WO2019045311A1 - Method for improving life of lithium-sulfur secondary battery - Google Patents

Method for improving life of lithium-sulfur secondary battery Download PDF

Info

Publication number
WO2019045311A1
WO2019045311A1 PCT/KR2018/009174 KR2018009174W WO2019045311A1 WO 2019045311 A1 WO2019045311 A1 WO 2019045311A1 KR 2018009174 W KR2018009174 W KR 2018009174W WO 2019045311 A1 WO2019045311 A1 WO 2019045311A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
secondary battery
sulfur secondary
sulfur
charging
Prior art date
Application number
PCT/KR2018/009174
Other languages
French (fr)
Korean (ko)
Inventor
박인태
양두경
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Publication of WO2019045311A1 publication Critical patent/WO2019045311A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0438Processes of manufacture in general by electrochemical processing
    • H01M4/044Activating, forming or electrochemical attack of the supporting material
    • H01M4/0445Forming after manufacture of the electrode, e.g. first charge, cycling
    • H01M4/0447Forming after manufacture of the electrode, e.g. first charge, cycling of complete cells or cells stacks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a lithium-sulfur secondary battery, and more particularly, to a method for improving the service life of a lithium-sulfur secondary battery, which can improve the life characteristics of a secondary battery by inducing a uniform reaction of the lithium- .
  • Lithium-sulfur secondary batteries among secondary batteries whose application fields are expanding to electric vehicles and energy storage devices are attracting attention as a next generation secondary battery technology such that a relatively high energy storage density can be realized.
  • a lithium-sulfur secondary battery means a battery using a sulfur-based material having S-S bond (Sulfur-Sulfur Bond) as a cathode active material and using lithium metal as an anode active material.
  • S-S bond S-S bond
  • the sulfur used as the main material of the cathode active material is very rich in resources, is not toxic, and has a low atomic weight.
  • the lithium-sulfur secondary battery is ionized and oxidized while lithium, which is a negative electrode active material, discharges electrons, and the sulfur-based material, which is a positive electrode active material, receives and reduces the released electrons (lithium- And the reduction reaction of sulfur is a process in which the SS bond is converted into a sulfur anion form by accepting two electrons).
  • lithium- And the reduction reaction of sulfur is a process in which the SS bond is converted into a sulfur anion form by accepting two electrons).
  • the lithium cation generated by the oxidation reaction of lithium is transferred to the anode through the electrolyte, and forms a salt by binding with the sulfur anion generated by the reduction reaction of sulfur.
  • sulfur before the discharge is a cyclic S 8 structure, which is converted to lithium polysulfide by a reduction reaction, and lithium sulfide (Li 2 S) is produced when the lithium polysulfide is completely reduced .
  • the lithium-sulfur (Li-S) secondary battery has many advantages and has attracted much attention.
  • the conventional lithium-sulfur secondary battery has a problem that the capacity retention rate is lowered due to active material loss due to the dissolution of lithium polysulfide (LiPS).
  • the concentration of lithium polysulfide (LiPS) in the electrolyte rapidly increases. At this time, the mobility of the electrolyte decreases and the reactivity of sulfur decreases, The battery exhibits a non-uniform reaction pattern and the degradation of the battery is accelerated.
  • an object of the present invention is to provide a lithium-sulfur secondary battery which is capable of inducing a uniform reaction of a lithium-sulfur secondary battery by introducing a self-activation step of charging the battery to a predetermined region and then giving a rest time And a method for improving the service life of a lithium-sulfur secondary battery, which can be improved.
  • the present invention provides a method of manufacturing a lithium-sulfur secondary battery, which comprises charging the lithium-sulfur secondary battery to reach a region where a long chain lithium polysulfide is formed, And a self-activation step of imparting a rest time to the lithium-sulfur secondary battery.
  • the method for improving the service life of a lithium-sulfur secondary battery by introducing a self-activating step of charging the battery to a predetermined region and then giving a rest time, a uniform reaction of the lithium- And the lifetime characteristics of the secondary battery can be improved.
  • FIG. 1 is a graph comparing lifetime characteristics of a lithium-sulfur secondary battery according to an embodiment of the present invention and a lithium-sulfur secondary battery according to a comparative example.
  • FIGS. 2 and 3 are graphs showing a charge profile of a lithium-sulfur secondary battery according to an embodiment of the present invention.
  • FIG. 4 is a graph showing a charging profile of a lithium-sulfur secondary battery according to a comparative example of the present invention.
  • the method for improving the service life of a lithium-sulfur secondary battery according to the present invention is a method for charging a lithium-sulfur secondary battery so as to reach a region where a long chain lithium polysulfide (LiPS) is formed, And a self-activation step to give a rest time of 10 minutes to 4 hours.
  • LiPS lithium polysulfide
  • the method for improving the lifetime of a lithium-sulfur secondary battery according to the present invention is to apply the same or similar materials to existing materials without additional materials such as a conventional anode, cathode, electrolyte and separator. However, it has a feature of further including a self-activation step during the charging process, and it can be confirmed that the lifetime characteristics of the battery are improved.
  • the lithium polysulfide is a salt formed by combining a lithium cation generated by an oxidation reaction of lithium upon discharge of a lithium-sulfur secondary battery and a sulfone anion generated by a reduction reaction of sulfur
  • the long-chain lithium polysulfide long chain lithium polysulfide (LiPS) refers to a long chain salt formed by the combination of a lithium cation and a sulfur anion.
  • the long-chain lithium polysulfide includes 4 to 8, preferably 4 to 7, more preferably 5 or 6 (in the molecule) sulfur atoms.
  • single-chain lithium polysulfide is defined as containing 1 to 3 sulfur atoms in the molecule.
  • the reason why only the region where the long-chain lithium polysulfide is formed during filling of the lithium-sulfur secondary battery is to be filled is that when the chain length of the lithium polysulfide is short, the solubility in the electrolyte is low, , And even if a resting period is given thereafter, the redox transit action effect of lithium polysulfide may not be realized.
  • the method for improving the service life of a lithium-sulfur secondary battery according to the present invention is characterized in that when a lithium-sulfur secondary battery is charged to a region where long-chain lithium polysulfide is formed and then a rest period is provided, Sulfur secondary battery, thereby making the lithium-sulfur secondary battery perform a uniform reaction upon charging, thereby improving or improving the lifetime characteristics of the battery.
  • the present invention enables a uniform reaction of the lithium-sulfur secondary battery at the time of charging, thereby improving the lifetime characteristics of the battery without adding a redox relay material.
  • the remaining charge can proceed.
  • the rest time is 10 minutes to 4 hours, preferably 30 minutes to 2 hours, more preferably 30 to 60 minutes.
  • the resting period is less than 10 minutes, the long-chain lithium polysulfide does not perform the role of redox relay, and it may be difficult to induce a uniform reaction when the lithium-sulfur secondary battery is charged.
  • the rest period exceeds 4 hours, There is a fear that the lifetime characteristic is not improved due to an excessively long rest period and an increase in self-discharge.
  • the rest period may vary depending on the performance of the lithium-sulfur secondary battery, the charging environment, and the like.
  • the lifetime characteristics of the lithium-sulfur secondary battery according to the present invention are influenced by the charging voltage when the long-chain lithium polysulfide (LiPS) is mainly formed in addition to the appropriate rest period.
  • the charging voltage just before the resting period can be varied depending on the capacity and the charging environment of the lithium-sulfur secondary battery.
  • the lifetime characteristics of the lithium-sulfur secondary battery under the same resting period are as follows: (LiPS) is formed is 2.34 to 2.40 V (volt), and the case where the charging voltage is 2.37 to 2.39 V is better.
  • the long-chain lithium polysulfide when a charging voltage of 2.37 to 2.39 V is formed corresponds to Li 2 S 6 containing six sulfur atoms.
  • the positive electrode of the lithium-sulfur secondary battery used in the present invention includes a positive electrode collector and a positive electrode active layer formed on the positive electrode collector.
  • the cathode current collector may be any material selected from among stainless steel, aluminum, nickel, titanium, sintered carbon and aluminum, and may be formed of carbon , Nickel, titanium or silver can be further performed.
  • the shape of the positive electrode collector may be a film, a sheet, a foil, a net, a porous body, a foam, and a nonwoven fabric. The thickness is not particularly limited, and the mechanical strength, productivity And the capacity of the battery.
  • the method for forming the positive electrode active layer on the current collector may be a known coating method such as a bar coating method, a screen coating method, a doctor blade method, a dipping method, a reverse roll method, a direct roll method, a gravure method, And is not particularly limited.
  • the amount of the positive electrode active layer to be coated on the current collector is not particularly limited, and can be adjusted in consideration of the final thickness of the target positive electrode active layer.
  • a known process required for the production of the positive electrode for example, a rolling process or a drying process, may be performed.
  • the negative electrode constituting the lithium-sulfur secondary battery of the present invention comprises a negative electrode collector and a negative electrode active material layer formed on the negative electrode collector, wherein the negative electrode active material layer includes a negative electrode active material, a binder and a conductive material.
  • the negative electrode active material include a material capable of reversibly intercalating or deintercalating lithium ions (Li +), a material capable of reacting with lithium ions to reversibly form a lithium-containing compound, a lithium metal or a lithium alloy Can be used.
  • the material capable of reversibly intercalating or deintercalating lithium ions is, for example, crystalline carbon, amorphous carbon, or a mixture thereof, and can react reversibly with the lithium ion (Li +) to form a lithium-
  • the lithium alloy is, for example, sodium (Na), potassium (K), rubidium (Rb), cesium (Cs), francium (Fr), beryllium Is an alloy of lithium and a metal such as Be, Mg, Ca, Sr, Ba, Ra, Al or Sn.
  • the binder may include, for example, an acrylic polymer, and the like. Any conventional binder that can be used in the art can be used without limitation.
  • the negative electrode active material conductive material, Without limitation.
  • the electrolyte solution constituting the lithium-sulfur secondary battery of the present invention includes solvents (Solvents) and lithium salts (lithium salts), and may further include additives, if necessary.
  • solvent a conventional non-aqueous solvent serving as a medium through which ions involved in an electrochemical reaction of a battery can move can be used without any particular limitation.
  • the non-aqueous solvent include a carbonate-based solvent, an ester-based solvent, an ether-based solvent, a ketone-based solvent, an alcohol-based solvent and an amphoteric solvent.
  • examples of the carbonate solvent include dimethyl carbonate (DMC), diethyl carbonate (DEC), dipropyl carbonate (DPC), methyl propyl carbonate (MPC), ethyl propyl carbonate (EPC), methyl ethyl carbonate ), Ethylene carbonate (EC), propylene carbonate (PC), and butylene carbonate (BC).
  • examples of the ester solvent include methyl acetate, ethyl acetate, n-propyl acetate, Propanolate, propionate, ethyl propionate,? -Butyrolactone, decanolide, valerolactone, mevalonolactone, and carprolactone.
  • the ether solvents include di Ethyl ether, dipropyl ether, dibutyl ether, dimethoxymethane, trimethoxymethane, dimethoxyethane, diethoxyethane, diglyme, triglyme, tetraglyme, tetra 2-methyltetrahydrofuran, and polyethylene glycol dimethyl ether.
  • the ketone-based solvent include cyclohexanone
  • the alcohol-based solvent includes ethyl alcohol and isopropyl alcohol.
  • non-protonic solvent examples include nitriles such as acetonitrile, amides such as dimethylformamide Dioxolanes such as Dole, 1,3-dioxolane (DOL), and sulfolane.
  • the nonaqueous solvent may be used singly or in combination of two or more. When two or more of them are mixed, the mixing ratio may be appropriately adjusted according to the performance of the objective battery, and 1,3-dioxolane and dimethoxyethane In a volume ratio of 1: 1.
  • the separation membrane constituting the lithium-sulfur secondary battery of the present invention has a function of physically separating the electrodes and can be used without any particular limitation. However, it is also possible to separate or insulate the positive electrode from the negative electrode, It is preferable that it is made of a porous, non-conductive or insulating material which enables transport of ions and has a porosity of 30 to 50%.
  • the separation membrane examples include a porous polymer film made of a polyolefin-based polymer such as an ethylene polymer, a propylene polymer, an ethylene / butene copolymer, an ethylene / hexene copolymer and an ethylene / methacrylate copolymer, And the like, and the use of the porous polymer film is more preferable.
  • a porous polymer film made of a polyolefin-based polymer such as an ethylene polymer, a propylene polymer, an ethylene / butene copolymer, an ethylene / hexene copolymer and an ethylene / methacrylate copolymer, And the like, and the use of the porous polymer film is more preferable.
  • the general configuration of a lithium-sulfur secondary battery which is not described, can be generally applied to the configuration of a lithium-sulfur secondary battery.
  • lithium-sulfur secondary batteries using an electrolyte including a lithium salt (1.0 M LiTFSI (lithium bis (trifluoromethanesulfonyl) imide) + 1 wt% LiNO 3 ) and a solvent (DOL / DME in a volume ratio of 1: 1)
  • a lithium salt 1.0 M LiTFSI (lithium bis (trifluoromethanesulfonyl) imide) + 1 wt% LiNO 3
  • DOL / DME in a volume ratio of 1: 1: 1
  • the battery was charged to a current of 2.40 V at a current rate of 0.2 and then had a rest time of stopping charging for 1 hour. After the rest period was completed, the recharging was continued to complete the charging of the lithium-sulfur secondary battery.
  • the charging of the lithium-sulfur secondary battery was completed in the same manner as in Example 1, except that the lithium-sulfur secondary battery was charged to 2.38 V and then a rest period was set according to Table 1 below.
  • the charging of the lithium-sulfur secondary battery was completed in the same manner as in Example 1, except that the lithium-sulfur secondary battery was filled up to 2.36 V according to the following Table 1, and then the battery had a rest period.
  • the charging of the lithium-sulfur secondary battery was completed in the same manner as in Example 1, except that the lithium-sulfur secondary battery was charged to 2.34 V, and then the lithium-sulfur secondary battery was allowed to have a rest period.
  • Example 1 The procedure of Example 1 was repeated, except that the lithium-sulfur secondary battery was charged to 2.38 V and then allowed to have a rest period and the rest period was changed from 1 hour to 30 minutes in accordance with the following Table 1 to obtain lithium-sulfur The charging of the secondary battery was completed.
  • Example 1 The procedure of Example 1 was repeated, except that the lithium-sulfur secondary battery was charged to 2.38 V, followed by a rest period, and the rest period was changed from 1 hour to 10 minutes. The charging of the secondary battery was completed.
  • Example 1 The procedure of Example 1 was repeated, except that the lithium-sulfur secondary battery was charged to 2.38 V and then allowed to have a rest period and the rest period was changed from 1 hour to 2 hours in accordance with the following Table 1 to obtain lithium-sulfur The charging of the secondary battery was completed.
  • Example 1 The procedure of Example 1 was repeated, except that the lithium-sulfur secondary battery was charged to 2.38 V, followed by a rest period, and the rest period was changed from 1 hour to 4 hours. The charging of the secondary battery was completed.
  • Example 1 2.40 1 h
  • Example 2 2.38 1 h
  • Example 3 2.36 1 h
  • Example 4 2.34 1 h
  • Example 5 2.38 30 min
  • Example 6 2.38 10 min
  • Example 7 2.38 2 h
  • Example 8 2.38 4 h Comparative Example 1 - -
  • FIG. 1 is a graph comparing life characteristics of a lithium-sulfur secondary battery according to an embodiment of the present invention and the life characteristics of a lithium-sulfur secondary battery according to a comparative example.
  • FIGS. 2 and 3 are cross- - A graph showing a charging profile of a sulfur secondary battery, wherein FIGS. 2A to D correspond to the first to fourth embodiments, and FIGS. 3A to D correspond to the fifth to eighth embodiments, respectively.
  • 4 is a graph showing a charge profile of a lithium-sulfur secondary battery according to a comparative example of the present invention.
  • the lithium-sulfur secondary battery of Comparative Example 1 which was buffered (i.e., continuously charged) in a single cycle without a rest period had a battery deterioration at about 15 cycles (cycles) as shown in Figs. 1A and 1B It was confirmed that the phenomenon occurred. On the other hand, it was found that the lithium-sulfur secondary batteries of Examples 1 to 8 having a rest period during charging exhibited excellent life characteristics as compared with Comparative Example 1.
  • FIGS. 1A and 1B among the Examples 1 to 8 having a rest period during charging, different life characteristics results were shown depending on the voltage or the resting time.
  • the embodiments 1 to 4 it is possible to confirm the optimum voltage immediately before the rest period (2.38 V corresponding to the embodiment 2) (see FIG. 1 A), and in the embodiments 2 and 5-8, It can be seen that not only the confirmation of the resting time (30 minutes corresponding to the example 5) but also the effect of the life characteristic is reduced as the resting period becomes longer (refer to FIG. 1B).

Abstract

Disclosed is a method for improving the life of a lithium-sulfur secondary battery capable of improving the life properties of the secondary battery by inducing uniform reaction of the lithium-sulfur secondary battery. The method for improving the life of the lithium-sulfur secondary battery includes a self-activation step of charging to reach a zone in which a long-chain lithium polysulfide is formed in the process of charging the lithium-sulfur secondary battery, and then allowing ten minutes to four hours of rest time.

Description

리튬-황 이차전지의 수명 개선방법How to improve the life of lithium-sulfur secondary battery
본 출원은 2017년 09월 01일자 한국 특허 출원 제10-2017-0111825호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.This application claims the benefit of priority based on Korean Patent Application No. 10-2017-0111825, filed on Sep. 1, 2017, the entire contents of which are incorporated herein by reference.
본 발명은 리튬-황 이차전지에 관한 것으로서, 더욱 상세하게는, 리튬-황 이차전지의 균일한 반응을 유도하여 이차전지의 수명특성을 개선시킬 수 있는, 리튬-황 이차전지의 수명 개선방법에 관한 것이다.The present invention relates to a lithium-sulfur secondary battery, and more particularly, to a method for improving the service life of a lithium-sulfur secondary battery, which can improve the life characteristics of a secondary battery by inducing a uniform reaction of the lithium- .
응용 분야가 전기 자동차나 에너지 저장 장치 등으로 확대되고 있는 이차전지 중 리튬-황 이차전지는, 상대적으로 높은 에너지 저장 밀도의 구현이 가능한 점 등 차세대 이차전지 기술로 각광을 받고 있다. 이와 같은 리튬-황 이차전지는 S-S 결합(Sulfur-Sulfur Bond)을 가지는 황 계열의 물질을 양극 활물질로 사용하고, 리튬 금속을 음극 활물질로 사용한 전지를 의미한다. 특히, 양극 활물질의 주재료로 사용되는 황의 경우, 자원이 매우 풍부하고, 독성이 없으며, 또한 낮은 원자당 무게를 가지고 있는 장점이 있다.Lithium-sulfur secondary batteries among secondary batteries whose application fields are expanding to electric vehicles and energy storage devices are attracting attention as a next generation secondary battery technology such that a relatively high energy storage density can be realized. Such a lithium-sulfur secondary battery means a battery using a sulfur-based material having S-S bond (Sulfur-Sulfur Bond) as a cathode active material and using lithium metal as an anode active material. In particular, the sulfur used as the main material of the cathode active material is very rich in resources, is not toxic, and has a low atomic weight.
리튬-황 이차전지는, 방전 시 음극 활물질인 리튬이 전자를 방출하면서 이온화되어 산화되며, 양극 활물질인 황 계열 물질은 상기의 방출된 전자를 수용하여 환원된다(리튬의 산화반응은 리튬 금속이 전자를 내어놓고 리튬 양이온 형태로 변환되는 과정이며, 황의 환원반응은 S-S 결합이 2개의 전자를 받아들여 황 음이온 형태로 변환되는 과정이다). 이때, 리튬의 산화반응에 의해 생성된 리튬 양이온은 전해질을 통해 양극으로 전달되고, 황의 환원반응에 의해 생성된 황 음이온과 결합하여 염을 형성하게 된다. 보다 구체적으로, 방전되기 이전의 황은 환형의 S8 구조로서, 환원반응에 의해 리튬 폴리설파이드(Lithium polysulfide)로 변환되며, 리튬 폴리설파이드가 완전히 환원되는 경우에는 리튬 설파이드(Li2S)가 생성된다.The lithium-sulfur secondary battery is ionized and oxidized while lithium, which is a negative electrode active material, discharges electrons, and the sulfur-based material, which is a positive electrode active material, receives and reduces the released electrons (lithium- And the reduction reaction of sulfur is a process in which the SS bond is converted into a sulfur anion form by accepting two electrons). At this time, the lithium cation generated by the oxidation reaction of lithium is transferred to the anode through the electrolyte, and forms a salt by binding with the sulfur anion generated by the reduction reaction of sulfur. More specifically, sulfur before the discharge is a cyclic S 8 structure, which is converted to lithium polysulfide by a reduction reaction, and lithium sulfide (Li 2 S) is produced when the lithium polysulfide is completely reduced .
앞서 살펴본 바와 같이, 리튬-황(Li-S) 이차전지는 다양한 장점을 보유하고 있어 많은 각광을 받고 있다. 하지만, 종래의 리튬-황 이차전지는 리튬 폴리설파이드(Lithium polysulfide; LiPS) 용출에 따른 활물질 손실(loss)로 인하여 용량 유지율(Capacity retention rate)이 낮아지는 문제가 있다. 또한, 고에너지 밀도를 가지는 리튬-황 이차전지에서는 전해액 내 리튬 폴리설파이드(LiPS)의 농도가 급격히 높아지는데, 이때 전해액의 이동도가 감소하여 황(sulfur)의 반응성이 감소하게 되고, 이로 인해, 전지가 불균일한 반응 양상을 보이며 전지의 퇴화가 가속화되는 문제점도 있다.As described above, the lithium-sulfur (Li-S) secondary battery has many advantages and has attracted much attention. However, the conventional lithium-sulfur secondary battery has a problem that the capacity retention rate is lowered due to active material loss due to the dissolution of lithium polysulfide (LiPS). In addition, in a lithium-sulfur secondary battery having a high energy density, the concentration of lithium polysulfide (LiPS) in the electrolyte rapidly increases. At this time, the mobility of the electrolyte decreases and the reactivity of sulfur decreases, The battery exhibits a non-uniform reaction pattern and the degradation of the battery is accelerated.
이와 관련하여, 리튬-황 이차전지의 균일한 반응을 유도하기 위한 방안으로서, 황 양극 구조를 설계하거나, 산화환원 중계물질(redox mediator)을 양극 첨가제로 적용하는 시도가 이루어지고 있다. 하지만 이 경우에는, 황 양극 첨가제 분산 공정이 복잡할 뿐만 아니라, 산화환원 중계물질의 합성이 어렵다는 단점이 있다. 리튬-황 이차전지의 균일한 반응을 유도하기 위한 보다 효과적인 방법으로서, 방전 속도(rate)를 조절하거나, 첨가제를 이용한 전해액 조성 변화를 통해, 황 양극 반응성을 개선하려는 시도가 진행되고 있으나, 이 또한 현재까지는 큰 효과를 나타내지 못하고 있는 실정이다.In this connection, attempts have been made to design a sulfur anode structure or to apply a redox mediator as a cathode additive as a means for inducing a uniform reaction of a lithium-sulfur secondary battery. In this case, however, the process of dispersing the sulfur anode additive is complicated and it is difficult to synthesize the redox relay material. As a more effective method for inducing a uniform reaction of the lithium-sulfur secondary battery, attempts have been made to improve the sulfur anion reactivity through controlling the discharge rate or changing the electrolyte composition using an additive, So far it has not shown a great effect.
따라서, 본 발명의 목적은, 일정 영역까지 충전한 후 휴지기(rest time, 休止期)를 부여하는 자기 활성화 단계를 도입함으로써, 리튬-황 이차전지의 균일한 반응을 유도하여 이차전지의 수명특성을 개선시킬 수 있는, 리튬-황 이차전지의 수명 개선방법을 제공하는 것이다.Accordingly, an object of the present invention is to provide a lithium-sulfur secondary battery which is capable of inducing a uniform reaction of a lithium-sulfur secondary battery by introducing a self-activation step of charging the battery to a predetermined region and then giving a rest time And a method for improving the service life of a lithium-sulfur secondary battery, which can be improved.
상기 목적을 달성하기 위하여, 본 발명은, 리튬-황 이차전지의 충전 과정에 있어서, 장 사슬 리튬 폴리설파이드(long chain lithium polysulfide)가 형성되는 영역에 도달하도록 충전한 후, 10 분 내지 4 시간의 휴지기(rest time)를 부여하는 자기 활성화 단계(Self-activation step)를 포함하는 리튬-황 이차전지의 수명 개선방법을 제공한다.In order to accomplish the above object, the present invention provides a method of manufacturing a lithium-sulfur secondary battery, which comprises charging the lithium-sulfur secondary battery to reach a region where a long chain lithium polysulfide is formed, And a self-activation step of imparting a rest time to the lithium-sulfur secondary battery.
본 발명에 따른 리튬-황 이차전지의 수명 개선방법에 의하면, 일정 영역까지 충전한 후 휴지기(rest time, 休止期)를 부여하는 자기 활성화 단계를 도입함으로써, 리튬-황 이차전지의 균일한 반응을 유도하여 이차전지의 수명특성을 개선시킬 수 있다.According to the method for improving the service life of a lithium-sulfur secondary battery according to the present invention, by introducing a self-activating step of charging the battery to a predetermined region and then giving a rest time, a uniform reaction of the lithium- And the lifetime characteristics of the secondary battery can be improved.
도 1은 본 발명의 일 실시예에 따른 리튬-황 이차전지와 비교예에 따른 리튬-황 이차전지의 수명 특성을 비교 대조한 그래프이다.1 is a graph comparing lifetime characteristics of a lithium-sulfur secondary battery according to an embodiment of the present invention and a lithium-sulfur secondary battery according to a comparative example.
도 2 및 3은 본 발명의 일 실시예에 따른 리튬-황 이차전지의 충전 프로파일을 나타낸 그래프이다.2 and 3 are graphs showing a charge profile of a lithium-sulfur secondary battery according to an embodiment of the present invention.
도 4는 본 발명의 비교예에 따른 리튬-황 이차전지의 충전 프로파일을 나타낸 그래프이다.4 is a graph showing a charging profile of a lithium-sulfur secondary battery according to a comparative example of the present invention.
이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.
본 발명에 따른 리튬-황 이차전지의 수명 개선방법은, 리튬-황 이차전지의 충전 과정에 있어서, 장 사슬 리튬 폴리설파이드(long chain lithium polysulfide, LiPS)가 형성되는 영역에 도달하도록 충전한 후, 10 분 내지 4 시간의 휴지기(rest time, 休止期)를 부여하는 자기 활성화 단계(Self-activation step)를 포함한다.The method for improving the service life of a lithium-sulfur secondary battery according to the present invention is a method for charging a lithium-sulfur secondary battery so as to reach a region where a long chain lithium polysulfide (LiPS) is formed, And a self-activation step to give a rest time of 10 minutes to 4 hours.
본 발명에 따른 리튬-황 이차전지의 수명 개선방법은, 통상의 양극, 음극, 전해액 및 분리막 등, 추가 소재 없이 기존의 소재를 동일 또는 유사하게 적용하는 것이다. 다만, 충전 과정 중 자기 활성화 단계(Self-activation step)를 추가로 포함하는 특징을 가지고 있으며, 이를 통하여 전지의 수명 특성이 개선되는 효과를 확인할 수 있다.The method for improving the lifetime of a lithium-sulfur secondary battery according to the present invention is to apply the same or similar materials to existing materials without additional materials such as a conventional anode, cathode, electrolyte and separator. However, it has a feature of further including a self-activation step during the charging process, and it can be confirmed that the lifetime characteristics of the battery are improved.
상기 리튬 폴리설파이드는, 리튬-황 이차전지의 방전 시 리튬의 산화반응에 의해 생성되는 리튬 양이온과, 황의 환원반응에 의해 생성되는 황 음이온이 결합하여 형성되는 염으로서, 상기 장 사슬 리튬 폴리설파이드(long chain lithium polysulfide, LiPS)란, 리튬 양이온과 황 음이온의 결합에 의해 형성되는 긴 사슬 형태의 염을 의미한다. 이때, 상기 장 사슬 리튬 폴리설파이드는 (분자 내에) 황 원자를 4 내지 8 개, 바람직하게는 4 내지 7 개, 더욱 바람직하게는 5 또는 6 개 포함한다. 상기 장 사슬 리튬 폴리설파이드 분자 내 황 원자의 개수가 상기 범위를 벗어날 경우에는, 자기 활성화 단계를 수행하더라도 수명 특성의 개선이 용이하지 않을 우려가 있다. 한편, 단 사슬 리튬 폴리설파이드는 분자 내에 황 원자를 1 내지 3 개 포함하는 것으로 정의한다.The lithium polysulfide is a salt formed by combining a lithium cation generated by an oxidation reaction of lithium upon discharge of a lithium-sulfur secondary battery and a sulfone anion generated by a reduction reaction of sulfur, and the long-chain lithium polysulfide long chain lithium polysulfide (LiPS) refers to a long chain salt formed by the combination of a lithium cation and a sulfur anion. At this time, the long-chain lithium polysulfide includes 4 to 8, preferably 4 to 7, more preferably 5 or 6 (in the molecule) sulfur atoms. When the number of sulfur atoms in the long-chain lithium polysulfide molecule is out of the above range, it may be difficult to improve the lifetime characteristics even when the self-activation step is performed. On the other hand, single-chain lithium polysulfide is defined as containing 1 to 3 sulfur atoms in the molecule.
상술한 바와 같이, 리튬-황 이차전지의 충전 중 장 사슬 리튬 폴리설파이드가 형성되는 영역까지만 충전하여야 하는 이유는, 리튬 폴리설파이드의 사슬 길이가 짧을 경우, 전해액 내 용해도가 낮아져 안정화 효과를 내기 어려운 문제가 발생하여, 이후 휴지기를 부여하더라도 리튬 폴리설파이드의 산화환원 중계 작용 효과가 구현되지 않을 수 있기 때문이다.As described above, the reason why only the region where the long-chain lithium polysulfide is formed during filling of the lithium-sulfur secondary battery is to be filled is that when the chain length of the lithium polysulfide is short, the solubility in the electrolyte is low, , And even if a resting period is given thereafter, the redox transit action effect of lithium polysulfide may not be realized.
즉, 본 발명에 따른 리튬-황 이차전지의 수명 개선방법은, 리튬-황 이차전지를 장 사슬 리튬 폴리설파이드가 형성되는 영역까지 충전한 후 휴지기를 부여하면, 장 사슬 리튬 폴리설파이드가 산화환원 중계 역할을 하게 되고, 이에 의해 리튬-황 이차전지가 충전 시 균일한 반응을 함으로써 전지의 수명 특성이 향상 또는 개선되도록 한 원리를 이용한 것이다. 이를 다시 말하면, 본 발명은 충전 시 리튬-황 이차전지의 균일한 반응이 가능하여, 별도의 산화환원 중계 물질을 첨가하지 않고도 전지의 수명 특성을 개선시킬 수 있는 것이다. 아울러, 상기 휴지기가 종료된 후에는 잔여 충전을 진행할 수 있다.That is, the method for improving the service life of a lithium-sulfur secondary battery according to the present invention is characterized in that when a lithium-sulfur secondary battery is charged to a region where long-chain lithium polysulfide is formed and then a rest period is provided, Sulfur secondary battery, thereby making the lithium-sulfur secondary battery perform a uniform reaction upon charging, thereby improving or improving the lifetime characteristics of the battery. In other words, the present invention enables a uniform reaction of the lithium-sulfur secondary battery at the time of charging, thereby improving the lifetime characteristics of the battery without adding a redox relay material. In addition, after the idle period ends, the remaining charge can proceed.
상기 휴지기(rest time, 休止期)는 10 분 내지 4 시간, 바람직하게는 30 분 내지 2 시간, 더욱 바람직하게는 30 내지 60 분이다. 상기 휴지기가 10 분 미만이면 장 사슬 리튬 폴리설파이드가 산화환원 중계 역할을 수행하지 못하여 리튬-황 이차전지가 충전 시 균일한 반응을 유도하기 어려울 수 있고, 상기 휴지기가 4 시간을 초과하는 경우에는, 휴지기가 과도하게 길어져 자가 방전 증가로 인해, 수명 특성의 개선 효과가 없어질 우려가 있다. 다만, 상기 휴지기는 목적으로 하는 리튬-황 이차전지의 성능이나 충전 환경 등에 따라 가변될 수 있다.The rest time is 10 minutes to 4 hours, preferably 30 minutes to 2 hours, more preferably 30 to 60 minutes. When the resting period is less than 10 minutes, the long-chain lithium polysulfide does not perform the role of redox relay, and it may be difficult to induce a uniform reaction when the lithium-sulfur secondary battery is charged. If the rest period exceeds 4 hours, There is a fear that the lifetime characteristic is not improved due to an excessively long rest period and an increase in self-discharge. However, the rest period may vary depending on the performance of the lithium-sulfur secondary battery, the charging environment, and the like.
그밖에, 본 발명에 따른 리튬-황 이차전지의 수명 특성은, 적정 휴지기 이외에, 장 사슬 리튬 폴리설파이드(LiPS)가 중점적으로 형성될 때의 충전 전압에 의해서도 영향을 받는다. 이와 같은 휴지기 직전의 충전 전압은 리튬-황 이차전지의 용량 및 충전 환경 등에 의해 상이해질 수 있는 것으로서, 예를 들어, 동일 휴지기 하에서의 리튬-황 이차전지의 수명 특성은, 전지의 장 사슬 리튬 폴리설파이드(LiPS)가 형성될 때의 충전 전압이 2.34 내지 2.40 V(볼트)일 때 우수하며, 2.37 내지 2.39 V인 경우가 보다 우수하다. 여기서, 2.37 내지 2.39 V의 충전 전압이 형성될 때의 장 사슬 리튬 폴리설파이드는, 황 원자 6개를 포함하는 Li2S6에 해당한다.In addition, the lifetime characteristics of the lithium-sulfur secondary battery according to the present invention are influenced by the charging voltage when the long-chain lithium polysulfide (LiPS) is mainly formed in addition to the appropriate rest period. The charging voltage just before the resting period can be varied depending on the capacity and the charging environment of the lithium-sulfur secondary battery. For example, the lifetime characteristics of the lithium-sulfur secondary battery under the same resting period are as follows: (LiPS) is formed is 2.34 to 2.40 V (volt), and the case where the charging voltage is 2.37 to 2.39 V is better. Here, the long-chain lithium polysulfide when a charging voltage of 2.37 to 2.39 V is formed corresponds to Li 2 S 6 containing six sulfur atoms.
한편, 본 발명에 사용되는 리튬-황 이차전지의 양극은 양극 집전체 및 상기 양극 집전체 상에 형성된 양극 활성층을 포함한다. 상기 양극 집전체로는 통상적으로 사용되는 것이라면 특별히 한정되지 않으나, 스테인레스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소 및 알루미늄 중 선택되는 어느 하나 이상의 소재일 수 있고, 필요에 따라, 상기 소재의 표면에 카본, 니켈, 티탄 또는 은 등의 처리를 추가로 수행할 수 있다. 또한, 상기 양극 집전체의 형태는 필름, 시트, 호일(foil), 네트(net), 다공질체, 발포체 및 부직포체 등이 될 수 있으며, 그 두께는 특별히 한정되지 않고, 양극의 기계적 강도, 생산성 및 전지의 용량 등을 고려하여 적절한 범위로 설정할 수 있다.Meanwhile, the positive electrode of the lithium-sulfur secondary battery used in the present invention includes a positive electrode collector and a positive electrode active layer formed on the positive electrode collector. The cathode current collector may be any material selected from among stainless steel, aluminum, nickel, titanium, sintered carbon and aluminum, and may be formed of carbon , Nickel, titanium or silver can be further performed. The shape of the positive electrode collector may be a film, a sheet, a foil, a net, a porous body, a foam, and a nonwoven fabric. The thickness is not particularly limited, and the mechanical strength, productivity And the capacity of the battery.
상기 집전체 상에 양극 활성층을 형성하는 방법은, 바 코팅법, 스크린 코팅법, 닥터 블레이드법, 딥법, 리버스 롤법, 다이렉트 롤법, 그라비어법 또는 압출법 등의 공지된 도포 방법에 의할 수 있으며, 특별히 한정되는 것은 아니다. 상기 집전체 상에 양극 활성층이 도포되는 양 또한 특별히 한정되지 않으며, 목적으로 하는 양극 활성층의 최종 두께를 고려하여 조절할 수 있다. 또한, 상기 양극 활성층의 형성 공정 이전 또는 이후에는, 양극의 제조를 위해 요구되는 공지 공정, 예를 들면, 압연이나 건조 공정 등이 수행될 수 있다.The method for forming the positive electrode active layer on the current collector may be a known coating method such as a bar coating method, a screen coating method, a doctor blade method, a dipping method, a reverse roll method, a direct roll method, a gravure method, And is not particularly limited. The amount of the positive electrode active layer to be coated on the current collector is not particularly limited, and can be adjusted in consideration of the final thickness of the target positive electrode active layer. Before or after the step of forming the positive electrode active layer, a known process required for the production of the positive electrode, for example, a rolling process or a drying process, may be performed.
본 발명의 리튬-황 이차전지를 구성하는 음극은, 음극 집전체 및 음극 집전체 상에 형성된 음극 활물질층을 포함하며, 상기 음극 활물질층은 음극 활물질, 바인더 및 도전재를 포함한다. 상기 음극 활물질로는 리튬 이온(Li+)을 가역적으로 흡장(Intercalation) 또는 방출(Deintercalation)시킬 수 있는 물질, 리튬 이온과 반응하여 가역적으로 리튬 함유 화합물을 형성할 수 있는 물질, 리튬 금속 또는 리튬 합금을 사용할 수 있다.The negative electrode constituting the lithium-sulfur secondary battery of the present invention comprises a negative electrode collector and a negative electrode active material layer formed on the negative electrode collector, wherein the negative electrode active material layer includes a negative electrode active material, a binder and a conductive material. Examples of the negative electrode active material include a material capable of reversibly intercalating or deintercalating lithium ions (Li +), a material capable of reacting with lithium ions to reversibly form a lithium-containing compound, a lithium metal or a lithium alloy Can be used.
상기 리튬 이온(Li+)을 가역적으로 흡장 또는 방출할 수 있는 물질은, 예를 들어 결정질 탄소, 비정질 탄소 또는 이들의 혼합물이고, 상기 리튬 이온(Li+)과 반응하여 가역적으로 리튬 함유 화합물을 형성할 수 있는 물질은, 예를 들어 산화주석, 티타늄나이트레이트 또는 실리콘이며, 상기 리튬 합금은 예를 들어 나트륨(Na), 칼륨(K), 루비듐(Rb), 세슘(Cs), 프랑슘(Fr), 베릴륨(Be), 마그네슘(Mg), 칼슘(Ca), 스트론튬(Sr), 바륨(Ba), 라듐(Ra), 알루미늄(Al) 또는 주석(Sn) 등의 금속과 리튬(Li)의 합금이다.The material capable of reversibly intercalating or deintercalating lithium ions (Li +) is, for example, crystalline carbon, amorphous carbon, or a mixture thereof, and can react reversibly with the lithium ion (Li +) to form a lithium- The lithium alloy is, for example, sodium (Na), potassium (K), rubidium (Rb), cesium (Cs), francium (Fr), beryllium Is an alloy of lithium and a metal such as Be, Mg, Ca, Sr, Ba, Ra, Al or Sn.
또한, 상기 바인더는 예를 들어 아크릴계 고분자 등을 포함할 수 있는 등, 해당 기술 분야에서 바인더로 사용될 수 있는 통상의 것을 제한 없이 사용할 수 있으며, 그밖에, 상기 음극 활물질, 도전재 및 집전체 또한 통상의 것을 특별한 제한 없이 사용할 수 있다.The binder may include, for example, an acrylic polymer, and the like. Any conventional binder that can be used in the art can be used without limitation. In addition, the negative electrode active material, conductive material, Without limitation.
본 발명의 리튬-황 이차전지를 구성하는 전해액에는 용매(Solvents) 및 리튬염(Lithium Salt)을 포함하며, 필요에 따라, 첨가제(Additives)를 더 포함할 수 있다. 상기 용매로는 전지의 전기화학적 반응에 관여하는 이온들이 이동할 수 있는 매질 역할을 하는 통상의 비수성 용매를 특별한 제한 없이 사용할 수 있다. 상기 비수성 용매의 예로는, 카보네이트계 용매, 에스테르계 용매, 에테르계 용매, 케톤계 용매, 알코올계 용매 및 비양자성 용매 등을 들 수 있다.The electrolyte solution constituting the lithium-sulfur secondary battery of the present invention includes solvents (Solvents) and lithium salts (lithium salts), and may further include additives, if necessary. As the solvent, a conventional non-aqueous solvent serving as a medium through which ions involved in an electrochemical reaction of a battery can move can be used without any particular limitation. Examples of the non-aqueous solvent include a carbonate-based solvent, an ester-based solvent, an ether-based solvent, a ketone-based solvent, an alcohol-based solvent and an amphoteric solvent.
보다 구체적인 예를 들면, 상기 카보네이트계 용매로서 디메틸카보네이트(DMC), 디에틸카보네이트(DEC), 디프로필카보네이트(DPC), 메틸프로필카보네이트(MPC), 에틸프로필카보네이트(EPC), 메틸에틸카보네이트(MEC), 에틸렌카보네이트(EC), 프로필렌카보네이트(PC) 및 부틸렌 카보네이트(BC) 등이 있고, 상기 에스테르계 용매로는 메틸 아세테이트, 에틸 아세테이트, n-프로필 아세테이트, 1,1-디메틸에틸 아세테이트, 메틸프로피오네이트, 에틸프로피오네이트, γ-부티로락톤, 데카놀라이드(decanolide), 발레로락톤, 메발로노락톤(mevalonolactone) 및 카프로락톤(carprolactone) 등이 있으며, 상기 에테르계 용매로는 디에틸 에테르, 디프로필 에테르, 디부틸 에테르, 디메톡시메탄, 트리메톡시메탄, 디메톡시에탄, 디에톡시에탄, 디글라임, 트리글라임, 테트라글라임, 테트라하이드로퓨란, 2-메틸테트라하이드로퓨란 및 폴리에틸렌 글리콜 디메틸 에테르 등이 있다. 또한, 상기 케톤계 용매로는 시클로헥사논 등이 있고, 상기 알코올계 용매로는 에틸알코올 및 이소프로필알코올 등이 있으며, 상기 비양자성 용매로는 아세토니트릴 등의 니트릴류, 디메틸포름아미드 등의 아미드류, 1,3-디옥솔란(DOL) 등의 디옥솔란류 및 술포란(sulfolane) 등이 있다. 이상과 같은 비수성 용매는 단독 또는 둘 이상 혼합하여 사용할 수 있고, 둘 이상 혼합할 경우의 혼합 비율은 목적으로 하는 전지의 성능에 따라 적절하게 조절할 수 있으며, 1,3-디옥솔란과 디메톡시에탄을 1 : 1의 부피비로 혼합한 용매를 예시할 수 있다.More specifically, examples of the carbonate solvent include dimethyl carbonate (DMC), diethyl carbonate (DEC), dipropyl carbonate (DPC), methyl propyl carbonate (MPC), ethyl propyl carbonate (EPC), methyl ethyl carbonate ), Ethylene carbonate (EC), propylene carbonate (PC), and butylene carbonate (BC). Examples of the ester solvent include methyl acetate, ethyl acetate, n-propyl acetate, Propanolate, propionate, ethyl propionate,? -Butyrolactone, decanolide, valerolactone, mevalonolactone, and carprolactone. The ether solvents include di Ethyl ether, dipropyl ether, dibutyl ether, dimethoxymethane, trimethoxymethane, dimethoxyethane, diethoxyethane, diglyme, triglyme, tetraglyme, tetra 2-methyltetrahydrofuran, and polyethylene glycol dimethyl ether. Examples of the ketone-based solvent include cyclohexanone, and the alcohol-based solvent includes ethyl alcohol and isopropyl alcohol. Examples of the non-protonic solvent include nitriles such as acetonitrile, amides such as dimethylformamide Dioxolanes such as Dole, 1,3-dioxolane (DOL), and sulfolane. The nonaqueous solvent may be used singly or in combination of two or more. When two or more of them are mixed, the mixing ratio may be appropriately adjusted according to the performance of the objective battery, and 1,3-dioxolane and dimethoxyethane In a volume ratio of 1: 1.
본 발명의 리튬-황 이차전지를 구성하는 분리막은, 전극을 물리적으로 분리하는 기능을 가지는 것으로서, 통상의 분리막을 특별한 제한 없이 사용할 수 있으나, 양극과 음극을 분리 또는 절연시키는 동시에 양극과 음극 간에 리튬 이온의 수송을 가능하게 하고, 기공도 30 내지 50 %의 다공성이며, 비전도성 또는 절연성 물질로 이루어지는 것이 바람직하다.The separation membrane constituting the lithium-sulfur secondary battery of the present invention has a function of physically separating the electrodes and can be used without any particular limitation. However, it is also possible to separate or insulate the positive electrode from the negative electrode, It is preferable that it is made of a porous, non-conductive or insulating material which enables transport of ions and has a porosity of 30 to 50%.
상기 분리막의 예로는, 에틸렌 중합체, 프로필렌 중합체, 에틸렌/부텐 공중합체, 에틸렌/헥센 공중합체 및 에틸렌/메타크릴레이트 공중합체와 같이 폴리올레핀계 고분자로 제조한 다공성 고분자 필름과, 고융점의 유리 섬유 등으로 된 부직포 등을 들 수 있으며, 상기 다공성 고분자 필름의 사용이 보다 바람직하다. 그밖에, 설명되지 않은 리튬-황 이차전지의 구성에 관한 전반적인 제반사항에 대해서는, 통상의 리튬-황 이차전지의 구성을 준용할 수 있다.Examples of the separation membrane include a porous polymer film made of a polyolefin-based polymer such as an ethylene polymer, a propylene polymer, an ethylene / butene copolymer, an ethylene / hexene copolymer and an ethylene / methacrylate copolymer, And the like, and the use of the porous polymer film is more preferable. In addition, the general configuration of a lithium-sulfur secondary battery, which is not described, can be generally applied to the configuration of a lithium-sulfur secondary battery.
이하 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시하나, 하기 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 범주 및 기술사상 범위 내에서 다양한 변경 및 수정이 가능함은 당업자에게 있어서 명백한 것이며, 이러한 변경 및 수정이 첨부된 특허청구범위에 속하는 것도 당연한 것이다.It will be apparent to those skilled in the art that various modifications and variations can be made in the present invention without departing from the spirit or scope of the invention as set forth in the appended claims. Such changes and modifications are intended to be within the scope of the appended claims.
[실시예 1] 휴지기를 이용한 리튬-황 이차전지의 충전 [Example 1] Charging of lithium-sulfur secondary battery using rest period
하기 표 1에 따라, 리튬염(1.0 M LiTFSI(lithium bis(trifluoromethane sulfonyl)imide) + 1 wt% LiNO3) 및 용매(1 : 1 부피비의 DOL/DME)를 포함하는 전해액을 사용한 리튬-황 이차전지를 0.2 current rate로 2.40 V까지 충전시킨 후, 1 시간 동안 충전을 중단하는 휴지기(rest time)를 갖도록 하였고, 휴지기가 종료된 후 잔여 충전을 진행하여 리튬-황 이차전지의 충전을 완료하였다.According to the following Table 1, lithium-sulfur secondary batteries using an electrolyte including a lithium salt (1.0 M LiTFSI (lithium bis (trifluoromethanesulfonyl) imide) + 1 wt% LiNO 3 ) and a solvent (DOL / DME in a volume ratio of 1: 1) The battery was charged to a current of 2.40 V at a current rate of 0.2 and then had a rest time of stopping charging for 1 hour. After the rest period was completed, the recharging was continued to complete the charging of the lithium-sulfur secondary battery.
[실시예 2] 휴지기를 이용한 리튬-황 이차전지의 충전 [Example 2] Charging of lithium-sulfur secondary battery using resting period
하기 표 1에 따라, 리튬-황 이차전지를 2.38 V까지 충전시킨 후 휴지기를 갖도록 한 것을 제외하고는, 상기 실시예 1과 동일하게 수행하여 리튬-황 이차전지의 충전을 완료하였다.The charging of the lithium-sulfur secondary battery was completed in the same manner as in Example 1, except that the lithium-sulfur secondary battery was charged to 2.38 V and then a rest period was set according to Table 1 below.
[실시예 3] 휴지기를 이용한 리튬-황 이차전지의 충전 [Example 3] Charging of lithium-sulfur secondary battery using rest period
하기 표 1에 따라, 리튬-황 이차전지를 2.36 V까지 충전시킨 후 휴지기를 갖도록 한 것을 제외하고는, 상기 실시예 1과 동일하게 수행하여 리튬-황 이차전지의 충전을 완료하였다.The charging of the lithium-sulfur secondary battery was completed in the same manner as in Example 1, except that the lithium-sulfur secondary battery was filled up to 2.36 V according to the following Table 1, and then the battery had a rest period.
[실시예 4] 휴지기를 이용한 리튬-황 이차전지의 충전 [Example 4] Charging of lithium-sulfur secondary battery using resting period
하기 표 1에 따라, 리튬-황 이차전지를 2.34 V까지 충전시킨 후 휴지기를 갖도록 한 것을 제외하고는, 상기 실시예 1과 동일하게 수행하여 리튬-황 이차전지의 충전을 완료하였다.The charging of the lithium-sulfur secondary battery was completed in the same manner as in Example 1, except that the lithium-sulfur secondary battery was charged to 2.34 V, and then the lithium-sulfur secondary battery was allowed to have a rest period.
[실시예 5] 휴지기를 이용한 리튬-황 이차전지의 충전 [Example 5] Charging of lithium-sulfur secondary battery using resting period
하기 표 1에 따라, 리튬-황 이차전지를 2.38 V까지 충전시킨 후 휴지기를 갖도록 하고, 휴지기를 1 시간에서 30 분으로 변경한 것을 제외하고는, 상기 실시예 1과 동일하게 수행하여 리튬-황 이차전지의 충전을 완료하였다.The procedure of Example 1 was repeated, except that the lithium-sulfur secondary battery was charged to 2.38 V and then allowed to have a rest period and the rest period was changed from 1 hour to 30 minutes in accordance with the following Table 1 to obtain lithium-sulfur The charging of the secondary battery was completed.
[실시예 6] 휴지기를 이용한 리튬-황 이차전지의 충전 [Example 6] Charging of lithium-sulfur secondary battery using resting period
하기 표 1에 따라, 리튬-황 이차전지를 2.38 V까지 충전시킨 후 휴지기를 갖도록 하고, 휴지기를 1 시간에서 10 분으로 변경한 것을 제외하고는, 상기 실시예 1과 동일하게 수행하여 리튬-황 이차전지의 충전을 완료하였다.The procedure of Example 1 was repeated, except that the lithium-sulfur secondary battery was charged to 2.38 V, followed by a rest period, and the rest period was changed from 1 hour to 10 minutes. The charging of the secondary battery was completed.
[실시예 7] 휴지기를 이용한 리튬-황 이차전지의 충전 [Example 7] Charging of lithium-sulfur secondary battery using resting period
하기 표 1에 따라, 리튬-황 이차전지를 2.38 V까지 충전시킨 후 휴지기를 갖도록 하고, 휴지기를 1 시간에서 2 시간으로 변경한 것을 제외하고는, 상기 실시예 1과 동일하게 수행하여 리튬-황 이차전지의 충전을 완료하였다.The procedure of Example 1 was repeated, except that the lithium-sulfur secondary battery was charged to 2.38 V and then allowed to have a rest period and the rest period was changed from 1 hour to 2 hours in accordance with the following Table 1 to obtain lithium-sulfur The charging of the secondary battery was completed.
[실시예 8] 휴지기를 이용한 리튬-황 이차전지의 충전 [Example 8] Charging of lithium-sulfur secondary battery using resting period
하기 표 1에 따라, 리튬-황 이차전지를 2.38 V까지 충전시킨 후 휴지기를 갖도록 하고, 휴지기를 1 시간에서 4 시간으로 변경한 것을 제외하고는, 상기 실시예 1과 동일하게 수행하여 리튬-황 이차전지의 충전을 완료하였다.The procedure of Example 1 was repeated, except that the lithium-sulfur secondary battery was charged to 2.38 V, followed by a rest period, and the rest period was changed from 1 hour to 4 hours. The charging of the secondary battery was completed.
[비교예 1] 통상적인 리튬-황 이차전지의 충전 [Comparative Example 1] Charging of a conventional lithium-sulfur secondary battery
하기 표 1에 따라, 리튬염(1.0 M LiTFSI + 1 wt% LiNO3) 및 용매(1 : 1 부피비의 DOL/DME)를 포함하는 전해액을 사용한 리튬-황 이차전지를 0.2 current rate로 휴지기 없이 단 한 번에 충전을 완료하였다.According to the following Table 1, a lithium-sulfur secondary battery using an electrolyte containing a lithium salt (1.0 M LiTFSI + 1 wt% LiNO 3 ) and a solvent (DOL / DME in a volume ratio of 1: 1) The charging was completed at once.
Hold voltage(charge, 단위: V)Hold voltage (charge, unit: V) Rest time(휴지기)Rest time
실시예 1Example 1 2.402.40 1 h1 h
실시예 2Example 2 2.382.38 1 h1 h
실시예 3Example 3 2.362.36 1 h1 h
실시예 4Example 4 2.342.34 1 h1 h
실시예 5Example 5 2.382.38 30 min30 min
실시예 6Example 6 2.382.38 10 min10 min
실시예 7Example 7 2.382.38 2 h2 h
실시예 8Example 8 2.382.38 4 h4 h
비교예 1Comparative Example 1 -- --
[실시예 1~8, 비교예 1] 리튬-황 이차전지의 수명 특성 평가 [Examples 1 to 8, Comparative Example 1] Evaluation of life characteristics of lithium-sulfur secondary batteries
상기 실시예 1 내지 8 및 비교예 1에서 충전된 리튬-황 이차전지의 충방전 반복에 따른 잔여 용량을 확인하여, 각 리튬-황 이차전지의 수명 특성을 평가하였다. 도 1은 본 발명의 일 실시예에 따른 리튬-황 이차전지와 비교예에 따른 리튬-황 이차전지의 수명 특성을 비교 대조한 그래프이고, 도 2 및 3은 본 발명의 일 실시예에 따른 리튬-황 이차전지의 충전 프로파일을 나타낸 그래프로서, 도 2의 A 내지 D 각각 상기 실시예 1 내지 4에 해당하며, 도 3의 A 내지 D 각각 상기 실시예 5 내지 8에 해당한다. 또한, 도 4는 본 발명의 비교예에 따른 리튬-황 이차전지의 충전 프로파일을 나타낸 그래프이다.The remaining capacities of the lithium-sulfur secondary batteries packed in Examples 1 to 8 and Comparative Example 1 were checked after repeated charging and discharging, and the life characteristics of each lithium-sulfur secondary battery were evaluated. FIG. 1 is a graph comparing life characteristics of a lithium-sulfur secondary battery according to an embodiment of the present invention and the life characteristics of a lithium-sulfur secondary battery according to a comparative example. FIGS. 2 and 3 are cross- - A graph showing a charging profile of a sulfur secondary battery, wherein FIGS. 2A to D correspond to the first to fourth embodiments, and FIGS. 3A to D correspond to the fifth to eighth embodiments, respectively. 4 is a graph showing a charge profile of a lithium-sulfur secondary battery according to a comparative example of the present invention.
먼저, 휴지기 없이 단 한 번에 완충시킨(즉, 연속 충전시킨) 비교예 1의 리튬-황 이차전지는, 도 1의 A 및 B에 도시된 바와 같이, 약 15 사이클(cycles) 전후에서 전지 퇴화 현상이 발생하는 것을 확인할 수 있었다. 반면, 충전 도중 휴지기를 가진 실시예 1 내지 8의 리튬-황 이차전지는, 상기 비교예 1에 비하여 우수한 수명 특성을 나타내는 것을 알 수 있었다.First, the lithium-sulfur secondary battery of Comparative Example 1 which was buffered (i.e., continuously charged) in a single cycle without a rest period had a battery deterioration at about 15 cycles (cycles) as shown in Figs. 1A and 1B It was confirmed that the phenomenon occurred. On the other hand, it was found that the lithium-sulfur secondary batteries of Examples 1 to 8 having a rest period during charging exhibited excellent life characteristics as compared with Comparative Example 1.
한편, 도 1의 A 및 B에 도시된 바와 같이, 충전 도중 휴지기를 가진 실시예 1 내지 8 중에서도, 전압이나 휴지 시간에 따라 상이한 수명 특성 결과를 나타내었다. 즉, 실시예 1 내지 4를 통해, 휴지기 직전의 최적 전압(실시예 2에 해당하는 2.38 V)을 확인할 수 있고(도 1의 A 참조), 실시예 2 및 5 내지 8을 통해서는, 최적의 휴지 시간(실시예 5에 해당하는 30 분)의 확인은 물론, 휴지기가 길어질수록 수명 특성 효과가 오히려 감소하는 것을 확인할 수 있다(도 1의 B 참조).On the other hand, as shown in FIGS. 1A and 1B, among the Examples 1 to 8 having a rest period during charging, different life characteristics results were shown depending on the voltage or the resting time. In other words, through the embodiments 1 to 4, it is possible to confirm the optimum voltage immediately before the rest period (2.38 V corresponding to the embodiment 2) (see FIG. 1 A), and in the embodiments 2 and 5-8, It can be seen that not only the confirmation of the resting time (30 minutes corresponding to the example 5) but also the effect of the life characteristic is reduced as the resting period becomes longer (refer to FIG. 1B).

Claims (8)

  1. 리튬-황 이차전지의 충전 과정에 있어서, In the charging process of the lithium-sulfur secondary battery,
    장 사슬 리튬 폴리설파이드(long chain lithium polysulfide)가 형성되는 영역에 도달하도록 충전한 후, 10 분 내지 4 시간의 휴지기(rest time)를 부여하는 자기 활성화 단계(Self-activation step)를 포함하는 리튬-황 이차전지의 수명 개선방법.And a self-activation step of charging to reach a region where a long chain lithium polysulfide is formed, followed by a rest time of 10 minutes to 4 hours, A method for improving the lifetime of a sulfur secondary battery.
  2. 청구항 1에 있어서, 상기 휴지기는 30 분 내지 2 시간인 것을 특징으로 하는, 리튬-황 이차전지의 수명 개선방법.The method for improving the service life of a lithium-sulfur secondary battery according to claim 1, wherein the dormant period is from 30 minutes to 2 hours.
  3. 청구항 1에 있어서, 상기 휴지기는 30 내지 60 분인 것을 특징으로 하는, 리튬-황 이차전지의 수명 개선방법.The method for improving the service life of a lithium-sulfur secondary battery according to claim 1, wherein the rest period is 30 to 60 minutes.
  4. 청구항 1에 있어서, 상기 휴지기 이전의 충전 전압은 2.34 내지 2.40 V인 것을 특징으로 하는, 리튬-황 이차전지의 수명 개선방법.The method of claim 1, wherein the charge voltage before the dormant period is 2.34 to 2.40 V.
  5. 청구항 1에 있어서, 상기 휴지기 이전의 충전 전압은 2.37 내지 2.39 V인 것을 특징으로 하는, 리튬-황 이차전지의 수명 개선방법.The method of claim 1, wherein the charge voltage before the dormant period is 2.37 to 2.39 V.
  6. 청구항 1에 있어서, 상기 장 사슬 리튬 폴리설파이드는 황 원자를 4 내지 8 개 포함하는 것을 특징으로 하는, 리튬-황 이차전지의 수명 개선방법.The method for improving the service life of a lithium-sulfur secondary battery according to claim 1, wherein the long-chain lithium polysulfide comprises 4 to 8 sulfur atoms.
  7. 청구항 1에 있어서, 상기 장 사슬 리튬 폴리설파이드는 산화환원 중계 역할을 하여, 리튬-황 이차전지가 충전 시 균일한 반응을 함으로써 전지의 수명 특성이 개선되는 것을 특징으로 하는, 리튬-황 이차전지의 수명 개선방법.The lithium-sulfur secondary battery according to claim 1, wherein the long-chain lithium polysulfide serves as a redox relay, and the lifetime characteristics of the lithium-sulfur secondary battery are improved by uniformly reacting the lithium- How to improve life.
  8. 청구항 1에 있어서, 상기 휴지기가 종료된 후에는 잔여 충전을 진행하는 것을 특징으로 하는, 리튬-황 이차전지의 수명 개선방법.The method for improving the service life of a lithium-sulfur secondary battery according to claim 1, wherein the remaining charge is continued after the idle period ends.
PCT/KR2018/009174 2017-09-01 2018-08-10 Method for improving life of lithium-sulfur secondary battery WO2019045311A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2017-0111825 2017-09-01
KR1020170111825A KR20190025317A (en) 2017-09-01 2017-09-01 Method for improving a lifetime of lithium-sulfur secondary battery

Publications (1)

Publication Number Publication Date
WO2019045311A1 true WO2019045311A1 (en) 2019-03-07

Family

ID=65527734

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/009174 WO2019045311A1 (en) 2017-09-01 2018-08-10 Method for improving life of lithium-sulfur secondary battery

Country Status (2)

Country Link
KR (1) KR20190025317A (en)
WO (1) WO2019045311A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112259814A (en) * 2020-09-24 2021-01-22 东莞东阳光科研发有限公司 Method for improving capacity retention rate of lithium-sulfur battery

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100345634B1 (en) * 1998-07-31 2002-07-24 캐논 가부시끼가이샤 Charging method of secondary battery and device thereof
KR20050029973A (en) * 2003-09-24 2005-03-29 삼성에스디아이 주식회사 Method for charging lithium sulfur battery
KR20110024707A (en) * 2009-09-03 2011-03-09 주식회사 엘지화학 Method of charging lithium secondary battery
JP2013045590A (en) * 2011-08-23 2013-03-04 Shin Etsu Chem Co Ltd Charging method of nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
KR20130060180A (en) * 2010-03-26 2013-06-07 엔비아 시스템즈 인코포레이티드 High voltage battery formation protocols and control of charging and discharging for desirable long term cycling performance

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010252474A (en) 2009-04-14 2010-11-04 Nissan Motor Co Ltd Method of charging secondary battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100345634B1 (en) * 1998-07-31 2002-07-24 캐논 가부시끼가이샤 Charging method of secondary battery and device thereof
KR20050029973A (en) * 2003-09-24 2005-03-29 삼성에스디아이 주식회사 Method for charging lithium sulfur battery
KR20110024707A (en) * 2009-09-03 2011-03-09 주식회사 엘지화학 Method of charging lithium secondary battery
KR20130060180A (en) * 2010-03-26 2013-06-07 엔비아 시스템즈 인코포레이티드 High voltage battery formation protocols and control of charging and discharging for desirable long term cycling performance
JP2013045590A (en) * 2011-08-23 2013-03-04 Shin Etsu Chem Co Ltd Charging method of nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery

Also Published As

Publication number Publication date
KR20190025317A (en) 2019-03-11

Similar Documents

Publication Publication Date Title
US10804576B2 (en) Electrolyte for lithium-sulfur battery and lithium-sulfur battery comprising same
US20110179636A1 (en) Intercalation anode protection for cells with dissolved lithium polysulfides
WO2015016496A1 (en) Anode for lithium-sulfur battery and manufacturing method therefor
KR102126249B1 (en) Lithium sulfur battery and method for manufacturing the same
KR101994879B1 (en) Non-aqueous liquid electrolye for lithium-sulfur battery and lithium-sulfur battery comprising the same
KR20020008704A (en) A Electrolyte for Lithium Sulfur batteries
KR20100136564A (en) Rechargeable battery with negative lithium electrode
EP3200268B1 (en) Lithium-sulfur battery and battery module including same
KR20180036410A (en) All solid state battery
EP3675256B1 (en) Binder, and electrode and lithium secondary battery comprising same
KR101868196B1 (en) Lithium sulfur battery including sulfur electrode having multilayered structure
WO2019045311A1 (en) Method for improving life of lithium-sulfur secondary battery
KR101116551B1 (en) Negative electrode for lithium secondary battery and lithium secondary battery comprising same
KR20150143223A (en) Cathode active material for lithium-sulfur battery, method of preparing the same and lithium-sulfur battery including the same
WO2019045312A1 (en) Method for improving life properties and charging speed of lithium-sulfur secondary battery
WO2019059698A2 (en) Electrolyte for lithium secondary battery and lithium secondary battery comprising same
KR102543242B1 (en) Method for improving a lifetime of lithium-sulfur battery and a lithium-sulfur battery prepared by applying the method
CN112397790B (en) Lithium-sulfur battery
KR101544152B1 (en) Lithium-sulfur battery having improved capacity
KR20190060240A (en) SULFUR-CARBON COMPOSITE COATED WITH MnO2 AND METHOD FOR MANUFACTURING THE SAME
KR100417084B1 (en) New additives for electrolyte and lithium ion battery using the same
KR20220053181A (en) Positive electrode for lithium-sulfur secondary battery and lithium-sulfur secondary battery comprising the same
KR20220102035A (en) Apparatus for pre-lithiating the negative electrode and method for pre-lithiating the negative electrode
KR20010066160A (en) New additives for electrolyte and lithium ion battery using the same
KR20210059969A (en) Binder for manufacturing a positive electrode of lithium secondary battery, positive electrode of lithium secondary battery and lithium secondary battery comprising the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18851656

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18851656

Country of ref document: EP

Kind code of ref document: A1