WO2019047776A1 - 一种通信方法、网络设备及终端设备 - Google Patents

一种通信方法、网络设备及终端设备 Download PDF

Info

Publication number
WO2019047776A1
WO2019047776A1 PCT/CN2018/103507 CN2018103507W WO2019047776A1 WO 2019047776 A1 WO2019047776 A1 WO 2019047776A1 CN 2018103507 W CN2018103507 W CN 2018103507W WO 2019047776 A1 WO2019047776 A1 WO 2019047776A1
Authority
WO
WIPO (PCT)
Prior art keywords
srs
ofdm symbol
transmission resource
terminal device
subset
Prior art date
Application number
PCT/CN2018/103507
Other languages
English (en)
French (fr)
Inventor
魏冬冬
刘哲
刘嘉陵
汪凡
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP18853456.4A priority Critical patent/EP3565171B1/en
Publication of WO2019047776A1 publication Critical patent/WO2019047776A1/zh
Priority to US16/584,883 priority patent/US10999103B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • H04L27/2613Structure of the reference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/005Allocation of pilot signals, i.e. of signals known to the receiver of common pilots, i.e. pilots destined for multiple users or terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/006Quality of the received signal, e.g. BER, SNR, water filling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0064Rate requirement of the data, e.g. scalable bandwidth, data priority
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0092Indication of how the channel is divided
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/542Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • H04L27/2613Structure of the reference signals
    • H04L27/26136Pilot sequence conveying additional information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling

Definitions

  • the present application relates to the field of communications, and in particular, to a communication method, a network device, and a terminal device.
  • a sounding reference signal (SRS) is introduced for uplink channel measurement.
  • the uplink and downlink services are asymmetric, the amount of downlink service data is much larger than the uplink, and the user configuration is sometimes divided into time division duplex (TDD) carriers. At this time, multiple TDD carriers are configured for downlink transmission, and the number of downlink carriers will appear.
  • TDD time division duplex
  • the base station can only obtain the downlink transmission based on the channel quality information (CQI) reported by the user. Channel information.
  • CQI channel quality information
  • Channel information Channel information.
  • the current communication system supports SRS carrier-based switching (referred to as SRS switching).
  • the unit of the SRS resource configuration is one orthogonal frequency division multiplexing (OFDM) symbol, and the SRS is generally transmitted on the last OFDM symbol of the subframe. Due to the fixed number and location of transmission symbols of the SRS, the channel measurement requirements of the terminal equipment when transmitting in the high frequency band cannot be met.
  • OFDM orthogonal frequency division multiplexing
  • the communication method, the network device, and the terminal device in the embodiment of the present application can provide an SRS transmission mode in an SRS handover scenario, which can meet the channel measurement requirements of the terminal device when transmitting in a high frequency band.
  • a first aspect of the embodiments of the present application provides a communication method, where the method includes:
  • the network device sends the SRS configuration information of the first transmission resource and the SRS configuration information of the second transmission resource to the terminal device.
  • the first transmission resource supports a physical uplink control channel (PUCCH), a physical uplink share channel (PUSCH), a physical random access channel (PRACH), or At least one of the SRS signals, and the first transmission resource may be the first carrier, or may be the first bandwidth part, that is, the first transmission resource is the switching source carrier or the switching source bandwidth part when the SRS is switched.
  • the second transmission resource does not support the PUCCH and the PUSCH, and the second transmission resource includes a second carrier or a second bandwidth portion, that is, the second transmission resource is a handover destination carrier or a handover destination bandwidth portion when the SRS is switched.
  • the SRS configuration information of the first transmission resource includes a first OFDM symbol set, that is, a first SRS candidate set, and all or part of the OFDM symbols in the first OFDM symbol set are used by the terminal device in the first
  • the SRS is transmitted on the transmission resource, that is, the time domain resource in which the terminal device transmits the SRS on the first transmission resource is a subset of the first OFDM symbol set.
  • the SRS configuration information of the second transmission resource includes a second OFDM symbol set, that is, a second SRS candidate set, and all or part of the OFDM symbols in the second OFDM symbol set are used by the terminal device in the second
  • the SRS is transmitted on the transmission resource, that is, the time domain resource in which the terminal device transmits the SRS on the second transmission resource is a subset of the second OFDM symbol set.
  • the SRS configuration information configured by the network device to the terminal device includes an OFDM symbol set of different carrier or bandwidth parts, where the OFDM symbol set includes one or more OFDM symbols that can be used for transmission.
  • SRS so that the channel can be measured by multiple SRSs on one carrier or one bandwidth part, so that the measurement of the high frequency channel can be better supported, and the efficiency of channel measurement can be improved.
  • the SRS candidate set is related to a carrier type or a bandwidth part type, where the first OFDM symbol set and the second OFDM symbol set are different.
  • the network device may not send the SRS configuration information of the first transmission resource and the SRS configuration information of the second transmission resource to the terminal device, and the first OFDM symbol set, the The second set of OFDM symbols is predefined by a protocol, and the first set of OFDM symbols and the second set of OFDM symbols are different.
  • the first OFDM symbol set and the second OFDM symbol set are used to define an OFDM symbol set that the terminal device can transmit the SRS, and the terminal device specifically transmits the SRS on which symbols in the OFDM symbol set, and which one is sent.
  • the type of SRS, and other resource configuration required for sending the SRS requires the network device to be configured through other signaling or indication information, for example, through RRC signaling, DCI indication, and the like.
  • the first OFDM symbol set is different from the second OFDM symbol set, and the number of OFDM symbols may be different, or the positions of the OFDM symbols may be different, or the number and location of the OFDM symbols are not the same. the same.
  • the UE may be used to use different locations on the first transmission resource and the second transmission resource. Or the possibility of transmitting SRS by different numbers of symbols, so as to reduce the probability that the SRS is affected by radio frequency retuning (RF retuning) on the first transmission resource; on the other hand, RF retuning can be reduced. Impact on other received and transmitted channels on the first transmission resource.
  • RF retuning radio frequency retuning
  • the first OFDM symbol set includes a first OFDM symbol subset and a second OFDM symbol subset. All or part of the OFDM symbols in the first OFDM symbol subset are used by the terminal device to send a periodic SRS or a semi-static SRS on the first transmission resource, and it can also be said that the terminal device is in the first transmission.
  • the time domain resource on which the periodic SRS and semi-static SRS are transmitted on the resource is a subset of the first OFDM symbol subset.
  • All or part of the OFDM symbols in the second OFDM symbol subset are used by the terminal device to send an aperiodic SRS on the first transmission resource, and it can also be said that the terminal device sends on the first transmission resource.
  • the time domain resource of the aperiodic SRS is a subset of the first OFDM symbol subset.
  • the first OFDM symbol subset is different from the second OFDM symbol subset.
  • the first OFDM symbol subset and the second OFDM symbol subset are different;
  • the first OFDM symbol subset and the second OFDM symbol subset are different under the condition that the first OFDM symbol set and the second OFDM symbol set are different.
  • the second OFDM symbol set includes a third OFDM symbol subset and a fourth OFDM symbol subset. All or part of the OFDM symbols in the third OFDM symbol subset are used by the terminal device to send a periodic SRS or a semi-static SRS on the second transmission resource, and it can also be said that the terminal device is in the second transmission.
  • the time domain resource transmitting the periodic SRS and the semi-static SRS on the resource is a subset of the third OFDM symbol subset.
  • All or part of the OFDM symbols in the fourth OFDM symbol subset are used by the terminal device to send an aperiodic SRS on the second transmission resource, and it can also be said that the terminal device sends on the second transmission resource.
  • the time domain resource of the aperiodic SRS is a subset of the fourth OFDM symbol subset.
  • the third OFDM symbol subset is different from the fourth OFDM symbol subset.
  • the third OFDM symbol subset and the fourth OFDM symbol subset are different;
  • the third OFDM symbol subset and the fourth OFDM symbol subset are different under the condition that the first OFDM symbol set and the second OFDM symbol set are different.
  • different types of SRSs may configure or predefine different candidate sets.
  • the aperiodic SRS is used to acquire channel conditions on a frequency domain of interest to the network side, usually a narrowband SRS, and the periodic SRS and semi-static SRS are used to acquire the full channel and the entire system bandwidth.
  • the channel condition on the channel therefore, the corresponding SRS transmission symbols can be configured according to the characteristics of different types of SRS, and the impact on the channel on the switching source carrier is reduced.
  • the first OFDM symbol subset, the second OFDM symbol subset, the third OFDM symbol subset, and the fourth OFDM symbol subset may also be predefined by a protocol, And the first OFDM symbol subset and the second OFDM symbol subset are different, and the third OFDM symbol subset and the fourth OFDM symbol subset are different.
  • the SRS configuration period should be smaller and the number of transmitted symbols should be smaller on the switching source carrier or the switching source bandwidth part; on the handover destination carrier or the handover destination bandwidth part, it should be
  • the SRS period is configured to be relatively large, and the number of symbols sent each time is more. Thereby, the influence of the conflict on the SRS transmission on the handover source carrier can be reduced. Therefore, in the SRS configuration information, the number of OFDM symbols in the third OFDM symbol subset is set to be larger than the number of OFDM symbols in the first OFDM symbol subset.
  • the aperiodic SRS is generally used to acquire channel conditions on a frequency domain of interest to the network side, usually a narrow-band SRS, therefore, a small candidate set may be set to transmit the aperiodic SRS;
  • the periodic SRS and the semi-static SRS are generally used to acquire channel conditions on the entire channel and the entire system bandwidth. Therefore, a large candidate set transmission periodic SRS and semi-static SRS can be set.
  • the terminal device is configured to send The number of symbols for aperiodic SRS is less than the number of symbols available for transmitting periodic and/or semi-static SRS.
  • the number of OFDM symbols in the first OFDM symbol subset may be set to be smaller than the number of OFDM symbols in the second OFDM symbol subset, that is, on the first transmission resource, the terminal device
  • the number of symbols available to transmit aperiodic SRS is less than the number of symbols available to transmit periodic and/or semi-static SRS.
  • the communication method in the embodiment of the present application further includes: the network device sends group downlink control information (group DCI) to the terminal device, where the group DCI is used to indicate one or The indication information of the plurality of terminal devices, where the indication information includes SRS symbol location information of the terminal device, where the SRS symbol location information is used to indicate that the terminal device sends an aperiodic SRS on the second transmission resource. OFDM symbol position.
  • group DCI group downlink control information
  • the SRS symbol location information may be a location of the transmitted aperiodic SRS (A-SRS) in the second OFDM symbol subset, or may be a sent A-SRS in the foregoing.
  • the position in the subset of four OFDM symbols is not limited herein.
  • the SRS location information may include a number of SRS symbols and a symbol number of the sending SRS.
  • the number and location of the aperiodic SRS symbols sent by the terminal device can be flexibly configured to meet the SRS transmission requirements in different scenarios.
  • the network device sends the precoding information or the codebook of the terminal device to the group DCI of the terminal device, where the precoding information or the codebook is used to indicate that the terminal device is in the second The precoding or codebook used to transmit the aperiodic SRS on the transmission resource.
  • the transmission performance of the SRS on the carrier without the PUCCH and the PUSCH can be improved, and the transmission requirements in different scenarios can be met.
  • the group DCI sent by the network device to the terminal device may indicate beam index information of the terminal device, where the beam index information is used to indicate that the terminal device sends a non-period on the second transmission resource.
  • the index of the beam index or beam pair used by the SRS may indicate beam index information of the terminal device, where the beam index information is used to indicate that the terminal device sends a non-period on the second transmission resource.
  • the transmission performance of the SRS on the carrier without the PUCCH and the PUSCH can be improved, and the transmission requirements in different scenarios can be met.
  • the group DCI is transmitted in a common PDCCH or in a group common PDCCH.
  • an embodiment of the present application provides a communication method, where the method includes:
  • the terminal device acquires SRS configuration information on the first transmission resource and SRS configuration information on the second transmission resource, where the first transmission resource supports transmission of a physical uplink control channel PUCCH, a physical uplink shared channel PUSCH, and a physical random access channel (PRACH) Or at least one of the SRS signals, the second transmission resource does not support the PUCCH and the PUSCH, wherein the first transmission resource includes a first carrier or a first bandwidth portion, and the second transmission resource includes a second carrier or a a second bandwidth portion; the SRS configuration information of the first transmission resource includes a first orthogonal frequency division multiplexing OFDM symbol set, and the terminal device uses all or part of the OFDM symbols in the first OFDM symbol set in the Transmitting an SRS on the first transmission resource; the second OFDM symbol set is included in the SRS configuration information of the second transmission resource, and the terminal device uses all or part of the OFDM symbol in the second OFDM symbol set in the second Send SRS on the transmission resource.
  • the first transmission resource supports transmission of a physical
  • the manner in which the terminal device acquires the SRS configuration information on the first transmission resource and the SRS configuration information on the second transmission resource may be: pre-defining SRS configuration information and the second transmission on the first transmission resource by using a protocol
  • the SRS configuration information on the resource, that is, the first OFDM symbol set and the second OFDM symbol set are predefined by a protocol.
  • the terminal device transmits the SRS on the first transmission resource and the second transmission resource according to the SRS configuration information of the first transmission resource and the SRS configuration information of the second transmission resource, respectively.
  • the manner in which the terminal device acquires the SRS configuration information on the first transmission resource and the SRS configuration information on the second transmission resource may be: receiving the SRS configuration information and the second information on the first transmission resource sent by the network device. SRS configuration information on the transmission resource, thereby acquiring a first OFDM symbol set and a second OFDM symbol set.
  • the network device may broadcast the SRS configuration information, where the terminal device receives the SRS configuration information on the first transmission resource and the SRS configuration information on the second transmission resource, where the network device sends the RRC signaling.
  • the SRS configuration information is sent to the terminal device, and the terminal device receives the SRS configuration information on the first transmission resource and the SRS configuration information on the second transmission resource that are sent by the network device by using the RRC signaling.
  • the first OFDM symbol set and the second OFDM symbol set are used to define an OFDM symbol set that the terminal device can transmit the SRS, and the terminal device specifically transmits the SRS on which symbols in the OFDM symbol set, and which one is sent.
  • the type of SRS, and other resource configuration required for sending the SRS requires the network device to be configured through other signaling or indication information, for example, through RRC signaling, DCI indication, and the like.
  • the first OFDM symbol set and the second OFDM symbol set are different.
  • the first OFDM symbol set includes a first OFDM symbol subset and a second OFDM symbol subset, where the first OFDM symbol subset is different from the second OFDM symbol subset; the terminal device Transmitting periodic SRS or semi-static SRS on the first transmission resource using all or part of the OFDM symbols in the first OFDM symbol subset; the terminal device uses all or a second of the second OFDM symbol subset The partial OFDM symbol transmits an aperiodic SRS on the first transmission resource.
  • the second OFDM symbol set includes a third OFDM symbol subset and a fourth OFDM symbol subset, where the third OFDM symbol subset is different from the fourth OFDM symbol subset;
  • the method includes: the terminal device transmitting a periodic SRS or a semi-static SRS on the second transmission resource by using all or part of the OFDM symbols in the third OFDM symbol subset; the terminal device uses the fourth OFDM symbol All or a portion of the OFDM symbols in the set transmit an aperiodic SRS on the second transmission resource.
  • the first OFDM symbol subset, the second OFDM symbol subset, the third OFDM symbol subset, and the fourth OFDM symbol subset may also be predefined by a protocol, And the first OFDM symbol subset and the second OFDM symbol subset are different, and the third OFDM symbol subset and the fourth OFDM symbol subset are different.
  • the first OFDM symbol subset and the second OFDM symbol subset are different, the third OFDM symbol subset and the fourth OFDM symbol sub The set is different, and the first OFDM symbol subset and the second OFDM symbol subset are different, the third OFDM symbol subset and the fourth OFDM symbol are different if the first OFDM symbol set and the second OFDM symbol set are different. Subsets are different.
  • the number of OFDM symbols in the third OFDM symbol subset is greater than the number of OFDM symbols in the first OFDM symbol subset.
  • the number of OFDM symbols in the third OFDM symbol subset is smaller than the number of OFDM symbols in the fourth OFDM symbol subset.
  • the method further includes: the terminal device receiving the group downlink control information group DCI sent by the network device, where the group DCI includes indication information for indicating one or more terminal devices, where the indication information is And including SRS symbol location information of the terminal device, where the SRS symbol location information is used to indicate that the terminal device sends an OFDM symbol position of the aperiodic SRS on the second transmission resource.
  • the SRS symbol location information may be a location of the sent A-SRS in the second OFDM symbol set, or may be a location of the transmitted A-SRS in the fourth OFDM symbol subset. No restrictions are imposed.
  • the group DCI may further include precoding information or a codebook of the terminal device, where the precoding information or codebook is used to indicate that the terminal device sends an aperiodic on the second transmission resource.
  • the precoding or codebook used by the SRS may further include precoding information or a codebook of the terminal device, where the precoding information or codebook is used to indicate that the terminal device sends an aperiodic on the second transmission resource.
  • the group DCI may further include beam index information of the terminal device, where the beam index information is used to indicate that the terminal device sends a beam used by the aperiodic SRS on the second transmission resource. Index of the index or beam pair.
  • the group DCI is transmitted in a common PDCCH or in a group common PDCCH.
  • the embodiment of the present application further provides a network device, which specifically implements a function corresponding to the communication method provided by the foregoing first aspect.
  • the functions may be implemented by hardware or by executing corresponding software programs through hardware.
  • the hardware and software include one or more unit modules corresponding to the functions described above, which may be software and/or hardware.
  • the network device includes a sending unit and a receiving unit; wherein the sending unit is configured to:
  • the SRS configuration information of the second transmission resource includes a second OFDM symbol set, and all or part of the OFDM symbols in the second OFDM symbol set are used by the terminal device to send an SRS on the second transmission resource.
  • the network device includes:
  • the memory is for storing program code, and the processor calls the program code in the memory to perform the steps performed by the network device in the first aspect above.
  • the embodiment of the present application further provides a terminal device, which specifically implements a function corresponding to the communication method provided by the foregoing second aspect.
  • the functions may be implemented by hardware or by executing corresponding software programs through hardware.
  • the hardware and software include one or more unit modules corresponding to the functions described above, which may be software and/or hardware.
  • the terminal device includes:
  • An acquiring unit configured to acquire SRS configuration information on the first transmission resource and SRS configuration information on the second transmission resource, where the first transmission resource supports transmission of a physical uplink control channel (PUCCH), a physical uplink shared channel (PUSCH), and physical random access.
  • the second transmission resource does not support PUCCH and PUSCH, wherein the first transmission resource includes a first carrier or a first bandwidth portion, and the second transmission resource includes a second a carrier or a second bandwidth portion; the SRS configuration information of the first transmission resource includes a first OFDM symbol set, and the SRS configuration information of the second transmission resource includes a second OFDM symbol set;
  • a transmitting unit configured to send, by using all or part of the OFDM symbols in the first OFDM symbol set, an SRS on the first transmission resource; or, using all or part of the OFDM symbol in the second OFDM symbol set Sending an SRS on the second transmission resource.
  • the terminal device includes:
  • the memory is for storing program code
  • the processor calls the program code in the memory to perform the following operations performed by the terminal device in the second aspect above.
  • the present application provides a computer readable storage medium having stored therein instructions that, when executed on a computer, cause the computer to perform the methods described in the above aspects.
  • the present application provides a computer program product comprising instructions which, when run on a computer, cause the computer to perform the methods described in the various aspects above.
  • the embodiment of the present application provides a communication device, where the communication device may include an entity such as a terminal device or a chip, the communication device includes: a processor and a memory; the memory is used to store an instruction; The instructions in the memory are executed such that the communication device performs the method of any of the preceding first or second aspects.
  • the present application provides a chip system including a processor for supporting a network device to implement the functions involved in the above aspects or supporting the terminal device to implement the functions involved in the foregoing aspects, for example, for example, sending Or process the data and/or information involved in the above methods.
  • the chip system further includes a memory for storing necessary program instructions and data of the network device.
  • the chip system can be composed of chips, and can also include chips and other discrete devices.
  • the embodiments of the present application have the following advantages:
  • the SRS configuration information configured by the network device to the terminal device includes an OFDM symbol set, where the OFDM symbol set includes one or more OFDM symbols that can be used to transmit the SRS, thereby being in one carrier. Or a bandwidth part, the channel can be measured by multiple SRSs, so that the measurement of the high frequency channel can be better supported, and the efficiency of the channel measurement can be improved.
  • the first OFDM symbol set of the first transmission resource and the second OFDM symbol set of the second transmission resource are different, so that the impact on various channels on the first transmission resource may be reduced.
  • FIG. 1 is a schematic diagram of a communication system in an embodiment of the present application.
  • FIG. 2 is a schematic diagram of a terminal device transmitting an SRS from CC1 to CC2 in the embodiment of the present application;
  • FIG. 3 is a schematic diagram of a relationship between a carrier and a bandwidth part in an embodiment of the present application
  • FIG. 4 is a schematic diagram of a terminal device transmitting an SRS from BP1 to BP2 according to an embodiment of the present application;
  • FIG. 5 is a schematic diagram of information interaction between a network device and a terminal device according to an embodiment of the present application
  • FIG. 6 is a schematic diagram of a first OFDM symbol set in an embodiment of the present application.
  • FIG. 7 is a schematic diagram of a second OFDM symbol set in the embodiment of the present application.
  • FIG. 8 is a schematic diagram of RF retuning in an SRS handover process according to an embodiment of the present application.
  • FIG. 9 is a schematic diagram of a configuration of an SRS candidate set in an SRS handover scenario according to an embodiment of the present application.
  • FIG. 10 is a schematic diagram of transmission symbols of an A-SRS on a handover destination carrier according to an embodiment of the present application.
  • FIG. 11 is a schematic diagram of a beam index in an embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of functional modules of a network device according to an embodiment of the present application.
  • FIG. 13 is a schematic structural diagram of a function module of a terminal device according to an embodiment of the present application.
  • FIG. 14 is a schematic structural diagram of hardware of a network device and a terminal device according to an embodiment of the present application.
  • FIG. 15 is a schematic structural diagram of hardware of a terminal device in an embodiment of the present application.
  • the embodiment of the present application proposes a solution based on the communication system shown in FIG. 1 for better support.
  • the measurement of the high frequency channel improves the efficiency of channel measurement.
  • the communication system 100 includes a core network, at least one base station, and at least one terminal device (also referred to as user equipment (UE)). Only one base station and UE1 and UE2 in the coverage area of the base station are shown in the figure.
  • the base station provides radio access services for multiple UEs in its coverage area.
  • the UE can communicate with the base station through a link, and the base station is connected to the core network.
  • the core network may include a mobility management entity (MME).
  • MME mobility management entity
  • a network device such as a home subscriber server (HSS) or a serving gateway (SGW).
  • the communication system 100 may be a variety of radio access technology (RAT) systems, such as a code division multiple access (CDMA) system, time division multiple access (time division multiple) Access, TDMA) system, frequency division multiple access (FDMA) system, orthogonal frequency division multiple access (OFDMA) system, single carrier frequency division multiple access (SC-FDMA) system And other systems.
  • RAT radio access technology
  • CDMA code division multiple access
  • time division multiple time division multiple Access
  • TDMA time division multiple access
  • FDMA frequency division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • a CDMA system can implement radio technologies such as universal terrestrial radio access (UTRA), CDMA2000, and the like.
  • UTRA includes wideband CDMA (W-CDMA) technology and other CDMA variant technologies.
  • CDMA2000 covers the interim standard (IS) 2000 (IS-2000), IS-95 and IS-856 standards.
  • a TDMA system can implement a wireless technology such as a global system for mobile communication (GSM).
  • GSM global system for mobile communication
  • the OFDMA system can implement wireless such as evolved UTRA (E-UTRA), ultra mobile broadband (UMB), IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802.20, Flash-OFDM, and the like. technology.
  • E-UTRA evolved UTRA
  • UMB ultra mobile broadband
  • Wi-Fi IEEE 802.11
  • WiMAX IEEE 802.16
  • Flash-OFDM Flash-OFDM
  • UTRA and E-UTRA are part of the universal mobile telecommunications system (UMTS).
  • UMTS universal mobile telecommunications system
  • LTE long term evolution
  • various versions based on LTE evolution are new versions of UMTS using E-UTRA.
  • the communication system 100 can also be adapted for future-oriented communication technologies, such as 5G systems.
  • the base station is a device deployed in a radio access network to provide a wireless communication function for the UE.
  • the base station may include various forms of macro base stations, micro base stations (which may also be small stations), relay stations, access points, and the like.
  • BTS base transceiver stations
  • Node B which may also be an evolved node (evolved NodeB, or eNB or e-NodeB) in LTE, or may be a next-generation new radio (NR), that is, a transceiver in a 5G system.
  • NR next-generation new radio
  • TRP Point-of-receive point
  • the foregoing apparatus for providing a wireless communication function to the UE is collectively referred to as a base station.
  • the UE involved in the embodiments of the present application may include various wireless communication functions, and may communicate with one or more core networks via a radio access network (RAN) to provide voice and/or data connectivity for the user.
  • Terminal equipment which can be referred to as the terminal. It can be a handheld device with wireless communication capabilities, an in-vehicle device, a wearable device, a computing device, or other processing device connected to a wireless modem.
  • the UE in the embodiment of the present application may also be referred to as a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, and a remote terminal.
  • UEs access terminal, user terminal, user agent, user device, personal communication service (PCS) phone, cordless phone, mobile phone, Cellular" phones, smart phones, wireless local loop (WLL) stations, personal digital assistants (PDAs) and other devices.
  • PCS personal communication service
  • WLL wireless local loop
  • PDA personal digital assistant
  • the number and type of the UEs included in the communication system 100 in FIG. 1 are merely examples.
  • the embodiment of the present application is not limited thereto.
  • the UE may further include more UEs that communicate with the base station.
  • the communication system 100 may not be limited to include the core network, a base station, and a UE, and may also include, for example, a device for carrying virtualized network functions. These will be apparent to those skilled in the art and will not be described in detail herein.
  • the embodiment of the present application provides an SRS transmission method in an SRS handover scenario based on the communication system 100 shown in FIG. 1, thereby improving the efficiency of channel measurement.
  • the SRS in the embodiment of the present application is a reference signal transmitted by the UE on the uplink, and is a signal used by the terminal device and the base station to measure channel state information (CSI).
  • the SRS mainly has the following functions: 1) channel sounding, which is used for measuring the uplink radio channel quality on the base station side; 2) frequency selective scheduling; 3) performing uplink timing control on the UE and maintaining synchronization; 4)
  • the channel information measured by the SRS is used to assist the downlink transmission by using the reciprocity of the uplink and downlink channels.
  • the communication system in the embodiment of the present application supports periodic SRS (periodic SRS, P-SRS), aperiodic SRS (A-SRS), and semi-persistent scheduling SRS (SPS-SRS).
  • periodic SRS periodic SRS
  • P-SRS aperiodic SRS
  • A-SRS aperiodic SRS
  • SPS-SRS semi-persistent scheduling SRS
  • the periodic SRS is to send the SRS once every SRS period according to the configured SRS period.
  • the periodic SRS is a time domain, a frequency domain, a code domain, and a comb resource used for configuring SRS transmission by radio resource control (RRC) signaling.
  • the time domain resources include: a period of the SRS, a slot for SRS transmission, and an orthogonal frequency division multiplexing (OFDM) symbol used for SRS transmission.
  • the aperiodic SRS is a time domain, a frequency domain, a code domain, and a comb resource used for configuring SRS transmission through RRC signaling.
  • the time domain resource used by the SRS transmission is not fixed, and the downlink control information (DCI) triggers the terminal device to send the SRS.
  • DCI downlink control information
  • the semi-static SRS is a time domain, a frequency domain, a code domain, and a comb resource used for configuring SRS transmission through RRC signaling.
  • the time domain resources include: a period of the SRS, a slot for SRS transmission, and an OFDM symbol used for SRS transmission.
  • the DCI is triggered by the DCI to send the SRS once every SRS period according to the configured SRS period. In addition, the DCI can also trigger the terminal device to terminate the transmission of the SRS.
  • the embodiment of the present application supports carrier-based SRS handover (SRS carrier based switching) in a carrier aggregation scenario.
  • the carrier aggregation means that the user can use several carriers to perform uplink and downlink transmission according to its own capabilities.
  • the duplex mode of the different carriers can be flexibly configured, that is, the duplex mode can be all frequency division duplexing (FDD), or all of the TDD, or the FDD+TDD carrier.
  • FDD frequency division duplexing
  • the uplink and downlink services are asymmetric, the amount of downlink service data is much larger than the uplink, and the user is configured with the TDD carrier, when multiple TDD carriers are configured for downlink transmission, the number of downlink carriers is greater than the number of uplink carriers.
  • the part of the TDD carrier is configured to transmit only downlink data, and there is no uplink data/reference signal transmission.
  • the base station cannot accurately obtain the downlink transmission channel information according to the reciprocity of the uplink and downlink channels.
  • the carrier SRS switching feature can be periodically/non-periodically switched to the carrier where only the SRS exists, and the channel measurement performance of the SRS and the reciprocity of the uplink and downlink channels in the TDD scenario are used to assist the downlink on the carrier.
  • the base station can select a better or narrower beam to perform downlink data transmission to the user according to the measurement result of the SRS, so as to improve transmission reliability and transmission rate.
  • the carrier-based SRS handover feature is that the UE is configured with N carriers. Since the uplink capability of the UE is insufficient, only the uplink transmission of the M uplink carriers can be supported. To obtain the accurate downlink channel state of the TDD carrier in the NM carriers, the UE needs to borrow.
  • the radio frequency (RF) capability of the M uplink carriers that is, one uplink carrier unit (CC) of the M uplink carriers is switched to one of the NM carriers to transmit the SRS.
  • FIG. 2 is a schematic diagram of a terminal device transmitting an SRS from CC1 to CC2.
  • Figure 2 shows two subframes (SFs) corresponding to carriers CC1 and CC2: SF N and SF N+1, where CC1 supports transmitting uplink data and CC2 supports only transmitting downlink data.
  • the UE switches the RF (Radio Frequency) to the eleventh symbol of the CC1, and the RF switches to the CC2, and switches to the CC2 to transmit the SRS, so that the base station can acquire the CC2 according to the SRS.
  • RF Radio Frequency
  • CC1 is a switching source carrier (switching-from CC), also known as a standard CC (normal CC);
  • CC2 is a switching destination carrier (switching-to CC), also known as SRS only CC.
  • the carrier in the embodiment of the present application includes a carrier in a carrier aggregation (CA) scenario and a CC in a CA scenario.
  • the serving cell in the CA scenario may be a primary serving cell (PCell) or a secondary serving cell (Scell).
  • PCell primary serving cell
  • Scell secondary serving cell
  • the carrier in the non-CA scenario and the CC in the CA scenario may be collectively referred to as a carrier, which is not specifically limited in this embodiment of the present application.
  • a part of a carrier or a serving cell used for uplink transmission may be understood as an uplink resource or an uplink carrier
  • a part of a carrier or a serving cell used for downlink transmission may be understood as a downlink resource or a downlink carrier.
  • a frequency domain resource used for uplink transmission on a carrier can be understood as an uplink resource or an uplink carrier; a frequency domain resource used for downlink transmission on a carrier can be understood as a downlink resource or a downlink carrier.
  • a time domain resource used for uplink transmission on a carrier may be understood as an uplink resource or an uplink carrier; a time domain resource used for downlink transmission on a carrier may be understood as a downlink resource or a downlink carrier.
  • the embodiment of the present application not only supports SRS carrier based switching in a carrier aggregation scenario, but also supports Bandwidth Part (BP) based SRS switching on a wideband CC (SRS BP- Based switching).
  • BP Bandwidth Part
  • the BP in the embodiment of the present application is a frequency domain resource on a carrier, which may be a smaller bandwidth unit than a carrier, and may further divide the carrier bandwidth into multiple bandwidth portions.
  • the 80MHz carrier bandwidth can be divided into a 20MHz BP1, a 20MHz BP2, and a 40MHz BP3.
  • the BP can also be said to be a working bandwidth allocated by the network device to the UE.
  • the working bandwidth includes the uplink working bandwidth and the downlink working bandwidth.
  • the uplink working bandwidth is the uplink BP activated by the terminal device, and the downlink working bandwidth is the downlink BP activated by the terminal device.
  • the working bandwidth of the UE and the carrier bandwidth are decoupled.
  • the carrier bandwidth refers to the number of resource blocks (RBs) included in the wideband CC.
  • the RBs may have different subcarrier spacing (SCS).
  • the LTE 20M CC contains 100 15 kHz subcarrier spacings. RB.
  • the working bandwidth supported by different UEs is different, that is, the number of RBs that can be processed is different.
  • the carrier bandwidth for example, 100 M
  • the network device allocates a working bandwidth such as a capability range of the UE to the UE, and the UE performs control and data transmission within the working bandwidth (ie, BP) allocated by the base station.
  • BP1 is a switching source bandwidth portion (switching-from BP), also known as a standard BP (normal BP);
  • BP2 is a switching destination carrier (switching-to BP), also known as SRS only BP.
  • the unit of the SRS resource configuration is 1 OFDM symbol (which may be abbreviated as a symbol), and the SRS is generally transmitted on the last OFDM symbol of the subframe. Due to the fixed number and location of transmission symbols of the SRS, the channel measurement requirements of the terminal equipment when transmitting in the high frequency band cannot be met. For example, when the uplink carrier of the terminal device is 1.8 GHz, the SRS can be transmitted by using one OFDM symbol to meet the channel measurement requirement. However, when the uplink carrier of the terminal device is 3.5 GHz, the path loss at the same transmission distance is increased due to the frequency band. The use of one OFDM symbol to transmit SRS cannot meet its channel measurement requirements.
  • the SRS resource configuration supports multiple SRS symbols, that is, the network device may allocate multiple OFDM symbols for one carrier or one BP to transmit SRS.
  • the SRS configuration information configured by the network device to the terminal device includes an OFDM symbol set (also referred to as an SRS candidate set), where the OFDM symbol set includes one or more OFDM symbols, and the terminal device is configured.
  • the SRS may be transmitted using all or part of these OFDM symbols on the transmission resources.
  • the SRS handover scenario in the embodiment of the present application includes a carrier-based SRS handover scenario and a bandwidth-based SRS handover scenario. The details will be described below with reference to FIG. 5.
  • the network device in this application may refer to a device in an access network that communicates with a wireless terminal through one or more sectors on an air interface, and the network device may be a base station or may have a base station.
  • a similarly functioning network device or network side node may be, for example, a control node connected to a base station, any network side device having a resource configuration or resource scheduling or resource reuse decision function.
  • the network device sends the SRS configuration information of the first transmission resource and the SRS configuration information of the second transmission resource to the terminal device.
  • the network device may send the SRS configuration information to the terminal device by using a broadcast mode, or send the SRS configuration information to the terminal device by using the RRC signaling, so that the terminal device may obtain the SRS configuration on the first transmission resource sent by the network device.
  • Information and SRS configuration information on the second transmission resource may be sent by the network device.
  • the first transmission resource supports a physical uplink control channel (PUCCH), a physical uplink share channel (PUSCH), a physical random access channel (PRACH), or a SRS signal. At least one of them.
  • the first transmission resource may be a first carrier, or may be a first bandwidth portion, where the first carrier refers to a switching source carrier (switching-from CC) in a carrier-based SRS handover scenario, and the first bandwidth portion refers to a BP-based component.
  • the first transmission resource in the embodiment of the present application may also be referred to as a first uplink transmission resource.
  • the second transmission resource does not support the PUCCH and the PUSCH, and the second transmission resource may be the second carrier or the second bandwidth portion.
  • the second carrier refers to a switching destination-to-CC in a carrier-based SRS handover scenario
  • the second bandwidth portion refers to a handover-to-BP in a BP-based SRS handover scenario.
  • the second transmission resource in this embodiment of the present application may also be referred to as a second uplink transmission resource.
  • the SRS configuration information on the first transmission resource includes a first OFDM symbol set, and the first OFDM symbol set includes one or more OFDM symbols. All or part of the OFDM symbols in the first OFDM symbol set are used by the terminal device to send an SRS on the first transmission resource, that is, the symbol in the first OFDM symbol set is that the terminal device is in the first transmission resource.
  • the symbol that can be used to send the SRS it can also be said that the time domain resource in which the terminal device transmits the SRS on the first transmission resource is a subset of the first OFDM symbol set.
  • the first set of OFDM symbols may also be referred to as a first set of SRS candidates.
  • the OFDM symbol may be defined as an OFDM symbol in a subframe, may also be defined as an OFDM symbol in a slot, and may also be defined as an OFDM symbol in a time unit or a time interval.
  • the first OFDM symbol set of the first transmission resource is the last four symbols ⁇ 10, 11, 12, 13 ⁇ of the subframe, and the terminal device is on the first transmission resource, and can pass through FIG. One or more of ⁇ 10, 11, 12, 13 ⁇ to send the SRS.
  • the SRS configuration information on the second transmission resource includes a second OFDM symbol set, and the second OFDM symbol set includes one or more OFDM symbols. All or part of the OFDM symbols of the second OFDM symbol set are used by the terminal device to send an SRS on the second transmission resource, that is, the symbol in the second OFDM symbol set is that the terminal device is on the second transmission resource.
  • the symbol that can be used to transmit the SRS it can also be said that the time domain resource in which the terminal device transmits the SRS on the second transmission resource is a subset of the second OFDM symbol set.
  • the second set of OFDM symbols may also be referred to as a second set of SRS candidates.
  • the OFDM symbol may refer to an OFDM symbol in a subframe, or may refer to an OFDM symbol in a slot.
  • the second OFDM symbol set of the second transmission resource is the last four symbols ⁇ 10, 11, 12, 13 ⁇ of the subframe, and the terminal device is on the second transmission resource, and can pass through FIG. One or more of ⁇ 10, 11, 12, 13 ⁇ to send the SRS.
  • first OFDM symbol set shown in FIG. 6 and the second OFDM symbol set shown in FIG. 7 are merely examples, and do not constitute a limitation on the present application.
  • first OFDM symbol set And the second set of OFDM symbols may be the same or different.
  • the terminal device may send the information separately or separately.
  • the network device may be configured as SRS configuration information of the first transmission resource and SRS configuration information of the second transmission resource. It is also possible to pre-set by the protocol which OFDM symbols can be used to transmit the SRS, ie the protocol pre-sets a set of OFDM symbols used to transmit the SRS. Then, the network device selects one or more symbols from the set of OFDM symbols preset by the protocol as the first OFDM symbol set to define an OFDM symbol set that can be used to transmit the SRS on the first transmission resource; likewise, the network device One or more symbols are selected from the set of OFDM symbols preset in the protocol as a second set of OFDM symbols to define an OFDM symbol set that can be used to transmit the SRS on the second transmission resource.
  • the first OFDM symbol set and the second OFDM symbol set are transmitted by the network device to the terminal device.
  • the first OFDM symbol set and the second OFDM symbol set do not necessarily need to be configured by a network device, and may also be implemented in a protocol predefined manner.
  • the SRS configuration information on the first transmission resource and the SRS configuration information on the second transmission resource are predefined by the protocol, that is, the first OFDM symbol set and the first carrier of the first carrier (or the first bandwidth part) are predefined by the protocol.
  • a second OFDM symbol set of the second carrier (or the second bandwidth portion) such that the terminal device can obtain the first OFDM symbol set and the second symbol OFDM symbol set from the protocol predefined SRS configuration information.
  • the terminal device sends an SRS according to the SRS configuration information of the first transmission resource on the first transmission resource, and sends an SRS according to the SRS configuration information of the second transmission resource on the second transmission resource.
  • the terminal device After acquiring the SRS configuration information of the first transmission resource and the SRS configuration information of the second transmission resource, the terminal device sends an SRS according to the SRS configuration information of the first transmission resource on the first transmission resource, where the second transmission is performed.
  • the SRS is transmitted on the resource according to the SRS configuration information of the second transmission resource. That is, when the terminal device transmits the SRS on the first transmission resource, the SRS is transmitted using all or part of the OFDM symbols of the first OFDM symbol set, and when the SRS is transmitted on the second transmission resource, all or part of the OFDM symbols of the second OFDM symbol set are used. Send SRS.
  • the SRS configuration information is used to limit the OFDM symbol set that the terminal device can transmit the SRS, and is not the trigger condition for the terminal device to send the SRS and the OFDM symbol occupied by the actual SRS transmission.
  • the terminal device specifically transmits the SRS on the symbols in the OFDM symbol set, the type of the SRS to be sent, and other resource configurations required for sending the SRS, and the network device needs to be configured through other signaling or indication information, for example, RRC signaling, DCI indication, etc. are configured.
  • the SRS configuration information configured by the network device to the terminal device includes an OFDM symbol set, where the OFDM symbol set includes one or more OFDM symbols, and the OFDM symbols can be used to transmit the SRS. Therefore, on one carrier or one bandwidth part, the channel can be measured by multiple SRSs, which can better support the measurement of the high frequency channel and improve the efficiency of channel measurement.
  • the SRS when the SRS is switched, it is switched from one CC to another CC, or from one BP to another BP, so the RF needs to be re-tuned (RF retuning).
  • the switching source-carrier the switching-from CC
  • the UE if the switching-from CC is the FDD carrier during the RF retuning time, the UE cannot perform the uplink transmission during the RF retuning time; if the source carrier is switched (switching- From CC) is a TDD carrier, then the UE cannot perform uplink transmission or downlink reception within the RF retuning time. Therefore, when the SRS is switched, it affects the switching source carrier or the switching source BP.
  • the UE switches from CC1 to CC2, and sends an SRS on the 13th symbol on the subframe N of CC2.
  • the UE switches from CC1 to CCS and transmits a symbol SRS, it needs to be from CC2.
  • Switching to CC1 to continue uplink transmission that is, the SRS transmission of one symbol on CC2 requires two RF retuning, and each RF retuning requires 2 OFDM symbols. Therefore, the UE transmitting SRS on CC2 causes the UE to be on CC1 subframe N. Symbols 1-1 to 0-1 on subframe N+1 cannot transmit PUSCH.
  • the UE has both uplink and downlink on CC1, and symbols 0-11 are downlink transmission resources, where part of the frequency band where symbols 0 and 1 are located is a control area, and symbol 12 is a blank symbol, or
  • the symbol 13 is the uplink transmission resource; the UE is the downlink transmission resource except that the 13th symbol on the slot #0 is the symbol for transmitting the SRS on the CC2.
  • the UE switches from CC1 to CC2 and transmits the SRS on the 13th symbol on the slot of CC2.
  • the SRS transmission on CC2 affects symbols 11 to 13 on slot #0 on CC1 and symbols 0 and 1 on slot #1. Therefore, the ACK/NACK of the PUCCH feedback downlink data that affects the symbol 13 on slot #0 also affects the blind detection PDCCH on slot #1.
  • FIG. 2 and FIG. 8 are a description of the SRS handover based on the carrier, and the SRS handover affects the handover source carrier.
  • the SRS handover based on the bandwidth part has the same problem, and is not described here.
  • Figure 2 and Figure 8 show the SRS switching of one symbol, and the SRS switching of one symbol affects the five symbols on CC1 when RF retuning.
  • the SRS resource configuration of multiple symbols is supported, and the RF retuning of the SRS handover of each symbol affects the corresponding symbol on the CC1. Therefore, the SRS handover may generate a large variety of channels on the switching source carrier. Impact.
  • the present application provides a communication method capable of reducing the impact on the channel on the handover source carrier when the SRS handover occurs.
  • the OFDM symbol set in the SRS configuration information in the embodiment of the present application is related to the carrier type or the BP type, and the first OFDM symbol set and the second OFDM symbol set configured by the network device are different.
  • the carrier type refers to whether the carrier is a handover source carrier or a handover destination carrier when the SRS is switched.
  • the BP type refers to whether the BP is the handover source BP or the handover destination BP when the SRS is switched.
  • the candidate set of the handover destination carrier or the SRS on the BP may be symbols 7 to 13 on the slot
  • the candidate set of the SRS on the handover source carrier or BP may be symbols 10 to 13 on the slot.
  • the first OFDM symbol set is different from the second OFDM symbol set, and may be partially different or all different.
  • the first OFDM symbol set and the second OFDM symbol set may be different.
  • the number of OFDM symbols may be different, or the positions of the OFDM symbols may be different, or the number and location of the OFDM symbols may be different.
  • the BP-based SRS handover scenario may refer to a carrier-based SRS handover scenario.
  • two carriers CC1 and CC2 as shown in FIG. 9 are configured, which are limited by the uplink capability of the UE, where CC1 is normal CC (switching-from CC), and CC2 is SRS only CC. (switching-to CC).
  • CC1 normal CC
  • CC2 SRS only CC.
  • switching-to CC switching-to CC
  • the symbol position and number of the SRS are related to the type of the CC. As shown in FIG.
  • SetA on the normal CC is different from SetB on the SRS-only CC/BP
  • configuring different SRS candidate sets for CC1 (ie, switching source carrier) and CC2 (ie, switching destination carrier) may increase the UE to use different locations and/or different numbers of symbol transmission SRSs on CC1 and CC2.
  • the possibility on the one hand, can reduce the probability that the SRS on CC1 is in the range of RF retuning, thereby reducing the probability that the SRS on CC1 is affected; on the other hand, it can reduce the RF retuning to other receiving and transmitting on CC1. The impact of the channel.
  • the symbol position and number of the SRS are related to the type of the SRS.
  • the SRS candidate set different types of SRSs have their corresponding candidate sets.
  • the first OFDM symbol set includes a first OFDM symbol subset and a second OFDM symbol subset. All or part of the OFDM symbols in the first OFDM symbol subset are used by the terminal device to send a periodic SRS or a semi-static SRS on the first transmission resource, and it can be said that the terminal device sends a period on the first transmission resource.
  • the time domain resources of the SRS and semi-static SRS are a subset of the first subset of OFDM symbols.
  • All or part of the OFDM symbols in the second OFDM symbol subset are used by the terminal device to send the aperiodic SRS on the first transmission resource, and it can also be said that when the terminal device sends the aperiodic SRS on the first transmission resource
  • a domain resource is a subset of a first subset of OFDM symbols.
  • the first OFDM symbol subset is different from the second OFDM symbol subset.
  • the first OFDM symbol subset may also be referred to as a first P/SPS-SRS candidate set
  • the second OFDM symbol subset may also be referred to as a first A-SRS candidate set.
  • first OFDM symbol subset and the second OFDM symbol subset are different, and may be partially different or all different.
  • the first OFDM symbol subset and the second OFDM symbol subset are not the same.
  • the number of OFDM symbols may be different, or the positions of the OFDM symbols may be different, or the number and location of the OFDM symbols are different.
  • first OFDM symbol subset and the second OFDM symbol subset are not the same as whether the first OFDM symbol set and the second OFDM symbol set in the SRS configuration information are the same.
  • the first OFDM symbol subset and the second OFDM symbol subset may be different under the condition that the first OFDM symbol set and the second OFDM symbol set are the same; or the first OFDM may be The first OFDM symbol subset and the second OFDM symbol subset are different under the condition that the symbol set and the second OFDM symbol set are different.
  • the second set of OFDM symbols includes a third OFDM symbol subset and a fourth OFDM symbol subset. All or part of the OFDM symbols in the third OFDM symbol subset are used by the terminal device to send a periodic SRS or a semi-static SRS on the second transmission resource, and it can be said that the terminal device sends a periodic SRS on the second transmission resource.
  • the time domain resources of the semi-static SRS are a subset of the third OFDM symbol subset.
  • All or part of the OFDM symbols in the fourth OFDM symbol subset are used by the terminal device to send the aperiodic SRS on the second transmission resource, and it can also be said that when the terminal device sends the aperiodic SRS on the second transmission resource
  • the domain resource is a subset of the fourth subset of OFDM symbols.
  • the third OFDM symbol subset is different from the fourth OFDM symbol subset.
  • the third OFDM symbol subset may also be referred to as a candidate set of the second P/SPS-SRS, and the second OFDM symbol subset may also be referred to as a candidate set of the second A-SRS.
  • the A-SRS candidate set corresponding to the handover destination carrier is the symbols 7 to 9 of the slot
  • all or part of the symbols 7 to 9 may be used for the A-SRS of the terminal device on the destination carrier, that is, the transmission on the handover destination carrier.
  • the symbol position and number of the A-SRS may be a subset of the symbols 7 to 9 of the slot; on the handover destination carrier, all or part of the symbols 10 to 13 of the slot may be used by the terminal device to transmit the P-SRS on the destination carrier and / or SPS-SRS, ie the symbol position and number of transmitting P-SRS and / or SPS-SRS on the handover destination carrier may be a subset of symbols 10 to 13 of the slot.
  • the symbol position and number of SRS on CC2 shown in FIG. 9 is a subset of SetB, and the effect of different types of SRS transmissions on CC2 on CC1 is further optimized, and P/SPS-SRS (P-SRS and / or SPS-SRS)
  • SetC and SetD are both a subset of the SRS symbol position and the number SetB on the SRS-only CC, and SetC and SetD are different.
  • the third OFDM symbol subset and the fourth OFDM symbol subset are different, and may be partially different or all different.
  • the third OFDM symbol subset and the fourth OFDM symbol subset may be different, the number of OFDM symbols may be different, or the positions of the OFDM symbols may be different, or the number and location of the OFDM symbols may be different.
  • the third OFDM symbol subset and the fourth OFDM symbol subset are not the same as whether the first OFDM symbol set and the second OFDM symbol set in the SRS configuration information are the same.
  • the third OFDM symbol subset and the fourth OFDM symbol subset may be different under the condition that the first OFDM symbol set and the second OFDM symbol set are the same; or the first OFDM may be The third OFDM symbol subset and the fourth OFDM symbol subset are different under the condition that the symbol set and the second OFDM symbol set are different.
  • different types of SRSs may be configured with different OFDM symbol subsets.
  • A-SRS is generally used to obtain channel conditions on a frequency domain of interest to the network side, usually a narrow-band SRS, therefore, a small candidate set transmission A-SRS can be set; and P/SPS-SRS Generally, it is used to obtain channel conditions on the entire channel and the entire system bandwidth. Therefore, a large candidate set transmission P/SPS-SRS can be set. Therefore, the corresponding SRS transmission symbols can be configured according to the characteristics of different types of SRS, and the impact on the channel on the switching source carrier is reduced.
  • the first OFDM symbol subset, the second OFDM symbol subset, the third OFDM symbol subset, and the fourth OFDM symbol subset do not necessarily need network device configuration, and may also It is implemented in a predefined way by the protocol.
  • pre-defining the first OFDM symbol subset and the second OFDM symbol subset by using a protocol that is, pre-defining a symbol set of the transmittable P/SPS-SRS on the first carrier (or the first bandwidth part) by using a protocol Transmitting a symbol set of the A-SRS; and predefining the third OFDM symbol subset and the fourth OFDM symbol subset by using a protocol, that is, pre-defining the second carrier (or the second bandwidth part) by using a protocol to transmit the P/SPS - A set of symbols for SRS and a set of symbols that can send A-SRS.
  • the terminal device may obtain the first OFDM symbol subset, the second OFDM symbol subset, the third OFDM symbol subset, and the fourth OFDM symbol subset from the protocol predefined SRS configuration information. And the first OFDM symbol subset and the second OFDM symbol subset are different, and the third OFDM symbol subset and the fourth OFDM symbol subset are different.
  • the number of OFDM symbols in the third OFDM symbol subset is greater than the number of OFDM symbols in the first OFDM symbol subset.
  • the number of OFDM symbols that the terminal device can use to send the periodic SRS and the semi-static SRS on the second transmission resource is more than the terminal device can use to send the periodic SRS and the semi-static SRS on the first transmission resource.
  • the number of OFDM symbols is large; or, the number of OFDM symbols that the terminal device can use to transmit the periodic SRS on the second transmission resource is larger than the number of OFDM symbols that the terminal device can use to transmit the periodic SRS on the first transmission resource; Or, the number of OFDM symbols that the terminal device can use to transmit the semi-static SRS on the second transmission resource is greater than the number of OFDM symbols that the terminal device can use to transmit the semi-static SRS on the first transmission resource.
  • the P/SPS-SRS on CC2 contains more symbols than the P/SPS-SRS on CC1.
  • the position and number of symbols of P/SPS-SRS on CC2 on slot #0 are: symbol 10 to symbol 13
  • the position and number of symbols of P/SPS-SRS on CC1 on slot #0 are: symbol 12 to symbol 13. Since the SRS transmission on CC2 requires RF retuning, the UE hopes that the RF retuning overhead is as small as possible, that is, the transmission period of the P/SPS-SRS is as large as possible, and there are as many opportunities as possible to transmit the SRS, so the P/ on the CC2.
  • the symbol position and number of SPS-SRS can make the SRS period large but transmit more symbols each time under the premise of ensuring the accuracy of channel state acquisition; for CC1, the SRS transmission on CC1 does not need RF retuning, in order to reduce The impact of the SRS transmission conflict on CC2, the P/SPS-SRS on CC1 should be configured with a higher transmission density, that is, the transmission period of P/SPS-SRS is as small as possible, but only a small number of SRSs are transmitted at a time, otherwise After a collision occurs, the number of SRS symbols discarded on CC1 will be more.
  • the number of OFDM symbols that the terminal device can use to transmit the periodic SRS and/or the semi-static SRS on the handover destination carrier (or the handover destination BP) is available on the handover source carrier (or the handover source BP).
  • the number of OFDM symbols for transmitting periodic SRS and/or semi-static SRS is large, so that the influence of collision on SRS transmission on the handover source carrier can be reduced.
  • the number of OFDM symbols in the third OFDM symbol subset may be smaller than the number of OFDM symbols in the fourth OFDM symbol subset, that is, on the second transmission resource, the terminal device may be used to send the non- The number of symbols for periodic SRS is less than the number of symbols available for transmitting periodic and/or semi-static SRS.
  • the A-SRS on CC2 contains symbols 10, and the P/SPS-SRS on CC2 contains symbols 10 to 13, and the symbol data available on CC2 for transmitting A-SRS is available on CC1.
  • the number of symbols for transmitting P/SPS-SRS is small. Because A-SRS is generally used to obtain channel conditions on a frequency domain of interest to the network side, usually a narrow-band SRS, therefore, a small candidate set transmission A-SRS can be set; and P/SPS-SRS Generally, it is used to obtain channel conditions on the entire channel and the entire system bandwidth. Therefore, a large candidate set transmission P/SPS-SRS can be set.
  • DCI triggers A-SRS transmission on CC2.
  • A-SRS transmission on CC2
  • the number of symbols of A-SRS on CC2 is small. Is equal to or equal to the number of symbols of P/SPS-SRS on SRS-only CC.
  • the number of symbols that the terminal device can use to transmit the aperiodic SRS is less than the number of symbols that can be used to transmit the periodic and/or semi-static SRS.
  • the number of OFDM symbols in the first OFDM symbol subset may be smaller than the number of OFDM symbols in the second OFDM symbol subset, that is, on the first transmission resource, the terminal device may be used to send the aperiodic SRS.
  • the number of symbols is less than the number of symbols available to transmit periodic and/or semi-static SRS.
  • the first OFDM symbol set, the second OFDM symbol set, the first OFDM symbol subset, the second OFDM symbol subset, the third OFDM symbol subset, and the fourth OFDM symbol subset are configured.
  • the way can be to set the attribute corresponding to each symbol.
  • symbol 10 can be used to transmit A-SRS
  • symbol 11 can be used for both transmitting A-SRS, for transmitting P-SRS, and for transmitting SPS-SRS
  • Symbol 12 can be used to transmit both P-SRS and SPS-SRS
  • symbol 13 can be used to transmit SPS-SRS.
  • the first OFDM symbol set constituting the first transmission resource is the symbol 10-13
  • the first OFDM symbol subset is the symbol 11-13 and the second OFDM symbol subset 10-11.
  • the embodiment of the present application further provides a method for transmitting the SRS indication information.
  • the UE acquires SRS configuration information on different carriers/BPs.
  • the SRS is sent by the UE on different carriers/BPs according to the SRS configuration information and the related configuration of sending the SRS, and the SRS is sent on the corresponding resources.
  • the related configurations of transmitting SRSs corresponding to different types of SRSs are different.
  • the configuration of the P-SRS or the SPS-SRS may be configured through RRC signaling, or a predefined manner in the protocol, and is not specifically limited herein.
  • the specific symbol position of the P-SRS and/or the SPS-SRS may be specified in the foregoing SRS configuration information, for example, in the SRS configuration information of the handover destination carrier, P- The candidate set of SRS is symbol 12 and symbol 13, and the relevant configuration for transmitting the P-SRS may specify that the P-SRS is transmitted on the second symbol in the candidate set of P-SRS.
  • the UE performs P-SRS (or SPS-SRS) transmission on the corresponding resource according to the candidate set of P-SRS (or SPS-SRS) and the relevant configuration of the RRC.
  • the related configuration for sending the A-SRS may be indicated by the DCI, and the DCI that sends the A-SRS may indicate that the specific symbol location of the A-SRS is sent in the foregoing SRS configuration information.
  • the candidate set of the A-SRS is the symbol 10 and the symbol 11, and the DCI transmitting the A-SRS may be specified to be sent on the second symbol in the candidate set of the A-SRS.
  • A-SRS. The UE performs A-SRS transmission on the corresponding resource according to the candidate set of the A-SRS on the carrier or the BP and the DCI indication of sending the A-SRS.
  • a method for indicating SRS indication information is provided, by indicating, in a group DCI (group DCI), a symbol location for transmitting an A-SRS, where the method includes: the network device sends a group downlink control information group DCI The terminal device, where the group DCI includes indication information for indicating one or more terminal devices, where the indication information includes SRS symbol location information of the terminal device, and the SRS symbol location information indicates that the terminal device is switching the destination carrier. Or switching the OFDM symbol position of the A-SRS on the destination BP.
  • the SRS symbol location information may be a location of the transmitted A-SRS in the second OFDM symbol set, or may be a location of the transmitted A-SRS in the fourth OFDM symbol subset, which is not limited herein.
  • the UE For the A-SRS transmission on the handover destination carrier or the BP, the UE acquires the configuration information of the A-SRS on the carrier or the BP, and the UE acquires the specific transmission information of the SRS through the RRC configuration message and the received group DCI.
  • the group DCI includes the SRS symbol location information of the terminal device, but not only the SRS symbol location information, but also the following information: a transmit power control (TPC) command (TPC command), SRS Trigger request (SRS request).
  • TPC transmit power control
  • SRS request SRS Trigger request
  • the group DCI may be transmitted in a common PDCCH (common PDCCH) or in a group common PDCCH.
  • the group DCI in the embodiment of the present application means that the DCI format notifies a group of terminal devices (or users), and assigns a special radio network tempory identity (RNTI) to the terminal device group, and the user passes the
  • RNTI radio network tempory identity
  • the TPC command, the SRS trigger request, and the SRS symbol position information of the terminal device on one or more handover destination carriers or handover target BPs may be carried by one or more blocks.
  • Blocks of multiple users form the group DCI. Further, the block in the group DCI has the following characteristics:
  • the content contained in the DCI consists of one or more blocks
  • Blocks in DCI are numbered starting from 1, block number 1, block number 2, ... block number B.
  • Each block includes a TPC command field and an SRS trigger request command field, and the SRS trigger request is optional, and may be carried or not carried as needed.
  • the carrier bearer group DCI indication information is described in detail by using the carrier as an example.
  • the SRS handover is based on the BP SRS handover, the description is also applicable, and details are not described herein.
  • each block When the user is configured with less than or equal to N secondary carriers that have neither PUCCH nor PUSCH and the duplex mode is TDD mode, each block includes a TPC command of a certain carrier, an SRS trigger request (not necessarily exist), and an SRS symbol position. information.
  • the value of N can be predefined, or the high-level signaling configuration, for example, considering the impact of signaling overhead, etc., the value of N can be set to 5.
  • a block indication may be allocated for each non-PUCCH and PUSCH carrier of the terminal device, and each block includes at least the following information:
  • SRS request Stakes 0, 1, or 2 bits
  • TPC command number 1 or 2 bits
  • SRS symbol location It takes 2 bits or more, and is not specifically limited herein.
  • each block When the user is configured with more than N secondary carriers that have neither PUCCH nor PUSCH and the duplex mode is the TDD mode, each block includes a TPC command of each carrier in the carrier set, and an SRS trigger request of the carrier set (not necessarily Existing) and SRS symbol position information.
  • the value of N can be predefined, or the high-level signaling configuration, for example, considering the impact of signaling overhead, etc., the value of N can be set to 5.
  • the user carrier can be divided into m subsets, and each block is assigned a block indication, and each block contains at least the following information:
  • SRS request Stakes 0 or 2 bits
  • TPC command number 1, TPC command number 2, ... TPC command number n occupy 1 or 2 bits;
  • n is the number of n carriers in the subset.
  • the number of bits in the above example is only schematic, and may be defined as other values.
  • the indication of the location information of the SRS symbol may have 2 bits or more. No specific limitation.
  • a block can contain a carrier or a set of carrier TPC commands, SRS request (may exist, may not exist) and SRS symbol location information.
  • the corresponding indication information may be indicated by one or more blocks, and the number of specific required blocks is determined by the number of carriers of the terminal device. Specifically, when the terminal device is configured with less than or equal to N secondary carriers that have neither PUCCH nor PUSCH and the duplex mode is TDD, the number of required blocks is neither PUCCH nor PUSCH, and the duplex mode is TDD. The number of the secondary carriers is related to the number of the secondary carriers. When the user is configured with more than N secondary carriers that have neither PUCCH nor PUSCH and the duplex mode is the TDD mode, the number of required blocks is related to the carrier set, and the carrier set can pass through the upper layer. Signaling or SRS trigger request command field indication.
  • each terminal device For each terminal device, its starting block number in the entire DCI block sequence is configured by higher layer signaling/RRC signaling, and therefore, each terminal device can be based on its number of carriers and higher layer signaling/RRC signaling.
  • the starting position of the configuration acquires a TPC command, an SRS trigger request (if any), and SRS symbol position information of the terminal device on each of the supported carriers.
  • FIG. 1 A possible example of the transmission of the A-SRS on the handover destination carrier or BP is shown in FIG.
  • Switching the SRS candidate set in the SRS configuration information on the destination carrier, that is, the SRS available time domain resource is located in the last four symbols of the slot ⁇ 10, 11, 12, 13 ⁇ , assuming the candidate set of the A-SRS, the A-SRS is available.
  • the time domain resource is the symbol ⁇ 10,11 ⁇ .
  • the number of A-SRS symbols on the carrier or the BP may be indicated by RRC signaling or DCI, where it is assumed that the A-SRS symbols are configured in the RRC signaling dedicated to the UE.
  • the number is 1.
  • the specific location of the A-SRS symbol is indicated by the group DCI.
  • the number of A-SRS symbols on the carrier or the BP may not be indicated, and the specific location of the A-SRS symbol is indicated only by the group DCI.
  • the SRS symbol location information in the group DCI is 1 bit, and the field is used to indicate the specific location of the symbol on which the UE transmits the A-SRS symbol in the multiple SRS transmission symbols in the A-SRS candidate set.
  • the manner in which the specific location of the A-SRS symbol is indicated by the group DCI may be indicated by an example as shown in Table 1:
  • the indication of the SRS symbol location information in the group DCI is 1, as shown in FIG. 10, the symbol 11 is the time domain resource used for the A-SRS transmission, and the terminal device transmits the A-SRS on the symbol 11.
  • the above examples are all indicated in units of carriers.
  • the indication is also supported in smaller units, for example, in units of BP.
  • the method of indicating in units of BP can refer to the above-described method of indicating in units of carriers.
  • the number and location of the A-SRS symbols transmitted by the terminal device can be flexibly configured to meet the SRS transmission requirements in different scenarios.
  • a precoding codebook of the SRS may be indicated in the group DCI.
  • the network device sends the group DCI to the terminal device, where the group DCI includes indication information for indicating one or more terminal devices, where the indication information includes precoding information or a codebook of the terminal device, and the precoding information or the codebook is used.
  • the precoding or codebook used by the terminal device to transmit the aperiodic SRS on the second transmission resource ie, the handover target carrier or the handover target BP).
  • the group DCI can be transmitted in the commom PDCCH or the group common PDCCH.
  • the following describes the precoding information or the codebook in the group DCI indication information by using the carrier as an example.
  • the SRS handover is based on the BP SRS handover, the description is also applicable.
  • This embodiment is similar to the above-mentioned SRS symbol location information in the indication information of the group DCI, and the difference is that when the A-SRS transmission on the handover target carrier is triggered, the group DCI includes the precoding information used by the SRS transmission (precoder) ) or codebook (codebook).
  • the group DCI in this embodiment includes at least the following information: TPC command, SRS request (may not exist), and SRS precoder/codebook information.
  • An exemplary group DCI includes the following information: block number 1, block number 2, ... block number B.
  • the group DCI includes indication information for indicating one or more terminal devices, and the start position indications of the different terminal devices in the group DCI are configured by higher layer signaling or RRC signaling. According to the number of carriers configured by the terminal device, it can be divided into the following two situations:
  • Case 1 If the number of carriers without PUCCH and PUSCH configured by the UE is greater than N, the value of N may be predefined or configured by higher layer signaling.
  • the user carrier can be divided into m subsets, and each block is assigned a block indication, and each block includes at least the following information: SRS request: occupy 0 or 2 bits; TPC command number 1, TPC command number 2, ... TPC Command number n: occupy 1 or 2 bits; SRS codebook 1, SRS codebook 2, ... SRS codebook n: occupy 2 bits.
  • n is the number of n carriers in the subset.
  • the number of bits in the example is only an indication, and may be defined as other values.
  • the indication of the SRS precoding codebook may have 2 bits or more. No specific limitation.
  • Case 2 If the number of carriers without PUCCH and PUSCH configured by the UE is less than or equal to N, the value of N may be predefined or configured by higher layer signaling.
  • a block indication may be allocated for each carrier without PUCCH and PUSCH, and each block includes at least the following information: SRS request, occupying 0, 1, or 2 bits; TPC command number: occupying 1 or 2 bits; SRS codebook : Occupies 2bit.
  • the indication of the SRS pre-coded codebook may be 2 bits or more, which is not specifically limited herein.
  • the above examples are all indicated in units of carriers.
  • the indication is also supported in smaller units, for example, in units of BP.
  • the group DCI in this embodiment may include the foregoing SRS symbol location information, and may also include precoding information or a codebook, and the SRS symbol location information and the precoding information/codebook may exist at the same time.
  • each block contains at least the following information: SRS request, TPC command number, SRS symbol location, SRS codebook.
  • the transmission performance of the SRS on the carrier without the PUCCH and the PUSCH can be improved, and the transmission requirements in different scenarios can be met.
  • the beam index on the target carrier or the index of the beam pair may also be indicated by the group DCI.
  • the network device sends a group DCI to the terminal device, where the group DCI includes indication information for indicating one or more terminal devices, where the indication information includes beam index information of the terminal device, and beam index information is used to indicate
  • the terminal device sends an index of a beam index or a beam pair used by the aperiodic SRS on the second transmission resource (ie, the handover target carrier or the handover target BP).
  • the base station has six different directed beams for data transmission.
  • the beam index used for A-SRS transmission can be indicated by group DCI. For example, send on the beam numbered 4.
  • the carrier index is used as an example to describe the beam index in the group DCI indication information.
  • the description is also applicable.
  • the indication information of the group DCI includes the SRS symbol location information, and the difference is that when the A-SRS transmission on the handover target carrier is triggered, the group DCI includes the beam index used for the A-SRS transmission ( Beam index).
  • the group DCI in this embodiment includes at least the following information: TPC command, SRS request (may not exist), and beam index information.
  • An exemplary group DCI includes the following information: block number 1, block number 2, ... block number B.
  • the group DCI includes indication information of one or more terminal devices, and the start position indications of the different terminal devices in the group DCI are configured by higher layer signaling or RRC signaling. According to the number of carriers configured by the terminal device, it can be divided into the following two situations:
  • Case 1 If the number of carriers without PUCCH and PUSCH configured by the UE is greater than N, the value of N may be predefined or configured by higher layer signaling.
  • the user carrier can be divided into m subsets, and each block is assigned a block indication, and each block includes at least the following information: SRS request: occupy 0 or 2 bits; TPC command number 1, TPC command number 2, ... TPC Command number n: 1 or 2 bits occupied; beam index 1, beam index 2, ... beam index n: 2 bits occupied.
  • n is the n carriers in the subset.
  • the number of bits in the example is only a schematic, and may be defined as other values.
  • the indication of the beam index may have 2 bits or more, and is not limited herein. .
  • Case 2 If the number of carriers without PUCCH and PUSCH configured by the UE is less than or equal to N, the value of N may be predefined or configured by higher layer signaling.
  • a block indication may be allocated for each carrier of the PUCCH and the PUSCH, and each block includes at least the following information: SRS request, occupying 0, 1, or 2 bits; TPC command number: occupying 1 or 2 bits; beam index: Occupies 2bit.
  • the indication of the beam index may be 2 bits or more, which is not specifically limited herein.
  • the above examples are all indicated in units of carriers.
  • the indication is also supported in smaller units, for example, in units of BP.
  • the group DCI in this embodiment may include the foregoing SRS symbol location information, or may include precoding information or a codebook, and may also include a beam index, SRS symbol location information, and precoding information/code.
  • the present and the beam index may exist at the same time, or only one item may exist.
  • each block includes at least the following information: SRS request, TPC command number, SRS symbol location, SRS codebook, and beam index.
  • the transmission performance of the SRS on the carrier without the PUCCH and the PUSCH can be improved, and the transmission requirements in different scenarios can be met.
  • the above is an introduction to the method embodiment in the embodiment of the present application.
  • the network device and the terminal device in the embodiment of the present application are introduced from the perspective of a functional module and a hardware implementation.
  • the network device in this embodiment of the present application includes the following functional units:
  • the sending unit 1201 is configured to send the SRS configuration information of the first transmission resource and the SRS configuration information of the second transmission resource to the terminal device, where the first transmission resource supports the transmission physical uplink control channel PUCCH, the physical uplink shared channel PUSCH, and the physical random At least one of access channel PRACH or SRS signals, the second transmission resource does not support PUCCH and PUSCH, where the first transmission resource includes a first carrier or a first bandwidth portion, and the second transmission resource includes a a second carrier or a second bandwidth portion; the SRS configuration information of the first transmission resource includes a first orthogonal frequency division multiplexing OFDM symbol set, and all or part of the OFDM symbols in the first OFDM symbol set are used for The terminal device sends an SRS on the first transmission resource, where the SRS configuration information of the second transmission resource includes a second OFDM symbol set, and all or part of the OFDM symbol in the second OFDM symbol set is used for the terminal The device sends an SRS on the second transmission resource;
  • the receiving unit 1202 is configured to receive an SRS sent by the terminal device.
  • the first OFDM symbol set and the second OFDM symbol set sent by the sending unit 1201 are different.
  • the first OFDM symbol set sent by the sending unit 1201 includes a first OFDM symbol subset and a second OFDM symbol subset, and the first OFDM symbol subset All or part of the OFDM symbols used by the terminal device to transmit a periodic SRS or a semi-static SRS on the first transmission resource, and all or part of the OFDM symbols in the second OFDM symbol subset are used for the terminal
  • the device sends an aperiodic SRS on the first transmission resource, where the first OFDM symbol subset is different from the second OFDM symbol subset.
  • the second OFDM symbol set sent by the sending unit 1201 includes a third OFDM symbol subset and a fourth OFDM symbol subset, and the third OFDM symbol subset All or part of the OFDM symbols are used by the terminal device to transmit a periodic SRS or a semi-static SRS on the second transmission resource, and all or part of the OFDM symbols in the fourth OFDM symbol subset are used for the terminal
  • the device sends an aperiodic SRS on the second transmission resource, where the third OFDM symbol subset is different from the fourth OFDM symbol subset.
  • the number of OFDM symbols in the third OFDM symbol subset is smaller than the number of OFDM symbols in the fourth OFDM symbol subset.
  • the number of OFDM symbols in the first OFDM symbol subset may be less than the number of OFDM symbols in the second OFDM symbol subset.
  • the sending unit 1201 is further configured to send the group downlink control information group DCI to the terminal device, where the group DCI includes one or more terminal devices.
  • the indication information includes SRS symbol location information of the terminal device, where the SRS symbol location information is used to indicate that the terminal device sends an OFDM symbol position of the aperiodic SRS on the second transmission resource.
  • the sending unit 1201 is further configured to send a group DCI to the terminal device, where the group DCI includes indication information for indicating one or more terminal devices, where The indication information includes precoding information or a codebook of the terminal device, where the precoding information or codebook is used to indicate that the terminal device sends the preamble used by the aperiodic SRS on the second transmission resource. Code or codebook.
  • the sending unit 1201 is further configured to send a group DCI to the terminal device, where the group DCI includes indication information for indicating one or more terminal devices, where The indication information includes beam index information of the terminal device, where the beam index information is used to indicate an index of a beam index or a beam pair used by the terminal device to send an aperiodic SRS on the second transmission resource. .
  • the group DCI sent by the sending unit 1201 is transmitted in a common PDCCH or in a group common PDCCH.
  • the terminal device in this embodiment of the present application includes the following functional units:
  • the acquiring unit 1301 is configured to acquire SRS configuration information on the first transmission resource and SRS configuration information on the second transmission resource, where the first transmission resource supports transmission of a physical uplink control channel (PUCCH), a physical uplink shared channel (PUSCH), and physical randomization. At least one of access channel PRACH or SRS signals, the second transmission resource does not support PUCCH and PUSCH, where the first transmission resource includes a first carrier or a first bandwidth portion, and the second transmission resource includes a a second carrier or a second bandwidth part, where the SRS configuration information of the first transmission resource includes a first orthogonal frequency division multiplexing OFDM symbol set, and the SRS configuration information of the second transmission resource includes a second OFDM symbol set;
  • the sending unit 1302 is configured to send, by using all or part of the OFDM symbols in the first OFDM symbol set, an SRS on the first transmission resource, and further to use all or part of the OFDM symbol in the second OFDM symbol set. Sending an SRS on the second transmission resource.
  • the first OFDM symbol set and the second OFDM symbol set acquired by the acquiring unit 1301 are different.
  • the first OFDM symbol set acquired by the acquiring unit 1301 includes a first OFDM symbol subset and a second OFDM symbol subset, and the first OFDM symbol subset
  • the sending unit 1302 is specifically configured to send a periodic SRS or the periodicity on the first transmission resource by using all or part of the OFDM symbols in the first OFDM symbol subset.
  • the second OFDM symbol set acquired by the acquiring unit 1301 includes a third OFDM symbol subset and a fourth OFDM symbol subset, and the third OFDM symbol subset
  • the transmitting unit 1302 is configured to send a periodic SRS or a half on the second transmission resource by using all or part of the OFDM symbols in the third OFDM symbol subset. Static SRS; or, transmitting an aperiodic SRS on the second transmission resource using all or part of the OFDM symbols in the fourth OFDM symbol subset.
  • the number of OFDM symbols in the third OFDM symbol subset is smaller than the number of OFDM symbols in the fourth OFDM symbol subset.
  • the number of OFDM symbols in the first OFDM symbol subset may be smaller than the number of OFDM symbols in the second OFDM symbol subset.
  • the terminal device further includes:
  • the receiving unit 1303 is configured to receive group downlink control information group DCI sent by the network device, where the group DCI includes indication information for indicating one or more terminal devices, where the indication information includes an SRS of the terminal device.
  • the symbol location information, the SRS symbol location information is used to indicate that the terminal device sends an OFDM symbol position of the aperiodic SRS on the second transmission resource.
  • the receiving unit 1303 is further configured to receive a group DCI sent by the network device, where the group DCI includes indication information for indicating one or more terminal devices.
  • the indication information includes precoding information or a codebook of the terminal device, where the precoding information or codebook is used to indicate that the terminal device sends the aperiodic SRS on the second transmission resource. Precoding or codebook.
  • the receiving unit 1303 is further configured to receive a group DCI sent by the network device, where the group DCI includes indication information for indicating one or more terminal devices, where The indication information includes beam index information of the terminal device, where the beam index information is used to indicate an index of a beam index or a beam pair used by the terminal device to send an aperiodic SRS on the second transmission resource.
  • the group DCI received by the receiving unit 1303 is transmitted in a common PDCCH or in a group common PDCCH.
  • the implementation of the function corresponding to the function module shown in FIG. 12 and the function implemented by the network device in the embodiment shown in FIG. 1 to FIG. 11 can be implemented by a chip or a chip system.
  • the chip system may be composed of a chip, and may also include a chip and other discrete devices.
  • the implementation of the function corresponding to the function module shown in FIG. 13 may be implemented by a chip or a chip system.
  • the chip system may be composed of a chip, and may also include a chip and other discrete devices.
  • the chip in the embodiment of the present application includes: a processing unit and a communication unit, and the processing unit may be, for example, a processor, and the communication unit may be, for example, an input/output interface, a pin or a circuit, or the like.
  • the processing unit may execute computer executed instructions stored by the storage unit to cause the chip to execute the communication method in the embodiment illustrated in FIGS. 1 through 11.
  • the storage unit is a storage unit in the chip, such as a register, a cache, etc., and the storage unit may also be a storage unit located outside the chip in the terminal, such as a read-only memory (read) -only memory, ROM) or other types of static storage devices, random access memory (RAM), etc. that can store static information and instructions.
  • the processor may be a general purpose central processing unit (CPU), a microprocessor, an application-specific integrated circuit (ASIC), or one or more integrated circuits for controlling program execution of the above communication method. .
  • FIG. 14 is a schematic diagram of a hardware structure of a network device and a terminal device in the example of the present application.
  • the network device may be the base station shown in FIG. 1
  • the terminal device may be the UE shown in FIG. 1 .
  • the terminal device and the network device in the implementation of the present application respectively have the functions of the terminal device and the network device in the foregoing method embodiments.
  • a network device provides wireless access from a terminal device to a network, including one or more processors, one or more memories, one or more network interfaces, and one or more transceivers (each transceiver including a receiver Rx and Transmitter Tx), connected via bus. One or more transceivers are coupled to the antenna or antenna array.
  • the one or more processors include computer program code.
  • the network interface is connected to the core network through a link (eg, a link to the core network) or to other network devices through a wired or wireless link.
  • the processor executes a series of computer program code instructions in memory to perform all or part of the steps performed by the network device in the above-described method embodiments (the embodiments illustrated in Figures 1 through 11).
  • the terminal device includes one or more processors, one or more memories, and one or more transceivers (each transceiver including a transmitter Tx and a receiver Rx) connected by a bus. One or more transceivers are coupled to one or more antennas.
  • the computer program code is included in one or more memories, and the processor executes a series of computer program code instructions in the memory to perform all of the operations performed by the terminal device in the above method embodiments (the embodiments shown in FIGS. 1 to 11) or Part of the steps.
  • the terminal device includes: a radio frequency (RF) circuit 1510, a memory 1520, an input unit 1530, a display unit 1540, a sensor 1550, an audio circuit 1560, and a wireless fidelity. (wireless fidelity, WiFi) module 1570, processor 1580, and power supply 1590 and other components.
  • RF radio frequency
  • the terminal device structure shown in FIG. 15 does not constitute a limitation of the terminal device, and may include more or less components than those illustrated, or a combination of certain components, or different component arrangements.
  • the RF circuit 1510 can be used for receiving and transmitting signals during the transmission or reception of information or during a call. Specifically, after receiving the downlink information of the base station, the processing is processed by the processor 1580. In addition, the data designed for the uplink is sent to the base station.
  • RF circuit 1510 includes, but is not limited to, an antenna, at least one amplifier, a transceiver, a coupler, a Low Noise Amplifier (LNA), a duplexer, and the like.
  • LNA Low Noise Amplifier
  • RF circuitry 1510 can also communicate with the network and other devices via wireless communication. The above wireless communication may use any communication standard or protocol, including but not limited to GSM, general packet radio service (GPRS), CDMA, wideband code division multiple access (WCDMA), LTE, Email, short messaging service (SMS), etc.
  • the memory 1520 can be used to store software programs and modules, and the processor 1580 executes various functional applications and data processing of the terminal devices by running software programs and modules stored in the memory 1520.
  • the memory 1520 may mainly include a storage program area and a storage data area, wherein the storage program area may store an operating system, an application required for at least one function (such as a sound playing function, an image playing function, etc.), and the like; the storage data area may be stored according to Data created by the use of the terminal device (such as audio data, phone book, etc.).
  • memory 1520 can include high speed random access memory, and can also include non-volatile memory, such as at least one magnetic disk storage device, flash memory device, or other volatile solid state storage device.
  • the input unit 1530 can be configured to receive input numeric or character information and to generate key signal inputs related to user settings and function control of the terminal device.
  • the input unit 1530 may include a touch panel 1531 and other input devices 1532.
  • the touch panel 1531 also referred to as a touch screen, can collect touch operations on or near the user (such as the user using a finger, a stylus, or the like on the touch panel 1531 or near the touch panel 1531. Operation), and drive the corresponding connecting device according to a preset program.
  • the touch panel 1531 may include two parts: a touch detection device and a touch controller.
  • the touch detection device detects the touch orientation of the user, and detects a signal brought by the touch operation, and transmits the signal to the touch controller; the touch controller receives the touch information from the touch detection device, converts the touch information into contact coordinates, and sends the touch information.
  • the processor 1580 is provided and can receive commands from the processor 1580 and execute them.
  • the touch panel 1531 can be implemented in various types such as resistive, capacitive, infrared, and surface acoustic waves.
  • the input unit 1530 may also include other input devices 1532.
  • other input devices 1532 may include, but are not limited to, one or more of a physical keyboard, function keys (such as volume control buttons, switch buttons, etc.), trackballs, mice, joysticks, and the like.
  • the display unit 1540 can be used to display information input by the user or information provided to the user.
  • the display unit 1540 can include a display panel 1541.
  • the display panel 1541 can be configured in the form of a liquid crystal display (LCD), an organic light-emitting diode (OLED), or the like.
  • the touch panel 1531 may cover the display panel 1541. After the touch panel 1531 detects a touch operation on or near the touch panel 1531, the touch panel 1531 transmits to the processor 1580 to determine the type of the touch event, and then the processor 1580 according to the touch event. The type provides a corresponding visual output on display panel 1541.
  • touch panel 1531 and the display panel 1541 are used as two independent components to implement the input and input functions of the terminal device in FIG. 15, in some embodiments, the touch panel 1531 and the display panel 1541 may be integrated. And realize the input and output functions of the terminal device.
  • the terminal device may also include at least one type of sensor 1550, such as a light sensor, a motion sensor, and other sensors.
  • the light sensor may include an ambient light sensor and a proximity sensor, wherein the ambient light sensor may adjust the brightness of the display panel 1541 according to the brightness of the ambient light, and the proximity sensor may close the display panel 1541 when the terminal device moves to the ear. / or backlight.
  • the accelerometer sensor can detect the acceleration of each direction (usually three axes), and the magnitude and direction of gravity can be detected at rest.
  • attitude of the terminal device such as horizontal and vertical screen switching, Related games, magnetometer attitude calibration), vibration recognition related functions (such as pedometer, tapping), etc.; as for the gyroscope, barometer, hygrometer, thermometer, infrared sensor and other sensors that can be configured in the terminal device, here No longer.
  • An audio circuit 1560, a speaker 1561, and a microphone 1562 can provide an audio interface between the user and the terminal device.
  • the audio circuit 1560 can transmit the converted electrical data of the received audio data to the speaker 1561, and convert it into a sound signal output by the speaker 1561.
  • the microphone 1562 converts the collected sound signal into an electrical signal, and the audio circuit 1560. After receiving, it is converted into audio data, and then processed by the audio data output processor 1580, sent to, for example, another terminal device via the RF circuit 1510, or outputted to the memory 1520 for further processing.
  • WiFi is a short-range wireless transmission technology.
  • the terminal device can help users to send and receive emails, browse web pages and access streaming media through the WiFi module 1570, which provides users with wireless broadband Internet access.
  • FIG. 15 shows the WiFi module 1570, it can be understood that it does not belong to the essential configuration of the terminal device, and may be omitted as needed within the scope of not changing the essence of the invention.
  • the processor 1580 is a control center of the terminal device that connects various portions of the entire terminal device using various interfaces and lines, by running or executing software programs and/or modules stored in the memory 1520, and recalling data stored in the memory 1520. Perform various functions and processing data of the terminal device to perform overall monitoring on the terminal device.
  • the processor 1580 may include one or more processing units; optionally, the processor 1580 may integrate an application processor and a modem processor, where the application processor mainly processes an operating system, a user interface, and an application. Etc.
  • the modem processor primarily handles wireless communications. It will be appreciated that the above described modem processor may also not be integrated into the processor 1580.
  • the processor 1580 is configured to perform all or part of the steps performed by the terminal device in the foregoing method embodiment (the embodiment shown in FIG. 1 to FIG. 11).
  • the terminal device also includes a power source 1590 (such as a battery) that supplies power to the various components.
  • a power source 1590 such as a battery
  • the power source can be logically coupled to the processor 1580 through a power management system to manage functions such as charging, discharging, and power management through the power management system.
  • the terminal device may further include a camera, a Bluetooth module, and the like, and details are not described herein again.
  • the computer program product includes one or more computer instructions.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in a computer readable storage medium or transferred from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions can be from a website site, computer, server or data center Transfer to another website site, computer, server, or data center by wire (eg, coaxial cable, fiber optic, digital subscriber line (DSL), or wireless (eg, infrared, wireless, microwave, etc.).
  • wire eg, coaxial cable, fiber optic, digital subscriber line (DSL), or wireless (eg, infrared, wireless, microwave, etc.).
  • the computer readable storage medium can be any available media that can be stored by a computer or a data storage device such as a server, data center, or the like that includes one or more available media.
  • the usable medium may be a magnetic medium (eg, a floppy disk, a hard disk, a magnetic tape), an optical medium (eg, a DVD), or a semiconductor medium (such as a Solid State Disk (SSD)) or the like.
  • the disclosed system, apparatus, and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, may be stored in a computer readable storage medium.
  • a computer readable storage medium A number of instructions are included to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present application.
  • the foregoing storage medium includes various media that can store program codes, such as a USB flash drive, a mobile hard disk, a read only memory, a random access memory, a magnetic disk, or an optical disk.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Power Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例公开了一种通信方法、网络设备及终端设备,以更好的支持对高频信道的测量。该方法包括:网络设备发送第一传输资源的SRS配置信息和第二传输资源的SRS配置信息给终端设备,第一传输资源为SRS切换时的切换源载波或带宽部分,第二传输资源为切换目的载波或带宽部分。第一传输资源的SRS配置信息中包括第一OFDM符号集合,该集合中的全部或部分符号用于终端设备在第一传输资源上发送SRS;第二传输资源的SRS配置信息中包括第二OFDM符号集合,该集合中的全部或部分符号用于终端设备在第二传输资源上发送SRS。本实施例中,网络设备给终端设备配置一个或多个符号用于传输SRS,能更好的支持对高频信道的测量。

Description

一种通信方法、网络设备及终端设备
本申请要求于2017年9月8日提交中国专利局、申请号为201710806411.3、发明名称为“一种通信方法、网络设备及终端设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,尤其涉及一种通信方法、网络设备及终端设备。
背景技术
在当前的通信系统中,为了进行上行信道测量,引入了探测参考信号(sounding reference signal,SRS)。
当上下行业务不对称,下行业务数据量远大于上行,并且用户配置有时分双工(time division duplex,TDD)载波时,此时多个TDD载波被配置为下行传输,会出现下行载波个数大于上行载波个数的情形,由于部分TDD载波被配置为仅下行传输,没有上行数据/参考信号的传输,基站仅根据用户上报的信道状态信息(channel quality information,CQI)无法准确的获取下行传输信道信息。为了解决该问题,当前的通信系统中支持SRS载波切换(carrier-based switching)特性(简称SRS切换)。
在现有技术中,在上行正常子帧中,SRS资源配置的单位为1个正交频分复用(orthogonal frequency division multiplexing,OFDM)符号,一般在子帧的最后一个OFDM符号上发送SRS。由于SRS的传输符号个数和位置固定,不能满足终端设备在高频段传输时的信道测量要求。
发明内容
本申请实施例中的通信方法、网络设备及终端设备,能提供一种在SRS切换场景中的SRS传输方式,可以满足终端设备在高频段传输时的信道测量要求。
本申请实施例第一方面提供了一种通信方法,该方法包括:
网络设备发送第一传输资源的SRS配置信息和第二传输资源的SRS配置信息给终端设备。其中,所述第一传输资源支持传输物理上行控制信道(physical uplink control channel,PUCCH)、物理上行共享信道(physical uplink share channel,PUSCH)、物理随机接入信道(physical random access channel,PRACH)或SRS信号中的至少一种,且所述第一传输资源可以是第一载波,也可以是第一带宽部分,即第一传输资源为SRS切换时的切换源载波或切换源带宽部分。所述第二传输资源不支持PUCCH和PUSCH,且所述第二传输资源包括第二载波或第二带宽部分,即第二传输资源为SRS切换时的切换目的载波或切换目的带宽部分。
所述第一传输资源的SRS配置信息中包括第一OFDM符号集合,即第一SRS候选集合,所述第一OFDM符号集合中的全部或部分OFDM符号用于所述终端设备在所述第一传输资源上发送SRS,即所述终端设备在第一传输资源上发送SRS的时域资源是第一OFDM符号集合中的一个子集。
所述第二传输资源的SRS配置信息中包括第二OFDM符号集合,即第二SRS候选集合,所述第二OFDM符号集合中的全部或部分OFDM符号用于所述终端设备在所述第二传输资源上发送SRS,即所述终端设备在第二传输资源上发送SRS的时域资源是第二OFDM符号集合中的一个子集。
本申请实施例中,在SRS切换场景中,网络设备给终端设备配置的SRS配置信息中包括不同载波或带宽部分的OFDM符号集合,该OFDM符号集合中包括一个或多个OFDM符号可以用于传输SRS,从而在一个载波或一个带宽部分上,可以通过多个SRS来对信道进行测量,从而可以更好的支持对高频信道的测量,提高信道测量的效率。
可选的,SRS候选集合与载波类型或带宽部分类型相关,所述第一OFDM符号集合和所述第二OFDM符号集合不相同。
可选的,在另一种实施例中,所述网络设备可以不发送第一传输资源的SRS配置信息和第二传输资源的SRS配置信息给终端设备,而所述第一OFDM符号集合、所述第二OFDM符号集合是通过协议预定义的,并且所述第一OFDM符号集合和第二OFDM符号集合不同。
需要说明的是,所述第一OFDM符号集合、第二OFDM符号集合是用于限定终端设备可发送SRS的OFDM符号集合,终端设备具体在OFDM符号集合中的哪些符号上发送SRS,发送哪种类型的SRS,以及发送SRS所需的其他资源配置等信息,需要网络设备通过其他信令或指示信息进行配置,例如:通过RRC信令、DCI指示等进行配置。
可选的,所述第一OFDM符号集合与第二OFDM符号集合不相同,可以是OFDM符号的个数不相同,也可以是OFDM符号的位置不相同,或者OFDM符号的个数和位置都不相同。
本申请实施例中,通过对SRS切换时不同载波类型(或不同带宽部分类型)配置或预定义不同的SRS候选集合,可以增加UE在第一传输资源和第二传输资源上使用不同位置和/或不同个数的符号传输SRS的可能性,从而一方面可以降低第一传输资源上由于射频重新调整(radio frequency retuning,RF retuning)而导致SRS受影响的概率;另一方面,可以降低RF retuning对第一传输资源上的其他接收和发送的信道的影响。
可选的,所述第一OFDM符号集合包括第一OFDM符号子集合和第二OFDM符号子集合。所述第一OFDM符号子集合中的全部或部分OFDM符号用于所述终端设备在所述第一传输资源上发送周期性SRS或半静态SRS,也可以说,所述终端设备在第一传输资源上发送周期性SRS和半静态SRS的时域资源是第一OFDM符号子集合的一个子集。所述第二OFDM符号子集合中的全部或部分OFDM符号用于所述终端设备在所述第一传输资源上发送非周期性SRS,也可以说,所述终端设备在第一传输资源上发送非周期性SRS的时域资源是第一OFDM符号子集合的一个子集。所述第一OFDM符号子集合与所述第二OFDM符号子集合不相同。
需要说明的是,可以是在所述第一OFDM符号集合和所述第二OFDM符号集合相同的条件下,所述第一OFDM符号子集合和第二OFDM符号子集合不相同;也可以是在所述第一OFDM符号集合和所述第二OFDM符号集合不相同的条件下,所述第一OFDM符号子集合和第二OFDM符号子集合不相同。
可选的,所述第二OFDM符号集合包括第三OFDM符号子集合和第四OFDM符号子集合。所述第三OFDM符号子集合中的全部或部分OFDM符号用于所述终端设备在所述第二传输资 源上发送周期性SRS或半静态SRS,也可以说,所述终端设备在第二传输资源上发送周期性SRS和半静态SRS的时域资源是第三OFDM符号子集合的一个子集。所述第四OFDM符号子集合中的全部或部分OFDM符号用于所述终端设备在所述第二传输资源上发送非周期性SRS,也可以说,所述终端设备在第二传输资源上发送非周期性SRS的时域资源是第四OFDM符号子集合的一个子集。所述第三OFDM符号子集合与所述第四OFDM符号子集合不相同。
需要说明的是,可以是在所述第一OFDM符号集合和所述第二OFDM符号集合相同的条件下,所述第三OFDM符号子集合和第四OFDM符号子集合不相同;也可以是在所述第一OFDM符号集合和所述第二OFDM符号集合不相同的条件下,所述第三OFDM符号子集合和第四OFDM符号子集合不相同。
本申请实施例中,不同类型的SRS可以配置或预定义不同的候选集合。一般来说,非周期性SRS是用于获取网络侧感兴趣的一段频域上的信道条件,通常是一个窄带的SRS,而周期性SRS和半静态SRS是用于获取全信道,整个系统带宽上的信道条件,因此,可以根据不同类型的SRS的特性配置相应的SRS传输符号,减少对切换源载波上信道的影响。
可选的,在另一种实现方式中,所述第一OFDM符号子集合、第二OFDM符号子集合、第三OFDM符号子集合和第四OFDM符号子集合还可以是通过协议预定义的,并且第一OFDM符号子集合和第二OFDM符号子集合不同,第三OFDM符号子集合和第四OFDM符号子集合不同。
可选的,因为考虑到RF retuning的影响,应该在切换源载波或切换源带宽部分上,SRS配置的周期更小,发送的符号更少;在切换目的载波或切换目的带宽部分上,应该把SRS周期配置的相对大一些,同时每次发送的符号数更多一些。从而可以降低对切换源载波上SRS传输产生冲突的影响。因此,SRS配置信息中,设置所述第三OFDM符号子集合中的OFDM符号数目比所述第一OFDM符号子集合中的OFDM符号数目多。
可选的,因为非周期性SRS一般是用于获取网络侧感兴趣的一段频域上的信道条件,通常是一个窄带的SRS,因此,可以设置一个小的候选集合传输非周期性SRS;而周期性SRS和半静态SRS一般是用于获取全信道,整个系统带宽上的信道条件,因此,可以设置一个大的候选集合传输周期性SRS和半静态SRS。所以,SRS配置信息中,设置所述第三OFDM符号子集合中的OFDM符号数目比所述第四OFDM符号子集合中的OFDM符号数目少,即在第二传输资源上,终端设备可用于发送非周期性的SRS的符号数目比可用于发送周期性和/或半静态SRS的符号数目少。
同样,本申请实施例中,SRS配置信息中,设置第一OFDM符号子集合中的OFDM符号数目可以比第二OFDM符号子集合中的OFDM符号数目少,即在第一传输资源上,终端设备可用于发送非周期性的SRS的符号数目比可用于发送周期性和/或半静态SRS的符号数目少。
可选的,本申请实施例中的通信方法还包括:所述网络设备发送组下行控制信息(group downlink control information,group DCI)至所述终端设备,所述group DCI中包括用于指示一个或多个终端设备的指示信息,所述指示信息包括所述终端设备的SRS符号位置信息,所述SRS符号位置信息用于指示所述终端设备在所述第二传输资源上发送非周期性 SRS的OFDM符号位置。
可选的,所述SRS符号位置信息中可以是发送的非周期性SRS(aperiodic SRS,A-SRS)在上述第二OFDM符号子集合中的位置,也可以是发送的A-SRS在上述第四OFDM符号子集合中的位置,此处不做限定。可选的,所述SRS位置信息可以包括SRS符号个数和发送SRS的符号编号。
本申请实施例中,通过在group DCI中指示A-SRS的符号位置,可以灵活的配置终端设备发送非周期性SRS符号的个数和位置,满足不同场景下的SRS传输需求。
可选的,所述网络设备发送至终端设备的group DCI中可以指示所述终端设备的预编码信息或码本,所述预编码信息或码本用于指示所述终端设备在所述第二传输资源上发送非周期性SRS所使用的预编码或码本。
本申请实施例中,在进行SRS切换操作时,通过指示SRS的预编码码本,可以提高无PUCCH和PUSCH的载波上SRS的传输性能,满足不同场景下的传输需求。
可选的,所述网络设备发送至终端设备的group DCI中可以指示所述终端设备的波束索引信息,所述波束索引信息用于指示所述终端设备在所述第二传输资源上发送非周期性SRS所使用的波束索引或波束对的索引。
本申请实施例中,在进行SRS切换操作时,通过指示SRS的波束索引或波束对索引,可以提高无PUCCH和PUSCH的载波上SRS的传输性能,满足不同场景下的传输需求。
可选的,上述group DCI在公共PDCCH中,或在组公共PDCCH中传输。
第二方面,本申请实施例提供了一种通信方法,该方法包括:
终端设备获取在第一传输资源上的SRS配置信息和第二传输资源上的SRS配置信息,所述第一传输资源支持传输物理上行控制信道PUCCH、物理上行共享信道PUSCH、物理随机接入信道PRACH或SRS信号中的至少一种,所述第二传输资源不支持PUCCH和PUSCH,其中所述第一传输资源包括第一载波或第一带宽部分,所述第二传输资源包括第二载波或第二带宽部分;所述第一传输资源的SRS配置信息中包括第一正交频分复用OFDM符号集合,所述终端设备使用所述第一OFDM符号集合中的全部或部分OFDM符号在所述第一传输资源上发送SRS;所述第二传输资源的SRS配置信息中包括第二OFDM符号集合,所述终端设备使用所述第二OFDM符号集合中的全部或部分OFDM符号在所述第二传输资源上发送SRS。
可选的,终端设备获取在第一传输资源上的SRS配置信息和第二传输资源上的SRS配置信息的方式可以是:通过协议预定义在第一传输资源上的SRS配置信息和第二传输资源上的SRS配置信息,即通过协议预定义第一OFDM符号集合和第二OFDM符号集合。所述终端设备按照第一传输资源的SRS配置信息和第二传输资源的SRS配置信息分别在第一传输资源和第二传输资源上传输SRS。
可选的,终端设备获取在第一传输资源上的SRS配置信息和第二传输资源上的SRS配置信息的方式还可以是:接收网络设备发送的第一传输资源上的SRS配置信息和第二传输资源上的SRS配置信息,从而获取第一OFDM符号集合和第二OFDM符号集合。可选的,可以是网络设备广播SRS配置信息,终端设备接收网络设备广播的第一传输资源上的SRS配置信息和第二传输资源上的SRS配置信息;也可以是网络设备通过RRC信令发送SRS配置 信息给终端设备,终端设备接收网络设备通过RRC信令发送的第一传输资源上的SRS配置信息和第二传输资源上的SRS配置信息。
需要说明的是,所述第一OFDM符号集合和第二OFDM符号集合是用于限定终端设备可发送SRS的OFDM符号集合,终端设备具体在OFDM符号集合中的哪些符号上发送SRS,发送哪种类型的SRS,以及发送SRS所需的其他资源配置等信息,需要网络设备通过其他信令或指示信息进行配置,例如:通过RRC信令、DCI指示等进行配置。
可选的,所述第一OFDM符号集合和所述第二OFDM符号集合不相同。
可选的,所述第一OFDM符号集合包括第一OFDM符号子集合和第二OFDM符号子集合,所述第一OFDM符号子集合与所述第二OFDM符号子集合不相同;所述终端设备使用所述第一OFDM符号子集合中的全部或部分OFDM符号在所述第一传输资源上发送周期性SRS或半静态SRS;所述终端设备使用所述第二OFDM符号子集合中的全部或部分OFDM符号在所述第一传输资源上发送非周期性SRS。
可选的,所述第二OFDM符号集合包括第三OFDM符号子集合和第四OFDM符号子集合,所述第三OFDM符号子集合与所述第四OFDM符号子集合不相同;所述方法还包括:所述终端设备使用述第三OFDM符号子集合中的全部或部分OFDM符号在所述第二传输资源上发送周期性SRS或半静态SRS;所述终端设备使用所述第四OFDM符号子集合中的全部或部分OFDM符号在所述第二传输资源上发送非周期性SRS。
可选的,在另一种实现方式中,所述第一OFDM符号子集合、第二OFDM符号子集合、第三OFDM符号子集合和第四OFDM符号子集合还可以是通过协议预定义的,并且第一OFDM符号子集合和第二OFDM符号子集合不同,第三OFDM符号子集合和第四OFDM符号子集合不同。
可选的,可以是在第一OFDM符号集合和第二OFDM符号集合相同的情况下,第一OFDM符号子集合和第二OFDM符号子集合不同,第三OFDM符号子集合和第四OFDM符号子集合不同,也可以是在第一OFDM符号集合和第二OFDM符号集合不相同的情况下,第一OFDM符号子集合和第二OFDM符号子集合不同,第三OFDM符号子集合和第四OFDM符号子集合不同。
可选的,所述第三OFDM符号子集合中的OFDM符号数目比所述第一OFDM符号子集合中的OFDM符号数目多。
可选的,所述第三OFDM符号子集合中的OFDM符号数目比所述第四OFDM符号子集合中的OFDM符号数目少。
可选的,该方法还包括:所述终端设备接收所述网络设备发送的组下行控制信息group DCI,所述group DCI中包括用于指示一个或多个终端设备的指示信息,所述指示信息包括所述终端设备的SRS符号位置信息,所述SRS符号位置信息用于指示所述终端设备在所述第二传输资源上发送非周期性SRS的OFDM符号位置。
可选的,所述SRS符号位置信息中可以是发送的A-SRS在上述第二OFDM符号集合中的位置,也可以是发送的A-SRS在上述第四OFDM符号子集合中的位置,此处不做限定。
可选的,所述group DCI还可以包括所述终端设备的预编码信息或码本,所述预编码信息或码本用于指示所述终端设备在所述第二传输资源上发送非周期性SRS所使用的预编 码或码本。
可选的,所述group DCI中还可以包括所述终端设备的波束索引信息,所述波束索引信息用于指示所述终端设备在所述第二传输资源上发送非周期性SRS所使用的波束索引或波束对的索引。
可选的,所述group DCI在公共PDCCH中,或在组公共PDCCH中传输。
第三方面,本申请实施例还提供一种网络设备,具体实现对应于上述第一方面提供的通信方法的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件程序实现。硬件和软件包括一个或多个与上述功能相对应的单元模块,所述单元模块可以是软件和/或硬件。
一种可能的设计中,所述网络设备包括发送单元和接收单元;其中,所述发送单元用于:
发送第一传输资源的SRS配置信息和第二传输资源的SRS配置信息至终端设备,所述第一传输资源支持传输物理上行控制信道PUCCH、物理上行共享信道PUSCH、物理随机接入信道PRACH或SRS信号中的至少一种,所述第二传输资源不支持PUCCH和PUSCH,其中所述第一传输资源包括第一载波或第一带宽部分,所述第二传输资源包括第二载波或第二带宽部分;所述第一传输资源的SRS配置信息中包括第一OFDM符号集合,所述第一OFDM符号集合中的全部或部分OFDM符号用于所述终端设备在所述第一传输资源上发送SRS,所述第二传输资源的SRS配置信息中包括第二OFDM符号集合,所述第二OFDM符号集合中的全部或部分OFDM符号用于所述终端设备在所述第二传输资源上发送SRS。
一种可能的设计中,所述网络设备包括:
相互连接的收发器、处理器及存储器;
存储器用于存储程序代码,处理器调用存储器中的程序代码,以执行上述第一方面中的网络设备执行的步骤。
第四方面,本申请实施例还提供一种终端设备,具体实现对应于上述第二方面提供的通信方法的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件程序实现。硬件和软件包括一个或多个与上述功能相对应的单元模块,所述单元模块可以是软件和/或硬件。
一种可能的设计中,所述终端设备包括:
获取单元,用于获取在第一传输资源上的SRS配置信息和第二传输资源上的SRS配置信息,所述第一传输资源支持传输物理上行控制信道PUCCH、物理上行共享信道PUSCH、物理随机接入信道PRACH或SRS信号中的至少一种,所述第二传输资源不支持PUCCH和PUSCH,其中所述第一传输资源包括第一载波或第一带宽部分,所述第二传输资源包括第二载波或第二带宽部分;所述第一传输资源的SRS配置信息中包括第一OFDM符号集合,所述第二传输资源的SRS配置信息中包括第二OFDM符号集合;
发送单元,用于使用所述第一OFDM符号集合中的全部或部分OFDM符号在所述第一传输资源上发送SRS;或,使用所述第二OFDM符号集合中的全部或部分OFDM符号在所述第二传输资源上发送SRS。
一种可能的设计中,所述终端设备包括:
相互连接的收发器、处理器及存储器;
存储器用于存储程序代码,处理器调用存储器中的程序代码,以执行以下操作上述第二方面中的终端设备执行的步骤。
第五方面,本申请提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述各方面所述的方法。
第六方面,本申请提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述各方面所述的方法。
第七方面,本申请实施例提供一种通信装置,该通信装置可以包括终端设备或者芯片等实体,所述通信装置包括:处理器、存储器;所述存储器用于存储指令;所述处理器用于执行所述存储器中的所述指令,使得所述通信装置执行如前述第一方面或第二方面中任一项所述的方法。
第八方面,本申请提供了一种芯片系统,该芯片系统包括处理器,用于支持网络设备实现上述方面中所涉及的功能或支持终端设备实现上述方面中所涉及的功能,例如,例如发送或处理上述方法中所涉及的数据和/或信息。在一种可能的设计中,所述芯片系统还包括存储器,所述存储器,用于保存网络设备必要的程序指令和数据。该芯片系统,可以由芯片构成,也可以包括芯片和其他分立器件。
从以上技术方案可以看出,本申请实施例具有以下优点:
本申请实施例中,在SRS切换场景中,网络设备给终端设备配置的SRS配置信息中包括OFDM符号集合,该OFDM符号集合中包括一个或多个OFDM符号可以用于传输SRS,从而在一个载波或一个带宽部分上,可以通过多个SRS来对信道进行测量,从而可以更好的支持对高频信道的测量,提高信道测量的效率。且本申请实施例中第一传输资源的第一OFDM符号集合和第二传输资源的第二OFDM符号集合不相同,从而可以降低对第一传输资源上的各种信道的影响。
附图说明
图1为本申请实施例中的通信系统的示意图;
图2为本申请实施例中终端设备从CC1切换到CC2上发送一个SRS的示意图;
图3为本申请实施例中载波与带宽部分的关系示意图;
图4为本申请实施例中终端设备从BP1上切换到BP2上发送一个SRS的示意图;
图5为本申请实施例中网络设备与终端设备之间的信息交互示意图;
图6为本申请实施例中第一OFDM符号集合的示意图;
图7为本申请实施例中第二OFDM符号集合的示意图;
图8为本申请实施例中在SRS切换过程中的RF retuning示意图;
图9为本申请实施例中SRS切换场景中的SRS候选集合配置示意图;
图10为本申请实施例中A-SRS在切换目的载波上的传输符号示意图;
图11为本申请实施例中的波束索引示意图;
图12为本申请实施例中的网络设备的功能模块结构示意图;
图13为本申请实施例中的终端设备的功能模块结构示意图;
图14为本申请实施例中的网络设备和终端设备的硬件结构示意图;
图15为本申请实施例中的终端设备的一种硬件结构示意图。
具体实施方式
以下结合附图对本申请实施例进行进一步详细说明。
为了解决现有技术通信系统中SRS不能满足终端设备在高频段传输时的信道测量要求的问题,本申请实施例基于图1所示的通信系统提出了一种解决方案,用以更好的支持对高频信道的测量,提高信道测量的效率。
如图1所示,本申请实施例中提供了一种通信系统100。该通信系统100包括核心网,至少一个基站和至少一个终端设备(又称用户设备(user equipment,UE)),图示中只示出一个基站和在该基站覆盖区域内的UE1和UE2。其中,基站为在其覆盖区域内的多个UE提无线接入服务,UE可以通过链路与基站进行通信,基站与核心网连接,核心网中可以包括移动管理实体(mobility management entity,MME)、归属签约用户服务器(home subscriber server,HSS)、服务网关(serving gateway,SGW)等网络设备。
本申请实施例中,所述通信系统100可以为各种无线接入技术(radio access technology,RAT)系统,譬如码分多址(code division multiple access,CDMA)系统、时分多址(time division multiple access,TDMA)系统、频分多址(frequency division multiple access,FDMA)系统、正交FDMA(orthogonal frequency division multiple access,OFDMA)系统、单载波频分多址(single carrier FDMA,SC-FDMA)系统和其他系统。术语“系统”和“网络”可以相互替换。CDMA系统可实现诸如通用地面无线电接入(universal terrestrial radio access,UTRA)、CDMA2000等无线电技术。UTRA包括宽带CDMA(wideband CDMA,W-CDMA)技术和其他CDMA变形的技术。CDMA2000涵盖过度标准(interim standard,IS)2000(IS-2000)、IS-95和IS-856标准。TDMA系统可实现诸如全球移动通信系统(global system for mobile communication,GSM)之类的无线技术。OFDMA系统可实现诸如演进型UTRA(evolved UTRA,E-UTRA)、超移动宽带(ultra mobile broadband,UMB)、IEEE 802.11(Wi-Fi)、IEEE 802.16(WiMAX)、IEEE 802.20、Flash-OFDM等无线技术。UTRA和E-UTRA是通用移动电信系统(universal mobile telecommunications system,UMTS)的部分。3GPP长期演进(long term evolution,LTE)和基于LTE演进的各种版本是使用E-UTRA的UMTS的新版本。此外,所述通信系统100还可以适用于面向未来的通信技术,例如5G系统。
本申请实施例描述的系统架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对本申请实施例提供的技术方案的限定。本领域的技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
本申请实施例中,所述基站是一种部署在无线接入网中用以为UE提供无线通信功能的 装置。所述基站可以包括各种形式的宏基站,微基站(也可以成为小站),中继站,接入点等。在采用不同的无线接入技术的系统中,具备基站功能的设备的名称可能会有所不同,可以是GSM或CDMA中所称的基站(base transceiver station,BTS),也可以是W-CDMA中的节点B(nodeB),还可以是LTE中的演进的节点(evolved NodeB,或eNB或e-NodeB),还可以是下一代新无线通信系统(new radio,NR),即5G系统中的收发点(transmit-receive point,TRP)或gNodeB等。为了方便描述,本申请实施例中,上述为UE提供无线通信功能的装置统称为基站。
本申请实施例中涉及的UE可以包括各种具有无线通信功能,可以经无线接入网(radio access network,RAN)与一个或多个核心网进行通信,为用户提供语音和/或数据连通性的终端设备,可以简称终端。可以是具有无线通信功能的手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其他处理设备。本申请实施例中的UE也可以称为用户单元(subscriber unit)、订户站(subscriber station),移动站(mobile station)、移动台(mobile)、远程站(remote station)、远程终端(remote terminal)、接入终端(access terminal)、用户终端(user terminal)、用户代理(user agent)、用户装置(user device)、个人通信业务(personal communication service,PCS)电话、无绳电话、移动电话、“蜂窝”电话、智能电话(smart phone)、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)等设备。本申请实施例中,上面提到的设备统称为UE。
需要说明的是,图1中的通信系统100中所包含的UE的数量和类型仅仅是一种举例,本申请实施例并不限定于此,譬如,还可以包括更多与基站进行通信的UE。此外,所述通信系统100可以并不限于包括所述核心网、基站和UE,譬如还可以包括用于承载虚拟化网络功能的设备等。这些对于本领域技术人员而言是显而易见的,在此不一一详述。
本申请实施例是在基于图1所示的通信系统100中,提供了一种在SRS切换场景中的SRS传输方法,从而提高信道测量的效率。
为了方便理解本申请实施例的技术方案,首先给出本申请相关技术的简要介绍如下。
本申请实施例中的SRS是由UE在上行链路上传输的参考信号,是终端设备与基站间用来测量无线信道信息(channel state information,CSI)的信号。在通信系统中,SRS主要有以下功能:1)、信道探测,用于基站侧测量上行无线信道质量;2)、频率选择性调度;3)、对UE进行上行定时控制,保持同步;4)、在TDD场景下,通过SRS测量的信道信息,利用上下行信道的互易性辅助进行下行传输。
本申请实施例中的通信系统中支持周期性SRS(periodic SRS,P-SRS)、非周期性SRS(aperiodic SRS,A-SRS)和半静态SRS(semi-persistent scheduling SRS,SPS-SRS),共三种类型的SRS传输。
其中,周期性SRS是按照配置的SRS的周期,每隔SRS的周期发送一次SRS。周期性SRS是通过无线资源控制(radio resource control,RRC)信令配置SRS传输使用的时域、频域、码域和梳齿(comb)资源。其中,时域资源包括:SRS的周期、SRS发送的时隙(slot)和SRS发送使用的正交频分复用(orthogonal frequency division multiplexing,OFDM) 符号。
非周期性SRS是通过RRC信令配置SRS传输使用的时域、频域、码域和comb资源。其中,SRS传输使用的时域资源是不固定的,由下行控制信息(downlink control information,DCI)触发终端设备发送SRS。
半静态SRS是通过RRC信令配置SRS传输使用的时域、频域、码域和comb资源。其中,时域资源包括:SRS的周期、SRS发送的slot和SRS发送使用的OFDM符号。通过DCI触发终端设备按照配置的SRS的周期,每隔SRS的周期发送一次SRS。此外,DCI还可以触发终端设备终止SRS的发送。
本申请实施例支持载波聚合场景下基于载波的SRS切换(SRS carrier based switching)。其中,载波聚合是指用户根据自身能力,可以同时利用几个载波进行上下行传输。此时,不同载波的双工方式可灵活配置,即双工方式可以为全部为频分双工(frequency division duplexing,FDD),也可以全部为TDD,或者FDD+TDD载波。当上下行业务不对称,下行业务数据量远大于上行,并且用户配置有TDD载波时,此时多个TDD载波被配置为下行传输,会出现下行载波个数大于上行载波个数的情形,由于部分TDD载波被配置为仅下行传输,没有上行数据/参考信号的传输,基站仅根据上下行信道的互易性无法准确的获取下行传输信道信息。本申请实施例通过载波SRS切换特性,可以周期/非周期地切换到仅存在SRS的载波上,利用SRS的信道测量性能和TDD场景下上下行信道的互易性,辅助进行该载波上的下行传输,比如基站可以根据SRS的测量结果,选择指向性更好或更窄的波束对用户进行下行数据传输,来提高传输可靠性和传输速率。
基于载波的SRS切换特性也即:UE配置了N个载波,由于UE上行能力不够,只能支持M个上行载波的同时传输,为了获取N-M个载波中的TDD载波精确的下行信道状态,需要借用M个上行载波的射频(radio frequency,RF)能力,即M个上行载波中一个上行载波单元(component carrier,CC)切换到N-M个载波中的一个TDD载波上发送SRS。
图2为终端设备从CC1切换到CC2上发送一个SRS的示意图。图2表示载波CC1和CC2上对应的两个子帧(subframe,SF):SF N和SF N+1,其中,CC1支持发送上行数据,CC2仅支持发送下行数据。在SRS切换时,UE在CC1的第11个符号切换RF(Radio Frequency,射频),对应第13个符号时,RF切换到CC2上,切换到CC2上发送SRS,从而基站可以根据该SRS获取CC2的下行传输信道信息。在SRS切换中,CC1为切换源载波(switching-from CC),又称标准CC(normal CC);CC2为切换目的载波(switching-to CC),又称SRS only CC。
其中,本申请实施例中的载波包括非载波聚合(carrier aggregation,CA)场景下的载波和CA场景下的CC。其中,CA场景下的CC可以为主CC或辅CC,CA场景下的服务小区可以为主服务小区(primary serving cell,PCell)或辅服务小区(secondary serving cell,Scell)。为了方便描述,在本申请实施例的某些场景下,可以将非CA场景下的载波和CA场景下的CC统称为载波,本申请实施例对此不作具体限定。此外,载波或服务小区用于上行传输的部分可以理解为上行资源或上行载波,载波或服务小区用于下行传输的部分可以理解为下行资源或下行载波。例如,在FDD系统中,载波上用于上行传输的频域资源可以 理解为上行资源或上行载波;载波上用于下行传输的频域资源可以理解为下行资源或下行载波。或者,例如,在TDD系统中,载波上用于上行传输的时域资源可以理解为上行资源或上行载波;载波上用于下行传输的时域资源可以理解为下行资源或下行载波。
本申请实施例不仅支持载波聚合场景下基于载波的SRS切换(SRS carrier based switching),还可以在宽带载波(wideband CC)上支持基于带宽部分(Bandwidth Part,BP)的SRS的切换(SRS BP-based switching)。
本申请实施例中的BP是载波上的一段频域资源,可以是比载波更小的带宽单位,可以将载波带宽进一步划分为多个带宽部分。如图3所示,80MHz的载波带宽,可以划分成一个20MHz的BP1,一个20MHz的BP2,一个40MHz的BP3。
BP也可以说是网络设备给UE分配的一个工作带宽。工作带宽分包括上行工作带宽和下行工作带宽,上行工作带宽即终端设备激活的上行BP,下行工作带宽即终端设备激活的下行BP。在本申请实施例中,UE的工作带宽和载波带宽解耦。其中,载波带宽是指wideband CC中包含的资源块(resource block,RB)的数目,RB可以有不同的子载波间隔(subcarrier spacing,SCS),LTE一个20M的CC中包含100个15kHz子载波间隔的RB。对于同一种子载波间隔来说,不同UE支持的工作带宽不同,即能够处理的RB数不同,不是所有的UE都需要支持载波带宽,即载波带宽(例如100M)可以大于UE的工作带宽。因此,网络设备给UE分配一个在UE的能力范围之类的工作带宽,UE在基站分配的工作带宽(即BP)内进行控制和数据传输。
如图4所示,在基于BP的SRS切换中,UE从BP1上切换到BP2上,在子帧SF N的第13个符号上发送SRS,从而基站可以根据该SRS获取BP2的下行传输信道信息。在SRS切换中,BP1为切换源带宽部分(switching-from BP),又称标准BP(normal BP);BP2为切换目的载波(switching-to BP),又称SRS only BP。
在现有技术中,SRS资源配置的单位为1个OFDM符号(可以简称符号),一般在子帧的最后一个OFDM符号上发送SRS。由于SRS的传输符号个数和位置固定,不能满足终端设备在高频段传输时的信道测量要求。例如:当终端设备上行载波为1.8GHz时,采用一个OFDM符号传输SRS可以满足其信道测量要求,但当终端设备的上行载波为3.5GHz时,由于频段原因,导致相同传输距离时的路损增加,使用一个OFDM符号传输SRS无法满足其信道测量要求。
而本申请实施例中,SRS资源配置支持多个SRS符号,即网络设备可以给一个载波或一个BP配置多个OFDM符号传输SRS。在SRS切换场景中,网络设备给终端设备配置的SRS配置信息中包括OFDM符号集合(也可以称之为SRS候选集合),该OFDM符号集合中包括一个或多个OFDM符号,终端设备在所配置的传输资源上可以使用这些OFDM符号中的全部或部分发送SRS。需要说明是,本申请实施例中的SRS切换场景包括基于载波的SRS切换场景,以及基于带宽部分的SRS切换场景。下面结合图5进行详细说明。
需要说明的是,本申请中的网络设备可以是指接入网中在空中接口上通过一个或多个扇区与无线终端通信的设备,所述网络设备可以是基站,也可以是与基站具有类似功能的网络设备或者网络侧节点,例如可以是与基站连接的控制节点、具有资源配置或资源调度 或资源复用决策功能的任意网络侧的设备。
501、网络设备发送第一传输资源的SRS配置信息和第二传输资源的SRS配置信息至终端设备。
可选的,网络设备可以通过广播的方式发送SRS配置信息给终端设备,也可以通过RRC信令发送SRS配置信息给终端设备,从而终端设备可以获取网络设备发送的第一传输资源上的SRS配置信息和第二传输资源上的SRS配置信息。
其中,第一传输资源支持传输物理上行控制信道(physical uplink control channel,PUCCH)、物理上行共享信道(physical uplink share channel,PUSCH)、物理随机接入信道(physical random access channel,PRACH)或SRS信号中的至少一种。第一传输资源可以是第一载波,也可以是第一带宽部分,第一载波是指基于载波的SRS切换场景中的切换源载波(switching-from CC),第一带宽部分是指基于BP的SRS切换场景中的切换源带宽部分(switching-from BP)。本申请实施例中的第一传输资源也可以称之为第一上行传输资源。
第二传输资源不支持PUCCH和PUSCH,第二传输资源可以是第二载波,也可以是第二带宽部分。第二载波是指基于载波的SRS切换场景中的切换目的载波(switching-to CC),第二带宽部分是指基于BP的SRS切换场景中的切换目的带宽部分(switching-to BP)。本申请实施例中的第二传输资源也可以称之为第二上行传输资源。
第一传输资源上的SRS配置信息中包括第一OFDM符号集合,所述第一OFDM符号集合中包括一个或多个OFDM符号。所述第一OFDM符号集合中的全部或部分OFDM符号用于所述终端设备在所述第一传输资源上发送SRS,即第一OFDM符号集合中的符号为所述终端设备在第一传输资源上可用来发送SRS的符号,也可以说,所述终端设备在第一传输资源上发送SRS的时域资源是第一OFDM符号集合中的一个子集。第一OFDM符号集合也可以称之为第一SRS候选集合。
所述OFDM符号可以定义为子帧(subframe)中的OFDM符号,也可以定义为时隙(slot)中的OFDM符号,还可以定义为时间单元或时间间隔中的OFDM符号。例如:如图6所示,第一传输资源的第一OFDM符号集合为子帧的最后4个符号{10,11,12,13},终端设备在第一传输资源上,可通过图6中的{10,11,12,13}中的一个或多个来发送SRS。
第二传输资源上的SRS配置信息中包括第二OFDM符号集合,所述第二OFDM符号集合中包括一个或多个OFDM符号。所述第二OFDM符号集合的全部或部分OFDM符号用于所述终端设备在所述第二传输资源上发送SRS,即第二OFDM符号集合中的符号为所述终端设备在第二传输资源上可用来发送SRS的符号,也可以说,所述终端设备在第二传输资源上发送SRS的时域资源是第二OFDM符号集合中的一个子集。第二OFDM符号集合也可以称之为第二SRS候选集合。
所述OFDM符号可以是指子帧(subframe)中的OFDM符号,也可以是指时隙(slot)中的OFDM符号。例如:如图7所示,第二传输资源的第二OFDM符号集合为子帧的最后4个符号{10,11,12,13},终端设备在第二传输资源上,可通过图7中的{10,11,12,13}中的一个或多个来发送SRS。
需要说明的是,图6中所示的第一OFDM符号集合和图7中所示的第二OFDM符号集合仅仅是示例,并不构成对本申请的限定,本实施例中,第一OFDM符号集合和第二OFDM符号集合可以是相同的,也可以是不相同的。
需要说明的是,终端设备在发送第一传输资源的SRS配置信息和发送第二传输资源的SRS配置信息时,可以一起发送,也可以分开发送,本实施例不做限定。
可选的,网络设备在执行步骤501之前,可以先生成第一传输资源的SRS配置信息和第二传输资源的SRS配置信息。也可以由协议预先设置哪些OFDM符号可以用来传输SRS,即协议预先设置一个用来传输SRS的OFDM符号集合。之后,网络设备再从协议预先设置的OFDM符号集合中选择一个或多个符号作为第一OFDM符号集合,以限定在第一传输资源上可以用来传输SRS的OFDM符号集合;同样,网络设备从协议预先设置的OFDM符号集合中选择一个或多个符号作为第二OFDM符号集合,以限定在第二传输资源上可以用来传输SRS的OFDM符号集合。
步骤501中所描述的是通过网络设备发送第一OFDM符号集合和第二OFDM符号集合给终端设备。在本申请实施例中,所述第一OFDM符号集合和第二OFDM符号集合并不一定需要网络设备配置,还可以通过协议预定义的方式实现。例如:通过协议预定义在第一传输资源上的SRS配置信息和第二传输资源上的SRS配置信息,即通过协议预定义第一载波(或第一带宽部分)的第一OFDM符号集合和第二载波(或第二带宽部分)的第二OFDM符号集合,从而终端设备可以从协议预定义的SRS配置信息中获取第一OFDM符号集合和第二符号OFDM符号集合。
502、终端设备在第一传输资源上根据第一传输资源的SRS配置信息发送SRS,在第二传输资源上根据第二传输资源的SRS配置信息发送SRS。
终端设备在获取到第一传输资源的SRS配置信息和第二传输资源的SRS配置信息后,在所述第一传输资源上根据所述第一传输资源的SRS配置信息发送SRS,在第二传输资源上根据所述第二传输资源的SRS配置信息发送SRS。即终端设备在第一传输资源上发送SRS时,使用第一OFDM符号集合的全部或部分OFDM符号发送SRS,在第二传输资源上发送SRS时,使用第二OFDM符号集合的全部或部分OFDM符号发送SRS。
需要说明的是,SRS配置信息是用于限定终端设备可发送SRS的OFDM符号集合,并非终端设备发送SRS的触发条件和SRS实际发送所占用的OFDM符号。终端设备具体在OFDM符号集合中的哪些符号上发送SRS,发送哪种类型的SRS,以及发送SRS所需的其他资源配置等信息,需要网络设备通过其他信令或指示信息进行配置,例如:通过RRC信令、DCI指示等进行配置。
本申请实施例中,在SRS切换场景中,网络设备给终端设备配置的SRS配置信息中包括OFDM符号集合,该OFDM符号集合中包括一个或多个OFDM符号,这些OFDM符号可以用于传输SRS。从而在一个载波或一个带宽部分上,可以通过多个SRS来对信道进行测量,可以更好的支持对高频信道的测量,提高信道测量的效率。
本申请实施例中,在SRS切换时,是从一个CC切换到另一个CC,或从一个BP切换到另一个BP,因此RF需要重新调整(RF retuning)。以基于载波的SRS切换举例来说,在 RF retuning的时间内,若切换源载波(switching-from CC)是FDD载波,那么UE在RF retuning时间内不能进行上行传输;若切换源载波(switching-from CC)是TDD载波,那么在RF retuning时间内UE不能进行上行传输和或下行接收。因此,在SRS切换时,会对切换源载波或切换源BP产生影响。
如图2所示,UE从CC1切换到CC2,在CC2的子帧N上的第13个符号上发送SRS,UE在从CC1上切换到CC2上传输完一个符号的SRS之后,需要从CC2上切换到CC1上继续上行传输,即CC2上的一个符号的SRS传输需要两次RF retuning,每次RF retuning需要2个OFDM符号,因此UE在CC2上发送SRS会导致UE在CC1子帧N上的符号11-13到子帧N+1上的符号0-1不能发送PUSCH。
如图8所示,UE在CC1上既有上行,又有下行,符号0-11为下行传输资源,其中,符号0和1所在的部分频段为控制区域,符号12为空白符号,或称为间隔(gap),符号13为上行传输资源;UE在CC2上除了时隙slot#0上的第13个符号为发送SRS的符号以外,其他都为下行传输资源。UE从CC1切换到CC2,在CC2的时隙上的第13个符号上发送SRS。CC2上的SRS传输有会影响到CC1上slot#0上的符号11到13以及slot#1上符号0和1。因此,会影响slot#0上的符号13的PUCCH反馈下行数据的ACK/NACK,也会影响slot#1上盲检PDCCH。
上述图2与图8是以基于载波的SRS切换为例说明SRS切换会对切换源载波产生影响进行的说明,基于带宽部分的SRS切换存在同样的问题,此处不做赘述。
图2和图8所示的为一个符号的SRS切换,而一个符号的SRS切换,RF retuning时会影响CC1上的5个符号。而本申请实施例支持多个符号的SRS资源配置,每个符号的SRS切换的RF retuning都会影响CC1上对应的符号,因此,在SRS切换,会对切换源载波上的各种信道产生很大的影响。
因此,基于图5所示的实施例,本申请提供了一种通信方法,能降低SRS切换时对切换源载波上的信道产生的影响。
本申请实施例中SRS配置信息中的OFDM符号集合,即SRS候选集合与载波类型或BP类型相关,网络设备配置的第一OFDM符号集合和第二OFDM符号集合不相同。其中,载波类型是指该载波在SRS切换时是切换源载波还是切换目的载波,BP类型是指该BP在SRS切换时是切换源BP还是切换目的BP。例如:切换目的载波或BP上SRS的候选集合可以是时隙上的符号7至13,切换源载波或BP上SRS的候选集合可以是时隙上的符号10至13。
本申请实施例中,第一OFDM符号集合与第二OFDM符号集合不相同,可以是部分不相同,也可以是全部不相同。第一OFDM符号集合与第二OFDM符号集合不相同具体可以是OFDM符号的个数不相同,也可以是OFDM符号的位置不相同,或者OFDM符号的个数和位置都不相同。
下面以基于载波的SRS切换场景为例进行说明,基于BP的SRS切换场景可以参考基于载波的SRS切换场景。对于载波聚合下的一个UE来说,配置了如图9所示的两个载波CC1、CC2,受限于UE上行的能力,其中CC1是normal CC(switching-from CC),CC2是SRS only CC(switching-to CC)。为了降低SRS-only CC上SRS传输所需RF retuning时间对normal  CC的信道的影响,SRS的符号位置和数目与CC的类型相关。如图9所示,normal CC上的SetA和SRS-only CC/BP上的SetB不同,UE在normal CC上的SRS候选集合(即第一OFDM符号集合)为SetA={12,13},UE在SRS-only CC上的SRS候选集合(第二OFDM符号)为SetB={10,11,12,13},SetA与SetB不相同。
本申请实施例中,给CC1(即切换源载波)和CC2(即切换目的载波)配置不同的SRS候选集合,可以增加UE在CC1和CC2上使用不同位置和/或不同个数的符号传输SRS的可能性,从而一方面在可以降低CC1上的SRS处于RF retuning的影响范围的概率,从而降低CC1上的SRS被影响的概率;另一方面,可以降低RF retuning对CC1上的其他接收和发送的信道的影响。
可选的,SRS的符号位置和数目与SRS的类型相关,在SRS候选集合中,不同类型的SRS有其对应的候选集合。
在一种具体的实施例中,第一OFDM符号集合中包括第一OFDM符号子集合和第二OFDM符号子集合。其中,第一OFDM符号子集合中的全部或部分OFDM符号用于终端设备在第一传输资源上发送周期性SRS或半静态SRS,也可以说,所述终端设备在第一传输资源上发送周期性SRS和半静态SRS的时域资源是第一OFDM符号子集合的一个子集。第二OFDM符号子集合中的全部或部分OFDM符号用于终端设备在第一传输资源上发送非周期性SRS,也可以说,所述终端设备在第一传输资源上发送非周期性SRS的时域资源是第一OFDM符号子集合的一个子集。第一OFDM符号子集合与第二OFDM符号子集合不相同。第一OFDM符号子集合也可以称之为第一P/SPS-SRS候选集合,第二OFDM符号子集合也可以称之为第一A-SRS候选集合。
需要说明的是,所述第一OFDM符号子集合与第二OFDM符号子集合不相同,可以是部分不相同,也可以是全部不相同。第一OFDM符号子集合与第二OFDM符号子集合不相同具体可以是OFDM符号的个数不相同,也可以是OFDM符号的位置不相同,或者OFDM符号的个数和位置都不相同。
需要说明的是,第一OFDM符号子集合与第二OFDM符号子集合不相同与SRS配置信息中的第一OFDM符号集合和第二OFDM符号集合是否相同无关。可以是在所述第一OFDM符号集合和所述第二OFDM符号集合相同的条件下,所述第一OFDM符号子集合和第二OFDM符号子集合不相同;也可以是在所述第一OFDM符号集合和所述第二OFDM符号集合不相同的条件下,所述第一OFDM符号子集合和第二OFDM符号子集合不相同。
在一种具体的实施例中,第二OFDM符号集合包括第三OFDM符号子集合和第四OFDM符号子集合。第三OFDM符号子集合中的全部或部分OFDM符号用于终端设备在第二传输资源上发送周期性SRS或半静态SRS,也可以说,所述终端设备在第二传输资源上发送周期性SRS和半静态SRS的时域资源是第三OFDM符号子集合的一个子集。第四OFDM符号子集合中的全部或部分OFDM符号用于终端设备在第二传输资源上发送非周期性SRS,也可以说,所述终端设备在第二传输资源上发送非周期性SRS的时域资源是第四OFDM符号子集合的一个子集。第三OFDM符号子集合与第四OFDM符号子集合不相同。第三OFDM符号子集合也可以称之为第二P/SPS-SRS的候选集合,第二OFDM符号子集合也可以称之为第二A-SRS的候 选集合。
例如:切换目的载波对应的A-SRS候选集合为slot的符号7至9,则符号7至9中的全部或部分符号可用于终端设备在目的载波上A-SRS,即切换目的载波上的发送A-SRS的符号位置和数目可以是slot的符号7至9的一个子集;切换目的载波上,slot的符号10至13中全部或部分符号可用于终端设备在目的载波上发送P-SRS和/或SPS-SRS,即切换目的载波上发送P-SRS和/或SPS-SRS的符号位置和数目可以是slot的符号10至13的一个子集。
如图9所示的CC2上SRS的符号位置和数目为SetB的一个子集,更进一步优化CC2上不同类型SRS传输对CC1的影响,切换目标载波上传输P/SPS-SRS(P-SRS和/或SPS-SRS)的符号位置和数目为SetC={10,11,12,13}的一个子集,即SetC中的全部或部分符号用于终端设备在CC2上发送P/SPS-SRS。SRS-only CC上传输A-SRS的符号位置和数目为SetD={10}的一个子集,即SetD中的全部或部分符号用于终端设备在CC2上发送A-SRS。其中,SetC和SetD都是SRS-only CC上SRS符号位置和数目SetB的一个子集,SetC和SetD不相同。
需要说明的是,所述第三OFDM符号子集合与第四OFDM符号子集合不相同,可以是部分不相同,也可以是全部不相同。第三OFDM符号子集合与第四OFDM符号子集合不相同可以是OFDM符号的个数不相同,也可以是OFDM符号的位置不相同,或者OFDM符号的个数和位置都不相同。
需要说明的是,第三OFDM符号子集合与第四OFDM符号子集合不相同与SRS配置信息中的第一OFDM符号集合和第二OFDM符号集合是否相同无关。可以是在所述第一OFDM符号集合和所述第二OFDM符号集合相同的条件下,所述第三OFDM符号子集合和第四OFDM符号子集合不相同;也可以是在所述第一OFDM符号集合和所述第二OFDM符号集合不相同的条件下,所述第三OFDM符号子集合和第四OFDM符号子集合不相同。
本申请实施例中,不同类型的SRS可以配置不同的OFDM符号子集合。因为,A-SRS一般是用于获取网络侧感兴趣的一段频域上的信道条件,通常是一个窄带的SRS,因此,可以设置一个小的候选集合传输A-SRS;而P/SPS-SRS一般是用于获取全信道,整个系统带宽上的信道条件,因此,可以设置一个大的候选集合传输P/SPS-SRS。从而可以根据不同类型的SRS的特性配置相应的SRS传输符号,减少对切换源载波上信道的影响。
可选的,在本申请实施例中,所述第一OFDM符号子集合、第二OFDM符号子集合、第三OFDM符号子集合和第四OFDM符号子集合并不一定需要网络设备配置,还可以通过协议预定义的方式实现。例如:通过协议预定义所述第一OFDM符号子集合和第二OFDM符号子集合,即通过协议预定义第一载波(或第一带宽部分)上可发送P/SPS-SRS的符号集合和可发送A-SRS的符号集合;并通过协议预定义所述第三OFDM符号子集合和第四OFDM符号子集合,即通过协议预定义第二载波(或第二带宽部分)上可发送P/SPS-SRS的符号集合和可发送A-SRS的符号集合。从而终端设备可以从协议预定义的SRS配置信息中获取第一OFDM符号子集合、第二OFDM符号子集合、第三OFDM符号子集合和第四OFDM符号子集合。并且第一OFDM符号子集合和第二OFDM符号子集合不同,第三OFDM符号子集合和第四OFDM符号子集合不同。
可选的,所述第三OFDM符号子集合中的OFDM符号数目比所述第一OFDM符号子集合中的OFDM符号数目多。具体可以是:终端设备在所述第二传输资源上可用于发送周期性SRS和半静态SRS的OFDM符号数目比终端设备在所述第一传输资源上可用于发送周期性SRS和半静态SRS的OFDM符号数目多;或,终端设备在所述第二传输资源上可用于发送周期性SRS的OFDM符号数目比终端设备在所述第一传输资源上可用于发送周期性SRS的OFDM符号数目多;或,终端设备在所述第二传输资源上可用于发送半静态SRS的OFDM符号数目比终端设备在所述第一传输资源上可用于发送半静态SRS的OFDM符号数目多。
如图9所示,CC2上的P/SPS-SRS包含的符号数目比CC1上P/SPS-SRS包含的符号数目多。CC2上的P/SPS-SRS在slot#0上符号位置和数目为:符号10到符号13,CC1上的P/SPS-SRS在slot#0上符号位置和数目为:符号12到符号13。CC2上SRS传输由于需要RF retuning,因此UE希望RF retuning的开销尽可能小,即P/SPS-SRS的传输周期尽可能大,并且能有尽可能多的机会传输SRS,因此CC2上的P/SPS-SRS的符号位置和数目可以在保证获取信道状态精度的前提下使得SRS周期大但是每次传输更多的符号数目;而对于CC1来说,CC1上的SRS传输不需要RF retuning,为了降低与CC2上SRS传输冲突的影响,CC1上的P/SPS-SRS应配置传输密度比较高,即P/SPS-SRS的传输周期尽可能小,但是每次只传输更少符号数目的SRS,否则出现冲突后,CC1上丢弃的SRS符号数会比较多。
本申请实施例中,终端设备在切换目的载波(或切换目的BP)上可用于发送周期性SRS和/或半静态SRS的OFDM符号数目比终端设备在切换源载波(或切换源BP)上可用于发送周期性SRS和/或半静态SRS的OFDM符号数目多,从而可以降低对切换源载波上SRS传输产生冲突的影响。
可选的,本申请实施例中,第三OFDM符号子集合中的OFDM符号数目可以比第四OFDM符号子集合中的OFDM符号数目少,即在第二传输资源上,终端设备可用于发送非周期性的SRS的符号数目比可用于发送周期性和/或半静态SRS的符号数目少。
如图9所示,CC2上的A-SRS包含的符号为符号10,CC2上P/SPS-SRS包含的符号为符号10至13,CC2上可用于发送A-SRS的符号数据比CC1上可用于发送P/SPS-SRS的符号数目少。因为,A-SRS一般是用于获取网络侧感兴趣的一段频域上的信道条件,通常是一个窄带的SRS,因此,可以设置一个小的候选集合传输A-SRS;而P/SPS-SRS一般是用于获取全信道,整个系统带宽上的信道条件,因此,可以设置一个大的候选集合传输P/SPS-SRS。相比于CC2上的P/SPS-SRS来说,DCI触发CC2上的A-SRS传输,为了尽可能的降低RF retuning会影响到CC1的两个时隙,CC2上A-SRS的符号数少于或等于SRS-only CC上P/SPS-SRS的符号数。
可选的,与在第二传输资源上,终端设备可用于发送非周期性的SRS的符号数目比可用于发送周期性和/或半静态SRS的符号数目少相同的原理。本申请实施例中,第一OFDM符号子集合中的OFDM符号数目可以比第二OFDM符号子集合中的OFDM符号数目少,即在第一传输资源上,终端设备可用于发送非周期性的SRS的符号数目比可用于发送周期性和/或半静态SRS的符号数目少。
需要说明的是,SRS配置信息中配置第一OFDM符号集合、第二OFDM符号集合、第一OFDM 符号子集合、第二OFDM符号子集合、第三OFDM符号子集合、第四OFDM符号子集合的方式可以是,设置每一个符号对应的属性。例如:对于normal CC,设置或预定义:符号10可以用于传输A-SRS;符号11既可以用于传输A-SRS,又可以用于传输P-SRS,又可以用于传输SPS-SRS;符号12既可以用于传输P-SRS,又可以用于传输SPS-SRS;符号13可以用于传输SPS-SRS。从而构成第一传输资源的第一OFDM符号集合为符号10-13,第一OFDM符号子集合为符号11-13、第二OFDM符号子集合10-11。
以上是对本申请实施例中的SRS配置信息或预定义SRS信息中的内容进行的介绍。在完成SRS的配置信息发送之后,本申请实施例进一步还给出了发送SRS指示信息的方法。
通过前述配置,UE获取在不同载波/BP上的SRS配置信息。UE在不同载波/BP上发送SRS是根据SRS配置信息和发送SRS的相关配置,在相应的资源上进行SRS发送。不同类型的SRS对应的发送SRS的相关配置不相同。
可选的,发送P-SRS或SPS-SRS的相关配置可以通过RRC信令配置,或者协议预先定义的方式,在此不做具体限定。发送P-SRS或SPS-SRS的相关配置中可以指定在前述SRS配置信息中,发送P-SRS和/或SPS-SRS的具体符号位置,例如:在切换目的载波的SRS配置信息中,P-SRS的候选集合是符号12和符号13,则发送P-SRS的相关配置中可以指定在P-SRS的候选集合中的第二个符号上发送P-SRS。UE根据P-SRS(或SPS-SRS)的候选集合,以及RRC的相关配置,在相应的资源上进行P-SRS(或SPS-SRS)发送。
可选的,在切换源载波或BP上,发送A-SRS的相关配置可以通过DCI指示,发送A-SRS的DCI可以指示在前述SRS配置信息中,发送A-SRS的具体符号位置。例如:在切换源载波的SRS配置信息中,A-SRS的候选集合是符号10和符号11,则发送A-SRS的DCI中可以指定在A-SRS的候选集合中的第二个符号上发送A-SRS。UE根据该载波或BP上A-SRS的候选集合和发送A-SRS的DCI指示在相应的资源上进行A-SRS发送。
可选的,在本实施例中,提供一种SRS指示信息的方法,通过在组DCI(group DCI)中指示发送A-SRS的符号位置,该方法包括:网络设备发送组下行控制信息group DCI给所述终端设备,其中group DCI中包括用于指示一个或多个终端设备的指示信息,指示信息中包括所述终端设备的SRS符号位置信息,SRS符号位置信息指示该终端设备在切换目的载波或切换目的BP上发送A-SRS的OFDM符号位置。所述SRS符号位置信息可以是发送的A-SRS在上述第二OFDM符号集合中的位置,也可以是发送的A-SRS在上述第四OFDM符号子集合中的位置,此处不做限定。
对于切换目的载波或BP上的A-SRS发送,UE获取在该载波或BP上A-SRS的配置信息,UE通过RRC配置消息及所接收的group DCI来获取SRS的具体传输信息。group DCI中包含所述终端设备的SRS符号位置信息(SRS symbol location),但不止包含SRS符号位置信息,还可以包含如下信息:发射功控(transmit power control,TPC)命令(TPC command),SRS触发请求(SRS request)。该group DCI可以在公共PDCCH(common PDCCH)中传输,也可以在组公共PDCCH(group common PDCCH)中传输。
本申请实施例中的Group DCI是指,该DCI格式对一组终端设备(或用户)进行通知,并且为该终端设备组分配专门的无线网络临时标识(radio network tempory identity, RNTI),用户通过检测基于该RNTI加扰的DCI信息,获取其进行SRS切换时的TPC命令和SRS触发请求,以及SRS发送时的SRS符号位置信息。
终端设备在一个或者多个切换目的载波或切换目标BP上的TPC命令、SRS触发请求以及SRS符号位置信息可以由一个或者多个块(block)进行承载。多个用户的blocks组成了该group DCI,进一步的,group DCI中的block具有如下特征:
(1)DCI中所包含的内容由一个或者多个block组成;
(2)DCI中的block从1开始进行编号,block number 1,block number 2,…block number B。
(3)每个block中包含TPC命令域和SRS触发请求命令域,SRS触发请求是可选项,可以根据需要选择携带或者不携带。
下面以载波为例对Block承载group DCI指示信息进行详细介绍,当SRS切换是基于BP的SRS切换时,也同样适用所描述的内容,此处不做赘述。
当用户配置有小于等于N个既没有PUCCH又没有PUSCH,且双工方式为TDD方式的辅载波时,每个block包含某个载波的TPC命令、SRS触发请求(不一定存在)和SRS符号位置信息。其中N的值可以预定义,或者高层信令配置,比如,综合考虑信令开销等影响,N的值可以设为5。此时可以为终端设备每个无PUCCH和PUSCH的载波分配一个block指示,每个block中至少包含如下信息:
SRS触发请求(SRS request):占用0,1,或2bit;
TPC命令编号(TPC command number):占用1或2bit;
SRS符号位置信息(SRS symbol location):占用2bit或者更多,在此不作具体限定。
当用户配置有大于N个既没有PUCCH又没有PUSCH,且双工方式为TDD方式的辅载波时,每个block中包含载波集合内各载波的TPC命令、该载波集合的SRS触发请求(不一定存在)和SRS符号位置信息。其中N的值可以预定义,或者高层信令配置,比如,综合考虑信令开销等影响,N的值可以设为5。此时可以将用户载波分为m个子集,为每个子集分配一个block指示,每个block中至少包含如下信息:
SRS触发请求(SRS request):占用0或2bit;
TPC command number 1,TPC command number 2,…TPC command number n:占用1或2bit;
SRS symbol location 1,SRS symbol location 2,…SRS symbol location n:占用2bit;
其中,n表示在该子集内的n个载波,上述示例中的bit个数仅为示意,也可以定义为其它数值,如SRS符号位置信息的指示可以有2bit,也可以更多,在此不作具体限定。
整体来说:一个block可以包含一个载波或者一个载波集合的TPC command、SRS request(可能存在,可能不存在)和SRS符号位置信息。
对于每个终端设备而言,其对应的指示信息可以由一个或者多个block指示,具体所需的block个数由终端设备的载波个数决定。具体来说:当终端设备配置有小于等于N个既没有PUCCH又没有PUSCH,且双工方式为TDD的辅载波时,所需block个数与既没有PUCCH 又没有PUSCH,且双工方式为TDD方式的辅载波个数有关;当用户配置有大于N个既没有PUCCH又没有PUSCH,且双工方式为TDD方式的辅载波时,所需block的个数与载波集合有关,载波集合可以通过高层信令或者SRS触发请求命令域指示。
对于每个终端设备而言,由高层信令/RRC信令配置其在整个DCI block序列中的起始block编号,因此,每个终端设备可根据其载波个数和高层信令/RRC信令配置的起始位置,获取该终端设备在其所支持的各载波上的TPC命令、SRS触发请求(如果存在)以及SRS符号位置信息。
关于A-SRS在切换目的载波或BP上的传输,一种可能的示例如图10所示。切换目的载波上SRS配置信息中的SRS候选集合,即SRS可用时域资源位于该slot的最后四个符号{10,11,12,13},假设A-SRS的候选集合,A-SRS的可用时域资源为符号{10,11}。
可选的,当进行SRS切换时,在该载波或BP上的A-SRS符号个数可以通过RRC信令或者DCI进行指示,此处假设该UE专用的RRC信令中配置A-SRS符号个数为1。再通过group DCI指示A-SRS符号的具体位置。可选的,当进行SRS切换时,也可以不指示该载波或BP上的A-SRS符号个数,只通过group DCI指示A-SRS符号的具体位置。
假设group DCI中的SRS符号位置信息(SRS symbol location)为1bit,该域用来指示该UE传输A-SRS所在符号在A-SRS候选集合中的多个SRS传输符号上的具体位置。通过group DCI指示A-SRS符号的具体位置的方式可以是通过如表1中所示的示例指示:
表1
Figure PCTCN2018103507-appb-000001
假设group DCI中SRS符号位置信息(SRS symbol location)的指示为1,如图10所示,符号11为A-SRS传输所使用的时域资源,终端设备在符号11上传输A-SRS。
以上示例均按照载波为单位来进行指示,本申请实施例中,也支持以更小的单位进行指示,例如:以BP为单位进行指示。以BP为单位进行指示的方法可以参考上述以载波为单位进行指示的方法。
本申请实施例中,通过在group DCI中指示A-SRS的符号位置,可以灵活的配置终端设备发送A-SRS符号个数和位置,满足不同场景下的SRS传输需求。
可选的,作为另一种SRS指示信息的方法,可以通过在group DCI中指示SRS的预编码码本。网络设备发送group DCI至终端设备,其中group DCI中包括用于指示一个或多个终端设备的指示信息,指示信息中包括所述终端设备的预编码信息或码本,预编码信息或码本用于指示所述终端设备在第二传输资源(即切换目标载波或切换目标BP)上发送非周期性SRS所使用的预编码或码本。该group DCI可以在commom PDCCH或者group common PDCCH中进行传输。
下面以载波为例对group DCI指示信息中包括预编码信息或码本进行详细介绍,当SRS切换是基于BP的SRS切换时,也同样适用所描述的内容,此处不做赘述。
本实施例与上述在group DCI的指示信息中包括SRS符号位置信息类似,与其差异在 于:当触发切换目标载波上的A-SRS传输时,group DCI中包含SRS传输所使用的预编码信息(precoder)或码本(codebook)。
本实施例中的group DCI中至少包含如下信息:TPC command,SRS request(可以不存在)和SRS precoder/codebook信息。一种示例性的group DCI包括如下信息:block number 1,block number 2,…block number B。group DCI中包含用于指示一个或多个终端设备的指示信息,不同终端设备在group DCI中的起始位置指示由高层信令或RRC信令配置。根据终端设备配置的载波数不同,可以分为以下两种情形:
情形一:如果UE配置的没有PUCCH和PUSCH的载波个数大于N个时,其中N的值可以预定义,或者高层信令配置。此时可以将用户载波分为m个子集,为每个子集分配一个block指示,每个block中至少包含如下信息:SRS request:占用0或2bit;TPC command number 1,TPC command number 2,…TPC command number n:占用1或2bit;SRS码本1,SRS码本2,…SRS码本n:占用2bit。其中,n表示在该子集内的n个载波,示例中的bit个数仅为示意,也可以定义为其它数值,如SRS预编码码本的指示可以有2bit,也可以更多,在此不作具体限定。
情形二:如果UE配置的没有PUCCH和PUSCH的载波个数小于等于N个时,其中N的值可以预定义,或者高层信令配置。此时可以为用户每个无PUCCH和PUSCH的载波分配一个block指示,每个block中至少包含如下信息:SRS request,占用0,1,或2bit;TPC command number:占用1或2bit;SRS码本:占用2bit。其中,SRS预编码码本的指示可以有2bit或者更多,在此不作具体限定。
以上示例均按照载波为单位来进行指示,本实施例中,也支持以更小的单位进行指示,例如:以BP为单位进行指示。
另外,需要说明的是,本实施例中的group DCI中既可以包含上述SRS符号位置信息,又可以包含预编码信息或码本,SRS符号位置信息和预编码信息/码本可以同时存在,也可以只存在一项。例如:每个block中至少包含如下信息:SRS request,TPC command number,SRS symbol location,SRS码本。
本申请实施例中,在进行SRS切换操作时,通过指示SRS的预编码码本,可以提高无PUCCH和PUSCH的载波上SRS的传输性能,满足不同场景下的传输需求。
再一种实施例中,还可以通过group DCI指示切换目标载波上的波束索引,或者波束对的索引。网络设备发送group DCI至所述终端设备,其中group DCI中包括用于指示一个或多个终端设备的指示信息,所述指示信息中包括所述终端设备的波束索引信息,波束索引信息用于指示所述终端设备在所述第二传输资源(即切换目标载波或切换目标BP)上发送非周期性SRS所使用的波束索引或波束对的索引。
如图11所示,基站有6个不同指向的波束进行数据传输,当进行SRS切换时,可以通过group DCI指示A-SRS传输所采用的波束索引。如:在编号为4的波束上进行发送。
下面以载波为例对group DCI指示信息中包括波束索引进行详细介绍,当SRS切换是基于BP的SRS切换时,也同样适用所描述的内容,此处不做赘述。
本实施例与上述在group DCI的指示信息中包括SRS符号位置信息类似,与其差异在 于:当触发切换目标载波上的A-SRS传输时,group DCI中包含A-SRS传输所使用的波束索引(beam index)。
本实施例中的group DCI中至少包含如下信息:TPC command,SRS request(可以不存在)和beam index信息。一种示例性的group DCI包括如下信息:block number 1,block number 2,…block number B。group DCI中包含一个或多个终端设备的指示信息,不同终端设备在group DCI中的起始位置指示由高层信令或RRC信令配置。根据终端设备配置的载波数不同,可以分为以下两种情形:
情形一:如果UE配置的没有PUCCH和PUSCH的载波个数大于N个时,其中N的值可以预定义,或者高层信令配置。此时可以将用户载波分为m个子集,为每个子集分配一个block指示,每个block中至少包含如下信息:SRS request:占用0或2bit;TPC command number 1,TPC command number 2,…TPC command number n:占用1或2bit;波束索引1,波束索引2,…波束索引n:占用2bit。其中,n表示在该子集内的n个载波,示例中的bit个数仅为示意,也可以定义为其它数值,如波束索引的指示可以有2bit,也可以更多,在此不作具体限定。
情形二:如果UE配置的没有PUCCH和PUSCH的载波个数小于等于N个时,其中N的值可以预定义,或者高层信令配置。此时可以为用户每个无PUCCH和PUSCH的载波分配一个block指示,每个block中至少包含如下信息:SRS request,占用0,1,或2bit;TPC command number:占用1或2bit;波束索引:占用2bit。其中,波束索引的指示可以有2bit或者更多,在此不作具体限定。
以上示例均按照载波为单位来进行指示,本实施例中,也支持以更小的单位进行指示,例如:以BP为单位进行指示。
另外,需要说明的是,本实施例中的group DCI中既可以包含上述SRS符号位置信息,又可以包含预编码信息或码本,又可以包含波束索引,SRS符号位置信息、预编码信息/码本、和波束索引可以同时存在,也可以只存在一项。例如:每个block中至少包含如下信息:SRS request,TPC command number,SRS symbol location,SRS码本,波束索引。
本申请实施例中,在进行SRS切换操作时,通过指示SRS的波束索引或波束对索引,可以提高无PUCCH和PUSCH的载波上SRS的传输性能,满足不同场景下的传输需求。
以上是对本申请实施例中的方法实施例的介绍,下面从功能模块角度以及硬件实现角度对本申请实施例中的网络设备及终端设备进行介绍。
如图12所示,本申请实施例中的网络设备包括以下几个功能单元:
发送单元1201,用于发送第一传输资源的SRS配置信息和第二传输资源的SRS配置信息至终端设备,所述第一传输资源支持传输物理上行控制信道PUCCH、物理上行共享信道PUSCH、物理随机接入信道PRACH或SRS信号中的至少一种,所述第二传输资源不支持PUCCH和PUSCH,其中所述第一传输资源包括第一载波或第一带宽部分,所述第二传输资源包括第二载波或第二带宽部分;所述第一传输资源的SRS配置信息中包括第一正交频分复用OFDM符号集合,所述第一OFDM符号集合中的全部或部分OFDM符号用于所述终端设备在所述第一传输资源上发送SRS,所述第二传输资源的SRS配置信息中包括第二OFDM符号集合, 所述第二OFDM符号集合中的全部或部分OFDM符号用于所述终端设备在所述第二传输资源上发送SRS;
接收单元1202,用于接收所述终端设备发送的SRS。
可选的,在一种具体的实施例中,所述发送单元1201发送的所述第一OFDM符号集合和所述第二OFDM符号集合不相同。
可选的,在一种具体的实施例中,所述发送单元1201发送的所述第一OFDM符号集合包括第一OFDM符号子集合和第二OFDM符号子集合,所述第一OFDM符号子集合中的全部或部分OFDM符号用于所述终端设备在所述第一传输资源上发送周期性SRS或半静态SRS,所述第二OFDM符号子集合中的全部或部分OFDM符号用于所述终端设备在所述第一传输资源上发送非周期性SRS,所述第一OFDM符号子集合与所述第二OFDM符号子集合不相同。
可选的,在一种具体的实施例中,所述发送单元1201发送的所述第二OFDM符号集合包括第三OFDM符号子集合和第四OFDM符号子集合,所述第三OFDM符号子集合中的全部或部分OFDM符号用于所述终端设备在所述第二传输资源上发送周期性SRS或半静态SRS,所述第四OFDM符号子集合中的全部或部分OFDM符号用于所述终端设备在所述第二传输资源上发送非周期性SRS,所述第三OFDM符号子集合与所述第四OFDM符号子集合不相同。
可选的,所述发送单元1201发送的SRS配置信息中,所述第三OFDM符号子集合中的OFDM符号数目比所述第四OFDM符号子集合中的OFDM符号数目少。
可选的,所述发送单元1201发送的SRS配置信息中,所述第一OFDM符号子集合中的OFDM符号数目可以比第二OFDM符号子集合中的OFDM符号数目少。
可选的,在一种具体的实施例中,所述发送单元1201,还用于发送组下行控制信息group DCI至所述终端设备,所述group DCI中包括用于指示一个或多个终端设备的指示信息,所述指示信息包括所述终端设备的SRS符号位置信息,所述SRS符号位置信息用于指示所述终端设备在所述第二传输资源上发送非周期性SRS的OFDM符号位置。
可选的,在一种具体的实施例中,所述发送单元1201,还用于发送group DCI至所述终端设备,所述group DCI中包括用于指示一个或多个终端设备的指示信息,所述指示信息中包括所述终端设备的预编码信息或码本,所述预编码信息或码本用于指示所述终端设备在所述第二传输资源上发送非周期性SRS所使用的预编码或码本。
可选的,在一种具体的实施例中,所述发送单元1201,还用于发送group DCI至所述终端设备,所述group DCI中包括用于指示一个或多个终端设备的指示信息,所述指示信息中包括所述终端设备的波束索引信息,所述波束索引信息用于指示所述终端设备在所述第二传输资源上发送非周期性SRS所使用的波束索引或波束对的索引。
可选的,在一种具体的实施例中,所述发送单元1201发送的所述group DCI在公共PDCCH中,或在组公共PDCCH中传输。
以上图12所示的实施例中的网络设备的各功能模块之间的信息交互可以参阅上述方法实施例(图1至图11所示的实施例),此处不再赘述。
如图13所示,本申请实施例中的终端设备包括以下几个功能单元:
获取单元1301,用于获取在第一传输资源上的SRS配置信息和第二传输资源上的SRS 配置信息,所述第一传输资源支持传输物理上行控制信道PUCCH、物理上行共享信道PUSCH、物理随机接入信道PRACH或SRS信号中的至少一种,所述第二传输资源不支持PUCCH和PUSCH,其中所述第一传输资源包括第一载波或第一带宽部分,所述第二传输资源包括第二载波或第二带宽部分,所述第一传输资源的SRS配置信息中包括第一正交频分复用OFDM符号集合,所述第二传输资源的SRS配置信息中包括第二OFDM符号集合;
发送单元1302,用于使用所述第一OFDM符号集合中的全部或部分OFDM符号在所述第一传输资源上发送SRS,还用于使用所述第二OFDM符号集合中的全部或部分OFDM符号在所述第二传输资源上发送SRS。
可选的,在一种具体的实施例中,所述获取单元1301获取的所述第一OFDM符号集合和所述第二OFDM符号集合不相同。
可选的,在一种具体的实施例中,所述获取单元1301获取的所述第一OFDM符号集合包括第一OFDM符号子集合和第二OFDM符号子集合,所述第一OFDM符号子集合与所述第二OFDM符号子集合不相同;所述发送单元1302,具体用于使用所述第一OFDM符号子集合中的全部或部分OFDM符号在所述第一传输资源上发送周期性SRS或半静态SRS;或,使用所述第二OFDM符号子集合中的全部或部分OFDM符号在所述第一传输资源上发送非周期性SRS。
可选的,在一种具体的实施例中,所述获取单元1301获取的所述第二OFDM符号集合包括第三OFDM符号子集合和第四OFDM符号子集合,所述第三OFDM符号子集合与所述第四OFDM符号子集合不相同;所述发送单元1302,具体用于使用述第三OFDM符号子集合中的全部或部分OFDM符号在所述第二传输资源上发送周期性SRS或半静态SRS;或,使用所述第四OFDM符号子集合中的全部或部分OFDM符号在所述第二传输资源上发送非周期性SRS。
可选的,所述获取单元1301获取的SRS配置信息中,所述第三OFDM符号子集合中的OFDM符号数目比所述第四OFDM符号子集合中的OFDM符号数目少。
可选的,所述获取单元1301获取的SRS配置信息中,所述第一OFDM符号子集合中的OFDM符号数目可以比第二OFDM符号子集合中的OFDM符号数目少。
可选的,在一种具体的实施例中,所述终端设备还包括:
接收单元1303,用于接收所述网络设备发送的组下行控制信息group DCI,所述group DCI中包括用于指示一个或多个终端设备的指示信息,所述指示信息包括所述终端设备的SRS符号位置信息,所述SRS符号位置信息用于指示所述终端设备在所述第二传输资源上发送非周期性SRS的OFDM符号位置。
可选的,在一种具体的实施例中,所述接收单元1303,还用于接收所述网络设备发送的group DCI,所述group DCI中包括用于指示一个或多个终端设备的指示信息,所述指示信息中包括所述终端设备的预编码信息或码本,所述预编码信息或码本用于指示所述终端设备在所述第二传输资源上发送非周期性SRS所使用的预编码或码本。
可选的,在一种具体的实施例中,接收单元1303,还用于接收所述网络设备发送的group DCI,所述group DCI中包括用于指示一个或多个终端设备的指示信息,所述指示信息中包括所述终端设备的波束索引信息,所述波束索引信息用于指示所述终端设备在所述 第二传输资源上发送非周期性SRS所使用的波束索引或波束对的索引。
可选的,在一种具体的实施例中,所述接收单元1303接收的所述group DCI在公共PDCCH中,或在组公共PDCCH中传输。
以上图13所示的实施例中的终端设备的各功能模块之间的信息交互可以参阅上述方法实施例(图1至图11所示的实施例),此处不再赘述。
在另一种可能的设计中,图12所示的功能模块对应的功能的实现,以及图1至图11所示的实施例中网络设备所实现的功能,可以由芯片或芯片系统实现,所述芯片系统,可以由芯片构成,也可以包括芯片和其他分立器件。
在另一种可能的设计中,图13所示的功能模块对应的功能的实现,即图1至图11所示的实施例中终端设备所实现的功能,可以由芯片或芯片系统实现,所述芯片系统,可以由芯片构成,也可以包括芯片和其他分立器件。
本申请实施例中的芯片包括:处理单元和通信单元,所述处理单元例如可以是处理器,所述通信单元例如可以是输入/输出接口、管脚或电路等。该处理单元可执行存储单元存储的计算机执行指令,以使该芯片执行图1至图11所示的实施例中的通信方法。可选地,所述存储单元为所述芯片内的存储单元,如寄存器、缓存等,所述存储单元还可以是所述终端内的位于所述芯片外部的存储单元,如只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)等。其中,处理器可以是一个通用中央处理器(CPU),微处理器,特定应用集成电路(application-specific integrated circuit,ASIC),或一个或多个用于控制上述通信方法的程序执行的集成电路。
本申请例中的网络设备与终端设备的硬件结构示意图如图14所示,网络设备具体可以是图1中所示的基站,终端设备可以是图1中所示的UE。在本申请实施中的终端设备和网络设备分别具有上述方法实施例中所述终端设备和网络设备所具备的功能。
终端设备与网络设备通过射频直连,或通过基带直连。网络设备提供终端设备到网络的无线接入,包括一个或多个处理器,一个或多个存储器,一个或多个网络接口,以及一个或多个收发器(每个收发器包括接收机Rx和发射机Tx),通过总线连接。一个或多个收发器与天线或天线阵列连接。一个或多个处理器包括计算机程序代码。网络接口通过链路(例如与核心网之间的链路)与核心网连接,或者通过有线或无线链路与其它网络设备进行连接。处理器执行存储器中的一系列计算机程序代码指令操作,执行上述方法实施例(图1至图11所示的实施例)中网络设备所执行全部或部分步骤。
终端设备包括一个或多个处理器,一个或多个存储器,一个或多个收发器(每个收发器包括发射机Tx和接收机Rx),通过总线相连接。一个或多个收发器与一个或多个天线连接。一个或多个存储器中包括计算机程序代码,处理器执行存储器中的一系列计算机程序代码指令操作,执行上述方法实施例(图1至图11所示的实施例)中终端设备所执行的全部或部分步骤。
下面结合图15对终端设备的一种硬件结构进行详细介绍。图15示出的是终端设备的部分硬件结构的框图,终端设备包括:射频(Radio Frequency,RF)电路1510、存储器 1520、输入单元1530、显示单元1540、传感器1550、音频电路1560、无线保真(wireless fidelity,WiFi)模块1570、处理器1580、以及电源1590等部件。本领域技术人员可以理解,图15中示出的终端设备结构并不构成对终端设备的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
下面结合图15对终端设备的各个构成部件进行具体的介绍:
RF电路1510可用于收发信息或通话过程中,信号的接收和发送,特别地,将基站的下行信息接收后,给处理器1580处理;另外,将设计上行的数据发送给基站。通常,RF电路1510包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器(Low Noise Amplifier,LNA)、双工器等。此外,RF电路1510还可以通过无线通信与网络和其他设备通信。上述无线通信可以使用任一通信标准或协议,包括但不限于GSM、通用分组无线服务(general packet radio service,GPRS)、CDMA、宽带码分多址(wideband code division multiple access,WCDMA)、LTE、电子邮件、短消息服务(short messaging service,SMS)等。
存储器1520可用于存储软件程序以及模块,处理器1580通过运行存储在存储器1520的软件程序以及模块,从而执行终端设备的各种功能应用以及数据处理。存储器1520可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序(比如声音播放功能、图像播放功能等)等;存储数据区可存储根据终端设备的使用所创建的数据(比如音频数据、电话本等)等。此外,存储器1520可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他易失性固态存储器件。
输入单元1530可用于接收输入的数字或字符信息,以及产生与终端设备的用户设置以及功能控制有关的键信号输入。具体地,输入单元1530可包括触控面板1531以及其他输入设备1532。触控面板1531,也称为触摸屏,可收集用户在其上或附近的触摸操作(比如用户使用手指、触笔等任何适合的物体或附件在触控面板1531上或在触控面板1531附近的操作),并根据预先设定的程式驱动相应的连接装置。可选的,触控面板1531可包括触摸检测装置和触摸控制器两个部分。其中,触摸检测装置检测用户的触摸方位,并检测触摸操作带来的信号,将信号传送给触摸控制器;触摸控制器从触摸检测装置上接收触摸信息,并将它转换成触点坐标,再送给处理器1580,并能接收处理器1580发来的命令并加以执行。此外,可以采用电阻式、电容式、红外线以及表面声波等多种类型实现触控面板1531。除了触控面板1531,输入单元1530还可以包括其他输入设备1532。具体地,其他输入设备1532可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆等中的一种或多种。
显示单元1540可用于显示由用户输入的信息或提供给用户的信息。显示单元1540可包括显示面板1541,可选的,可以采用液晶显示器(liquid crystal display,LCD)、有机发光二极管(organic light-emitting diode,OLED)等形式来配置显示面板1541。进一步的,触控面板1531可覆盖显示面板1541,当触控面板1531检测到在其上或附近的触摸操作后,传送给处理器1580以确定触摸事件的类型,随后处理器1580根据触摸事件的 类型在显示面板1541上提供相应的视觉输出。虽然在图15中,触控面板1531与显示面板1541是作为两个独立的部件来实现终端设备的输入和输入功能,但是在某些实施例中,可以将触控面板1531与显示面板1541集成而实现终端设备的输入和输出功能。
终端设备还可包括至少一种传感器1550,比如光传感器、运动传感器以及其他传感器。具体地,光传感器可包括环境光传感器及接近传感器,其中,环境光传感器可根据环境光线的明暗来调节显示面板1541的亮度,接近传感器可在终端设备移动到耳边时,关闭显示面板1541和/或背光。作为运动传感器的一种,加速计传感器可检测各个方向上(一般为三轴)加速度的大小,静止时可检测出重力的大小及方向,可用于识别终端设备姿态的应用(比如横竖屏切换、相关游戏、磁力计姿态校准)、振动识别相关功能(比如计步器、敲击)等;至于终端设备还可配置的陀螺仪、气压计、湿度计、温度计、红外线传感器等其他传感器,在此不再赘述。
音频电路1560、扬声器1561,传声器1562可提供用户与终端设备之间的音频接口。音频电路1560可将接收到的音频数据转换后的电信号,传输到扬声器1561,由扬声器1561转换为声音信号输出;另一方面,传声器1562将收集的声音信号转换为电信号,由音频电路1560接收后转换为音频数据,再将音频数据输出处理器1580处理后,经RF电路1510以发送给比如另一终端设备,或者将音频数据输出至存储器1520以便进一步处理。
WiFi属于短距离无线传输技术,终端设备通过WiFi模块1570可以帮助用户收发电子邮件、浏览网页和访问流式媒体等,它为用户提供了无线的宽带互联网访问。虽然图15示出了WiFi模块1570,但是可以理解的是,其并不属于终端设备的必须构成,完全可以根据需要在不改变发明的本质的范围内而省略。
处理器1580是终端设备的控制中心,利用各种接口和线路连接整个终端设备的各个部分,通过运行或执行存储在存储器1520内的软件程序和/或模块,以及调用存储在存储器1520内的数据,执行终端设备的各种功能和处理数据,从而对终端设备进行整体监控。可选的,处理器1580可包括一个或多个处理单元;可选的,处理器1580可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序等,调制解调处理器主要处理无线通信。可以理解的是,上述调制解调处理器也可以不集成到处理器1580中。在本申请实施例中,处理器1580用于执行上述方法实施例(图1至图11所示的实施例)中终端设备所执行全部或部分步骤。
终端设备还包括给各个部件供电的电源1590(比如电池),优选的,电源可以通过电源管理系统与处理器1580逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。
尽管未示出,终端设备还可以包括摄像头、蓝牙模块等,在此不再赘述。
需要说明的是,在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。
所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储 在计算机可读存储介质中,或者从一个计算机可读存储介质向另一计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存储的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘(Solid State Disk,SSD))等。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三”“第四”等(如果存在)是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的实施例能够以除了在这里图示或描述的内容以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器、随机存取存储器、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述 各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (34)

  1. 一种通信方法,其特征在于,所述方法包括:
    网络设备发送第一传输资源的探测参考信号SRS配置信息和第二传输资源的SRS配置信息至终端设备,所述第一传输资源支持传输物理上行控制信道PUCCH、物理上行共享信道PUSCH、物理随机接入信道PRACH或SRS信号中的至少一种,所述第二传输资源不支持PUCCH和PUSCH,其中所述第一传输资源包括第一载波或第一带宽部分,所述第二传输资源包括第二载波或第二带宽部分;
    所述第一传输资源的SRS配置信息中包括第一正交频分复用OFDM符号集合,所述第一OFDM符号集合中的全部或部分OFDM符号用于所述终端设备在所述第一传输资源上发送SRS,所述第二传输资源的SRS配置信息中包括第二OFDM符号集合,所述第二OFDM符号集合中的全部或部分OFDM符号用于所述终端设备在所述第二传输资源上发送SRS。
  2. 根据权利要求1所述的方法,其特征在于,
    所述第一OFDM符号集合和所述第二OFDM符号集合不相同。
  3. 根据权利要求1或2所述的方法,其特征在于,
    所述第一OFDM符号集合包括第一OFDM符号子集合和第二OFDM符号子集合,所述第一OFDM符号子集合中的全部或部分OFDM符号用于所述终端设备在所述第一传输资源上发送周期性SRS或半静态SRS,所述第二OFDM符号子集合中的全部或部分OFDM符号用于所述终端设备在所述第一传输资源上发送非周期性SRS,所述第一OFDM符号子集合与所述第二OFDM符号子集合不相同。
  4. 根据权利要求1至3中任一项所述的方法,其特征在于,
    所述第二OFDM符号集合包括第三OFDM符号子集合和第四OFDM符号子集合,所述第三OFDM符号子集合中的全部或部分OFDM符号用于所述终端设备在所述第二传输资源上发送周期性SRS或半静态SRS,所述第四OFDM符号子集合中的全部或部分OFDM符号用于所述终端设备在所述第二传输资源上发送非周期性SRS,所述第三OFDM符号子集合与所述第四OFDM符号子集合不相同。
  5. 根据权利要求1至4中任一项所述的方法,其特征在于,所述方法还包括:
    所述网络设备发送组下行控制信息group DCI至所述终端设备,所述group DCI中包括用于指示一个或多个终端设备的指示信息,所述指示信息包括所述终端设备的SRS符号位置信息,所述SRS符号位置信息用于指示所述终端设备在所述第二传输资源上发送非周期性SRS的OFDM符号位置。
  6. 根据权利要求1至4中任一项所述的方法,其特征在于,所述方法还包括:
    所述网络设备发送group DCI至所述终端设备,所述group DCI中包括用于指示一个或多个终端设备的指示信息,所述指示信息中包括所述终端设备的预编码信息或码本,所述预编码信息或码本用于指示所述终端设备在所述第二传输资源上发送非周期性SRS所使用的预编码或码本。
  7. 根据权利要求1至4中任一项所述的方法,其特征在于,所述方法还包括:
    所述网络设备发送group DCI至所述终端设备,所述group DCI中包括用于指示一个 或多个终端设备的指示信息,所述指示信息中包括所述终端设备的波束索引信息,所述波束索引信息用于指示所述终端设备在所述第二传输资源上发送非周期性SRS所使用的波束索引或波束对的索引。
  8. 根据权利要求5至7中任一项所述的方法,其特征在于,
    所述group DCI在公共PDCCH中,或在组公共PDCCH中传输。
  9. 一种通信方法,其特征在于,所述方法包括:
    终端设备获取第一传输资源上的探测参考信号SRS配置信息和第二传输资源上的SRS配置信息,所述第一传输资源支持传输物理上行控制信道PUCCH、物理上行共享信道PUSCH、物理随机接入信道PRACH或SRS信号中的至少一种,所述第二传输资源不支持PUCCH和PUSCH,其中所述第一传输资源包括第一载波或第一带宽部分,所述第二传输资源包括第二载波或第二带宽部分;
    所述终端设备使用第一OFDM符号集合中的全部或部分OFDM符号在所述第一传输资源上发送SRS,所述第一传输资源的SRS配置信息中包括所述第一正交频分复用OFDM符号集合;
    所述终端设备使用第二OFDM符号集合中的全部或部分OFDM符号在所述第二传输资源上发送SRS,所述第二传输资源的SRS配置信息中包括所述第二OFDM符号集合。
  10. 根据权利要求9所述的方法,其特征在于,
    所述第一OFDM符号集合和所述第二OFDM符号集合不相同。
  11. 根据权利要求9或10所述的方法,其特征在于,
    所述第一OFDM符号集合包括第一OFDM符号子集合和第二OFDM符号子集合,所述第一OFDM符号子集合与所述第二OFDM符号子集合不相同;
    所述方法还包括:
    所述终端设备使用所述第一OFDM符号子集合中的全部或部分OFDM符号在所述第一传输资源上发送周期性SRS或半静态SRS;
    所述终端设备使用所述第二OFDM符号子集合中的全部或部分OFDM符号在所述第一传输资源上发送非周期性SRS。
  12. 根据权利要求9或10所述的方法,其特征在于,
    所述第二OFDM符号集合包括第三OFDM符号子集合和第四OFDM符号子集合,所述第三OFDM符号子集合与所述第四OFDM符号子集合不相同;
    所述方法还包括:
    所述终端设备使用述第三OFDM符号子集合中的全部或部分OFDM符号在所述第二传输资源上发送周期性SRS或半静态SRS;
    所述终端设备使用所述第四OFDM符号子集合中的全部或部分OFDM符号在所述第二传输资源上发送非周期性SRS。
  13. 根据权利要求9至12中任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备接收所述网络设备发送的组下行控制信息group DCI,所述group DCI中包括用于指示一个或多个终端设备的指示信息,所述指示信息包括所述终端设备的SRS 符号位置信息,所述SRS符号位置信息用于指示所述终端设备在所述第二传输资源上发送非周期性SRS的OFDM符号位置。
  14. 根据权利要求9至12中任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备接收所述网络设备发送的组下行控制信息group DCI,所述group DCI中包括用于指示一个或多个终端设备的指示信息,所述指示信息中包括所述终端设备的预编码信息或码本,所述预编码信息或码本用于指示所述终端设备在所述第二传输资源上发送非周期性SRS所使用的预编码或码本。
  15. 根据权利要求9至12中任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备接收所述网络设备发送的组下行控制信息group DCI,所述group DCI中包括用于指示一个或多个终端设备的指示信息,所述指示信息中包括所述终端设备的波束索引信息,所述波束索引信息用于指示所述终端设备在所述第二传输资源上发送非周期性SRS所使用的波束索引或波束对的索引。
  16. 根据权利要求13至15中任一项所述的方法,其特征在于,
    所述group DCI在公共PDCCH中,或在组公共PDCCH中传输。
  17. 一种网络设备,其特征在于,所述网络设备包括:
    发送单元,用于发送第一传输资源的探测参考信号SRS配置信息和第二传输资源的SRS配置信息至终端设备,所述第一传输资源支持传输物理上行控制信道PUCCH、物理上行共享信道PUSCH、物理随机接入信道PRACH或SRS信号中的至少一种,所述第二传输资源不支持PUCCH和PUSCH,其中所述第一传输资源包括第一载波或第一带宽部分,所述第二传输资源包括第二载波或第二带宽部分;所述第一传输资源的SRS配置信息中包括第一正交频分复用OFDM符号集合,所述第一OFDM符号集合中的全部或部分OFDM符号用于所述终端设备在所述第一传输资源上发送SRS,所述第二传输资源的SRS配置信息中包括第二OFDM符号集合,所述第二OFDM符号集合中的全部或部分OFDM符号用于所述终端设备在所述第二传输资源上发送SRS;
    接收单元,用于接收所述终端设备发送的SRS。
  18. 根据权利要求17所述的网络设备,其特征在于,
    所述发送单元发送的所述第一OFDM符号集合和所述第二OFDM符号集合不相同。
  19. 根据权利要求17或18所述的网络设备,其特征在于,
    所述发送单元发送的所述第一OFDM符号集合包括第一OFDM符号子集合和第二OFDM符号子集合,所述第一OFDM符号子集合中的全部或部分OFDM符号用于所述终端设备在所述第一传输资源上发送周期性SRS或半静态SRS,所述第二OFDM符号子集合中的全部或部分OFDM符号用于所述终端设备在所述第一传输资源上发送非周期性SRS,所述第一OFDM符号子集合与所述第二OFDM符号子集合不相同。
  20. 根据权利要求17至19中任一项所述的网络设备,其特征在于,
    所述发送单元发送的所述第二OFDM符号集合包括第三OFDM符号子集合和第四OFDM符号子集合,所述第三OFDM符号子集合中的全部或部分OFDM符号用于所述终端设备在所述第二传输资源上发送周期性SRS或半静态SRS,所述第四OFDM符号子集合中的全部或部分 OFDM符号用于所述终端设备在所述第二传输资源上发送非周期性SRS,所述第三OFDM符号子集合与所述第四OFDM符号子集合不相同。
  21. 根据权利要求17至20中任一项所述的网络设备,其特征在于,
    所述发送单元,还用于发送组下行控制信息group DCI至所述终端设备,所述group DCI中包括用于指示一个或多个终端设备的指示信息,所述指示信息包括所述终端设备的SRS符号位置信息,所述SRS符号位置信息用于指示所述终端设备在所述第二传输资源上发送非周期性SRS的OFDM符号位置。
  22. 根据权利要求17至20中任一项所述的网络设备,其特征在于,
    所述发送单元,还用于发送group DCI至所述终端设备,所述group DCI中包括用于指示一个或多个终端设备的指示信息,所述指示信息中包括所述终端设备的预编码信息或码本,所述预编码信息或码本用于指示所述终端设备在所述第二传输资源上发送非周期性SRS所使用的预编码或码本。
  23. 根据权利要求17至20中任一项所述的网络设备,其特征在于,
    所述发送单元,还用于发送group DCI至所述终端设备,所述group DCI中包括用于指示一个或多个终端设备的指示信息,所述指示信息中包括所述终端设备的波束索引信息,所述波束索引信息用于指示所述终端设备在所述第二传输资源上发送非周期性SRS所使用的波束索引或波束对的索引。
  24. 根据权利要求21至23中任一项所述的网络设备,其特征在于,
    所述发送单元发送的所述group DCI在公共PDCCH中,或在组公共PDCCH中传输。
  25. 一种终端设备,其特征在于,所述终端设备包括:
    获取单元,用于获取在第一传输资源上的探测参考信号SRS配置信息和第二传输资源上的SRS配置信息,所述第一传输资源支持传输物理上行控制信道PUCCH、物理上行共享信道PUSCH、物理随机接入信道PRACH或SRS信号中的至少一种,所述第二传输资源不支持PUCCH和PUSCH,其中所述第一传输资源包括第一载波或第一带宽部分,所述第二传输资源包括第二载波或第二带宽部分,所述第一传输资源的SRS配置信息中包括第一正交频分复用OFDM符号集合,所述第二传输资源的SRS配置信息中包括第二OFDM符号集合;
    发送单元,用于使用所述第一OFDM符号集合中的全部或部分OFDM符号在所述第一传输资源上发送SRS,还用于使用所述第二OFDM符号集合中的全部或部分OFDM符号在所述第二传输资源上发送SRS。
  26. 根据权利要求25所述的终端设备,其特征在于,
    所述获取单元获取的所述第一OFDM符号集合和所述第二OFDM符号集合不相同。
  27. 根据权利要求25或26所述的终端设备,其特征在于,
    所述获取单元获取的所述第一OFDM符号集合包括第一OFDM符号子集合和第二OFDM符号子集合,所述第一OFDM符号子集合与所述第二OFDM符号子集合不相同;
    所述发送单元,具体用于使用所述第一OFDM符号子集合中的全部或部分OFDM符号在所述第一传输资源上发送周期性SRS或半静态SRS;或,使用所述第二OFDM符号子集合中的全部或部分OFDM符号在所述第一传输资源上发送非周期性SRS。
  28. 根据权利要求25至27中任一项所述的终端设备,其特征在于,
    所述获取单元获取的所述第二OFDM符号集合包括第三OFDM符号子集合和第四OFDM符号子集合,所述第三OFDM符号子集合与所述第四OFDM符号子集合不相同;
    所述发送单元,具体用于使用述第三OFDM符号子集合中的全部或部分OFDM符号在所述第二传输资源上发送周期性SRS或半静态SRS;或,使用所述第四OFDM符号子集合中的全部或部分OFDM符号在所述第二传输资源上发送非周期性SRS。
  29. 根据权利要求25至28中任一项所述的终端设备,其特征在于,所述终端设备还包括:
    接收单元,用于接收所述网络设备发送的组下行控制信息group DCI,所述group DCI中包括用于指示一个或多个终端设备的指示信息,所述指示信息包括所述终端设备的SRS符号位置信息,所述SRS符号位置信息用于指示所述终端设备在所述第二传输资源上发送非周期性SRS的OFDM符号位置。
  30. 根据权利要求25至28中任一项所述的终端设备,其特征在于,所述终端设备还包括:
    接收单元,用于接收所述网络设备发送的group DCI,所述group DCI中包括用于指示一个或多个终端设备的指示信息,所述指示信息中包括所述终端设备的预编码信息或码本,所述预编码信息或码本用于指示所述终端设备在所述第二传输资源上发送非周期性SRS所使用的预编码或码本。
  31. 根据权利要求25至28中任一项所述的终端设备,其特征在于,所述终端设备还包括:
    接收单元,用于接收所述网络设备发送的group DCI,所述group DCI中包括用于指示一个或多个终端设备的指示信息,所述指示信息中包括所述终端设备的波束索引信息,所述波束索引信息用于指示所述终端设备在所述第二传输资源上发送非周期性SRS所使用的波束索引或波束对的索引。
  32. 根据权利要求29至31中任一项所述的终端设备,其特征在于,
    所述接收单元接收的所述group DCI在公共PDCCH中,或在组公共PDCCH中传输。
  33. 一种网络设备,其特征在于,所述网络设备包括:
    相互连接的接收器、发送器、处理器及存储器;
    存储器用于存储程序代码,处理器调用存储器中的程序代码,以执行以下操作:
    通过发送器发送第一传输资源的探测参考信号SRS配置信息和第二传输资源的SRS配置信息至终端设备,所述第一传输资源支持传输物理上行控制信道PUCCH、物理上行共享信道PUSCH、物理随机接入信道PRACH或SRS信号中的至少一种,所述第二传输资源不支持PUCCH和PUSCH,其中所述第一传输资源包括第一载波或第一带宽部分,所述第二传输资源包括第二载波或第二带宽部分;所述第一传输资源的SRS配置信息中包括第一正交频分复用OFDM符号集合,所述第一OFDM符号集合中的全部或部分OFDM符号用于所述终端设备在所述第一传输资源上发送SRS,所述第二传输资源的SRS配置信息中包括第二OFDM符号集合,所述第二OFDM符号集合中的全部或部分OFDM符号用于所述终端设备在所述第二 传输资源上发送SRS。
  34. 一种终端设备,其特征在于,所述终端设备包括:
    相互连接的接收器、发送器、处理器及存储器;
    存储器用于存储程序代码,处理器调用存储器中的程序代码,以执行以下操作:
    获取在第一传输资源上的探测参考信号SRS配置信息和第二传输资源上的SRS配置信息,所述第一传输资源支持传输物理上行控制信道PUCCH、物理上行共享信道PUSCH、物理随机接入信道PRACH或SRS信号中的至少一种,所述第二传输资源不支持PUCCH和PUSCH,其中所述第一传输资源包括第一载波或第一带宽部分,所述第二传输资源包括第二载波或第二带宽部分,所述第一传输资源的SRS配置信息中包括第一正交频分复用OFDM符号集合,所述第二传输资源的SRS配置信息中包括第二OFDM符号集合;使用所述第一OFDM符号集合中的全部或部分OFDM符号在所述第一传输资源上发送SRS,并使用所述第二OFDM符号集合中的全部或部分OFDM符号在所述第二传输资源上发送SRS。
PCT/CN2018/103507 2017-09-08 2018-08-31 一种通信方法、网络设备及终端设备 WO2019047776A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP18853456.4A EP3565171B1 (en) 2017-09-08 2018-08-31 Communication method, network device and terminal device
US16/584,883 US10999103B2 (en) 2017-09-08 2019-09-26 Sounding reference signal configuration for high-band transmission

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710806411.3 2017-09-08
CN201710806411.3A CN109474400B (zh) 2017-09-08 2017-09-08 一种通信方法、网络设备及终端设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/584,883 Continuation US10999103B2 (en) 2017-09-08 2019-09-26 Sounding reference signal configuration for high-band transmission

Publications (1)

Publication Number Publication Date
WO2019047776A1 true WO2019047776A1 (zh) 2019-03-14

Family

ID=65634606

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/103507 WO2019047776A1 (zh) 2017-09-08 2018-08-31 一种通信方法、网络设备及终端设备

Country Status (4)

Country Link
US (1) US10999103B2 (zh)
EP (1) EP3565171B1 (zh)
CN (1) CN109474400B (zh)
WO (1) WO2019047776A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020101780A3 (en) * 2019-08-16 2020-07-30 Futurewei Technologies, Inc. Methods and apparatus for signaling control information
EP3735032A1 (en) * 2019-05-02 2020-11-04 Comcast Cable Communications, LLC Bandwidth part operation during handover procedure

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10736074B2 (en) 2017-07-31 2020-08-04 Qualcomm Incorporated Systems and methods to facilitate location determination by beamforming of a positioning reference signal
US10863494B2 (en) * 2018-01-22 2020-12-08 Apple Inc. Control signaling for uplink multiple input multiple output, channel state information reference signal configuration and sounding reference signal configuration
US11196523B2 (en) * 2018-07-20 2021-12-07 Qualcomm Incorporated SRS resource configuration enhancements
US20200106646A1 (en) * 2018-09-28 2020-04-02 Qualcomm Incorporated Aperiodic sounding reference signal (a-srs) configuration
US11777764B2 (en) * 2019-03-28 2023-10-03 Qualcomm Incorporated Sounding reference signal waveform design for wireless communications
US11239967B2 (en) 2019-05-02 2022-02-01 Qualcomm Incorporated Patterns for reference signals used for positioning in a wireless communications system
WO2021046666A1 (en) * 2019-09-09 2021-03-18 Qualcomm Incorporated Uplink transmission timing patterns
US11082183B2 (en) 2019-09-16 2021-08-03 Qualcomm Incorporated Comb shift design
CN115242365A (zh) * 2020-01-14 2022-10-25 北京紫光展锐通信技术有限公司 探测参考信号传输方法及相关产品
CN113300823A (zh) * 2020-02-21 2021-08-24 维沃移动通信有限公司 Srs的传输方法、码本传输方法、装置、终端及介质
CN115176501A (zh) * 2020-04-09 2022-10-11 Oppo广东移动通信有限公司 位置确定方法及装置
US20220038235A1 (en) * 2020-07-28 2022-02-03 Qualcomm Incorporated Reference signal configuration and quasi co-location mappings for wide bandwidth systems
US20220045884A1 (en) * 2020-08-06 2022-02-10 Samsung Electronics Co., Ltd. Methods and apparatuses for uplink channel sounding between bwps
CN114679244A (zh) * 2020-12-25 2022-06-28 展讯半导体(南京)有限公司 跨载波数据传输方法与装置、终端和网络设备
US20240114504A1 (en) * 2020-12-29 2024-04-04 Nec Corporation Method, device and computer readable storage medium of communication
CN115134199A (zh) * 2021-03-29 2022-09-30 维沃移动通信有限公司 Srs的发送方法、接收方法、配置方法及装置
CN115333697A (zh) * 2021-05-11 2022-11-11 大唐移动通信设备有限公司 上行信道的传输方法及相关装置
BR112023027315A2 (pt) * 2021-06-24 2024-03-12 Beijing Xiaomi Mobile Software Co Ltd Método para determinar um tempo de aplicação de um feixe, dispositivo de comunicação, e, meio de armazenamento legível por computador tendo instruções armazenadas no mesmo

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017165751A1 (en) * 2016-03-24 2017-09-28 Qualcomm Incorporated Sounding reference signal transmission for carrier aggregation
WO2017197086A1 (en) * 2016-05-13 2017-11-16 Intel IP Corporation Enabling sounding reference signal component carrier-based switching in wireless communication
WO2017223196A1 (en) * 2016-06-22 2017-12-28 Intel IP Corporation Uplink sounding reference signal (srs) transmission in carrier aggregation system
WO2018064376A1 (en) * 2016-09-30 2018-04-05 Qualcomm Incorporated Prach and/or srs switching enhancements

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016163842A1 (ko) 2015-04-10 2016-10-13 엘지전자 (주) 무선 통신 시스템에서 채널 상태 정보를 보고하기 위한 방법 및 이를 위한 장치
CN107124383B (zh) * 2016-02-25 2021-01-19 中兴通讯股份有限公司 一种数据传输方法和装置
WO2018231024A1 (ko) * 2017-06-16 2018-12-20 엘지전자 주식회사 Srs 시퀀스를 생성하는 방법 및 이를 위한 단말
EP3662711A4 (en) * 2017-08-02 2021-02-17 Intel IP Corporation DEVICE, SYSTEM AND METHOD FOR IMPLEMENTING RESERVED RESOURCES FOR FORWARD COMPATIBILITY IN NEW RADIO (NR) NETWORKS

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017165751A1 (en) * 2016-03-24 2017-09-28 Qualcomm Incorporated Sounding reference signal transmission for carrier aggregation
WO2017197086A1 (en) * 2016-05-13 2017-11-16 Intel IP Corporation Enabling sounding reference signal component carrier-based switching in wireless communication
WO2017223196A1 (en) * 2016-06-22 2017-12-28 Intel IP Corporation Uplink sounding reference signal (srs) transmission in carrier aggregation system
WO2018064376A1 (en) * 2016-09-30 2018-04-05 Qualcomm Incorporated Prach and/or srs switching enhancements

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
"Details of Periodic and Aperiodic SRS", 3GPP TSG RAN WGI MEETING #86 R1-166287, 13 August 2016 (2016-08-13), XP051142313 *
HUAWEI ET AL.: "SRS Symbol Positions for SRS Switching", 3GPP TSG RAN WGI MEETING #86 RL-166127, 12 August 2016 (2016-08-12), XP051142127 *
HUAWEI ET AL.: "Summary for WI: SRS (Sounding Reference Signal) Switching Between LTE Component Carriers", 3GPP TSG RAN MEETING #74 RP-162137, 29 November 2016 (2016-11-29), XP051663833 *
See also references of EP3565171A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3735032A1 (en) * 2019-05-02 2020-11-04 Comcast Cable Communications, LLC Bandwidth part operation during handover procedure
WO2020101780A3 (en) * 2019-08-16 2020-07-30 Futurewei Technologies, Inc. Methods and apparatus for signaling control information
CN114270757A (zh) * 2019-08-16 2022-04-01 华为技术有限公司 指示控制信息的方法和装置
CN114270757B (zh) * 2019-08-16 2024-03-01 华为技术有限公司 指示控制信息的方法和装置

Also Published As

Publication number Publication date
US20200036556A1 (en) 2020-01-30
CN109474400B (zh) 2021-07-20
EP3565171B1 (en) 2021-10-06
US10999103B2 (en) 2021-05-04
CN109474400A (zh) 2019-03-15
EP3565171A4 (en) 2020-03-18
EP3565171A1 (en) 2019-11-06

Similar Documents

Publication Publication Date Title
US10999103B2 (en) Sounding reference signal configuration for high-band transmission
US11510186B2 (en) Uplink control channel resource configuration method and apparatus
JP7369782B2 (ja) ハイブリッド自動再送要求harqフィードバック方法、端末及びネットワーク機器
US20210227531A1 (en) Uplink information sending method and terminal
US11153035B2 (en) Scheduling method and related apparatus
EP3793121B1 (en) Quasi co-location configuration method, terminal, and network device
JP2021503830A (ja) 無線通信システムにおける装置及び方法、並びにコンピュータ可読記憶媒体
WO2022078273A1 (zh) 定位方法、终端及网络侧设备
KR102509011B1 (ko) 동기 신호 블록의 전송 방법, 네트워크 기기 및 단말
CN110474744B (zh) 一种传输资源指示方法、网络设备及终端
WO2018082693A1 (zh) Csi上报方法、装置以及设备
WO2017170118A1 (ja) ユーザ装置
WO2022068875A1 (zh) 波束信息指示、获取方法、装置、终端及网络侧设备
CN115211189A (zh) 一种确定上行传输参数的方法及终端设备
WO2022078311A1 (zh) 定位方法、终端及网络侧设备
US20210297136A1 (en) CSI Measurement Method And Apparatus
US10680776B2 (en) Pilot signal transmission method, base station, and user equipment
WO2022206997A1 (zh) 功率控制参数指示方法、终端及网络侧设备
WO2022228341A1 (zh) 上行信道的传输参数方法、终端及网络侧设备
WO2022166622A1 (zh) Srs资源配置方法、装置、设备及可读存储介质
WO2022205177A1 (en) Methods and apparatus for multi-trp ul transmis sion
WO2022153422A1 (ja) 端末及び通信方法
JP2024511789A (ja) 伝送方向の決定方法、装置、端末及びネットワーク側機器
WO2017113151A1 (zh) 多载波处理方法、基站及用户设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18853456

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018853456

Country of ref document: EP

Effective date: 20190731

NENP Non-entry into the national phase

Ref country code: DE