WO2019047676A1 - 数据反馈、发送、接收方法及装置,接收设备,发送设备 - Google Patents

数据反馈、发送、接收方法及装置,接收设备,发送设备 Download PDF

Info

Publication number
WO2019047676A1
WO2019047676A1 PCT/CN2018/100293 CN2018100293W WO2019047676A1 WO 2019047676 A1 WO2019047676 A1 WO 2019047676A1 CN 2018100293 W CN2018100293 W CN 2018100293W WO 2019047676 A1 WO2019047676 A1 WO 2019047676A1
Authority
WO
WIPO (PCT)
Prior art keywords
harq
ack
pucch
dmrs
different
Prior art date
Application number
PCT/CN2018/100293
Other languages
English (en)
French (fr)
Inventor
苟伟
郝鹏
毕峰
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to EP18852974.7A priority Critical patent/EP3681069B1/en
Priority to KR1020207010106A priority patent/KR20200046105A/ko
Priority to JP2020513502A priority patent/JP7102511B2/ja
Priority to US16/645,036 priority patent/US11381345B2/en
Priority to KR1020227005517A priority patent/KR102457944B1/ko
Publication of WO2019047676A1 publication Critical patent/WO2019047676A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1864ARQ related signaling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • H04L1/1614Details of the supervisory signal using bitmaps
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1806Go-back-N protocols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1861Physical mapping arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/2605Symbol extensions, e.g. Zero Tail, Unique Word [UW]
    • H04L27/2607Cyclic extensions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0061Error detection codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L2001/125Arrangements for preventing errors in the return channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure

Definitions

  • the present disclosure relates to, but is not limited to, the field of communications.
  • the receiving end is allowed to decode according to the received Orthogonal Frequency Division Multiplexing (OFDM) symbol, that is, decoding one OFDM symbol by receiving one OFDM is a “streaming” decoding method.
  • the method is mainly for accelerating the receiving end to quickly feed back the confirmation information to the transmitting end after receiving the last OFDM symbol data of the current transmission.
  • the "streaming" decoding realizes the above-mentioned fast feedback confirmation information.
  • CBG Hybrid Automatic Repeat Reques (HARQ)-acknowledgment character (ACK) feedback of multiple TB/Physical Downlink Shared CHannel (PDSCH) at the same receiving end is multiplexed in
  • the overhead of CBG HARQ-ACK will be huge.
  • CA carrier aggregation
  • Physical Uplink Physical Uplink control channel
  • slot Physical Uplink
  • PUCCH Physical Uplink Control Channel
  • the multiple TBs here are configured to feed back CBG HARQ-ACK in one PUCCH.
  • each TB is configured to feed back CBG HARQ-ACK(s) to 10 bits, corresponding to one TB is divided into 10 CBGs, and each CBG is one bit of HARQ-ACK.
  • 10 TBs will have a feedback bit number of 100 bits.
  • the number of HARQ-ACK bits supported in the NR can be many, for example, several hundred bits, how to reduce the overhead and the power consumption of the receiving end in the process of achieving the same function and purpose. , need to be resolved.
  • Embodiments of the present disclosure provide a data feedback, transmission, and receiving method and apparatus, a receiving device, and a transmitting device.
  • a data feedback method is provided, which is applied to a receiving device, including: generating a HARQ-ACK for the transmitted data; and feeding the HARQ-ACK to the transmitting end.
  • a data transmitting method is provided, which is applied to a data transmitting device, including: transmitting transmitted data to a receiving end; and receiving, by the receiving end, feedback generated by the received data according to an agreed rule.
  • HARQ-ACK ACK
  • another data feedback method is provided, which is applied to a receiving device, including: determining at least one of the following specified information used by a feedback HARQ-ACK: PUCCH format information, PUCCH resource information; The specified information is notified to the transmitting end through the demodulation reference signal (DMRS) of the PUCCH.
  • DMRS demodulation reference signal
  • a data receiving method applicable to a data transmitting device, comprising: receiving designation information of a DMRS notification through a PUCCH, wherein the specifying information is used to feed back a HARQ-ACK, the designation
  • the information includes at least one of the following: PUCCH format information, PUCCH resource information.
  • a data feedback apparatus including: a generating module configured to generate a HARQ-ACK for the transmitted data; and a feedback module configured to feed back the HARQ-ACK to the transmitting end.
  • a data transmitting apparatus including: a transmitting module configured to transmit transmitted data to a receiving end; and a receiving module configured to receive the receiving end as the transmitted data according to an agreement The HARQ-ACK of the feedback formed by the rules.
  • another data feedback apparatus including: a determining module, configured to determine at least one of the following specified information used by the feedback HARQ-ACK: PUCCH format information, PUCCH resource information; and a notification module And configured to notify the sending end by using the DMRS of the PUCCH by using the specified information.
  • a data receiving apparatus comprising: a receiving module configured to receive designation information of a DMRS notification through a PUCCH; wherein the designation information is used to feed back a HARQ-ACK, the designation
  • the information includes at least one of the following: PUCCH format information, PUCCH resource information.
  • a receiving apparatus comprising: a processor and a memory storing the processor-executable instructions, when the instructions are executed by the processor, performing the method on the receiving device side .
  • a data transmitting apparatus including: a processor and a memory storing the processor-executable instructions, when the instructions are executed by the processor, executing the data transmitting device side Methods.
  • a storage medium is also provided.
  • the storage medium is set to store a method configured to execute the above-mentioned receiving device side, or a method of the above-described data transmitting device side.
  • FIG. 1 is a flow chart of a data feedback method in accordance with an embodiment of the present disclosure
  • FIG. 2 is a flowchart of a data transmitting method according to an embodiment of the present disclosure
  • FIG. 3 is a schematic diagram of a carrier time slot carrying TB in an embodiment of the present disclosure
  • FIG. 5 is a flowchart of a data receiving method according to an embodiment of the present disclosure.
  • the transmitting end is a node that transmits data, and receives a HARQ-ACK that the receiving end feeds back to the data;
  • the receiving end is a node that receives the data, and feeds back the HARQ-ACK corresponding to the data.
  • the data exchanged between the sender and the receiver is the transmitted data.
  • FIG. 1 is a flowchart of a data feedback method according to an embodiment of the present disclosure. As shown in FIG. 1 , the process includes the following steps:
  • Step S102 generating a HARQ-ACK for the transmitted data
  • step S104 the HARQ-ACK is fed back to the transmitting end.
  • the execution body of the foregoing step is a receiving end, and may be a base station, a terminal, or the like, but is not limited thereto.
  • transmitting data refers to one or more TBs.
  • generating the HARQ-ACK for the transmitted data comprises at least one of: generating a first HARQ-ACK of the TB level for the transmitted data, wherein each TB corresponds to one bit; decoding in the transmitted data The wrong TB, and generates a second HARQ-ACK of the CBG level for the wrong TB, where each CBG corresponds to one bit.
  • feeding back the HARQ-ACK to the transmitting end includes one of: feeding back the first HARQ-ACK and the second HARQ-ACK on the two long PUCCH channels respectively; feeding the first HARQ on the two short PUCCH channels respectively - ACK and second HARQ-ACK; feed back the first HARQ-ACK on the long PUCCH channel, feed back the second HARQ-ACK on the short PUCCH channel, feed back the second HARQ-ACK on the long PUCCH channel, and feed back the first HARQ on the short PUCCH channel - ACK; different PUCCH channel feeds in one or more time slots.
  • the feeding back the HARQ-ACK to the transmitting end includes: if the first HARQ-ACK and the second HARQ-ACK need feedback at the same time, feeding the HARQ-ACK to the sending end by using one of the following methods: time division multiplexing, Frequency division multiplexing, code division multiplexing.
  • the erroneous TB is decoded in the transmitted data, and the second HARQ-ACK of the CBG level is generated for the erroneous TB, including: each negative acknowledgment character (NACK) according to the order of the data to be transmitted
  • NACK negative acknowledgment character
  • the TB of the NACK includes at least one of: a TB that does not detect Downlink Control Information (DCI), and a TB that the transmitting end plans to schedule but does not transmit.
  • DCI Downlink Control Information
  • the TB of the transmitted data satisfies at least one of the following conditions:
  • the number of bits of the second HARQ-ACK of the TB of the NACK in the transmitted data is configured by higher layer signaling or physical layer signaling;
  • the number of CBGs of the TB of the NACK in the transmitted data is configured by higher layer signaling or physical layer signaling;
  • the number of total CBGs included in the TB in the transmitted data or the total number of second HARQ-ACK bits is configured by a higher layer, and it is agreed that each TB obtains the number of CBGs or the second HARQ-ACK bits obtained by each TB. The difference between the numbers does not exceed 1.
  • feeding back the HARQ-ACK to the transmitting end includes one of the following:
  • the HARQ-ACK includes only the first HARQ-ACK and is both ACK;
  • the HARQ-ACK includes only the first HARQ-ACK and is both NACK;
  • the HARQ-ACK includes only the first HARQ-ACK and is both NACK;
  • the HARQ-ACK includes only the second HARQ-ACK.
  • feeding back the HARQ-ACK to the transmitting end comprises: feeding the first HARQ-ACK and the second HARQ-ACK in series in the same PUCCH channel to the transmitting end.
  • the transmitted data satisfies at least one of the following conditions:
  • the transmitted data is from different time slots of the same carrier
  • the transmitted data comes from different carriers that are aggregated.
  • the embodiment further includes: determining PUCCH format information used by the feedback HARQ-ACK and/or PUCCH resource information used, and notifying the sending end by using the DMRS of the PUCCH; corresponding to the transmitted data PUCCH format information and/or PUCCH resource information is acquired in the DCI and used to feed back HARQ-ACK.
  • the DMRS notification sender through the PUCCH includes one of the following:
  • Implicit notification of the sender by different symbol positions of the DMRS Implicit notification of the sender by different symbol positions of the DMRS
  • the sender is implicitly notified by a different sequence of DMRS.
  • the sender is implied by a combination of different symbol numbers and symbol positions of the DMRS;
  • the sender is implicitly notified by a combination of different sequences in different symbols of the DMRS.
  • the embodiment further includes: agreeing with the sending end that the PUCCH format information and/or the PUCCH resource information notified by the DMRS are used for the first HARQ-ACK and/or the second HARQ-ACK.
  • the PUCCH format information includes one of the following: a short format, a long format, a number of symbols of the PUCCH, and a specified format in a format set configured by the sender.
  • the PUCCH resource information includes: a specified PUCCH resource in a PUCCH resource set configured by a sender.
  • the PUCCH resource in the PUCCH resource set has a binding relationship with at least one of the following: a PUCCH format, an OFDM symbol number of the PUCCH, an OFDM symbol position of the PUCCH, and a slot position corresponding to the PUCCH.
  • feeding back the HARQ-ACK to the sending end includes: feeding the first HARQ-ACK and the second HARQ-ACK to the sending end by using the adjacent first resource and the second resource, respectively.
  • the second resource is reserved according to the number of scheduled TBs and a preset transmission error probability.
  • the transmitted data includes: a scheduled TB, wherein the scheduled TB includes at least one of: a TB that has been received, a TB that the sender has sent but not received.
  • FIG. 2 is a flowchart of a data sending method according to an embodiment of the present disclosure. As shown in FIG. 2, the process includes the following steps:
  • Step S202 transmitting the transmitted data to the receiving end
  • Step S204 Receive the HARQ-ACK of the feedback formed by the receiving end according to the agreed rule.
  • the execution body of the foregoing step is a transmitting end, and may be a base station, a terminal, or the like, but is not limited thereto.
  • transmitting the transmitted data to the receiving end comprises at least one of: transmitting the transmitted data to the receiving end through different time slots of the same carrier; and transmitting the transmitted data to the receiving end by the different carriers that are aggregated.
  • FIG. 3 is a schematic diagram of a carrier time slot carrying TB in an embodiment of the present disclosure.
  • the transmitted data includes: a scheduled TB, wherein the scheduled TB includes at least one of: a TB that has been received by the receiving end, and a TB that is not received by the receiving end.
  • FIG. 4 is a flowchart of another data feedback method according to an embodiment of the present disclosure. As shown in FIG. 4, the process includes the following steps:
  • Step S402 determining at least one of the following specified information used by the feedback HARQ-ACK: PUCCH format information, PUCCH resource information;
  • Step S404 the specified information is notified to the sender through the DMRS of the PUCCH.
  • the execution body of the foregoing step is a receiving end, and may be a base station, a terminal, or the like, but is not limited thereto.
  • the PUCCH format information includes one of the following: a short format, a long format, a number of symbols of the PUCCH, and a specified format in a format set configured by the sender.
  • the PUCCH resource information includes: a specified PUCCH resource in a PUCCH resource set configured by a sender.
  • the PUCCH resource in the PUCCH resource set has a binding relationship with at least one of the following: a PUCCH format, an OFDM symbol number of the PUCCH, an OFDM symbol position of the PUCCH, and a slot position corresponding to the PUCCH.
  • the DMRS notification sending end that specifies the information through the PUCCH includes one of the following:
  • Implicit notification to the sender by specifying the information through the symbol location of the DMRS;
  • Implicit notification of the specified information through a different sequence of DMRS Implicit notification of the specified information through a different sequence of DMRS
  • the specified information is implicitly transmitted through a combination of different symbol numbers and symbol positions of the DMRS;
  • Implicit notification of the specified information by a combination of different cyclic shifts of the DMRS sequence in different symbols of the DMRS;
  • the specified information is implicitly notified to the sender by a combination of different sequences in different symbols of the DMRS.
  • FIG. 5 is a flowchart of a data receiving method according to an embodiment of the present disclosure. As shown in FIG. 5, the process includes the following steps:
  • Step S502 Receive designation information that is notified by the DMRS of the PUCCH, where the designation information is used to feed back the HARQ-ACK, and the designation information includes at least one of the following: PUCCH format information and PUCCH resource information.
  • the execution body of the foregoing step is a transmitting end, and may be a base station, a terminal, or the like, but is not limited thereto.
  • the specifying information of the DMRS notification received through the PUCCH includes one of the following:
  • the specified information of the notification is implicitly received by a combination of different sequences in different symbols of the DMRS.
  • a data feedback, a sending, a receiving device, a transmitting device, and a receiving device are also provided.
  • the device is configured to implement the foregoing embodiments and specific implementation manners, and details are not described herein.
  • the term "module” may implement a combination of software and/or hardware of a predetermined function.
  • the present embodiment provides a data feedback device, which is applied to a base station or a terminal, and includes: a generating module configured to generate a HARQ-ACK for the transmitted data; and a feedback module configured to feed the HARQ-ACK to the transmitting end.
  • the generating module includes at least one of the following: a first generating unit configured to generate a first HARQ-ACK of a TB level for the transmitted data, where each TB corresponds to one bit; and the second generating unit, It is configured to decode the erroneous TB in the transmitted data and generate a second HARQ-ACK of the CBG level for the erroneous TB, where each CBG corresponds to one bit.
  • the feeding back the HARQ-ACK to the transmitting end includes: if the first HARQ-ACK and the second HARQ-ACK need feedback at the same time, feeding the HARQ-ACK to the sending end by using one of the following methods: time division multiplexing, Frequency division multiplexing, code division multiplexing.
  • the erroneous TB is decoded in the transmitted data, and the second HARQ-ACK of the CBG level is generated for the erroneous TB, including: according to the order of the transmitted data, the TB of each negative acknowledgment character NACK is followed.
  • the second HARQ-ACK is generated in sequence.
  • the TB of the NACK includes at least one of the following: a TB that does not detect DCI, and a TB that the transmitting end plans to schedule but does not transmit. For example, the sender plans to schedule 8 TBs, but the final sender sends 6 TBs. At this time, 2 TBs are scheduled but not sent.
  • the TB of the transmitted data satisfies at least one of the following conditions:
  • the number of bits of the second HARQ-ACK of the TB of the NACK in the transmitted data is configured by higher layer signaling or physical layer signaling;
  • the number of CBGs of the TB of the NACK in the transmitted data is configured by higher layer signaling or physical layer signaling;
  • the number of total CBGs included in the TB in the transmitted data or the total number of second HARQ-ACK bits is configured by a higher layer, and it is agreed that each TB obtains the number of CBGs or the second HARQ-ACK bits obtained by each TB. The difference between the numbers does not exceed 1.
  • feeding back the HARQ-ACK to the transmitting end includes one of the following:
  • the HARQ-ACK includes only the first HARQ-ACK and is both ACK;
  • the HARQ-ACK includes only the first HARQ-ACK and is both NACK;
  • the HARQ-ACK includes only the first HARQ-ACK and is both NACK;
  • the HARQ-ACK includes only the second HARQ-ACK.
  • feeding back the HARQ-ACK to the transmitting end comprises: feeding the first HARQ-ACK and the second HARQ-ACK in series in the same PUCCH channel to the transmitting end.
  • the transmitted data satisfies at least one of the following conditions:
  • the transmitted data is from different time slots of the same carrier
  • the transmitted data comes from different carriers that are aggregated.
  • the embodiment further includes: determining PUCCH format information used by the feedback HARQ-ACK and/or PUCCH resource information used, and notifying the sending end by using the DMRS of the PUCCH; corresponding to the transmitted data PUCCH format information and/or PUCCH resource information is acquired in the DCI and used to feed back HARQ-ACK.
  • the DMRS notification sender through the PUCCH includes one of the following:
  • Implicit notification of the sender by different symbol positions of the DMRS Implicit notification of the sender by different symbol positions of the DMRS
  • the sender is implicitly notified by a different sequence of DMRS.
  • the sender is implied by a combination of different symbol numbers and symbol positions of the DMRS;
  • the sender is implicitly notified by a combination of different sequences in different symbols of the DMRS.
  • the embodiment further includes: agreeing with the sending end that the PUCCH format information and/or the PUCCH resource information notified by the DMRS are used for the first HARQ-ACK and/or the second HARQ-ACK.
  • the PUCCH format information includes one of the following: a short format, a long format, a number of symbols of the PUCCH, and a specified format in a format set configured by the sender.
  • the PUCCH resource information includes: a specified PUCCH resource in a PUCCH resource set configured by a sender.
  • the PUCCH resource in the PUCCH resource set has a binding relationship with at least one of the following: a PUCCH format, an OFDM symbol number of the PUCCH, an OFDM symbol position of the PUCCH, and a slot position corresponding to the PUCCH.
  • feeding back the HARQ-ACK to the sending end includes: feeding the first HARQ-ACK and the second HARQ-ACK to the sending end by using the adjacent first resource and the second resource, respectively.
  • the second resource is reserved according to the number of scheduled TBs and a preset transmission error probability.
  • the transmitted data includes: a scheduled TB, wherein the scheduled TB includes at least one of: a TB that has been received, a TB that the sender has sent but not received.
  • the embodiment of the present invention provides a data transmitting apparatus, which is applied to a base station or a terminal, and includes: a sending module configured to send transmitted data to a receiving end; and a receiving module configured to receive, by the receiving end, feedback generated by the received data according to an agreed rule.
  • HARQ-ACK a data transmitting apparatus
  • the sending module includes: a first sending unit configured to send the transmitted data to the receiving end by using different time slots of the same carrier; and/or, the second sending unit is configured to be sent by different carriers that are aggregated The receiving end transmits the transmitted data.
  • the present embodiment provides another data feedback apparatus, including: a determining module, configured to determine at least one of the following specified information used by the feedback HARQ-ACK: PUCCH format information, PUCCH resource information; and a notification module configured to specify information The transmitting end is notified by the demodulation reference signal DMRS of the PUCCH.
  • a determining module configured to determine at least one of the following specified information used by the feedback HARQ-ACK: PUCCH format information, PUCCH resource information
  • a notification module configured to specify information The transmitting end is notified by the demodulation reference signal DMRS of the PUCCH.
  • the notification module passes the specified information through the DMRS notification sender of the PUCCH to include one of the following:
  • Implicit notification to the sender by specifying the information through the symbol location of the DMRS;
  • the specified information is implicitly notified to the sender through a different sequence of DMRS.
  • the specified information is implicitly transmitted through a combination of different symbol numbers and symbol positions of the DMRS;
  • Implicit notification of the specified information by a combination of different cyclic shifts of the DMRS sequence in different symbols of the DMRS;
  • the specified information is implicitly notified to the sender by a combination of different sequences in different symbols of the DMRS.
  • the embodiment provides a data receiving apparatus, including: a receiving module, configured to receive specified information notified by a demodulation reference signal DMRS of a PUCCH; wherein the specified information is used for feeding back a HARQ-ACK, and the specifying information includes at least one of the following : PUCCH format information, PUCCH resource information.
  • the specifying information that the receiving module receives the DMRS notification through the PUCCH includes one of the following:
  • the specified information of the notification is implicitly received by a combination of different sequences in different symbols of the DMRS.
  • the embodiment provides a receiving device, including: a processor and a memory storing processor-executable instructions, when the instruction is executed by the processor, performing the following operations:
  • the HARQ-ACK is fed back to the sender.
  • the method when the instruction execution generates the HARQ-ACK for the transmitted data, the method includes performing at least one of the following operations:
  • the erroneous TB is decoded in the transmitted data, and a second HARQ-ACK of the CBG level is generated for the erroneous TB, where each CBG corresponds to one bit.
  • This embodiment provides another receiving device, including: a processor and a memory storing processor-executable instructions, when the instructions are executed by the processor, performing the following operations:
  • the specified information is notified to the sender through the DMRS of the PUCCH.
  • the method includes: performing one of the following operations:
  • Implicit notification to the sender by specifying the information through the symbol location of the DMRS;
  • Implicit notification of the specified information through a different sequence of DMRS Implicit notification of the specified information through a different sequence of DMRS
  • the specified information is implicitly transmitted through a combination of different symbol numbers and symbol positions of the DMRS;
  • Implicit notification of the specified information by a combination of different cyclic shifts of the DMRS sequence in different symbols of the DMRS;
  • the specified information is implicitly notified to the sender by a combination of different sequences in different symbols of the DMRS.
  • the embodiment provides a data transmitting device, including: a processor and a memory storing processor-executable instructions, when the instruction is executed by the processor, performing the following operations:
  • the receiving receiver is a HARQ-ACK of the feedback formed by the transmitted data according to the agreed rules.
  • the transmitted data is transmitted to the receiving end through the different carriers that are aggregated.
  • This embodiment provides another data transmitting device, including: a processor and a memory storing processor-executable instructions, when the instruction is executed by the processor, performing the following operations:
  • the specifying information is used to feed back the HARQ-ACK, and the specifying information includes at least one of the following: PUCCH format information, PUCCH resource information.
  • the method includes: performing one of the following operations:
  • the specified information of the notification is implicitly received by a combination of different sequences in different symbols of the DMRS.
  • each of the above modules may be implemented by software or hardware.
  • the foregoing may be implemented by, but not limited to, the foregoing modules are all located in the same processor; or, the above modules are in any combination.
  • the forms are located in different processors.
  • This embodiment is an application embodiment of the present application, and is used to describe the present application in detail in conjunction with a specific implementation manner:
  • the transmitting end the node that sends the data, and the node that receives the HARQ-ACK that the receiving end feeds back to the data; the receiving end, the node that receives the data, and feeds back the node corresponding to the HARQ-ACK of the data.
  • uplink data both downlink data transmission and HARQ-ACK feedback are applicable.
  • the main idea is to illustrate the basic idea of the method. For example, the formation of two types of HARQ-ACKs.
  • the method can be used for HARQ-ACK feedback of downlink data, which can also be used for uplink data), when HARQ-ACKs required for receiving multiple transport blocks TB are in one PUCCH
  • the number of CBG HARQ-ACK bits per TB feedback is 10 bits.
  • the UE receives TB1, TB2, TB3, TB4 and TB5 in slot n, slot n+1, slot n+2, slot n+3, slot n+4, respectively. These TBs are required to be in slot n.
  • HARQ-ACK feedback is performed in +6. It is assumed that the decoding condition of the UE for TB1 to TB5 is TB1, the decoding of TB2 and TB4 is correct (the CRC of TB is passed), the decoding of TB3 and TB5 is incorrect, and all of the CBGs are correct (the CRC check of all CBs included in the CBG is passed) ), some CBG errors.
  • the TB-level HARQ-ACKs formed by the UE are: 11010, 1 indicates ACK (correct reception), and 0 indicates NACK (not correctly received).
  • CBG-level HARQ-ACKs are formed for TB3 and TB5 (here, in TB3, the first and second CBGs are not correctly received, and the remaining CBGs are correctly received, and the first to fourth CBGs in TB5 are not correctly received, and the remaining CBGs are correctly received.
  • the probability of a data transmission being correct is 90%, which, in this way, actually saves 90% of the bits in this example. So the bit overhead saved in this way is very significant.
  • the transmitting end receives the TB level HARQ-ACKs, and then determines the TB which is NACK according to the TB level HARQ-ACKs, and then determines the number of bits and each tag of the CBG HARQ-ACKs according to the number and order of the TBs marked as NACK.
  • CBG HARQ-ACKs bits for TB of NACK For example, after receiving the TB-level HARQ-ACKs, the sender will find that the 3rd and 5th TBs are marked as NACK after decoding, and further consider that there are CBGs corresponding to the 3rd and 5th TBs in the CBG HARQ-ACKs. Level of HARQ-ACKs.
  • the transmitting end then decodes the CBG HARQ-ACKs to obtain the CBG HARQ-ACKs of the 3rd and 5th TBs. In this way, the sender considers that the first, second, and fourth TBs are correctly received without retransmission, and the third and fifth TBs are not correctly decoded.
  • the CBG marked as NACK needs to be retransmitted (actually Retransmission of CBs in CBGs marked as NACK).
  • the number of CBG HARQ-ACK bits fed back by each TB may correspond to one bit per CBG.
  • Each TB is divided into several CBGs, which may be configured by the transmitting end through RRC signaling and/or physical layer signaling, or may be configured by the transmitting end to configure a total CBG value for multiple TBs, and then CBGs of different TBs.
  • the number is related according to the number of layers used in the TB transmission. For example, the more the number of layers, the more the number of CBGs corresponding to the TB from the total CBG value. It may also be the number of CBGs configured for each TB through high layer RRC signaling.
  • the specific sending methods include the following:
  • the code After connecting multiple types of HARQ-ACKs in series, the code is modulated and transmitted.
  • the number of bits of the second type of HARQ-ACKs is changed according to the number of TBs marked as NACK each time. Therefore, if two types of HARQ-ACKs are concatenated, then coded and then transmitted, it may cause the sender to receive.
  • the detection complexity is increased when the HARQ-ACKs fed back by the receiving end, but this method only needs to use one PUCCH channel. Further, consider combining methods that reduce detection complexity, such as combining rate matching. Since the resource for transmitting HARQ-ACKs and the modulation and coding information MCS allocated by the transmitting end for the receiving end are both configured, the receiving end modulates and codes according to the modulation and coding strategy (MCS) information, and then maps the resource to the resource through rate matching.
  • MCS modulation and coding strategy
  • Uplink Control Information (UCI) (including HARQ-ACKs) corresponds to different PUCCH formats according to the number of transmitted bits. Also, the number of symbols used in the NR according to the PUCCH corresponds to a different PUCCH transmission scheme (for convenience, the PUCCH is divided into a short PUCCH and a long PUCCH). The short PUCCH occupies 1 to 2 symbols, and the number of long PUCCH symbols is greater than 4.
  • the PUCCH format in the text includes the number of symbols used by the PUCCH and the number of bits to be transmitted, meaning of two levels.
  • the PUCCH format for example, for a UCT of 1 to 2 bits, if one or two symbols are configured, one PUCCH format will be used; if configured for at least four symbols, another PUCCH format will be used. .
  • a PUCCH format will be used, if configured as at least 4 symbols
  • Another PUCCH format will be used; for more than X bits, if configured for at least 4 symbols, another PUCCH format will be used.
  • the PUCCH format for the case of greater than or equal to 3, less than or equal to X bits, if configured as 1 or 2 symbols, one PUCCH format will be used, and if configured to be at least 4 symbols, another PUCCH format will be used.
  • the first type is determined because the total number of TBs is determined (the sender is aware) and the TB HARQ-ACK of one bit per TB, so the total number of bits of the first type of HARQ-ACKs is determined. Then, according to the number of symbols configured by the sender, the corresponding PUCCH format is determined to be transmitted on the allocated resources. In the second type, the total number of bits is changed.
  • the resources allocated by the sender are also allocated according to the maximum demand. However, when the receiver sends the packet, it does not need to be mapped to all resources, and only needs to be sent according to the configured parameters. .
  • the sender first decodes the first type of HARQ-ACKs, knows the number of TBs and the sequence position marked as NACK, and then determines the total number of bits of the second type of HARQ-ACKs according to the TB marked as NACK, and then decodes The second type of HARQ-ACKs.
  • the PUCCH format specifically used by the two types is relatively large, and can be determined according to the bit number allocation.
  • two long PUCCHs are respectively corresponding, and two long PUCCHs are allowed to be time division or frequency division multiplexed; or two short PUCCHs are respectively allowed, and two long PUCCHs are allowed to be time division or frequency division multiplexed; or one corresponding to a long PUCCH,
  • the other corresponds to a short PUCCH and allows two PUCCHs to be time division multiplexed.
  • the same resource may be allocated to the two types of HARQ-ACKs, and the PUCCH corresponding to the two HARQ-ACKs is frequency-divided or time-division or code-multiplexed in the resource.
  • the transmitting end configures a PUCCH resource set for the receiving end.
  • a PUCCH resource set there are multiple specific PUCCH resources corresponding to different formats, different symbol numbers, and different bit numbers.
  • the collections are included:
  • a specific PUCCH resource 1 that transmits a 1-bit HARQ-ACK and one symbol (including a symbol position);
  • a specific PUCCH resource 2 transmitting 1 bit HARQ-ACK and 2 symbols (including symbol positions);
  • a specific PUCCH resource 3 transmitting 2 bits of HARQ-ACKs and 1 symbol (including symbol positions);
  • a specific PUCCH resource 4 that transmits 2 bits of HARQ-ACKs and 2 symbols (including symbol positions);
  • N is greater than or equal to 4, less than or equal to 14, N is different, there are multiple specific PUCCH resources) symbols (including symbol positions);
  • the specific value of X is still under discussion, for example, the value is 11, or 22.
  • N is greater than or equal to 4, less than or equal to 14, N is different, there are multiple specific PUCCH resources) symbols (including symbol locations);
  • the transmitting end may configure a suitable set for the receiving end, for example, configuring four possible PUCCH resources, and then the receiving end according to the number of bits of the formed HARQ-ACKs from the configured set (also combining the number of OFDM symbols required by the PUCCH) Selecting a suitable specific PUCCH resource to transmit corresponding HARQ-ACKs respectively.
  • the receiving end may also implicitly notify the transmitting end of the specific PUCCH resource selected by the DMRS of the PUCCH in the example 4. This comparison is suitable for a plurality of identical specific PUCCH resources in the set.
  • An example is the configuration of a PUCCH resource set, which can independently apply the configuration of the PUCCH resource set.
  • a plurality of specific PUCCH resources included in the current PUCCH resource refer to frequency domain resources. To save overhead, it is recommended to perform a new definition for the PUCCH resource set.
  • a specific PUCCH resource may also have more attributes (except the resource attributes of the frequency domain), for example, may also include a PUCCH format, a PUCCH start symbol, and a PUCCH duration (eg, PUCCH). The number of symbols), the slot in which the PUCCH is located, whether it is frequency hopping, sequence or codeword information. These attributes can be represented in a tabular or joint encoding.
  • Each specific PUCCH resource in the PUCCH resource set includes: a physical resource block (PRB) index, a PUCCH start symbol, a duration, and a slot information. Then for a 1 to 2 bit PUCCH, the sequence or codeword information needs to be increased. Sequence or codeword information is not required for PUCCHs larger than 2 bits.
  • a PUCCH resource set includes n specific PUCCH resources, and the value of n can be determined according to the requirements of the UE. For example, when the UE is in static or low speed, the value of n can be configured to be small; if the UE is moving at a high speed, the value of n can be configured to be large.
  • PUCCH format it can be determined according to the number of bits to be fed back and the number of symbols (duration duration) for allocating a specific PUCCH, since both the base station and the UE know the number of bits that need to be fed back, so the PUCCH format can be implicit. Whether PUCCH is frequency hopping is directly configured through high layer signaling.
  • the specific operation is: the base station configures a PUCCH resource set for the UE, and has a frequency domain resource, a start symbol, a duration, and a corresponding slot for each specific PUCCH resource in the set. Typically, four specific PUCCH resources are configured. Then, the specific used PUCCH resource is indicated by the physical layer signaling for each UE feedback from the set. For a PUCCH of 1 to 2 bits, the base station also configures sequence or codeword information corresponding to the corresponding 1 to 2 bits of information for each specific PUCCH resource. The UE receives the PUCCH resource set configured by the base station, determines the specific PUCCH resource corresponding to the current feedback according to the indication signaling of the physical layer, and then performs PUCCH transmission according to the requirement of the PUCCH resource.
  • the resource derives the resource corresponding to the PUCCH of the CBG HARQ-ACKs. This saves signaling for allocating resources for another type of PUCCH. Considering that the total number of bits of the TB-level HARQ-ACKs is determined, it is allocated a corresponding PUCCH resource, and then the PUCCH resources of another type of HARQ-ACKs are deduced according to the agreed rules by its PUCCH resources.
  • both types of HARQ-ACKs are long PUCCHs, they can be configured to share the same frequency domain resources. And their time domain symbols are contiguous, it can be understood that two PUCCHs are time divisions in the same frequency domain resource.
  • the two types of HARQ-ACKs have the same frequency domain resource intra-frequency division multiplexing, and some resources in the resource are reserved for the first type of HARQ-ACKs, and then some physical resource blocks or sub-parts are agreed.
  • the carrier is given to the second type of HARQ-ACKs.
  • the two resources are multiplexed according to the agreed pattern in the frequency domain, or the two types of HARQ-ACKs respectively occupy part of the frequency domain resources (in units of physical resource blocks PRB or subcarriers) and the frequency domain resources of the two parts are continuous.
  • the initial frequency domain position corresponding to the second type of HARQ-ACKs is implicitly obtained by the end type of the first type of HARQ-ACKs, and the number of persistent resources in the frequency domain can be marked according to the TB level in the HARQ-ACKs.
  • the number of TBs of NACK and the number of CBGs per TB are determined.
  • the total bit of the TB HARQ-ACKs is 10 bits, 5 bits are NACK, 5 bits are ACK, so the PUCCH format corresponding to the medium load is used for transmission, and the transmitting end allocates a PRB (assumed to be PRBn) to the receiving end for transmission.
  • PUCCH of TB HARQ-ACKs it is assumed that each TB has 10 CBGs, and each CBG has one HARQ-ACK.
  • the CBG HARQ-ACKs have 50 bits, and according to the coding modulation mode configured by the transmitting end for the 50-bit HARQ-ACKs, four PRBs are required ( It is assumed that 4 PRBs are required for transmission.
  • the resources of the second HARQ-ACKs are consecutive 4 PRBs after the PRBn.
  • both the transmitting end and the receiving end can obtain the resources of the second HARQ-ACKs according to the first PRBn, thereby saving signaling for allocating resources for the second HARQ-ACKs resource.
  • the TB HARQ-ACK and the CBG HARQ-ACK are respectively fed back to the transmitting end by using the adjacent first resource and the second resource.
  • the second resource is reserved according to the total number of TBs scheduled and the preset transmission error probability. For example, there is another method for allocating resources for the PUCCH of the second HARQ-ACKs. Considering that its number of bits is related to the number of TBs transmitted, and the statistical probability of a TB transmission error is 10%, it can be allocated a corresponding resource size according to the total number of scheduled TBs. For example, if 10 TBs are scheduled, then one TB can be decoded, so that the CBG HARQ-ACK bit corresponds to one TB, thereby allocating resources for it. More conservative can increase the ratio.
  • the allocated resource may adopt the above manner, and there is an agreed relationship between the resource of the TB HARQ-ACK and the resource of the CBG HARQ-ACK, so that only the resource of the TB HARQ-ACK needs to be notified, thereby reducing the resource allocation. Signaling.
  • Resources are reserved based on the number of TBs scheduled and the preset probability.
  • Case 3 When the CRC check of the CB in the TBs fails, and the CRC of the TBs is not verified, only the TB HARQ-ACKs are transmitted and both are NACK, and the CBG HARQ-ACKs are not transmitted.
  • the receiving end notifies the sending end by using the DMRS, and the receiving end transmits the format information used by the PUCCH and/or the specific PUCCH resource information.
  • the main purpose of this mode is to determine the number of HARQ-ACKs bits to be fed back according to the actual decoding situation, and then determine the specific PUCCH format to be transmitted in the allocated resources.
  • the allocated resource may also be a resource set from one PUCCH configured by the sender, and the UE selects a specific PUCCH resource from the set.
  • the transmitting end needs to detect multiple possibilities blindly, which increases the complexity.
  • the related information of the DMRS using the PUCCH in this example implicitly informs the transmitting end, the PUCCH format used by the receiving end, and/or the specific PUCCH resource, because the transmitting end needs to decode the DMRS before decoding the PUCCH, so the DMRS using the PUCCH is used.
  • the related information implicitly informs the sender that it is convenient and does not increase overhead. It is also relatively easy to consider that the transmitting end detects the DMRS related information.
  • the PUCCH format information used by the receiving end can be implicitly notified by the DMRS, where the PUCCH format information includes at least one of the following: a short format, a long format, a PUCCH symbol number, and a PUCCH symbol position.
  • the PUCCH format information may also be a different PUCCH format in the PUCCH resource set configured by the transmitting end for the receiving end or a PUCCH format set configured by the transmitting end for the receiving end, indicating which format is used specifically.
  • the specific PUCCH resource information of the PUCCH used by the receiving end can be implicitly notified by the DMRS.
  • the transmitting end configures a PUCCH resource set for the receiving end, and includes a plurality of specific PUCCH resources.
  • the receiving end implicitly notifies the receiving end which specific PUCCH resource is used by the DMRS.
  • the PUCCH resource in the set has a binding relationship with at least one of a PUCCH format, a PUCCH symbol number, and a PUCCH symbol position (a location in a slot).
  • the specific PUCCH resource in the set corresponds to its own PUCCH format; the specific PUCCH resource in the set corresponds to its own PUCCH symbol number and symbol position; in the set, different specific PUCCH resources have their own PUCCH format. And the number of symbols and the position of the symbol. It can also be understood that one PUCCH resource in the set corresponds to its own transmission mode.
  • the receiving end selects or configures a specific PUCCH resource, the corresponding code modulation mode, the number of matches and the symbol position are determined.
  • the DMRS implicit notification specifically including at least one of the following ways:
  • a HARQ-ACK for forming 1 bit for the multiple TBs is further added, as follows:
  • a specific PUCCH resource in the PUCCH resource set configured by the transmitting end for the receiving end corresponds to a 1-bit HARQ-ACK format.
  • the feedback of the receiving end is received from the specific PUCCH resource in the PUCCH resource set. If the decoding is ACK, the sender considers that all TBs are correctly received by the receiving end.
  • a NACK of one bit is fed back (this is regarded as a third type of HARQ-ACK), and all TB TB-level HARQ-ACKs are not sent, and the TB marked as NACK (Currently for all TB) CBG HARQ-ACKs are sent.
  • the probability of occurrence of this situation is very low, because the transmission of the transmission data channel introduces various guarantee mechanisms, so the statistical probability of transmission reliability is 90%.
  • the manner in the above implementation may be adopted, such as the manner of determining the resource, the manner of determining the format, and the like.
  • a specific PUCCH resource in the PUCCH resource set configured by the transmitting end for the receiving end corresponds to a 1-bit HARQ-ACK format.
  • the feedback of the receiving end is received from the specific PUCCH resource in the PUCCH resource set.
  • the transmitting end considers that all TBs are not correctly received by the receiving end, and then receives the CBG HARQ-ACKs from another specific PUCCH resource (here, it is assumed that there is a specific PUCCH resource corresponding to the transmission in the PUCCH resource.
  • Multi-bit HARQ-ACKs format after correct decoding, retransmit each TB error CBG.
  • the number of bits of the HARQ-ACKs can be reduced by using the embodiment, thereby reducing the overhead and saving the power consumption of the receiving end. It does not affect the performance of CBG retransmission.
  • Embodiments of the present disclosure also provide a storage medium.
  • the foregoing storage medium may be configured to store program code configured to perform the following steps:
  • the HARQ-ACK is fed back to the sending end.
  • the foregoing storage medium may include, but not limited to, a USB flash drive, a read-only memory (ROM), a random access memory (RAM), a mobile hard disk, and a magnetic
  • ROM read-only memory
  • RAM random access memory
  • mobile hard disk a magnetic
  • magnetic A variety of media that can store program code, such as a disc or a disc.
  • the processor is executed as the transmitted data HARQ-ACK according to the stored program code in the storage medium;
  • the processor returns the HARQ-ACK to the sending end according to the stored program code in the storage medium.
  • modules or steps of the present disclosure described above can be implemented by a general-purpose computing device that can be centralized on a single computing device or distributed across a network of multiple computing devices. Alternatively, they may be implemented by program code executable by the computing device such that they may be stored in the storage device by the computing device and, in some cases, may be different from the order herein.
  • the steps shown or described are performed, or they are separately fabricated into individual integrated circuit modules, or a plurality of modules or steps thereof are fabricated as a single integrated circuit module. As such, the disclosure is not limited to any specific combination of hardware and software.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)

Abstract

本公开提供了一种数据反馈、发送、接收方法及装置,接收设备,发送设备,其中,数据反馈方包括:为被传输数据生成混合自动重传请求确认字符(HARQ-ACK);将所述HARQ-ACK反馈给发送端。

Description

数据反馈、发送、接收方法及装置,接收设备,发送设备
相关申请的交叉引用
本申请基于申请号为201710807037.9、申请日为2017年09月08日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本公开涉及但不限于通信领域。
背景技术
在新一代移动通信系统(New Radio,NR)中,新的编解码方式被讨论,且很有可能被引入。这种方式下,允许接收端按照接收的正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)符号进行译码,即接收一个OFDM就解码一个OFDM符号,是一种“流水”解码方式,这种方式主要是为了加速接收端在接收完本次传输的最后一个OFDM符号数据后,能够快速的反馈确认信息给发送端,显然,这种“流水”解码实现上述的快速反馈确认信息的目的。
但是,针对上述的解码方式,一些更好的确认信息反馈也应该被研究,以使得接收端尽可能准确的反馈出那部分数据发生了错误,而不是现在的对于一个传输块反馈一个确认信息,如果出错,也不清楚具体那一部分数据出错了。这样发送端只能将整个传输块(Transport block,TB)再次发送一次。目前基于码块组反馈的方式可以解决上述问题,即一个传输块被按照多个码块组分别反馈确认信息。但是它也带来了新的问题,例如基于码块组(Code Blocks Group,CBG)反馈的确认信息的开销比较大,且多数情况下每个CBG都是被正确解码的,因此只有少数情况下,才实际利用了基于CBG的反馈重传。这也意味着多数情况下基于CBG反馈的确定信息 是没有起到提升重传效率,且带来较大的开销。例如如果配置了8个CBG进行反馈确认信息,那么每次至少需要发送8bit的确认信息。
在NR中,当同一接收端的多个TB/物理下行共享信道(Physical Downlink Shared CHannel,PDSCH)的CBG混合自动重传请求(Hybrid Automatic Repeat Reques,HARQ)-确认字符(ACK)反馈被复用在一起反馈时,CBG HARQ-ACK的开销将是巨大的。例如当接收端被配置了载波聚合(CA),且每个载波上的TB对应的CBG HARQ-ACK(多个)都在一个载波的某一时隙(slot)的一个物理上行控制信道(Physical Uplink Control Channel,PUCCH)反馈时,此时将导致CBG HARQ-ACK开销过大,且增加接收端功耗。这里的多个TB,不管是来自一个载波不同slot中的TB,还是来自不同的被聚合载波的slot中的TB,被配置在一个PUCCH中反馈CBG HARQ-ACK。一个例子,每个TB被配置反馈CBG HARQ-ACK(多个)为10bit,对应一个TB被划分为10个CBG,每个CBG一个比特的HARQ-ACK。那么10个TB将反馈比特数为100bit,虽然,目前NR中支持的HARQ-ACK比特数可以很多,例如几百比特,但是在实现同样功能和目的的过程中,如何减少开销以及接收端的功耗,亟需解决。
针对相关技术中存在的上述问题,目前尚未发现有效的解决方案。
发明内容
本公开实施例提供了一种数据反馈、发送、接收方法及装置,接收设备,发送设备。
根据本公开的一个实施例,提供了一种数据反馈方法,应用于接收设备,包括:为被传输数据生成HARQ-ACK;将所述HARQ-ACK反馈给发送端。
根据本公开的一个实施例,提供了一种数据发送方法,应用于数据发送设备,包括:向接收端发送被传输数据;接收所述接收端为所述被传输数据根据约定规则形成的反馈的HARQ-ACK。
根据本公开的一个实施例,提供了另一种数据反馈方法,应用于接收设备,包括:确定反馈HARQ-ACK所使用的以下指定信息至少之一:PUCCH 格式信息、PUCCH资源信息;将所述指定信息通过PUCCH的解调参考信号(DMRS)通知发送端。
根据本公开的一个实施例,提供了一种数据接收方法,应用于数据发送设备,包括:接收通过PUCCH的DMRS通知的指定信息;其中,所述指定信息用于反馈HARQ-ACK,所述指定信息包括以下至少之一:PUCCH格式信息、PUCCH资源信息。
根据本公开的另一个实施例,提供了一种数据反馈装置,包括:生成模块,配置为为被传输数据生成HARQ-ACK;反馈模块,配置为将所述HARQ-ACK反馈给发送端。
根据本公开的另一个实施例,提供了一种数据发送装置,包括:发送模块,配置为向接收端发送被传输数据;接收模块,配置为接收所述接收端为所述被传输数据根据约定规则形成的反馈的HARQ-ACK。
根据本公开的另一个实施例,提供了另一种数据反馈装置,包括:确定模块,配置为确定反馈HARQ-ACK所使用的以下指定信息至少之一:PUCCH格式信息、PUCCH资源信息;通知模块,配置为将所述指定信息通过PUCCH的DMRS通知发送端。
根据本公开的另一个实施例,提供了一种数据接收装置,包括:接收模块,配置为接收通过PUCCH的DMRS通知的指定信息;其中,所述指定信息用于反馈HARQ-ACK,所述指定信息包括以下至少之一:PUCCH格式信息、PUCCH资源信息。
根据本公开的又一个实施例,提供了一种接收设备,包括:处理器以及存储有所述处理器可执行指令的存储器,当所述指令被处理器执行时,执行上述接收设备侧的方法。
根据本公开的又一个实施例,提供了一种数据发送设备,包括:处理器以及存储有所述处理器可执行指令的存储器,当所述指令被处理器执行时,执行上述数据发送设备侧的方法。
根据本公开的又一个实施例,还提供了一种存储介质。该存储介质设置为存储配置为执行上述接收设备侧的方法,或者执行上述数据发送设备 侧的方法。
通过本公开实施例,解决了相关技术中在反馈数据时开销和功耗多大的技术问题,提高了反馈效率,减小了开销和功耗。
附图说明
此处所说明的附图用来提供对本公开的进一步理解,构成本申请的一部分,本公开的示意性实施例及其说明用于解释本公开。在附图中:
图1是根据本公开实施例的一种数据反馈方法的流程图;
图2是根据本公开实施例的数据发送方法的流程图;
图3是本公开实施例中载波时隙承载TB的示意图;
图4是根据本公开实施例的另一种数据反馈方法的流程图;
图5是根据本公开实施例的一种数据接收方法的流程图。
具体实施方式
下文中将参考附图并结合实施例来详细说明本公开。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
需要说明的是,本公开的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
实施例1
在本实施例中,发送端,为发送数据的节点,并接收接收端对数据反馈的HARQ-ACK;接收端,为接收数据的节点,并反馈数据对应的HARQ-ACK。发送端和接收端交互的数据为被传输数据。
在本实施例中提供了一种数据反馈方法,图1是根据本公开实施例的一种数据反馈方法的流程图,如图1所示,该流程包括如下步骤:
步骤S102,为被传输数据生成HARQ-ACK;
步骤S104,将HARQ-ACK反馈给发送端。
通过上述步骤,解决了相关技术中在反馈数据时开销和功耗多大的技术问题,提高了反馈效率,减小了开销和功耗。
在一实施例中,上述步骤的执行主体为接收端,可以为基站、终端等,但不限于此。
在一实施例中,传输数据是指一个或多个TB。
在一实施例中,为被传输数据生成HARQ-ACK包括以下至少之一:为被传输数据分别生成TB级别的第一HARQ-ACK,其中,每个TB对应一个比特;在被传输数据中解码错误的TB,并为错误的TB生成CBG级别的第二HARQ-ACK,其中,每个CBG对应一个比特。
在一实施例中,将HARQ-ACK反馈给发送端包括以下之一:分别在两个长PUCCH信道反馈第一HARQ-ACK和第二HARQ-ACK;分别在两个短PUCCH信道反馈第一HARQ-ACK和第二HARQ-ACK;在长PUCCH信道反馈第一HARQ-ACK,在短PUCCH信道反馈第二HARQ-ACK;在长PUCCH信道反馈第二HARQ-ACK,在短PUCCH信道反馈第一HARQ-ACK;在一个或多个时隙中的不同PUCCH信道发馈。
在一实施例中,将HARQ-ACK反馈给发送端包括:如果第一HARQ-ACK和第二HARQ-ACK同时需要反馈,通过以下方式之一将HARQ-ACK反馈给发送端:时分复用、频分复用、码分复用。
在一实施例中,在被传输数据中解码错误的TB,并为错误的TB生成CBG级别的第二HARQ-ACK,包括:按照被传输数据的顺序,将每个否定确认字符(NACK)的TB按照顺序依次生成第二HARQ-ACK。
在一实施例中,NACK的TB包括以下至少之一:未检测到下行控制信息(DCI)的TB,发送端计划调度但未发送的TB。例如:发送端计划调度8个TB,但是最终发送端发送了6个TB,此时有2个TB是计划调度但未发送的TB。
在一实施例中,被传输数据的TB满足以下条件至少之一:
被传输数据中的NACK的TB的第二HARQ-ACK的比特数是高层信令或物理层信令配置的;
被传输数据中的NACK的TB的CBG个数是高层信令或物理层信令配置的;
被传输数据中的TB所包括的总CBG的个数或总的第二HARQ-ACK比特数是高层配置的,且约定每个TB获得CBG个数或每个TB获得的第二HARQ-ACK比特数的差值不超过1。
在一实施例中,将HARQ-ACK反馈给发送端包括以下之一:
在被传输数据的循环冗余校验(CRC)均校验通过时,HARQ-ACK仅包括第一HARQ-ACK且均为ACK;
当被传输数据中的码块(CB)的CRC校验均通过,且被传输数据的CRC校验均未通过时,HARQ-ACK仅包括第一HARQ-ACK且均为NACK;
当被传输数据中的CB的CRC校验均未通过,且被传输数据的CRC校验均未通过时,HARQ-ACK仅包括第一HARQ-ACK且均为NACK;
当被传输数据的CRC校验均未通过,且被传输数据中的CB的CRC校验未均通过或均未通过,HARQ-ACK仅包括第二HARQ-ACK。
在一实施例中,将HARQ-ACK反馈给发送端包括:将第一HARQ-ACK和第二HARQ-ACK串联在同一PUCCH信道中反馈给发送端。
在一实施例中,被传输数据满足以下条件至少之一:
被传输数据来自同一载波的不同时隙;
被传输数据来自被聚合的不同载波。
在一实施例中,本实施例还包括以下之一:确定反馈HARQ-ACK所使用的PUCCH格式信息和/或使用的PUCCH资源信息,并通过PUCCH的DMRS通知发送端;从被传输数据对应的DCI中获取PUCCH格式信息和/或PUCCH资源信息,并将其用于反馈HARQ-ACK。
在一实施例中,通过PUCCH的DMRS通知发送端包括以下之一:
通过DMRS的符号位置不同来隐含通知发送端;
通过DMRS序列不同的循环移位来隐含通知发送端;
通过DMRS不同的序列来隐含通知发送端。
通过DMRS不同符号数和符号位置的组合来隐含发送端;
通过DMRS不同符号中DMRS序列的不同的循环移位的组合来隐含通知发送端;
通过DMRS不同符号中不同的序列的组合来隐含通知发送端。
在一实施例中,本实施例还包括:与发送端约定,通过DMRS通知的PUCCH格式信息和/或PUCCH资源信息,是用于第一HARQ-ACK和/或第二HARQ-ACK。
在一实施例中,PUCCH格式信息包括以下之一:短格式、长格式,PUCCH的符号个数,发送端配置的格式集合中的指定格式。
在一实施例中,PUCCH资源信息包括:发送端配置的PUCCH资源集合中的指定PUCCH资源。
在一实施例中,PUCCH资源集合中的PUCCH资源与以下至少之一有绑定关系:PUCCH格式、PUCCH的OFDM符号个数、PUCCH的OFDM符号位置、PUCCH对应的时隙位置。
在一实施例中,将HARQ-ACK反馈给发送端包括:使用相邻的第一资源和第二资源分别将第一HARQ-ACK和第二HARQ-ACK反馈给发送端。
在一实施例中,第二资源根据被调度的TB个数和预设传输错误概率来预留。
在一实施例中,被传输数据包括:被调度的TB,其中,被调度的TB包括以下至少之一:已经接收的TB、发送端已经发送但未接收到的TB。
在本实施例中提供了一种数据发送方法,图2是根据本公开实施例的数据发送方法的流程图,如图2所示,该流程包括如下步骤:
步骤S202,向接收端发送被传输数据;
步骤S204,接收接收端为被传输数据根据约定规则形成的反馈的HARQ-ACK。
在一实施例中,上述步骤的执行主体为发送端,可以为基站、终端等,但不限于此。
在一实施例中,向接收端发送被传输数据包括以下至少之一:通过同一载波的不同时隙向接收端发送被传输数据;通过被聚合的不同载波向接收端发送被传输数据。图3是本公开实施例中载波时隙承载TB的示意图。
在一实施例中,被传输数据包括:被调度的TB,其中,被调度的TB包括以下至少之一:接收端已经接收的TB、接收端未接收到的TB。
在本实施例中提供了另一种数据反馈方法,图4是根据本公开实施例的另一种数据反馈方法的流程图,如图4所示,该流程包括如下步骤:
步骤S402,确定反馈HARQ-ACK所使用的以下指定信息至少之一:PUCCH格式信息、PUCCH资源信息;
步骤S404,将指定信息通过PUCCH的DMRS通知发送端。
在一实施例中,上述步骤的执行主体为接收端,可以为基站、终端等,但不限于此。
在一实施例中,PUCCH格式信息包括以下之一:短格式、长格式,PUCCH的符号个数,发送端配置的格式集合中的指定格式。
在一实施例中,PUCCH资源信息包括:发送端配置的PUCCH资源集合中的指定PUCCH资源。
在一实施例中,PUCCH资源集合中的PUCCH资源与以下至少之一有绑定关系:PUCCH格式、PUCCH的OFDM符号个数、PUCCH的OFDM符号位置、PUCCH对应的时隙位置。
在一实施例中,将指定信息通过PUCCH的DMRS通知发送端包括以下之一:
将指定信息通过DMRS的符号位置不同来隐含通知发送端;
将指定信息通过DMRS序列不同的循环移位来隐含通知发送端;
将指定信息通过DMRS不同的序列来隐含通知发送端;
将指定信息通过DMRS不同符号数和符号位置的组合来隐含发送端;
将指定信息通过DMRS不同符号中DMRS序列的不同的循环移位的组合来隐含通知发送端;
将指定信息通过DMRS不同符号中不同的序列的组合来隐含通知发送端。
在本实施例中提供了另一种数据接收方法,图5是根据本公开实施例的一种数据接收方法的流程图,如图5所示,该流程包括如下步骤:
步骤S502,接收通过PUCCH的DMRS通知的指定信息;其中,指定信息用于反馈HARQ-ACK,指定信息包括以下至少之一:PUCCH格式信息、PUCCH资源信息。
在一实施例中,上述步骤的执行主体为发送端,可以为基站、终端等,但不限于此。
在一实施例中,接收通过PUCCH的DMRS通知的指定信息包括以下之一:
接收通过DMRS的符号位置不同来隐含通知的指定信息;
接收通过DMRS序列不同的循环移位来隐含通知的指定信息;
接收将指定信息通过DMRS不同的序列来隐含通知的指定信息;
接收通过DMRS不同符号数和符号位置的组合来隐含通知的指定信息;
接收通过DMRS不同符号中DMRS序列的不同的循环移位的组合来隐含通知的指定信息;
接收通过DMRS不同符号中不同的序列的组合来隐含通知的指定信息。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到根据上述实施例的方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本公开的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,或者网络设备等)执行本公开各个实施例所述的方法。
实施例2
在本实施例中还提供了一种数据反馈,发送,接收装置,发送设备,接收设备,该装置配置为实现上述实施例及具体实施方式,已经进行过说明的不再赘述。如以下所使用的,术语“模块”可以实现预定功能的软件和/或硬件的组合。尽管以下实施例所描述的装置较佳地以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可能并被构想的。
本实施例提供了一种数据反馈装置,应用在基站或终端,包括:生成模块,配置为为被传输数据生成HARQ-ACK;反馈模块,配置为将HARQ-ACK反馈给发送端。
在一实施例中,生成模块包括以下至少之一:第一生成单元,配置为为被传输数据分别生成TB级别的第一HARQ-ACK,其中,每个TB对应一个比特;第二生成单元,配置为在被传输数据中解码错误的TB,并为错误的TB生成CBG级别的第二HARQ-ACK,其中,每个CBG对应一个比特。
在一实施例中,将HARQ-ACK反馈给发送端包括:如果第一HARQ-ACK和第二HARQ-ACK同时需要反馈,通过以下方式之一将HARQ-ACK反馈给发送端:时分复用、频分复用、码分复用。
在一实施例中,在被传输数据中解码错误的TB,并为错误的TB生成CBG级别的第二HARQ-ACK,包括:按照被传输数据的顺序,将每个否定确认字符NACK的TB按照顺序依次生成第二HARQ-ACK。
在一实施例中,NACK的TB包括以下至少之一:未检测到DCI的TB,发送端计划调度但未发送的TB。例如:发送端计划调度8个TB,但是最终发送端发送了6个TB,此时有2个TB是计划调度但未发送的TB。
在一实施例中,被传输数据的TB满足以下条件至少之一:
被传输数据中的NACK的TB的第二HARQ-ACK的比特数是高层信令或物理层信令配置的;
被传输数据中的NACK的TB的CBG个数是高层信令或物理层信令配置的;
被传输数据中的TB所包括的总CBG的个数或总的第二HARQ-ACK比特数是高层配置的,且约定每个TB获得CBG个数或每个TB获得的第二HARQ-ACK比特数的差值不超过1。
在一实施例中,将HARQ-ACK反馈给发送端包括以下之一:
在被传输数据的CRC均校验通过时,HARQ-ACK仅包括第一HARQ-ACK且均为ACK;
当被传输数据中的CB的CRC校验均通过,且被传输数据的CRC校验均未通过时,HARQ-ACK仅包括第一HARQ-ACK且均为NACK;
当被传输数据中的CB的CRC校验均未通过,且被传输数据的CRC校验均未通过时,HARQ-ACK仅包括第一HARQ-ACK且均为NACK;
当被传输数据的CRC校验均未通过,且被传输数据中的CB的CRC校验未均通过或均未通过,HARQ-ACK仅包括第二HARQ-ACK。
在一实施例中,将HARQ-ACK反馈给发送端包括:将第一HARQ-ACK和第二HARQ-ACK串联在同一PUCCH信道中反馈给发送端。
在一实施例中,被传输数据满足以下条件至少之一:
被传输数据来自同一载波的不同时隙;
被传输数据来自被聚合的不同载波。
在一实施例中,本实施例还包括以下之一:确定反馈HARQ-ACK所使用的PUCCH格式信息和/或使用的PUCCH资源信息,并通过PUCCH的DMRS通知发送端;从被传输数据对应的DCI中获取PUCCH格式信息和/或PUCCH资源信息,并将其用于反馈HARQ-ACK。
在一实施例中,通过PUCCH的DMRS通知发送端包括以下之一:
通过DMRS的符号位置不同来隐含通知发送端;
通过DMRS序列不同的循环移位来隐含通知发送端;
通过DMRS不同的序列来隐含通知发送端。
通过DMRS不同符号数和符号位置的组合来隐含发送端;
通过DMRS不同符号中DMRS序列的不同的循环移位的组合来隐含通 知发送端;
通过DMRS不同符号中不同的序列的组合来隐含通知发送端。
在一实施例中,本实施例还包括:与发送端约定,通过DMRS通知的PUCCH格式信息和/或PUCCH资源信息,是用于第一HARQ-ACK和/或第二HARQ-ACK。
在一实施例中,PUCCH格式信息包括以下之一:短格式、长格式,PUCCH的符号个数,发送端配置的格式集合中的指定格式。
在一实施例中,PUCCH资源信息包括:发送端配置的PUCCH资源集合中的指定PUCCH资源。
在一实施例中,PUCCH资源集合中的PUCCH资源与以下至少之一有绑定关系:PUCCH格式、PUCCH的OFDM符号个数、PUCCH的OFDM符号位置、PUCCH对应的时隙位置。
在一实施例中,将HARQ-ACK反馈给发送端包括:使用相邻的第一资源和第二资源分别将第一HARQ-ACK和第二HARQ-ACK反馈给发送端。
在一实施例中,第二资源根据被调度的TB个数和预设传输错误概率来预留。
在一实施例中,被传输数据包括:被调度的TB,其中,被调度的TB包括以下至少之一:已经接收的TB、发送端已经发送但未接收到的TB。
本实施例提供了一种数据发送装置,应用在基站或终端,包括:发送模块,配置为向接收端发送被传输数据;接收模块,配置为接收接收端为被传输数据根据约定规则形成的反馈的HARQ-ACK。
在一实施例中,发送模块包括:第一发送单元,配置为通过同一载波的不同时隙向接收端发送被传输数据;和/或,第二发送单元,配置为通过被聚合的不同载波向接收端发送被传输数据。
本实施例提供了另一种数据反馈装置,包括:确定模块,配置为确定反馈HARQ-ACK所使用的以下指定信息至少之一:PUCCH格式信息、PUCCH资源信息;通知模块,配置为将指定信息通过PUCCH的解调参考信号DMRS通知发送端。
在一实施例中,通知模块将指定信息通过PUCCH的DMRS通知发送端包括以下之一:
将指定信息通过DMRS的符号位置不同来隐含通知发送端;
将指定信息通过DMRS序列不同的循环移位来隐含通知发送端;
将指定信息通过DMRS不同的序列来隐含通知发送端。
将指定信息通过DMRS不同符号数和符号位置的组合来隐含发送端;
将指定信息通过DMRS不同符号中DMRS序列的不同的循环移位的组合来隐含通知发送端;
将指定信息通过DMRS不同符号中不同的序列的组合来隐含通知发送端。
本实施例提供了一种数据接收装置,包括:接收模块,配置为接收通过PUCCH的解调参考信号DMRS通知的指定信息;其中,指定信息用于反馈HARQ-ACK,指定信息包括以下至少之一:PUCCH格式信息、PUCCH资源信息。
可选的,接收模块接收通过PUCCH的DMRS通知的指定信息包括以下之一:
接收通过DMRS的符号位置不同来隐含通知的指定信息;
接收通过DMRS序列不同的循环移位来隐含通知的指定信息;
接收将指定信息通过DMRS不同的序列来隐含通知的指定信息;
接收通过DMRS不同符号数和符号位置的组合来隐含通知的指定信息;
接收通过DMRS不同符号中DMRS序列的不同的循环移位的组合来隐含通知的指定信息;
接收通过DMRS不同符号中不同的序列的组合来隐含通知的指定信息。
本实施例提供了一种接收设备,包括:处理器以及存储有处理器可执行指令的存储器,当指令被处理器执行时,执行如下操作:
为被传输数据生成HARQ-ACK;
将HARQ-ACK反馈给发送端。
在一实施例中,在指令执行为被传输数据生成HARQ-ACK时,包括执行如下操作至少之一:
为被传输数据分别生成TB级别的第一HARQ-ACK,其中,每个TB对应一个比特;
在被传输数据中解码错误的TB,并为错误的TB生成CBG级别的第二HARQ-ACK,其中,每个CBG对应一个比特。
也就是说,执行图1所示方法的步骤。
本实施例提供了另一种接收设备,包括:处理器以及存储有处理器可执行指令的存储器,当指令被处理器执行时,执行如下操作:
确定反馈HARQ-ACK所使用的以下指定信息至少之一:PUCCH格式信息、PUCCH资源信息;
将指定信息通过PUCCH的DMRS通知发送端。
可选地,在指令执行向接收端发送被传输数据时,包括执行如下操作之一:
将指定信息通过DMRS的符号位置不同来隐含通知发送端;
将指定信息通过DMRS序列不同的循环移位来隐含通知发送端;
将指定信息通过DMRS不同的序列来隐含通知发送端;
将指定信息通过DMRS不同符号数和符号位置的组合来隐含发送端;
将指定信息通过DMRS不同符号中DMRS序列的不同的循环移位的组合来隐含通知发送端;
将指定信息通过DMRS不同符号中不同的序列的组合来隐含通知发送端。
也就是说,执行图4所示方法的步骤。
本实施例提供了一种数据发送设备,包括:处理器以及存储有处理器可执行指令的存储器,当指令被处理器执行时,执行如下操作:
向接收端发送被传输数据;
接收接收端为被传输数据根据约定规则形成的反馈的HARQ-ACK。
可选地,在指令执行向接收端发送被传输数据时,包括执行如下操作:
通过同一载波的不同时隙向接收端发送被传输数据;和/或,
通过被聚合的不同载波向接收端发送被传输数据。
也就是说,执行图2所示方法的步骤。
本实施例提供了另一种数据发送设备,包括:处理器以及存储有处理器可执行指令的存储器,当指令被处理器执行时,执行如下操作:
接收通过PUCCH的DMRS通知的指定信息;其中,指定信息用于反馈HARQ-ACK,指定信息包括以下至少之一:PUCCH格式信息、PUCCH资源信息。
可选地,在指令执行向接收端发送被传输数据时,包括执行如下操作之一:
接收通过DMRS的符号位置不同来隐含通知的指定信息;
接收通过DMRS序列不同的循环移位来隐含通知的指定信息;
接收将指定信息通过DMRS不同的序列来隐含通知的指定信息;
接收通过DMRS不同符号数和符号位置的组合来隐含通知的指定信息;
接收通过DMRS不同符号中DMRS序列的不同的循环移位的组合来隐含通知的指定信息;
接收通过DMRS不同符号中不同的序列的组合来隐含通知的指定信息。
也就是说,执行图5所示方法的步骤。
需要说明的是,上述各个模块是可以通过软件或硬件来实现的,对于后者,可以通过以下方式实现,但不限于此:上述模块均位于同一处理器中;或者,上述各个模块以任意组合的形式分别位于不同的处理器中。
实施例3
本实施例是本申请的应用实施例,用于结合具体的实施方式对本申请进行详细说明:
在本实施例中,发送端,发送数据的节点,并接收接收端对数据反馈的HARQ-ACK的节点;接收端,接收数据的节点,并反馈数据对应的HARQ-ACK的节点。对于上行数据,下行数据的传输和HARQ-ACK反馈都是适用的。
本实施例还包括多个实例:
实例1
主要举例说明本方法的基本思路。例如,两种类型HARQ-ACKs的形成。
对于接收端(这里假设为UE,本方法可以用于下行数据的HARQ-ACK反馈,也可以用于上行数据的),当被要求对于接收的多个传输块TB的HARQ-ACKs在一个PUCCH中反馈时,这里假设每个TB反馈CBG HARQ-ACK比特数为10bits。
假设单个载波中,UE在slot n,slot n+1,slot n+2,slot n+3,slot n+4中分别接收到TB1,TB2,TB3,TB4和TB5,这些TB被要求在slot n+6中进行HARQ-ACK反馈。假设UE对于TB1~TB5的解码情况为TB1,TB2和TB4解码正确(TB的CRC校验通过),TB3和TB5解码错误,且均为部分CBG正确(CBG中包含的所有CB的CRC校验通过),部分CBG错误。此时UE形成的TB级别的HARQ-ACKs为:11010,1表示ACK(正确接收),0表示NACK(未正确接收)。再为TB3和TB5形成CBG级别的HARQ-ACKs(这里假设TB3中,第1和第2个CBG未正确接收,其余CBG均被正确接收,TB5中第1~4个CBG未正确接收,其余CBG均被正确接收):0011,1111,11;0000,1111,11;然后将TB3和TB5按照它们TB级别的HARQ-ACKs的顺序形成CBG HARQ-ACKs为(串接起来):0011,1111,1100,0011,1111;此时总的反馈比特为:11010(TB级别的HARQ-ACKs)+0011,1111,1100,0011,1111(TB级别的NACK对应的TB的CBG级别的HARQ-ACKs),共25比特。如果每个TB都是反馈CBG级别的HARQ-ACKs,那么需要50bit。显然,这种方式不会影响基于 CBG的重传机制,即对于接收错误的CBG仍然可以重传的。
实际上,一次数据传输正确的概率为90%,那么,这种方式,在本实例中实际上节约了90%的比特。所以这种方式节约的比特开销是很显著的。
发送端接收TB级别的HARQ-ACKs,然后根据TB级别的HARQ-ACKs确定其中为NACK的TB,然后再根据标记为NACK的TB的个数和顺序确定CBG HARQ-ACKs的比特数和每个标记为NACK的TB的CBG HARQ-ACKs比特。例如,发送端接收到TB级别的HARQ-ACKs后,解码后会发现第3和第5个TB被标记为NACK,则进一步认为CBG HARQ-ACKs中,有第3和第5个TB对应的CBG级别的HARQ-ACKs。然后发送端解码CBG HARQ-ACKs从而获得第3个和第5个TB的CBG HARQ-ACKs。这样,发送端认为第1、第2和第4个TB被正确接收不需要重传,第3个第5个TB未被正确解码,需要将其中标记为NACK的CBG进行重传(实际是把标记为NACK的CBG中的CBs重传)。
这种方式,不会影响基于CBG重传的效率,但是可以有效减少HARQ-ACKs的开销,也起到了节约接收端的发送功耗(因为发的比特越少,需要的功耗越小)。
补充,每个TB反馈的CBG HARQ-ACK比特个数可以按照每个CBG对应一个比特。每个TB被划分为几个CBG,可以是发送端通过RRC信令和/或物理层信令配置的,也可以是发送端为多个TB配置一个总的CBG值,然后不同TB的CBG个数根据该TB传输时使用的层数相关,例如,层数越多,对应的从总CBG值中为该TB划分的CBG个数越多。也可以是通过高层RRC信令为每个TB配置的CBG个数。
实例2
主要说明两种类型的HARQ-ACKs发送。
基于实例1,对于形成的多种类型的HARQ-ACKs(为了后续描述方便,不妨将TB HARQ-ACKs记为第一种类型,将标记为NACK的TB的CBG HARQ-ACKs记为第二种类型)具体的发送方法包括以下几种:
将多种类型的HARQ-ACKs串联后,编码调制后发送。
第二种类型HARQ-ACKs比特个数是变化根据每次标记为NACK的TB个数,所以,如果将两种类型的HARQ-ACKs串接,然后编码调制,再发送,可能将导致发送端接收接收端反馈的HARQ-ACKs时增加检测复杂度,但是这种方式只需要使用1个PUCCH信道。进一步的,考虑结合降低检测复杂度的方法,例如结合速率匹配。由于发送端为接收端分配的传输HARQ-ACKs的资源和调制编码信息MCS都是配置,那么接收端按照调制与编码策略(MCS)信息调制编码后,再通过速率匹配的方式映射到所述资源中,这样发送端接收时不需要盲检测。这种方式下,资源需要按照最大需求来分配,但是这种方式可以提升HARQ-ACKs传输的可靠性,因为此时采用实例1中的方式得到的总的HARQ-ACKs比特数是减少的,速率匹配实际使得HARQ-ACKs的码率很低,可靠性大幅增加。
将多种类型的HARQ-ACKs分别在不同的PUCCH中发送。
在NR中,上行控制信息(Uplink control information,UCI)(包括HARQ-ACKs在内)按照传输的比特数对应着不同的PUCCH格式。还有,NR中根据PUCCH使用的符号个数对应着不同的PUCCH传输方式(为方便将PUCCH分为短PUCCH和长PUCCH)。短PUCCH占用1~2个符号,长PUCCH符号数大于4个。
所以,文中的PUCCH格式包括PUCCH使用的符号数、和待传输的比特数,两个层面的含义。对于PUCCH格式的解释举例,例如,对于1~2bit的UCI,如果配置为1个或2个符号时,将使用一种PUCCH格式;如果配置为至少4个符号时,将使用另一种PUCCH格式。对于大于或等于3个比特,小于或等于X(X取值还在讨论中)比特的情况,如果配置为1个或2个符号时,将使用一种PUCCH格式,如果配置为至少4个符号时,将使用另一种PUCCH格式;对于大于X比特,如果配置为至少4个符号时,将使用另一种PUCCH格式。对于大于或等于3,小于或等于X比特的情况,如果配置为1个或2个符号时,将使用一种PUCCH格式,如果配置为至少4个符号时,将使用另一种PUCCH格式。
将多种类型的HARQ-ACKs分别在不同的PUCCH信道发送。例如第一种类型由于总的TBs个数是确定(发送端是知道的),每个TB一个比特 的TB HARQ-ACK,所以第一种类型的HARQ-ACKs总的比特数是确定。然后再根据发送端配置的符号个数确定对应的PUCCH格式在分配的资源上传输。第二种类型由于总的比特数是变化的,发送端为其分配的资源也是按照最大需求分配的,但是接收端发送时,不需要映射到所有资源中,只需要按照配置的参数发送即可。发送端先解码第一种类型的HARQ-ACKs,获知其中标记为NACK的TB个数和顺序位置,然后根据标记为NACK的TB确定第二种类型的HARQ-ACKs的总比特数,然后再解码第二种类型HARQ-ACKs。
两种类型具体使用的PUCCH格式相对比较多,可以按照比特数分配对应确定。例如,分别对应两个长PUCCH,且允许两个长PUCCH时分或频分复用;或者分别对应两个短PUCCH,且允许两个长PUCCH时分或频分复用;或者,一个对应长PUCCH,另一个对应短PUCCH,且允许两个PUCCH时分复用。
也可以为两种类型的HARQ-ACKs分配相同的资源,两种HARQ-ACKs对应的PUCCH在该资源中频分或时分或码分复用。
发送端为接收端配置PUCCH资源集合,在配置的PUCCH资源集合中,存在多种不同格式、不同符号数、不同比特数对应的多种具体PUCCH资源。例如,所述集合中包括中的一个或多个:
传输1bit HARQ-ACK且1个符号(包括符号位置)的具体的PUCCH资源1;
传输1bit HARQ-ACK且2个符号(包括符号位置)的具体的PUCCH资源2;
传输2bit HARQ-ACKs且1个符号(包括符号位置)的具体的PUCCH资源3;
传输2bit HARQ-ACKs且2个符号(包括符号位置)的具体的PUCCH资源4;
传输3~X bit HARQ-ACKs且N(N大于或等于4,小于或等于14,N取值不同,就有多个具体的PUCCH资源)个符号(包括符号位置)的具体 的PUCCH资源5;X具体取值还在讨论中,例如取值为11,或22。
传输大于X bit HARQ-ACKs且N(N大于或等于4,小于或等于14,N取值不同,就有多个具体的PUCCH资源)个符号(包括符号位置)的具体的PUCCH资源6;
上述各种情况还可以再结合频域资源进行描述。
发送端可以给接收端配置适合的集合,例如配置可能的4个具体的PUCCH资源,然后接收端从配置的集合中根据形成的HARQ-ACKs的比特数(也要结合PUCCH需要的OFDM符号数)选择合适具体的PUCCH资源分别传输对应的HARQ-ACKs。
接收端也可以通过实例4中的PUCCH的DMRS隐含通知自己选择的具体PUCCH资源给发送端。这种比较适合集合中有多种相同的具体的PUCCH资源。
一个例子为PUCCH资源集合的配置,这种方式可以独立应用与PUCCH资源集合的配置。
目前的PUCCH资源中包含的多个具体的PUCCH资源,是指频域资源,为了能节约开销,下面建议对于PUCCH资源集合进行新的定义。在PUCCH资源集合中,还可以为一个具体的PUCCH资源同时带有更多的属性(除了频域的资源属性外),例如,还可以包括PUCCH格式,PUCCH起始符号,PUCCH持续时长(如PUCCH符号数),PUCCH所在的时隙slot,是否跳频,序列或码字信息等属性。这些属性能被以表格或联合编码的方式表现出来。
例如,一个例子为PUCCH资源集合设计。PUCCH资源集合中的每个具体的PUCCH资源包括:物理资源块(PRB)索引,PUCCH起始符号,持续时长和所在的slot信息。然后对于1~2比特的PUCCH,序列或码字信息还需要增加。对于大于2比特的PUCCH不需要序列或码字信息。一个PUCCH资源集合中包含n个具体的PUCCH资源,n值可以根据UE的需求来确定,例如UE处于静态或低速时,可以配置n值较小;如果UE高速移动,可以配置n值较大,这样为UE提供更多的可能的PUCCH资源。对于PUCCH格式,它能根据需要反馈的比特数和分配具体PUCCH的符号数 (持续时长)确定,因为,基站和UE都知道需要反馈的比特数,所以PUCCH格式可以被隐含。PUCCH是否跳频直接通过高层信令独立配置。
具体的操作为:基站为UE配置PUCCH资源集合,对于集合中每个具体的PUCCH资源都有频域资源、起始符号、持续时长、所对应的slot。典型的配置4个具体的PUCCH资源。然后,通过物理层信令指示具体使用的PUCCH资源为每次UE反馈从集合中。对于1~2比特的PUCCH,基站还为每个具体的PUCCH资源配置对应的1~2比特的信息对应的序列或码字信息。UE接收基站配置的PUCCH资源集合,根据物理层的指示信令确定本次反馈对应的具体PUCCH资源,然后按照PUCCH资源的要求进行PUCCH发送。
另一个例子,描述上述的TB级别的HARQ-ACKs的PUCCH资源和上述的CBG HARQ-ACKs的PUCCH资源之间存在某种关系,这样,发送端和接收端能够通过TB级别的HARQ-ACKs的PUCCH资源推算出CBG HARQ-ACKs的PUCCH对应的资源。这样就节约了为另一种类型的PUCCH分配资源的信令。考虑到TB级别的HARQ-ACKs的比特总数是确定的,所以为它分配对应的PUCCH资源,再通过它的PUCCH资源根据约定规则推算出另一种类型的HARQ-ACKs的PUCCH资源。
例如,两种类型的HARQ-ACKs都是长PUCCH时,可以配置它们共享相同的频域资源。且它们时域符号是连续的,可以理解是两个PUCCH是时分在相同的频域资源中。
又例如,两种类型的HARQ-ACK有相同的频域资源内频分复用,资源中约定部分物理资源块或子载波给第一种类型的HARQ-ACKs,再约定部分物理资源块或子载波给第二种类型的HARQ-ACKs。两份资源按照约定图样频域复用,或两种类型的HARQ-ACKs分别连续占用部分频域资源(按照物理资源块PRB或子载波为单位)且两者部分的频域资源连续。相当于第二种类型HARQ-ACKs的起始频域位置是通过第一种类型的HARQ-ACKs结束位置隐含得到的,频域持续资源数量,可以根据TB级别的HARQ-ACKs中被标记为NACK的TB个数和每个TB的CBG个数来确定。
具体的例子,例如,TB HARQ-ACKs总比特10bit,有5bit为NACK,5比特为ACK,这样使用中等负载对应的PUCCH格式进行传输,发送端为接收端分配一个PRB(假设为PRBn)来传输TB HARQ-ACKs的PUCCH。然后假设每个TB有10个CBG,每个CBG有一个HARQ-ACK,这样,CBG HARQ-ACKs就有50比特,根据发送端对于50bit HARQ-ACKs配置的编码调制方式,得到需要4个PRB(假设需要4个PRB)来传输,这样,根据约定规则(例如两种HARQ-ACKs的PUCCH频域连续),第二种HARQ-ACKs的资源为PRBn之后的连续4个PRB。这样发送端和接收端都可以根据第一个PRBn得到第二种HARQ-ACKs的资源,从而节约了为第二种HARQ-ACKs资源分配资源的信令。这里也可以总结为:使用相邻的第一资源和第二资源分别将所述TB HARQ-ACK和所述CBG HARQ-ACK反馈给发送端。
第二资源根据被调度的总的TB个数和预设传输错误概率来预留。例如,还有一个种方法为第二种HARQ-ACKs的PUCCH分配资源。考虑它的比特数和传错的TB数相关,而一个TB传输错误的统计概率是10%,所以可以根据调度的TB总数量按照比例折算为它分配对应的资源大小。例如,调度了10个TB,那么可以按照会有一个TB被解错,从而CBG HARQ-ACK比特也就对应一个TB,从而为它分配资源。更保守的可以提高所述比例,如,也可以按照10个TB会有2个TB解错,从而CBG HARQ-ACK比特数对应2个TB,来为它分配资源。这个分配的资源可以采用上面的方式,在TB HARQ-ACK的资源和CBG HARQ-ACK的资源之间存在约定的关系,这样只需要通知TB HARQ-ACK的资源就可以了,从而减少资源分配的信令。
资源是根据被调度的TB个数和预设概率来预留。
实例3
主要说明两种类型的HARQ-ACKs的一些特殊情况下的处理。
基于实例1,本实例中对于所述多个TBs/PDSCHs解码中几种特殊情况进行说明。
情况1,当所述TBs的CRC均校验通过时,只发送TB HARQ-ACKs 且均为ACK,CBG HARQ-ACKs不发送(也意味着不需要形成,下同)。
情况2,当所述TBs中的CB的CRC校验均通过,但是所述TBs的CRC均未校验通过时,只发送TB HARQ-ACKs且均为NACK,CBG HARQ-ACKs不发送。
情况3,当所述TBs中的CB的CRC校验均未通过,且所述TBs的CRC均未校验通过时,只发送TB HARQ-ACKs且均为NACK,CBG HARQ-ACKs不发送。
情况4,当所述TBs的CRC校验均未通过,且所述TBs中的CB的CRC校验未出现均通过或均未通过的情况时,只发送CBG HARQ-ACKs,TB级别的HARQ-ACKs不发送。
实例4
基于前面的实例,本实例中描述:接收端通过DMRS通知发送端,接收端传输PUCCH使用的格式信息和/或具体的PUCCH资源信息。
这种方式的主要目的是,将由接收端根据实际解码情况确定出反馈的HARQ-ACKs比特数后,然后在确定具体的PUCCH格式在分配的资源中传输。分配的资源也可以是来自发送端配置的一个PUCCH的资源集合,UE从集合中选择具体的PUCCH资源。但是接收端自主选择的PUCCH格式和/或具体的PUCCH资源,如果不通知发送端,那么发送端需要盲检测多种可能性,增加了复杂度。所以,本实例中考虑使用PUCCH的DMRS的相关信息隐含通知发送端,接收端使用的PUCCH格式和/或具体的PUCCH资源,因为发送端需要先解码DMRS才能解码PUCCH,所以利用PUCCH的DMRS的相关信息隐含通知发送端是方便的,且不增加开销。也是考虑发送端检测所述DMRS相关信息相对于比较容易。
例如,接收端使用的PUCCH格式信息能被所述DMRS隐含通知,这里的PUCCH格式信息包括下述至少之一:短格式、长格式,PUCCH符号个数,PUCCH符号位置。PUCCH格式信息也可以是发送端为接收端配置的PUCCH资源集合中的不同PUCCH格式或者是发送端为接收端配置的PUCCH格式集合中,指示具体的使用的哪个格式。
例如,接收端使用的PUCCH具体的PUCCH资源信息能被所述DMRS隐含通知,这里是指发送端为接收端配置了PUCCH资源集合,其中包含多个具体的PUCCH资源。接收端通过所述DMRS隐含通知接收端具体使用了哪个具体的PUCCH资源。
例如,对于PUCCH资源集合的定义,该集合中的PUCCH资源与PUCCH格式、PUCCH符号数和PUCCH符号位置(在slot中的位置)中至少一个有绑定关系。如,在集合中具体的PUCCH资源对应着有自己的PUCCH格式;在集合中具体的PUCCH资源对应着有自己的PUCCH符号数和符号位置;在集合中不同具体的PUCCH资源对应的有自己PUCCH格式和符号数以及符号位置。也可以理解为,集合中一个PUCCH资源对应着有自己的传输方式,当接收端选择了或配置了一个具体的PUCCH资源后,对应着的编码调制方式、符合数和符号位置都是确定的。
例如,通过所述DMRS隐含通知,具体包括至少下述方式之一:
1)通过所述DMRS的符号位置不同来隐含通知使用的PUCCH格式和/或具体的PUCCH资源信息;例如,不同PUCCH格式或不同的具体的PUCCH资源中,具有不同的DMRS符号位置。
2)通过所述DMRS序列不同的循环移位来隐含通知使用的PUCCH格式和/或具体的PUCCH资源信息;例如,不同PUCCH格式或不同的具体的PUCCH资源中,对应的DMRS序列具有不同的循环移位。
3)通过所述DMRS不同的序列来隐含通知使用的PUCCH格式和/或具体的PUCCH资源信息。例如,不同PUCCH格式或不同的具体的PUCCH资源中,对应的DMRS具有不同的序列。
4)通过所述DMRS不同符号数和符号位置的组合来隐含通知使用的PUCCH格式和/或具体的PUCCH资源信息;例如,不同PUCCH格式或不同的具体的PUCCH资源中,对应的DMRS符号的位置和个数不同。
5)通过所述DMRS不同符号中DMRS序列的不同的循环移位的组合来隐含通知使用的PUCCH格式和/或具体的PUCCH资源信息。例如,不同PUCCH格式或不同的具体的PUCCH资源中,对应的DMRS在不同的DMRS符号中具有不同的循环移位。
6)通过所述DMRS不同符号中不同的序列的组合来隐含通知使用的PUCCH格式和/或具体的PUCCH资源信息。例如,不同PUCCH格式或不同的具体的PUCCH资源中,对应的DMRS在不同的DMRS符号中具有不同的序列。
实例5
在实例1,2,3,4基础上,再增加对于所述多个TBs形成1bit的HARQ-ACK,具体如下:
接收端,当所有TB均被正确解码,反馈1个bit的ACK(这种看作是第三种类型的HARQ-ACK),所有TB的TB级别的HARQ-ACKs(实际上是10bit的ACKs)和标记为NACK的TB的CBG HARQ-ACKs(这种情况下实际上不会形成CBG HAR-ACKs)不再发送;这种情况出现概率还是较大的,因为一个数据块传输正确的统计概率为90%。这种方式下,1bit的ACK信息发送时,可以采用上述实施中的方式,例如确定资源的方式,确定格式的方式等。例如,发送端为接收端配置的PUCCH资源集合中有一份具体的PUCCH资源对应着1bit的HARQ-ACK格式。发送端,接收接收端的反馈从PUCCH资源集合中这份具体的PUCCH资源中。如果解码为ACK,发送端认为所有TB均被接收端正确接收。
接收端,当所有TB均未被正确解码,反馈一个bit的NACK(这种看作是第三种类型的HARQ-ACK),所有TB的TB级别的HARQ-ACKs不发送,标记为NACK的TB(实际为所有TB)的CBG HARQ-ACKs发送。这种情况的出现概率很低,因为传输数据信道的传输引入了各种保障机制,所以传输的可靠性统计概率为90%。这种方式下,1bit的NACK信息发送时,可以采用上述实施中的方式,例如确定资源的方式,确定格式的方式等。例如,发送端为接收端配置的PUCCH资源集合中有一份具体的PUCCH资源对应着1bit的HARQ-ACK格式。发送端,接收接收端的反馈从PUCCH资源集合中这份具体的PUCCH资源中。如果解码为NACK,发送端认为所有TB均未被接收端正确接收,然后接收CBG HARQ-ACKs从另一份具体的PUCCH资源中(这里假设PUCCH资源中还有一份具体的PUCCH资源对应着传输更多比特的HARQ-ACKs格式),正确解码后,重传每个TB 错误的CBG。
对于基于CBG反馈中,当多个TBs/PDSCHs的HARQ-ACKs复用在一个slot中时,采用本实施例的,可以减少HARQ-ACKs的比特数,从而减少开销和节约接收端发送功耗,且不会影响CBG重传的性能。
实施例4
本公开的实施例还提供了一种存储介质。可选地,在本实施例中,上述存储介质可以被设置为存储配置为执行以下步骤的程序代码:
S1,为被传输数据生成HARQ-ACK;
S2,将所述HARQ-ACK反馈给发送端。
可选地,在本实施例中,上述存储介质可以包括但不限于:U盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、移动硬盘、磁碟或者光盘等各种可以存储程序代码的介质。
可选地,在本实施例中,处理器根据存储介质中已存储的程序代码执行为被传输数据HARQ-ACK;
可选地,在本实施例中,处理器根据存储介质中已存储的程序代码执行将所述HARQ-ACK反馈给发送端。
可选地,本实施例中的具体示例可以参考上述实施例及具体实施方式中所描述的示例,本实施例在此不再赘述。
显然,本领域的技术人员应该明白,上述的本公开的各模块或各步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,可选地,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本公开不限制于任何特定的硬件和软件结合。
以上所述仅为本公开的优选实施例而已,并不用于限制本公开,对于 本领域的技术人员来说,本公开可以有各种更改和变化。凡在本公开的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。

Claims (41)

  1. 一种数据反馈方法,包括:
    为被传输数据生成混合自动重传请求确认字符HARQ-ACK;
    将所述HARQ-ACK反馈给发送端。
  2. 根据权利要求1所述的方法,其中,为被传输数据生成HARQ-ACK包括以下至少之一:
    为被传输数据分别生成传输块TB级别的第一HARQ-ACK,其中,每个TB对应一个比特;
    在被传输数据中解码错误的TB,并为错误的TB生成码块组CBG级别的第二HARQ-ACK,其中,每个CBG对应一个比特。
  3. 根据权利要求2所述的方法,其中,将所述HARQ-ACK反馈给发送端包括以下之一:
    分别在两个长物理上行链路控制信道PUCCH信道反馈所述第一HARQ-ACK和所述第二HARQ-ACK;
    分别在两个短PUCCH信道反馈所述第一HARQ-ACK和所述第二HARQ-ACK;
    在长PUCCH信道反馈所述第一HARQ-ACK,在短PUCCH信道反馈所述第二HARQ-ACK;
    在长PUCCH信道反馈所述第二HARQ-ACK,在短PUCCH信道反馈所述第一HARQ-ACK;
    在一个或多个时隙中的不同PUCCH信道发馈。
  4. 根据权利要求2所述的方法,其中,将所述HARQ-ACK反馈给发送端包括:
    如果第一HARQ-ACK和第二HARQ-ACK同时需要反馈,通过以下方式之一将所述HARQ-ACK反馈给发送端:时分复用、频分复用、码分复用。
  5. 根据权利要求1所述的方法,其中,在被传输数据中解码错误的TB,并为错误的TB生成CBG级别的第二HARQ-ACK,包括:
    按照所述被传输数据的顺序,将每个否定确认字符NACK的TB按照顺序依次生成第二HARQ-ACK。
  6. 根据权利要求5所述的方法,其中,NACK的TB包括以下至少之一:未检测到下行控制信息DCI的TB,发送端计划调度但未发送的TB。
  7. 根据权利要求2所述的方法,其中,所述被传输数据的TB满足以下条件至少之一:
    所述被传输数据中的NACK的TB的第二HARQ-ACK的比特数是高层信令或物理层信令配置的;
    所述被传输数据中的NACK的TB的CBG个数是高层信令或物理层信令配置的;
    所述被传输数据中的TB所包括的总CBG的个数或总的第二HARQ-ACK比特数是高层配置的,且约定每个TB获得CBG个数或每个TB获得的第二HARQ-ACK比特数的差值不超过1。
  8. 根据权利要求2所述的方法,其中,将所述HARQ-ACK反馈给发送端包括以下之一:
    在所述被传输数据的循环冗余校验CRC均校验通过时,所述HARQ-ACK仅包括所述第一HARQ-ACK且均为肯定确认字符ACK;
    当所述被传输数据中的码块CB的CRC校验均通过,且所述被传输数据的CRC校验均未通过时,所述HARQ-ACK仅包括第一HARQ-ACK且均为NACK;
    当所述被传输数据中的码块CB的CRC校验均未通过,且所述被传输数据的CRC校验均未通过时,所述HARQ-ACK仅包括第一HARQ-ACK且均为NACK;
    当所述被传输数据的CRC校验均未通过,且所述被传输数据中的CB的CRC校验未均通过或均未通过,所述HARQ-ACK仅包括第二 HARQ-ACK。
  9. 根据权利要求2所述的方法,其中,所述将所述HARQ-ACK反馈给发送端包括:
    将所述第一HARQ-ACK和所述第二HARQ-ACK串联在同一PUCCH信道中反馈给发送端。
  10. 根据权利要求1所述的方法,其中,所述被传输数据满足以下条件至少之一:
    所述被传输数据来自同一载波的不同时隙;
    所述被传输数据来自被聚合的不同载波。
  11. 根据权利要求2所述的方法,其中,所述方法还包括以下之一:
    确定反馈所述HARQ-ACK所使用的PUCCH格式信息和/或使用的PUCCH资源信息,并通过PUCCH的解调参考信号DMRS通知发送端;
    从所述被传输数据对应的DCI中获取PUCCH格式信息和PUCCH资源信息中至少之一,并将其用于反馈所述HARQ-ACK。
  12. 根据权利要求11所述的方法,其中,通过PUCCH的DMRS通知发送端包括以下之一:
    通过所述DMRS的符号位置不同来隐含通知发送端;
    通过所述DMRS序列不同的循环移位来隐含通知发送端;
    通过所述DMRS不同的序列来隐含通知发送端;
    通过所述DMRS不同符号数和符号位置的组合来隐含发送端;
    通过所述DMRS不同符号中DMRS序列的不同的循环移位的组合来隐含通知发送端;
    通过所述DMRS不同符号中不同的序列的组合来隐含通知发送端。
  13. 根据权利要求11所述的方法,其中,所述方法还包括:
    与所述发送端约定,通过DMRS通知的PUCCH格式信息和 PUCCH资源信息中至少之一,是用于第一HARQ-ACK和/或第二HARQ-ACK。
  14. 根据权利要求11所述的方法,其中,所述PUCCH格式信息包括以下之一:短格式、长格式,PUCCH的符号个数,所述发送端配置的格式集合中的指定格式。
  15. 根据权利要求11所述的方法,其中,所述PUCCH资源信息包括:
    所述发送端配置的PUCCH资源集合中的指定PUCCH资源。
  16. 根据权利要求11所述的方法,其中,所述PUCCH资源集合中的PUCCH资源与以下至少之一有绑定关系:PUCCH格式、PUCCH的正交频分复用OFDM符号个数、PUCCH的OFDM符号位置、PUCCH对应的时隙位置。
  17. 根据权利要求2所述的方法,其中,将所述HARQ-ACK反馈给发送端包括:
    使用相邻的第一资源和第二资源分别将所述第一HARQ-ACK和所述第二HARQ-ACK反馈给发送端。
  18. 根据权利要求17所述的方法,其中,所述第二资源根据被调度的TB个数和预设传输错误概率来预留。
  19. 根据权利要求1所述的方法,其中,所述被传输数据包括:被调度的TB,其中,所述被调度的TB包括以下至少之一:已经接收的TB、所述发送端已经发送但未接收到的TB。
  20. 一种数据发送方法,包括:
    向接收端发送被传输数据;
    接收所述接收端为所述被传输数据根据约定规则形成的反馈的混合自动重传请求确认字符HARQ-ACK。
  21. 根据权利要求20所述的方法,其中,向接收端发送被传输数据包括以下至少之一:
    通过同一载波的不同时隙向接收端发送所述被传输数据;
    通过被聚合的不同载波向接收端发送所述被传输数据。
  22. 根据权利要求20所述的方法,其中,所述被传输数据包括:被调度的传输块TB,其中,所述被调度的TB包括以下至少之一:所述接收端已经接收的TB、所述接收端未接收到的TB。
  23. 一种数据反馈方法,包括:
    确定反馈混合自动重传请求确认字符HARQ-ACK所使用的以下指定信息至少之一:物理上行链路控制信道PUCCH格式信息、PUCCH资源信息;
    将所述指定信息通过PUCCH的解调参考信号DMRS通知发送端。
  24. 根据权利要求23所述的方法,其中,所述PUCCH格式信息包括以下之一:短格式、长格式,PUCCH的符号个数,所述发送端配置的格式集合中的指定格式。
  25. 根据权利要求23所述的方法,其中,所述PUCCH资源信息包括:
    所述发送端配置的PUCCH资源集合中的指定PUCCH资源。
  26. 根据权利要求23所述的方法,其中,所述PUCCH资源集合中的PUCCH资源与以下至少之一有绑定关系:PUCCH格式、PUCCH的正交频分复用OFDM符号个数、PUCCH的OFDM符号位置、PUCCH对应的时隙位置。
  27. 根据权利要求23所述的方法,其中,将所述指定信息通过PUCCH的解调参考信号DMRS通知发送端包括以下之一:
    将所述指定信息通过所述DMRS的符号位置不同来隐含通知发送端;
    将所述指定信息通过所述DMRS序列不同的循环移位来隐含通知发送端;
    将所述指定信息通过所述DMRS不同的序列来隐含通知发送端;
    将所述指定信息通过所述DMRS不同符号数和符号位置的组合来隐含发送端;
    将所述指定信息通过所述DMRS不同符号中DMRS序列的不同的循环移位的组合来隐含通知发送端;
    将所述指定信息通过所述DMRS不同符号中不同的序列的组合来隐含通知发送端。
  28. 一种数据接收方法,包括:
    接收通过物理上行链路控制信道PUCCH的解调参考信号DMRS通知的指定信息;
    其中,所述指定信息用于反馈混合自动重传请求确认字符HARQ-ACK,所述指定信息包括以下至少之一:PUCCH格式信息、PUCCH资源信息。
  29. 根据权利要求28所述的方法,其中,接收通过PUCCH的DMRS通知的指定信息包括以下之一:
    接收通过所述DMRS的符号位置不同来隐含通知的指定信息;
    接收通过所述DMRS序列不同的循环移位来隐含通知的指定信息;
    接收将所述指定信息通过所述DMRS不同的序列来隐含通知的指定信息;
    接收通过所述DMRS不同符号数和符号位置的组合来隐含通知的指定信息;
    接收通过所述DMRS不同符号中DMRS序列的不同的循环移位的组合来隐含通知的指定信息;
    接收通过所述DMRS不同符号中不同的序列的组合来隐含通知的指定信息。
  30. 一种数据反馈装置,包括:
    生成模块,配置为为被传输数据生成混合自动重传请求确认字符HARQ-ACK;
    反馈模块,配置为将所述HARQ-ACK反馈给发送端。
  31. 根据权利要求30所述的装置,其中,所述生成模块包括以下至少之一:
    第一生成单元,配置为为被传输数据分别生成TB级别的第一HARQ-ACK,其中,每个TB对应一个比特;
    第二生成单元,配置为在被传输数据中解码错误的TB,并为错误的TB生成CBG级别的第二HARQ-ACK,其中,每个CBG对应一个比特。
  32. 一种数据发送装置,包括:
    发送模块,配置为向接收端发送被传输数据;
    接收模块,配置为接收所述接收端为所述被传输数据根据约定规则形成的反馈的混合自动重传请求确认字符HARQ-ACK。
  33. 根据权利要求32所述的装置,其中,所述发送模块包括以下至少之一:
    第一发送单元,配置为通过同一载波的不同时隙向接收端发送所述被传输数据;
    第二发送单元,配置为通过被聚合的不同载波向接收端发送所述被传输数据。
  34. 一种数据反馈装置,包括:
    确定模块,配置为确定反馈混合自动重传请求确认字符HARQ-ACK所使用的以下指定信息至少之一:物理上行链路控制信道PUCCH格式信息、PUCCH资源信息;
    通知模块,配置为将所述指定信息通过PUCCH的解调参考信号DMRS通知发送端。
  35. 根据权利要求34所述的装置,其中,所述通知模块将所述指定信息通过PUCCH的DMRS通知发送端包括以下之一:
    将所述指定信息通过所述DMRS的符号位置不同来隐含通知发送端;
    将所述指定信息通过所述DMRS序列不同的循环移位来隐含通知发送端;
    将所述指定信息通过所述DMRS不同的序列来隐含通知发送端;
    将所述指定信息通过所述DMRS不同符号数和符号位置的组合来隐含发送端;
    将所述指定信息通过所述DMRS不同符号中DMRS序列的不同的循环移位的组合来隐含通知发送端;
    将所述指定信息通过所述DMRS不同符号中不同的序列的组合来隐含通知发送端。
  36. 一种数据接收装置,包括:
    接收模块,配置为接收通过物理上行链路控制信道PUCCH的解调参考信号DMRS通知的指定信息;
    其中,所述指定信息用于反馈混合自动重传请求确认字符HARQ-ACK,所述指定信息包括以下至少之一:PUCCH格式信息、PUCCH资源信息。
  37. 根据权利要求36所述的装置,其中,所述接收模块接收通过PUCCH的DMRS通知的指定信息包括以下之一:
    接收通过所述DMRS的符号位置不同来隐含通知的指定信息;
    接收通过所述DMRS序列不同的循环移位来隐含通知的指定信息;
    接收将所述指定信息通过所述DMRS不同的序列来隐含通知的指定信息;
    接收通过所述DMRS不同符号数和符号位置的组合来隐含通知的指定信息;
    接收通过所述DMRS不同符号中DMRS序列的不同的循环移位的组合来隐含通知的指定信息;
    接收通过所述DMRS不同符号中不同的序列的组合来隐含通知的 指定信息。
  38. 一种接收设备,包括:
    处理器以及存储有所述处理器可执行指令的存储器,当所述指令被处理器执行时,执行权利要求1至19任一项所述的方法,或者执行权利要求23至27任一项所述的方法。
  39. 一种数据发送设备,包括:
    处理器以及存储有所述处理器可执行指令的存储器,当所述指令被处理器执行时,执行权利要求20至22任一项所述的方法,或者执行权利要求28至29任一项所述的方法。
  40. 一种存储介质,所述存储介质包括存储的程序,其中,所述程序运行时执行权利要求1至19任一项所述的方法,或者执行权利要求20至22任一项所述的方法,或者执行权利要求23至27任一项所述的方法,或者执行权利要求28至29任一项所述的方法。
  41. 一种处理器,所述处理器配置为运行程序,其中,所述程序运行时执行权利要求1至19中任一项所述的方法,或者执行权利要求20至22任一项所述的方法,或者执行权利要求23至27任一项所述的方法,或者执行权利要求28至29任一项所述的方法。
PCT/CN2018/100293 2017-09-08 2018-08-13 数据反馈、发送、接收方法及装置,接收设备,发送设备 WO2019047676A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP18852974.7A EP3681069B1 (en) 2017-09-08 2018-08-13 Data feedback, sending and receiving method and device, receiving equipment and sending equipment
KR1020207010106A KR20200046105A (ko) 2017-09-08 2018-08-13 데이터 피드백, 송신 및 수신 방법 및 장치, 수신기기 및 송신기기
JP2020513502A JP7102511B2 (ja) 2017-09-08 2018-08-13 データのフィードバック、送信、受信方法及び装置、受信機器、送信機器
US16/645,036 US11381345B2 (en) 2017-09-08 2018-08-13 Data feedback, sending and receiving method and device, receiving equipment and sending equipment
KR1020227005517A KR102457944B1 (ko) 2017-09-08 2018-08-13 데이터 피드백, 송신 및 수신 방법 및 장치, 수신기기 및 송신기기

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710807037.9 2017-09-08
CN201710807037.9A CN109474393B (zh) 2017-09-08 2017-09-08 数据反馈、发送、接收方法及装置,接收设备,发送设备

Publications (1)

Publication Number Publication Date
WO2019047676A1 true WO2019047676A1 (zh) 2019-03-14

Family

ID=65633532

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/100293 WO2019047676A1 (zh) 2017-09-08 2018-08-13 数据反馈、发送、接收方法及装置,接收设备,发送设备

Country Status (6)

Country Link
US (1) US11381345B2 (zh)
EP (1) EP3681069B1 (zh)
JP (1) JP7102511B2 (zh)
KR (2) KR102457944B1 (zh)
CN (1) CN109474393B (zh)
WO (1) WO2019047676A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019099670A1 (en) * 2017-11-15 2019-05-23 Idac Holdings, Inc. Method and apparatus for harq-ack codebook size determination and resource selection in nr
EP3627753B1 (en) * 2018-04-04 2022-03-09 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Method for transmitting uplink control information, terminal device, and network device
US20220321305A1 (en) * 2019-05-28 2022-10-06 Lenovo (Beijing) Limited Method and apparatus for harq-ack feedback in multi-trp transmission
US20240113812A1 (en) * 2022-09-29 2024-04-04 Nokia Technologies Oy Feedback per code block group

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106888074A (zh) * 2017-03-24 2017-06-23 宇龙计算机通信科技(深圳)有限公司 一种码块的重传方法及装置
CN106961319A (zh) * 2016-01-12 2017-07-18 中兴通讯股份有限公司 一种数据处理的方法和装置
CN107113096A (zh) * 2014-12-31 2017-08-29 Lg 电子株式会社 在无线通信系统中发送ack/nack的方法和使用该方法的设备

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3407522B1 (en) * 2010-05-04 2020-07-15 LG Electronics Inc. Method and apparatus for transmitting a reference signal in a wireless communication system
EP3242435B1 (en) * 2014-12-31 2019-10-23 LG Electronics Inc. Method and apparatus for allocating resources in wireless communication system
WO2016123372A1 (en) * 2015-01-28 2016-08-04 Interdigital Patent Holdings, Inc. Uplink feedback methods for operating with a large number of carriers
WO2016161629A1 (en) * 2015-04-10 2016-10-13 Mediatek Singapore Pte. Ltd. Methods and apparatus for pucch resource allocation of mtc
CN108521320B (zh) 2015-12-31 2020-01-03 华为技术有限公司 下行反馈信息的传输方法、基站以及终端设备
US10492184B2 (en) * 2016-12-09 2019-11-26 Samsung Electronics Co., Ltd. Multiplexing control information in a physical uplink data channel
US10567142B2 (en) * 2017-03-23 2020-02-18 Apple Inc. Preemption indicators and code-block-group-based retransmission techniques for multiplexing different services on physical layer frames
WO2018170915A1 (en) * 2017-03-24 2018-09-27 Motorola Mobility Llc Indication for portion of time interval
CN110546903B (zh) * 2017-06-16 2022-05-10 富士通株式会社 反馈信息的发送和接收方法、装置以及通信系统

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107113096A (zh) * 2014-12-31 2017-08-29 Lg 电子株式会社 在无线通信系统中发送ack/nack的方法和使用该方法的设备
CN106961319A (zh) * 2016-01-12 2017-07-18 中兴通讯股份有限公司 一种数据处理的方法和装置
CN106888074A (zh) * 2017-03-24 2017-06-23 宇龙计算机通信科技(深圳)有限公司 一种码块的重传方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3681069A4

Also Published As

Publication number Publication date
US11381345B2 (en) 2022-07-05
CN109474393A (zh) 2019-03-15
EP3681069A4 (en) 2021-05-05
JP7102511B2 (ja) 2022-07-19
KR102457944B1 (ko) 2022-10-25
EP3681069A1 (en) 2020-07-15
JP2020532920A (ja) 2020-11-12
KR20200046105A (ko) 2020-05-06
CN109474393B (zh) 2021-07-30
KR20220025292A (ko) 2022-03-03
US20200266931A1 (en) 2020-08-20
EP3681069B1 (en) 2024-04-10

Similar Documents

Publication Publication Date Title
US12035314B2 (en) Method for multiplexing uplink control information and apparatus
CN108293253B (zh) 信息比特封装
CN108111263B (zh) 确认信息的反馈方法及装置,确认信息的接收方法及装置
CN106452661B (zh) 应答信息的传输方法、装置、基站及终端
WO2019072074A1 (zh) Harq-ack反馈码本的发送方法、装置及设备
JP6526231B2 (ja) 制御情報を送信するための方法、ユーザ機器、及び基地局
JP7073365B2 (ja) 端末及び通信方法
CN108390741B (zh) 数据传输方法和设备
CN111510252A (zh) 在无线通信系统中发送ack/nack的方法和使用该方法的设备
WO2016119221A1 (zh) 通信系统中反馈信息的传输方法及装置
CN107925445B (zh) 一种反馈信息的发送方法、用户设备和基站
CN114866204B (zh) 一种传输方法、终端设备及基站
US11271693B2 (en) Transmission based on data blocks
US11139923B2 (en) Code block groups for retransmissions in a wireless communication system
EP3681069B1 (en) Data feedback, sending and receiving method and device, receiving equipment and sending equipment
CN111357350A (zh) 控制传输方法和装置
KR20220153052A (ko) 업링크 제어 정보 보고
EP4346139A1 (en) Feedback per code block group
CN108811150A (zh) 一种信息传输方法及装置
CN115604846A (zh) 数据传输的方法和装置
JP2019146258A (ja) 制御情報を送信するための方法、ユーザ機器、及び基地局

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18852974

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020513502

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207010106

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018852974

Country of ref document: EP

Effective date: 20200408