planet carrier 134 is carried by a vertical wall 135 of the housing 1 12.
- This turbopump also comprises a link pulley 136 which is rotatably connected to the pump shaft 1 18 through a controlled-control coupling 138, of the electromagnetic clutch type, and which is rotated by a closed band on it. itself, such as a chain or a connecting belt 140.
- This band is advantageously connected to a crankshaft pulley which is connected in rotation with the crankshaft of an internal combustion engine (not shown).
- this turbopump more particularly finds its application for a closed circuit, in particular of the Rankine cycle type.
- the outlet 142 of the pump 1 16 is connected to an inlet of an evaporator, which is traversed by the working fluid compressed by the pump, the outlet of the evaporator is connected to an inlet 144 of the turbine 122 for admitting the working fluid in the form of vapor compressed at high pressure, this fluid emerging through an outlet 146 of the turbine in the form of low-pressure expanded steam.
- the outlet of the turbine is connected to an inlet of a condenser, which makes it possible to convert the low-pressure vapor it receives into a low-pressure liquid fluid to introduce it to an inlet 148 of the pump.
- the internal combustion engine is operational and it is necessary to prime the pump 1 1 6 of the turbopump.
- the shaft 1 18 is coupled to the connecting pulley 136 of the turbopump by the clutch 138.
- the rotational movement of the crankshaft is then transmitted to the connecting pulley by the connecting belt 140.
- This rotational movement is then retransmitted to the pump shaft and the pump rotor as well as to the ring gear 132 of the planetary gear train 128.
- this crown meshes with the planet carrier which is fixed.
- the rotation movement of the satellites of this planet carrier is communicated to the sun gear 130 and then to the shaft of the turbine.
- the planetary gear train has a speed ratio that increases the speed of the sun gear relative to that of the crown. By this the turbine rotates at a speed greater than that of the pump.
- the epicyclic train 128 thus has a speed multiplier function between the pump and the turbine with a first multiplier speed ratio for the turbine with a rotational speed transmission between the crown, the planet carrier and the sun gear.
- the turbine After this start-up phase, the turbine produces more power than the consumption of the pump and consequently this turbine then becomes the generating element of rotational movement to the detriment of the pump.
- the internal combustion engine is still operational and the shaft 1 18 is coupled to the pulley 136 of the turbopump by the clutch 138.
- the power generated by the turbine 122 is transmitted to the sun gear 130 which transmits it to the ring gear 132 through the planet carrier 134.
- the power of the ring gear is transmitted to the turbine shaft and to the pulley 136 of the turbopump.
- the power of the pulley is then transmitted by the belt 140 to the crankshaft pulley which will bring extra power to the crankshaft and therefore to the internal combustion engine.
- the speed variation device 126 has a speed reduction function between the turbine shaft and the pump shaft with a first reduction ratio for the pump with a transmission of rotation between the sun gear, the planet carrier and the crown.
- the advantage of this configuration is to allow the turbine a rotational speed much higher than the rotational speed of the motor and the pump, which is favorable to the efficiency of the turbine.
- FIG. 3 comprises the same elements as those of FIG. 2 but with a particular arrangement of the epicyclic gear train 128.
- the sun gear 130 is carried by the hollow shaft of the turbine 124
- the ring 132 is carried by a vertical wall 135 of the housing 1 12
- the planet carrier 134 is carried by the shaft of the pump 1 18.
- This operation of this epicyclic gear configuration is similar to that of FIG. 2 with a speed multiplier function between the pump and the turbine, with a second multiplier speed ratio for the turbine, during the transmission of rotation speed between the planet carriers, the crown, and the sun gear.
- the variant of Figure 4 also comprises the same elements as those of Figure 2 or 3 but with a particular arrangement of the epicyclic gear train 128, which is housed between the turbine and the pump.
- the epicyclic gear train comprises the same arrangement as that of FIG. 2 with the sun gear 130 carried by the hollow shaft of the turbine 124, the ring gear 132 carried by the shaft of the pump 1 18, and the carrier satellites 134 is carried by the vertical wall 135 of the housing 1 12.
- this epicyclic train configuration is identical to that of FIG. 2 with a speed multiplier function between the pump and the turbine with a first multiplier speed ratio for the turbine with a rotational speed transmission between the carrier and the turbine.
- the main advantage of this variant lies in the distance of the pump and the turbine, which limits the heat exchange between the hot parts of the turbine and the pump, resulting in improved performance.
- the epicyclic train is also disposed between the pump and the turbine as for the variant of Figure 4 but with a particular arrangement of the epicyclic gear train 128.
- the sun gear 130 is carried by the hollow shaft of the turbine 124, the ring 132 is carried by a vertical wall 135 of the housing 1 12, and the planet carrier 134 is carried by the shaft of the pump 1 18.
- This operation of this epicyclic train configuration is similar to that of FIG. 4 with a speed multiplier function between the pump and the turbine, with a second multiplier speed ratio for the turbine, when transmitting rotational speed between the turbine and the turbine. planet carriers, the crown, and the sun gear.
- FIG. 6 differs from FIG. 2 only in the arrangement of the turbine 122, which is reversed, with the inlet 144 of the turbine which is situated on the side of the epicyclic gear train 128 and its output 146 on the side of the pump 1 1 6.
- This embodiment allows to juxtapose the large turbine diameter and the epicyclic train, facilitating a more compact design.
- the epicyclic train 128 is also placed between the pump 1 1 6 and the turbine 122.
- the pump 1 1 6 is housed between the train 128 and the connecting pulley 136 while the turbine is placed below this same train.
- the pump shafts 1 18 and turbine 124 are separated from each other while being coaxial and in the extension of one another.
- the epicyclic gear train 128 is mounted between these two shafts with the ring gear 132 carried by the pump shaft 1 18, the sun gear 130 carried by the turbine shaft 124 and the planet carrier 134 carried by a fixed wall 150 of the housing 1 12.
- Figure 8 differs from Figure 7 in that the ring 132 is carried by a fixed wall 150 of the housing 1 12, the sun gear 130 is carried by the turbine shaft 124 and the planet carrier 134 is worn by the pump shaft 1 18.
- FIG. 7 also makes it possible to perform a speed multiplier function between the pump and the turbine with a second multiplier speed ratio for the turbine with a rotational speed transmission. between the planet carrier, the ring gear, and the sun gear, and a speed reduction function between the turbine and the pump with a first reduction gear ratio between the sun gear, the planet carrier and the crown
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Supercharger (AREA)
- Engine Equipment That Uses Special Cycles (AREA)
Abstract
The present invention relates to a turbopump comprising a fixed casing (12, 12'; 112) comprising a pump (16, 116) with a pump rotor (14, 114) borne by a pump shaft (18, 118) and a turbine (22, 122) housing a turbine rotor (20, 120) borne by a turbine shaft (24, 124). According to the invention, the pump shaft (18, 118) is separate from the turbine shaft (24, 124) and the turbopump comprises a speed-varying device (26, 126) for generating a difference in rotational speed between the pump shaft (118, 118) and the turbine shaft (24, 124).
Description
Turbopompe cinétique avec un dispositif de variation de vitesse pour un circuit fermé, en particulier de type à cycle de Rankine, notamment pour un véhicule automobile La présente invention se rapporte à une turbopompe cinétique pour un circuit fermé, en particulier de type à cycle de Rankine, notamment pour un véhicule automobile. The present invention relates to a kinetic turbopump for a closed circuit, in particular of a Rankine cycle type, for example a kinetic turbopump for a closed circuit, in particular of the Rankine cycle type. , especially for a motor vehicle.
Par turbopompe cinétique il est entendu, un ensemble formé par une pompe et une turbine. By kinetic turbopump it is understood, an assembly formed by a pump and a turbine.
La pompe a la particularité selon laquelle son rotor porte une multiplicité d'ailettes radiales pour former un impulseur dont l'effet est la mise en rotation et l'accélération du fluide en condition liquide. Par l'effet de la rotation de l'impulseur de la pompe, le fluide est aspiré axialement, puis accéléré radialement et refoulé par la volute que comporte habituellement une turbopompe. La turbine, qui est raccordée à la pompe sur le même arbre, est constituée d'une partie statorique disposant d'un aubage fixe appelé diffuseur visant à convertir la pression du fluide en condition vapeur en énergie cinétique. Cette énergie cinétique est alors convertie en énergie mécanique au travers d'un aubage mobile de la partie rotorique de la turbine. Les aubages de la turbine sont constitués d'ailettes radiales permettant la détente du fluide qui est éjecté The pump has the particularity that its rotor carries a multiplicity of radial fins to form an impeller whose effect is the setting in rotation and the acceleration of the fluid in liquid condition. By the effect of the rotation of the impeller of the pump, the fluid is drawn axially, then accelerated radially and discharged by the volute usually contained in a turbopump. The turbine, which is connected to the pump on the same shaft, consists of a stator part having a fixed blade called diffuser to convert the fluid pressure into a vapor condition into kinetic energy. This kinetic energy is then converted into mechanical energy through a moving blade of the rotor part of the turbine. The blades of the turbine consist of radial fins for the relaxation of the fluid which is ejected
Comme cela est largement connu, un cycle de Rankine est un cycle thermodynamique par lequel de la chaleur provenant d'une source de chaleur externe est transmise à un circuit fermé qui contient un fluide de travail. Au cours du cycle, le fluide de travail subit des changements de phase (liquide/vapeur). As is widely known, a Rankine cycle is a thermodynamic cycle by which heat from an external heat source is transmitted to a closed circuit that contains a working fluid. During the cycle, the working fluid undergoes phase changes (liquid / vapor).
Ce type de cycle se décompose généralement en une étape durant laquelle le fluide de travail utilisé sous forme liquide, est comprimé de manière isentropique, suivie d'une étape où ce fluide liquide comprimé est chauffé et vaporisé au contact d'une source de chaleur. This type of cycle is generally broken down into a step during which the working fluid used in liquid form is compressed isentropically, followed by a step where the compressed liquid fluid is heated and vaporized in contact with a heat source.
Cette vapeur est ensuite détendue, au cours d'une autre étape, dans une machine de détente, puis, dans une dernière étape, cette vapeur détendue est refroidie et condensée au contact d'une source froide. This steam is then relaxed, in another step, in an expansion machine, then, in a final step, this expanded steam is cooled and condensed in contact with a cold source.
Pour réaliser ces différentes étapes, le circuit comprend au moins une pompe pour faire circuler et comprimer le fluide sous forme liquide, un échangeur-
évaporateur qui est balayé par un fluide chaud pour réaliser la vaporisation au moins partielle du fluide comprimé, une machine de détente pour détendre la vapeur, telle qu'une turbine, qui transforme l'énergie de cette vapeur en une autre énergie, comme une énergie mécanique ou électrique, et un échangeur- condenseur grâce auquel la chaleur contenue dans la vapeur est cédée à une source froide, généralement de l'air extérieur, ou encore un circuit d'eau de refroidissement, qui balaye ce condenseur, pour transformer cette vapeur en un fluide sous forme liquide. Dans ce type de circuit, le fluide utilisé est généralement de l'eau mais d'autres types de fluides, par exemple des fluides organiques ou des mélanges de fluides organiques, peuvent également être utilisés. Le cycle est alors appelé Cycle de Rankine Organique ou ORC (Organic Rankine Cycle). A titre d'exemple, les fluides de travail peuvent être du butane, de l'éthanol, des hydrofluorocarbures, de l'ammoniac, du dioxyde de carbone... In order to carry out these various steps, the circuit comprises at least one pump for circulating and compressing the fluid in liquid form, a heat exchanger evaporator which is swept by a hot fluid to effect the at least partial vaporization of the compressed fluid, an expansion machine for relaxing the steam, such as a turbine, which converts the energy of this vapor into another energy, such as an energy mechanical or electrical, and a heat exchanger-condenser by which the heat contained in the steam is transferred to a cold source, usually outside air, or a cooling water circuit, which sweeps this condenser, to transform this steam in a fluid in liquid form. In this type of circuit, the fluid used is generally water but other types of fluids, for example organic fluids or mixtures of organic fluids, can also be used. The cycle is then called Organic Rankine Cycle or ORC (Organic Rankine Cycle). By way of example, the working fluids may be butane, ethanol, hydrofluorocarbons, ammonia, carbon dioxide, etc.
Comme cela est bien connu, le fluide chaud pour réaliser la vaporisation du fluide comprimé peut provenir de sources chaudes variées, telles qu'un liquide de refroidissement (d'un moteur à combustion, d'un processus industriel, d'un four, etc.), des gaz chauds résultant d'une combustion (fumées d'un processus industriel, d'une chaudière, gaz d'échappement d'un moteur à combustion ou d'une turbine, etc.), d'un flux de chaleur issu de capteurs solaires thermiques ou d'une source géothermale, etc. As is well known, the hot fluid for vaporizing the compressed fluid can come from various hot sources, such as a coolant (a combustion engine, an industrial process, a furnace, etc. .), hot gases resulting from combustion (fumes from an industrial process, a boiler, exhaust gas from a combustion engine or turbine, etc.), heat flow from solar thermal collectors or a geothermal source, etc.
Généralement et comme mieux décrit dans le document WO 2013/046885, la pompe et la turbine sont combinées en une seule pièce pour former une turbopompe de faible encombrement. Generally and as better described in WO 2013/046885, the pump and the turbine are combined in one piece to form a compact turbopump.
L'arbre de cette turbopompe, qui est commun à la pompe et à la turbine, peut être entraîné en rotation de plusieurs manières. The shaft of this turbopump, which is common to the pump and the turbine, can be rotated in several ways.
Comme décrit dans la demande de brevet français N° 3 002 279 l'arbre est couplé au vilebrequin du moteur à combustion interne, généralement par une courroie entourant une poulie placée sur ce vilebrequin et une autre poulie de
liaison placée sur cet arbre, en étant contrôlé par un accouplement à commande contrôlée. As described in the French patent application No. 3,002,279 the shaft is coupled to the crankshaft of the internal combustion engine, generally by a belt surrounding a pulley placed on this crankshaft and another pulley of link placed on this shaft, being controlled by a controlled-control coupling.
Il est également connu par la demande de brevet US 2015/0064039 une turbopompe dans laquelle l'arbre de la pompe et l'arbre de la turbine sont séparés l'un de l'autre. Dans cette turbopompe, un dispositif mécanique, comme un train d'engrenages, est placé entre les deux arbres pour modifier le sens de rotation de la turbine. It is also known from US patent application 2015/0064039 a turbopump in which the pump shaft and the turbine shaft are separated from each other. In this turbopump, a mechanical device, such as a gear train, is placed between the two shafts to change the direction of rotation of the turbine.
Ce dispositif permet ainsi de faire tourner la turbine, pour une configuration de fonctionnement en circuit à cycle de Rankine, dans un premier sens de rotation pour qu'elle agisse en tant que turbine en étant associée à la pompe que comporte cette turbopompe ou, dans un sens inverse de rotation, pour une configuration de fonctionnement en circuit de climatisation, de manière à ce que cette turbine fonctionne en tant que pompe tout en étant déconnectée de la pompe de la turbopompe. This device thus makes it possible to turn the turbine, for a functioning configuration in a Rankine cycle circuit, in a first direction of rotation so that it acts as a turbine while being associated with the pump contained in this turbopump or, in a reverse direction of rotation, for an operating configuration in an air conditioning circuit, so that the turbine operates as a pump while being disconnected from the pump of the turbopump.
Toutes ces turbopompes de l'art antérieur présentent un inconvénient non négligeable dans le sens que la turbine tourne à la même vitesse de rotation que la pompe. Ainsi, le régime de la turbine peut s'avérer faible par rapport à un régime de rotation optimal, ce qui peut réduire ses performances. All these turbopumps of the prior art have a significant disadvantage in the sense that the turbine rotates at the same rotational speed as the pump. Thus, the speed of the turbine can be low compared to an optimal rotational speed, which can reduce its performance.
La présente invention propose une turbopompe qui permet à la turbine d'avoir un régime de rotation nettement plus élevé que celui du moteur à combustion tout en ayant un régime de rotation de la pompe plus faible que celui de la turbine. The present invention provides a turbopump that allows the turbine to have a significantly higher rotational speed than that of the combustion engine while having a pump rotation speed lower than that of the turbine.
Le rendement de la pompe est amélioré par ce régime modéré alors que le rendement de la turbine est amélioré par l'utilisation d'un régime plus élevé. The efficiency of the pump is improved by this moderate speed while the efficiency of the turbine is improved by the use of a higher speed.
A cet effet, la présente invention concerne une turbopompe comprenant un boîtier fixe comportant une pompe cinétique avec un rotor de pompe porté par un arbre de pompe et une turbine logeant un rotor de turbine porté par un arbre de turbine. L'arbre de pompe est séparé de l'arbre de turbine et en ce que ladite turbopompe comporte un dispositif de variation de vitesse pour générer une différence de vitesse de rotation entre l'arbre de pompe et l'arbre de turbine.
Selon un mode de réalisation de l'invention, ladite turbopompe comporte un dispositif de variation de vitesse pour réduire la vitesse de rotation de l'arbre de pompe par rapport à l'arbre de turbine ou pour multiplier la vitesse de rotation de l'arbre de turbine par rapport à l'arbre de pompe. To this end, the present invention relates to a turbopump comprising a stationary housing comprising a kinetic pump with a pump rotor carried by a pump shaft and a turbine housing a turbine rotor carried by a turbine shaft. The pump shaft is separated from the turbine shaft and in that said turbopump comprises a speed variation device for generating a difference in rotational speed between the pump shaft and the turbine shaft. According to one embodiment of the invention, said turbopump comprises a speed variation device for reducing the speed of rotation of the pump shaft relative to the turbine shaft or for multiplying the speed of rotation of the shaft. of turbine relative to the pump shaft.
Avantageusement, les arbres de pompe et de turbine sont sensiblement parallèles l'un à l'autre. Advantageously, the pump and turbine shafts are substantially parallel to one another.
Selon un aspect, le dispositif de variation de vitesse comprend un roue dentée portée par l'arbre de pompe et un pignon porté par l'arbre de turbine. In one aspect, the speed variation device comprises a gear wheel carried by the pump shaft and a pinion carried by the turbine shaft.
Conformément à une mise en œuvre, les arbres de pompe et de turbine sont sensiblement coaxiaux l'un avec l'autre. In accordance with one embodiment, the pump and turbine shafts are substantially coaxial with each other.
Selon une caractéristique, le dispositif de variation de vitesse comprend un train épicycloïdal. According to one characteristic, the speed variation device comprises an epicyclic gear train.
De manière avantageuse, le planétaire du train épicycloïdal est porté par l'arbre de turbine. Advantageously, the sun gear of the epicyclic gear is carried by the turbine shaft.
Avantageusement, le porte-satellites du train épicycloïdal est porté par une paroi fixe du boîtier de la turbopompe. Advantageously, the planet carrier of the epicyclic gear is carried by a fixed wall of the turbopump housing.
Alternativement, le porte-satellites du train épicycloïdal est porté par l'arbre de pompe. Alternatively, the planet carrier of the epicyclic gear is carried by the pump shaft.
Conformément à un mode de réalisation, la couronne du train épicycloïdal est portée par une paroi fixe du boîtier de la turbopompe. According to one embodiment, the ring of the epicyclic gear is carried by a fixed wall of the turbopump housing.
Alternativement, la couronne du train épicycloïdal est portée par l'arbre de pompe. Alternatively, the ring of the epicyclic gear is carried by the pump shaft.
Selon une mise en œuvre, elle comprend une poulie de liaison portée par l'arbre de pompe. According to one implementation, it comprises a connecting pulley carried by the pump shaft.
Selon une caractéristique, la turbopompe comprend un accouplement à commande contrôlée pour la liaison de la poulie de liaison et de l'arbre de pompe. According to one characteristic, the turbopump comprises a controlled-controlled coupling for connecting the connecting pulley and the pump shaft.
Conformément à un aspect, la turbopompe comprend un moyen de variation de vitesse entre l'arbre de turbine et une poulie de liaison. According to one aspect, the turbopump comprises a speed variation means between the turbine shaft and a connecting pulley.
Avantageusement, elle comprend une machine électrique entraînant l'arbre de pompe.
En outre, l'invention concerne une application d'une turbopompe selon l'une des caractéristiques précédentes à un circuit fermé, notamment de type Rankine ou ORC (Organic Rankine Cycle). Advantageously, it comprises an electric machine driving the pump shaft. In addition, the invention relates to an application of a turbopump according to one of the preceding characteristics to a closed circuit, in particular of the Rankine or ORC (Organic Rankine Cycle) type.
Les autres caractéristiques et avantages de l'invention vont apparaître à la lecture de la description qui va suivre, donnée à titre uniquement illustratif et non limitatif, et à laquelle sont annexées : The other features and advantages of the invention will appear on reading the description which follows, given by way of illustration and not limitation, and to which are appended:
- la figure 1 qui montre une vue en coupe d'une réalisation d'une turbopompe selon l'invention ; - Figure 1 which shows a sectional view of an embodiment of a turbopump according to the invention;
- la figure 2 qui est une vue en coupe d'une autre réalisation d'une turbopompe selon l'invention et FIG. 2 which is a sectional view of another embodiment of a turbopump according to the invention and
- les figures 3 à 8 qui montrent des vues en coupe de différentes variantes de la figure 2. - Figures 3 to 8 which show sectional views of different variants of Figure 2.
La figure 1 montre une turbopompe 10 pour un circuit fermé, en particulier de type à cycle de Rankine, notamment pour un véhicule automobile. La turbopompe 10, qui est ici une turbopompe cinétique, comprend un boîtier fixe 12 qui loge la partie tournante 14 (ou rotor) d'un moyen de circulation et de compression d'un fluide 1 6, dit pompe, portée par un arbre de pompe 18, et un autre boîtier fixe 12' logeant la partie tournante 20 (ou rotor) d'un moyen de détente d'un fluide comprimé 22, dit turbine, portée par un arbre de turbine 24. FIG. 1 shows a turbopump 10 for a closed circuit, in particular of the Rankine cycle type, in particular for a motor vehicle. The turbopump 10, which is here a kinetic turbopump, comprises a stationary housing 12 which houses the rotating part 14 (or rotor) of a means for circulating and compressing a fluid 1 6, called a pump, carried by a pump shaft. pump 18, and another fixed housing 12 'housing the rotating part 20 (or rotor) of a means of expansion of a compressed fluid 22, said turbine, carried by a turbine shaft 24.
Dans l'exemple de la figure 1 , la turbopompe a la particularité selon laquelle les deux arbres 18 et 24 sont séparés l'un de l'autre et sont placés au-dessus l'un de l'autre sensiblement parallèlement l'un avec l'autre. In the example of FIG. 1, the turbopump has the particularity that the two shafts 18 and 24 are separated from one another and are placed above one another substantially parallel to each other. the other.
Comme mieux visible sur la figure 1 les deux arbres sont séparés (ou distincts) l'un de l'autre et sont reliés l'un avec l'autre par un dispositif de variation de vitesse 26 qui permet de générer une différence de vitesse de rotation entre l'arbre de pompe et l'arbre de turbine. As best seen in FIG. 1, the two shafts are separated (or distinct) from one another and are connected to one another by a speed variation device 26 which makes it possible to generate a speed difference of rotation between the pump shaft and the turbine shaft.
Plus particulièrement, le dispositif de variation de vitesse a pour fonction de multiplier la vitesse de rotation entre l'arbre de pompe et l'arbre de turbine lorsque l'arbre de pompe donne l'impulsion de vitesse de rotation ou de réduire la vitesse
de rotation entre la turbine et la pompe lorsque l'arbre de turbine génère la vitesse de rotation, comme il sera explicité en détail dans la suite de la description. More particularly, the function of the speed variation device is to multiply the speed of rotation between the pump shaft and the turbine shaft when the pump shaft gives the rotational speed pulse or to reduce the speed. rotation between the turbine and the pump when the turbine shaft generates the rotation speed, as will be explained in detail in the following description.
Le dispositif de variation de vitesse comprend un train d'engrenages 28 avec une roue dentée 30, de grand diamètre, portée par l'arbre de pompe 18 et qui coopère avec un pignon 32, de moindre diamètre que celui de la roue, porté par l'arbre de turbine 24, la roue et le pignon étant avantageusement placés dans un même plan vertical. The speed variation device comprises a gear train 28 with a gear wheel 30, of large diameter, carried by the pump shaft 18 and which cooperates with a pinion 32, of smaller diameter than that of the wheel, carried by the turbine shaft 24, the wheel and the pinion being advantageously placed in the same vertical plane.
La différence de diamètre entre la roue et le pignon permet ainsi de réaliser un rapport de vitesse entre les deux arbres, ce rapport de vitesse étant de préférence compris entre 2 et 6 dans le cadre de la présente invention. The difference in diameter between the wheel and the pinion thus makes it possible to produce a speed ratio between the two shafts, this speed ratio preferably being between 2 and 6 in the context of the present invention.
Ainsi pour pouvoir obtenir les rapports de vitesses souhaités entre les deux arbres 18 et 24, il suffit de paramétrer les diamètres de la roue et du pignon pour obtenir ces rapports. Thus in order to obtain the desired gear ratios between the two shafts 18 and 24, it is sufficient to set the diameters of the wheel and pinion to obtain these ratios.
Cette turbopompe comprend aussi une poulie de liaison 34 qui est liée en rotation à l'arbre de pompe 18 au travers d'un accouplement à commande contrôlé 36, ici un embrayage de type électromagnétique. This turbopump also comprises a link pulley 34 which is rotatably connected to the pump shaft 18 through a controlled-control coupling 36, here an electromagnetic type clutch.
Cette poulie est commandée en rotation par une bande fermée sur elle- même, comme une chaîne ou une courroie de liaison 38. This pulley is controlled in rotation by a band closed on itself, such as a chain or a connecting belt 38.
Cette bande est avantageusement reliée à une poulie de vilebrequin qui est liée en rotation avec le vilebrequin d'un moteur à combustion interne (non représentés). Une variante consiste à remplacer la liaison mécanique (poulie et embrayage électromagnétique) par une génératrice électrique de manière à constituer une turbo-pompe-génératrice. This band is advantageously connected to a crankshaft pulley which is connected in rotation with the crankshaft of an internal combustion engine (not shown). An alternative is to replace the mechanical connection (pulley and electromagnetic clutch) by an electric generator so as to constitute a turbo-pump-generator.
La turbopompe telle que décrite ci-dessus peut être utilisée dans de nombreux domaines, comme les domaines pétroliers, aéronautiques, automobiles... The turbopump as described above can be used in many fields, such as oilfields, aeronautics, automobiles ...
Cette turbopompe trouve plus particulièrement son application avec un circuit fermé, en particulier de type à cycle de Rankine 40 comme illustré sur la figure 1 .
Ce circuit fermé à cycle de Rankine est avantageusement de type ORC (Organic Rankine Cycle) et utilise un fluide de travail organique ou des mélanges de fluides organiques, comme du butane, de l'éthanol, des hydrofluorocarbures. This turbopump finds its application more particularly with a closed circuit, in particular of Rankine cycle type 40 as illustrated in FIG. This Rankine cycle closed circuit is advantageously of the ORC (Organic Rankine Cycle) type and uses an organic working fluid or mixtures of organic fluids, such as butane, ethanol and hydrofluorocarbons.
Il est bien entendu que le circuit fermé peut également fonctionner avec un fluide comme de l'ammoniac, de l'eau, du dioxyde de carbone... It is understood that the closed circuit can also operate with a fluid such as ammonia, water, carbon dioxide ...
Ainsi, la sortie 42 de la pompe 1 6 est reliée à une entrée 44 d'un échangeur de chaleur 46, dénommé évaporateur, qui est traversé par le fluide de travail comprimé par la pompe et grâce auquel le fluide de travail parvient à la sortie 48 de cet évaporateur sous forme de vapeur comprimée. Thus, the outlet 42 of the pump 1 6 is connected to an inlet 44 of a heat exchanger 46, called evaporator, which is traversed by the working fluid compressed by the pump and through which the working fluid reaches the outlet 48 of this evaporator in the form of compressed steam.
Cet évaporateur est également parcouru par une source chaude 50, sous forme liquide ou gazeuse de manière à pouvoir céder sa chaleur au fluide de travail. Cette source chaude permet de réaliser la vaporisation du fluide et peut provenir de sources chaudes variées, telles qu'un liquide de refroidissement d'un moteur à combustion, d'un processus industriel, d'un four, de gaz chauds résultant d'une combustion (gaz d'échappement d'un moteur à combustion, fumées d'un processus industriel, d'une chaudière, ou d'une turbine, etc.), d'un flux de chaleur issu de capteurs solaires thermiques, d'une source géothermale, etc. This evaporator is also traversed by a hot source 50, in liquid or gaseous form so as to transfer its heat to the working fluid. This hot source makes it possible to carry out the vaporization of the fluid and can come from various hot sources, such as a cooling liquid of a combustion engine, an industrial process, a furnace, hot gases resulting from combustion (exhaust gas from a combustion engine, fumes from an industrial process, a boiler, or a turbine, etc.), heat flux from solar thermal collectors, geothermal source, etc.
La sortie de l'évaporateur est connectée à une entrée 52 de la turbine 22 pour y faire admettre le fluide de travail sous forme de vapeur comprimée à haute pression, ce fluide ressortant par une sortie 54 de cette turbine sous forme de vapeur détendue à basse pression. The outlet of the evaporator is connected to an inlet 52 of the turbine 22 to admit the working fluid in the form of vapor compressed at high pressure, this fluid emerging through an outlet 54 of this turbine in the form of low-pressure vapor pressure.
La sortie de la turbine est raccordée à une entrée 56 d'un échangeur de refroidissement 58, ou condenseur, qui permet de transformer la vapeur basse pression détendue qu'il reçoit en un fluide liquide basse pression pour l'introduire à une entrée 60 de la pompe. Ce condenseur est balayé par une source froide, généralement un flux d'air ambiant ou d'eau de refroidissement, de manière à refroidir la vapeur détendue pour qu'elle se condense et se transforme en un liquide.
Bien entendu, les différents éléments du circuit sont reliés entre eux par des conduites de circulation de fluide permettant de les relier successivement les uns aux autres. Ainsi en fonctionnement et dans la phase de démarrage du circuit fermé, le moteur à combustion interne est opérationnel et il est nécessaire de réaliser l'amorçage de la pompe 1 6 de la turbopompe. Pour ce faire, l'arbre 18 est accouplé à la poulie de liaison 34 de la turbopompe par l'embrayage 36. Le mouvement de rotation du vilebrequin est alors transmis à la poulie de liaison 34 par la courroie de liaison 38. Ce mouvement de rotation est ensuite retransmis à l'arbre de pompe et au rotor de pompe. The outlet of the turbine is connected to an inlet 56 of a cooling exchanger 58, or condenser, which makes it possible to transform the low-pressure vapor it receives into a low-pressure liquid fluid to introduce it to an inlet 60 of the pump. This condenser is swept by a cold source, usually a flow of ambient air or cooling water, so as to cool the expanded steam so that it condenses and turns into a liquid. Of course, the various elements of the circuit are interconnected by fluid circulation lines for connecting them successively to each other. Thus in operation and in the start-up phase of the closed circuit, the internal combustion engine is operational and it is necessary to prime the pump 1 6 of the turbopump. To do this, the shaft 18 is coupled to the connecting pulley 34 of the turbopump by the clutch 36. The rotational movement of the crankshaft is then transmitted to the connecting pulley 34 by the connecting belt 38. This movement of rotation is then relayed back to the pump shaft and the pump rotor.
Durant ce mouvement de rotation de l'arbre de pompe, qui est l'élément générateur de mouvement de rotation, la roue dentée 30 engrène avec le pignon 32. Compte tenu du rapport de vitesse résultant de la différence de diamètre entre la roue et le pignon, l'arbre 24 de la turbine tourne à une vitesse plus grande que celle de l'arbre de la pompe et de ce fait la turbine tourne à une vitesse plus élevée que celle de la pompe. During this rotational movement of the pump shaft, which is the rotational movement generating element, the toothed wheel 30 meshes with the pinion 32. Given the speed ratio resulting from the difference in diameter between the wheel and the pinion, the shaft 24 of the turbine rotates at a speed greater than that of the pump shaft and thus the turbine rotates at a higher speed than that of the pump.
Le dispositif de variation de vitesse 26 a ainsi une fonction de multiplicateur de vitesse entre la pompe et la turbine. The speed variation device 26 thus has a speed multiplier function between the pump and the turbine.
Après cette phase de démarrage, la turbine produit davantage de puissance que la consommation de la pompe et en conséquence cette turbine devient alors l'élément générateur de mouvement de rotation au détriment de la pompe. Le moteur à combustion interne est toujours opérationnel et l'arbre 18 est accouplé à la poulie 34 de la turbopompe par l'embrayage 36. After this start-up phase, the turbine produces more power than the consumption of the pump and consequently this turbine then becomes the generating element of rotational movement to the detriment of the pump. The internal combustion engine is still operational and the shaft 18 is coupled to the pulley 34 of the turbopump via the clutch 36.
La puissance générée par la turbine 22 est transmise au pignon 32 qui le transmet à la roue dentée 30 puis à la poulie 34 de la turbopompe. La puissance de la poulie 34 est ensuite transmise par la courroie 38 à la poulie du vilebrequin qui va apporter un surcroit de puissance à ce vilebrequin et par conséquent au moteur à combustion interne. Ceci va permet donc d'assister le travail demandé au moteur et donc de réduire la consommation de carburant du moteur.
Dans cette configuration, le dispositif de variation de vitesse 26 a une fonction de réducteur de vitesse entre l'arbre de la turbine et l'arbre de la pompe. The power generated by the turbine 22 is transmitted to the pinion 32 which transmits it to the toothed wheel 30 and then to the pulley 34 of the turbopump. The power of the pulley 34 is then transmitted by the belt 38 to the crankshaft pulley which will bring extra power to the crankshaft and therefore to the internal combustion engine. This goes therefore to assist the work requested the engine and thus reduce the fuel consumption of the engine. In this configuration, the speed variation device 26 has a speed reduction function between the turbine shaft and the pump shaft.
En effet, contrairement à la phase de démarrage, le mouvement de rotation est transmis du pignon vers la roue dentée. Compte tenu du rapport de vitesse, la roue dentée, et donc la pompe, tournera à une vitesse moindre que celle du pignon de l'arbre de la turbine. De cette manière, la turbine peut avoir un régime de rotation bien plus élevé que le régime de rotation du moteur et de la pompe, ce qui est favorable au rendement de la turbine. On se rapporte maintenant à la figure 2 qui montre une autre réalisation d'une turbopompe selon l'invention. Indeed, unlike the startup phase, the rotational movement is transmitted from the pinion to the toothed wheel. Given the gear ratio, the gearwheel, and therefore the pump, will run at a slower speed than that of the pinion of the turbine shaft. In this way, the turbine can have a rotational speed much higher than the rotational speed of the motor and the pump, which is favorable to the efficiency of the turbine. Referring now to Figure 2 which shows another embodiment of a turbopump according to the invention.
La turbopompe 1 10, qui est également ici une turbopompe cinétique, comprend un boîtier fixe 1 12 qui loge un rotor 1 14 d'une pompe 1 1 6 porté par un arbre de pompe 1 18, et un rotor 120 d'une turbine 1 22 porté un arbre de turbine 124. The turbopump 1 10, which is also a kinetic turbopump, comprises a fixed housing 1 12 which houses a rotor 1 14 of a pump 1 1 6 carried by a pump shaft 1 18, and a rotor 120 of a turbine 1 22 carried a turbine shaft 124.
Dans l'exemple de la figure 2, les arbres de la pompe et de la turbine sont séparés l'un de l'autre tout en étant dans le prolongement l'un de l'autre, et de préférence de manière coaxiale. In the example of Figure 2, the shafts of the pump and the turbine are separated from each other while being in the extension of one another, and preferably coaxially.
Avantageusement l'arbre de la pompe 1 18 traverse coaxialement l'arbre de la turbine 124, qui de ce fait est creux, pour déboucher au-delà de la turbine. Advantageously, the shaft of the pump 1 18 coaxially passes through the shaft of the turbine 124, which is thus hollow, to open beyond the turbine.
Comme pour l'exemple de la figure 1 , les deux arbres sont reliés l'un avec l'autre par un dispositif de variation de vitesse 1 26. As for the example of FIG. 1, the two shafts are connected to one another by a speed variation device 1 26.
Ce dispositif permet également de générer une différence de vitesse de rotation entre l'arbre de pompe et l'arbre de turbine. This device also makes it possible to generate a difference in speed of rotation between the pump shaft and the turbine shaft.
Similairement à l'exemple décrit de la figure 1 , le dispositif de variation de vitesse a pour fonction de multiplier la vitesse de rotation entre l'arbre de pompe et l'arbre de turbine lorsque l'arbre de pompe donne l'impulsion de vitesse de rotation ou de réduire la vitesse de rotation entre la turbine et la pompe lorsque l'arbre de turbine génère la vitesse de rotation comme il sera explicité en détail dans la suite de la description.
Ce dispositif de variation de vitesse comprend un train épicycloïdal 128 dont le planétaire 130 est porté par l'arbre creux de la turbine 124, dont la couronne 132 est portée par l'arbre de la pompe 1 18, et dont le porte-satellites 134 est porté par une paroi verticale 135 du boîtier 1 12. Similarly to the example described in FIG. 1, the function of the speed variation device is to multiply the speed of rotation between the pump shaft and the turbine shaft when the pump shaft gives the speed pulse. rotating or reducing the speed of rotation between the turbine and the pump when the turbine shaft generates the rotational speed as will be explained in detail in the following description. This speed variation device comprises an epicyclic gear train 128 whose sun gear 130 is carried by the hollow shaft of the turbine 124, whose ring 132 is carried by the pump shaft 1 18, and whose planet carrier 134 is carried by a vertical wall 135 of the housing 1 12.
Cette turbopompe comprend aussi une poulie de liaison 136 qui est liée en rotation à l'arbre de pompe 1 18 au travers d'un accouplement à commande contrôlé 138, de type embrayage électromagnétique, et qui est commandé en rotation par une bande fermée sur elle-même, comme une chaîne ou une courroie de liaison 140. This turbopump also comprises a link pulley 136 which is rotatably connected to the pump shaft 1 18 through a controlled-control coupling 138, of the electromagnetic clutch type, and which is rotated by a closed band on it. itself, such as a chain or a connecting belt 140.
Cette bande est avantageusement reliée à une poulie de vilebrequin qui est liée en rotation avec le vilebrequin d'un moteur à combustion interne (non représentés). This band is advantageously connected to a crankshaft pulley which is connected in rotation with the crankshaft of an internal combustion engine (not shown).
Comme pour l'exemple de la figure 1 cette turbopompe trouve plus particulièrement son application pour un circuit fermé, en particulier de type à cycle de Rankine. As for the example of FIG. 1, this turbopump more particularly finds its application for a closed circuit, in particular of the Rankine cycle type.
Pour cela, la sortie 142 de la pompe 1 16 est reliée à une entrée d'un évaporateur, qui est traversé par le fluide de travail comprimé par la pompe, la sortie de l'évaporateur est connectée à une entrée 144 de la turbine 122 pour y faire admettre le fluide de travail sous forme de vapeur comprimée à haute pression, ce fluide ressortant par une sortie 146 de cette turbine sous forme de vapeur détendue à basse pression. For this, the outlet 142 of the pump 1 16 is connected to an inlet of an evaporator, which is traversed by the working fluid compressed by the pump, the outlet of the evaporator is connected to an inlet 144 of the turbine 122 for admitting the working fluid in the form of vapor compressed at high pressure, this fluid emerging through an outlet 146 of the turbine in the form of low-pressure expanded steam.
La sortie de la turbine est raccordée à une entrée d'un condenseur, qui permet de transformer la vapeur basse pression détendue qu'il reçoit en un fluide liquide basse pression pour l'introduire à une entrée 148 de la pompe. The outlet of the turbine is connected to an inlet of a condenser, which makes it possible to convert the low-pressure vapor it receives into a low-pressure liquid fluid to introduce it to an inlet 148 of the pump.
Le fonctionnement de cette turbopompe est semblable à celle de la figure 1 . The operation of this turbopump is similar to that of Figure 1.
Ainsi dans la phase de démarrage du circuit fermé, le moteur à combustion interne est opérationnel et il est nécessaire de réaliser l'amorçage de la pompe 1 1 6 de la turbopompe. Pour ce faire, l'arbre 1 18 est accouplé à la poulie de liaison 136 de la turbopompe par l'embrayage 138. Le mouvement de rotation du vilebrequin est alors transmis à la poulie de liaison par la courroie de liaison 140.
Ce mouvement de rotation est ensuite retransmis à l'arbre de pompe et au rotor de pompe ainsi qu'à la couronne 132 du train épicycloïdal 128. Thus, in the start-up phase of the closed circuit, the internal combustion engine is operational and it is necessary to prime the pump 1 1 6 of the turbopump. To do this, the shaft 1 18 is coupled to the connecting pulley 136 of the turbopump by the clutch 138. The rotational movement of the crankshaft is then transmitted to the connecting pulley by the connecting belt 140. This rotational movement is then retransmitted to the pump shaft and the pump rotor as well as to the ring gear 132 of the planetary gear train 128.
Durant le mouvement de rotation de la couronne, qui est l'élément générateur de mouvement de rotation, cette couronne engrène avec le porte- satellites qui est fixe. Le mouvement de rotation des satellites de ce porte- satellites est communiqué au planétaire 130 puis à l'arbre de la turbine. During the rotational movement of the crown, which is the generating element of rotational movement, this crown meshes with the planet carrier which is fixed. The rotation movement of the satellites of this planet carrier is communicated to the sun gear 130 and then to the shaft of the turbine.
Dans cette configuration, le train épicycloïdal a un rapport de vitesse qui permet d'augmenter la vitesse du planétaire par rapport à celle de la couronne. Par cela la turbine tourne à une vitesse plus grande que celle de la pompe. In this configuration, the planetary gear train has a speed ratio that increases the speed of the sun gear relative to that of the crown. By this the turbine rotates at a speed greater than that of the pump.
Le train épicycloïdal 128 a ainsi une fonction de multiplicateur de vitesse entre la pompe et la turbine avec un premier rapport de vitesse multiplicateur pour la turbine avec une transmission de vitesse de rotation entre la couronne, le porte- satellites et le planétaire. The epicyclic train 128 thus has a speed multiplier function between the pump and the turbine with a first multiplier speed ratio for the turbine with a rotational speed transmission between the crown, the planet carrier and the sun gear.
Après cette phase de démarrage, la turbine produit davantage de puissance que la consommation de la pompe et en conséquence cette turbine devient alors l'élément générateur de mouvement de rotation au détriment de la pompe. After this start-up phase, the turbine produces more power than the consumption of the pump and consequently this turbine then becomes the generating element of rotational movement to the detriment of the pump.
Le moteur à combustion interne est toujours opérationnel et l'arbre 1 18 est accouplé à la poulie 136 de la turbopompe par l'embrayage 138. The internal combustion engine is still operational and the shaft 1 18 is coupled to the pulley 136 of the turbopump by the clutch 138.
La puissance générée par la turbine 122 est transmise au planétaire 130 qui le transmet à la couronne 132 au travers du porte-satellites 134. La puissance de la couronne est transmise à l'arbre de turbine et à la poulie 136 de la turbopompe. The power generated by the turbine 122 is transmitted to the sun gear 130 which transmits it to the ring gear 132 through the planet carrier 134. The power of the ring gear is transmitted to the turbine shaft and to the pulley 136 of the turbopump.
La puissance de la poulie est ensuite transmise par la courroie 140 à la poulie du vilebrequin qui va apporter un surcroit de puissance à ce vilebrequin et par conséquent au moteur à combustion interne. The power of the pulley is then transmitted by the belt 140 to the crankshaft pulley which will bring extra power to the crankshaft and therefore to the internal combustion engine.
Dans cette configuration, le dispositif de variation de vitesse 126 a une fonction de réducteur de vitesse entre l'arbre de la turbine et l'arbre de la pompe avec un premier rapport de réduction pour la pompe avec une transmission de rotation entre le planétaire, le porte-satellites et la couronne. L'avantage de cette configuration est de permettre à la turbine un régime de rotation bien plus élevé que le régime de rotation du moteur et de la pompe, ce qui est favorable au rendement de la turbine. In this configuration, the speed variation device 126 has a speed reduction function between the turbine shaft and the pump shaft with a first reduction ratio for the pump with a transmission of rotation between the sun gear, the planet carrier and the crown. The advantage of this configuration is to allow the turbine a rotational speed much higher than the rotational speed of the motor and the pump, which is favorable to the efficiency of the turbine.
La variante de la figure 3 comporte les mêmes éléments que ceux de la figure 2 mais avec une disposition particulière du train épicycloïdal 128.
Dans cette configuration, le planétaire 130 est porté par l'arbre creux de la turbine 124, la couronne 132 est portée par une paroi verticale 135 du boîtier 1 12, et le porte-satellites 134 est porté par l'arbre de la pompe 1 18. The variant of FIG. 3 comprises the same elements as those of FIG. 2 but with a particular arrangement of the epicyclic gear train 128. In this configuration, the sun gear 130 is carried by the hollow shaft of the turbine 124, the ring 132 is carried by a vertical wall 135 of the housing 1 12, and the planet carrier 134 is carried by the shaft of the pump 1 18.
Ce fonctionnement de cette configuration de train épicycloïdal est semblable celle de la figure 2 avec une fonction de multiplicateur de vitesse entre la pompe et la turbine, avec un deuxième rapport de vitesse multiplicateur pour la turbine, lors de la transmission de vitesse de rotation entre le porte-satellites, la couronne, et le planétaire. La variante de la figure 4 comporte également les mêmes éléments que ceux de la figure 2 ou 3 mais avec une disposition particulière du train épicycloïdal 128, qui est logé entre la turbine et la pompe. This operation of this epicyclic gear configuration is similar to that of FIG. 2 with a speed multiplier function between the pump and the turbine, with a second multiplier speed ratio for the turbine, during the transmission of rotation speed between the planet carriers, the crown, and the sun gear. The variant of Figure 4 also comprises the same elements as those of Figure 2 or 3 but with a particular arrangement of the epicyclic gear train 128, which is housed between the turbine and the pump.
Dans cette variante, le train épicycloïdal comprend la même disposition que celui de la figure 2 avec le planétaire 130 porté par l'arbre creux de la turbine 124, la couronne 132 portée par l'arbre de la pompe 1 18, et le porte-satellites 134 est porté par la paroi verticale 135 du boîtier 1 12. In this variant, the epicyclic gear train comprises the same arrangement as that of FIG. 2 with the sun gear 130 carried by the hollow shaft of the turbine 124, the ring gear 132 carried by the shaft of the pump 1 18, and the carrier satellites 134 is carried by the vertical wall 135 of the housing 1 12.
Le fonctionnement de cette configuration de train épicycloïdal est identique à celui de la figure 2 avec une fonction de multiplicateur de vitesse entre la pompe et la turbine avec un premier rapport de vitesse multiplicateur pour la turbine avec une transmission de vitesse de rotation entre le porte-satellites, la couronne, et le planétaire, et une fonction de réduction de vitesse entre la turbine et la pompe avec un premier rapport de vitesse réducteur entre le planétaire, le porte-satellites et la couronne. The operation of this epicyclic train configuration is identical to that of FIG. 2 with a speed multiplier function between the pump and the turbine with a first multiplier speed ratio for the turbine with a rotational speed transmission between the carrier and the turbine. satellites, the ring gear, and the sun gear, and a speed reduction function between the turbine and the pump with a first reduction gear ratio between the sun gear, the planet carrier and the ring gear.
Le principal avantage de cette variante réside dans l'éloignement de la pompe et de la turbine, qui permet de limiter les échanges thermiques entre les parties chaudes de la turbine et la pompe, avec pour conséquence une amélioration du rendement. The main advantage of this variant lies in the distance of the pump and the turbine, which limits the heat exchange between the hot parts of the turbine and the pump, resulting in improved performance.
Dans la variante de la figure 5, le train épicycloïdal est également disposé entre la pompe et la turbine comme pour la variante de la figure 4 mais avec une disposition particulière du train épicycloïdal 128. In the variant of Figure 5, the epicyclic train is also disposed between the pump and the turbine as for the variant of Figure 4 but with a particular arrangement of the epicyclic gear train 128.
Dans cette configuration, le planétaire 130 est porté par l'arbre creux de la turbine 124, la couronne 132 est portée par une paroi verticale 135 du boîtier 1 12, et le porte-satellites 134 est porté par l'arbre de la pompe 1 18.
Ce fonctionnement de cette configuration de train épicycloïdal est semblable celle de la figure 4 avec une fonction de multiplicateur de vitesse entre la pompe et la turbine, avec un deuxième rapport de vitesse multiplicateur pour la turbine, lors de la transmission de vitesse de rotation entre le porte-satellites, la couronne, et le planétaire. In this configuration, the sun gear 130 is carried by the hollow shaft of the turbine 124, the ring 132 is carried by a vertical wall 135 of the housing 1 12, and the planet carrier 134 is carried by the shaft of the pump 1 18. This operation of this epicyclic train configuration is similar to that of FIG. 4 with a speed multiplier function between the pump and the turbine, with a second multiplier speed ratio for the turbine, when transmitting rotational speed between the turbine and the turbine. planet carriers, the crown, and the sun gear.
La variante de la figure 6 ne diffère de la figure 2 que par la disposition de la turbine 122, qui est inversée, avec l'entrée 144 de la turbine qui est située du côté du train épicycloïdal 128 et sa sortie 146 du côté de la pompe 1 1 6. Cette variante de réalisation permet de juxtaposer le grand diamètre de turbine et le train épicycloïdal, facilitant un design plus compact. The variant of FIG. 6 differs from FIG. 2 only in the arrangement of the turbine 122, which is reversed, with the inlet 144 of the turbine which is situated on the side of the epicyclic gear train 128 and its output 146 on the side of the pump 1 1 6. This embodiment allows to juxtapose the large turbine diameter and the epicyclic train, facilitating a more compact design.
Le fonctionnement de cette configuration est identique à celui de la figure 2 avec une fonction de multiplicateur de vitesse entre la pompe et la turbine avec un premier rapport de vitesse multiplicateur pour la turbine avec une transmission de vitesse de rotation entre le porte-satellites, la couronne, et le planétaire, et une fonction de réduction de vitesse entre la turbine et la pompe avec un premier rapport de vitesse réducteur entre le planétaire, le porte-satellites et la couronne. The operation of this configuration is identical to that of FIG. 2 with a speed multiplier function between the pump and the turbine with a first multiplier speed ratio for the turbine with a rotational speed transmission between the planet carrier, the turbine and the turbine. crown, and the sun gear, and a speed reduction function between the turbine and the pump with a first reduction gear ratio between the sun gear, the planet carrier and the ring gear.
Dans la variante de la figure 7, le train épicycloïdal 128 est également placé entre la pompe 1 1 6 et la turbine 122. Dans cette variante, la pompe 1 1 6 est logée entre le train 128 et la poulie de liaison 136 alors que la turbine est placée en-deçà de ce même train. In the variant of Figure 7, the epicyclic train 128 is also placed between the pump 1 1 6 and the turbine 122. In this embodiment, the pump 1 1 6 is housed between the train 128 and the connecting pulley 136 while the turbine is placed below this same train.
Dans l'exemple de la figure 7, les arbres de pompe 1 18 et de turbine 124 sont séparés l'un de l'autre tout en étant coaxiaux et dans le prolongement l'un de l'autre. Le train épicycloïdal 128 est monté entre ces deux arbres avec la couronne 132 portée par l'arbre de pompe 1 18, le planétaire 130 porté par l'arbre de turbine 124 et le porte-satellites 134 porté par une paroi fixe 150 du boîtier 1 12. In the example of Figure 7, the pump shafts 1 18 and turbine 124 are separated from each other while being coaxial and in the extension of one another. The epicyclic gear train 128 is mounted between these two shafts with the ring gear 132 carried by the pump shaft 1 18, the sun gear 130 carried by the turbine shaft 124 and the planet carrier 134 carried by a fixed wall 150 of the housing 1 12.
La variante de la figure 8 diffère de la figure 7 par le fait que le couronne 132 est portée par une paroi fixe 150 du boîtier 1 12, le planétaire 130 est porté par l'arbre de turbine 124 et le porte-satellites 134 est porté par l'arbre de pompe 1 18. The variant of Figure 8 differs from Figure 7 in that the ring 132 is carried by a fixed wall 150 of the housing 1 12, the sun gear 130 is carried by the turbine shaft 124 and the planet carrier 134 is worn by the pump shaft 1 18.
Cette variante de la figure 7 permet également de réaliser une fonction de multiplicateur de vitesse entre la pompe et la turbine avec un deuxième rapport de vitesse multiplicateur pour la turbine avec une transmission de vitesse de rotation
entre le porte-satellites, la couronne, et le planétaire, et une fonction de réduction de vitesse entre la turbine et la pompe avec un premier rapport de vitesse réducteur entre le planétaire, le porte-satellites et la couronne
This variant of FIG. 7 also makes it possible to perform a speed multiplier function between the pump and the turbine with a second multiplier speed ratio for the turbine with a rotational speed transmission. between the planet carrier, the ring gear, and the sun gear, and a speed reduction function between the turbine and the pump with a first reduction gear ratio between the sun gear, the planet carrier and the crown
Claims
REVENDICATIONS
1 ) Turbopompe comprenant un boîtier fixe (12, 12' ; 1 12) comportant une pompe cinétique (1 6, 1 1 6) avec un rotor de pompe (14, 1 14) porté par un arbre de pompe (18, 1 18) et une turbine (22, 122) logeant un rotor de turbine (20, 120) porté par un arbre de turbine (24, 124), caractérisée en ce que l'arbre de pompe (18, 1 18) est séparé de l'arbre de turbine (24, 124) et en ce que ladite turbopompe comporte un dispositif de variation de vitesse (26, 126) pour générer une différence de vitesse de rotation entre l'arbre de pompe (18, 1 18) et l'arbre de turbine (24, 124). 1) Turbopump comprising a fixed housing (12, 12 '; 1 12) having a kinetic pump (1 6, 1 1 6) with a pump rotor (14, 1 14) carried by a pump shaft (18, 18 ) and a turbine (22, 122) housing a turbine rotor (20, 120) carried by a turbine shaft (24, 124), characterized in that the pump shaft (18, 1 18) is separated from the turbine shaft (24, 124). turbine shaft (24, 124) and in that said turbopump comprises a speed variation device (26, 126) for generating a difference in rotational speed between the pump shaft (18, 1 18) and the turbine shaft (24, 124).
2) Turbopompe selon la revendication 1 , caractérisée en ce que ladite turbopompe comporte un dispositif de variation de vitesse (26, 126) pour réduire la vitesse de rotation de l'arbre de pompe (18, 1 18) par rapport à l'arbre de turbine (24, 124) ou pour multiplier la vitesse de rotation de l'arbre de turbine (24, 124) par rapport à l'arbre de pompe (18, 1 18). 2) Turbopump according to claim 1, characterized in that said turbopump comprises a speed variation device (26, 126) for reducing the speed of rotation of the pump shaft (18, 1 18) relative to the shaft turbine (24, 124) or to multiply the rotational speed of the turbine shaft (24, 124) relative to the pump shaft (18, 1 18).
3) Turbopompe selon la revendication 1 ou 2, caractérisée en ce que les arbres de pompe (18) et de turbine (24) sont sensiblement parallèles l'un à l'autre. 3) Turbopump according to claim 1 or 2, characterized in that the pump shafts (18) and turbine (24) are substantially parallel to each other.
4) Turbopompe selon l'une des revendications précédentes, caractérisée en ce que le dispositif de variation de vitesse (26) comprend un roue dentée (30) portée par l'arbre de pompe (18) et un pignon (32) porté par l'arbre de turbine (24). 5) Turbopompe selon la revendication 1 ou 2, caractérisée en ce que les arbres de pompe (1 18) et de turbine (124) sont sensiblement coaxiaux l'un avec l'autre. 4) Turbopump according to one of the preceding claims, characterized in that the speed variation device (26) comprises a toothed wheel (30) carried by the pump shaft (18) and a pinion (32) carried by the turbine shaft (24). 5) Turbopump according to claim 1 or 2, characterized in that the pump shafts (1 18) and turbine (124) are substantially coaxial with each other.
6) Turbopompe selon la revendication 1 ou 2, caractérisée en ce que le dispositif de variation de vitesse comprend un train épicycloïdal (128). 6) Turbopump according to claim 1 or 2, characterized in that the speed variation device comprises an epicyclic gear (128).
7) Turbopompe selon la revendication 6, caractérisée en ce que le planétaire (130) du train épicycloïdal (128) est porté par l'arbre de turbine (124).
8) Turbopompe selon l'une des revendications 6 ou 7, caractérisée en ce que le porte-satellites (130) du train épicycloïdal (128) est porté par une paroi fixe (135, 150) du boîtier (1 12) de la turbopompe. 9) Turbopompe selon l'une des revendications 6 ou 7, caractérisée en ce que le porte-satellites (130) du train épicycloïdal (128) est porté par l'arbre de pompe (1 18). 7) Turbopump according to claim 6, characterized in that the sun gear (130) of the epicyclic gear (128) is carried by the turbine shaft (124). 8) Turbopump according to one of claims 6 or 7, characterized in that the planet carrier (130) of the epicyclic gear (128) is carried by a fixed wall (135, 150) of the housing (1 12) of the turbopump . 9) Turbopump according to one of claims 6 or 7, characterized in that the planet carrier (130) of the epicyclic gear (128) is carried by the pump shaft (1 18).
10) Turbopompe selon l'une des revendications 6 à 9, caractérisée en ce que la couronne (132) du train épicycloïdal (128) est portée par une paroi fixe (135,10) Turbopump according to one of claims 6 to 9, characterized in that the ring (132) of the epicyclic gear (128) is carried by a fixed wall (135,
150) du boîtier (1 12) de la turbopompe. 150) of the casing (1 12) of the turbopump.
1 1 ) Turbopompe selon l'une des revendications 6 à 9, caractérisée en ce que la couronne (132) du train épicycloïdal (128) est portée par l'arbre de pompe (1 18). 1 1) Turbopump according to one of claims 6 to 9, characterized in that the ring (132) of the epicyclic gear (128) is carried by the pump shaft (1 18).
12) Turbopompe selon l'une des revendications 1 à 10, caractérisée en ce qu'elle comprend une poulie de liaison (34, 136) portée par l'arbre de pompe (18, 1 18). 12) Turbopump according to one of claims 1 to 10, characterized in that it comprises a connecting pulley (34, 136) carried by the pump shaft (18, 1 18).
13) Turbopompe selon la revendication 12, caractérisée en ce que la turbopompe comprend un accouplement à commande contrôlée (36, 138) pour la liaison de la poulie de liaison (34, 136) et de l'arbre de pompe (18, 1 18). 14) Turbopompe selon l'une des revendications 1 à 1 1 , caractérisée en ce que la turbopompe comprend un moyen de variation de vitesse entre l'arbre de turbine (24, 124) et une poulie de liaison (34, 136). Turbocharger according to Claim 12, characterized in that the turbopump comprises a controlled-controlled coupling (36, 138) for connecting the connecting pulley (34, 136) and the pump shaft (18, 18). ). 14) Turbopump according to one of claims 1 to 1 1, characterized in that the turbopump comprises a speed variation means between the turbine shaft (24, 124) and a connecting pulley (34, 136).
15) Turbopompe selon l'une des revendications 1 à 14, caractérisée en ce qu'elle comprend une machine électrique entraînant l'arbre de pompe (18, 1 18). 15) Turbopump according to one of claims 1 to 14, characterized in that it comprises an electric machine driving the pump shaft (18, 1 18).
16) Application d'une turbopompe selon l'une des revendications précédentes à un circuit fermé, notamment de type Rankine ou ORC (Organic Rankine Cycle).
16) Application of a turbopump according to one of the preceding claims to a closed circuit, in particular of the Rankine or ORC (Organic Rankine Cycle) type.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020513623A JP2020532679A (en) | 2017-09-06 | 2018-08-30 | Momentum-transporting turbopump with speed-variable device for closed circuits, especially Rankine cycle type, especially automobiles |
EP18758889.2A EP3679253A1 (en) | 2017-09-06 | 2018-08-30 | Kinetic turbopump with speed-varying device for a closed circuit, particularly of the rankine cycle type, notably for a motor vehicle |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR1758211A FR3070725B1 (en) | 2017-09-06 | 2017-09-06 | KINETIC TURBOPOMPE WITH A DEVICE FOR VARIATION OF SPEED FOR A CLOSED CIRCUIT, IN PARTICULAR A RANKINE CYCLE TYPE, IN PARTICULAR FOR A MOTOR VEHICLE |
FR1758211 | 2017-09-06 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019048319A1 true WO2019048319A1 (en) | 2019-03-14 |
Family
ID=60081054
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2018/073300 WO2019048319A1 (en) | 2017-09-06 | 2018-08-30 | Kinetic turbopump with speed-varying device for a closed circuit, particularly of the rankine cycle type, notably for a motor vehicle |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP3679253A1 (en) |
JP (1) | JP2020532679A (en) |
FR (1) | FR3070725B1 (en) |
WO (1) | WO2019048319A1 (en) |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040187506A1 (en) * | 2003-03-25 | 2004-09-30 | Denso Corporation/Nippon Soken, Inc. | Waste heat utilizing system |
US20120090317A1 (en) * | 2009-08-05 | 2012-04-19 | Mitsubishi Electric Corporation | Exhaust heat regeneration system |
DE102011017762A1 (en) * | 2011-04-29 | 2012-10-31 | Zf Friedrichshafen Ag | Drive train for motor vehicle, has combustion engine with drive shaft, step-by-step variable speed transmission with input shaft and output shaft, and gear level |
WO2013046885A1 (en) | 2011-09-30 | 2013-04-04 | 日産自動車株式会社 | Rankine cycle |
FR3002279A1 (en) | 2013-02-20 | 2014-08-22 | Renault Sa | HEAT RECOVERY SYSTEM FOR EXHAUST GASES IN AN INTERNAL COMBUSTION ENGINE |
FR3004487A1 (en) * | 2013-04-16 | 2014-10-17 | IFP Energies Nouvelles | METHOD FOR CONTROLLING THE OPERATION OF A CLOSED CIRCUIT OPERATING ACCORDING TO A RANKINE CYCLE AND CIRCUIT USING SUCH A METHOD. |
US20150064039A1 (en) | 2012-04-12 | 2015-03-05 | Sanden Corporation | Fluid machine and rankine cycle |
WO2016170166A2 (en) * | 2015-04-24 | 2016-10-27 | Nuovo Pignone Tecnologie Srl | Compressor driven by orc waste heat recovery unit and control method |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3708499B2 (en) * | 2002-04-25 | 2005-10-19 | 株式会社デンソー | Combined auxiliary machine control device for vehicle |
JP2007198181A (en) * | 2006-01-24 | 2007-08-09 | Sanden Corp | Compressor |
JP2013076397A (en) * | 2011-09-15 | 2013-04-25 | Toyota Industries Corp | Waste heat utilization device |
KR101674804B1 (en) * | 2015-04-22 | 2016-11-09 | 두산중공업 주식회사 | Supercritical CO2 generation system |
-
2017
- 2017-09-06 FR FR1758211A patent/FR3070725B1/en active Active
-
2018
- 2018-08-30 WO PCT/EP2018/073300 patent/WO2019048319A1/en unknown
- 2018-08-30 EP EP18758889.2A patent/EP3679253A1/en not_active Withdrawn
- 2018-08-30 JP JP2020513623A patent/JP2020532679A/en active Pending
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040187506A1 (en) * | 2003-03-25 | 2004-09-30 | Denso Corporation/Nippon Soken, Inc. | Waste heat utilizing system |
US20120090317A1 (en) * | 2009-08-05 | 2012-04-19 | Mitsubishi Electric Corporation | Exhaust heat regeneration system |
DE102011017762A1 (en) * | 2011-04-29 | 2012-10-31 | Zf Friedrichshafen Ag | Drive train for motor vehicle, has combustion engine with drive shaft, step-by-step variable speed transmission with input shaft and output shaft, and gear level |
WO2013046885A1 (en) | 2011-09-30 | 2013-04-04 | 日産自動車株式会社 | Rankine cycle |
US20140250886A1 (en) * | 2011-09-30 | 2014-09-11 | Sanden Corporation | Rankine Cycle |
US20150064039A1 (en) | 2012-04-12 | 2015-03-05 | Sanden Corporation | Fluid machine and rankine cycle |
FR3002279A1 (en) | 2013-02-20 | 2014-08-22 | Renault Sa | HEAT RECOVERY SYSTEM FOR EXHAUST GASES IN AN INTERNAL COMBUSTION ENGINE |
FR3004487A1 (en) * | 2013-04-16 | 2014-10-17 | IFP Energies Nouvelles | METHOD FOR CONTROLLING THE OPERATION OF A CLOSED CIRCUIT OPERATING ACCORDING TO A RANKINE CYCLE AND CIRCUIT USING SUCH A METHOD. |
WO2016170166A2 (en) * | 2015-04-24 | 2016-10-27 | Nuovo Pignone Tecnologie Srl | Compressor driven by orc waste heat recovery unit and control method |
Also Published As
Publication number | Publication date |
---|---|
FR3070725B1 (en) | 2019-08-30 |
EP3679253A1 (en) | 2020-07-15 |
FR3070725A1 (en) | 2019-03-08 |
JP2020532679A (en) | 2020-11-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2381072B1 (en) | Closed circuit operating according to a Rankine cycle and method using such a circuit | |
FR2945574A1 (en) | DEVICE FOR MONITORING THE WORKING FLUID CIRCULATING IN A CLOSED CIRCUIT OPERATING ACCORDING TO A RANKINE CYCLE AND METHOD FOR SUCH A DEVICE | |
WO2005103453A1 (en) | System for recovering heat energy from a heat engine vehicle | |
EP2764243B1 (en) | Method and improved system for converting marine heat energy | |
FR2972761A1 (en) | METHOD FOR THE MECHANICAL ENERGY TRANSFORMATION OF LOW TEMPERATURE THERMAL ENERGY, AND DEVICE APPLYING | |
EP1446298B1 (en) | Absorption temperature control system for electric vehicle | |
EP3592977B1 (en) | Application of a turbopump to a fluid circuit, particularly to a closed circuit particularly of the rankine cycle type | |
FR3004487A1 (en) | METHOD FOR CONTROLLING THE OPERATION OF A CLOSED CIRCUIT OPERATING ACCORDING TO A RANKINE CYCLE AND CIRCUIT USING SUCH A METHOD. | |
EP3363101A1 (en) | Device for thermal insulation between a turbine of which the wheel is rotated by a hot fluid and an electricity generator with a rotor coupled to said wheel, in particular for a turbine generator | |
FR3070725B1 (en) | KINETIC TURBOPOMPE WITH A DEVICE FOR VARIATION OF SPEED FOR A CLOSED CIRCUIT, IN PARTICULAR A RANKINE CYCLE TYPE, IN PARTICULAR FOR A MOTOR VEHICLE | |
FR3095008A1 (en) | SET INCLUDING TWO RADIAL COMPRESSORS AND TWO RADIAL TURBINES | |
WO2016038202A1 (en) | System for energy production based on a rankine cycle | |
FR3065254B1 (en) | TURBOPOMPE ASSEMBLY FOR A CLOSED CIRCUIT, IN PARTICULAR A RANKINE CYCLE TYPE, ASSOCIATED WITH AN INTERNAL COMBUSTION ENGINE, IN PARTICULAR FOR A MOTOR VEHICLE | |
FR3095007A1 (en) | SET INCLUDING TWO RADIAL COMPRESSORS AND TWO RADIAL TURBINES | |
EP3724459B1 (en) | Electrically powered turbopump assembly for a closed circuit, particularly of the rankine cycle type, comprising integrated cooling | |
EP0101372A1 (en) | Method and system with thermodynamic cycle for energy production | |
FR3077122A1 (en) | RANKINE THERMODYNAMIC CYCLE SYSTEM INTEGRATED WITH AIR CONDITIONING LOOP FOR MOTOR VEHICLE | |
FR3007790A1 (en) | AIRCRAFT TURBOPROPOWER UNIT COMPRISING A CIRCUIT FOR RECOVERING AND CONVERTING THERMAL ENERGY | |
EP4305282A1 (en) | Tri-generation turbomachine device and vehicle comprising such a device | |
FR2531744A1 (en) | Turbine with crossed blades. | |
FR2531746A1 (en) | Installation for the generation of energy from the heat given off by a hot source. | |
FR2500883A1 (en) | Gas engine and compressed gas power system - uses stored solar heat energy and atmospheric fluids e.g. air or water to increase power output | |
FR3036736A1 (en) | AIRCRAFT TURBOMACHINE |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18758889 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2020513623 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2018758889 Country of ref document: EP Effective date: 20200406 |