WO2019047015A1 - 一种自动平衡机器人 - Google Patents
一种自动平衡机器人 Download PDFInfo
- Publication number
- WO2019047015A1 WO2019047015A1 PCT/CN2017/100516 CN2017100516W WO2019047015A1 WO 2019047015 A1 WO2019047015 A1 WO 2019047015A1 CN 2017100516 W CN2017100516 W CN 2017100516W WO 2019047015 A1 WO2019047015 A1 WO 2019047015A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- foot
- automatic balancing
- strut
- balancing robot
- robot
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J19/00—Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J9/00—Programme-controlled manipulators
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B62—LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
- B62D—MOTOR VEHICLES; TRAILERS
- B62D57/00—Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track
- B62D57/02—Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track with ground-engaging propulsion means, e.g. walking members
- B62D57/028—Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track with ground-engaging propulsion means, e.g. walking members having wheels and mechanical legs
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B62—LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
- B62D—MOTOR VEHICLES; TRAILERS
- B62D57/00—Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track
- B62D57/02—Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track with ground-engaging propulsion means, e.g. walking members
- B62D57/032—Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track with ground-engaging propulsion means, e.g. walking members with alternately or sequentially lifted supporting base and legs; with alternately or sequentially lifted feet or skid
Definitions
- the invention relates to the field of robot technology, in particular to an automatic balancing robot.
- a robot is a robot that automatically performs work. It can accept human command, run pre-programmed programs, or act according to the principles of artificial intelligence technology. Its mission is to assist or replace human work.
- Work such as production, construction, or dangerous work, that is, the robot body, the arm generally uses a space open chain link mechanism, in which the motion pair (rotary pair or moving pair) is often called the joint, the number of joints Usually, it is the degree of freedom of the robot.
- the robot actuator can be divided into a rectangular coordinate type, a cylindrical coordinate type, a polar coordinate type and a joint coordinate type.
- the relevant parts of the robot body are often referred to as a base, a waist, an arm, a wrist, a hand (clamp or end effector), and a walking portion (for a mobile robot).
- the existing robot does not have the function of self-dressing clothes, and it is necessary to wear clothes for the robot by the staff member, which not only increases the pressure and burden of the worker, but also makes the existing robot not have better functions. This makes existing robots not widely available and recognized in the market. Moreover, the foot structure of the robot foot lacks shock absorption and cushioning devices, which greatly reduces the stability of the robot walking.
- an automatic balancing robot comprising an automatic balancing robot body and an automatic balancing foot force device, the automatic balancing robot body
- a fixing device is disposed on the left and right sides of the front side, and a connecting belt is disposed at a front end of the fixing device, and the connecting belt is fixedly connected to the fixing device by an adhesive, and one side of the connecting belt is provided with a fixing buckle
- the left and right ends of the balance robot body are provided with a sliding groove and a connecting arm, and the connecting arm is embedded in the main body of the automatic balancing robot through the sliding groove, and one side of the connecting arm is provided with a rotator, and the rotator is embedded and set In the connecting arm, a telescopic elastic arm is disposed above the rotator.
- the automatic balance foot force device includes an ankle and a sole, and both ends of the sole are equipped with a foot card slot. And a foot plate is connected to both sides of the foot plate slot, and a foot plate connecting shaft is disposed at one end of the foot plate, and a strut is connected to an intermediate position of the foot plate connecting shaft, and the strut is connected
- One end of each of the strut connecting blocks is provided with a branching rod, and one side of the sole is provided with a secondary spring, and the bottom of the secondary spring is connected with a diagonal a struts, a bottom of each of the diagonal struts is mounted with a rubber bearing, the inner bottom end of the ankle is mounted with a sliding block, and both ends of the sliding block are connected with a guiding groove, above the sliding block
- the position is provided with a main spring, the upper position of the ankle is provided with a plurality of connecting columns, and the inside of the connecting post is provided with a pin hole, and the bottom of the ankle is provided with
- the telescopic elastic arm has a lower telescopic column, and the telescopic column is embedded in the telescopic elastic arm.
- a built-in fixing plate is disposed above the telescopic column, and the built-in fixing plate is tightly welded to the telescopic column.
- the left and right ends of the built-in fixing plate are provided with built-in rollers, and the left and right ends of the built-in fixing plate are respectively provided with springs, and the middle portion above the telescopic elastic arms is provided with a robot grip.
- the rotator is arranged in a "cylindrical" shape, and a semi-embedded portion is disposed in the connecting arm, and the telescopic elastic arm is movably connected to the connecting arm through the rotator.
- the built-in roller is arranged in a "ring" shape, and is provided with four, and two and two symmetrically disposed on the left and right ends of the built-in fixing plate.
- the connecting arm is disposed in a "concave” shape, and the rotator is embedded in the connecting arm through the groove of the "concave”.
- the springs are arranged in a "wave" shape, and are provided with two, and are symmetrically disposed on the left and right sides of the telescopic column.
- the foot plate connecting shafts are respectively embedded in one end of the foot plate, and the intermediate positions of the foot plates are tightly welded with the struts, and the struts are fixedly connected with one end of the struts connecting block, and One end of the branching rod is tightly welded to the other end of the strut connecting block, and the other end of the branching rod is fixedly connected with one side of the sliding block, and the top of the sliding block is tightly welded to the bottom end of the main spring.
- the top end of the main spring is tightly welded to the inner upper end of the ankle.
- both sides of the sole are tightly welded to one end of the foot plate slot, and both ends of the foot plate slot are movably connected with the foot plate, and the number of the foot plates is two, the circle
- the connecting block is embedded in the bottom of the ankle, and the bottom of the circular connecting block is tightly welded to the top of the sole.
- the auxiliary springs are respectively embedded on both sides of the sole, and the bottom of the secondary spring is tightly welded to the top of the diagonal strut, and the bottom of the diagonal strut is fixed to the surface of the rubber support. connection.
- the bottom of the connecting post is tightly welded to the upper surface of the ankle, and the pin holes are respectively embedded in the interior of the connecting post.
- the invention has the beneficial effects that the automatic balancing robot has a reasonable structure, is provided with a rotator in a "cylindrical” shape, and is embedded in a connecting arm arranged in a "concave” shape, so that when After the robot grips the clothes, it can be stretched outward by the rotator, so that the clothes can be completely inserted into the robot, and the built-in roller and the "wavy" spring are arranged in a "ring” shape.
- the telescopic elastic arm can have a certain degree of flexibility and toughness, so that when the robot grips the clothes and performs the downward stretching operation, the telescopic elastic arm can be telescopically operated by the built-in roller and the spring. Prevent the effect of breaking the clothes, so that the robot can wear and operate on its own, so that the robot equipment can be more widely available in the market. Application and recognition.
- the foot plate connecting shafts are respectively embedded in one end of the foot plate, and the intermediate positions of the foot plates are tightly welded with the struts, the struts are fixedly connected with one end of the struts connecting block, and the branching rods are One end is tightly welded to the other end of the strut connecting block, and the other end of the branching rod is fixedly connected to one side of the sliding block, and the top of the sliding block is tightly welded to the bottom end of the main spring, the main spring The top end is tightly welded to the inner upper end of the ankle.
- the spring has a shock absorbing and damping effect, thereby slowing down the turning speed of the foot board, improving the smoothness of the robot during walking, and both sides of the sole are tightly welded to one end of the foot board slot, and the The two ends of the foot card slot are movably connected to the foot plate, the number of the foot plates is two, the circular connecting block is embedded in the bottom of the ankle, and the bottom of the circular connecting block and the sole of the foot Tightly welded at the top,
- the foot plate is provided both before and after, so that the robot has protection and shock absorption measures when leaning forward and backward, and the ankle and the sole are connected by a circular connecting block, and the circular connecting block is "arched", and
- the arch has a force dispersion, so that the sole and the two foot plates are more
- the pressure is transmitted to the auxiliary spring through the rubber support, so that the secondary spring is compressed, and the secondary spring is compressed.
- the pressure is dispersed during the compression process, thereby playing a supporting role, and the stability of the robot can be further improved by damping the left and right sides of the robot, and the bottom of the connecting column is tightly welded to the upper surface of the ankle.
- the pin holes are embedded in the interior of the connecting post, and the balancing device can be quickly disassembled and assembled by inserting the pin into the pin hole in the connecting post, which is more convenient for maintenance and cleaning.
- FIG. 1 is a schematic structural view of a main body of an automatic balancing robot of the present invention
- FIG. 2 is a schematic view showing a partial structure of a telescopic elastic arm of the present invention
- Figure 3 is a schematic structural view of the automatic balance foot force device of the present invention.
- Figure 4 is a partial structural view showing the movable pulley of the automatic balance foot force receiving device of the present invention
- FIG. 5 is a schematic view showing the installation structure of the main body of the automatic balancing robot and the self-balancing foot force receiving device of the present invention.
- automatic balancing robot body 101, connecting arm, 1011, rotator, 102, telescopic elastic arm, 1021, robot grip, 1022, built-in roller, 1023, built-in fixed plate, 1024, spring, 1025, telescopic Column, 103, sliding groove, 2, holder, 201, connecting belt, 202, fixed buckle, 1a-foot; 2a-foot; 3a-foot; 4a-foot connection shaft; 5a-strut ; 6a-strut connecting block; 7a-branch rod; 8a-foot board slot; 9a-sliding block; 10a-main spring; 11a-connecting post; 12a-bolt hole; 13a-rear spring; 14a-guide groove; 15a- diagonal strut; 16a-rubber support; 17a-round connecting block.
- an automatic balancing robot including an automatic balancing robot body 1, an automatic balance foot force device, a connecting arm 101, a rotator 1011, a telescopic elastic arm 102, and a robot
- the 1021, the built-in roller 1022, the sliding groove 103, the built-in fixing plate 1023, the spring 1024, the telescopic column 1025, the holder 2, the connecting belt 201, and the fixed buckle 202 are provided on the left and right sides of the front of the main body of the automatic balancing robot 1
- the front end of the holder 2 is provided with a connecting strip 201, and the connecting strip 201 and the holder 2 are fixedly connected by an adhesive.
- One side of the connecting strip 201 is provided with a fixing buckle 202, and the left and right sides of the robot main body 1 are automatically balanced. Sliding concave The slot 103 and the connecting arm 101 are connected, and the connecting arm 101 is embedded in the automatic balancing robot main body 1 through the sliding groove 103.
- the side of the connecting arm 101 is provided with a rotator 1011, and a rotator 1011 in a "cylindrical" shape is disposed. And embedded in the "concave" shaped connecting arm 101, so that when the robot grip 1021 holds the clothes, the rotator 1011 can be used to perform the outward stretching operation, so that the clothes can be completely inserted into the robot.
- the rotator 1011 is embedded in the connecting arm 101.
- the retort 1011 is provided with a telescopic elastic arm 102, a lower telescopic column 1025 of the telescopic elastic arm 102, and the telescopic column 1025 is embedded in the telescopic elastic arm 102.
- a built-in fixing plate 1023 is disposed above the 1025, and the built-in fixing plate 1023 is tightly welded to the telescopic column 1025.
- the left and right ends of the built-in fixing plate 1023 are provided with a built-in roller 1022, and the left and right ends of the built-in fixing plate 1023 are provided with springs.
- the telescopic elastic arm 102 has a certain degree of telescopic toughness, so that when the robot grips the 1021 to hold the clothes for the downward sleeve operation, the telescopic elastic hand 102 can be telescopically operated by the built-in roller 1022 and the spring 1024 to prevent the clothes from being stretched.
- the effect of the break is that the middle portion above the telescopic elastic arm 102 is provided with a robot grip 1021.
- the automatic balance foot force receiving device includes an ankle 1a and a sole 2a, and both ends of the sole 2a are mounted with a foot card slot 8a.
- the two sides of the foot board slot 8a are connected with a foot board 3a, one end of the foot board 3a is provided with a foot board connecting shaft 4a, and the middle position of the foot board connecting shaft 4a is connected with a strut 5a, one end of the strut 5a is mounted with a strut connecting block 6a, and one side of the strut connecting block 6a is provided with a branching rod 7a, and both sides of the sole 2a are provided with a secondary spring 13a
- the bottom of the auxiliary spring 13a is connected with a diagonal strut 15a, the bottom of the diagonal strut 15a is mounted with a rubber support 16a, and the inner bottom end of the ankle 1a is mounted with a sliding block 9a, and Each of the two ends of the sliding block 9a is connected with a guiding groove 14
- the upper part of the sliding block 9a is provided with a main spring 10a.
- the upper part of the ankle 1a is provided with a plurality of connecting columns 11a, and the connecting post 11a
- the inside is provided with a pin hole 12a, and the bottom of the foot 2a is provided with a circular connecting block 17a.
- the foot plate connecting shaft 4a is embedded in one end of the foot plate 3a, and the intermediate position of the foot plate 3a is tightly welded with the strut 5a, and the strut 5a is connected to the strut connecting block 6a.
- One end of the branching rod 7a is tightly welded to the other end of the strut connecting block 6a, and the other end of the branching rod 7a is fixedly connected to one side of the sliding block 9a, the sliding block
- the top of the main spring 10a is tightly welded to the bottom end of the main spring 10a, and the top end of the main spring 10a is tightly welded to the inner upper end of the ankle 1a.
- both sides of the sole 2a are tightly welded to one end of the foot card slot 8a, and both ends of the foot plate slot 8a are movably connected with the foot plate 3a, and the number of the foot plates 3a is 2.
- the circular connecting block 17a is embedded in the bottom of the ankle 1a, and the bottom of the circular connecting block 17a is tightly welded to the top of the sole 2a, and the foot plate 3a is provided through the front and the rear to make the robot in front.
- Both the tilting and the backward tilting have protection and shock absorption measures, and the ankle 1a and the sole 2a are connected by a circular connecting block 17a, and the circular connecting block 17a is "arched", and the arch has a force dispersion effect. Thereby, the sole 2a and the two foot plates 3a are more balanced.
- the sub-springs 13a are respectively embedded on both sides of the sole 2a, and the bottom of the sub-spring 13a is tightly welded to the top of the diagonal strut 15a, and the bottom of the diagonal strut 15a is rubberized
- the surface of the holder 16a is fixedly connected.
- the bottom of the connecting post 11a is tightly welded to the upper surface of the foot 1a, and the pin holes 12a are respectively embedded in the inside of the connecting post 11a, and the plug is inserted into the pin hole 12a in the connecting post 11a.
- the balancing device can be quickly disassembled for easier maintenance and cleaning.
- FIG. 5 is a schematic view showing the installation structure of the main body of the automatic balancing robot and the self-balancing foot force receiving device of the present invention. There are two automatic balance foot force devices mounted on the robot body. In Fig. 5, only one foot is shown for simplicity.
- Working principle Firstly, the worker opens the fixing buckle 202, and surrounds the two connecting straps 201 on the robot body, and after the fixing buckles 202 are merged, the wearing device can start to operate, and the automatic balancing robot body 1 passes first. After the two robots grip 1021 to hold a piece of clothing or a hat, the telescopic elastic arm 102 is rotated 360 degrees in the vertical direction by the rotator 1011, and the connecting arm 101 is rotated downward through the sliding groove 103 while rotating.
- the telescopic column 1025 is contracted by the built-in roller 1022 and the two springs 1024, so that the telescopic elastic arm 102 can be increased in flexibility and to prevent the telescopic elastic arm 102 from being stretched.
- the clothing is broken.
- the telescopic elastic arm 102 rotates more than 90 degrees, the telescopic column 1025 will eject the telescopic elastic arm 102 downward by the elasticity of the two springs 1024. Let the clothes be worn on the robot more quickly.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Transportation (AREA)
- Robotics (AREA)
- Manipulator (AREA)
Abstract
一种自动平衡机器人,包括自动平衡机器人主体(1)和自动平衡足部受力装置。机器人主体包括可以滑动和伸缩的手臂(101)。足部受力装置包括足踝(1a)和足底(2a),足底两侧连接有足板(3a),足板的一端嵌入足板连接轴(4a),足板的中间位置与支杆(5a)紧密焊接,支杆与支杆连接块(6a)的一端固定连接,支杆连接块的另一端与分支杆(7a)的一端紧密焊接,分支杆的另一端与滑动块(9a)的一侧固定连接,滑动块的顶部与主弹簧(10a)的底端紧密焊接,主弹簧的顶端与足踝的内部上端紧密焊接。当机器人倾斜时,足板一端受压,压力通过支杆和支杆连接块,使分支杆推动滑动块向上移动从而推动主弹簧向上压缩,而弹簧具有减震和阻尼作用,从而使足板的翻转速度减缓,提高了平稳性。
Description
本发明涉及机器人技术领域,具体为一种自动平衡机器人。
机器人(Robot)是自动执行工作的机器装置,它既可以接受人类指挥,又可以运行预先编排的程序,也可以根据以人工智能技术制定的原则纲领行动,它的任务是协助或取代人类工作的工作,例如生产业、建筑业,或是危险的工作,即机器人本体,其臂部一般采用空间开链连杆机构,其中的运动副(转动副或移动副)常称为关节,关节个数通常即为机器人的自由度数,根据关节配置型式和运动坐标形式的不同,机器人执行机构可分为直角坐标式、圆柱坐标式、极坐标式和关节坐标式等类型,出于拟人化的考虑,常将机器人本体的有关部位分别称为基座、腰部、臂部、腕部、手部(夹持器或末端执行器)和行走部(对于移动机器人)等。
现有的机器人并不具备有自我穿戴衣服的功能,需要通过工作人员亲手为机器人进行穿戴衣服,这样不但增加了工作人的压力和负担,还让现有的机器人不具备有更好的功能,使得现有的机器人不能够在市场上得到更广泛的应用和认可。而且机器人足部的脚板结构缺乏减震、缓冲装置,大大降低机器人行走的平稳性。
发明内容
本发明的目的在于提供一种自动平衡机器人,以解决上述背景技术中提出的问题。
为实现上述目的,本发明提供如下技术方案:一种自动平衡机器人,包括自动平衡机器人主体和自动平衡足部受力装置,所述自动平衡机器人主体
前方的左右两侧均设置有固定器,所述固定器的前端设置有连接带,且连接带与固定器通过黏胶固定连接,所述连接带的一侧设置有固定卡扣,所述自动平衡机器人主体的左右两端均设置有滑动凹槽和连接手臂,且连接手臂通过滑动凹槽嵌入设置在自动平衡机器人主体中,所述连接手臂的一侧设置有旋转器,且旋转器嵌入设置在连接手臂中,所述旋转器的上方设置有伸缩弹性手臂。自动平衡足部受力装置包括足踝和足底,所述足底的两端均安装有足板卡槽。且所述足板卡槽的两侧均连接有足板,所述足板的一端均设置有足板连接轴,且所述足板连接轴的中间位置均连接有支杆,所述支杆的一端均安装有支杆连接块,且所述支杆连接块的一侧均设置有分支杆,所述足底的两侧均设置有副弹簧,且所述副弹簧的底部均连接有斜撑杆,所述斜撑杆的底部均安装有橡胶支座,所述足踝的内部底端安装有滑动块,且所述滑动块的两端均连接有导槽,所述滑动块的上方位置设置有主弹簧,所述足踝的上方位置设置有若干个连接柱,且所述连接柱的内部设置有插销孔,所述足踝的底部设置有圆型连接块。
优选的,所述伸缩弹性手臂的下方伸缩柱,且伸缩柱嵌入设置在伸缩弹性手臂中。
优选的,所述伸缩柱的上方设置有内置固定板,且内置固定板与伸缩柱紧密焊接。
优选的,所述内置固定板的左右两端均设置有内置滚轮,所述内置固定板下方的左右两端均设置有弹簧,所述伸缩弹性手臂上方的中部设置有机械手抓。
优选的,所述旋转器设置呈“圆柱”状,且半嵌入设置在连接手臂中,所述伸缩弹性手臂与连接手臂通过旋转器活动连接。
优选的,所述内置滚轮设置呈“圆环”状,且设置有四个,并两两对称设置在内置固定板的左右两端。
优选的,所述连接手臂设置呈“凹”字状,且旋转器通过这个“凹”字的凹槽处,嵌入设置在所述连接手臂上。
优选的,所述弹簧设置呈“波浪”状,且设置有两个,并对称设置在伸缩柱的左右两侧。
优选的,所述足板连接轴均嵌入设置于足板的一端内,且所述足板的中间位置均与支杆紧密焊接,所述支杆均与支杆连接块的一端固定连接,且所述分支杆的一端均与支杆连接块的另一端紧密焊接,且所述分支杆的另一端均与滑动块的一侧固定连接,所述滑动块的顶部与主弹簧的底端紧密焊接,所述主弹簧的顶端与足踝的内部上端紧密焊接。
优选的,所述足底的两侧均与足板卡槽的一端紧密焊接,且所述足板卡槽的两端与足板活动连接,所述足板的数量为2个,所述圆型连接块嵌入设置于足踝的底部,且所述圆型连接块的底部与足底的顶部紧密焊接。
优选的,所述副弹簧均嵌入设置于足底的两侧,且所述副弹簧的底部均与斜撑杆的顶部紧密焊接,且所述斜撑杆的底部均与橡胶支座的表面固定连接。
优选的,所述连接柱的底部均与足踝的上方表面紧密焊接,所述插销孔均嵌入设置于连接柱的内部。
与现有技术相比,本发明的有益效果是:该种自动平衡机器人,结构合理,设置有呈“圆柱”状的旋转器,并嵌入设置在“凹”字状的连接手臂上,这样当机械手抓夹持了衣服后,就能够通过这个旋转器进行向外拉伸的运作,使得衣服能够完全套入到机器人上,设置有“圆环”状的内置滚轮和“波浪”状的弹簧,通过这些内置滚轮和弹簧就能够让伸缩弹性手臂具备有一定的伸缩韧性,这样当机械手抓夹持衣服进行向下套伸的运作时,就可以通过内置滚轮和弹簧让伸缩弹性手臂进行伸缩运作,防止将衣服撑破的效果,这样机器人就能够自行的进行穿戴运作,让该种机器人设备能在市场上得到更广泛
的应用和认可。
足板连接轴均嵌入设置于足板的一端内,且所述足板的中间位置均与支杆紧密焊接,所述支杆均与支杆连接块的一端固定连接,且所述分支杆的一端均与支杆连接块的另一端紧密焊接,且所述分支杆的另一端均与滑动块的一侧固定连接,所述滑动块的顶部与主弹簧的底端紧密焊接,所述主弹簧的顶端与足踝的内部上端紧密焊接,当机器人一侧受力倾斜时,足板一端受压,压力通过支杆和支杆连接块,使分支杆推动滑动块向上移动从而推动主弹簧向上压缩,而弹簧具有减震和阻尼作用,从而使足板的翻转速度减缓,提高了机器人行走过程中的平稳性,所述足底的两侧均与足板卡槽的一端紧密焊接,且所述足板卡槽的两端与足板活动连接,所述足板的数量为2个,所述圆型连接块嵌入设置于足踝的底部,且所述圆型连接块的底部与足底的顶部紧密焊接,通过前后均设置有足板,使机器人在前倾和后倾的时候均有保护和减震措施,而足踝和足底通过圆型连接块连接,圆型连接块呈“拱形”,而拱形具有力的分散作用,从而使足底和两个足板受力更加平衡,所述副弹簧均嵌入设置于足底的两侧,且所述副弹簧的底部均与斜撑杆的顶部紧密焊接,且所述斜撑杆的底部均与橡胶支座的表面固定连接,当机器人在向左右小幅度倾斜时,压力通过橡胶支座传递到副弹簧上,从而使副弹簧压缩,副弹簧的压缩过程中将压力分散,从而起到一个支撑作用,通过对机器人的左右起到减震固定作用,可进一步提高机器人的稳定性,所述连接柱的底部均与足踝的上方表面紧密焊接,所述插销孔均嵌入设置于连接柱的内部,通过将插销插入连接柱内的插销孔内,可快速的拆装该平衡装置,更加方便与维修和清扫。
图1为本发明的自动平衡机器人主体结构示意图;
图2为本发明伸缩弹性手臂局部结构示意图;
图3是本发明的自动平衡足部受力装置结构示意图;
图4是本发明的自动平衡足部受力装置的动滑轮局部结构示意图;
图5为本发明的自动平衡机器人主体与自动平衡足部受力装置的安装结构示意图。
图中:1、自动平衡机器人主体,101,、连接手臂,1011、旋转器,102、伸缩弹性手臂,1021、机械手抓,1022、内置滚轮,1023、内置固定板,1024、弹簧,1025、伸缩柱,103、滑动凹槽,2、固定器,201、连接带,202、固定卡扣,1a-足踝;2a-足底;3a-足板;4a-足板连接轴;5a-支杆;6a-支杆连接块;7a-分支杆;8a-足板卡槽;9a-滑动块;10a-主弹簧;11a-连接柱;12a-插销孔;13a-副弹簧;14a-导槽;15a-斜撑杆;16a-橡胶支座;17a-圆型连接块。
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
请参阅图1-2,本发明提供一种技术方案:一种自动平衡机器人,包括自动平衡机器人主体1、自动平衡足部受力装置、连接手臂101、旋转器1011、伸缩弹性手臂102、机械手抓1021、内置滚轮1022、滑动凹槽103、内置固定板1023、弹簧1024、伸缩柱1025、固定器2、连接带201、固定卡扣202,自动平衡机器人主体1前方的左右两侧均设置有固定器2,固定器2的前端设置有连接带201,且连接带201与固定器2通过黏胶固定连接,连接带201的一侧设置有固定卡扣202,自动平衡机器人主体1的左右两端均设置有滑动凹
槽103和连接手臂101,且连接手臂101通过滑动凹槽103嵌入设置在自动平衡机器人主体1中,连接手臂101的一侧设置有旋转器1011,设置有呈“圆柱”状的旋转器1011,并嵌入设置在“凹”字状的连接手臂101上,这样当机械手抓1021夹持了衣服后,就能够通过这个旋转器1011进行向外拉伸的运作,使得衣服能够完全套入到机器人上,且旋转器1011嵌入设置在连接手臂101中,旋转器1011的上方设置有伸缩弹性手臂102,伸缩弹性手臂102的下方伸缩柱1025,且伸缩柱1025嵌入设置在伸缩弹性手臂102中,伸缩柱1025的上方设置有内置固定板1023,且内置固定板1023与伸缩柱1025紧密焊接,内置固定板1023的左右两端均设置有内置滚轮1022,内置固定板1023下方的左右两端均设置有弹簧1024,设置有“圆环”状的内置滚轮1022和“波浪”状的弹簧1024,通过这些内置滚轮1022和弹簧1024就能够让伸缩弹性手臂102具备有一定的伸缩韧性,这样当机械手抓1021夹持衣服进行向下套伸的运作时,就可以通过内置滚轮1022和弹簧1024让伸缩弹性手102进行伸缩运作,防止将衣服撑破的效果,伸缩弹性手臂102上方的中部设置有机械手抓1021。
如图3-4所示,自动平衡足部受力装置包括足踝1a和足底2a,所述足底2a的两端均安装有足板卡槽8a。且所述足板卡槽8a的两侧均连接有足板3a,所述足板3a的一端均设置有足板连接轴4a,且所述足板连接轴4a的中间位置均连接有支杆5a,所述支杆5a的一端均安装有支杆连接块6a,且所述支杆连接块6a的一侧均设置有分支杆7a,所述足底2a的两侧均设置有副弹簧13a,且所述副弹簧13a的底部均连接有斜撑杆15a,所述斜撑杆15a的底部均安装有橡胶支座16a,所述足踝1a的内部底端安装有滑动块9a,且所述滑动块9a的两端均连接有导槽14a,所述滑动块9a的上方位置设置有主弹簧10a,所述足踝1a的上方位置设置有若干个连接柱11a,且所述连接柱11a的内部设置有插销孔12a,所述足踝2a的底部设置有圆型连接块17a。
进一步的,所述足板连接轴4a均嵌入设置于足板3a的一端内,且所述足板3a的中间位置均与支杆5a紧密焊接,所述支杆5a均与支杆连接块6a的一端固定连接,且所述分支杆7a的一端均与支杆连接块6a的另一端紧密焊接,且所述分支杆7a的另一端均与滑动块9a的一侧固定连接,所述滑动块9a的顶部与主弹簧10a的底端紧密焊接,所述主弹簧10a的顶端与足踝1a的内部上端紧密焊接,当机器人一侧受力倾斜时,足板3a一端受压,压力通过支杆5a和支杆连接块6a,使分支杆7a推动滑动块9a向上移动从而推动主弹簧10a向上压缩,而弹簧具有减震和阻尼作用,从而使足板3a的翻转速度减缓,提高了机器人行走过程中的平稳性。
进一步的,所述足底2a的两侧均与足板卡槽8a的一端紧密焊接,且所述足板卡槽8a的两端与足板3a活动连接,所述足板3a的数量为2个,所述圆型连接块17a嵌入设置于足踝1a的底部,且所述圆型连接块17a的底部与足底2a的顶部紧密焊接,通过前后均设置有足板3a,使机器人在前倾和后倾的时候均有保护和减震措施,而足踝1a和足底2a通过圆型连接块17a连接,圆型连接块17a呈“拱形”,而拱形具有力的分散作用,从而使足底2a和两个足板3a受力更加平衡。
进一步的,所述副弹簧13a均嵌入设置于足底2a的两侧,且所述副弹簧13a的底部均与斜撑杆15a的顶部紧密焊接,且所述斜撑杆15a的底部均与橡胶支座16a的表面固定连接,当机器人在向左右小幅度倾斜时,压力通过橡胶支座16a传递到副弹簧13a上,从而使副弹簧13a压缩,副弹簧13a的压缩过程中将压力分散,从而起到一个支撑作用,通过对机器人的左右起到减震固定作用,可进一步提高机器人的稳定性。
进一步的,所述连接柱11a的底部均与足踝1a的上方表面紧密焊接,所述插销孔12a均嵌入设置于连接柱11a的内部,通过将插销插入连接柱11a内的插销孔12a内,可快速的拆装该平衡装置,更加方便与维修和清扫。
图5为本发明的自动平衡机器人主体与自动平衡足部受力装置的安装结构示意图。其中共有两个自动平衡足部受力装置安装在机器人主体上,图5中为了简化,仅示出一个足部。
工作原理:首先工作人员将固定卡扣202打开,并将两个连接带201围绕在机器人身上,并在将固定卡扣202合并,该种穿戴设备就能够开始运作,自动平衡机器人主体1先通过两个机械手抓1021夹持一件衣服或者帽子后,伸缩弹性手臂102就会通过旋转器1011进行竖直方向的360度转动,在转动的同时连接手臂101就会通过滑动凹槽103做向下滑动的运作,当伸缩弹性手臂101做向外翻转运作时,伸缩柱1025就会通过内置滚轮1022和两个弹簧1024进行收缩运作,这样就可以增加了伸缩弹性手臂102一定的伸缩韧性,达到防止衣服在伸缩弹性手臂102翻转过程中,出现破损的现象,当伸缩弹性手臂102旋转角度超过90度后,那么伸缩柱1025就会通过两个弹簧1024的弹性将伸缩弹性手臂102向下进行弹射,让衣服能够更快速的穿戴在机器人的身上。
当机器人一侧受力倾斜时,足板3a一端受压,压力通过支杆5a和支杆连接块6a,使分支杆7a推动滑动块9a向上移动从而推动主弹簧10a向上压缩,而弹簧具有减震和阻尼作用,从而使足板3a的翻转速度减缓,提高了机器人行走过程中的平稳性,而通过设置有两个足板3a,使机器人在前倾和后倾的时候均有保护和减震措施,而足踝1a和足底2a通过圆型连接块17a连接,圆型连接块17a呈“拱形”,而拱形具有力的分散作用,从而使足底2a和两个足板3a受力更加平衡,接着,当机器人在向左右小幅度倾斜时,压力通过橡胶支座16a传递到副弹簧13a上,从而使副弹簧13a压缩,副弹簧13a的压缩过程中将压力分散,从而起到一个支撑作用,可进一步提高机器人的稳定性,最后,通过将插销插入连接柱11a内的插销孔12a内,可快速的拆装该平衡装置,更加方便与维修和清扫。
尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由所附权利要求及其等同物限定。
Claims (10)
- 一种自动平衡机器人,其特征在于:包括自动平衡机器人主体(1)和自动平衡足部受力装置,所述自动平衡机器人主体(1)前方的左右两侧均设置有固定器(2),所述固定器(2)的前端设置有连接带(201),且连接带(201)与固定器(2)通过黏胶固定连接,所述连接带(201)的一侧设置有固定卡扣(202),所述自动平衡机器人主体(1)的左右两端均设置有滑动凹槽(103)和连接手臂(101),且连接手臂(101)通过滑动凹槽(103)嵌入设置在自动平衡机器人主体(1)中,所述连接手臂(101)的一侧设置有旋转器(1011),且旋转器(1011)嵌入设置在连接手臂(101)中,所述旋转器(1011)的上方设置有伸缩弹性手臂(102);自动平衡足部受力装置包括足踝(1a)和足底(2a),其特征在于:所述足底(2a)的两端均安装有足板卡槽(8a),且所述足板卡槽(8a)的两侧均连接有足板(3a),所述足板(3a)的一端均设置有足板连接轴(4a),且所述足板连接轴(4a)的中间位置均连接有支杆(5a),所述支杆(5a)的一端均安装有支杆连接块(6a),且所述支杆连接块(6a)的一侧均设置有分支杆(7a),所述足底(2a)的两侧均设置有副弹簧(13a),且所述副弹簧(13a)的底部均连接有斜撑杆(15a),所述斜撑杆(15a)的底部均安装有橡胶支座(16a),所述足踝(1a)的内部底端安装有滑动块(9a),且所述滑动块(9a)的两端均连接有导槽(14a),所述滑动块(9a)的上方位置设置有主弹簧(10a),所述足踝(1a)的上方位置设置有若干个连接柱(11a),且所述连接柱(11a)的内部设置有插销孔(12a),所述足踝(2a)的底部设置有圆型连接块(17a)。
- 根据权利要求1所述的一种自动平衡机器人,其特征在于:所述伸缩弹性手臂(102)的下方为伸缩柱(1025),且伸缩柱(1025)嵌入设置在伸缩弹性手臂(102)中。
- 根据权利要求2所述的一种自动平衡机器人,其特征在于:所述伸缩 柱(1025)的上方设置有内置固定板(1023),且内置固定板(1023)与伸缩柱(1025)紧密焊接;所述内置固定板(1023)的左右两端均设置有内置滚轮(1022),所述内置固定板(1023)下方的左右两端均设置有弹簧(1024),所述伸缩弹性手臂(102)上方的中部设置有机械手抓(1021)。
- 根据权利要求3所述的一种自动平衡机器人,其特征在于:所述旋转器(1011)设置呈“圆柱”状,且半嵌入设置在连接手臂(101)中,所述伸缩弹性手臂(102)与连接手臂(101)通过旋转器(1011)活动连接。
- 根据权利要求4所述的一种自动平衡机器人,其特征在于:所述内置滚轮(1022)设置呈“圆环”状,且设置有四个,并两两对称设置在内置固定板(1023)的左右两端。
- 根据权利要求5所述的一种自动平衡机器人,其特征在于:所述连接手臂(101)设置呈“凹”字状,且旋转器(1011)通过这个“凹”字的凹槽处,嵌入设置在所述连接手臂(101)上。
- 根据权利要求6所述的一种自动平衡机器人,其特征在于:所述弹簧(1024)设置呈“波浪”状,且设置有两个,并对称设置在伸缩柱(1025)的左右两侧。
- 根据权利要求1所述的一种自动平衡机器人,其特征在于:所述足板连接轴(4a)均嵌入设置于足板(3a)的一端内,且所述足板(3a)的中间位置均与支杆(5a)紧密焊接,所述支杆(5a)均与支杆连接块(6a)的一端固定连接,且所述分支杆(7a)的一端均与支杆连接块(6a)的另一端紧密焊接,且所述分支杆(7a)的另一端均与滑动块(9a)的一侧固定连接。
- 根据权利要求8所述的一种自动平衡机器人,其特征在于:所述滑动块(9a)的顶部与主弹簧(10a)的底端紧密焊接,所述主弹簧(10a)的顶端与足踝(1a)的内部上端紧密焊接。
- 根据权利要求9所述的一种自动平衡机器人,其特征在于:所述足 底(2a)的两侧均与足板卡槽(8a)的一端紧密焊接,且所述足板卡槽(8a)的两端与足板(3a)活动连接。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2017/100516 WO2019047015A1 (zh) | 2017-09-05 | 2017-09-05 | 一种自动平衡机器人 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2017/100516 WO2019047015A1 (zh) | 2017-09-05 | 2017-09-05 | 一种自动平衡机器人 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019047015A1 true WO2019047015A1 (zh) | 2019-03-14 |
Family
ID=65633374
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2017/100516 WO2019047015A1 (zh) | 2017-09-05 | 2017-09-05 | 一种自动平衡机器人 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2019047015A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110076795A (zh) * | 2019-04-26 | 2019-08-02 | 南安冠玲工业设计有限公司 | 一种新型科教智能机器人 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN203946189U (zh) * | 2014-07-10 | 2014-11-19 | 武汉大学 | 一种用于步行机器人的足部模块 |
CN204263169U (zh) * | 2014-07-10 | 2015-04-15 | 长春工业大学 | 仿人拉小提琴机器人 |
CN104890758A (zh) * | 2015-06-30 | 2015-09-09 | 湖州市千金宝云机械铸件有限公司 | 步行机器人足部装置 |
CN105835979A (zh) * | 2015-01-13 | 2016-08-10 | 叶常青 | 多功能代步机 |
WO2017087987A1 (en) * | 2015-11-20 | 2017-05-26 | The Regents Of The University Of California | Systems and methods for implementing humanoid balloon robots |
CN107685321A (zh) * | 2017-09-05 | 2018-02-13 | 刘哲 | 一种自动平衡机器人 |
-
2017
- 2017-09-05 WO PCT/CN2017/100516 patent/WO2019047015A1/zh active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN203946189U (zh) * | 2014-07-10 | 2014-11-19 | 武汉大学 | 一种用于步行机器人的足部模块 |
CN204263169U (zh) * | 2014-07-10 | 2015-04-15 | 长春工业大学 | 仿人拉小提琴机器人 |
CN105835979A (zh) * | 2015-01-13 | 2016-08-10 | 叶常青 | 多功能代步机 |
CN104890758A (zh) * | 2015-06-30 | 2015-09-09 | 湖州市千金宝云机械铸件有限公司 | 步行机器人足部装置 |
WO2017087987A1 (en) * | 2015-11-20 | 2017-05-26 | The Regents Of The University Of California | Systems and methods for implementing humanoid balloon robots |
CN107685321A (zh) * | 2017-09-05 | 2018-02-13 | 刘哲 | 一种自动平衡机器人 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110076795A (zh) * | 2019-04-26 | 2019-08-02 | 南安冠玲工业设计有限公司 | 一种新型科教智能机器人 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106901947B (zh) | 可穿戴式下肢外骨骼助力行走机器人机构 | |
CN205867054U (zh) | 一种具有回力结构的人体下肢外骨骼 | |
CN106891328B (zh) | 被动髋关节自动回中机构和外骨骼机器人 | |
CN105943316A (zh) | 一种具有回力结构的人体下肢外骨骼 | |
CN207591224U (zh) | 一种便携式可双向旋转的肘关节医疗康复训练装置 | |
KR101573858B1 (ko) | 고관절 장치 및 이를 포함하는 착용형 로봇 | |
CN208877230U (zh) | 一种用于重症患者的腿部活动装置 | |
WO2019047015A1 (zh) | 一种自动平衡机器人 | |
CN108939457A (zh) | 一种艺术体操翻转训练辅助装置 | |
CN103816029B (zh) | 六自由度腿部康复训练机器人 | |
CN107685321A (zh) | 一种自动平衡机器人 | |
CN109093603A (zh) | 一种可穿戴式外骨骼增力下肢套装 | |
CN111166607B (zh) | 一种踝关节全面康复训练装置 | |
CN107595555A (zh) | 一种外骨骼机器人及其脚部支撑部件 | |
CN112621727A (zh) | 一种增强型下肢外骨骼机器人负重行走平衡系统及平衡方法 | |
WO2019041076A1 (zh) | 一种智能机器人用自动平衡足部受力装置 | |
CN111166606B (zh) | 踝关节康复训练装置及其工作方法 | |
CN209662127U (zh) | 一种外骨骼踝关节机构及外骨骼系统 | |
CN108970027A (zh) | 一种人体后空翻动作辅助装置 | |
KR101589679B1 (ko) | 허리 관절 장치 및 이를 포함하는 착용형 로봇 | |
KR101855002B1 (ko) | 외골격 로봇용 관절 보조장치 | |
CN110353943B (zh) | 一种外骨骼机器人 | |
CN210962920U (zh) | 一种偏瘫患者用预防跌倒的平衡训练器 | |
CN210785246U (zh) | 一种球面外骨骼髋关节康复机构 | |
CN207694171U (zh) | 一种多功能烧伤科拉力锻炼康复器 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17923999 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17923999 Country of ref document: EP Kind code of ref document: A1 |