WO2019045529A1 - Self-assembling particles and method for preparing same - Google Patents

Self-assembling particles and method for preparing same Download PDF

Info

Publication number
WO2019045529A1
WO2019045529A1 PCT/KR2018/010171 KR2018010171W WO2019045529A1 WO 2019045529 A1 WO2019045529 A1 WO 2019045529A1 KR 2018010171 W KR2018010171 W KR 2018010171W WO 2019045529 A1 WO2019045529 A1 WO 2019045529A1
Authority
WO
WIPO (PCT)
Prior art keywords
protein
polymer
antigen
particle
present
Prior art date
Application number
PCT/KR2018/010171
Other languages
French (fr)
Korean (ko)
Inventor
함승주
김현욱
박근선
임종우
천해진
송대섭
나운성
염민주
Original Assignee
주식회사 휴벳바이오
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 휴벳바이오 filed Critical 주식회사 휴벳바이오
Publication of WO2019045529A1 publication Critical patent/WO2019045529A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/555Medicinal preparations containing antigens or antibodies characterised by a specific combination antigen/adjuvant
    • A61K2039/55511Organic adjuvants
    • A61K2039/55555Liposomes; Vesicles, e.g. nanoparticles; Spheres, e.g. nanospheres; Polymers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/60Medicinal preparations containing antigens or antibodies characteristics by the carrier linked to the antigen
    • A61K2039/6093Synthetic polymers, e.g. polyethyleneglycol [PEG], Polymers or copolymers of (D) glutamate and (D) lysine

Definitions

  • the present invention relates to a self-assembled vaccine particle comprising a protein-amphipathic polymer and a method for producing the self-assembled vaccine particle.
  • the vaccine is injected with inactivated inactivated pathogenic agent or attenuated pathogenic agent which is weakly pathogenic in the human body prior to infection of the pathogenic organism, thereby activating the immune system of the human body, thereby allowing the immune cell of the human body to form an antibody, Even if they are infected, can prevent the disease caused by the pathogen or minimize the damage to prevent disease.
  • vaccines using inactivated or attenuated pathogens can cause hostility such as pain, redness, fever, chills, etc., and also cause infectious diseases in immunocompromised individuals.
  • purified pathogen components such as hemagglutinin (HA), a specific antigen of influenza virus, and surface antigen vaccine, purified from neuraminidase (NA), may be used .
  • HA hemagglutinin
  • NA neuraminidase
  • WO2011-151723 discloses a method of increasing the concentration of a vaccine antigen in a liquid composition.
  • a protein is present at a high concentration in a liquid composition state, There still exists a problem that the effect of the vaccine is inhibited by coagulation, degradation and the like.
  • the present invention is directed to solve the problem of low vaccine efficiency of a conventional virus vaccine, and it relates to an immunity inducing particle and a vaccine composition containing the immunity inducing particle which can efficiently induce an immune response by improving such efficiency.
  • the present invention also relates to a method for producing said immunostimulatory particles.
  • the present invention relates to an immunoinductive particle comprising a complex of an antigenic protein and an amphipathic polymer, which is formed by self-bonding of the antigenic protein-amphipathic polymer complex and comprises a hydrophobic polymer layer, a hydrophilic polymer layer, Inducing particle having a structure of an antigen protein layer.
  • the present invention also provides a vaccine composition comprising said immunostimulatory particles.
  • the present invention also provides a method for producing said immunostimulatory particles.
  • the immunogenic particles according to the present invention do not contain pathogens and contain only antigenic proteins, the density of the antigenic protein presented on the surface per particle is high and the immunity inducing effect is excellent and accompanied by side effects of the vaccine by the attenuated pathogen Moreover, it is possible to produce a simple and rapid production, making it possible to control an infectious disease such as a virus at an early stage.
  • 1A is a schematic view showing a process of synthesizing an amphipathic polymer according to an embodiment of the present invention.
  • FIG. 1B is a schematic view showing a vaccine particle by an antigen protein-amphipathic polymer self-assembly according to an embodiment of the present invention and particles bound with an antigenic protein on the surface of an amphipathic polymer.
  • Figures 2a, 2b and 2c are the results of confirming NMR peaks of synthesized materials synthesized according to one embodiment of the present invention.
  • FIG. 3A shows the results of confirming the peak change of the amphipathic polymer prepared according to an embodiment of the present invention with an FTIR analyzer.
  • FIG. 3B is a photomicrograph of nanoparticles prepared by varying the content of the hydrophobic polymer in the total mass of the amphipathic polymer according to an embodiment of the present invention.
  • FIGS. 4A and 4B are electron micrographs of immunoinducing particles prepared according to an embodiment of the present invention, and graphs illustrating the distribution of the average particle sizes of the immunoglobulin particles.
  • FIG. 4A and 4B are electron micrographs of immunoinducing particles prepared according to an embodiment of the present invention, and graphs illustrating the distribution of the average particle sizes of the immunoglobulin particles.
  • FIG. 5 is a microphotograph of immunostimulatory particles formed by self assembly of HA protein-amphipathic polymer complex prepared according to an embodiment of the present invention.
  • 6a and 6b are graphs showing the average particle diameter distribution of the immunity inducing particles according to the degree of modification produced according to an embodiment of the present invention: 6a the particle size according to the degree of modification of the albumin, 6b the hemagglutinin modification degree Size of self-assembled particles according to.
  • FIGS. 7A and 7B show the results of BCA analysis using the standard curve and the immunity inducing particle used in the BCA analysis using the immunity inducing particles according to an embodiment of the present invention.
  • FIG. 8 shows the result of confirming the immunity inducing ability in the mouse using the immunity inducing particles prepared according to one embodiment of the present invention.
  • Figure 9 shows the standard curve used for BCA analysis using immunostimulatory particles prepared according to one embodiment of the present invention.
  • FIG. 10 is a graph showing an antibody-induced response using OVA-immunoreactive particles prepared according to an embodiment of the present invention.
  • FIG. 11 shows the results of confirming the immune response inducing ability of the HA-immunoreactive particles prepared according to one embodiment of the present invention.
  • the present invention comprises a complex of an antigenic protein and an amphipathic polymer, wherein said complex provides self-assembled immunostimulatory particles.
  • Immunogen inducing particle in the present invention means a particle capable of inducing a humoral immune response or a cellular immune response by stimulating the immune system of an animal or a human within the host.
  • the immunostimulatory particles of the present invention induce an immune response in the host, thereby enabling rapid defense against the same antigen, preventing disease by the antigen or lowering the severity of symptoms.
  • the immunostimulatory particles of the present invention can be used as a vaccine and can be used interchangeably with vaccine particles.
  • the immunopotentiating particle of the present invention is formed by self-assembly of an antigen protein-amphipathic polymer complex, and the hydrophobic polymer layer, the hydrophilic polymer layer and the antigen Protein structure.
  • the antigen protein is formed at the outermost part of the particle. Since the antigen protein is contained in the immunoparticle in a state of being bound to the amphipathic polymer forming the self-assembled particle, a larger amount of the antigen protein And has an advantage in that the stability of the vaccine can be enhanced when the antigen protein is stably bound to the particles and is contained in a vaccine preparation or the like.
  • the immunostimulatory particle of the present invention contains only a specific antigen protein, the possibility of such side effect can be effectively solved.
  • the effect of the vaccine itself is too small.
  • the amount of antigen protein present on the surface of one immunoparticle can be significantly increased, An excellent effect can be recognized in that an excellent immune response can be induced in the administered subject.
  • a simple purified antigen protein and an immunostimulatory particle of the present invention were respectively injected into a mouse to induce an immune response, and the amount of the produced IgM antibody was confirmed. As a result, It was confirmed that it exhibited more excellent antibody forming effect when used.
  • the immunostimulatory particles of the present invention may further comprise a linker for linking the antigenic protein and the amphipathic polymer.
  • the antibody may further comprise a linker layer between the hydrophilic polymer layer and the antigen protein layer.
  • the linker layer allows a physically separated space between the antigenic protein and the amphipathic polymer to be secured in the immunity inducing particle, and the immunostimulating particle of the present invention has better particle stability due to the physical space.
  • the linker means a molecule having a reactive site at both ends so that two substances can be chemically synthesized and connected.
  • the linker of the present invention may be an amine linker molecule having an amine group or a linker molecule having a carboxyl group .
  • the amine linker molecule includes all diamine linker molecules having two amine groups (NH 2 ).
  • the diamine linker molecule is not limited to the type of the diamine linker molecule in that one end thereof reacts with the carboxyl group of the antigen protein and the other end thereof reacts with the amphipathic polymer to form an antigenic protein complex with the amphipathic polymer, .
  • linker molecule having a carboxyl group may have two carboxyl groups.
  • a linker-antigen protein bond can be formed by reacting with an amine group of an antigen protein.
  • the linker of the present invention can be selected from the group consisting of hexamethylenediamine, 1,4-diaminobutane, 1,8-diaminooctane, ethylenediamine, 1,6-hexanediamine 1,6-hexanediamine, phenylenediamine, 1,3-propanediamine, 1,13-tridecanediamine, 1,2-ethanediamine, 1,2-ethanediamine or 1,5-pentanediamine, but is not limited thereto.
  • the linker of the present invention may be hexamethylenediamine.
  • the immunogen inducing ability of the immunostimulatory particle of the present invention can be regulated by controlling the degree to which the antigen protein modifies the surface moiety with the linker.
  • degree of modification affects the antigenicity and stability of the immunostimulatory particles of the present invention, and when the conditions of the following formula 1 are satisfied, particles having a better immunostimulatory ability can be obtained.
  • the amount of the linker and the amount of the antigen protein in the formula 1 may be the amount of the linker and the antigen protein added to the reaction when the linker and the antigen protein are reacted to prepare the linker-antigen protein conjugate.
  • the immunostimulatory particles of the present invention may have a degree of modification according to the above formula 1 of less than 3, or less than 2. If the degree of modification is 3 or more, the antigenicity of the antigen protein bound to the particles may be lowered, and the immunity inducing effect may be lowered.
  • the degree of modification of the antigen protein in the immunostimulatory particle is 1/1000 or more to less than 2, or more than 1/500 to 1.8 or less than 1/100 or more to 1.7 or less, 1/80 or more to 1.6 or less , From 1/60 or more to 1.5 or less, from 1/40 or more to 1.4 or less, or from 1/20 or more to 1.3 or less, but is not limited thereto.
  • the antigenicity of the immunity inducing particle is excellent, and thus it has an excellent immune response inducing effect in the administration individual.
  • the antigen protein of the present invention may have a degree of modification of 1/1000 or more according to the above formula (1).
  • the degree of modification is less than 1/10, the binding between the amphipathic polymer and the antigen protein is reduced, and the hydrophobic interaction for self-assembly is reduced, which may lower the production efficiency of the immunity inducing particles.
  • the stability of the immunity inducing particle is lowered by the decrease of the hydrophobic interaction.
  • the amphipathic polymer means a particle having a region showing hydrophilicity and a region showing hydrophobicity.
  • the amphipathic polymer can be used without limitation as long as it is a particle having a hydrophilic region and a hydrophobic region.
  • the amphipathic polymer includes a hydrophilic polymer, a hydrophobic polymer, and a combination thereof.
  • the amphipathic polymer may be in the form of a polymer of a hydrophilic polymer and a hydrophobic polymer.
  • the amphiphilic polymer of the present invention may be in the form of (hydrophilic polymer) m- (hydrophobic polymer) n.
  • K may be an amphipathic polymer satisfying 0.1 to 0.8, or 0.2 to 0.6, or 0.3 to 0.5.
  • the stability of the immunity inducing particles is improved when the weight ratio is 0.1 to 0.6.
  • the amount of the hydrophobic polymer is too small, the hydrophobic interaction in the self-assembled particles may be weakened, and it is important that the above range is satisfied.
  • the hydrophilic polymer is a polyalkylene glycol (PAG), a polyacrylic acid (PAA), a polyacrylonitrile (PAN), a polyethylene oxide (PEO), a polyvinyl acetate (PVAc), a polyvinyl alcohol ), Polyvinylpyrrolidone, polyacrylamide, and hydrophilic polyamino acids, and derivatives thereof.
  • PAG polyalkylene glycol
  • PAA polyacrylic acid
  • PAN polyacrylonitrile
  • PEO polyethylene oxide
  • PVAc polyvinyl acetate
  • Polyvinylpyrrolidone Polyacrylamide
  • hydrophilic polyamino acids and derivatives thereof.
  • Such derivatives include, for example, (mono) methoxypolyethylene glycol, (mono) acetoxypolyethylene glycol, polyethylene glycol, copolymers of polyethylene and propylene glycol, polyvinylpyrrolidone, polyglutamine, polyglutamic acid, polythreonine, , Polyarginine, and polyserine.
  • the hydrophilic polymer may be methoxypolyethylene glycol (mPEG).
  • the hydrophobic polymer can be used without limitation as long as it is a substance capable of forming an amphipathic polymer together with a hydrophilic polymer.
  • the hydrophobic polymer may be at least one selected from the group consisting of polyesters, polyanhydrides, hydrophobic polyamino acids, polyorthoesters, and polyphosphazines.
  • the hydrophobic polyamino acid is selected from the group consisting of polylysine, polyisoleucine, polyvaline, polyphenylalanine, polyproline, polyglycine, polytryptophan, polyalanine, polylactide, polyglycolide, polycaprolactone, and polymethionine Or more.
  • the hydrophobic polymer includes a derivative thereof.
  • the amphipathic polymer of the present invention is a hydrophilic polymer comprising mPEG as a hydrophobic polymer and mPEG containing lactide (3,6-Dimethyl-1,4-dioxane-2,5-dione) and a polylactide copolymer (mPEG ) m- (b-PLA) n.
  • m may be 100 to 200
  • n may be 30 to 100.
  • antigen protein means a protein capable of inducing or promoting an immune response to an antigen, and includes fragments including an epitope region of the protein.
  • influenza viruses such as the hemagglutinin (HA), the neuraminidase (NA), the nucleoprotein (NP), the M1 protein, the M2 protein, the NS1 protein, the NS2 protein : Nuclear export protein), PA protein, PB1 protein (polymerase basic 1 protein), PB1-F2 protein and PB2 protein;
  • nuclear protein N
  • phosphorus protein P
  • substrate protein M
  • glycoprotein G
  • viral RNA polymerase L
  • Hepatitis B virus surface antigen (HBsAg), hepatitis B virus core antigen (HbcAg), hepatitis B virus DNA polymerase, HBx protein, preS2 middle surface protein, , Large S protein, viral protein VP1, viral protein VP2, viral protein VP3, and viral protein VP4;
  • the immunoinducing particle of the present invention induces an immune response in the form of nanoparticles bound to an amphipathic polymer, it is possible to induce a better immune response at a lower concentration than in the case where only an antigen protein is administered to induce an immune response. Therefore, the immunostimulatory particles of the present invention can be applied to any antigenic protein including a carboxyl group and an antigenic determinant site (epitope) capable of binding to the amphipathic polymer regardless of the type thereof, and thus the present invention is not limited to the kind of antigen protein .
  • the immunostimulatory particles of the present invention are self-assembled by an amphipathic polymer which is a constituent of the complex, that is, granulated by self-binding of an amphipathic polymer. Accordingly, the particles formed by the self-bonding of the present invention may include a polymer region (hydrophilic polymer layer, hydrophobic polymer layer) and an antigen protein region.
  • the self-assembled immunostimulatory particles of the present invention may have a membrane structure.
  • Membrane structure " in the present invention means a structure in which the inside is surrounded by a membrane or a shell.
  • the membrane structure may include a fluid or a separate configuration therein.
  • the membrane includes both a single membrane or a multi membrane having two or more single membranes.
  • a particle having a single membrane is again surrounded by a single membrane, it can be a particle having multiple membranes.
  • the single membrane and the multiple membrane are concepts that are distinguished from a single layer and a double layer.
  • a particle containing only one film of a bilayer structure has a single film
  • a particle including a film of a monolayer structure again surrounds a film of a single layer structure means a particle of a multi-film structure .
  • the nanoparticles having a membrane structure in the present invention may be vesicles, micelles, polymersome, droplets or colloidsome, but are not limited to, But are not limited to, rods, spheres, rings, plates, cylinders, ellipses, spheres, and the like.
  • the " micelle" means a particle having a hydrophobic core and a hydrophilic shell.
  • the micelle may be a polymer self-assembled micelle.
  • various forms can be adopted depending on the type of the polymer forming the copolymer, and the shape of the polymer is not limited thereto.
  • the micelle also includes a multi-layered form comprising two or more monolayers.
  • polymersome means a nanoparticle having a bilayer membrane structure having a " hydrophilic region-hydrophobic region-hydrophobic region-hydrophilic region ".
  • the polymer jars include both a single membrane of a bilayer membrane structure and multiple membranes containing two or more of the single membranes.
  • colloidal mule means a colloidal particle having a size of 1 nm to 1000 nm or a structure in which the granularity is packed tightly.
  • it may comprise a single layer and a bilayer.
  • the " droplet” means that the shape of the droplet in the film structure particles is represented by a droplet shape. Includes both single and double layers, and includes both single and multiple layers.
  • the self-binding form of the immunoadaginized particle of the present invention is more stable in the body than the vaccine of the single antigen protein type and can exhibit the antigen protein on the surface at a higher density than the conventional vaccine in which the antigen protein is bound to the nanoparticle Therefore, it is possible to induce an excellent immune response with an appropriate amount.
  • the present invention provides a vaccine composition comprising said immunostimulatory particles.
  • the present invention also provides a vaccine preparation comprising the immunostimulatory particles.
  • the vaccine composition of the present invention may further comprise at least one of a solvent, an adjuvant or an excipient in addition to the immunity inducing particle.
  • the immune enhancer may be Freund ' s incomplete or complete adjuvant, aluminum hydroxide gel, vegetable and mineral oil, etc.
  • the excipient include aluminum phosphate, aluminum But are not limited to, aluminum hydroxide or aluminum potassium sulfate (alum), and may further include any of the known materials used in the manufacture of vaccines well known to those skilled in the art.
  • the vaccine composition of the present invention may be prepared as an oral or parenteral preparation and may be prepared as an injectable solution in the form of a parenteral preparation and may be administered orally in the form of intradermal, intramuscular, intraperitoneal, intravenous, subcutaneous, But it is not limited to the mode of administration of the agent.
  • the present invention provides a method for producing said immunostimulatory particles.
  • the method for producing immunostimulatory particles of the present invention comprises mixing an amphipathic polymer and an antigen protein to form a complex; And self-binding and granulating the complex.
  • an antigenic protein-amphipathic polymer mixed solution to which an amphipathic polymer in a hydrophobic solvent is added to a protein solution containing an antigen protein in a hydrophilic solvent is reacted for 20 to 28 hours with shaking to form an amphipathic polymer-antigen protein complex To do; And a method in which the mixed solution is granulated by self-assembly of an amphipathic polymer-antigen protein complex when the hydrophobic solvent is a colloid phase in which the hydrophobic solvent exists in a droplet state in a hydrophilic solvent containing an antigenic protein.
  • the protein solution may further comprise glycerol.
  • glycerol it is very effective to prevent the antigen proteins in the composition from aggregating with each other and allow the protein to participate in the reaction more stably in the process of forming the antigen protein-amphipathic polymer complex.
  • the present invention relates to a method for preparing a protein solution, which comprises adding an amphipathic polymer in a hydrophobic solvent to a protein solution containing an antigen protein in a hydrophilic solvent and then shaking the mixture for a predetermined period of time or longer so that the hydrophobic solvent is dispersed in a hydrophilic solvent, , And the protein is characterized by being able to form particles formed in the outermost layers.
  • the hydrophobic polymer and the antigenic protein in the mixed solvent on the colloid phase may be in an interfacial state on different layers.
  • the production method of the present invention may further comprise modifying the antigen protein to a linker before the antigen protein-amphipathic polymer complex formation.
  • the complex is formed by modifying the protein with the linker, the possibility of contact between the moiety of the polymer and the moiety of the linker is increased, thereby increasing the efficiency of forming the antigen protein-amphipathic polymer complex.
  • the degree of modification can be calculated according to the formula 1 described in the description of the immunoinducing particle of the present invention, and the above contents are also applied to the present manufacturing method.
  • the immunostimulatory particles of the present invention can exhibit a strong immune response in a small amount by presenting an antigen protein in the form of nanoparticles irrespective of the kind of the antigenic protein, and thus have an excellent effect as a vaccine.
  • immune-inducing particles having an excellent immune reaction inducing effect can be produced without being limited to the kinds of antigen proteins, and thus they can be used variously in the field of vaccine production.
  • the invention provides a method of inducing an immune response in an individual comprising administering said immunity-inducing particle to a subject.
  • the method of inducing the immune response may be to prevent disease or infection in that it is intended to lower or prevent the possibility of infection of an individual with a disease.
  • the administration can be carried out more than once.
  • the method for inducing an immune response in an individual may be carried out by administering to a subject an amount of a pharmaceutically effective amount of a pharmaceutically effective amount to induce an immune response in the subject, thereby inducing humoral or cellular immunity response of the individual, Can reduce the likelihood of infection to the disease.
  • the pharmaceutically effective amount for inducing the immune response may be determined in consideration of physical conditions such as the specific form of the immunity inducing particle, the kind of the antigen protein, the age of the individual, and the body weight.
  • the immunoreactive particles of the present invention were administered to mice, and the blood of the mice was analyzed.
  • the production of IgM antibody against the antigen protein was effectively induced.
  • a larger amount of antibody is produced compared to a particle in which antigen is simply bound to the surface of the purified antigen protein or nanoparticle, and thus it can be used as a vaccine platform having a very high efficacy Respectively.
  • the amphipathic polymer to be bound to the antigen protein of the present invention can be prepared by reacting biocompatible polymer mPEG (Mw: 2,000) and lactide (3,6-dimethyl -1,4-dioxane-2,5-dione, Sigma Aldrich), and then an amphipathic polymer, mPEG-b-PLA, was synthesized through a ring opening reaction.
  • mPEC-b-PLA-COOH was prepared by replacing the OH group of mPEG-b-PLA with the COOH group in order to bind the above-mentioned copolymer and the antigen protein.
  • 500 mg of mPEG-b-PLA synthesized above, 80 mg of succinic anhydride (Sigma Aldrich) and 35.7 mg of DMAP (Sigma Aldrich) were placed in 10 mL of dichloromethane (DCM, Sigma Aldrich) ) was added dropwise. After reaction at ambient temperature for 24 hours, the resultant was precipitated with cold diethyl ether and vacuum dried to obtain mPEG-b-PLA-COOH.
  • MPEG-b-PLA-NHS was synthesized using NHS-sulfo as the mPEG-b-PLA-COOH synthesized above. Specifically, 325 mg of mPEG-b-COOH synthesized above, 17 mg of NHS (Thermo Scientific) and 21 mg of DCC (Sigma Aldrich) were placed in 10 mL of dichloromethane (DCM, Sigma Aldrich), and 20 ⁇ L of triethylamine Drop method. The reaction was allowed to proceed at ambient temperature for 24 hours. The resultant was precipitated with cold diethyl ether and vacuum dried to obtain mPEG-b-PLA-NHS.
  • NHS Thermo Scientific
  • DCC dichloromethane
  • DCM dichloromethane
  • NMR was used to confirm the synthesis of each step of the copolymer synthesized by NMR. As shown in FIGS. 2A, 2B, and 2C, peaks of PLA and PEG are common and a peak of each functional group is observed.
  • (mPEG) m- (b-PLA) n was synthesized by varying polymerization ratios of mPEG and lactide (3,6-Dimethyl-1,4-dioxane-2,5-dione) .
  • the amounts of mPEG and lactide (3,6-Dimethyl-1,4-dioxane-2,5-dione) were adjusted as shown in Table 1 below.
  • the FTIR analysis results confirmed that the peak of the C-H moiety decreased as the moiety of mPEG decreased in the copolymer.
  • (MPEG) m- (b-PLA) was obtained by varying the polymerization ratios of mPEG and lactide (3,6-Dimethyl-1,4-dioxane-2,5- ) n were synthesized and the morphological characteristics of the self - assembled particles were confirmed according to the proportion of the hydrophilic polymer.
  • the shape of the self-assembled particles produced varies depending on the weight ratio of the hydrophilic polymer in the amphipathic polymer.
  • the ratio (f) of the hydrophilic polymer is 0.05% by weight, there is a problem that the shape of the rod is formed but the stability of the shape of the particle is unstable.
  • the immunoinducing particle of the present invention is characterized in that it is a particle formed by self-assembly of an antigen protein-amphipathic polymer complex.
  • the antigen protein In order to have immunity-inducing ability, the antigen protein must be located at the outermost position of self-assembly.
  • the self-assembled particles having the antigen protein of the present invention at the outermost periphery were prepared by the following method.
  • antigenic proteins ovalbumin (Thermo Scientific) and hemagglutinin (A / California / 04/2009 (H1N1), SEQ ID NO: 1) were used.
  • the antigen protein and hexamethylenediamine (linker) were reacted to modify the antigen protein with the linker.
  • 5 vol% glycerol was added to the OVA (1 mg / 1 mL) solution.
  • To the 300 ⁇ l of the OVA (1 mg / 1 ml) solution was added 40 ⁇ l of EDAC / Sulfo-NHS solution (20 mg each of 100 ⁇ l of DW), and 80 ⁇ l of hexamethylenediamine (104 mg / DW 2 ml) was added to the mixture.
  • the amphipathic polymer - antigen protein complex was interfaced with the hydrophilic solvent between the chloroform droplet and the hydrophilic solvent and self - assembled and granulated.
  • the hydrophobic polymer in the chloroform droplet forms the inside of the particle, and the hydrophilic polymer is formed on the hydrophobic polymer layer by the interaction of the hydrophobic polymer, and the antigen protein is formed on the outermost layer of the particle by the linker.
  • self-assembled particles (proteSome) of mPEG-b-PLA-OVA complex were obtained.
  • the mPEB-b-PLA-HA complex was formed and granulated in the same manner as above to obtain self-assembled particles of mPEB-b-PLA-HA complex.
  • the granulation degree of the mPEG-b-PLA-OVA complex and the mPEB-b-PLA-HA complex was confirmed using DLS and electron microscope, and the particle size was measured.
  • the degree of surface modification of the protein antigen is related to the antigenicity of the protein and the stability of the vaccine, experiments were carried out to confirm the antigenicity by varying the degree of protein modification by the linker hexamethylenediamine (Hexa.).
  • the OVA protein 45 kDa was used as a stock solution (OVA 1 ⁇ g / ⁇ l) and the amphipathic polymer mPEG-b-PLA-NHS (molecular weight 6 kDa) synthesized in Preparation Example 1 was used.
  • Modification ratio when said amount (mg) a modified constant (k) of the linker required to modify the antigenic proteins 1mg, represents a (x k amount of antigen) the value of the amount of linker /.
  • the amount of hexamethylenediamine (unit molar mass: 116.21 g / mol) required to modify 1 mg of OVA protein was 11.5 mg.
  • the amount of hexamethylenediamine required to modify 1 mg of hemaglutinin was 6.088 mg.
  • the hydrodynamic diameter was measured to be about 500 nm, and a tendency was shown that the size variation occurred as the modification ratio was lowered.
  • the surface of the nanoparticles In order to confirm the difference in effect as a vaccine for particles in which the antigen protein is bound to the surface of the self-assembled particles of the antigenic protein-amphipathic polymer complex of the present invention and the polymer, the surface of the nanoparticles .
  • the antigen protein (OVA, HA) was modified to 1/10 of the degree of modification and then granulated in the self-assembled form using the amphipathic polymer mPEG-b-PLA-NHS (molecular weight 6 kDa). Then, the EDC / Sulfo-NHS stock was added and antigen protein OVA (45 kDA) was added to prepare OVA-surface-bound nanoparticles (Comparative Example 2) by mixing the self-assembled nanoparticles with the OVA protein. The HA protein was also treated in the same manner as above to prepare HA-surface-bound nanoparticles (Comparative Example 3). The amount of the antigen protein used and the amount of the reactant were prepared in the same manner as in the case of the modification degree 1/10 in Table 4.
  • the experiment was divided into the group treated with OVA only (positive control group), the group treated with the immunity inducing particles of the present invention (Examples 1, 2, 3 and 4) and the group treated with nothing (negative control) .
  • the immunostimulatory particle treatment group modification of the antigen protein by hexamethylenediamine was started from the modification 1 of Example 1, and each of the prepared immunostimulatory particles was reduced by 1/2.
  • Immunoreactive particles were inoculated by BCA analysis after the quantitative control. Specifically, they were quantitated by a reliable standard curve (Fig. 7a) with R 2 ⁇ 0.99 and analyzed both before and after the first inoculation and the second inoculation To control the density. However, in the case of the first injection group of Example 2, the first dose was carried out at a low concentration because the production amount of the nanoparticles was small.
  • the contents of the specifically inoculated vaccines are shown in Table 5 below.
  • Immunoreactive particles were inoculated after BCA analysis and after controlling the density. Specifically, they were quantitated with a reliable standard curve (Fig. 9) at 2 ⁇ 0.99 and analyzed both before and after the first inoculation and the second inoculation To control the density. The contents of the specifically inoculated vaccines are shown in Table 6 below.
  • OVA mPEG-b-PLA-NHS ( ⁇ ⁇ / 50 ⁇ ⁇ ) Primary vaccination (/ / 50)) Second inoculation (/ / 50)) Comparative Example 1 (OVA alone) X 20 20 Example 6 334 20 20 Example 7 334 20 20 Example 8 334 20 20 Comparative Example 2 (Surface Bonded Particle) 334 20 20 Negative control 2 X X X
  • blood collection was carried out (primary blood collection after inoculation) and the second vaccination was inoculated.
  • second blood collection after inoculation was carried out.
  • the degree of antibody (IgG) induction by enzyme immunoassay (ELISA) was determined by measuring the absorbance intensity of the serum of the blood obtained by the primary blood collection and the secondary blood collection after inoculation.
  • the absorption intensity of each experimental group is shown in Table 7.
  • the self-assembled antigen particles of Examples 6 to 8 of the present invention exhibit high antibody-inducing ability as compared to antigen particles or protein alone bound to the surface of the amphipathic particles, so that they can be used as an effective vaccine platform as compared with conventional vaccine preparations This is possible.
  • N 5 HA P (Comparative Example 3) HA 1 (Example 9) HA 0.1 (Example 10) HA 0.01 (Example 11) NC (negative control group 3) Average 0.84721 1.28734 2.3174 1.49575 0.0735 STD 0.224198 0.291706 0.331991 0.128784 0.003486

Abstract

The present invention relates to immuno-directed particles in which an antigenic protein-amphipathic macromolecule polymer is self-assembled, wherein when using the immuno-directed particles of the present invention, it is possible to induce more immune responses even with a smaller amount of vaccine as compared with a conventional vaccine which simply contains an antigenic protein in a carrier, and to provide an efficient vaccine platform in which side effects such as infections of viral diseases can be eliminated.

Description

자가 조립형 입자 및 이의 제조방법Self-assembling particles and method for manufacturing the same
본 발명은 단백질-양친매성 고분자를 포함하며, 자가 조립된 백신 입자 및 상기 자가 조립된 백신 입자를 제조하는 방법에 관한 것이다.The present invention relates to a self-assembled vaccine particle comprising a protein-amphipathic polymer and a method for producing the self-assembled vaccine particle.
백신은 병원체의 감염이 있기 전 인체 내에 인위적으로 병원성이 제거된 불활화 병원체 또는 병원성을 약하게 만든 약독화 병원체를 주입하여 인체의 면역체계를 활성화시킴으로써 인체의 면역세포가 항체를 형성하게 하여, 이후 병원체에 감염되더라도 병원체에 의한 피해를 예방하거나 그 피해를 최소화하여 질병을 예방할 수 있게 해준다. The vaccine is injected with inactivated inactivated pathogenic agent or attenuated pathogenic agent which is weakly pathogenic in the human body prior to infection of the pathogenic organism, thereby activating the immune system of the human body, thereby allowing the immune cell of the human body to form an antibody, Even if they are infected, can prevent the disease caused by the pathogen or minimize the damage to prevent disease.
그러나, 불활성화 또는 약독화 병원체를 이용한 백신은 통증, 발적, 발열, 오한 등과 같은 부장용을 일으킬 수 있고, 면역이 약화된 개체에서는 감염 질환을 유발시키기도 하는 문제가 있다. 또는, 인플루엔자 바이러스의 특이 항원인 헤마글루티닌(hemagglutinin, HA)과 뉴라미니다제(neuraminidase, NA) 성분을 정제한 표면항원백신(surface antigen vaccine)과 같이 정제된 병원체 성분을 이용하는 경우도 있는데, 이 경우 낮은 역가의 면역반응에 의하여 백신의 효과를 기대하기 어려운 문제가 있다. However, vaccines using inactivated or attenuated pathogens can cause hostility such as pain, redness, fever, chills, etc., and also cause infectious diseases in immunocompromised individuals. Alternatively, purified pathogen components such as hemagglutinin (HA), a specific antigen of influenza virus, and surface antigen vaccine, purified from neuraminidase (NA), may be used , There is a problem that it is difficult to expect the effect of the vaccine due to the immune response with low titer.
또한, 인플루엔자 바이러스의 계속적으로 항원 소변이(小變異, antigenic drift)에 백신 항원이 지속적으로 변하는 문제가 있는바, 바이러스 감염의 창궐 초기에 신속하게 백신을 제조할 필요가 있으나, 현재 불활성 또는 약독화 개체를 포함하는 백신은 신속한 생산이 어려워 감염성 질환의 창궐을 막는데 어려움이 있다.In addition, since there is a problem that the vaccine antigen continuously changes in the antigen urine (antigenic drift) of the influenza virus continuously, it is necessary to prepare the vaccine promptly at the early stage of the viral infection, Vaccines containing individuals have difficulties in preventing the emergence of infectious diseases due to the difficulty of rapid production.
이러한 백신의 단점을 보완하기 위해 다양한 연구가 시도되고 있는데, WO2011-151723호는 액체 조성물 내의 백신 항원의 농도를 증가시키는 방법을 개시하고 있으나, 액체 조성물 상태에서 단백질이 고농도로 존재하는 경우, 단백질의 응집, 분해 등에 의하여, 백신의 효과가 저해되는 문제가 여전히 존재한다. Various studies have been made to overcome the disadvantages of such a vaccine. WO2011-151723 discloses a method of increasing the concentration of a vaccine antigen in a liquid composition. However, when a protein is present at a high concentration in a liquid composition state, There still exists a problem that the effect of the vaccine is inhibited by coagulation, degradation and the like.
따라서, 체내 면역반응을 유도하는 효과를 높으나, 개체 내 투여 시 해당 질환의 유발과 같은 부장용은 일으키지 않는, 개선된 백신 제제에 대한 연구는 현재에도 지속적으로 요구되고 있다.Therefore, there is a continuing need for improved vaccine preparations which have an effect of inducing an immune response in the body, but which do not cause such a disease as inducing the disease in a subject.
본 발명은 종래 바이러스 백신의 백신 효율이 떨어지는 문제점을 해결하고자 하는 것으로, 이러한 효율을 개선하여 효율적으로 면역 반응을 유도할 수 있는 면역유도 입자 및 이를 포함하는 백신 조성물에 관한 것이다. Disclosure of Invention Technical Problem [6] The present invention is directed to solve the problem of low vaccine efficiency of a conventional virus vaccine, and it relates to an immunity inducing particle and a vaccine composition containing the immunity inducing particle which can efficiently induce an immune response by improving such efficiency.
또한, 본 발명은 상기 면역유도 입자를 제조하는 방법에 관한 것이다. The present invention also relates to a method for producing said immunostimulatory particles.
본 발명은, 항원단백질과 양친매성 고분자의 복합체를 포함하는 면역유도 입자로, 상기 항원단백질-양친매성 고분자 복합체의 자가 결합에 의하여 형성되며, 입자의 내부로부터 순서대로 소수성 고분자층, 친수성 고분자층 및 항원단백질층의 구조를 갖는 면역유도 입자를 제공한다. The present invention relates to an immunoinductive particle comprising a complex of an antigenic protein and an amphipathic polymer, which is formed by self-bonding of the antigenic protein-amphipathic polymer complex and comprises a hydrophobic polymer layer, a hydrophilic polymer layer, Inducing particle having a structure of an antigen protein layer.
또한, 본 발명은 상기 면역유도 입자를 포함하는 백신용 조성물을 제공한다.The present invention also provides a vaccine composition comprising said immunostimulatory particles.
또한, 본 발명은 상기 면역유도 입자를 제조하는 방법을 제공한다.The present invention also provides a method for producing said immunostimulatory particles.
또한, 본 발명의 상기 면역유도 입자를 개체에 투여하여 면역 반응을 유도하는 방법을 제공한다. Also provided is a method for inducing an immune response by administering the immunostimulatory particles of the present invention to an individual.
본 발명에 따른 면역유도 입자는 병원체를 포함하지 않고, 항원단백질만을 포함함에도, 입자 당 표면에서 제시하는 항원단백질의 밀도가 높아, 면역 유도 효과가 우수하고, 약독화 병원체 등에 의한 백신의 부작용을 수반하지 않으며, 더욱이, 간단하고 신속한 제조가 가능하여, 바이러스와 같은 감염성 질환을 초기에 제어하는 것을 가능하게 한다.Although the immunogenic particles according to the present invention do not contain pathogens and contain only antigenic proteins, the density of the antigenic protein presented on the surface per particle is high and the immunity inducing effect is excellent and accompanied by side effects of the vaccine by the attenuated pathogen Moreover, it is possible to produce a simple and rapid production, making it possible to control an infectious disease such as a virus at an early stage.
도 1a는 본 발명의 일 실시예에 따른 양친매성 고분자를 합성 과정을 나타내는 모식도이다.1A is a schematic view showing a process of synthesizing an amphipathic polymer according to an embodiment of the present invention.
도 1b는 본 발명의 일 실시예에 따른 항원단백질-양친매성 고분자 자가 조립체에 의한 백신 입자와 양친매성 고분자 표면에 항원단백질이 결합된 입자를 비교하여 나타낸 모식도이다. FIG. 1B is a schematic view showing a vaccine particle by an antigen protein-amphipathic polymer self-assembly according to an embodiment of the present invention and particles bound with an antigenic protein on the surface of an amphipathic polymer.
도 2a, 2b 및 2c는 본 발명의 일 실시예에 따라 합성된 각 단계의 합성 물질의 NMR 피크를 확인한 결과이다. Figures 2a, 2b and 2c are the results of confirming NMR peaks of synthesized materials synthesized according to one embodiment of the present invention.
도 3a는 본 발명의 일 실시예에 따라 제조된 양친매성 고분자의 피크의 변화를 FTIR 분석기로 확인한 결과이다.FIG. 3A shows the results of confirming the peak change of the amphipathic polymer prepared according to an embodiment of the present invention with an FTIR analyzer.
도 3b는 본 발명의 일 실시예에 따라 양친매성 고분자 전체 질량 중에서 소수성 고분자의 함량을 달리하여 제조된 나노입자의 현미경 사진이다.FIG. 3B is a photomicrograph of nanoparticles prepared by varying the content of the hydrophobic polymer in the total mass of the amphipathic polymer according to an embodiment of the present invention. FIG.
도 4a 및 4b는 본 발명의 일 실시예에 따라 제조된 면역유도 입자의 전자현미경 사진과, 상기 면역유도 입자의 평균 입자크기의 분포를 분석한 그래프이다. FIGS. 4A and 4B are electron micrographs of immunoinducing particles prepared according to an embodiment of the present invention, and graphs illustrating the distribution of the average particle sizes of the immunoglobulin particles. FIG.
도 5는 본 발명의 일 실시예에 따라 제조된 HA 단백질-양친매성 고분자 복합체의 자가조립에 의하여 형성된 면역유도 입자를 현미경 사진으로 확인한 것이다.FIG. 5 is a microphotograph of immunostimulatory particles formed by self assembly of HA protein-amphipathic polymer complex prepared according to an embodiment of the present invention.
도 6a 및 6b은 본 발명의 일 실시예에 따라 제조된 개질도에 따른 면역유도 입자의 평균 입경 분포를 나타낸 그래프이다: 6a 오브알부민 개질도에 따른 입자의 크기, 6b: 헤마글루티닌 개질도에 따른 자가 조립 입자의 크기. 6a and 6b are graphs showing the average particle diameter distribution of the immunity inducing particles according to the degree of modification produced according to an embodiment of the present invention: 6a the particle size according to the degree of modification of the albumin, 6b the hemagglutinin modification degree Size of self-assembled particles according to.
도 7a 및 7b는 본 발명의 일 실시예에 따른 면역유도 입자를 이용한 BCA 분석에 사용된 표준 곡선 및 면역유도 입자를 이용한 BCA 분석 결과를 나타낸다. FIGS. 7A and 7B show the results of BCA analysis using the standard curve and the immunity inducing particle used in the BCA analysis using the immunity inducing particles according to an embodiment of the present invention. FIG.
도 8은 은 본 발명의 일 실시예에 따라 제조된 면역유도 입자를 이용한 마우스에서 면역 유도능을 확인한 결과를 나타낸다.FIG. 8 shows the result of confirming the immunity inducing ability in the mouse using the immunity inducing particles prepared according to one embodiment of the present invention.
도 9는 본 발명의 일 실시예에 따라 제조된 면역유도 입자를 이용한 BCA 분석에 사용된 표준 곡선을 나타낸다.Figure 9 shows the standard curve used for BCA analysis using immunostimulatory particles prepared according to one embodiment of the present invention.
도 10은 본 발명의 일 실시예에 따라 제조된 OVA-면역유도 입자를 이용한 항체 유도 반응을 확인한 그래프이다.FIG. 10 is a graph showing an antibody-induced response using OVA-immunoreactive particles prepared according to an embodiment of the present invention.
도 11은 본 발명의 일 실시예에 따라 제조된 HA-면역유도 입자의 면역반응 유도능을 확인한 결과이다.FIG. 11 shows the results of confirming the immune response inducing ability of the HA-immunoreactive particles prepared according to one embodiment of the present invention.
이하에서, 본 발명의 에 대하여 상세히 설명한다.Hereinafter, the present invention will be described in detail.
다만, 본 발명은 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있는 바, 이하에서 기술하는 특정 실시예 및 설명은 본 발명의 이해를 돕기 위한 것일 뿐, 본 발명을 특정한 개시 형태에 대해 한정하려는 것이 아니다. 본 발명의 범위는 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory only and are not restrictive of the invention, unless further departing from the scope of the invention as defined by the following claims. It is not. It is to be understood that the scope of the present invention includes all modifications, equivalents, and alternatives falling within the scope and spirit of the present invention.
본 발명은, 항원단백질과 양친매성 고분자의 복합체를 포함하며, 상기 복합체는 자가 조립된 면역유도 입자를 제공한다. The present invention comprises a complex of an antigenic protein and an amphipathic polymer, wherein said complex provides self-assembled immunostimulatory particles.
본 발명에서 "면역유도 입자"란 동물 또는 인간의 내부에서 해당 숙주의 면역체계를 자극하여 체액성 면역 반응 또는 세포성 면역 반응을 유도할 수 있는 입자를 의미한다. 본 발명의 면역유도 입자는 숙주 개체 내에서 면역 반응을 유도하여, 이후 동일한 항원에 대한 신속한 방어를 가능하게 해, 해당 항원에 의한 질병을 예방하거나 증상의 정도를 낮춰줄 수 있다. 이러한 의미에서 본 발명의 면역유도 입자는 백신으로서 사용될 수 있어, 백신입자와 상호 교환적인 의미로 사용될 수 있다. &Quot; Immunogen inducing particle " in the present invention means a particle capable of inducing a humoral immune response or a cellular immune response by stimulating the immune system of an animal or a human within the host. The immunostimulatory particles of the present invention induce an immune response in the host, thereby enabling rapid defense against the same antigen, preventing disease by the antigen or lowering the severity of symptoms. In this sense, the immunostimulatory particles of the present invention can be used as a vaccine and can be used interchangeably with vaccine particles.
본 발명의 면역유도 입자는 항원단백질-양친매성 고분자 복합체의 자가 조립에 의하여 형성되는 것으로, 상기 고분자의 자가 조립에 의하여 입자의 입자의 내부로부터 순서대로 외각을 향해서 소수성 고분자층, 친수성 고분자층 및 항원단백질층의 구조를 갖는다. The immunopotentiating particle of the present invention is formed by self-assembly of an antigen protein-amphipathic polymer complex, and the hydrophobic polymer layer, the hydrophilic polymer layer and the antigen Protein structure.
특히, 본 발명의 면역유도 입자에서 항원단백질은 입자의 최외각에 형성된다. 상기 항원단백질은 자가 조립입자를 형성하는 양친매성 고분자와 결합된 상태로 면역입자에 포함되기 때문에, 양친매성 고분자 입자 형성 후 그 표면에 항원 단백질을 결합시키는 경우와 비교해서, 보다 많은 양의 항원단백질을 제공할 수 있고, 항원단백질이 입자에 안정적으로 결합되어 있어 백신 제제 등에 포함하는 경우 백신의 안정성을 높여줄 수 있다는 점에서 이점을 갖는다. Particularly, in the immunostimulatory particle of the present invention, the antigen protein is formed at the outermost part of the particle. Since the antigen protein is contained in the immunoparticle in a state of being bound to the amphipathic polymer forming the self-assembled particle, a larger amount of the antigen protein And has an advantage in that the stability of the vaccine can be enhanced when the antigen protein is stably bound to the particles and is contained in a vaccine preparation or the like.
종래 약독화 또는 불활성 병원체를 이용하는 경우 일부 개체에서 질병의 감염을 유발하는 문제가 있었으나, 본 발명의 면역유도입자는 특정 항원단백질만 포함하므로 이러한 부작용 가능성을 효과적으로 해결할 수 있다. 다만, 정제된 항원 단백질만 포함하는 백신의 경우, 백신의 효과 자체가 너무 미미하다는 문제점이 있었으나, 본 발명의 경우 하나의 면역입자 표면에서 제시할 수 있는 항원단백질의 양을 현저히 증가시킬 수 있어, 투여된 개체에서 우수한 면역반응을 유도할 수 있다는 점에서 우수한 효과가 인정된다. 본 발명의 일 실시예에서는, 단순 정제된 항원 단백질과 본 발명의 면역유도 입자를 각각 마우스에 주입하여, 면역반응을 유도하고, 생성된 IgM 항체의 양을 확인한 결과, 본 발명의 면역유도 입자를 이용하는 경우 더욱 우수한 항체 형성 효과를 나타냄을 확인하였다. Conventionally, when an attenuated or inactivated pathogen is used, there is a problem that infection of disease occurs in some individuals. However, since the immunostimulatory particle of the present invention contains only a specific antigen protein, the possibility of such side effect can be effectively solved. However, in the case of a vaccine containing only the purified antigen protein, the effect of the vaccine itself is too small. However, in the case of the present invention, the amount of antigen protein present on the surface of one immunoparticle can be significantly increased, An excellent effect can be recognized in that an excellent immune response can be induced in the administered subject. In one embodiment of the present invention, a simple purified antigen protein and an immunostimulatory particle of the present invention were respectively injected into a mouse to induce an immune response, and the amount of the produced IgM antibody was confirmed. As a result, It was confirmed that it exhibited more excellent antibody forming effect when used.
본 발명의 면역유도 입자는 항원단백질과 양친매성 고분자를 연결하기 위한 링커를 더 포함할 수 있다. 상기 링커를 더 포함하는 경우, 상기 친수성 고분자층과 항원단백질층 사이에 링커층을 더 포함할 수 있다. 상기 링커층은 면역유도 입자에서 항원단백질과 양친매성 고분자 사이에 물리적으로 분리된 공간을 확보할 수 있게 해주며, 상기 물리적 공간에 의하여 본 발명의 면역유도 입자는 입자 안정성이 더 우수해진다. The immunostimulatory particles of the present invention may further comprise a linker for linking the antigenic protein and the amphipathic polymer. When the antibody further comprises the linker, it may further comprise a linker layer between the hydrophilic polymer layer and the antigen protein layer. The linker layer allows a physically separated space between the antigenic protein and the amphipathic polymer to be secured in the immunity inducing particle, and the immunostimulating particle of the present invention has better particle stability due to the physical space.
본 발명에서 링커는 두 개의 물질을 화학적으로 합성하여 연결시킬 수 있도록 양 끝에 반응부위를 가지는 분자를 의미하는 것으로, 본 발명의 링커는 아민기를 가지는 아민계 링커분자 또는 카르복시기를 가지는 링커분자일 수 있다. 상기 아민계 링커분자는 2개의 아민기(NH2)를 가지는 디아민계 링커분자를 모두 포함한다. 바람직하게는 분자의 양 말단에 각각 하나의 아민기를 가지는 디아민계 분자 일 수 있다. 상기 디아민계 링커분자는 일 말단이 항원단백질의 카르복실기와 반응하고, 다른 일 말단이 양친매성 고분자와 반응하여 양친매성 고분자와 항원단백질 복합체를 형성할 수 있다는 점에서, 그 종류에 제한되지 않고 본 발명에 포함될 수 있다. 또한, 카르복시기를 가지는 링커분자는 2개의 카르복시기를 가지는 것 일 수 있다. 카르복시기를 가지는 링커분자를 이용하는 경우 항원단백질의 아민기와 반응하여 링커-항원단백질 결합을 할 수 있다. In the present invention, the linker means a molecule having a reactive site at both ends so that two substances can be chemically synthesized and connected. The linker of the present invention may be an amine linker molecule having an amine group or a linker molecule having a carboxyl group . The amine linker molecule includes all diamine linker molecules having two amine groups (NH 2 ). Preferably a diamine-based molecule having one amine group at each end of the molecule. The diamine linker molecule is not limited to the type of the diamine linker molecule in that one end thereof reacts with the carboxyl group of the antigen protein and the other end thereof reacts with the amphipathic polymer to form an antigenic protein complex with the amphipathic polymer, . Further, the linker molecule having a carboxyl group may have two carboxyl groups. When a linker molecule having a carboxy group is used, a linker-antigen protein bond can be formed by reacting with an amine group of an antigen protein.
일 예로 본 발명의 링커는 헥사메틸렌디아민, 1,4-디아미노부탄(1,4-diaminobutane), 1,8-디아미노옥탄(1,8-diaminooctane), 에틸렌디아민, 1,6-헥산디아민(1,6-hexanediamine), 페닐렌디아민(phenylenediamine), 1,3-프로판디아민(1,3-propanediamine), 1,13-트리데칸디아민(1,13-tridecanediamine), 1,2-에탄디아민(1,2-ethanediamine) 또는 1,5-펜탄디아민(1,5-pentanediamine) 일 수 있으나, 이에 제한되는 것은 아니다. 바람직하게, 본 발명의 링커는 헥사메틸렌디아민 일 수 있다.For example, the linker of the present invention can be selected from the group consisting of hexamethylenediamine, 1,4-diaminobutane, 1,8-diaminooctane, ethylenediamine, 1,6-hexanediamine 1,6-hexanediamine, phenylenediamine, 1,3-propanediamine, 1,13-tridecanediamine, 1,2-ethanediamine, 1,2-ethanediamine or 1,5-pentanediamine, but is not limited thereto. Preferably, the linker of the present invention may be hexamethylenediamine.
본 발명의 면역유도 입자가 링커 더 포함하는 경우, 링커로 항원단백질이 표면 모이어티를 개질하는 정도를 조절하여 본 발명 면역유도 입자의 면역 반응 유도능을 조절할 수 있다. 이러한 개질도는 본 발명의 면역유도 입자의 항원성과 안정성에 영향을 미치는바, 다음의 식 1의 조건을 만족하는 경우, 더욱 우수한 면역유도능을 갖는 입자를 얻을 수 있다. When the immunostimulatory particle of the present invention further comprises a linker, the immunogen inducing ability of the immunostimulatory particle of the present invention can be regulated by controlling the degree to which the antigen protein modifies the surface moiety with the linker. Such degree of modification affects the antigenicity and stability of the immunostimulatory particles of the present invention, and when the conditions of the following formula 1 are satisfied, particles having a better immunostimulatory ability can be obtained.
[식 1] [Formula 1]
개질도 = {링커의 양 (g) x [116.21 (g/mol) / 링커분자의 단위 몰질량 (g/mol)]} / [항원단백질의 양 (g) x A](G) x A of the linker (g / mol) / (unit molar mass of the linker molecule (g / mol)
(여기서, A는 517.5 kDA/항원단백질 분자량 (kDA) 이다.)(Where A is 517.5 kDA / antigen protein molecular weight (kDa)).
상기 식 1에서 링커의 양과 항원단백질의 양은 링커와 항원단백질을 반응시켜 링커-항원단백질 결합체를 제조할 때 반응에 첨가시키는 링커와 항원단백질의 양일 수 있다. The amount of the linker and the amount of the antigen protein in the formula 1 may be the amount of the linker and the antigen protein added to the reaction when the linker and the antigen protein are reacted to prepare the linker-antigen protein conjugate.
본 발명의 면역유도 입자는 상기 식 1에 따른 개질도가 3 미만 인 것 일 수 있고, 또는 2 미만인 것 일 수 있다. 상기 개질도가 3 이상인 경우 입자에 결합된 항원단백질의 항원성이 낮아져 면역 유도 효과가 낮아질 수 있다. The immunostimulatory particles of the present invention may have a degree of modification according to the above formula 1 of less than 3, or less than 2. If the degree of modification is 3 or more, the antigenicity of the antigen protein bound to the particles may be lowered, and the immunity inducing effect may be lowered.
보다 바람직하게, 본 발명에서 상기 면역유도 입자에서 항원단백질의 개질도는 1/1000 이상 내지 2 미만, 또는 1/500 이상 내지 1.8 이하, 1/100 이상 내지 1.7이하, 1/80 이상 내지 1.6 이하, 1/60 이상 내지 1.5이하, 1/40 이상 내지 1.4 이하, 또는 1/20 이상 내지 1.3 이하 일 수 있으나, 이에 한정되는 것은 아니다. 상기 범위를 만족시키는 경우, 면역유도 입자의 항원성이 우수하여, 투여 개체에서 우수한 면역반응 유도 효과를 갖는다. More preferably, in the present invention, the degree of modification of the antigen protein in the immunostimulatory particle is 1/1000 or more to less than 2, or more than 1/500 to 1.8 or less than 1/100 or more to 1.7 or less, 1/80 or more to 1.6 or less , From 1/60 or more to 1.5 or less, from 1/40 or more to 1.4 or less, or from 1/20 or more to 1.3 or less, but is not limited thereto. When the above range is satisfied, the antigenicity of the immunity inducing particle is excellent, and thus it has an excellent immune response inducing effect in the administration individual.
또한, 본 발명의 항원 단백질은 상기 식 1에 따른 개질도가 1/1000 이상인 것 일 수 있다. 상기 개질도가 1/10 미만인 경우 양친매성 고분자와 항원단백질 간의 결합이 줄어들어, 자가조립을 위한 소수성 상호작용(Hydrophobic interaction)이 감소하여 면역유도 입자의 제조 효율이 저하 될 수 있다. 또한, 소수성 상호작용의 감소에 의하여 면역유도 입자의 안정성이 낮아지는 문제가 있다. In addition, the antigen protein of the present invention may have a degree of modification of 1/1000 or more according to the above formula (1). When the degree of modification is less than 1/10, the binding between the amphipathic polymer and the antigen protein is reduced, and the hydrophobic interaction for self-assembly is reduced, which may lower the production efficiency of the immunity inducing particles. In addition, there is a problem that the stability of the immunity inducing particle is lowered by the decrease of the hydrophobic interaction.
본 발명에서, 양친매성 고분자는 친수성을 나타내는 영역과 소수성을 나타내는 영역을 갖는 입자를 의미한다. 양친매성 고분자는 친수성 영역 및 소수성 영역이 있는 입자이기만 하면 제한 없이 이용 가능하다. 양친매성 고분자는 친수성 고분자, 소수성 고분자 및 이들의 조합을 포함한다. 상기 양친매성 고분자는 친수성 고분자와 소수성 고분자의 중합체 형태일 수 있다.In the present invention, the amphipathic polymer means a particle having a region showing hydrophilicity and a region showing hydrophobicity. The amphipathic polymer can be used without limitation as long as it is a particle having a hydrophilic region and a hydrophobic region. The amphipathic polymer includes a hydrophilic polymer, a hydrophobic polymer, and a combination thereof. The amphipathic polymer may be in the form of a polymer of a hydrophilic polymer and a hydrophobic polymer.
본 발명의 양친매성 고분자는 (친수성 고분자)m-(소수성 고분자)n 형태일 수 있다. 바람직하게는 [식 2] 에서 K는 0.1 내지 0.8, 또는 0.2 내지 0.6, 또는 0.3 내지 0.5를 만족하는 양친매성 고분자 일 수 있다. The amphiphilic polymer of the present invention may be in the form of (hydrophilic polymer) m- (hydrophobic polymer) n. Preferably, in the formula 2, K may be an amphipathic polymer satisfying 0.1 to 0.8, or 0.2 to 0.6, or 0.3 to 0.5.
[식 2][Formula 2]
K = 친수성 고분자의 중량/양친매성 고분자 전체의 중량K = weight of hydrophilic polymer / weight of amphipathic polymer
보다 바람직하게, 본 발명의 일 실시예에 따라 상기 중량비가 0.1 내지 0.6인 경우 면역유도 입자의 안정성이 향상된다. 특히 소수성 고분자의 양이 너무 적어지는 경우 자가 조립된 입자 내의 소수성 상호작용이 약해질 수 있어, 상기 범위를 만족하는 것은 중요하다.More preferably, according to one embodiment of the present invention, the stability of the immunity inducing particles is improved when the weight ratio is 0.1 to 0.6. Particularly, when the amount of the hydrophobic polymer is too small, the hydrophobic interaction in the self-assembled particles may be weakened, and it is important that the above range is satisfied.
한 구체예에서, 상기 친수성 고분자는 폴리알킬렌글리콜(PAG), 폴리아크릴릭애시드(PAA), 폴리아크릴로니트릴(PAN), 폴리에틸렌옥사이드(PEO), 폴리비닐아세테이트(PVAc), 폴리비닐알코올(PVA), 폴리비닐피롤리돈, 폴리아크릴아미드 및 친수성 폴리아미노산으로 이루어진 군에서 선택되는 하나 이상 및 그 유도체를 포함한다. 상기 유도체는 예를 들어 (모노)메톡시폴리에틸렌글리콜, (모노)아세톡시폴리에틸렌글리콜, 폴리에틸렌글리콜, 폴리에틸렌과 프로필렌글리콜의 공중합체, 폴리비닐피롤리돈, 폴리글루타민, 폴리글루탐산, 폴리트레오닌, 폴리아스파라긴, 폴리아르기닌 및 폴리세린으로 이루어진 군으로부터 선택되는 하나 이상일 수 있다. 바람직한 예로, 상기 친수성 고분자는 메톡시 폴리에틸렌글리콜(mPEG)일 수 있다. In one embodiment, the hydrophilic polymer is a polyalkylene glycol (PAG), a polyacrylic acid (PAA), a polyacrylonitrile (PAN), a polyethylene oxide (PEO), a polyvinyl acetate (PVAc), a polyvinyl alcohol ), Polyvinylpyrrolidone, polyacrylamide, and hydrophilic polyamino acids, and derivatives thereof. Such derivatives include, for example, (mono) methoxypolyethylene glycol, (mono) acetoxypolyethylene glycol, polyethylene glycol, copolymers of polyethylene and propylene glycol, polyvinylpyrrolidone, polyglutamine, polyglutamic acid, polythreonine, , Polyarginine, and polyserine. In a preferred embodiment, the hydrophilic polymer may be methoxypolyethylene glycol (mPEG).
한 구체예에서, 소수성 고분자는 친수성 고분자와 함께 양친매성 고분자를 형성할 수 있는 물질이면 제한 없이 이용 가능하다. 예를 들어, 소수성 고분자는 폴리에스테르, 폴리언하이드라이드, 소수성 폴리아미노산, 폴리오르소에스테르 및 폴리포스파진으로 이루어진 군으로부터 선택되는 하나 이상 일 수 있다. 상기 소수성 폴리아미노산은 폴리루신, 폴리이소루신, 폴리발린, 폴리페닐알라닌, 폴리프롤린, 폴리글리신, 폴리트립토판, 폴리알라닌, 폴리락타이드, 폴리글리콜라이드, 폴리카프로락톤, 및 폴리메티오닌으로 이루어진 군에서 하나 이상을 포함한다. 또한 상기 소수성 고분자는 그 유도체를 포함한다. In one embodiment, the hydrophobic polymer can be used without limitation as long as it is a substance capable of forming an amphipathic polymer together with a hydrophilic polymer. For example, the hydrophobic polymer may be at least one selected from the group consisting of polyesters, polyanhydrides, hydrophobic polyamino acids, polyorthoesters, and polyphosphazines. Wherein the hydrophobic polyamino acid is selected from the group consisting of polylysine, polyisoleucine, polyvaline, polyphenylalanine, polyproline, polyglycine, polytryptophan, polyalanine, polylactide, polyglycolide, polycaprolactone, and polymethionine Or more. The hydrophobic polymer includes a derivative thereof.
본 발명의 양친매성 고분자는 친수성 고분자로 mPEG를 소수성 고분자로 락타이드(Lactide, 3,6-Dimethyl-1,4-dioxane-2,5-dione)를 포함하는 mPEG와 폴리 락타이드 공중합체 (mPEG)m-(b-PLA)n 일 수 있다. 이 경우 m은 100 내지 200, n은 30 내지 100 일 수 있다.The amphipathic polymer of the present invention is a hydrophilic polymer comprising mPEG as a hydrophobic polymer and mPEG containing lactide (3,6-Dimethyl-1,4-dioxane-2,5-dione) and a polylactide copolymer (mPEG ) m- (b-PLA) n. In this case, m may be 100 to 200, and n may be 30 to 100.
본 발명에서 "항원단백질"은 항원에 대한 면역 반응을 유도 또는 증진시킬 수 있는 단백질을 의미하는 것으로, 단백질의 에피토프 부위를 포함하는 단편도 이에 포함된다. 일 예로 인플루엔자 바이러스의 헤마글루티닌(the Hemagglutinin, HA), 뉴라미니다아제(the Neuraminidase, NA), 핵단백질(the Nucleoprotein, NP), M1 단백질, M2 단백질, NS1 단백질, NS2 단백질(NEP 단백질: 핵 방출 단백질(nuclear export protein)), PA 단백질, PB1 단백질(중합효소 염기성 1 단백질, polymerase basic 1 protein), PB1-F2 단백질 및 PB2 단백질;In the present invention, " antigen protein " means a protein capable of inducing or promoting an immune response to an antigen, and includes fragments including an epitope region of the protein. Examples include influenza viruses such as the hemagglutinin (HA), the neuraminidase (NA), the nucleoprotein (NP), the M1 protein, the M2 protein, the NS1 protein, the NS2 protein : Nuclear export protein), PA protein, PB1 protein (polymerase basic 1 protein), PB1-F2 protein and PB2 protein;
광견병 바이러스의 경우에, 핵단백질(N), 인단백질(P), 기질 단백질(M), 당단백질(G), 및 바이러스 RNA 중합효소(L);In the case of rabies virus, nuclear protein (N), phosphorus protein (P), substrate protein (M), glycoprotein (G), and viral RNA polymerase (L);
B형 간염 바이러스의 경우에, B형 간염 바이러스 표면 항원(HBsAg), B형 간염 바이러스 코어 항원(HbcAg), B형 간염 바이러스 DNA 중합효소, HBx 단백질, preS2 중간 표면 단백질(the preS2 middle surface protein), 큰 S 단백질(large S protein), 바이러스 단백질 VP1, 바이러스 단백질 VP2, 바이러스 단백질 VP3, 및 바이러스 단백질 VP4;Hepatitis B virus surface antigen (HBsAg), hepatitis B virus core antigen (HbcAg), hepatitis B virus DNA polymerase, HBx protein, preS2 middle surface protein, , Large S protein, viral protein VP1, viral protein VP2, viral protein VP3, and viral protein VP4;
로 이루어진 군에서 선택된 것 일 수 있다.≪ / RTI >
본 발명의 면역유도 입자는 양친매성 고분자와 결합된 나노입자 형태로 면역반응 유도하는 경우, 항원단백질만을 투여하여 면역반응을 유도하는 경우보다 더 낮은 농도에서 더 우수한 면역반응을 유도할 수 있다. 따라서, 본 발명의 면역유도 입자는 양친매성 고분자와 결합 가능한 카르복시기 및 항원 결정부위(에피토프)를 포함하는 항원단백질에 대해서는 그 종류에 상관없이 적용 가능하므로, 본 발명은 항원단백질의 종류에 한정되지 않는다. When the immunoinducing particle of the present invention induces an immune response in the form of nanoparticles bound to an amphipathic polymer, it is possible to induce a better immune response at a lower concentration than in the case where only an antigen protein is administered to induce an immune response. Therefore, the immunostimulatory particles of the present invention can be applied to any antigenic protein including a carboxyl group and an antigenic determinant site (epitope) capable of binding to the amphipathic polymer regardless of the type thereof, and thus the present invention is not limited to the kind of antigen protein .
본 발명의 면역유도 입자는 복합체의 일 구성인 양친매성 고분자에 의하여 자가 결합(self-assembly)된 것, 즉 양친매성 고분자의 자가 결합에 의하여 입자화 된 것 이다. 따라서, 본 발명의 자가 결합으로 형성된 입자는 고분자 영역(친수성 고분자층, 소수성 고분자층)과 항원단백질 영역을 포함할 수 있다.The immunostimulatory particles of the present invention are self-assembled by an amphipathic polymer which is a constituent of the complex, that is, granulated by self-binding of an amphipathic polymer. Accordingly, the particles formed by the self-bonding of the present invention may include a polymer region (hydrophilic polymer layer, hydrophobic polymer layer) and an antigen protein region.
본 발명의 자가 조립된 면역유도 입자는 막구조를 갖는 것 일 수 있다.The self-assembled immunostimulatory particles of the present invention may have a membrane structure.
본 발명에서 "막(membrane) 구조"란 막 또는 쉘(shell)에 의하여 내부가 둘러싸여 있는 구조를 의미한다. 상기 막 구조는 상기 내부에 유체 또는 별도의 구성을 포함할 수 있다. 상기 막은 단일막(single membrane) 또는 단일막이 2 개 이상 존재하는 다중막(multi membrane)을 모두 포함한다. 일 예로, 단일막을 갖는 입자가 다시 하나의 단일막으로 둘러싸인 경우, 다중막을 갖는 입자가 될 수 있다. 상기 단일막 및 다중막은 단일층 및 이중층과 구별되는 개념이다. 구체적으로, 이중층(bilayer) 구조의 막을 하나만 포함하는 입자는 단일막을 갖는 것이며, 단일층(monolayer) 구조의 막을 포함하는 입자를 다시 단일층 구조의 막이 둘러싸고 있는 입자는 다중막 구조의 입자를 의미한다.&Quot; Membrane structure " in the present invention means a structure in which the inside is surrounded by a membrane or a shell. The membrane structure may include a fluid or a separate configuration therein. The membrane includes both a single membrane or a multi membrane having two or more single membranes. As an example, when a particle having a single membrane is again surrounded by a single membrane, it can be a particle having multiple membranes. The single membrane and the multiple membrane are concepts that are distinguished from a single layer and a double layer. Particularly, a particle containing only one film of a bilayer structure has a single film, and a particle including a film of a monolayer structure again surrounds a film of a single layer structure means a particle of a multi-film structure .
본 발명에서 막(membrane) 구조를 갖는 나노입자는 베지클(vesicle), 마이셀(micelle), 폴리머좀(polymersome), 액적(droplet) 또는 콜로이드좀(colloidsome) 일 수 있으나, 이에 제한되는 것은 아니고, 형태적으로 로드(rod), 구, 링(ring), 판(flat), 실린더, 타원형, 구형 등의 형태를 가질 수 있으나, 이에 제한되는 것은 아니다. The nanoparticles having a membrane structure in the present invention may be vesicles, micelles, polymersome, droplets or colloidsome, but are not limited to, But are not limited to, rods, spheres, rings, plates, cylinders, ellipses, spheres, and the like.
상기 "마이셀(micelle)"은 소수성 코어와 친수성 쉘을 갖는 입자를 의미한다. 한 구체예에서, 상기 마이셀은 고분자 자가 조립 마이셀 일 수 있다. 자가 조립에 의한 마이셀의 경우 공중합체를 형성하는 고분자의 종류에 따라 다양한 형태를 띌 수 있고, 그 형태에 제한을 받는 것은 아니다. 상기 마이셀은 단일층(monolayer)을 2 이상 포함하는 다중막 형태도 포함한다. The " micelle " means a particle having a hydrophobic core and a hydrophilic shell. In one embodiment, the micelle may be a polymer self-assembled micelle. In the case of self-assembled micelles, various forms can be adopted depending on the type of the polymer forming the copolymer, and the shape of the polymer is not limited thereto. The micelle also includes a multi-layered form comprising two or more monolayers.
상기 "폴리머좀(polymersome)"은 "친수성 영역-소수성 영역-소수성 영역-친수성 영역"을 갖는 2중층 막 구조를 갖는 나노입자를 의미한다. 상기 폴리머좀은 이중층 막구조의 단일막 및 상기 단일막을 2개 이상 포함하는 다중막을 모두 포함한다.The term " polymersome " means a nanoparticle having a bilayer membrane structure having a " hydrophilic region-hydrophobic region-hydrophobic region-hydrophilic region ". The polymer jars include both a single membrane of a bilayer membrane structure and multiple membranes containing two or more of the single membranes.
상기 "콜로이드좀"은 1nm 내지 1000nm 크기의 콜로이드상 입자 또는 상기 입차가 치밀하게 패킹된 구조물을 의미한다. 막을 형성하는 친수성 및 소수성 영역의 고분자의 종류에 따라서 단일층 및 이중층을 포함할 수 있다. The " colloidal mule " means a colloidal particle having a size of 1 nm to 1000 nm or a structure in which the granularity is packed tightly. Depending on the type of polymer in the hydrophilic and hydrophobic regions forming the membrane, it may comprise a single layer and a bilayer.
상기 "액적(droplet)"은 상기 막 구조 입자 중에서 물방울 모양의 형태를 나타내는 것을 의미한다. 단일층 및 이중층을 포함하고, 단일막 및 다중막을 모두 포함한다.The " droplet " means that the shape of the droplet in the film structure particles is represented by a droplet shape. Includes both single and double layers, and includes both single and multiple layers.
본 발명의 자가 결합 형태의 면역유도 입자는 단일 항원 단백질 형태의 백신 보다 체내 안정성이 높고, 나노입자에 항원 단백질을 결합시킨 종래의 백신과 비교해서, 더욱 높은 밀도로 표면에 항원 단백질을 제시할 수 있어, 적응 양으로도 우수한 면역반응을 유도할 수 있다. The self-binding form of the immunoadaginized particle of the present invention is more stable in the body than the vaccine of the single antigen protein type and can exhibit the antigen protein on the surface at a higher density than the conventional vaccine in which the antigen protein is bound to the nanoparticle Therefore, it is possible to induce an excellent immune response with an appropriate amount.
본 발명은 상기 면역유도 입자를 포함하는 백신용 조성물을 제공한다. 또한, 본 발명은 상기 면역유도 입자를 포함하는 백신제제를 제공한다.The present invention provides a vaccine composition comprising said immunostimulatory particles. The present invention also provides a vaccine preparation comprising the immunostimulatory particles.
본 발명의 백신 조성물은 상기 면역유도 입자 외에 용매, 어쥬번트(ajuvant) 또는 부형제 중 하나 이상을 더 포함할 수 있다. 상기 용매는 생리식염수, 증류수 또는 완충액이 있으며, 면역증강제로는 프로인트(Freund's) 불완전체 또는 완전체 어쥬번트, 알루미늄 하이드록사이드 겔, 및 식물성 및 광물성 오일 등이 있으며, 부형제로는 알루미늄 포스페이트, 알루미늄 하이드록사이드 또는 알루미늄 포타슘 설페이트(alum)가 있으나, 이에 한정되는 것은 아니며, 당해 분야의 통상의 지식을 가진 기술자에게 잘 알려진 백신 제조에 사용되는 공지의 물질을 더 모두 포함할 수 있다.The vaccine composition of the present invention may further comprise at least one of a solvent, an adjuvant or an excipient in addition to the immunity inducing particle. The immune enhancer may be Freund ' s incomplete or complete adjuvant, aluminum hydroxide gel, vegetable and mineral oil, etc. Examples of the excipient include aluminum phosphate, aluminum But are not limited to, aluminum hydroxide or aluminum potassium sulfate (alum), and may further include any of the known materials used in the manufacture of vaccines well known to those skilled in the art.
본 발명의 백신 조성물은 경구형 또는 비경구형 제제로 제조할 수 있고, 비경구형 제제로 제조하는 경우 주사액제로 제조될 수 있고, 진피내, 근육내, 복막내, 정맥내, 피하내, 비강 또는 경막외 경로로 투여할 수 있으나, 상기 제제의 투여 형태에 제한되는 것은 아니다. The vaccine composition of the present invention may be prepared as an oral or parenteral preparation and may be prepared as an injectable solution in the form of a parenteral preparation and may be administered orally in the form of intradermal, intramuscular, intraperitoneal, intravenous, subcutaneous, But it is not limited to the mode of administration of the agent.
본 발명은 상기 면역유도 입자를 제조하는 방법을 제공한다. The present invention provides a method for producing said immunostimulatory particles.
본 발명의 면역유도 입자 제조방법은 양친매성 고분자 및 항원단백질을 혼합하여 복합체를 형성하는 것; 및 상기 복합체를 자가 결합 하여 입자화 하는 것을 포함 할 수 있다.The method for producing immunostimulatory particles of the present invention comprises mixing an amphipathic polymer and an antigen protein to form a complex; And self-binding and granulating the complex.
바람직하게, 친수성 용매 중에 항원단백질을 포함하는 단백질 용액에 소수성 용매 중의 양친매성 고분자를 첨가한 항원단백질-양친매성 고분자 혼합용액을 20 내지 28시간 동안 흔들어 주면서 반응시켜 양친매성 고분자-항원단백질 복합체를 형성하는 것; 및 상기 혼합용액이 항원단백질 포함하는 친수성 용매 중에 소수성 용매가 액적 상태로 존재하는 콜로이드 상일 때 양친매성 고분자-항원단백질 복합체의 자가조립에 의하여 입자화하는 것을 포함하는 면역유도 입자 제조방법일 수 있다. Preferably, an antigenic protein-amphipathic polymer mixed solution to which an amphipathic polymer in a hydrophobic solvent is added to a protein solution containing an antigen protein in a hydrophilic solvent is reacted for 20 to 28 hours with shaking to form an amphipathic polymer-antigen protein complex To do; And a method in which the mixed solution is granulated by self-assembly of an amphipathic polymer-antigen protein complex when the hydrophobic solvent is a colloid phase in which the hydrophobic solvent exists in a droplet state in a hydrophilic solvent containing an antigenic protein.
상기 단백질 용액은 글리세롤을 더 포함할 수 있다. 이 경우 조성물 내의 항원단백질이 서로 응집되는 현상을 막고, 항원단백질-양친매성 고분자 복합체 형성 과정에 단백질이 더욱 안정하게 반응에 참여할 수 있도록 하여 매우 효과적인다. The protein solution may further comprise glycerol. In this case, it is very effective to prevent the antigen proteins in the composition from aggregating with each other and allow the protein to participate in the reaction more stably in the process of forming the antigen protein-amphipathic polymer complex.
본 발명은 친수성 용매 중에 항원단백질을 포함하는 단백질 용액에 소수성 용매 중의 양친매성 고분자를 첨가한 이후 소정의 시간 이상 동안 흔들어주어 상기 혼합용액이 친수성 용매를 분산매로 하여 소수성 용매가 분산질로 액적상태로 존재하는 콜로이드 상일 때 입자화하여, 단백질이 최외각층에 형성된 입자를 형성할 수 있다는 점에 특징이 있다. 상기 콜로이드 상에서 혼합용매 내의 소수성 고분자와 항원단백질은 서로 다른 층상에서 계면 결합된 상태일 수 있다. The present invention relates to a method for preparing a protein solution, which comprises adding an amphipathic polymer in a hydrophobic solvent to a protein solution containing an antigen protein in a hydrophilic solvent and then shaking the mixture for a predetermined period of time or longer so that the hydrophobic solvent is dispersed in a hydrophilic solvent, , And the protein is characterized by being able to form particles formed in the outermost layers. The hydrophobic polymer and the antigenic protein in the mixed solvent on the colloid phase may be in an interfacial state on different layers.
본 발명의 제조방법은 상기 항원단백질-양친매성 고분자 복합체 형성하기 전에 항원단백질을 링커로 개질하는 것을 더 포함 할 수 있다. 상기 링커로 단백질을 개질한 후 복합체를 형성하는 경우 고분자의 모이어티와 링커의 모이어티의 접촉 가능성이 증가하여, 항원단백질-양친매성 고분자 복합체 형성 효율을 높일 수 있다. 상기 개질도는 본 발명의 면역유도 입자를 설명할 때 설명된 [식 1]에 따라서 계산될 수 있고, 상기한 내용은 본 제조방법에도 준용된다.The production method of the present invention may further comprise modifying the antigen protein to a linker before the antigen protein-amphipathic polymer complex formation. When the complex is formed by modifying the protein with the linker, the possibility of contact between the moiety of the polymer and the moiety of the linker is increased, thereby increasing the efficiency of forming the antigen protein-amphipathic polymer complex. The degree of modification can be calculated according to the formula 1 described in the description of the immunoinducing particle of the present invention, and the above contents are also applied to the present manufacturing method.
본 발명의 면역유도 입자는 항원 단백질의 종류에 상관없이, 나노입자 형태로 항원단백질을 제시함으로써, 적은 양으로도 강한 면역반응을 나타낼 수 있어, 백신으로 우수한 효과를 갖는다. 또한, 본원발명의 제조방법에 따르면 항원단백질의 종류에 제한되지 않고 우수한 면역반응 유도 효과를 갖는 면역유도 입자를 제조할 수 있어, 백신의 제조 분야에서 다양하게 사용될 수 있다. INDUSTRIAL APPLICABILITY The immunostimulatory particles of the present invention can exhibit a strong immune response in a small amount by presenting an antigen protein in the form of nanoparticles irrespective of the kind of the antigenic protein, and thus have an excellent effect as a vaccine. In addition, according to the method of the present invention, immune-inducing particles having an excellent immune reaction inducing effect can be produced without being limited to the kinds of antigen proteins, and thus they can be used variously in the field of vaccine production.
이러한 측면에서, 본 발명은 상기 면역유도 입자를 개체에 투여하는 것을 포함하는 개체에서 면역반응 유도하는 방법을 제공한다. 상기 면역반응을 유도하는 방법은 개체의 질병 감염 가능성을 낮추거나 이를 예방하기 위한 것이라는 점에서, 질병 또는 감염을 예방하는 것일 수 있다. 상기 투여는 1회 이상 수행될 수 있다. In this aspect, the invention provides a method of inducing an immune response in an individual comprising administering said immunity-inducing particle to a subject. The method of inducing the immune response may be to prevent disease or infection in that it is intended to lower or prevent the possibility of infection of an individual with a disease. The administration can be carried out more than once.
상기 개체에서 면역반응을 유도하는 방법은 개체에서 면역반응을 유도하는데 약학적으로 유효한 양의 면역유도 입자를 개체에 투여할 수 있고, 이를 통해 개체의 체액성 또는 세포성 면역방응을 유도하여, 목적하는 질병에 대한 감염의 가능성을 낮출 수 있다. The method for inducing an immune response in an individual may be carried out by administering to a subject an amount of a pharmaceutically effective amount of a pharmaceutically effective amount to induce an immune response in the subject, thereby inducing humoral or cellular immunity response of the individual, Can reduce the likelihood of infection to the disease.
상기 면역반응을 유도하는데 약학적으로 유효한 양은 면역유도 입자의 구체적인 형태, 항원 단백질의 종류, 개체의 나이, 몸무게 등의 신체적 상황을 고려해서 달리 결정될 수 있다. The pharmaceutically effective amount for inducing the immune response may be determined in consideration of physical conditions such as the specific form of the immunity inducing particle, the kind of the antigen protein, the age of the individual, and the body weight.
본 발명의 일 실시예에서, 본 발명의 면역유도 입자를 마우스에 투여하고, 마우스의 혈액를 분석한 결과, 항원단백질에 대한 IgM 항체의 생산이 효과적으로 유도되었음을 실험적으로 확인하였다. 더욱이, 단순히 정제된 항원 단백질이나, 나노입자의 표면에 항원이 단순 결합된 입자와 비교해서, 더욱 많은 양의 항체가 생산됨을 확인하였는바, 매우 우수한 효능을 갖는 백신 플랫폼으로 이용될 수 있음을 확인하였다. In one embodiment of the present invention, the immunoreactive particles of the present invention were administered to mice, and the blood of the mice was analyzed. As a result, it was experimentally confirmed that the production of IgM antibody against the antigen protein was effectively induced. Furthermore, it has been confirmed that a larger amount of antibody is produced compared to a particle in which antigen is simply bound to the surface of the purified antigen protein or nanoparticle, and thus it can be used as a vaccine platform having a very high efficacy Respectively.
이하, 본 발명을 제조예 및 실험예를 통해 상세히 설명한다. 하기 실시예 및 실험예는 본 발명을 예시하는 것일 뿐 본 발명의 범위가 이들에 한정되는 것은 아니다.Hereinafter, the present invention will be described in detail with reference to Production Examples and Experimental Examples. The following Examples and Experiments are illustrative of the present invention and are not intended to limit the scope of the present invention.
[[ 제조예Manufacturing example 1]  One] 양친매성Amphipathic 고분자의 합성  Synthesis of polymer
본 발명의 항원 단백질과 결합할 양친매성 고분자를 도 1 및 반응식 1에 나타낸 바와 같이, 생체 친화적 고분자 mPEG(Poly(ethylene Glycol) Methyl Ether. Mw: 2,000)와 락티드(Lactide, 3,6-Dimethyl-1,4-dioxane-2,5-dione, Sigma Aldrich)를 컨쥬게이션 한 다음 개환반응을 통해서 양친매성 고분자 mPEG-b-PLA를 합성하였다. The amphipathic polymer to be bound to the antigen protein of the present invention can be prepared by reacting biocompatible polymer mPEG (Mw: 2,000) and lactide (3,6-dimethyl -1,4-dioxane-2,5-dione, Sigma Aldrich), and then an amphipathic polymer, mPEG-b-PLA, was synthesized through a ring opening reaction.
구체적으로, 3-목 둥근 플라스크(3-neck rounded flask)에 mPEG 1g, Sn(Oct)2 약간(Tin(Ⅱ) 2-ethylhexanoate, Sigma Aldrich), 락티드 그리고 톨루엔 50 mL(anhydrous, Sigma Aldrich)을 넣고, 진공과 N2 퍼지(purge)를 반복적으로 처리한 다음, 120℃에 도달하면 N2 퍼지를 멈추고, 교반(stirring)하였다. 용액이 맑아지는지 확인하여 24시간 동안 반응시켰다. 그 다음, 감압 및 가열하여 상기 생성물 겔 상태 전까지 농축시킨 다음에 DCM(Dichloromethane, Sigma Aldrich) 10 mL를 첨가하였다. 상기 생성물을 디에틸 에테르(Diethyl ether)에 천천히 떨어뜨려 침전시키면서 약 30분 동안 교반한 후 상기 침전물을 감압하여 분리시켰다. 이후 침전 및 감압하여 분리하는 단계를 세 번 반복 한 후, 상기 분리된 물질을 하루 동안 건조하였다. Specifically, 1 g of mPEG, a small amount of Sn (Oct) 2 (Tin (Ⅱ) 2-ethylhexanoate, Sigma Aldrich), lactide and 50 mL of toluene (anhydrous, Sigma Aldrich) were added to a 3-neck rounded flask, , And vacuum and N2 purge were repeatedly treated. After reaching 120 deg. C, N2 purge was stopped and stirred. The solution was clarified and allowed to react for 24 hours. It was then concentrated under reduced pressure and heated to the product gel state before adding 10 mL of DCM (Dichloromethane, Sigma Aldrich). The product was slowly dropped into diethyl ether and stirred for about 30 minutes while precipitating, and the precipitate was decompressed and separated. The step of separation by settling and decompression was repeated three times, and the separated material was dried for one day.
[반응식 1][Reaction Scheme 1]
Figure PCTKR2018010171-appb-I000001
Figure PCTKR2018010171-appb-I000001
그 다음, 상기 공중합체와 항원단백질을 결합하기 위해서, mPEG-b-PLA의 OH기를 COOH기로 치환하여 mPEC-b-PLA-COOH를 제조하였다. 구체적으로 상기에서 합성한 mPEG-b-PLA 500mg, 숙신산 무수물(succinic anhydride, Sigma Aldrich) 80mg 그리고 DMAP(Sigma Aldrich) 35.7mg를 디클로로메탄(DCM, Sigma Aldrich) 10 mL에 넣고, 트리에틸아민(TEA) 30㎕를 드롭방식으로 첨가하였다. 실온(ambient temperature)에서 24시간 동안 반응시킨 다음, 차가운 디에틸 에테르를 이용하여 결과물을 침전시키고, 진공건조 하여, mPEG-b-PLA-COOH를 얻었다.Then, mPEC-b-PLA-COOH was prepared by replacing the OH group of mPEG-b-PLA with the COOH group in order to bind the above-mentioned copolymer and the antigen protein. Specifically, 500 mg of mPEG-b-PLA synthesized above, 80 mg of succinic anhydride (Sigma Aldrich) and 35.7 mg of DMAP (Sigma Aldrich) were placed in 10 mL of dichloromethane (DCM, Sigma Aldrich) ) Was added dropwise. After reaction at ambient temperature for 24 hours, the resultant was precipitated with cold diethyl ether and vacuum dried to obtain mPEG-b-PLA-COOH.
상기에서 합성한 mPEG-b-PLA-COOH를 NHS-sulfo를 이용해서 mPEG-b-PLA-NHS를 합성하였다. 구체적으로, 상기에서 합성한 mPEG-b-COOH 325mg, NHS(Thermo Scientific) 17mg 그리고 DCC(Sigma Aldrich) 21mg를 디클로로메탄(DCM, Sigma Aldrich) 10 mL에 넣고, 트리에틸아민(TEA) 20㎕를 드롭방식으로 첨가하였다. 실온(ambient temperature)에서 24시간 동안 반응시킨 다음, 차가운 디에틸 에테르를 이용하여 결과물을 침전시키고, 진공건조 하여, mPEG-b-PLA-NHS를 얻었다.MPEG-b-PLA-NHS was synthesized using NHS-sulfo as the mPEG-b-PLA-COOH synthesized above. Specifically, 325 mg of mPEG-b-COOH synthesized above, 17 mg of NHS (Thermo Scientific) and 21 mg of DCC (Sigma Aldrich) were placed in 10 mL of dichloromethane (DCM, Sigma Aldrich), and 20 μL of triethylamine Drop method. The reaction was allowed to proceed at ambient temperature for 24 hours. The resultant was precipitated with cold diethyl ether and vacuum dried to obtain mPEG-b-PLA-NHS.
NMR을 통해 합성된 공중합체의 각 과정의 합성여부를 확인 하였다. 하기 도 2a, 2b 및 2c에 나타낸 바와 같이, PLA 와 PEG의 피크를 공통으로 가지고 있고, 각 작용기의 피크가 생긴 것을 확인할 수 있다. NMR was used to confirm the synthesis of each step of the copolymer synthesized by NMR. As shown in FIGS. 2A, 2B, and 2C, peaks of PLA and PEG are common and a peak of each functional group is observed.
또한, mPEG와 락티드(Lactide, 3,6-Dimethyl-1,4-dioxane-2,5-dione)의 중합비를 달리하여 (mPEG)m-(b-PLA)n를 합성하고, 그 피크의 변화를 확인 하였다. mPEG와 락티드(3,6-Dimethyl-1,4-dioxane-2,5-dione)의 양을 하기 표 1과 같이 조절하였다. Further, (mPEG) m- (b-PLA) n was synthesized by varying polymerization ratios of mPEG and lactide (3,6-Dimethyl-1,4-dioxane-2,5-dione) . The amounts of mPEG and lactide (3,6-Dimethyl-1,4-dioxane-2,5-dione) were adjusted as shown in Table 1 below.
mPEG (g)mPEG (g) DL-Lactide(g)DL-Lactide (g) Mw (g/mol)Mw (g / mol) fmPEG (중량%)f mPEG (weight%) mm nn
1One 4.54.5 8262.9678262.967 0.2420440.242044 181.8181.8 86.9856586.98565
1One 2.92.9 4928.3224928.322 0.4058180.405818 181.8181.8 40.671140939597340.6711409395973
1One 3.13.1 5596.0445596.044 0.3573950.357395 181.8181.8 49.9450549.94505
1One 3.33.3 5566.6495566.649 0.3592830.359283 181.8181.8 49.5367849.53678
도 3a에 나타낸 바와 같이, 공중합체에서 mPEG의 부분이 감소함에 따라 C-H 부분의 피크가 감소함을 FTIR 분석 결과에서 확인하였다. 락틱산의 중합도가 증가함에 따라 고분자 내에서 PEG의 비율이 감소하여 C-H 결합 피크가 C=O 결합 피크에 비해 상대적으로 감소함을 확인하였다. 더불어, 표 2에 나타낸 조건에 따라, mPEG와 락티드(Lactide, 3,6-Dimethyl-1,4-dioxane-2,5-dione)의 중합비를 달리하여 (mPEG)m-(b-PLA)n를 합성하고, 친수성 고분자의 비율에 따른, 자가조립 입자의 형태적 특성을 확인하였다. As shown in FIG. 3A, the FTIR analysis results confirmed that the peak of the C-H moiety decreased as the moiety of mPEG decreased in the copolymer. As the degree of polymerization of lactic acid was increased, the ratio of PEG in the polymer was decreased and the C-H bond peak was relatively decreased compared to the C = O bond peak. (MPEG) m- (b-PLA) was obtained by varying the polymerization ratios of mPEG and lactide (3,6-Dimethyl-1,4-dioxane-2,5- ) n were synthesized and the morphological characteristics of the self - assembled particles were confirmed according to the proportion of the hydrophilic polymer.
mPEG (g)mPEG (g) DL-Lactide(g)DL-Lactide (g) Mw (g/mol)Mw (g / mol) fmPEG (중량%)f mPEG (% by weight) mm nn
1One 2.92.9 4928.3224928.322 0.4058180.405818 181.8181.8 40.671140939597340.6711409395973
1One 4.54.5 8262.9678262.967 0.2420440.242044 181.8181.8 86.9856586.98565
0.50.5 99 39398.8639398.86 0.0570.057 181.8181.8 519.42857519.42857
도 3b에 나타낸 바와 같이, 양친매성 고분자 내 친수성 고분자의 중량비율에 따라, 생성되는 자가조립 입자의 형태가 달라지는 것을 확인하였다. 특히 친수성 고분자의 비율(f)이 0.05 중량%인 경우, 로드 형태가 형성되긴 하나 입자 형태 안정성이 불안정한 문제가 있었다. As shown in FIG. 3B, it was confirmed that the shape of the self-assembled particles produced varies depending on the weight ratio of the hydrophilic polymer in the amphipathic polymer. Particularly, when the ratio (f) of the hydrophilic polymer is 0.05% by weight, there is a problem that the shape of the rod is formed but the stability of the shape of the particle is unstable.
[제조예 2] 폴리머-단백질 복합체 형성 및 입자화 [Preparation Example 2] Polymer-protein complex formation and granulation
본 발명의 면역유도 입자는 항원단백질-양친매성 고분자 복합체의 자가조립에 의하여 형성된 입자라는 점에 특징을 갖는바, 면역유도 능을 가지기 위해서는 항원단백질이 자가 조립의 최외각에 위치하여야만 한다. 따라서, 본 발명의 항원단백질이 최외각에 최외각에 존재하는 자가조립입자를 하기와 같은 방법으로 제조하였다. 항원단백질로는 오브알부민(ovalbumine, Thermo Scientific)과 헤마글루티닌 (hemagglutinin, A/California/04/2009(H1N1), 서열번호 1)을 이용하였다.The immunoinducing particle of the present invention is characterized in that it is a particle formed by self-assembly of an antigen protein-amphipathic polymer complex. In order to have immunity-inducing ability, the antigen protein must be located at the outermost position of self-assembly. Thus, the self-assembled particles having the antigen protein of the present invention at the outermost periphery were prepared by the following method. As antigenic proteins, ovalbumin (Thermo Scientific) and hemagglutinin (A / California / 04/2009 (H1N1), SEQ ID NO: 1) were used.
우선, 항원단백질을 링커로 개질하기 위해, 항원단백질과 헥사메틸렌디아민(링커)를 반응시켰다. 항원단백질 오브알부민의 응집을 감소시키기 위해서, OVA (1mg/1mL) 용액에 글리세롤을 5 부피%로 첨가하였다. 상기 OVA (1mg/1mL) 용액 300㎕에 EDAC/Sulfo-NHS 용액(DW 100㎕ 중 각각 20mg) 40㎕를 첨가하고, 헥사메틸렌디아민 (104mg/DW 2mL) 80㎕을 상기 혼합물에 첨가하였다. 실온에서 1시간 동안 혼합 용액을 볼텍싱한 후에, 30k 멤프레인 필터를 사용하여 원심분리로 여분의 반응물을 제거하였다(12300rcf, 10분, 3회 반복). 오브알부민의 COOH(글루탐산)기에 헥사메틸렌디아민이 결합된 OVA-NH2를 얻었다.First, the antigen protein and hexamethylenediamine (linker) were reacted to modify the antigen protein with the linker. To reduce aggregation of the antigen protein or albumin, 5 vol% glycerol was added to the OVA (1 mg / 1 mL) solution. To the 300 μl of the OVA (1 mg / 1 ml) solution was added 40 μl of EDAC / Sulfo-NHS solution (20 mg each of 100 μl of DW), and 80 μl of hexamethylenediamine (104 mg / DW 2 ml) was added to the mixture. After vortexing the mixed solution for 1 hour at room temperature, the excess reagent was removed by centrifugation using a 30k Memphane filter (12300 rcf, 10 min, repeated 3 times). OVA-NH 2 in which hexamethylenediamine was bonded to COOH (glutamic acid) group of ovalbumin was obtained.
다음으로, 양친매성 고분자-항원단백질 복합체를 형성하기 위해서, mPEG-b-PLA-NHS (클로로포름 100 ㎕ 중 4mg) 20㎕를 상기 OVA-NH2를 포함하는 용액(글리세롤(5 v/v%) 포함된 DPBS, OVA 함량 1mg/mL)에 넣고, 실온에서 하룻 밤 동안 볼텍싱하여 mPEG-b-PLA-HA 복합체를 제조하면서, 상기 복합체를 입자화 하였다. 상기 볼텍싱에 의하여 OVA-NH2 용액의 친수성 용매 내에 클로로포름이 액적 형태로 존재하게된다. 이 경우 소수성 용매인 클로로포름 액적과 친수성 용매 사이에 양친매성 고분자-항원단백질 복합체가 계면 결합된 상태로 존재하면서 자가 조립하여 입자화 되었다. 구체적으로, 소수성 고분자의 상호작용에 의하여 클로로포름 액적 내의 소수성 고분자가 입자의 내부를 형성하고 친수성 고분자가 소수성 고분자 층 상에 형성되며, 링커에 의하여 항원단백질이 입자의 최외각 층에 형성되었다. 이를 통해서 mPEG-b-PLA-OVA 복합체의 자가조립 입자(proteSome)를 얻었다. 상기와 동일한 방법으로 mPEB-b-PLA-HA 복합체를 형성하고 입자화시켜, mPEB-b-PLA-HA 복합체의 자가조립 입자를 얻었다. Next, 20 μl of mPEG-b-PLA-NHS (4 mg in 100 μl of chloroform) was added to the solution containing OVA-NH 2 (glycerol (5 v / v%)) to form an amphipathic polymer- The DPBS, the OVA content 1 mg / mL), and vortexing at room temperature overnight to produce the mPEG-b-PLA-HA complex while granulating the complex. By vortexing, chloroform is present in the form of droplets in the hydrophilic solvent of the OVA-NH 2 solution. In this case, the amphipathic polymer - antigen protein complex was interfaced with the hydrophilic solvent between the chloroform droplet and the hydrophilic solvent and self - assembled and granulated. Specifically, the hydrophobic polymer in the chloroform droplet forms the inside of the particle, and the hydrophilic polymer is formed on the hydrophobic polymer layer by the interaction of the hydrophobic polymer, and the antigen protein is formed on the outermost layer of the particle by the linker. Through this, self-assembled particles (proteSome) of mPEG-b-PLA-OVA complex were obtained. The mPEB-b-PLA-HA complex was formed and granulated in the same manner as above to obtain self-assembled particles of mPEB-b-PLA-HA complex.
상기에서 DLS 및 전자현미경을 이용하여, mPEG-b-PLA-OVA 복합체 및 mPEB-b-PLA-HA 복합체의 입자화 정도를 확인하였고, 입자의 크기를 측정하였다. The granulation degree of the mPEG-b-PLA-OVA complex and the mPEB-b-PLA-HA complex was confirmed using DLS and electron microscope, and the particle size was measured.
도 4a 및 4b에 나타낸 바와 같이, OVA-양친매성 고분자 복합체가 자가 조립에 의하여 입자를 잘 형성한 것을 확인 할 수 있고, 1/2 개질된 OVA-고분자 입자의 평균 크기는 148 nm 인 것을 확인 하였다. 또한, 도 5에 나타낸 바와 같이, 헤마글루티닌-양친매성 고분자 복합체도 자가 조립에 의하여 입자를 잘 형성한 것을 확인하였다. As shown in FIGS. 4A and 4B, it was confirmed that the OVA-amphipathic polymer composite formed particles well by self-assembly, and that the average size of the OVA-polymer particles modified by 1/2 was 148 nm . Further, as shown in Fig. 5, it was confirmed that the hemagglutinin-amphipathic polymer complex formed particles well by self-assembly.
[제조예 3] 단백질 항원 최적 개질 조건 확인[Preparation Example 3] Confirmation of optimal conditions for protein antigen modification
단백질 항원의 표면 개질 정도는 단백질의 항원성 및 백신의 안정성과 관련이 있으므로, 링커인 헥사메틸렌디아민(Hexa.)에 의한 단백질 개질 정도를 달리하여 항원성을 확인하는 실험을 실시하였다. OVA 단백질(45 kDA)은 스톡용액(OVA 1㎍/㎕)을 이용하였고, 제조예 1에서 합성한 양친매성 고분자 mPEG-b-PLA-NHS(분자량 6kDA)을 이용하였다. Since the degree of surface modification of the protein antigen is related to the antigenicity of the protein and the stability of the vaccine, experiments were carried out to confirm the antigenicity by varying the degree of protein modification by the linker hexamethylenediamine (Hexa.). The OVA protein (45 kDa) was used as a stock solution (OVA 1 μg / μl) and the amphipathic polymer mPEG-b-PLA-NHS (molecular weight 6 kDa) synthesized in Preparation Example 1 was used.
개질 비율은 항원단백질 1mg을 개질하는데 필요한 링커의 양(mg)을 개질 상수(k)라고 했을 때, 링커의 양/(항원의 양 x k) 값을 나타낸다. 본 실험에서 OVA 단백질 1mg을 개질하는데 필요한 헥사메틸렌디아민(단위 몰질량; 116.21 g/mol)의 양은 11.5mg으로 하여 실험하였다. 또한, 헤마글루티닌 1mg을 개질하는데 필요한 헥사메틸렌디아민의 양은 6.088mg으로 하여 실험하였다. Modification ratio, when said amount (mg) a modified constant (k) of the linker required to modify the antigenic proteins 1mg, represents a (x k amount of antigen) the value of the amount of linker /. In this experiment, the amount of hexamethylenediamine (unit molar mass: 116.21 g / mol) required to modify 1 mg of OVA protein was 11.5 mg. In addition, the amount of hexamethylenediamine required to modify 1 mg of hemaglutinin was 6.088 mg.
실험군Experimental group 개질도Modification OVA(㎍)OVA (占 퐂) 고분자(㎍)Polymer (㎍) Hexa.(㎍)Hexa. (占 퐂)
실시예1Example 1 1One 200200 400400 23002300
실시예2Example 2 1/21/2 200200 400400 11501150
실시예3Example 3 1/41/4 200200 400400 575575
실시예4Example 4 1/81/8 200200 400400 287.5287.5
실시예5Example 5 22 200200 400400 143.75143.75
또한, OVA 단백질과 헤마글루티닌(HA, 85kDA) 단백질 각각에 대해서도, 헥사메틸렌디아민에 의한 단백질 개질도를 1, 1/10 또는 1/100으로 달리해서 입자를 형성하였다. 실시예 6-8 및 실시예 9-10의 입도를 DLS를 통해서 분석하였다. For each of the OVA protein and hemagglutinin (HA, 85 kDA) protein, the degree of protein modification by hexamethylenediamine was changed to 1, 1/10 or 1/100. The particle sizes of Examples 6-8 and Examples 9-10 were analyzed via DLS.
실험군Experimental group 개질도 (약)Modification (approx.) OVA(㎍)OVA (占 퐂) 고분자(㎍)Polymer (㎍) Hexa.(㎍)Hexa. (占 퐂)
실시예 6Example 6 1One 300300 800800 34203420
실시예 7Example 7 1/101/10 300300 800800 342342
실시예 8Example 8 1/1001/100 300300 800800 34.234.2
실험군Experimental group 개질도 (약)Modification (approx.) HA(㎍)HA (占 퐂) 고분자(㎍)Polymer (㎍) Hexa.(㎍)Hexa. (占 퐂)
실시예 9Example 9 1One 300300 800800 17101710
실시예10Example 10 1/101/10 300300 800800 171171
실시예11Example 11 1/1001/100 300300 800800 17.117.1
도 6에 나타낸 바와 같이, 수력학적 입자 직경(Hydrodynamic diameter)은 약 500nm로 측정되었고, 개질비율이 낮아짐에 따라, 크기 편차가 벌어지는 경향을 보였다. As shown in Fig. 6, the hydrodynamic diameter was measured to be about 500 nm, and a tendency was shown that the size variation occurred as the modification ratio was lowered.
[제조예 4] 단백질이 표면 결합된 입자의 제조 [Preparation Example 4] Preparation of surface-bound particles of protein
본 발명의 항원단백질-양친매성 고분자 복합체의 자가 조립 입자와 고분자로 이루어진 나노입자 표면에 항원 단백질이 결합된 형태의 입자의 백신 으로서 효과 차이를 확인하기 위해서, 나노입자 표면에 항원단백질이 결합된 입자를 제조하였다. In order to confirm the difference in effect as a vaccine for particles in which the antigen protein is bound to the surface of the self-assembled particles of the antigenic protein-amphipathic polymer complex of the present invention and the polymer, the surface of the nanoparticles .
항원 단백질 (OVA, HA)을 개질도 1/10 조건으로 개질 시킨 후, 양친매성 고분자 mPEG-b-PLA-NHS(분자량 6kDA)를 이용하여 자가 조립형태로 입자화 시켰다. 그 다음 상기에 EDC/Sulfo-NHS 스톡를 넣고 항원 단백질 OVA (45 kDA)를 첨가하여 자가 조립된 나노입자와 OVA 단백질을 혼합하여 OVA가 표면 결합된 나노입자 (비교예 2)를 제조하였다. 또한, HA 단백질에 대해서도 상기와 동일한 방법으로 실시하여 HA가 표면 결합된 나노입자(비교예 3)를 제조하였다. 사용한 항원 단백질 및 반응물 양은 표 4에서 개질도 1/10인 경우와 동일하게 하여 입자를 제조하였다. The antigen protein (OVA, HA) was modified to 1/10 of the degree of modification and then granulated in the self-assembled form using the amphipathic polymer mPEG-b-PLA-NHS (molecular weight 6 kDa). Then, the EDC / Sulfo-NHS stock was added and antigen protein OVA (45 kDA) was added to prepare OVA-surface-bound nanoparticles (Comparative Example 2) by mixing the self-assembled nanoparticles with the OVA protein. The HA protein was also treated in the same manner as above to prepare HA-surface-bound nanoparticles (Comparative Example 3). The amount of the antigen protein used and the amount of the reactant were prepared in the same manner as in the case of the modification degree 1/10 in Table 4.
[실험예 1] 백신 입자에 의한 항체 형성 정도 확인 [Experimental Example 1] Determination of the degree of antibody formation by vaccine particles
제조예 2의 방법에 따라 제조된 면역유도 입자(ProteSome)를 이용하여, 항체 형성 효과를 하기와 같이 확인하였다. Using the immunosuppressive particles (ProteSome) prepared according to the method of Preparation Example 2, the antibody formation effect was confirmed as follows.
실험은 OVA만 처리한 군(양성대조군), 본 발명의 면역유도 입자 처리군 (실시예 1, 실시예 2, 실시예 3, 실시예 4) 그리고 아무것도 처리하지 않은 군 (음성대조군)으로 나누어 진행하였고, 면역유도 입자 처리군은 헥사메틸렌디아민에 의한 항원단백질의 개질도를 실시예 1의 개질도 1에서 시작해서, 1/2씩 줄여서 제조된 면역유도 입자를 각각 처리하였다. The experiment was divided into the group treated with OVA only (positive control group), the group treated with the immunity inducing particles of the present invention (Examples 1, 2, 3 and 4) and the group treated with nothing (negative control) . In the immunostimulatory particle treatment group, modification of the antigen protein by hexamethylenediamine was started from the modification 1 of Example 1, and each of the prepared immunostimulatory particles was reduced by 1/2.
면역유도 입자는 BCA 분석을 통해 정량 후 밀도를 컨트롤하여 접종하였는데, 구체적으로 R 2≥0.99로 신뢰도 있는 표준곡선(Standard curve, 도 7a)으로 정량하였고, 1차 접종 및 2차 접종 전에 모두 분석을 진행하여 밀도를 컨트롤 하였다. 다만, 1차 주입의 실시예 2 처리군의 경우, 나노입자의 생산량이 적어 낮은 농도로 1차 접종하였다. 구체적으로 접종된 백신의 함량은 하기 표 5에 나타낸 바와 같다. Immunoreactive particles were inoculated by BCA analysis after the quantitative control. Specifically, they were quantitated by a reliable standard curve (Fig. 7a) with R 2 ≥ 0.99 and analyzed both before and after the first inoculation and the second inoculation To control the density. However, in the case of the first injection group of Example 2, the first dose was carried out at a low concentration because the production amount of the nanoparticles was small. The contents of the specifically inoculated vaccines are shown in Table 5 below.
실험군Experimental group mPEG-b-PLA-NHSmPEG-b-PLA-NHS 1차 접종 (㎍/50㎕)Primary vaccination (/ / 50)) 2차 접종 (㎍/50㎕)Second inoculation (/ / 50))
비교예1Comparative Example 1 Only OVAOnly OVA XX 2222 17.7367217.73672
실시예1Example 1 ProteSome 1 ProteSome 1 200㎍/10㎕200 μg / 10 μl 22.0952122.09521 17.7367217.73672
실시예2Example 2 ProteSome 1/2 ProteSome 1/2 200㎍/10㎕200 μg / 10 μl 9.2324139.232413 17.7367217.73672
실시예3Example 3 ProteSome 1/4 ProteSome 1/4 200㎍/10㎕200 μg / 10 μl 21.7361321.73613 17.7367217.73672
실시예4Example 4 ProteSome 1/8 ProteSome 1/8 200㎍/10㎕200 μg / 10 μl 22.0630622.06306 17.7367217.73672
음성 대조군1 Negative control 1 NegativeNegative XX XX XX
구체적으로, 마우스(n=18, 각 실험군 마다 3마리씩 진행)에 대하여, 백신 접종 전에 채혈(접종 전 채혈)을 진행 한 후, 1차 백신을 접종 하였다. 1차 백신 접종일로부터 14일 째 되는 날 채혈을 진행하고(접종 후 1차 채혈), 2차 백신을 접종하였다. 다시 2차 접종 후 28일 때 되는 날 채혈(접종 후 2차 채혈)을 진행하였다. 상기 접종 후 1차 채혈 및 2차 채혈로 수득한 혈액의 혈청으로 50배, 100배, 200배 및 400배 희석하여 ELISA를 이용한 항체가 분석을 실시하였다. 각 실험군의 처리에 따른 분석결과는 도 8에 나타내었다.  Specifically, for the mice (n = 18, 3 mice for each test group), blood sampling (pre-inoculation blood sampling) was carried out before vaccination and then the first vaccine was inoculated. On the 14th day after the first vaccination day, blood collection was carried out (primary blood collection after inoculation) and the second vaccination was inoculated. On the 28th day after the second inoculation, blood collection (second blood collection after inoculation) was carried out. Antibodies were analyzed by ELISA after dilution by 50, 100, 200 and 400 times with the serum of the blood obtained by the primary blood collection and the secondary blood collection after inoculation. The results of analysis according to the treatment groups are shown in FIG.
도 8에 나타낸 바와 같이, 입자화를 위한 단백질 개질을 1/2배수로 줄였을 경우, 1/8배수까지 IgG가 더 많이 발현됨을 확인하였고, 실시예 4(ProteSome 1/8) 입자의 IgG 값은 OVA 단일 접종에 비해 50X, 100X, 200X, 400X에서 각각 4.9배, 7.6배, 11.9배 18.7배 높게 측정되었다. 따라서, 본 발명의 항원단백질의 개질 정도가 낮아지는 경우, 면역반응 유도 효과가 더 우수해짐을 확인하였다. As shown in FIG. 8, when the protein modification for the granulation was reduced to 1/2, IgG was expressed to 1/8 times larger, and the IgG value of the Example 4 (ProteSome 1/8) And 4.9 times, 7.6 times, and 11.9 times and 18.7 times, respectively, in 50X, 100X, 200X and 400X compared to the single inoculation with OVA. Therefore, it was confirmed that when the degree of modification of the antigen protein of the present invention was lowered, the immune response inducing effect was further improved.
[실험예 2] 백신 입자에 의한 항체 형성 정도 확인 [Experimental Example 2] Confirmation of antibody formation by vaccine particles
제조예 3의 방법에 따라 제조된 면역유도 입자(ProteSome)를 이용하여, 항체 형성 효과를 하기와 같이 확인하였다. Using the immunosorbent particles (ProteSome) prepared according to the method of Preparation Example 3, the antibody formation effect was confirmed as follows.
실험은 OVA 항원 단백질만 처리한 군(비교예 1; OVA), 본 발명의 면역유도 입자 처리군 (실시예 5, 6,7), 표면 결합 나노입자 군(비교예 1, 비교예 2) 그리고 아무것도 처리하지 않은 군(음성대조군2)으로 나누어 진행하였다.Experiments were performed on the OVA antigen protein-treated group (Comparative Example 1; OVA), the immunoinductive particle treated group of the present invention (Examples 5, 6 and 7), the surface-bound nanoparticle group (Comparative Example 1 and Comparative Example 2) (Negative control group 2).
면역유도 입자는 BCA 분석을 통해 정량 후 밀도를 컨트롤하여 접종하였는데, 구체적으로 2≥0.99로 신뢰도 있는 표준곡선(Standard curve, 도 9)으로 정량하였고, 1차 접종 및 2차 접종 전에 모두 분석을 진행하여 밀도를 컨트롤 하였다. 구체적으로 접종된 백신의 함량은 하기 표 6에 나타낸 바와 같다. Immunoreactive particles were inoculated after BCA analysis and after controlling the density. Specifically, they were quantitated with a reliable standard curve (Fig. 9) at 2 ≥ 0.99 and analyzed both before and after the first inoculation and the second inoculation To control the density. The contents of the specifically inoculated vaccines are shown in Table 6 below.
OVAOVA mPEG-b-PLA-NHS(㎍/50㎕)mPEG-b-PLA-NHS (占 퐂 / 50 占 퐇) 1차 접종(㎍/50㎕)Primary vaccination (/ / 50)) 2 차 접종 (㎍/50㎕)Second inoculation (/ / 50))
비교예 1(OVA 단독)Comparative Example 1 (OVA alone) X X 2020 2020
실시예 6Example 6 334334 2020 2020
실시예 7Example 7 334334 2020 2020
실시예 8Example 8 334334 2020 2020
비교예 2(표면 결합입자)Comparative Example 2 (Surface Bonded Particle) 334334 2020 2020
음성 대조군 2Negative control 2 XX XX XX
구체적으로, 마우스(n=30, 각 실험군 마다 5마리씩 진행)에 대하여, 백신 접종 전에 채혈(접종 전 채혈)을 진행 한 후, 1차 백신을 접종 하였다. 1차 백신 접종일로부터 14일 째 되는 날 채혈을 진행하고(접종 후 1차 채혈), 2차 백신을 접종하였다. 다시 2차 접종 후 28일 때 되는 날 채혈(접종 후 2차 채혈)을 진행하였다. Specifically, mice (n = 30, 5 mice per each experimental group) were inoculated with a primary vaccine after blood collection (pre-inoculation) was carried out before vaccination. On the 14th day after the first vaccination day, blood collection was carried out (primary blood collection after inoculation) and the second vaccination was inoculated. On the 28th day after the second inoculation, blood collection (second blood collection after inoculation) was carried out.
상기 접종 후 1차 채혈 및 2차 채혈로 수득한 혈액의 혈청으로 효소면역분석법 (ELISA)을 이용한 항체(IgG) 유도 정도를 흡광세기를 측정하여 확인하였다. 각 실험군의 흡광 세기는 표 7에 나타내었다. 96 웰 플레이트에 오브알부민(OVA) 500ng/well로 코팅하여 이용하였다. 혈청 희석은 100배부터 800배로 4가지로 진행하였고, 각 실시예 별로 도출되는 결과값(N=5)의 평균에서 가장 벗어난 2개의 샘플을 제외하여 (N=3) 최종적으로 도식화하였다. The degree of antibody (IgG) induction by enzyme immunoassay (ELISA) was determined by measuring the absorbance intensity of the serum of the blood obtained by the primary blood collection and the secondary blood collection after inoculation. The absorption intensity of each experimental group is shown in Table 7. Coated with orbumin (OVA) at 500 ng / well in a 96-well plate. Serum dilution was performed in four steps from 100 times to 800 times, and finally the two samples (N = 3) were finally excluded from the average of the results (N = 5) derived from each example.
희석Dilution OVA P(비교예 2)OVA P (Comparative Example 2) OVA 1(실시예 6)OVA 1 (Example 6) OVA 0.1(실시예 7)OVA 0.1 (Example 7) OVA 0.01(실시예 8)OVA 0.01 (Example 8)
1/1001/100 1.1781291.178129 1.9222181.922218 1.4718251.471825 2.7802632.780263
1/2001/200 0.925870.92587 1.8809711.880971 1.6347511.634751 3.1563853.156385
1/4001/400 1.1870061.187006 1.5227821.522782 1.4955591.495559 2.7880812.788081
1/8001/800 1.2734971.273497 1.3810651.381065 1.6059791.605979 2.7650582.765058
본 발명의 실시예 6 내지 8의 자가 조립 항원 입자를 접종하는 경우, 항원 단백질 단일 접종(양성대조군 1)과 항원 표면 결합입자(비교예 1)를 접종한 경우와 비교해서, 보다 높은 항체 생성 효과를 가짐을 확인하였다. 개질 정도에 따라서는 그 정도가 가장 낮은 1/100 에서 분명하게 높은 항체 유도 효과를 보였다. 따라서, 본 발명의 자가조립 항원 입자의 경우 양친매성 입자의 표면에 항원이 결합된 항원 입자 또는 단백질 단독과 비교해서, 높은 항체 유도능을 보였는바, 종래의 백신제제와 비교해서 효과적인 백신 플랫폼으로 이용가능 함을 알 수 있다. In the case of inoculating the self-assembled antigen particles of Examples 6 to 8 of the present invention, a higher antibody production effect was observed compared to the case of inoculation of antigen protein single immunization (positive control 1) and antigen surface binding particles (Comparative Example 1) Respectively. Depending on the degree of modification, the antibody inducing effect was clearly higher at 1/100, which is the lowest level. Therefore, the self-assembled antigen particles of the present invention exhibit high antibody-inducing ability as compared to antigen particles or protein alone bound to the surface of the amphipathic particles, so that they can be used as an effective vaccine platform as compared with conventional vaccine preparations This is possible.
[실험예 3] 백신 입자에 의한 항체 형성 정도 확인 [Experimental Example 3] Confirmation of antibody formation by vaccine particles
제조예 3의 방법에 따라 제조된 HA 단백질을 포함하는 면역유도 입자(ProteSome)를 이용하여, 항체 형성 효과를 하기와 같이 확인하였다. Using the immunogenic particles (ProteSome) containing the HA protein prepared according to the method of Preparation Example 3, the antibody formation effect was confirmed as follows.
본 발명의 면역유도 입자 처리군 (실시예 8, 9, 10), 표면 결합 나노입자 군(비교예 3) 그리고 아무것도 처리하지 않은 군(음성대조군 3)으로 나누어 실험을 진행하였고, 면역 유도만 달리할 뿐, 실험 조건 및 결과를 분석하는 방법은 실험예 2와 동일하게 진행하였다. Experiments were conducted on the immunized particles of the present invention (Examples 8, 9 and 10), the surface-bound nanoparticles (Comparative Example 3) and the non-treated group (negative control 3) However, the method of analyzing the experimental conditions and results was the same as in Experiment 2.
HAHA mPEG-b-PLA-NHS(㎍/50㎕)mPEG-b-PLA-NHS (占 퐂 / 50 占 퐇) 1차 접종 (㎍/50㎕)Primary vaccination (/ / 50)) 2 차 접종 (㎍/50㎕)Second inoculation (/ / 50))
실시예 9Example 9 334334 2020 2020
실시예 10Example 10 334334 2020 2020
실시예 11Example 11 334334 2020 2020
비교예 3(표면 결합입자)Comparative Example 3 (Surface Bonded Particle) 334334 2020 2020
음성 대조군 3Negative control 3 -- -- --
96 웰 플레이트에 헤마글루티닌 (600ng/well)으로 코팅하여 효소면역분석법 (ELISA)을 이용하여 측정하였다. 실시예 별로 도출되는 결과값(N=6)의 평균에서 가장 벗어난 1개의 샘플을 제외하여 (N=5), 최종적으로 도식화 하였다. The cells were coated with hemagglutinin (600 ng / well) in a 96-well plate and assayed by enzyme immunoassay (ELISA). (N = 5) except for one sample which is out of the average of the result value (N = 6) derived for each embodiment, and finally, the result is shown.
N=5N = 5 HA P(비교예 3)HA P (Comparative Example 3) HA 1(실시예 9)HA 1 (Example 9) HA 0.1(실시예 10)HA 0.1 (Example 10) HA 0.01(실시예 11)HA 0.01 (Example 11) NC(음성대조군 3)NC (negative control group 3)
AverageAverage 0.847210.84721 1.287341.28734 2.31742.3174 1.495751.49575 0.07350.0735
STDSTD 0.2241980.224198 0.2917060.291706 0.3319910.331991 0.1287840.128784 0.0034860.003486
도 11에 나타낸 바와 같이, 본 발명에 따른 면역유도 입자의 경우, 모든 실험군에서 나노입자에 표면결합된 나노입자 보다 면역 반응을 유도하는 효과가 높은 것을 확인하였다. 이는 시험예 2의 OVA 단백질과 일치하는 결과를 나타내는 것으로, 본 발명의 면역유도 입자는 우수한 면역반응 유도능을 갖는 백신 제제로서 매우 우수한 효과를 가짐을 알 수 있다. As shown in FIG. 11, in the case of the immunity inducing particle according to the present invention, it was confirmed that the immunoreactivity inducing effect was higher than that of nanoparticles surface-bound to the nanoparticles in all experimental groups. These results are consistent with the OVA protein of Test Example 2. It can be seen that the immunostimulatory particles of the present invention have a very excellent effect as a vaccine preparation having excellent immunoreactivity.

Claims (14)

  1. 항원단백질과 양친매성 고분자의 복합체를 포함하는 면역유도 입자로,An immunity inducing particle comprising a complex of an antigen protein and an amphipathic polymer,
    상기 항원단백질-양친매성 고분자 복합체의 자가 조립에 의하여 형성되며, 입자의 내부로부터 순서대로 소수성 고분자층, 친수성 고분자층 및 항원단백질층의 구조를 갖는 것인, 면역유도 입자. Wherein the antigen-protein-amphipathic polymer composite is formed by self-assembly of the antigen protein-amphipathic polymer complex and has a structure of a hydrophobic polymer layer, a hydrophilic polymer layer and an antigen protein layer in order from the inside of the particle.
  2. 제1항에 있어서,The method according to claim 1,
    상기 항원단백질과 양친매성 고분자의 복합체는 링커를 더 포함하는 것인, 면역유도 입자.Wherein the complex of the antigen protein and the amphipathic polymer further comprises a linker.
  3. 제2항에 있어서,3. The method of claim 2,
    상기 입자는 친수성 고분자층과 항원단백질층 사이에 링커층을 더 포함하는 것인, 면역유도 입자.Wherein the particle further comprises a linker layer between the hydrophilic polymer layer and the antigen protein layer.
  4. 제2항에 있어서, 3. The method of claim 2,
    상기 면역유도 입자는 하기 식 1에서 개질도가 3 미만인 것인, 면역 유도 입자. Wherein the immunity inducing particle has a degree of modification of less than 3 in the following formula (1).
    [식 1][Formula 1]
    개질도 = {링커의 양 (g) x [116.21 (g/mol) / 링커분자의 단위 몰질량 (g/mol)]} / [항원단백질의 양 (g) x A](G) x A of the linker (g / mol) / (unit molar mass of the linker molecule (g / mol)
    (여기서, A는 517.5 kDA/항원단백질 분자량 (kDA) 이다.)(Where A is 517.5 kDA / antigen protein molecular weight (kDa)).
  5. 제1항에 있어서,The method according to claim 1,
    양친매성 고분자는 친수성 고분자 및 소수성 고분자를 포함하는 것인 면역유도 입자. Wherein the amphipathic polymer comprises a hydrophilic polymer and a hydrophobic polymer.
  6. 제1항에 있어서,The method according to claim 1,
    상기 양친매성 고분자는 하기 [식 2]에서 K는 0.1 내지 0.8을 만족하는 것인, 면역유도 입자Wherein the amphipathic polymer satisfies the following inequality (2): K is 0.1 to 0.8,
    [식 2][Formula 2]
    K = 친수성 고분자의 중량/양친매성 고분자 전체의 중량K = weight of hydrophilic polymer / weight of amphipathic polymer
  7. 제1항에 있어서,The method according to claim 1,
    상기 친수성 고분자는 폴리알킬렌글리콜(PAG), 폴리아크릴릭애시드(PAA), 폴리아크릴로니트릴(PAN), 폴리에틸렌옥사이드(PEO), 폴리비닐아세테이트(PVAc), 폴리비닐알코올(PVA), 폴리비닐피롤리돈 및 폴리아크릴아미드로 이루어진 군에서 선택되는 하나 이상인 백신 입자. The hydrophilic polymer may be at least one selected from the group consisting of polyalkylene glycols (PAG), polyacrylic acid (PAA), polyacrylonitrile (PAN), polyethylene oxide (PEO), polyvinyl acetate (PVAc), polyvinyl alcohol And at least one selected from the group consisting of polyvinyl pyrrolidone and polyacrylamide.
  8. 제1항에 있어서,The method according to claim 1,
    상기 소수성 고분자는 폴리에스테르, 폴리언하이드라이드, 폴리오르소에스테르, 폴리포스파진, 폴리루신, 폴리이소루신, 폴리발린, 폴리페닐알라닌, 폴리프롤린, 폴리글리신, 폴리트립토판, 폴리알라닌, 폴리락타이드, 폴리글리콜라이드, 폴리카프로락톤 및 폴리메티오닌으로 이루어진 군으로부터 선택되는 하나 이상인 면역유도 입자. The hydrophobic polymer may be at least one selected from the group consisting of polyesters, polyanhydrides, polyorthoesters, polyphosphazines, polylysines, polyisols, polyvalins, polyphenylalanines, polyprolines, polyglycines, polytryptophanes, polyalanines, polylactides, At least one member selected from the group consisting of polyglycolide, polycaprolactone, and polymethionine.
  9. 제1항에 있어서,The method according to claim 1,
    상기 항원단백질은 인플루엔자 바이러스의 헤마글루티닌(the Hemagglutinin, HA), 뉴라미니다아제(the Neuraminidase, NA), 핵단백질(the Nucleoprotein, NP), M1 단백질, M2 단백질, NS1 단백질, NS2 단백질(NEP 단백질: 핵 방출 단백질(nuclear export protein)), PA 단백질, PB1 단백질(중합효소 염기성 1 단백질, polymerase basic 1 protein), PB1-F2 단백질 및 PB2 단백질;The antigen protein may be selected from the group consisting of influenza virus hemagglutinin (HA), the neuraminidase (NA), the nucleoprotein (NP), M1 protein, M2 protein, NS1 protein, NS2 protein NEP protein: nuclear export protein), PA protein, PB1 protein (polymerase basic 1 protein), PB1-F2 protein and PB2 protein;
    광견병 바이러스의 경우에, 핵단백질(N), 인단백질(P), 기질 단백질(M), 당단백질(G), 및 바이러스 RNA 중합효소(L);In the case of rabies virus, nuclear protein (N), phosphorus protein (P), substrate protein (M), glycoprotein (G), and viral RNA polymerase (L);
    B형 간염 바이러스의 경우에, B형 간염 바이러스 표면 항원(HBsAg), B형 간염 바이러스 코어 항원(HbcAg), B형 간염 바이러스 DNA 중합효소, HBx 단백질, preS2 중간 표면 단백질(the preS2 middle surface protein), 큰 S 단백질(large S protein), 바이러스 단백질 VP1, 바이러스 단백질 VP2, 바이러스 단백질 VP3, 및 바이러스 단백질 VP4;Hepatitis B virus surface antigen (HBsAg), hepatitis B virus core antigen (HbcAg), hepatitis B virus DNA polymerase, HBx protein, preS2 middle surface protein, , Large S protein, viral protein VP1, viral protein VP2, viral protein VP3, and viral protein VP4;
    로 이루어진 군에서 선택된 것인 면역유도 입자. ≪ / RTI >
  10. 친수성 용매 중에 항원단백질을 포함하는 단백질 용액에 소수성 용매 중의 양친매성 고분자를 첨가한 항원단백질-양친매성 고분자 혼합용액을 20 내지 28시간 동안 흔들어 주면서 반응시켜 양친매성 고분자-항원단백질 복합체를 형성하는 것; 및Reacting an antigen protein-amphipathic polymer mixed solution prepared by adding an amphipathic polymer in a hydrophobic solvent to a protein solution containing an antigen protein in a hydrophilic solvent with shaking for 20 to 28 hours to form an amphipathic polymer-antigen protein complex; And
    상기 혼합용액이 항원단백질 포함하는 친수성 용매 중에 소수성 용매가 액적 상태로 존재하는 콜로이드 상일 때 양친매성 고분자-항원단백질 복합체의 자가조립에 의하여 입자화하는 것을 포함하는 면역유도 입자 제조방법. Wherein the mixed solution comprises a hydrophilic solvent containing an antigenic protein and the hydrophobic solvent is a colloidal phase present in a droplet state, the hydrophilic solvent is granulated by self-assembly of the amphipathic polymer-antigen protein complex.
  11. 제10항에 있어서, 11. The method of claim 10,
    상기 단백질 용액은 글리세롤을 더 포함하는 것인, 면역유도 입자 제조방법. Wherein the protein solution further comprises glycerol.
  12. 제1항에 따른 면역유도 입자를 포함하는 백신용 조성물.A vaccine composition comprising an immunostimulatory particle according to claim 1.
  13. 제12항에 있어서, 13. The method of claim 12,
    아쥬반트를 더 포함하는 백신용 조성물.Wherein the composition further comprises an adjuvant.
  14. 제1항에 따른 면역유도 입자를 개체에 투여하는 것을 포함하는 개체에서 면역반응 유도시키는 방법.A method for inducing an immune response in an individual comprising administering to the individual an immunostimulatory particle according to claim 1.
PCT/KR2018/010171 2017-08-31 2018-08-31 Self-assembling particles and method for preparing same WO2019045529A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20170111104 2017-08-31
KR10-2017-0111104 2017-08-31

Publications (1)

Publication Number Publication Date
WO2019045529A1 true WO2019045529A1 (en) 2019-03-07

Family

ID=65527802

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/010171 WO2019045529A1 (en) 2017-08-31 2018-08-31 Self-assembling particles and method for preparing same

Country Status (2)

Country Link
KR (1) KR20190024849A (en)
WO (1) WO2019045529A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113264997A (en) * 2021-04-13 2021-08-17 康汉医药(广州)有限公司 Method for storing protein medicine under normal temperature and high temperature conditions

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR112022008849A2 (en) * 2019-11-07 2022-08-23 Samyang Holdings Corp COMPOSITION TO INDUCE IMMUNITY TO AN ACTIVE INGREDIENT, AND, METHOD FOR PREPARING A COMPOSITION TO INDUCE IMMUNITY TO AN ACTIVE INGREDIENT

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140117249A (en) * 2013-03-22 2014-10-07 부산대학교 산학협력단 A method for preparing protein cage and a method for in-situ preparing core-shell structured polymer-protein particle containing hydrophobic additives

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140117249A (en) * 2013-03-22 2014-10-07 부산대학교 산학협력단 A method for preparing protein cage and a method for in-situ preparing core-shell structured polymer-protein particle containing hydrophobic additives

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
AKAGI, T.: "Preparation of nanoparticles by the self-organization of polymers consisting of hydrophobic and hydrophilic segments: Potential applications", POLYMER, vol. 48, no. 23, 2007, pages 6729 - 6747, XP022313433 *
GU, F.: "Precise engineering of targeted nanoparticles by using self- assembled biointegrated block copolymers", PNAS, vol. 105, no. 7, 2008, pages 2586 - 2591, XP055001320, DOI: doi:10.1073/pnas.0711714105 *
SAPSFORD, K. E.: "Functionalizing Nanoparticles with Biological Molecules: Developing Chemistries that Facilitate Nanotechnology", CHEMICAL REVIEWS, vol. 113, no. 3, 2008, pages 1904 - 2074, XP055280274 *
VALENCIA, P. M.: "Effects of ligands with different water solubilities on self-assembly and properties of targeted nanoparticle s", BIOMATERIALS, 2011, pages 6226 - 6233, XP028097278, DOI: doi:10.1016/j.biomaterials.2011.04.078 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113264997A (en) * 2021-04-13 2021-08-17 康汉医药(广州)有限公司 Method for storing protein medicine under normal temperature and high temperature conditions

Also Published As

Publication number Publication date
KR20190024849A (en) 2019-03-08

Similar Documents

Publication Publication Date Title
Jain et al. PEG–PLA–PEG block copolymeric nanoparticles for oral immunization against hepatitis B
CN1134265C (en) Phosphazene polyelectrolytes as immunoadjuvants
EP0762875B1 (en) Microparticle delivery system
US5417986A (en) Vaccines against diseases caused by enteropathogenic organisms using antigens encapsulated within biodegradable-biocompatible microspheres
EP0245078B1 (en) Enhancement of antigen immunogenicity
US6562352B1 (en) Vaccine compositions for mucosal delivery
Lamalle-Bernard et al. Coadsorption of HIV-1 p24 and gp120 proteins to surfactant-free anionic PLA nanoparticles preserves antigenicity and immunogenicity
US5443832A (en) Hydroxyapatite-antigen conjugates and methods for generating a poly-Ig immune response
JP4743928B2 (en) Formulation
JP2010265330A6 (en) Formulation
WO2010151076A2 (en) Adjuvant composition comprising (poly-gamma-glutamate)-chitosan nanoparticles
JP2002540076A (en) Vaccine composition
US4816253A (en) Novel mutant strain of Listeria monocytogenes and its use in production of IgM antibodies and as an immunotherapeutic agent
JP6228967B2 (en) Antigenic compositions and methods
CN1128953A (en) Hydrogel microencapsulated vaccines
WO2019045529A1 (en) Self-assembling particles and method for preparing same
US4567041A (en) Mutant strain of Listeria monocytogenes and its use in production of IgM antibodies and as an immunotherapeutic agent
HU176180B (en) Process for preparing antigenic compositions
EP2412758B1 (en) Polyion complex comprising hydrophobized polyamino acid and use of the same
AU2001269640B2 (en) Vaccine against the influenza virus and method for producing said virus vaccine
KR101850417B1 (en) Vaccine adjuvant composition based amphiphilic poly-amino acid including squalene
KR102643430B1 (en) Vaccine delivery system using pH-responsive nanocomplex
CN107823185B (en) Oral administration system taking composite nano material as carrier
CN114805602B (en) Polypeptide nanomaterial for binding IgE and preparation method and application thereof
WO2000076476A1 (en) Adjuvant-containing polymerized liposomes for oral, mucosal or intranasal vaccination

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18852419

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18852419

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 18852419

Country of ref document: EP

Kind code of ref document: A1