WO2019047079A1 - 功率开关器件过流保护电路及电机驱动系统、电机系统 - Google Patents

功率开关器件过流保护电路及电机驱动系统、电机系统 Download PDF

Info

Publication number
WO2019047079A1
WO2019047079A1 PCT/CN2017/100781 CN2017100781W WO2019047079A1 WO 2019047079 A1 WO2019047079 A1 WO 2019047079A1 CN 2017100781 W CN2017100781 W CN 2017100781W WO 2019047079 A1 WO2019047079 A1 WO 2019047079A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
sampling
branch
switch tube
voltage
Prior art date
Application number
PCT/CN2017/100781
Other languages
English (en)
French (fr)
Inventor
王鹏
吴爽
李斌
Original Assignee
深圳和而泰智能控制股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳和而泰智能控制股份有限公司 filed Critical 深圳和而泰智能控制股份有限公司
Priority to CN201780008990.5A priority Critical patent/CN108780990A/zh
Priority to PCT/CN2017/100781 priority patent/WO2019047079A1/zh
Publication of WO2019047079A1 publication Critical patent/WO2019047079A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/10Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers
    • H02H7/12Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers
    • H02H7/122Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers for inverters, i.e. dc/ac converters
    • H02H7/1225Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers for inverters, i.e. dc/ac converters responsive to internal faults, e.g. shoot-through
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/08Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to excess current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/08Arrangements for controlling the speed or torque of a single motor

Definitions

  • the embodiment of the present invention relates to an overcurrent protection technology for a power switching device in the field of power electronics, and in particular, to an overcurrent protection circuit for a power switching device, a motor driving system, and a motor system.
  • IGBTs Insulated Gate Bipolar Transistors
  • MOSs Metal Oxide Semiconductors
  • the current overcurrent protection circuit is built by a comparator and an operational amplifier. When the system current exceeds a certain overcurrent threshold, the comparator or operational amplifier outputs a high level or a low level to the intelligent power (Intelligent Power Module). , IPM) module, IPM module turns off all power switching devices.
  • IPM Intelligent Power Module
  • the overcurrent protection circuit can realize the overcurrent protection function without being controlled by a central processing unit (CPU), the overcurrent is implemented.
  • the protection circuit requires a large number of devices, and the overcurrent protection circuit has a slow response speed due to an integrated circuit such as a comparator or an operational amplifier.
  • the purpose of the embodiment of the present application is to provide a power switch device overcurrent protection circuit, a motor drive system, and a motor system, which can simplify the structure of the power switch device overcurrent protection circuit and improve the circuit response speed.
  • an embodiment of the present application provides an overcurrent protection circuit for a power switching device, where the overcurrent protection circuit includes:
  • a current sampling circuit for inputting a three-phase to-be-detected current and outputting a three-phase sampling voltage signal
  • a signal separating circuit electrically connected to an output end of the current sampling circuit, wherein the signal separating circuit is configured to separate a three-phase sampling voltage signal output by the current sampling circuit and output three DC voltage signals;
  • the voltage dividing circuit is electrically connected to the output end of the signal separating circuit for dividing the output voltage of the DC voltage signal.
  • the overcurrent protection circuit further includes a filter circuit, and the filter circuit is connected to an output end of the voltage dividing circuit for filtering a spike voltage in the detection voltage.
  • the current sampling circuit includes a first sampling branch, a second sampling branch, and a third sampling branch, and each sampling branch is connected with a phase to be detected current.
  • the signal separation circuit includes a first separation branch, a second separation branch, and a third separation branch, and the first end of the first separation branch and the first end of the second separation branch The first end of the first separation branch and the second end of the second separation branch The second ends of the three separate branches are connected to each other as an output of the signal separation circuit.
  • the first sampling branch in the current sampling circuit includes a first sampling resistor, and the first end of the first sampling resistor inputs one phase current of the three-phase current, and the first sampling resistor The second end is grounded, and the first end of the first sampling resistor is connected to the first end of the first separating branch;
  • the second sampling branch includes a second sampling resistor, a first end of the second sampling resistor inputs one phase current of the three-phase current, a second end of the second sampling resistor is grounded, and the second sampling a first end of the resistor connected to the first end of the second separation branch;
  • the third sampling branch includes a third sampling resistor, the first end of the third sampling resistor inputs one phase current of the three-phase current, the second end of the third sampling resistor is grounded, and the third sampling A first end of the resistor is coupled to the first end of the third separation branch.
  • the first separation branch includes a first diode, a positive pole of the first diode serves as a first end of the first separation branch, and a cathode of the first diode serves as a first Separating the second end of the branch;
  • the second separation branch includes a second diode, a cathode of the second diode serves as a first end of the second separation branch, and a cathode of the second diode serves as the second separation branch The second end of the road;
  • the third separation branch includes a third diode, a positive pole of the third diode serves as a first end of a third separation branch, and a cathode of the third diode serves as the third separation branch The second end of the road.
  • the voltage dividing circuit includes a first voltage dividing resistor and a second voltage dividing resistor;
  • One end of the first voltage dividing resistor is connected to an output end of the signal separating circuit, and the other end of the first voltage dividing resistor is grounded via the second voltage dividing resistor, the first voltage dividing resistor and the The common connection terminal of the second voltage dividing resistor outputs the detection voltage as an output terminal.
  • the filter circuit includes a filter capacitor, and one end of the filter capacitor is connected to an output end of the voltage dividing circuit, and the other end is grounded.
  • an embodiment of the present application provides a motor drive system, where the system includes:
  • a power switch control module electrically connected to the power switch circuit for controlling the power switch circuit to drive the motor to operate, and for turning off the power switch circuit when the detected voltage does not meet a predetermined voltage
  • the system further includes the above-mentioned power switching device overcurrent protection circuit, the input end of the current sampling circuit in the overcurrent protection circuit is connected to the three-phase current of the power switch circuit, and the output end of the voltage dividing circuit outputs the detection voltage to The power switch controls an input of the module.
  • the power switch circuit includes a first switch tube, a second switch tube, a third switch tube, a fourth switch tube, a fifth switch tube, and a sixth switch tube;
  • the first end of the first switch tube, the first end of the second switch tube, and the first end of the third switch tube are connected in common, the common connection end is connected to the positive pole of the power source, and the first switch tube is connected a second end is connected to the first end of the fourth switch tube, a second end of the second switch tube is connected to the first end of the fifth switch tube, and a second end of the third switch tube is connected to the second end a first end of the sixth switch tube, a second end of the fourth switch tube is connected to an input end of the first sampling branch of the current sampling circuit, and a second end of the fifth switch tube is connected to the second sampling branch
  • the input end of the path, the second end of the sixth switch tube is connected to the input end of the third sampling branch;
  • an embodiment of the present application provides a motor system, where the motor system includes a brushless DC motor, and the motor system further includes the motor drive system, the brushless DC motor and the motor drive system.
  • the power switch circuit is connected.
  • the current embodiment uses a current sampling circuit to convert the three-phase current of the power switch circuit into a three-phase sampling voltage signal, and the three-phase sampling voltage is passed through the signal separation circuit.
  • the signal separates and outputs three DC voltage signals, and then divides the DC voltage signal by a voltage dividing circuit to obtain a detection voltage. If the detection voltage does not meet the preset voltage value, the switching devices in the power switching circuit are turned off, The power switching device is overcurrent protected.
  • the embodiment of the present application realizes overcurrent protection of the power switching device only by the sampling circuit, the signal separation circuit and the voltage dividing circuit, and simplifies the structure of the overcurrent protection circuit of the power switching device.
  • the overcurrent protection circuit does not include an integrated circuit, and the overcurrent protection circuit has a fast response speed.
  • FIG. 1 is a schematic structural view of an embodiment of a motor system of the present application
  • FIG. 2 is a schematic structural view of an embodiment of a motor system of the present application.
  • FIG. 3 is a schematic structural view of an embodiment of a motor system of the present application.
  • FIG. 4 is a schematic structural view of an embodiment of a motor system of the present application.
  • Figure 5 is a schematic structural view of an embodiment of a motor system of the present application.
  • Figure 6 is a schematic view showing the structure of an embodiment of the motor system of the present application.
  • the power switching device overcurrent protection circuit 100 is configured to collect the three-phase current in the power switch circuit 220 and output the detection voltage to the power switch control module 210, and the power switch control module 210 utilizes the internal set.
  • the fault detection function determines whether the detected voltage meets the preset voltage. If the preset voltage is not met, the power switch circuit 220 is turned off; for example, if the detected voltage is greater than the preset voltage threshold, the power switch circuit 220 is turned off.
  • the power switching device overcurrent protection circuit 100 includes a current sampling circuit 130, a signal separation circuit 110, and a voltage dividing circuit 120.
  • the sampling circuit 130 is configured to input the three-phase current of the power switching circuit 220 and output a three-phase sampling voltage signal.
  • the sampling circuit 130 can adopt the circuit structure shown in FIG. 5.
  • the current sampling circuit 130 sets the first sampling branch 131, the second sampling branch 132, and the third sampling branch 133, and each sampling branch is used for Sampling one phase current.
  • the signal separating circuit 110 is electrically connected to the output end of the three sampling branches of the current sampling circuit 130 for separating the sampling voltage signal output by the current sampling circuit and outputting a DC voltage signal.
  • the voltage dividing circuit 120 is electrically connected to the output end of the signal separating circuit 110 for dividing the output voltage of the DC voltage signal.
  • the voltage dividing circuit 120 outputs a detection voltage to the power switch control module 210.
  • the embodiment of the present application uses a current sampling circuit to convert the three-phase current of the power switch circuit into a sampled voltage signal, separates the sampled voltage signal by the signal separation circuit, and outputs a DC voltage signal, and then divides the DC voltage signal through the voltage dividing circuit.
  • the detection voltage is obtained. If the detection voltage does not meet the preset voltage value, each switching device in the power switching circuit is turned off, and the power switching device is over-current protected.
  • the overcurrent protection of the power switching device is realized only by the sampling circuit, the signal separation circuit and the voltage dividing circuit, and the structure of the overcurrent protection circuit of the power switching device is simplified.
  • the overcurrent protection circuit does not include an integrated circuit, and the overcurrent protection circuit has a fast response speed.
  • the power switching device overcurrent protection circuit 100 further includes a filter circuit 140, and the filter circuit 140 is connected.
  • the output of the voltage circuit 120 filters out the spike voltage in the sense voltage.
  • the filtered detection voltage is output to the power switch control circuit 210.
  • the power switch circuit 220 has three-phase current, and the corresponding current sampling circuit 130 also has three sampling branches.
  • the signal separation circuit 110 includes a first separation branch 111 and a second separation branch 112. And the third separation branch 113, each of the separate branches rectifies the sampling voltage signal outputted by each sampling branch, and the rectified sampling voltage signals are collected and output to the voltage dividing circuit 120.
  • FIG. 6 provides a specific structure of the current sampling circuit 130, the signal separation circuit 110, the voltage dividing circuit 120, and the filter circuit 140 in the power switching device overcurrent protection circuit 100.
  • the current sampling circuit, the signal separation circuit, the voltage dividing circuit, and the filtering circuit may also adopt an existing circuit structure capable of realizing a current sampling function, a signal separation function, a voltage dividing function, and a filtering function.
  • the current sampling circuit 130 includes a first sampling resistor RS1, a second sampling resistor RS2, and a third sampling resistor RS3.
  • the first sampling resistor RS1, the second sampling resistor RS2, and the third sampling resistor RS3 are respectively used as three paths.
  • the sampling branch is used to sample three-phase current.
  • the first end of the first sampling resistor RS1 inputs one phase current of the three-phase current, the second end is grounded, and the first end is also connected to the anode of the diode D1.
  • the first end of the second sampling resistor RS2 inputs one phase current of the three-phase current, the second end is grounded, and the first end is also connected to the anode of the diode D2.
  • the first end of the third sampling resistor RS3 inputs one phase current of the three-phase current, the second end is grounded, and the first end is also connected to the anode of the diode D3.
  • the voltage dividing circuit 120 includes a first voltage dividing resistor Rd1 and a second voltage dividing resistor Rd2. One end of the first voltage dividing resistor Rd1 is connected to the first diode D1, the second diode D2, and the third diode D3. At the common connection end, the other end of the first voltage dividing resistor Rd1 is grounded via the second voltage dividing resistor Rd2, and the common connection terminal of the first voltage dividing resistor Rd1 and the second voltage dividing resistor Rd2 outputs a detection voltage as an output terminal.
  • the filter circuit 140 includes a filter capacitor C1.
  • the first end of the filter capacitor C1 is connected to a common connection end of the first voltage dividing resistor Rd1 and the second voltage dividing resistor Rd2.
  • the second end is grounded, and the first end is also connected to the power switch control circuit 210.
  • the filtered detection voltage is input to the power switch control circuit 210.
  • the voltage signal on the second voltage dividing resistor Rd2 is a power switch circuit.
  • the equal ratio of the 220 current signal reflects that the voltage signal on the second voltage dividing resistor Rd2 is insufficient to trigger the power switch control module 210 to perform an overcurrent protection operation. That is, the detection voltage signal output by the voltage dividing circuit 120 is lower than the voltage threshold preset by the power switch control module 210.
  • the power switch control module 210 outputs a pulse width modulation technique (Pulse Width Modulation, The PWM) signal is applied to the power switching circuit 220, and the switching transistors in the power switching circuit 220 are alternately turned on to drive the brushless DC motor 20 to operate.
  • PWM Pulse Width Modulation
  • the three sampling resistors that is, the first sampling resistor RS1, the second sampling resistor RS2, and the third sampling resistor RS3 generate a small voltage.
  • the first case is the sampling resistor.
  • the generated voltage does not reach the forward voltage of the diode, the diode is in the off state, and the second voltage dividing resistor Rd2 has no voltage signal;
  • the second case is that the voltage generated by the sampling resistor can make the diode conduct, but the second The voltage signal generated by the voltage dividing resistor Rd2 is still small.
  • the voltage signals received by the power switch control module 210 do not exceed the preset voltage threshold, and therefore, the power switch circuit 220 operates normally.
  • an abnormal current flows through one or more of the first sampling resistor RS1, the second sampling resistor RS2, and the third sampling resistor RS3, resulting in Forming a higher sampling voltage signal, that is, a spike voltage, on the sampling resistor causes one or more of the first diode D1, the second diode D2, and the third diode D3 in the signal separation circuit 110 to be turned on .
  • the peak voltage is stepped down by the diode and output to the voltage dividing circuit 120.
  • the first voltage dividing resistor Rd1 and the second voltage dividing resistor Rd2 of the voltage dividing circuit 120 divide the step-down signal on the second voltage dividing resistor Rd2.
  • a voltage dividing signal that is, a detection voltage is generated, and the detection voltage is filtered by the filter capacitor C1 and output to the power switch control module 210.
  • the detection voltage at this time is higher than the voltage threshold preset by the power switch control module 210, and the trigger power switch control module 210 sets all the output PWM signals to a low level, so that the switching devices in the power switch circuit 220 are all off.
  • the first switch tube Q1, the second switch tube Q2, the third switch tube Q3, the fourth switch tube Q4, the fifth switch tube Q5, and the sixth switch tube Q6 are all turned off, thereby overcurrent the power switching device. Protection to avoid failure or explosion of power switching devices.
  • the embodiment of the present application realizes overcurrent protection of the power switching device in the power switching circuit only through the diode, the voltage dividing resistor and the filter capacitor, and the power switching device overcurrent protection circuit has a simple structure, a fast response speed, and components. Less, small size, is conducive to the miniaturization of products.
  • an embodiment of the present application further provides a motor driving system 10 for driving a brushless DC motor 20, the motor driving system 10 including an intelligent power module 200 and The power switching device overcurrent protection circuit 100 as described above.
  • the intelligent power module 200 that is, the IPM module, integrates functions of a power switch circuit for driving a motor, and a power switch control module for controlling a power switch circuit to drive the motor jobs.
  • the power switch control module also integrates a fault detection function for performing work The power switch circuit is turned off when the three-phase current in the switching circuit is overcurrent.
  • the power switching device overcurrent protection circuit 100 is configured to collect the three-phase current in the power switch circuit and output the detection voltage to the power switch control module, and the power switch control module uses the internally integrated fault detection function to determine whether the detected voltage does not meet the pre-control Set the voltage, for example, whether the detection voltage is greater than the preset voltage threshold, and if the preset voltage is not met, turn off the power switch circuit.
  • the power switching device overcurrent protection circuit 100 can adopt the power switching device overcurrent protection circuit provided by the embodiment of the present application, and the technical details and effect descriptions that are not described in detail in the embodiment of the motor driving system are described in the embodiment of the present application.
  • the power switching device is provided with an overcurrent protection circuit.
  • the separately configured power switch circuit 220 and the power switch control module 210 may be used instead of the integrated smart power module, and the power switch control module 210 and the power
  • the switch circuit 220 is connected to control the opening or closing of the switch tube in the power switch circuit 220 to drive the brushless DC motor 20 to operate.
  • the power switch control module also integrates a fault detection function for turning off the power switch circuit 220 when the three-phase current in the power switch circuit 220 is overcurrent.
  • the power switching device overcurrent protection circuit 100 is configured to collect the three-phase current in the power switch circuit 220 and output the detection voltage to the power switch control module 210.
  • the power switch control module 210 uses the internally integrated fault detection function to determine whether the detected voltage is The preset voltage is not met, for example, whether the detected voltage is greater than a preset voltage threshold, and the power switch circuit 220 is turned off if the preset voltage is not met.
  • FIG. 6 provides a specific structure of the power switch circuit 220.
  • the power switch circuit 220 includes a first switch tube Q1, a second switch tube Q2, a third switch tube Q3, and a fourth unit.
  • the second end of the fourth switch tube Q4 is connected to the first sampling resistor RS1, the second end of the fifth switch tube Q5 is connected to the second sampling resistor RS2, and the second end of the sixth switch tube Q6 is connected to the third sampling resistor RS3.
  • the control terminals of the first switch transistor Q1, the second switch transistor Q2, the third switch transistor Q3, the fourth switch transistor Q4, the fifth switch transistor Q5, and the sixth switch transistor Q6 are connected to the output terminal of the power switch control circuit 210.
  • the common connection end of the first switch tube Q1 and the fourth switch tube Q4, the common connection end of the second switch tube Q2 and the fifth switch tube Q5, and the common connection end of the third switch tube Q3 and the sixth switch tube Q6 are connected to the motor Three-phase winding.
  • the first end of the switch tube is a collector or a drain of the switch tube
  • the second end of the switch tube is an emitter or a source of the switch tube
  • the control end of the switch tube is a gate or a gate of the switch tube .
  • the embodiment of the present application further provides a motor system including a brushless DC motor 20 and a motor drive system 10 for driving the brushless DC motor 20.
  • the motor drive system 10 can be used in the motor drive system 10 provided by the embodiment of the present application, and the technical details and effects are not described in detail in the embodiment of the motor drive system. Stream protection circuit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

一种功率开关器件过流保护电路(100)及电机驱动系统、电机系统,属于电力电子领域中功率开关器件的过流保护技术,所述过流保护电路(100)包括:电流采样电路(130),用于输入三相待检测电流并输出三相采样电压信号;信号分离电路(110),电性连接电流采样电路(130)的三路采样支路(131、132、133)的输出端,信号分离电路(110)用于对所述电流采样电路(130)输出的采样电压信号进行分离并输出直流电压信号;分压电路(120),电性连接信号分离电路(110)的输出端,用于对所述直流电压信号进行分压输出检测电压。通过采样电路(130)、信号分离电路(110)和分压电路(120)实现对功率开关器件的过流保护,简化了功率开关器件过流保护电路(100)的结构。且该过流保护电路(100)不含集成电路,过流保护电路(100)的反应速度快。

Description

功率开关器件过流保护电路及电机驱动系统、电机系统 技术领域
本申请实施例涉及电力电子领域中功率开关器件的过流保护技术,尤其涉及一种功率开关器件过流保护电路及电机驱动系统、电机系统。
背景技术
功率开关器件例如绝缘栅双极型晶体管(Insulated Gate Bipolar Transistor,IGBT)、金属氧化物半导体场效应晶体管(Metal Oxide Semiconductor,MOS)等是电力电子领域的核心半导体器件,通常外加电压电流保护电路,保证在异常情况下功率开关器件不会失效、爆炸。
目前流行的过流保护电路是由比较器、运算放大器搭建,当系统电流超过某个设定过流阀值时,比较器或者运算放大器输出高电平或者低电平至智能功率(Intelligent Power Module,IPM)模块,IPM模块关断所有功率开关器件。
实现本申请过程中,发明人发现相关技术中至少存在如下问题:虽然这种过流保护电路无需通过中央处理器(Central Processing Unit,CPU)控制即可实现过流保护功能,但这种过流保护电路所需器件较多,由于经过比较器或者运算放大器等集成电路,导致过流保护电路反应速度较慢。
发明内容
本申请实施例的目的是提供一种功率开关器件过流保护电路及电机驱动系统、电机系统,能够简化功率开关器件过流保护电路的结构,提高电路反应速度。
为实现上述目的,第一方面,本申请实施例提供了一种功率开关器件过流保护电路,所述过流保护电路包括:
电流采样电路,用于输入三相待检测电流并输出三相采样电压信号;
信号分离电路,电性连接所述电流采样电路的输出端,所述信号分离电路用于对所述电流采样电路输出的三相采样电压信号进行分离并输出三路直流电压信号;
分压电路,电性连接所述信号分离电路的输出端,用于对所述直流电压信号进行分压输出检测电压。
可选的,所述过流保护电路还包括滤波电路,所述滤波电路连接所述分压电路的输出端,用于滤除所述检测电压中的尖峰电压。
可选的,所述电流采样电路包括第一采样支路、第二采样支路和第三采样支路,每一采样支路连接一相待检测电流。
可选的,所述信号分离电路包括第一分离支路、第二分离支路和第三分离支路,所述第一分离支路的第一端、所述第二分离支路的第一端和所述第三分离支路的第一端分别连接一路采样支路的输出端,所述第一分离支路的第二端、所述第二分离支路的第二端和所述第三分离支路的第二端互相连接,作为所述信号分离电路的输出端。
可选的,所述电流采样电路中所述第一采样支路包括第一采样电阻,所述第一采样电阻的第一端输入三相电流中的一相电流,所述第一采样电阻的第二端接地,所述第一采样电阻的第一端连接所述第一分离支路的第一端;
所述第二采样支路包括第二采样电阻,所述第二采样电阻的第一端输入三相电流中的一相电流,所述第二采样电阻的第二端接地,所述第二采样电阻的第一端连接第二分离支路的第一端;
所述第三采样支路包括第三采样电阻,所述第三采样电阻的第一端输入三相电流中的一相电流,所述第三采样电阻的第二端接地,所述第三采样电阻的第一端连接所述第三分离支路的第一端。
可选的,所述第一分离支路包括第一二极管,所述第一二极管的正极作为第一分离支路的第一端,所述第一二极管的负极作为第一分离支路的第二端;
所述第二分离支路包括第二二极管,所述第二二极管的正极作为第二分离支路的第一端,所述第二二极管的负极作为所述第二分离支路的第二端;
所述第三分离支路包括第三二极管,所述第三二极管的正极作为第三分离支路的第一端,所述第三二极管的负极作为所述第三分离支路的第二端。
可选的,所述分压电路包括第一分压电阻和第二分压电阻;
所述第一分压电阻的一端与所述信号分离电路的输出端连接,所述第一分压电阻的另一端经由所述第二分压电阻接地,所述第一分压电阻和所述第二分压电阻的公共连接端作为输出端输出所述检测电压。
可选的,所述滤波电路包括滤波电容,所述滤波电容的一端与所述分压电路的输出端连接,另一端接地。
第二方面,本申请实施例提供了一种电机驱动系统,所述系统包括:
功率开关电路,用于驱动电机工作;
功率开关控制模块,与所述功率开关电路电性连接,用于控制所述功率开关电路驱动所述电机工作,以及用于当检测电压不符合预定电压时关闭所述功率开关电路;
所述系统还包括上述的功率开关器件过流保护电路,所述过流保护电路中的电流采样电路的输入端连接功率开关电路的三相电流,分压电路的输出端输出所述检测电压到所述功率开关控制模块的输入端。
可选的,所述功率开关电路包括第一开关管、第二开关管、第三开关管、第四开关管、第五开关管和第六开关管;
所述第一开关管的第一端、所述第二开关管的第一端和所述第三开关管的第一端共同连接,该共同连接端连接电源正极,所述第一开关管的第二端连接所述第四开关管的第一端,所述第二开关管的第二端连接所述第五开关管的第一端,所述第三开关管的第二端连接所述第六开关管的第一端,所述第四开关管的第二端连接所述电流采样电路的第一采样支路的输入端,所述第五开关管的第二端连接第二采样支路的输入端,所述第六开关管的第二端连接第三采样支路的输入端;
所述第一开关管和所述第四开关管的共同连接端、所述第二开关管和所述第五开关管的共同连接端以及第三开关管和所述第六开关管的共同连接端,分别作为所述功率开关电路的输出端用于连接所述电机的三相绕组。
第三方面,本申请实施例提供了一种电机系统,所述电机系统包括无刷直流电机,所述电机系统还包括上述的电机驱动系统,所述无刷直流电机与所述电机驱动系统中的功率开关电路连接。
本申请实施方式的有益效果是:区别于现有技术的情况,本申请实施方式采用电流采样电路将功率开关电路的三相电流转换成三相采样电压信号,通过信号分离电路对三相采样电压信号进行分离输出三路直流电压信号,再通过分压电路对直流电压信号进行分压,获得检测电压,如果检测电压不符合预设电压值,则关断功率开关电路中的各开关器件,对功率开关器件进行过流保护。 本申请实施方式仅通过采样电路、信号分离电路和分压电路实现对功率开关器件的过流保护,简化了功率开关器件过流保护电路的结构。且该过流保护电路不含集成电路,过流保护电路的反应速度快。
附图说明
一个或多个实施例通过与之对应的附图中的图片进行示例性说明,这些示例性说明并不构成对实施例的限定,附图中具有相同参考数字标号的元件表示为类似的元件,除非有特别申明,附图中的图不构成比例限制。
图1是本申请电机系统的一个实施例的结构示意图;
图2是本申请电机系统的一个实施例的结构示意图;
图3是本申请电机系统的一个实施例的结构示意图;
图4是本申请电机系统的一个实施例的结构示意图;
图5是本申请电机系统的一个实施例的结构示意图;
图6是本申请电机系统的一个实施例的结构示意图。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例提供的功率开关器件过流保护方案适用于图1所示的系统,所述系统包括无刷直流电机20、功率开关电路220和功率开关控制模块210以及功率开关器件过流保护电路100。所述功率开关电路220,用于驱动无刷直流电机20工作,所述功率开关控制模块210,用于控制功率开关电路220驱动电机工作。为了保证功率开关电路220中的开关器件在异常情况下不会失效、爆炸,在所述功率开关控制模块210中集成了故障检测功能,所述功率开关控制模块210还用于当功率开关电路220中的三相电流过流时关闭功率开关电路220。功率开关器件过流保护电路100,用于采集功率开关电路220中的三相电流并输出检测电压到功率开关控制模块210,功率开关控制模块210利用内部集 成的故障检测功能,判断检测电压是否符合预设电压,如果不符合预设电压则关闭功率开关电路220;例如检测电压大于预设电压阀值,则关闭功率开关电路220。
请参照图2,本申请实施例提供的功率开关器件过流保护电路100包括电流采样电路130、信号分离电路110和分压电路120。所述采样电路130用于输入功率开关电路220的三相电流并输出三相采样电压信号。可选的,采样电路130可以采用图5所示的电路结构,电流采样电路130设置第一采样支路131、第二采样支路132和第三采样支路133,每一采样支路用于采样一相电流。所述信号分离电路110电性连接电流采样电路130的三路采样支路的输出端,用于对所述电流采样电路输出的采样电压信号进行分离并输出直流电压信号。分压电路120,电性连接信号分离电路110的输出端,用于对所述直流电压信号进行分压输出检测电压。分压电路120输出检测电压到功率开关控制模块210。
本申请实施例采用电流采样电路将功率开关电路的三相电流转换成采样电压信号,通过信号分离电路对采样电压信号进行分离并输出直流电压信号,再通过分压电路对直流电压信号进行分压,获得检测电压,如果检测电压不符合预设电压值,则关断功率开关电路中的各开关器件,对功率开关器件进行过流保护。本申请实施例仅通过采样电路、信号分离电路和分压电路实现对功率开关器件的过流保护,简化了功率开关器件过流保护电路的结构。且该过流保护电路不含集成电路,过流保护电路的反应速度快。
由于所述采样电压信号中可能会夹杂着一些由噪声产生的时间极短的尖峰信号,而这些尖峰信号时间很短,并不会对开关功率电路220中的开关元件造成损害,因此不需要采取过流保护措施。但是这些尖峰信号经整流分压后电压很大,容易使功率开关控制电路210误判触发过流保护误操作。所以,为了避免误操作,可选的,在所述电机系统的某些实施例中,如图4所示,所述功率开关器件过流保护电路100还包括滤波电路140,滤波电路140连接分压电路120的输出端,滤除检测电压中的尖峰电压。经过滤波后的检测电压被输出到功率开关控制电路210。
可选的,功率开关电路220有三相电流,相应的电流采样电路130也有三路采样支路,为了避免各采样信号间互相干扰,在电机系统的某些实施例中,如图5所示,所述信号分离电路110包括第一分离支路111、第二分离支路112 和第三分离支路113,每个分离支路分别对每一采样支路输出的采样电压信号进行整流,经过整流后的各采样电压信号汇集后输出到分压电路120。
如图6所示,图6提供了功率开关器件过流保护电路100中电流采样电路130、信号分离电路110、分压电路120和滤波电路140的具体结构。在其他实施例中,电流采样电路、信号分离电路、分压电路和滤波电路也可以采用现有的能实现电流采样功能、信号分离功能、分压功能和滤波功能的电路结构。
在该实施例中,电流采样电路130包括第一采样电阻RS1、第二采样电阻RS2和第三采样电阻RS3,第一采样电阻RS1、第二采样电阻RS2和第三采样电阻RS3分别作为三路采样支路用于采样三相电流。第一采样电阻RS1的第一端输入三相电流中的一相电流,第二端接地,第一端还连接二极管D1的正极。第二采样电阻RS2的第一端输入三相电流中的一相电流,第二端接地,第一端还连接二极管D2的正极。第三采样电阻RS3的第一端输入三相电流中的一相电流,第二端接地,第一端还连接二极管D3的正极。
信号分离电路110包括第一二极管D1、第二二极管D2和第三二极管D3,第一二极管D1、第二二极管D2和第三二极管D3分别作为三路分离支路对三相采样电压信号进行整流。第一二极管D1、第二二极管D2和第三二极管D3的负极连接于一点,该共同连接点连接分压电路120。
分压电路120包括第一分压电阻Rd1和第二分压电阻Rd2,第一分压电阻Rd1的一端连接第一二极管D1、第二二极管D2和第三二极管D3负极的共同连接端,第一分压电阻Rd1的另一端经由第二分压电阻Rd2接地,第一分压电阻Rd1和第二分压电阻Rd2的公共连接端作为输出端输出检测电压。
滤波电路140包括滤波电容C1,滤波电容C1的第一端连接第一分压电阻Rd1和第二分压电阻Rd2的共同连接端,第二端接地,第一端还连接功率开关控制电路210的输入端,向功率开关控制电路210输入经过滤波后的检测电压。
在本申请实施方式中,当功率开关电路220、功率开关控制电路210和功率开关器件过流保护电路100组成的电机驱动系统正常工作时,第二分压电阻Rd2上的电压信号是功率开关电路220电流信号的等比例反映,此时第二分压电阻Rd2上的电压信号不足以触发功率开关控制模块210实行过流保护操作。即分压电路120输出的检测电压信号低于功率开关控制模块210预设的电压阀值。此时,功率开关控制模块210输出脉冲宽度调制技术(Pulse Width Modulation, PWM)信号至功率开关电路220,功率开关电路220中的开关管交替导通驱动无刷直流电机20运转。
电机驱动系统正常工作时,三路采样电阻,即第一采样电阻RS1、第二采样电阻RS2和第三采样电阻RS3产生的电压较小,此时有两种情况:第一种情况是采样电阻产生的电压达不到二极管的正向导通电压,二极管处于截止状态,此时第二分压电阻Rd2无电压信号产生;第二种情况是采样电阻产生的电压能够使得二极管导通,但是第二分压电阻Rd2产生的电压信号仍然较小。对于上述两种情况,功率开关控制模块210接收到的电压信号都均未超过预设的电压阈值,因此,功率开关电路220正常工作。
在电机驱动系统出现异常,导致功率开关电路220中电流过大的情况下,异常的电流流过第一采样电阻RS1、第二采样电阻RS2和第三采样电阻RS3中的一个或多个,导致在采样电阻上形成较高的采样电压信号,即尖峰电压,使得信号分离电路110中第一二极管D1、第二二极管D2和第三二极管D3中的一个或多个导通。此时,尖峰电压经过二极管降压后输出到分压电路120,分压电路120中第一分压电阻Rd1和第二分压电阻Rd2对降压信号进行分压在第二分压电阻Rd2上产生分压信号即检测电压,检测电压经过滤波电容C1滤波后输出至功率开关控制模块210。此时的检测电压高于功率开关控制模块210预设的电压阀值,触发功率开关控制模块210将所输出的六路PWM信号全部置为低电平,使得功率开关电路220中的开关器件全部关断,即第一开关管Q1、第二开关管Q2、第三开关管Q3、第四开关管Q4、第五开关管Q5和第六开关管Q6全部关断,从而对功率开关器件进行过流保护,避免功率开关器件失效、爆炸。
相对于现有技术,本申请实施方式仅通过二极管、分压电阻、滤波电容实现对功率开关电路中功率开关器件的过流保护,功率开关器件过流保护电路结构简单,反应速度快,元器件少,体积小,有利于产品的小型化。
相应的,请参照图2,本申请实施例还提供了一种电机驱动系统10,所述电机驱动系统10用于驱动无刷直流电机20工作,所述电机驱动系统10包括智能功率模块200和如上所述的功率开关器件过流保护电路100。所述智能功率模块200即IPM模块,集成了功率开关电路和功率开关控制模块的功能,所述功率开关电路,用于驱动电机工作,所述功率开关控制模块,用于控制功率开关电路驱动电机工作。所述功率开关控制模块还集成了故障检测功能,用于当功 率开关电路中的三相电流过流时关闭功率开关电路。所述功率开关器件过流保护电路100用于采集功率开关电路中的三相电流并输出检测电压到功率开关控制模块,功率开关控制模块利用内部集成的故障检测功能,判断检测电压是否不符合预设电压,例如检测电压是否大于预设电压阀值,如果不符合预设电压则关闭功率开关电路。其中,功率开关器件过流保护电路100可采用本申请实施例提供的功率开关器件过流保护电路,未在该电机驱动系统实施例中详尽描述的技术细节和效果描述,可参见本申请实施例所提供的功率开关器件过流保护电路。
可选的,如图3所示,在其他实施例中,也可以不采用集成的智能功率模块而采用分别搭建的功率开关电路220和功率开关控制模块210,所述功率开关控制模块210与功率开关电路220连接,用于控制功率开关电路220中开关管的开或者关以此驱动无刷直流电机20工作。所述功率开关控制模块还集成了故障检测功能,用于当功率开关电路220中的三相电流过流时关闭功率开关电路220。所述功率开关器件过流保护电路100用于采集功率开关电路220中的三相电流并输出检测电压到功率开关控制模块210,功率开关控制模块210利用内部集成的故障检测功能,判断检测电压是否不符合预设电压,例如检测电压是否大于预设电压阀值,如果不符合预设电压则关闭功率开关电路220。
其中,在采用集成的IPM模块的场合,预设的电压阀值可以根据规格书设定,在采用分别搭建功率开关控制模块和功率开关电路的场合,可以根据过流保护电路中各电阻的阻值设定,第一分压电阻Rd1和第二分压电阻Rd2的选取原则是,要确保功率开关电路220正常工作时第二分压电阻Rd2上的电压信号不超过预设的电压阀值。
请参照图6,图6提供了功率开关电路220的具体结构,在该实施例中,所述功率开关电路220包括第一开关管Q1、第二开关管Q2、第三开关管Q3、第四开关管Q4、第五开关管Q5和第六开关管Q6;其中,所述开关管可以为MOS管、IGBT管、三极管中的一种。
第一开关管Q1、第二开关管Q2、第三开关管Q3作为功率开关电路220的上桥臂,第四开关管Q4、第五开关管Q5和第六开关管Q6作为功率开关电路220的下桥臂。第一开关管Q1的第一端、第二开关管Q2的第一端和第三开关管Q3的第一端共同连接,该共同连接端连接电源正极,第一开关管Q1的第二端连接 第四开关管Q4的第一端,第二开关管Q2的第二端连接第五开关管Q5的第一端,第三开关管Q3的第二端连接第六开关管Q6的第一端,第四开关管Q4的第二端连接第一采样电阻RS1,第五开关管Q5的第二端连接第二采样电阻RS2,第六开关管Q6的第二端第三采样电阻RS3。第一开关管Q1、第二开关管Q2、第三开关管Q3、第四开关管Q4、第五开关管Q5和第六开关管Q6的控制端连接功率开关控制电路210的输出端。第一开关管Q1和第四开关管Q4的共同连接端、第二开关管Q2和第五开关管Q5的共同连接端以及第三开关管Q3和第六开关管Q6的共同连接端连接电机的三相绕组。其中,所述开关管的第一端为开关管的集电极或者漏极,开关管的第二端为开关管的发射极或者源极,开关管的控制端为开关管的门极或者栅极。
请参照图2-图6,本申请实施例还提供了一种电机系统,所述电机系统包括无刷直流电机20和用于驱动无刷直流电机20工作的电机驱动系统10。其中,电机驱动系统10可采用本申请实施例提供的电机驱动系统10,未在该电机驱动系统实施例中详尽描述的技术细节和效果描述,可参见本申请实施例所提供的功率开关器件过流保护电路。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;在本申请的思路下,以上实施例或者不同实施例中的技术特征之间也可以进行组合,并存在如上所述的本申请的不同方面的许多其它变化,为了简明,它们没有在细节中提供;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (11)

  1. 一种功率开关器件过流保护电路,其特征在于,所述过流保护电路包括:
    电流采样电路,用于输入三相待检测电流并输出三相采样电压信号;
    信号分离电路,电性连接所述电流采样电路的输出端,所述信号分离电路用于对所述电流采样电路输出的三相采样电压信号进行分离并输出三路直流电压信号;
    分压电路,电性连接所述信号分离电路的输出端,用于对所述直流电压信号进行分压输出检测电压。
  2. 根据权利要求1所述的过流保护电路,其特征在于,所述过流保护电路还包括滤波电路,所述滤波电路连接所述分压电路的输出端,用于滤除所述检测电压中的尖峰电压。
  3. 根据权利要求1或2所述的过流保护电路,其特征在于,所述电流采样电路包括第一采样支路、第二采样支路和第三采样支路,每一采样支路连接一相待检测电流。
  4. 根据权利要求3所述的过流保护电路,其特征在于,所述信号分离电路包括第一分离支路、第二分离支路和第三分离支路,所述第一分离支路的第一端、所述第二分离支路的第一端和所述第三分离支路的第一端分别连接一路采样支路的输出端,所述第一分离支路的第二端、所述第二分离支路的第二端和所述第三分离支路的第二端互相连接,作为所述信号分离电路的输出端。
  5. 根据权利要求4所述的过流保护电路,其特征在于,所述电流采样电路中所述第一采样支路包括第一采样电阻,所述第一采样电阻的第一端输入三相电流中的一相电流,所述第一采样电阻的第二端接地,所述第一采样电阻的第一端连接所述第一分离支路的第一端;
    所述第二采样支路包括第二采样电阻,所述第二采样电阻的第一端输入三相电流中的一相电流,所述第二采样电阻的第二端接地,所述第二采样电阻的第一端连接所述第二分离支路的第一端;
    所述第三采样支路包括第三采样电阻,所述第三采样电阻的第一端输入三相电流中的一相电流,所述第三采样电阻的第二端接地,所述第三采样电阻的第一端连接所述第三分离支路的第一端。
  6. 根据权利要求4所述的过流保护电路,其特征在于,所述第一分离支路包括第一二极管,所述第一二极管的正极作为所述第一分离支路的第一端,所述第一二极管的负极作为所述第一分离支路的第二端;
    所述第二分离支路包括第二二极管,所述第二二极管的正极作为所述第二分离支路的第一端,所述第二二极管的负极作为所述第二分离支路的第二端;
    所述第三分离支路包括第三二极管,所述第三二极管的正极作为所述第三分离支路的第一端,所述第三二极管的负极作为所述第三分离支路的第二端。
  7. 根据权利要求1所述的过流保护电路,其特征在于,所述分压电路包括第一分压电阻和第二分压电阻;
    所述第一分压电阻的一端与所述信号分离电路的输出端连接,所述第一分压电阻的另一端经由所述第二分压电阻接地,所述第一分压电阻和所述第二分压电阻的公共连接端作为输出端输出所述检测电压。
  8. 根据权利要求2所述的过流保护电路,其特征在于,所述滤波电路包括滤波电容,所述滤波电容的一端与所述分压电路的输出端连接,另一端接地。
  9. 一种电机驱动系统,其特征在于,所述系统包括:
    功率开关电路,用于驱动电机工作;
    功率开关控制模块,与所述功率开关电路电性连接,用于控制所述功率开关电路驱动所述电机工作,以及用于当检测电压不符合预定电压时关闭所述功率开关电路;
    所述系统还包括权1至权8的任意一项所述的功率开关器件过流保护电路,所述过流保护电路中的电流采样电路的输入端连接所述功率开关电路的三相电流,分压电路的输出端输出所述检测电压到所述功率开关控制模块的输入端。
  10. 根据权利要求9所述的电机驱动系统,其特征在于,所述功率开关电路包括第一开关管、第二开关管、第三开关管、第四开关管、第五开关管和第六开关管;
    所述第一开关管的第一端、所述第二开关管的第一端和所述第三开关管的第一端共同连接,该共同连接端连接电源正极,所述第一开关管的第二端连接所述第四开关管的第一端,所述第二开关管的第二端连接所述第五开关管的第一端,所述第三开关管的第二端连接所述第六开关管的第一端,所述第四开关管的第二端连接所述电流采样电路的第一采样支路的输入端,所述第五开关管 的第二端连接第二采样支路的输入端,所述第六开关管的第二端连接第三采样支路的输入端;
    所述第一开关管和所述第四开关管的共同连接端、所述第二开关管和所述第五开关管的共同连接端以及第三开关管和所述第六开关管的共同连接端,分别作为所述功率开关电路的输出端用于连接所述电机的三相绕组。
  11. 一种电机系统,包括无刷直流电机,其特征在于,所述电机系统还包括权利要求9或10所述的电机驱动系统,所述无刷直流电机与所述电机驱动系统中的功率开关电路连接。
PCT/CN2017/100781 2017-09-06 2017-09-06 功率开关器件过流保护电路及电机驱动系统、电机系统 WO2019047079A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201780008990.5A CN108780990A (zh) 2017-09-06 2017-09-06 功率开关器件过流保护电路及电机驱动系统、电机系统
PCT/CN2017/100781 WO2019047079A1 (zh) 2017-09-06 2017-09-06 功率开关器件过流保护电路及电机驱动系统、电机系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/100781 WO2019047079A1 (zh) 2017-09-06 2017-09-06 功率开关器件过流保护电路及电机驱动系统、电机系统

Publications (1)

Publication Number Publication Date
WO2019047079A1 true WO2019047079A1 (zh) 2019-03-14

Family

ID=64034054

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/100781 WO2019047079A1 (zh) 2017-09-06 2017-09-06 功率开关器件过流保护电路及电机驱动系统、电机系统

Country Status (2)

Country Link
CN (1) CN108780990A (zh)
WO (1) WO2019047079A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110676809B (zh) * 2019-09-20 2021-12-03 深圳供电局有限公司 三相四线系统断零线保护电路

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008122226A (ja) * 2006-11-13 2008-05-29 Matsushita Electric Ind Co Ltd 過電流検出装置およびそれを備えた空気調和機、冷蔵庫、洗濯機
CN101783506A (zh) * 2009-12-16 2010-07-21 艾默生网络能源有限公司 一种检测和限流保护电路
CN103078520A (zh) * 2011-10-26 2013-05-01 乐星产电(无锡)有限公司 变频器装置以及该变频器装置的过电流保护方法
CN104716631A (zh) * 2013-12-12 2015-06-17 杭州先途电子有限公司 空调控制器及其过电流保护电路和采样电路
CN205681107U (zh) * 2016-06-06 2016-11-09 襄阳航力机电技术发展有限公司 直流电源系统双路电流保护电路
CN206041473U (zh) * 2016-09-29 2017-03-22 西安微电子技术研究所 一种dc/dc变换器用短路保护电路

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101409441B (zh) * 2008-10-23 2011-04-20 蔡起仲 开关磁阻调速电动机的过电流保护电路
CN203589682U (zh) * 2013-12-10 2014-05-07 贵州振华群英电器有限公司 三相电源过流保护继电器
CN207184038U (zh) * 2017-09-06 2018-04-03 深圳和而泰智能控制股份有限公司 功率开关器件过流保护电路及电机驱动系统、电机系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008122226A (ja) * 2006-11-13 2008-05-29 Matsushita Electric Ind Co Ltd 過電流検出装置およびそれを備えた空気調和機、冷蔵庫、洗濯機
CN101783506A (zh) * 2009-12-16 2010-07-21 艾默生网络能源有限公司 一种检测和限流保护电路
CN103078520A (zh) * 2011-10-26 2013-05-01 乐星产电(无锡)有限公司 变频器装置以及该变频器装置的过电流保护方法
CN104716631A (zh) * 2013-12-12 2015-06-17 杭州先途电子有限公司 空调控制器及其过电流保护电路和采样电路
CN205681107U (zh) * 2016-06-06 2016-11-09 襄阳航力机电技术发展有限公司 直流电源系统双路电流保护电路
CN206041473U (zh) * 2016-09-29 2017-03-22 西安微电子技术研究所 一种dc/dc变换器用短路保护电路

Also Published As

Publication number Publication date
CN108780990A (zh) 2018-11-09

Similar Documents

Publication Publication Date Title
CN103944548B (zh) 用于晶体管的栅极驱动电路
CN108718152B (zh) 交错式pfc控制电路及电机驱动电路
JP5146555B2 (ja) スイッチング素子の駆動回路
US10355580B2 (en) DC-DC converter with protection circuit limits
US9214873B2 (en) Method for operating an electrical power rectifier, as well as an electrical power rectifier
US10468972B2 (en) Power converter including a plurality of converter cells connected in multiple series
CN106688183A (zh) 自灭弧式半导体元件的短路保护电路
US11413965B2 (en) High voltage interlock circuit and detection method thereof
CN102013802A (zh) 一种具有短路保护功能的boost电路
CN104849644A (zh) Igbt状态检测电路以及igbt状态检测方法
CN102097789A (zh) 一种igbt过流或短路状态检测电路
WO2021179858A1 (zh) 绝缘栅极双极型晶体管的保护装置和方法
WO2019047079A1 (zh) 功率开关器件过流保护电路及电机驱动系统、电机系统
CN207184038U (zh) 功率开关器件过流保护电路及电机驱动系统、电机系统
CN206283247U (zh) 过流保护电路、电机和空调器
CN110176855A (zh) 一种基于hcpl-316j的igbt驱动的有源钳位保护电路
CN111244898A (zh) 一种交流伺服驱动器输出端相间短路的保护电路及方法
CN211577329U (zh) 一种mos管自检电路和电动车
CN106329901A (zh) 过流保护外围电路和用电设备
US10454467B2 (en) Control device for transistors
CN110690683A (zh) 智能功率模块的过流保护电路及过流保护装置
CN110971216B (zh) 一种过流保护电路
CN219065589U (zh) 用于无刷直流电机驱动控制系统的电流检测电路
CN220209955U (zh) 一种电机过流保护电路
CN111257716B (zh) Igbt过流检测电路及芯片和电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17924057

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 10/09/2020)

122 Ep: pct application non-entry in european phase

Ref document number: 17924057

Country of ref document: EP

Kind code of ref document: A1