WO2019046131A1 - ARTHROSCOPY DEVICES AND METHODS - Google Patents

ARTHROSCOPY DEVICES AND METHODS Download PDF

Info

Publication number
WO2019046131A1
WO2019046131A1 PCT/US2018/048018 US2018048018W WO2019046131A1 WO 2019046131 A1 WO2019046131 A1 WO 2019046131A1 US 2018048018 W US2018048018 W US 2018048018W WO 2019046131 A1 WO2019046131 A1 WO 2019046131A1
Authority
WO
WIPO (PCT)
Prior art keywords
inner sleeve
window
sleeve
probe
electrode
Prior art date
Application number
PCT/US2018/048018
Other languages
English (en)
French (fr)
Inventor
Aaron Germain
Jeff Norton
Kyle Klein
Michael D. Walker
Original Assignee
RELIGN Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RELIGN Corporation filed Critical RELIGN Corporation
Priority to CN201880070218.0A priority Critical patent/CN111629645A/zh
Priority to EP18851087.9A priority patent/EP3675707A4/en
Priority to JP2020512439A priority patent/JP2020531201A/ja
Publication of WO2019046131A1 publication Critical patent/WO2019046131A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B18/148Probes or electrodes therefor having a short, rigid shaft for accessing the inner body transcutaneously, e.g. for neurosurgery or arthroscopy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/16Bone cutting, breaking or removal means other than saws, e.g. Osteoclasts; Drills or chisels for bones; Trepans
    • A61B17/1604Chisels; Rongeurs; Punches; Stamps
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/16Bone cutting, breaking or removal means other than saws, e.g. Osteoclasts; Drills or chisels for bones; Trepans
    • A61B17/1604Chisels; Rongeurs; Punches; Stamps
    • A61B17/1606Chisels; Rongeurs; Punches; Stamps of forceps type, i.e. having two jaw elements moving relative to each other
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/16Bone cutting, breaking or removal means other than saws, e.g. Osteoclasts; Drills or chisels for bones; Trepans
    • A61B17/1613Component parts
    • A61B17/1615Drill bits, i.e. rotating tools extending from a handpiece to contact the worked material
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/32Surgical cutting instruments
    • A61B17/320016Endoscopic cutting instruments, e.g. arthroscopes, resectoscopes
    • A61B17/32002Endoscopic cutting instruments, e.g. arthroscopes, resectoscopes with continuously rotating, oscillating or reciprocating cutting instruments
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/28Surgical forceps
    • A61B17/29Forceps for use in minimally invasive surgery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00017Electrical control of surgical instruments
    • A61B2017/00137Details of operation mode
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00477Coupling
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00477Coupling
    • A61B2017/00482Coupling with a code
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00831Material properties
    • A61B2017/00876Material properties magnetic
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/32Surgical cutting instruments
    • A61B17/320016Endoscopic cutting instruments, e.g. arthroscopes, resectoscopes
    • A61B17/32002Endoscopic cutting instruments, e.g. arthroscopes, resectoscopes with continuously rotating, oscillating or reciprocating cutting instruments
    • A61B2017/320024Morcellators, e.g. having a hollow cutting tube with an annular cutter for morcellating and removing tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/32Surgical cutting instruments
    • A61B17/320016Endoscopic cutting instruments, e.g. arthroscopes, resectoscopes
    • A61B17/32002Endoscopic cutting instruments, e.g. arthroscopes, resectoscopes with continuously rotating, oscillating or reciprocating cutting instruments
    • A61B2017/320028Endoscopic cutting instruments, e.g. arthroscopes, resectoscopes with continuously rotating, oscillating or reciprocating cutting instruments with reciprocating movements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/32Surgical cutting instruments
    • A61B17/320016Endoscopic cutting instruments, e.g. arthroscopes, resectoscopes
    • A61B17/32002Endoscopic cutting instruments, e.g. arthroscopes, resectoscopes with continuously rotating, oscillating or reciprocating cutting instruments
    • A61B2017/320032Details of the rotating or oscillating shaft, e.g. using a flexible shaft
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00005Cooling or heating of the probe or tissue immediately surrounding the probe
    • A61B2018/00011Cooling or heating of the probe or tissue immediately surrounding the probe with fluids
    • A61B2018/00029Cooling or heating of the probe or tissue immediately surrounding the probe with fluids open
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00053Mechanical features of the instrument of device
    • A61B2018/00059Material properties
    • A61B2018/00071Electrical conductivity
    • A61B2018/00083Electrical conductivity low, i.e. electrically insulating
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00053Mechanical features of the instrument of device
    • A61B2018/00172Connectors and adapters therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00053Mechanical features of the instrument of device
    • A61B2018/00184Moving parts
    • A61B2018/00196Moving parts reciprocating lengthwise
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00053Mechanical features of the instrument of device
    • A61B2018/00184Moving parts
    • A61B2018/00202Moving parts rotating
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00053Mechanical features of the instrument of device
    • A61B2018/00184Moving parts
    • A61B2018/00202Moving parts rotating
    • A61B2018/00208Moving parts rotating actively driven, e.g. by a motor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00571Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
    • A61B2018/00577Ablation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00571Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
    • A61B2018/00589Coagulation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2217/00General characteristics of surgical instruments
    • A61B2217/002Auxiliary appliance
    • A61B2217/005Auxiliary appliance with suction drainage system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2218/00Details of surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2218/001Details of surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body having means for irrigation and/or aspiration of substances to and/or from the surgical site
    • A61B2218/007Aspiration
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/90Identification means for patients or instruments, e.g. tags
    • A61B90/98Identification means for patients or instruments, e.g. tags using electromagnetic means, e.g. transponders

Definitions

  • This invention relates to a medical system that includes variations of motor-driven arthroscopic shavers that carry RF electrodes for ablating of coagulating tissue.
  • endoscopic tool systems including, a reusable hand piece and a selection of interchangeable tool probes have different working ends have been proposed.
  • Such working ends may each have two or more functionalities, such as soft tissue removal and hard tissue resection, so such tools systems can provide dozens of specific functionalities, providing great flexibility.
  • such endoscopic tool systems may have tool probes which combine a rotatable cutter and a radiofrequency electrode suitable for ablation and/or coagulation.
  • a negative pressure is typically applied to the probe to draw tissue into a cutting window and thereafter suction tissue chips out through an extraction channel.
  • an electrosurgical mode in contrast, there typically would be no negative pressure applied and no fluid flow through the probe.
  • the present invention provides improved apparatus and methods for resecting and otherwise treating tissue.
  • Such apparatus and methods provide endoscopic tools for both mechanical resection and electrosurgical treatment, such as ablation and coagulation.
  • the endosurgical tools also referred to as probes and resecting probes, will typically but not necessarily comprise a reusable handle and a removable or detachable probe shaft, where the probe shaft includes both a cutting function and an electrosurgical function.
  • the probe shaft will be configured to allow for fluid aspiration during both cutting and electrosurgical operation, where the fluid flow provides cooling during the electrosurgical operation.
  • the present invention provides a resecting probe comprising a shaft assembly and a motor drive.
  • the shaft assembly includes (i) an outer sleeve having an axial bore and an outer window in a distal side thereof and (ii) an inner sleeve having an axial extraction channel configured to connect to a negative pressure source (typically for aspiration of tissue chips or debris as described further below) and an inner window in a distal side thereof.
  • the inner sleeve is rotationally disposed in the axial bore of the outer sleeve which allows the inner sleeve window to rotate relative to the outer sleeve window to thereby cut tissue.
  • the inner sleeve is typically motor-driven to cut tissue that is drawn into the windows and aspiration is applied to draw fluid and tissue debris through the extraction channel.
  • the shaft assembly is further configured to form a flow aperture in a distal portion thereof when the inner cutting window and the outer cutting window are out of alignment, allowing a cooling fluid flow through the shaft assembled (and optionally a handpiece as described hereinafter) during electrosurgical use when the cutting windows are not aligned, blocking the tissue debris aspiration flow path.
  • An electrode is carried on the inner sleeve, and the motor drive is coupled to rotate the inner sleeve relative to the outer sleeve.
  • an outer sleeve aperture may be formed in a wall of the outer sleeve, wherein such outer sleeve aperture aligns with the inner window when the inner sleeve is in a stop position.
  • the outer sleeve aperture comprises a plurality of slots formed in the wall of the outer sleeve, and fluid may flow into the extraction channel to provide a cooling function while tissue and other debris is blocked by the configuration of the slots.
  • such apertures or slots may be formed in a wall of the inner sleeve, wherein such inner sleeve apertures align with the outer window when the inner sleeve is in the stop position.
  • the inner sleeve apertures typically comprise a plurality of slots formed in the wall of the inner sleeve to serve a function similar to that described previously.
  • a controller is coupled to the motor drive and configured to control rotation of the inner sleeve and to stop rotation of the inner sleeve in a stop position where the outer and inner windows are out of alignment, alternately called a window-closed position.
  • the controller will typically be further configured to deliver energy to the electrode when the inner sleeve is in the stop position.
  • the resecting probe will usually further comprise an aspiration source coupled to the extraction channel in the inner sleeve to draw tissue through the outer and inner windows when said windows are at least partially rotationally aligned, and the controller will often be further configured to operate in a first mode wherein both (i) the aspiration source draws fluid and tissue into said windows when at least partially aligned, and (ii) the motor drive rotates the inner sleeve to resect tissue.
  • the controller may be further configured to operate in a second mode wherein (i) the aspiration source draws fluid through the flow aperture and inner window in said stop position, and (ii) the electrode is activated to apply energy to tissue.
  • Exemplary structural and operating parameters include adjusting the aspiration source to draw fluid through the flow-restricted aperture at a rate of at least 25 ml/min to enhance cooling of the probe and cooling of fluid in the working space.
  • the flow apertures usually have dimensions selected to inhibit tissue from being aspirated therethrough, i.e., the apertures may act as a filter, typically comprising one or more elongated slots.
  • the elongated slot typically has a width ranging from 0.005" to 0.10".
  • the inner window is formed within a ceramic portion of the inner sleeve and the electrode is carried by a ceramic portion of the inner sleeve.
  • a ceramic cutting tip may be carried at a distal end in the inner sleeve, and the electrode may be carried on a side of the ceramic cutting tip. In some instances, the ceramic cutting tip is fluted and the electrode is disposed between adjacent flutes.
  • the present invention provides methods for treating tissue in a fluid-filled working space.
  • Such methods comprise providing a probe including (i) an outer sleeve having an axial bore and an outer window in a distal side thereof and (ii) an inner sleeve configured to rotate in the axial bore of the outer sleeve and having an axial extraction channel and an inner window in a distal side thereof.
  • the inner window is rotated in and out of alignment with the outer window as the inner sleeve rotates, and the sleeves are configured to form flow apertures in a distal portion thereof when the inner cutting window and the outer cutting window are out of alignment.
  • a distal end of the probe is urged against a target tissue, and a negative pressure is applied through the extraction channel.
  • the inner sleeve is rotated to resect tissue which is drawn through the outer window and the inner window when the windows are aligned as they rotate.
  • the inner sleeve may be stopped in a stop position in which said outer and inner windows are not rotationally aligned, and an electrode carried by the inner sleeve may be activated, typically by applying radiofrequency (RF) current to treat tissue while actuating the aspiration source to draws fluid through the flow apertures to thereby cool the probe and fluid in the working space.
  • RF radiofrequency
  • operating in a first mode comprise (i) controlling a motor drive to rotate the inner sleeve, and (ii) actuating an aspiration source to apply a negative pressure through the extraction channel.
  • a first mode includes operating the aspiration source to draw fluid through the windows at a rate of at least 25 ml/min.
  • a second operating mode may comprise (i) stopping the inner sleeve in the stop position, (ii) actuating the aspiration source, and (iii) activating the electrode.
  • operating the aspiration source draws fluid through the flow aperture at a rate of at least 25 ml/min.
  • FIG. 1 is a perspective view of an arthroscopic cutting system that includes reusable hand piece with a motor drive and a detachable single-use cutting probe, wherein the cutting probe is shown in two orientations as it may be coupled to the hand piece with the probe and working end in upward orientation or a downward orientation relative to the hand piece, and wherein the hand piece includes an LCD screen for displaying operating parameters of system during use together with control actuators on the hand piece.
  • FIG. 2A is an enlarged longitudinal sectional view of the hub of the probe of FIG. 1 taken along line 2A-2A of FIG.
  • FIG. 2B is a sectional view of the hub of FIG. 1 taken along line 2B-2B of FIG. 1 with the hub and probe in a downward orientation relative to the hand piece showing the Hall effect sensor and magnets having a different orientation compared to that of FIG. 2 A.
  • FIG. 3 A is an enlarged perspective view of the working end of the probe of FIG. 1 in an upward orientation with the rotatable cutting member in a first position relative to the outer sleeve wherein the window in the cutting member is aligned with the window of the outer sleeve.
  • FIG. 3B is a perspective view of the working end of FIG. 1 in an upward orientation with the rotatable cutting member in a second position relative to the outer sleeve wherein the electrode carried by the cutting member is aligned with a centerline of the window of the outer sleeve.
  • FIG. 4 is a perspective view of a working end of a variation of a probe that may be detachably coupled to the hand piece of FIG. 1, wherein the working end includes a bone burr extending distally from the outer sleeve.
  • FIG. 5 is a perspective view of a working end of a variation of a probe that may be detachably coupled to the hand piece of FIG. 1, wherein the working end has a reciprocating electrode.
  • FIG. 6 is a perspective view of a working end of another variation of a probe that may be detachably coupled to the hand piece of FIG. 1, wherein the working end has a hook electrode that has extended and non-extended positions.
  • FIG. 7 is a perspective view of a working end of yet another variation of a probe that may be detachably coupled to the hand piece of FIG. 1, wherein the working end has an openable-closeable jaw structure for cutting tissue.
  • FIG. 8 is a chart relating to set speeds for a probe with a rotating cutting member as in FIGS. 1 and 3A that schematically shows the method used by a controller algorithm for stopping rotation of the cutting member in a selected default position.
  • FIG. 9A is a longitudinal sectional view of a probe hub that is similar to that of FIG. 2A, except the hub of FIG. 9A has an internal cam mechanism for converting rotational motion to linear motion to axially reciprocate an electrode as in the working end of FIG. 5, wherein FIG. 9A illustrated the magnets in the hub and drive coupling are the same as in FIG. 2A and the hub is in an upward facing position relative to the hand piece.
  • FIG. 9B is a sectional view of the hub of FIG. 9A rotated 180° in a downward facing position relative to the hand piece.
  • FIG. 1 OA is a perspective view of a working end of another variation of a probe that shows a motor-driven, rotating ceramic cutter carrying an electrode, with the cutter in a stopped position with the electrode aligned with the centerline of the window in the outer sleeve.
  • FIG. 10B is another view of the working end of FIG. 10A rotated 180° to show fluid outflow apertures in the outer sleeve
  • FIG. 11 is a sectional view of the working end of FIGS. 10A-109B taken along line 11-11 of FIG. 10B showing fluid outflows.
  • FIG. 12A is a perspective view of a working end of another variation of a probe that shows a motor-driven, rotating ceramic cutter carrying an electrode.
  • FIG. 12B is another view of the working end of FIG. 12A with the ceramic cutter rotated 180° to show fluid outflow apertures in the ceramic cutter.
  • FIG. 13 is a perspective view of a working end of another variation of a probe that shows a motor-driven, rotating ceramic cutter carrying an electrode, wherein the electrode has a radial edge extending radially outward that is adapted for engaging tissue while being rotated and energized.
  • FIG. 14 is a perspective view of a another variation of a working end of a single-use probe similar to that of FIGS. 3A-3B with an inner sleeve and ceramic cutting member that carries an active RF electrode that rotates in an outer sleeve, wherein the outer sleeve can be metal or ceramic.
  • FIG. 15A is view of the working end of the inner sleeve and ceramic cutting member removed from the outer sleeve in a first rotational orientation.
  • FIG. 15B is view of the inner sleeve and ceramic cutting member of FIG. 15A in a second rotational orientation that is rotated 180° from the view of FIG. 15 A.
  • FIG. 16 is view of the outer sleeve of FIG. 14 separated from the inner sleeve to show the side or cooling apertures.
  • FIG. 17 is view of another outer sleeve similar to that of FIG. 14 with differently shaped side or cooling apertures.
  • the present invention relates to bone cutting and tissue removal devices and related methods of use.
  • arthroscopic tools adapted for cutting bone, soft tissue, meniscal tissue, and for RF ablation and coagulation.
  • the arthroscopic tools are typically disposable and are configured for detachable coupling to a non-disposable hand piece that carries a motor drive component.
  • the arthroscopic system 100 of the present invention provides a hand piece 104 with motor drive 105 and a disposable shaver assembly or probe 110 with a proximal hub 120 that can be received by receiver or bore 122 in the hand piece 104.
  • the probe 110 has a working end 112 that carries a high-speed rotating cutter that is configured for use in many arthroscopic surgical applications, including but not limited to treating bone in shoulders, knees, hips, wrists, ankles and the spine.
  • probe 110 has a shaft 125 extending along longitudinal axis 128 that comprises an outer sleeve 140 and an inner sleeve 142 rotatably disposed therein with the inner sleeve 142 carrying a distal ceramic cutting member 145 (FIG. 3A).
  • the shaft 125 extends from the proximal hub 120 wherein the outer sleeve 140 is coupled in a fixed manner to the hub 120 which can be an injection molded plastic, for example, with the outer sleeve 140 insert molded therein.
  • the inner sleeve 142 is coupled drive coupling 150 that is configured for coupling to the rotating motor shaft 151 of motor drive unit 105.
  • the rotatable cutting member 145 that is fabricated of a ceramic material with sharp cutting edges on opposing sides 152a and 152b of window 154 therein for cutting soft tissue.
  • the motor drive 105 is operatively coupled to the ceramic cutter to rotate the cutting member at speeds ranging from 1,000 rpm to 20,000 rpm.
  • FIG. 3B it can be seen that cutting member 145 also carries an RF electrode 155 in a surface opposing the window 154.
  • the cutting member 145 rotates and shears tissue in the toothed opening or window 158 in the outer sleeve 140 (FIG. 3 A).
  • a probe of the type shown in FIG. 1 is described in more detail in co-pending and commonly owned patent application
  • the probe 110 is shown in two orientations for detachable coupling to the hand piece 104. More particularly, the hub 120 can be coupled to the hand piece 104 in an upward orientation indicated at UP and a downward orientation indicated at DN where the orientations are 180° opposed from one another. It can be understood that the upward and downward orientations are necessary to orient the working end 112 either upward or downward relative to the hand piece 104 to allow the physician to interface the cutting member 145 with targeted tissue in all directions without having to manipulate the hand piece in 360° to access tissue.
  • the handle 104 is operatively coupled by electrical cable 160 to a controller 165 which controls the motor drive unit 105
  • Actuator buttons 166a, 166b or 166c on the handle 104 can be used to select operating modes, such as various rotational modes for the ceramic cutting member 145.
  • a joystick 168 can be moved forward and backward to adjust the rotational speed of the ceramic cutting member 145.
  • the rotational speed of the cutter can continuously adjustable, or can be adjusted in increments up to 20,000 rpm.
  • An LCD screen 170 is provided in the hand piece for displaying operating parameters, such as cutting member RPM, mode of operation, etc.
  • FIG. 4 illustrates a different variation of a probe working end 200A that is similar to working end 112 of probe 110 of FIGS. 3A-3B, except the ceramic cutting member 205 extends distally from the outer sleeve 206 and the cutting member has burr edges 208 for cutting bone.
  • the probe of FIG. 4 is described in more detail in copending and commonly owned patent application 15/271,184 filed September 20, 2016 (Atty. Docket 41879-728.201) titled ARTHROSCOPIC DEVICES AND METHODS.
  • FIG. 4 illustrates a different variation of a probe working end 200A that is similar to working end 112 of probe 110 of FIGS. 3A-3B, except the ceramic cutting member 205 extends distally from the outer sleeve 206 and the cutting member has burr edges 208 for cutting bone.
  • the probe of FIG. 4 is described in more detail in copending and commonly owned patent application 15/271,184 filed September 20, 2016 (Atty. Docket 41879
  • FIG. 5 illustrates a different variation of a probe working end 200B with a reciprocating electrode 210 in a type of probe described in more detail in co-pending and commonly owned patent application 15/410,723 filed January 19, 2017 (Atty. Docket 41879-713.201) titled
  • FIG. 6 illustrates another variation of a probe working end 200C that has an extendable-retractable hook electrode 212 in a probe type described in more detail in co-pending and commonly owned patent application 15/454,342 filed March 9, 2017 (Atty. Docket 41879-715.201) titled ARTHROSCOPIC DEVICES AND METHODS.
  • FIG. 15/454,342 filed March 9, 2017 (Atty. Docket 41879-715.201) titled ARTHROSCOPIC DEVICES AND METHODS.
  • FIG. 7 illustrates a variation of a working end 200D in a probe type having an openable-closable jaw structure 215 actuated by reciprocating member 218 for trimming meniscal tissue or other tissue as described in more detail in co-pending and commonly owned patent application 15/483,940 filed April 10, 2017 (Atty. Docket 41879-721.201) titled ARTHROSCOPIC DEVICES AND METHODS.
  • All of the probes of FIGS. 4-7 can have a hub similar to hub 120 of probe 110 of FIG. 1 for coupling to the same hand piece 104 of FIG. 1, with some of the probes (see FIGS. 5-7) having a hub mechanism for converting rotational motion to linear motion.
  • FIG. 1 further shows that the system 100 also includes a negative pressure source 220 coupled to aspiration tubing 222 which communicates with a flow channel 224 in hand piece 104 and can cooperate with any of the probes 110, 200 A, 200B or 200C of FIGS. 1-3B, 4, 5 and 6.
  • the system 100 includes an RF source 225 which can be connected to an electrode arrangement in any of the probes 110, 200 A, 200B or 200C of FIGS. 1-3B, 4, 5 and 6.
  • the controller 165 and microprocessor therein together with control algorithms are provided to operate and control all functionality, which includes controlling the motor drive 105 to move a motor-driven component of any probe working end 110, 200 A, 200B or 200C, as well as for controlling the RF source 225 and the negative pressure source 220 which can aspirate fluid and tissue debris to collection reservoir 230.
  • controller 165 and controller algorithms need to be configured to perform and automate many tasks to provide for system functionality.
  • controller algorithms are needed for device identification so that when any of the different probes types 110, 200A, 200B, 200C or 200D of FIGS. 1 and 4-7 are coupled to hand piece 104, the controller 165 will recognize the probe type and then select algorithms for operating the motor drive 105, RF source 225 and negative pressure source 220 as is needed for the particular probe.
  • the controller is configured with algorithms that identify whether the probe is coupled to the hand piece 104 in an upward or downward orientation relative to the hand piece, wherein each orientation requires a different subset of the operating algorithms.
  • the controller has separate control algorithms for each probe type wherein some probes have a rotatable cutter while others have a
  • probes 110, 200A, 200B, 200C and 200D require a default "stop" position in which the motor-driven component is stopped in a particular orientation within the working end.
  • a rotatable cutter 145 with an electrode 155 needs to have the electrode centered within an outer sleeve window 158 in a default position such as depicted in FIG. 3B.
  • hand piece 104 carries a first Hall effect sensor 240 in a distal region of the hand piece 104 adjacent the receiving passageway 122 that receives the hub 120 of probe 110.
  • FIG. 2A corresponds to the probe 110 and working end 112 in FIG. 1 being in the upward orientation indicated at UP.
  • FIG. 2B corresponds to probe 110 and working end 112 in FIG. 1 being in the downward orientation indicated at DN.
  • the hand piece 104 carries a second Hall effect sensor 245 adjacent the rotatable drive coupling 150 of the probe 110.
  • the probe 110 carries a plurality of magnets as will be described below that interact with the Hall effect sensors 240, 245 to provide multiple control functions in cooperation with controller algorithms, including (i)
  • identification of the type of probe coupled to the hand piece (ii) the upward or downward orientation of the probe hub 120 relative to the hand piece 104, and (iii) the rotational position and speed of rotating drive collar 150 from which a position of either rotating or reciprocating motor-driven components can be determined.
  • FIGS. 2A-2B show that hub 120 of probe 110 carries first and second magnets 250a and 250b in a surface portion thereof.
  • the Hall sensor 240 in hand piece 104 is in axial alignment with either magnet 250a or 250b when the probe hub 120 is coupled to hand piece 104 in an upward orientation (FIGS. 1 and 2 A) or a downward orientation (FIGS. 1 and 2B).
  • the combination of the magnets 250a and 250b and the Hall sensor 240 can be used to identify the probe type.
  • a product portfolio may have from 2 to 10 or more types of probes, such as depicted in FIGS.
  • each such probe type can carry magnets 250a, 250b having a specific, different magnetic field strength.
  • the Hall sensor 240 and controller algorithms can be adapted to read the magnetic field strength of the particular magnet(s) in the probe which can be compared to a library of field strengths that correspond to particular probe types.
  • a Hall identification signal can be generated or otherwise provided to the controller 165 to select the controller algorithms for operating the identified probe, which can include parameters for operating the motor drive 105, negative pressure source 220 and/or RF source 225 as may be required for the probe type. As can be seen in FIGS.
  • the probe hub 120 can be coupled to hand piece 104 in upward and downward orientations, in which the North (N) and South (S) poles of the magnets 250a, 250b are reversed relative to the probe axis 128. Therefore, the Hall sensor 240 and associated algorithms look for magnetic field strength regardless of polarity to identify the probe type. [0051] Referring now to FIGS. 1, 2A-2B and 3A-3B, the first and second magnets 250a and 250b with their different orientations of North (N) and South (S) poles relative to central longitudinal axis 128 of hub 120 are also used to identify the upward orientation UP or the downward orientation DN of hub 120 and working end 112.
  • the physician may couple the probe 110 to the hand piece receiving passageway 122 with the working end 112 facing upward or downward based on his or her preference and the targeted tissue.
  • controller algorithms adapted to stop rotation of the cutting member 145 in the window 158 of the outer sleeve 104 of working end 112 need to "learn" whether the working end is facing upward or downward, because the orientation or the rotating cutting member 145 relative to the hand piece and Hall sensor 240 would vary by 180°.
  • the Hall sensor 240 together with a controller algorithm can determine the orientation UP or the downward orientation DN by sensing whether the North (N) or South (S) pole of either magnet 250a or 250b is facing upwardly and is proximate the Hall sensor 240.
  • the motor-driven component of a working end such as rotating cutter 145 of working end 112 of FIGS. 1 and 3 A-3B needs to stopped in a selected rotational position relative to a cut-out opening or window 158 in the outer sleeve 140.
  • Other probe types may have a reciprocating member or a jaw structure as described above, which also needs a controller algorithm to stop movement of a moving component in a selected position, such as the axial-moving electrodes of FIGS. 5-6 and the jaw structure of FIG. 7.
  • the motor drive 105 couples to the rotating drive coupling 150, thus sensing the rotational position of the drive coupling 150 can be used to determine the orientation of the motor-driven component in the working end. More in particular, referring to FIGS. 1 and 2A-2B, the drive coupling 150 carries third and fourth magnets 255a or 255b with the North (N) and South (S) poles of magnets 255a or 255b being reversed relative to the probe axis 128.
  • Hall sensor 245 can sense when each magnet rotates passes the Hall sensor and thereby determine the exact rotational position of the drive coupling 150 twice on each rotation thereof (once for each magnet 255a, 255b).
  • a controller tachometer algorithm using a clock can determine and optionally display the RPM of the drive coupling 150 and, for example, the cutting member 145 of FIG 3A.
  • the Hall sensor 245 and magnets 255a and 255b are used in a set of controller algorithms to stop the rotation of a motor- driven component of a working end, for example, cutting member 145 of FIGS. 1 and 3A-3B in a pre-selected rotational position.
  • FIG. 3 A it can be seen that the inner sleeve 142 and a "first side" of cutting member 145 and window 154 therein is stopped and positioned in the center of window 158 of outer sleeve 140.
  • the stationary position of cutting member 145 and window 154 in FIG. 3 A may be used for irrigation or flushing of a working space to allow for maximum fluid outflow through the probe.
  • FIG. 3B depicts inner sleeve 142 and a "second side" of cutting member 145 positioned about the centerline of window 158 in the outer sleeve 140.
  • the stationary or stopped position of cutting member 145 in FIG. 3B is needed for using the RF electrode 155 to ablate or coagulate tissue. It is important that the electrode 155 is maintained along the centerline of the outer sleeve window 158 since the outer sleeve 140 typically comprises return electrode 260.
  • the position of electrode 155 in FIG. 3B is termed herein a "centerline default position".
  • the controller 165 can always determine in real time the rotational position of drive coupling 150 and therefore the angular or rotational position of the ceramic cutting member 145 and electrode 155 can be determined.
  • a controller algorithm can further calculate the rotational angle of the electrode 155 away from the centerline default position as the Hall sensor 245 can sense lessening of magnetic field strength as a magnet 255a or 255b in the drive coupling 150 rotates the electrode 155 away from the centerline default position.
  • Each magnet has a specified, known strength and the algorithm can use a look-up table with that lists fields strengths
  • the Hall signal responsive to the rotated position of magnet 255a or 255b drops a specified amount from a known peak value in the centerline default position, it means the electrode 155 has moved away from the center of the window 158.
  • the algorithm turns off RF current instantly and alerts the physician by an aural and/or visual signal, such as an alert on the LCD screen 170 on hand piece 104 and/or on a screen on a controller console (not shown). The termination of RF current delivery thus prevents the potential of an electrical arc between electrode 155 and the outer sleeve electrode 260.
  • the system provides a controller algorithm, herein called an "active electrode monitoring" algorithm, wherein the controller continuously monitors position signals generated by Hall sensor 245 during RF energy delivery in both an ablation mode and a coagulation mode to determine if the electrode 155 and inner sleeve 142 have been bumped off the centerline position.
  • the controller algorithms can be configured to then re-activate the motor drive 105 to move the inner sleeve 142 and electrode 155 back to the default centerline position sleeve if electrode 155 had been bumped off the centerline position.
  • the controller algorithms can be configured to again automatically deliver RF current to RF electrode 155 when it is moved back to the to the default centerline position.
  • the controller 165 can require the physician to manually re-start the delivery of RF current to the RF electrode 155 when it is moved back to the to the centerline position.
  • the drive coupling 150 and thus magnets 255a and 255b are attached to inner sleeve 142 and cutting member 145 in a predetermined angular relationship relative to longitudinal axis 128 so that the Hall sensor generates signals responsive to magnets 255a, 255b is the same for all probes within a probe type to thus allow the controller algorithm to function properly.
  • FIG. 8 schematically illustrates the algorithm and steps of the stop mechanism.
  • the stop mechanism corresponding to the invention uses (i) a dynamic braking method and algorithm to stop the rotation of the inner sleeve 142 and cutting member 145 (FIGS 1, 3A-3B) in an initial position, and thereafter (ii) a secondary checking algorithm is used to check the initial stop position that was attained with the dynamic braking algorithm, and if necessary, the stop algorithm can re-activate the motor drive 105 to slightly reverse (or move forward) the rotation of drive coupling 150 and inner sleeve 142 as needed to position the cutting member 145 and electrode 155 within at the centerline position or within 0° to 5° of the targeted centerline default position. Dynamic braking is described further below.
  • FIG. 1 schematically illustrates various aspects of controller algorithms for controlling the rotational speed of the cutting member and for stopping the cutting member 145 in the default centerline position.
  • the controller 165 is operating the probe 110 of FIGS. 1 and 3A-3B at a "set speed" which may be a PID controlled, continuous rotation mode in one direction or may be an oscillating mode where the motor drive 105 rotates the cutting member 145 in one direction and then reverses rotation as is known in the art.
  • a set speed which may be a PID controlled, continuous rotation mode in one direction or may be an oscillating mode where the motor drive 105 rotates the cutting member 145 in one direction and then reverses rotation as is known in the art.
  • a signal from Hall sensor 245 that indicates the position of a magnet 255a or 255b in the drive coupling 150 to apply a stop algorithm.
  • current to the motor drive 105 is turned off.
  • the controller algorithm uses the Hall sensor 245 to monitor deceleration of rotation of the drive coupling 150 and inner sleeve 142 until a slower RPM is reached.
  • the deceleration period may be from 10 ms to 1 sec and typically is about 100 ms.
  • a suitable slower RPM which is called a "search speed" herein (see FIG. 8)
  • the controller 165 re-activates the motor drive 105 to rotate the drive coupling at a low speed ranging from 10 RPM to 1,000 RPM and in one variation is between 50 RPM and 250 RPM.
  • An initial "search delay" period ranging from 50 ms to 500 ms is provided to allow the PID controller to stabilize the RPM at the selected search speed.
  • the controller algorithm monitors the Hall position signal of magnet strength and when the magnet parameter reaches a predetermined threshold, for example, when the rotational position of drive coupling 150 and electrode 155 correspond to the centerline default position of FIG. 3B, the control algorithm then applies dynamic braking to instantly stop rotation of the motor drive shaft 151, drive coupling 150 and the motor-driven component of the probe.
  • FIG. 8 further illustrates that the controller can check the magnet/drive coupling 150 position after the braking and stopping steps. If the Hall position signal indicates that the motor- driven component is out of the targeted default position, the motor drive 105 can be reactivated to move the motor-driven component and thereafter the brake can be applied again as described above.
  • Dynamic braking as shown schematically in FIG. 8 may typically stop the rotation of the drive coupling 150 with a variance of up to about 0°- 15° of the targeted stop position, but this can vary even further when different types of tissue are being cut and impeding rotation of the cutting member 145, and also depending on whether the physician has completely disengaged the cutting member from the tissue interface when the motor drive is de-activated. Therefore, dynamic braking alone may not assure that the default or stop position is within a desired variance.
  • a dynamic braking system provides a chopper transistor on the DC bus of the AC PWM drive that feeds a power resistor that transforms the regenerative electrical energy into heat energy.
  • the heat energy is dissipated into the local environment.
  • This process is generally called dynamic braking with the chopper transistor and related control and components called the chopper module and the power resistor called the dynamic brake resistor.
  • the entire assembly of chopper module with dynamic brake resistor is sometimes referred to as the dynamic brake module.
  • the dynamic brake resistor allows any magnetic energy stored in the parasitic inductance of that circuit to be safely dissipated during the turn off of the chopper transistor.
  • the method is called dynamic braking because the amount of braking torque that can be applied is dynamically changing as the load decelerates.
  • the braking energy is a function of the kinetic energy in the spinning mass and as it declines, so does the braking capacity. So the faster it is spinning or the more inertia it has, the harder you can apply the brakes to it, but as it slows, you run into the law of diminishing returns and at some point, there is no longer any braking power left.
  • a method has been developed to increase the accuracy of the stopping mechanism which is a component of the positioning algorithm described above. It has been found that each magnet in a single-use probe may vary slightly from its specified strength. As described above, the positioning algorithm uses the Hall effect sensor 245 to continuously monitor the field strength of magnets 255a and 255b as the drive coupling 150 rotates and the algorithm determines the rotational position of the magnets and drive coupling based on the field strength, with the field strength rising and falling as a magnet rotates past the Hall sensor. Thus, it is important for the algorithm to have a library of fields strengths that accurately correspond to degrees of rotation away from a peak Hall signal when a magnet is adjacent the sensor 245.
  • an initial step of the positioning algorithm includes a "learning" step that allow the controller to learn the actual field strength of the magnets 255a and 255b which may vary from the specified strength.
  • the positioning algorithm After a new single-use probe 110 (FIG. 1) is coupled to the hand piece 104, and after actuation of the motor drive 105, the positioning algorithm will rotate the drive coupling at least 180° and more often at least 360° while the Hall sensor 245 quantifies the field strength of the particular probe's magnets 255a and 255b.
  • the positioning algorithm then stores the maximum and minimum Hall signals (corresponding to North and South poles) and calibrates the library of field strengths that correspond to various degrees of rotation away from a Hall min-max signal position when a magnet is adjacent the Hall sensor.
  • a method of use relating to the learning algorithm comprises providing a hand piece with a motor drive, a controller, and a probe with a proximal hub configured for detachable coupling to the hand piece, wherein the motor drive is configured to couple to a rotating drive coupling in the hub and wherein the drive coupling carries first and second magnets with North and South poles positioned differently relative to said axis, and coupling the hub to the hand piece, activating the motor drive to thereby rotate the drive coupling and magnets at least 180°, using a hand piece sensor to sense the strength of each magnet, and using the sensed strength of the magnets for calibration in a positioning algorithm that is responsive to the sensor sensing the varying strength of the magnets in the rotating drive coupling to thereby increase accuracy in calculating the rotational position of the drive coupling 150.
  • Another aspect of the invention relates to an enhanced method of use using a probe working end with an electrode, such as the working end 112 of FIGS. 1 and 3B.
  • a positioning algorithm is used to stop rotation of the electrode 155 in the default centerline position of FIG. 3B.
  • An additional "slight oscillation" algorithm is used to activate the motor drive 105 contemporaneous with RF current to the electrode 155, particularly an RF cutting waveform for tissues ablation.
  • the slight oscillation thus provides for a form of oscillating RF ablation.
  • the slight oscillation algorithm rotates the electrode 155 in one direction to a predetermined degree of rotation, which the controller algorithms determine from the Hall position signals.
  • the algorithm reverses direction of the motor drive to rotate in the opposite direction until Hall position signals indicate that the predetermined degree of rotation was achieved in the opposite direction away from the electrode's default centerline position.
  • the predetermined degree of angular motion can be any suitable rotation that is suitable for dimensions of the outer sleeve window, and in one variation is from 1° to 30° in each direction away from the centerline default position. More often, the predetermined degree of angular motion is from 5° to 15° in each direction away from the centerline default.
  • the slight oscillation algorithm can use any suitable PID controlled motor shaft speed, and in one variation the motor shaft speed is from 50 RPM to 5,000 RPM, and more often from 100 RPM to 1,000 RPM.
  • the frequency of oscillation can be from 20 Hz to 2,000 Hz and typically between 40Hz and 400 Hz.
  • a reciprocating electrode 212 as shown in the working end 200C of FIG. 6 end could also be actuated with slight oscillation.
  • the hook shape electrode 212 of FIG. 6 could be provided with a frequency of oscillation ranging from 20 Hz to 2,000 Hz and typically between 40Hz and 400 Hz.
  • FIGS. 9A-9B are longitudinal sectional views of a probe hub 120' that corresponds to the working end 200B of FIG. 5 which has a reciprocating electrode 210.
  • the hand piece 104 and Hall affect sensors 240 and 245 are of course the same as described above as there is no change in the hand piece 104 for different types of probes.
  • the probe hub 120' of FIGS. 9A-9B is very similar to the hub 120 of FIGS. 2A-2B with the first and second identification/orientation magnets 250a and 250b being the same.
  • the third and fourth rotation al position magnets 255a and 255b also are the same and are carried by drive coupling 150'.
  • the probe hub 120' of FIGS 9A-9B only differs in that the drive coupling 150 rotates with a cam mechanism operatively coupled to inner sleeve 142' to convert rotational motion to linear motion to reciprocate the electrode 210 in working end 200B of FIG. 5.
  • a similar hub for converting rotational motion to linear motion is provided for the working ends 200C and 200D of FIGS. 6 and 7, respectively, which each have a reciprocating component (212, 218) in its working end.
  • FIGS. 10A-10B and 11 the working end 400 of another variation of the arthroscopic shaver is shown which is similar to that of FIGS. 1, 3A-3B and 4 which includes an inner sleeve 405 that carries a distal ceramic cutting body or cutter 410 adapted for rotation at high speeds in an axial bore 408 in a windowed metal outer sleeve 412.
  • FIG. 10A shows the outer sleeve 412 in a rotational position in which the outer sleeve window 415 in a first side 416 of outer sleeve 412 is facing upwardly with teeth 418 along the edges of the window 415.
  • FIG. 10B shows the entire working end 400 rotated 180° to a position wherein a second side 422 of the outer sleeve is facing upwardly.
  • the rotating ceramic cutter 410 can be stopped in the position shown in both FIGS. 10A and 10B by a stop algorithm to thereby expose the active electrode 425 carried by the ceramic cutter 410 aligned generally with the centerline 428 of window 415 in the outer sleeve 412 as can be seen best in FIG. 10A.
  • the physician can energize the active electrode 425 in connection with return electrode 430, which consists of a portion of outer sleeve 412 and ablate or coagulate tissue by translating the electrode 425 over a targeted tissue surface.
  • FIG. 11 is a longitudinal sectional view of the working end 400 of FIG. 10B and shows the fluid flow through the slots 422 into central channel 444 of the ceramic cutter 410.
  • the slots are narrow and have a length that approximates that of window 420 in the ceramic cutter 410 through which the fluid flows into the central channel 444 and extraction channel 445 that extends through the probe (see FIG. 11).
  • the width W of the slots 442 can range from 0.005" to 0.10" and the number of slots can range from 1 to 10 or more (FIG. 10B). It has been found that narrow slots are preferable over larger openings to allow such fluid outflows as the narrow slots prevent tissue debris from entering the slots.
  • the total area of the slots for such outflows can be configured to provide a continuous flow in the range of 25 mL/min to 200 mL/min.
  • a plurality of round or oval apertures could be used instead of the elongated slots, wherein each such aperture has a cross- section ranging from 0.005" to 0.10".
  • the cross-section of the outflow pathway increases from central channel 444 in the ceramic cutter 410 to the larger extraction channel 445 in the inner sleeve 405 which communicates with the negative pressure source.
  • Such an increase in cross section of the fluid outflow pathway in the proximal direction assists in preventing clogs as any extracted tissue or bone chips are more effectively floating and entrained in the fluid outflow.
  • FIGS. 12A-12B the working end 455 of another variation of the arthroscopic shaver is shown which is similar to that of FIGS. 10A-10B.
  • the ceramic cutting body or cutter 460 that rotates in the metal outer sleeve 462.
  • FIG. 11 A shows the ceramic cutter in a rotational position in which the window 465 in a first side 466 of the cutter 460 is aligned with the window 470 in the outer sleeve 462.
  • FIG. 1 IB shows the ceramic cutter 460 rotated 180° to a position wherein a second side 472 of the ceramic cutter 460 is exposed in the window 470 of the outer sleeve 462. As described previously, the ceramic cutter 460 can be stopped in the position shown in FIG.
  • the controller's stop algorithm to thereby expose an active electrode 475.
  • the physician then can energize the active electrode 475 to ablate or coagulate tissue.
  • the second side 472 of the ceramic cutter 460 is configured with at least one elongated slot 480 which are configured to allow fluid flow through the slots 480.
  • this configuration provides fluid flows through the working end 455 to cool a distention fluid in the working space similar to that of the working end of FIGS. 10A-10B, except the slots or slots 480 are in the ceramic cutter 460 instead of the outer sleeve.
  • a resecting probe for operating in a fluid-filled working space which comprises a shaft assembly including (i) an outer sleeve having an outer window in a distal first surface and a flow aperture in a second surface that is opposed to the first surface; and (ii) an inner sleeve with a inner cutting window rotationally disposed in a bore of the outer sleeve, an aspiration source coupled to a lumen in the inner sleeve adapted to draw tissue into the outer and inner windows when said windows are at least partially rotationally aligned, a motor drive for rotating the inner sleeve and a controller configured for stopping rotation of the inner sleeve in a stop position in which said outer and inner windows are not rotationally aligned, and an electrode carried by a distal end of the inner sleeve configured for delivering energy to tissue when the inner sleeve is in said stop position.
  • Such a tissue resecting probe further includes a controller that is adapted to operate in a first mode in which (i) the aspiration source draws fluid and tissue into said windows when at least partially aligned, and (ii) the motor drive rotates the inner sleeve to resect tissue. Further, such a tissue resecting probe has a controller adapted to operate in a second mode in which (i) the aspiration source draws fluid through the flow aperture and inner window in said stop position, and (ii) the electrode is activated to apply energy to tissue.
  • a method corresponding to the invention comprises providing a probe with an elongated shaft assembly including (i) an outer sleeve having an outer window in a distal first surface and a flow aperture in a second surface that is opposed to the first surface, and (ii) an inner sleeve with an inner window rotationally disposed in a bore of the outer sleeve, rotating the inner sleeve to thereby resect tissue while actuating an aspiration source coupled to a lumen in the inner sleeve, stopping the inner sleeve in a stop position in which said outer and inner windows are not rotationally aligned and activating an electrode carried by the inner sleeve to treat tissue while actuating the aspiration source to draws fluid through the flow aperture to thereby cool the probe.
  • a controller operates in a first mode to (i) control a motor drive to rotate the inner sleeve and (ii) actuate the aspiration source. Thereafter, the controller operates in a second mode to (i) stop the inner sleeve in the stop position, (ii) actuate the aspiration source, and (iii) energize the electrode to ablate or cauterize tissue.
  • the inner sleeve 405 and ceramic cutter 410 are adapted to rotate in bore 408 of the outer sleeve 412.
  • the distal region of the ceramic cutter 410 includes burr edges 490 which are configured for cutting bone.
  • the motor drive is adapted to rotate the ceramic cutter 410 at very high speeds, for example from 10,000 to 20,000 RPM.
  • the inner sleeve 405 is electrically conductive and functions to carry RF current from RF source 485 to the active electrode 425 by electrical lead 494 indicated schematically in FIG. 11.
  • electrical lead 494 indicated schematically in FIG. 11.
  • the outer sleeve 412 functions as a return electrode 430.
  • the inner sleeve 405 is covered with an insulator layer 495 which can be an insulative heat shrink polymer, for example, FEP, PTFE or the like.
  • the inner sleeve assembly which includes inner sleeve 405 and ceramic cutter 410 as shown in FIG. 11 includes several features that insure durability and electrosurgical functionality.
  • the insulator layer 495 is adapted to cover the distal end 498 of the inner sleeve 405 and overlap a portion 502 of the ceramic cutter 410.
  • the ceramic cutter 410 has a body surface 505 with an outer diameter that is dimensioned for a snug rotating fit in bore 408 of the outer sleeve 412.
  • a gap indicated at G is provided between the outer surface 515 of the insulator layer 495 and the bore 408 of outer sleeve 412. It can be understood that under high rotational speeds, it is necessary to insure that the outer surface 515 of insulator 495 doe not contact the outer sleeve 412 which would cause immediate wear on the polymer insulator layer 495.
  • the only bearing surface of the inner sleeve assembly comprises the outer body surface 505 of the ceramic cutter 410 which rotates in the bore 408 of outer sleeve 412.
  • the gap G is at least 0.005" and often greater than 0.010".
  • the proximal faces 516 of the burr edges 490 closely interface with the distal end 518 of the outer sleeve 412.
  • the inner sleeve assembly (inner sleeve 405 and ceramic cutter 410) are coupled to a proximal hub assembly (not shown) which is configured to maintain the ceramic cutter 410 in an axial position without tolerance between the proximal faces 516 of burr edges 490 and the distal end 518 of outer sleeve 412.
  • the gap indicated GG is less than 0.005" or less than 0.002" (FIG. 11).
  • Such tight tolerances prevents unwanted stress on both the ceramic cutter 410 and outer sleeve 412 when the physician may apply substantial sideways pressure on the working end 400 and ceramic member 410 when cutting bone.
  • the electrodes 425 and 475 are configured with a plurality of sharp edges 532 that allow for more effective RF current flow from the electrode to tissue.
  • the electrode 425 has a substantial surface area, and in a variation, the electrode has a surface area of at least 5 mm 2 or at least 10 mm 2 .
  • FIG. 13 shows another probe working end 545 that illustrates another aspect of the invention.
  • the ceramic cutter 550 carries electrode 555 which is similar to the electrodes shown in FIGS. 10A and 12B, except the electrode 555 includes an additional feature which comprises a radial edge 558 that extends outwardly from the flat surface 560 of the electrode 555.
  • the radial edge 558 extends upward to the height of the burr edge 565.
  • the burr edges 565 will cut bone.
  • the radial edge 558 of electrode 555 When the cutter 550 is rotated in this direction (arrow AA), the radial edge 558 of electrode 555 will be on the trailing edge of the burr and will not interfere with bone cutting. However, when the physician actuates the controller to operate the motor drive to rotate the ceramic cutter 555 in the direction of arrow BB, the radial edge 558 of electrode 555 will engage tissue as it rotates since the edge extends radially outward from the flat surface 560 the electrode 555. While the active electrode 555 has been described previously being used in a stationary position to ablate or coagulate tissue, it has been found that it is also useful to rotate the energized electrode 525 in direction BB.
  • the radial edge 558 of electrode 555 can then simultaneously cut and ablate or coagulate tissue.
  • the radial edge 558 of the electrode 555 then uses both mechanical and electrosurgical energy to remove and ablate or coagulate tissue contemporaneously .
  • FIG. 11 further shows micropores 575 in the electrode 425 that communicate with passageway 576 in the ceramic cutter 410 which in turn communicates with the interior channel 444 in the cutter 410 and negative pressure source 435 which can reduce bubbles around the electrode surface when using the energized electrode 425.
  • FIG. 14 another variation of an arthroscopic probe is shown that is similar to that of FIGS. 3A-3B in which the RF probe working end 600 again includes a windowed outer sleeve 605 and a rotatable inner sleeve 610 (see FIGS. 15A-15B) that carries a ceramic cutting member 620 that rotates in the window 622 of the outer sleeve.
  • outer sleeve 605 is shown be fabricated of a metal such as stainless steel, however, the outer sleeve 605 and distal end thereof could also be a ceramic. As can be seen in FIG.
  • the distal end portion 628 of outer sleeve 605 includes side apertures or flow apertures 640 A and 640B adjacent the window 622 that perform functions as described previously, including cooling the fluid in the working space and cooling the handpiece with continuous fluid flow through the extraction channel.
  • a number of such side apertures in this variation can number from 2 to 20 or more and are spaced apart from window edges 642 such that when the inner sleeve 610 is in the window-closed or non-aligned position as shown in FIGS. 14, the apertures 640A and 640B communicate fully with the interior passageway 644 within ceramic cutting member 620 and inner sleeve 610 such that aspiration from a negative pressure or aspiration source 220 (FIG. 1) will pull saline through the apertures 640 A and 640B.
  • the inner sleeve 610 can be stopped in the position shown in FIG. 14 with the electrode 650 fully exposed in window 622. Thereafter the electrode 650 can be energized and used for ablating or coagulating tissue. In such a method of use, the energized electrode 650 can heat the saline solution in a working space which is undesirable. In this variation, an opening or aperture 655 adjacent and beneath the electrode 650 is adapted to provide fluid outflows therethrough. However, the volume of fluid aspirated through aperture 655 is limited. In such a method of use, the fluid outflow passes through the passageway 644 in the inner sleeve 610 and also the flow channel 224 in hand piece 104 (see FIG. 1). After a period of continuous use, the energized electrode 650 can cause unwanted heating of the handle 104 due to an extended period of time in which such heated fluid flows through the probe shaft and handle 104 (FIG. 2).
  • the negative pressure source 220 can aspirate substantially larger volumes of fluid through the apertures 640A and 640B which is advantageous for multiple reasons.
  • the flows through the side apertures 640A, 640B can reduce outflows through the aperture 655 which then reduces the chance of fluid flow through aperture 655 from extinguishing plasma that is ignited about the electrode 650 in a tissue ablation mode.
  • increased fluid outflows through the side or cooling apertures 640A, 640B can substantially reduce the temperature of fluid in the working space of the joint due to increased fluid inflows into and through the working space.
  • the continuous outflow through the side apertures 640A, 640B allows the controller algorithm to continuously modulate inflows to match the outflows thus maintaining expansion of the joint cavity.
  • the continuous inflows and outflows prevent collapse of the joint cavity which often occurs with commercially available probes which start and stop the inflow and outflow pumps based on pressure calculations which result in lag in response time.
  • the temperature of handpiece 104 can be cooled significantly, for example, by 10° C. or more when energizing the electrode 650 continuously for one minute, which is a reasonable standard for comparing handle temperatures with a previous embodiments without the side apertures.
  • the fluid outflow through the side apertures 640A-640B is at least 25 ml/min, at least 50 ml/min, at least 100 ml/min, at least 150 ml/min or at least 200 ml/min.
  • the fluid outflow through the aperture 655 adjacent the electrode 650 is between 5 ml/min and 100 ml/min and more typically between 10 ml/min and 50 ml/min.
  • FIG. 16 shows the outer sleeve 605 FIG. 14 with the inner sleeve 610 and cutting ceramic cutting member 620 removed where it can be seen that the axial length AX of the apertures 640A and 640B is similar to, or at least 80% of, the axial length AX' of the electrode 650. Further, the inner edges 662a and 662b of the apertures 640A and 640B are sharp which provides additional functionality (FIG. 16). It can be understood that tissue debris or soft tissue may be suctioned into the side apertures 640A, 640B when the negative pressure source 220 is operating and the ceramic cutter 620 is being rotated to cut tissue.
  • FIG. 17 is view of another outer sleeve similar to that of FIG. 16 having differently shaped side apertures 640A and 640B' with sharp inner edges 680.
PCT/US2018/048018 2017-08-28 2018-08-24 ARTHROSCOPY DEVICES AND METHODS WO2019046131A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201880070218.0A CN111629645A (zh) 2017-08-28 2018-08-24 关节镜装置和方法
EP18851087.9A EP3675707A4 (en) 2017-08-28 2018-08-24 ARTHROSCOPY DEVICES AND METHODS
JP2020512439A JP2020531201A (ja) 2017-08-28 2018-08-24 関節鏡検査装置及び関節鏡検査方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201762551150P 2017-08-28 2017-08-28
US62/551,150 2017-08-28
US201862696762P 2018-07-11 2018-07-11
US62/696,762 2018-07-11

Publications (1)

Publication Number Publication Date
WO2019046131A1 true WO2019046131A1 (en) 2019-03-07

Family

ID=65434609

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2018/048018 WO2019046131A1 (en) 2017-08-28 2018-08-24 ARTHROSCOPY DEVICES AND METHODS

Country Status (5)

Country Link
US (2) US11246649B2 (zh)
EP (1) EP3675707A4 (zh)
JP (1) JP2020531201A (zh)
CN (1) CN111629645A (zh)
WO (1) WO2019046131A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11246649B2 (en) 2017-08-28 2022-02-15 RELIGN Corporation Arthroscopic devices and methods
KR20220159508A (ko) * 2021-05-25 2022-12-05 이노시스 주식회사 의료용 절제기구

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3588217A1 (en) 2011-07-11 2020-01-01 Board of Regents of the University of Nebraska Robotic surgical devices, systems and related methods
CN108472030B (zh) 2015-08-03 2021-06-18 内布拉斯加大学董事会 机器人手术装置系统及相关方法
US11051894B2 (en) 2017-09-27 2021-07-06 Virtual Incision Corporation Robotic surgical devices with tracking camera technology and related systems and methods
CN111770816B (zh) 2018-01-05 2023-11-03 内布拉斯加大学董事会 具有紧凑型关节设计的单臂机器人装置及相关系统和方法
US10517629B2 (en) 2018-01-26 2019-12-31 Gyrus Acmi, Inc. Disposable debrider with cannulated solenoid
US11382684B2 (en) * 2018-03-27 2022-07-12 Gyrus Acmi, Inc. Electrode blade for shavers
WO2019209749A1 (en) 2018-04-23 2019-10-31 Aaron Germain Arthroscopic devices and methods
US11672593B2 (en) 2018-04-23 2023-06-13 RELIGN Corporation Arthroscopic devices and methods
US11058480B2 (en) 2018-04-27 2021-07-13 RELIGN Corporation Arthroscopic devices and methods
US11617596B2 (en) 2018-04-30 2023-04-04 RELIGN Corporation Arthroscopic devices and methods
US11712290B2 (en) 2018-06-08 2023-08-01 RELIGN Corporation Arthroscopic devices and methods
US11504152B2 (en) 2018-06-11 2022-11-22 RELIGN Corporation Arthroscopic devices and methods
US20200022749A1 (en) 2018-06-12 2020-01-23 RELIGN Corporation Arthroscopic devices and methods
CN114302665A (zh) * 2019-01-07 2022-04-08 虚拟切割有限公司 机器人辅助手术系统以及相关装置和方法
US11766288B2 (en) 2019-02-22 2023-09-26 Gyrus Acmi, Inc. Flexible bipolar sheath
US10945752B2 (en) 2019-03-20 2021-03-16 Covidien Lp Tissue resecting instrument including a rotation lock feature
US11717342B2 (en) 2019-04-11 2023-08-08 Gyrus Acmi, Inc. Medical device
US11622789B2 (en) 2019-05-13 2023-04-11 Covidien Lp Surgical systems and methods for controlling an angular position trajectory for tissue shavers and other rotating surgical instruments
DE102020108275A1 (de) * 2020-03-25 2021-09-30 Aesculap Ag Chirurgisches Instrument und Werkzeug für ein chirurgisches Instrument
US11957373B2 (en) 2020-05-12 2024-04-16 Smith & Nephew, Inc. Systems and methods of determining orientation of cutting windows of a mechanical resection instrument
US20220015821A1 (en) * 2020-07-15 2022-01-20 RELIGN Corporation Arthroscopic devices and methods
GB2597782A (en) * 2020-08-06 2022-02-09 Gyrus Medical Ltd A surgical instrument
GB2598332A (en) * 2020-08-26 2022-03-02 Gyrus Medical Ltd Electrosurgical instrument
EP4304506A1 (en) 2021-03-11 2024-01-17 Relign Corporation Arthroscopic devices and methods
CN113020989B (zh) * 2021-03-16 2021-10-08 浙江金连接科技有限公司 一种精密探针套筒一次成型装置及其成型方法
CN114027888B (zh) * 2021-11-16 2022-11-15 重庆西山科技股份有限公司 活检手术装置取样窗口的开窗大小调节方法
WO2023183400A1 (en) 2022-03-25 2023-09-28 RELIGN Corporation Electrosurgical devices and systems

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6610059B1 (en) * 2002-02-25 2003-08-26 Hs West Investments Llc Endoscopic instruments and methods for improved bubble aspiration at a surgical site
US7674263B2 (en) * 2005-03-04 2010-03-09 Gyrus Ent, L.L.C. Surgical instrument and method
US9155555B2 (en) * 2012-01-31 2015-10-13 Medtronic Xomed, Inc. Surgical instrument with distal bearing assembly
US9439720B2 (en) * 2011-09-01 2016-09-13 Iogyn, Inc. Tissue extraction devices and methods
US20160346036A1 (en) * 2015-04-21 2016-12-01 RELIGN Corporation Arthroscopic devices and methods
US20170224368A1 (en) 2016-02-04 2017-08-10 RELIGN Corporation Arthroscopic devices and methods

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5643198A (en) * 1990-12-14 1997-07-01 Rocin Laboratories, Inc. Power-assisted liposuction instrument and cannula assembly therefor
US5830214A (en) * 1994-11-08 1998-11-03 Heartport, Inc. Fluid-evacuating electrosurgical device
US6413256B1 (en) 2000-08-01 2002-07-02 Csaba Truckai Voltage threshold ablation method and apparatus
US7744595B2 (en) 2000-08-01 2010-06-29 Arqos Surgical, Inc. Voltage threshold ablation apparatus
US6827725B2 (en) * 2001-05-10 2004-12-07 Gyrus Medical Limited Surgical instrument
US20030125639A1 (en) * 2002-01-02 2003-07-03 Fisher John S. Biopsy needle having rotating core for shearing tissue
JP4787363B2 (ja) * 2006-10-04 2011-10-05 パスウェイ メディカル テクノロジーズ インコーポレイテッド 医療用カテーテル
US8394088B2 (en) * 2008-07-10 2013-03-12 Hs West Investments, Llc Electrosurgical instrument with an ablation mode and a coagulation mode
US8585724B2 (en) * 2011-01-25 2013-11-19 Gyrus Ent, L.L.C. Surgical cutting instrument with distal suction capability
US9226792B2 (en) * 2012-06-12 2016-01-05 Medtronic Advanced Energy Llc Debridement device and method
US10004556B2 (en) * 2013-05-10 2018-06-26 Corinth MedTech, Inc. Tissue resecting devices and methods
US10052149B2 (en) 2016-01-20 2018-08-21 RELIGN Corporation Arthroscopic devices and methods
WO2017156335A1 (en) 2016-03-10 2017-09-14 RELIGN Corporation Arthroscopic devices and methods
EP3426140A4 (en) 2016-03-11 2019-10-30 Relign Corporation ARTHROSCOPIC DEVICES AND METHODS
US10595889B2 (en) 2016-04-11 2020-03-24 RELIGN Corporation Arthroscopic devices and methods
US11253311B2 (en) 2016-04-22 2022-02-22 RELIGN Corporation Arthroscopic devices and methods
EP3478197A4 (en) 2016-07-01 2020-04-29 Relign Corporation ARTHROSCOPIC DEVICES AND METHODS
US20180161088A1 (en) 2016-07-25 2018-06-14 RELIGN Corporation Arthroscopic devices and methods
US10028767B2 (en) 2016-09-20 2018-07-24 RELIGN Corporation Arthroscopic devices and methods
US9855675B1 (en) 2016-09-20 2018-01-02 RELIGN Corporation Arthroscopic devices and methods
US11426231B2 (en) 2017-01-11 2022-08-30 RELIGN Corporation Arthroscopic devices and methods
US11065023B2 (en) 2017-03-17 2021-07-20 RELIGN Corporation Arthroscopic devices and methods
US11207092B2 (en) 2017-03-27 2021-12-28 RELIGN Corporation Arthroscopic devices and methods
US20190008538A1 (en) 2017-05-09 2019-01-10 RELIGN Corporation Arthroscopic devices and methods
JP2020531201A (ja) 2017-08-28 2020-11-05 リライン コーポレーション 関節鏡検査装置及び関節鏡検査方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6610059B1 (en) * 2002-02-25 2003-08-26 Hs West Investments Llc Endoscopic instruments and methods for improved bubble aspiration at a surgical site
US7674263B2 (en) * 2005-03-04 2010-03-09 Gyrus Ent, L.L.C. Surgical instrument and method
US9439720B2 (en) * 2011-09-01 2016-09-13 Iogyn, Inc. Tissue extraction devices and methods
US9155555B2 (en) * 2012-01-31 2015-10-13 Medtronic Xomed, Inc. Surgical instrument with distal bearing assembly
US20160346036A1 (en) * 2015-04-21 2016-12-01 RELIGN Corporation Arthroscopic devices and methods
US20170224368A1 (en) 2016-02-04 2017-08-10 RELIGN Corporation Arthroscopic devices and methods

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3675707A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11246649B2 (en) 2017-08-28 2022-02-15 RELIGN Corporation Arthroscopic devices and methods
KR20220159508A (ko) * 2021-05-25 2022-12-05 이노시스 주식회사 의료용 절제기구
KR102648069B1 (ko) * 2021-05-25 2024-03-18 이노시스 주식회사 의료용 절제기구

Also Published As

Publication number Publication date
EP3675707A4 (en) 2021-06-02
EP3675707A1 (en) 2020-07-08
CN111629645A (zh) 2020-09-04
US20220117650A1 (en) 2022-04-21
US20190059983A1 (en) 2019-02-28
US11246649B2 (en) 2022-02-15
JP2020531201A (ja) 2020-11-05

Similar Documents

Publication Publication Date Title
US20220117650A1 (en) Arthroscopic devices and methods
US11793563B2 (en) Arthroscopic devices and methods
US20230200832A1 (en) Arthroscopic devices and methods
US11883053B2 (en) Arthroscopic devices and methods
US11497551B2 (en) Arthroscopic devices and methods
US11712291B2 (en) Arthroscopic devices and methods
US11723681B2 (en) Arthroscopic devices and methods
US20230363816A1 (en) Arthroscopic devices and methods
US11672593B2 (en) Arthroscopic devices and methods
US20230000540A1 (en) Arthroscopic devices and methods
US20210093371A1 (en) Medical devices and method
EP4304506A1 (en) Arthroscopic devices and methods

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18851087

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020512439

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018851087

Country of ref document: EP

Effective date: 20200330