WO2019045205A1 - Method for treating chemical decontamination process waste of nuclear facility by using oxidation-reduction and precipitation reactions - Google Patents

Method for treating chemical decontamination process waste of nuclear facility by using oxidation-reduction and precipitation reactions Download PDF

Info

Publication number
WO2019045205A1
WO2019045205A1 PCT/KR2018/001718 KR2018001718W WO2019045205A1 WO 2019045205 A1 WO2019045205 A1 WO 2019045205A1 KR 2018001718 W KR2018001718 W KR 2018001718W WO 2019045205 A1 WO2019045205 A1 WO 2019045205A1
Authority
WO
WIPO (PCT)
Prior art keywords
decontamination
waste
decontamination waste
reducing agent
salt
Prior art date
Application number
PCT/KR2018/001718
Other languages
French (fr)
Korean (ko)
Inventor
오원진
최상준
이현규
김진희
김준현
Original Assignee
경북대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 경북대학교 산학협력단 filed Critical 경북대학교 산학협력단
Publication of WO2019045205A1 publication Critical patent/WO2019045205A1/en

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/001Decontamination of contaminated objects, apparatus, clothes, food; Preventing contamination thereof
    • G21F9/002Decontamination of the surface of objects with chemical or electrochemical processes
    • G21F9/004Decontamination of the surface of objects with chemical or electrochemical processes of metallic surfaces
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/04Treating liquids
    • G21F9/06Processing
    • G21F9/10Processing by flocculation

Definitions

  • the present invention relates to a method for treating chemical decontamination wastes in a nuclear facility using oxidation-reduction and precipitation reactions, and more particularly to a chemical decontamination process for a nuclear power plant, particularly a primary system of a pressurized light water reactor type nuclear power plant
  • a waste treatment method capable of minimizing the amount of waste generated by precipitating and removing metal oxides of process wastes into sediments using oxidation-reduction and precipitation reactions, and increasing the water-solubility of waste.
  • Oxidation and reduction multi - stage chemical decontamination technology of the primary system of nuclear power plant has been developed since 1970 for reduction of radiation exposure of workers, reduction of waste disposal and low level, and it is widely used worldwide now.
  • Korean research and development has been carried out at Korea Atomic Energy Research Institute, KHNP, KEPCO KPS, Kyungpook National University, and some parts (RCP) decontamination technology in the first line has been industrialized from KEPCO 10 years ago.
  • the primary system of the nuclear power plant is a system that circulates water at high temperature (over 300 °C), high pressure (over 150 atmospheres) and high speed. Therefore, even if using internal materials such as SUS and INCONEL, Fe (3-xy) Ni x Cr y O 4 ) is generated and the radioactive material is deposited, causing radiation exposure of the worker.
  • Chemical decontamination is a process in which the corrosion oxide film is chemically dissolved and removed. The corrosion oxide film is mainly removed by the reduction decontamination process.
  • the pressurized light water reactor type nuclear power plant which has a large amount of chromium oxide film needs to be repeatedly applied repeatedly with the oxidizing salt process and the reduction decontamination process. Korea's nuclear power plants are mostly PWR-type power plants.
  • Oxidation and reduction multistage chemical decontamination process Waste is divided into primary wastes which are metal oxide (Fe, Ni, Co, Cr, Sr, Cs, etc.) corrosion oxide film wastes and secondary wastes which are chemical decontamination (oxidizing agent and reducing agent) wastes. .
  • the early chemical decontamination technology focused on decontamination performance and generated a lot of secondary chemical waste.
  • the disposal cost has risen sharply (domestic radioactive waste disposal ratio is 60 million Yuan / m 3 or more, industrial waste is mostly 20-30 million yuan / m 3 or less) .
  • HP_CORD_UV Hydrophilicity and Reduction Decontamination_Ultra Violate
  • NP Nitric Acid Permanganate
  • HNO 3 HNO 3
  • AP Alkaline Permanganate
  • MnO 2 MnO 2
  • the reduction decontamination must be an acidic atmosphere, .
  • Reduction and decontamination technologies include Citrox decontamination technology, which uses Oxalic Acid and Citric Acid together, and technologies that add inorganic acids that can not be decomposed or removed. Therefore, HP_CORD decontamination technology is a technology developed to reduce the amount of waste generated by using Oxalic Acid, which has the smallest pKa of organic acids and can be adjusted to a low concentration, while it is the easiest to decompose the reducing agent.
  • Most of the decontamination technology is caustic oxide metal ion and chemical decontamination agent mainly collecting as ion exchange resin, and the main final waste is ion exchange resin waste. That is, since it is possible to collect 1.9 equivalents of metal ion per liter of ion exchange resin, it is necessary to use about 2,000 ml of ion exchange resin in order to remove 20 ml of metal ion, so that the amount of radioactive waste is excessively There is a problem that a lot occurs.
  • the resin in the ion exchange resin waste is composed of organic styrene and divinyl benzene copolymer.
  • a strong oxidizing agent such as MnO 4 - or HCrO 4 - , CO 2 , H 2 O, N 2
  • disadvantages the long-term safety of the disposal site Therefore, the disposal of cement is prohibited at the domestic disposal sites, and disposal methods such as HIC containers (High Integrated Containers: thickness of 1m or more) are currently being carried out by KORAD (Korea Atomic Energy Authority)
  • HIC containers High Integrated Containers: thickness of 1m or more
  • KORAD Ker Atomic Energy Authority
  • the present invention has been made in order to solve the above problems, and it is an object of the present invention to provide a nuclear power plant using a redox and a precipitation reaction capable of collecting metal ions, It is an object of the present invention to provide a method for treating chemical decontamination waste.
  • the present invention provides a method for treating a chemical decontamination process using an oxidation-reduction reaction and a precipitation reaction, comprising the steps of: (a) mixing a metal waste having a radionuclide-containing metal oxide film (Fe n Ni m Cr 1 O 4 ) A first step of adding permanganic acid as a salt to oxidize the chromium ions from the metal oxide film and dissolving the chromium ions on the decontamination waste solution; A second step of introducing a first reducing agent salt into the decontamination waste solution in which permanganic acid and chromium ions are dissolved, and reducing and precipitating manganese ions and chromium ions into a first precipitate; And oxalic acid as an organic acid second reducing agent salt is added to the decontamination wastewater that has undergone the second step to reduce metal ions including iron ion and nickel ion and unreacted residual manganese ions from the metal oxide film to
  • the method of treating chemical decontamination wastes of nuclear facilities using oxidation-reduction and precipitation reaction of the present invention is characterized in that manganese ions (MnO 4 - ) and chromium ions (HCrO 4 - ) Is precipitated using a first reducing agent salt, and the metal ions are precipitated in the form of a carbonate by using carbon dioxide, which is a decomposition product of the second reducing agent salt, which is an organic acid, and a precipitant, and the metal ion of the metal oxide and the residual oxidizing agent (Mn 2+ ) Can be removed in the form of hydroxides or oxides, so that the amount of waste generated can be significantly reduced as compared with the conventional waste disposal method using an ion exchange resin process.
  • the disposal safety can be greatly improved as compared with the ion exchange resin waste by filtering out the metal ions as the metal oxide lysate and the Mn 2 + ions as the oxidizer salt waste with the oxides, hydroxide precipitates and MnO 2 precipitates .
  • a strong oxidizing agent such as MnO 4 - or HCrO 4 - to form CO 2 , H 2 O or N 2 Decomposition and deteriorate the long-term safety of the repository.
  • FIG. 1 is a schematic view showing a method of treating a waste chemical decontamination process using a redox reaction and a precipitation reaction of the present invention.
  • FIG. 2 is a graph showing the content of carbonic acid ions according to the pH of the decontamination waste solution of the present invention.
  • FIG. 3 is a graph comparing the volumes of wastes according to the treatment method of the present invention and the wastes according to a conventional treatment method using the ion exchange resin method.
  • FIG. 4 is a photograph showing a simulated metal waste in which metal ions have been removed according to the first reduction decontamination reaction of the present invention.
  • FIG. 5 is a graph showing the results of the simulated metal waste performed only with the oxidant salt reaction of the present invention and the first reduced decontamination reaction.
  • FIG. 6 is a photograph showing reduction characteristics and precipitation filtration results of the first reducing agent salt after addition of the oxidizing agent salt of the present invention.
  • FIG. 7 is a graph showing the results of analyzing the particle size of the first precipitate generated after adding the first reducing agent salt to the decontamination waste solution through the oxidant salt of the present invention.
  • FIG. 8 is a photograph showing the decontamination waste solution and the separated iron precipitate in which the iron (III) precipitate of the present invention is formed.
  • FIG. 9 is a photograph showing the decontamination waste solution and separated iron and manganese precipitate in which iron (III), manganese (II) precipitates of the present invention are formed.
  • FIG. 1 is a block diagram of a computer system according to an embodiment of the present invention
  • FIG. 2 is a block diagram of a computer system according to an embodiment of the present invention
  • FIG. 1 is a block diagram of a computer system according to an embodiment of the present invention
  • FIG. 2 is a block diagram of a computer system according to an embodiment of the present invention
  • FIG. 1 is a schematic view showing a method of treating a waste chemical decontamination process using a redox reaction and a precipitation reaction of the present invention.
  • the method of treating the chemical decontamination waste in the nuclear facility using the redox reaction and the precipitation reaction includes a first step of an oxidant salt process, a second step of an oxidant salt waste treatment process, A fourth step of a second reducing agent-based cracking process, and a fifth step of a waste precipitation treatment process.
  • the step of pre-treating the inside of the system in which the metal oxide film containing the radionuclide is generated may be further included.
  • the system in which the metal oxide film is formed is supported on ultrapure water and is washed with ultrasonic waves to remove impurities in the system to prevent side reactions caused by impurities in the second to fifth steps to be described later.
  • permanganic acid or permanganate which is an oxidizer salt, is added to the metal oxide film formed in the system containing the radionuclide, and the chromium oxide is oxidized to chromium ions from the metal oxide film and dissolved in the decontamination waste solution.
  • the system in the present invention means a primary system and a secondary system of a nuclear power plant.
  • the primary system is the reactor system or the primary system. It is used to control various devices and facilities surrounding the reactor, ie, control rods for controlling the output of the reactor, piping for circulating coolant, pressurizer, steam generator, .
  • the secondary system is a secondary system, which includes the turbines, generators, and condensers necessary for electricity production, and various facilities that supply water to the steam generator.
  • system of the present invention may be made of SUS 304 (steel use stainless) alloy, the metal oxide film is formed of metallic components dissolved from the SUS 304 alloy, and the spinel structure of Fe (3-xy) Ni x Cr y O 4 Lt; / RTI >
  • the oxidizer salts of permanganic acid or permanganate is a strong oxidizing agent, and a chromium oxide in the metal oxide (Cr 2 O 3) HCrO 4 - or CrO 4 - in other words, by the oxidation of Cr 3 + to Cr 6 + the decontamination peaek Since Cr 6 + can be reduced in acidic conditions, it can be dissolved in Cr 3 + state.
  • potassium permanganate (KMnO 4 ) can be used as the permanganate salt
  • inorganic acid can be used as an acidity controlling agent instead of an oxidizing agent.
  • a solution of 1 to 10 mmol / L can be used as an oxidizing agent. If the concentration is outside the above range, the efficiency of chromium ion dissolution decreases due to excessive accumulation of MnO 2 particles.
  • the time for oxidizing and decontaminating the chromium oxide after the oxidizing agent is added may be 60 minutes to 600 minutes, and more preferably 120 minutes to 300 minutes.
  • permanganic acid which is an oxidant salt, oxidizes chromium oxide and, as shown in Reaction Scheme 1 below, can be reduced to produce MnO 2 .
  • the first reducing agent salt is added to the decontamination waste solution in which the chromium ions are dissolved, and the unreacted oxidant salt and the chromium ions are reduced to precipitate and remove the first precipitate.
  • the reducing power of the first reducing agent salt is preferably smaller than the reducing power of oxalic acid as the second reducing agent salt in the third step described later.
  • the decontamination solution after the first step may contain CrO 3 + , MnO 2 produced by reduction of permanganic acid, and residual MnO 4 - .
  • MnO 2 produced by reduction of permanganic acid
  • residual MnO 4 - residual MnO 4 - .
  • the first reducing agent salts in the second step may be conveniently removed by solid-liquid separation method capable of holding an Mn 4+ of reducing power smaller than oxalic MnO 2 MnO 2 in the precipitate was difficult to form the reduction in Mn + 2 have. Accordingly, it is preferable to carry out a second step of introducing a first reducing agent salt having a reducing power lower than that of oxalic acid between the first step and the third step of adding oxalic acid.
  • the first reducing agent salt causes the pH of the decontamination waste liquid to rise so that the Cr 3 + dissolved in the decontamination waste liquid is precipitated as Cr (OH) 3 , and the zeta potential of the MnO 2 precipitate is It is preferable to use a strong alkaline substance. For example, since the pH of the isoelectric point of MnO 2 is 4 to 5, it has a negative zeta potential on the strongly alkaline decontamination waste liquid. At this time, SUS304 because the system also be strong alkaline conditions have a negative zeta potential of MnO 2 and the repulsive force from the alloys will occur, it is possible to separate the precipitate from the more stable metallic waste.
  • the first reducing agent salt of the present invention it is preferable to use a substance having a stronger reducing power and stronger alkali than the second reducing agent salt.
  • a substance having a stronger reducing power and stronger alkali than the second reducing agent salt For example, hydrazine (N 2 H 4 ) may be used.
  • unreacted residual oxidizing agents HMnO 4 and HCrO 4 - using hydrazine as the first reducing agent salt may be reacted as shown in the following reaction formula 2.
  • the first reducing agent salt may be added in an appropriate amount for the oxidation-reduction reaction, for example, 5-15 mmol / L, preferably 6-12 mmol / L. Further, it is preferable that the time for reduction decontamination of manganese ion and chromium ion after the first reducing agent salt is added is 1 to 60 minutes. When the addition amount of the first reducing agent salt is less than 5 mmol / L or when the reduction decontamination time is less than 1 minute, the reduction reaction of manganese ions and chromium ions can not be sufficiently induced, and the addition amount is preferably 15 mmol / Minute, it is undesirable from the viewpoint that energy is unnecessarily consumed after forming a complete reduction product.
  • an organic acid including oxalic acid which is a second reducing agent salt, is added to the decontamination waste solution that has undergone the second step, and a metal oxide containing iron ion and nickel ion is removed from the metal oxide film, Ions are reduced and dissolved on the decontamination waste solution.
  • Organic acids including oxalic acid oxidize iron oxides (Fe 2 O 3 , Fe 3 O 4 ) and nickel oxides (NiO) from metal oxide films of metal waste to produce iron ions (Fe 2 + , Fe 3 + ) and nickel ions 2+ ) is a decontamination process.
  • iron ions of Fe 2 O 3 can be reduced as shown in Reaction Scheme 3 below.
  • the fourth step decomposes the second reducing agent salt in the decontamination waste liquid.
  • oxalic acid is decomposed into water and carbon dioxide, water is dissolved in a liquid state on decontamination waste liquid, and carbon dioxide is dissolved in carbonic acid.
  • the second reducing agent on the decontamination waste liquid may be an ordinary oxidation process for decomposing a salt of a reducing agent, such as chlorine or ozone, but it is preferable to use an advanced oxidation process (AOP).
  • AOP advanced oxidation process
  • the advanced oxidation process is collectively referred to as a water treatment technique in which a hydroxide radical having an oxidizing power stronger than an oxidizing agent used in an ordinary oxidation process is produced as an intermediate product to decompose the substance in the water.
  • a method of adding ozone and controlling the pH or a method of treating with hydrogen peroxide and ultraviolet rays can be used.
  • the ultraviolet ray can be decomposed by UV-AOP using hydrogen peroxide and ultraviolet rays.
  • a carbonic acid ion precursor which is a precipitant
  • a carbonic acid ion precursor which is a precipitant
  • carbon dioxide and the carbonate ion precursor which are decomposition products of the second reducing agent salt
  • the pH of the decontamination waste solution is preferably adjusted to 5 to 12 due to the introduction of the carbonate ion precursor.
  • carbonate ions CO 3 2-
  • the carbonate ion reacts with metal ions on the decontamination waste solution to form carbonates or metal hydroxides 2 Form a precipitate.
  • the carbonate ion precursor may be any one selected from the group consisting of sodium carbonate, sodium hydrogencarbonate, and mixtures thereof.
  • FIG. 2 is a graph showing the content of carbonic acid ions according to the pH of the decontamination waste solution of the present invention.
  • the pH of the decontamination waste solution is adjusted to 8 to 12 since sodium carbonate, sodium hydrogencarbonate, and carbonic acid are mostly decomposed to carbonate ion at pH 8 or higher.
  • divalent metal radionuclides such as iron ions (Fe 2 + ) and nickel ions (Ni 2+ ) and residual manganese ions (Mn 2+ ) dissolved in decontamination effluent by oxalic acid, chromium ions (Cr + 3) and iron ion (Fe 3+) and trivalent metal radionuclides are the same, through a carbonate ion is a pH adjustment formed of decontamination waste liquid can be precipitated to form a carbonate.
  • a second precipitate in the carbonate form can be formed according to the following Reaction Scheme 4.
  • FIG. 3 is a graph comparing the volumes of wastes according to the treatment method of the present invention and the wastes according to the conventional treatment methods using the ion exchange resin method, wherein (a) shows the wastes according to the conventional treatment method using ion exchange resin , (b) are diagrams schematically showing the amount of waste according to the treatment method of the present invention.
  • the conventional ion exchange resin processing method uses an ion exchange resin, the amount of radioactive waste is excessively larger than that of the radioactive metal material to be removed.
  • the metal ions which are metal oxide films dissolved in the metal oxide film and the Mn 2 + ions which are the oxidizer salt waste are filtered out by the precipitates of oxides, hydroxide precipitates and MnO 2 , .
  • 1.05 L of ion exchange resin waste is generated in order to remove 1 moles of manganese ions (Mn 2 + ) through the conventional treatment method using the ion exchange resin method, and through the treatment method of the present invention, And the mass of 1 mol of MnO 2 to be removed is 86.9 g and the specific gravity is 5 g / cm 3, the volume of 1 mol of MnO 2 is 0.01738 L. That is, according to the prior art, 1.05 L of waste was generated in order to remove 1 mol of manganese ions, and the volume of 1 mol of MnO 2 removed according to the present invention was 0.01738 L, When used, the volume of waste can be reduced by about 1/64.
  • HC CORD Hydrophilid Hydrophilidation Reduction Decontamination
  • Pellet-shaped SUS304 having a metal oxide film (Fe n Ni m Cr 1 O 4 ) as a simulated metal waste was prepared and 3 mol / L of HMnO 4 solution was added to the SUS304 pellet to prepare Cr 3 + of Cr 2 O 3 as HCrO 4 - &lt ; / RTI > of Cr &lt ; 6 + > to dissolve on the decontamination waste solution. Oxidation reactions were carried out for a total of 3 hours and the pH and concentration of metal ions in the decontamination wastewater were measured and recorded at 1 hour intervals.
  • N 2 H 4 solution was added to reduce unreacted MnO 4 - and HCrO 4 - into MnO 2 and Cr 3 + , respectively, and then precipitated with MnO 2 and Cr (OH) 3 .
  • the reduction reaction was carried out for a total of 15 minutes.
  • the pH and the concentration of metal ions in the decontamination waste solution were measured and recorded. Specifically, 3.73 mmol / L of N 2 H 4 solution was added and reacted for 5 minutes. Then, 3.73 mmol / L of N 2 H 4 solution was further added for 5 minutes, and 3.73 mmol / L of N 2 H 4 solution Was further added thereto and reacted for 5 minutes.
  • Table 1 and Table 2 show the metal ion removal efficiency in the decontamination waste solution according to the first reduction decontamination reaction and the second reduction decontamination reaction of the present invention.
  • FIG. 5 is a photograph showing the effect of the first reduction decontamination reaction of the present invention, wherein FIG. 5 (a) is a photograph showing a simulated metal waste subjected to only the oxidant salt reaction of the present invention, which is a graph showing the results obtained when the reduction decontamination reaction is not performed.
  • the concentration of HCrO 4 - was the highest in the group 1-3 which was subjected to the oxidant salt reaction for 180 minutes, followed by the group 1-2 which was the oxidant salt reaction for 120 minutes. That is, it is preferable to use 3 mM / L of HMnO 4 solution for oxidative salt reaction for 120 minutes or more in order to efficiently conduct the oxidative salt reaction of Cr 6 + of Cr 2 O 3 with Cr 3 + of HCrO 4 - have.
  • the Cr 3 + ions were precipitated as Cr (OH) 3 in 1-3b and 1-3c of 1-3a to 1-3c where the first reduction decontamination reaction proceeded to form Cr 3 + concentration was 0 mmol / L, and the concentration of MnO 4 - was 0.02 mmol / L.
  • MnO 4 - was completely precipitated with MnO 2 by the experimental error.
  • FIG. 6 is a photograph showing the reduction reaction characteristics and precipitate filtration results according to addition of the first reducing agent salt after the oxidizing agent salt of the present invention
  • FIG. 6 7 is a graph showing the result of analyzing the particle size of the first precipitate generated after adding the first reducing agent dye to the decontamination waste solution passing through the oxidant salt of the present invention.
  • N 2 H 4 is preferably added in an amount of 10 mmol / L or more for reduction of manganese ion and chromium ion and removal of the first precipitate.
  • simulated decontamination waste liquid is preferably added in an amount of 10 mmol / L or more for reduction of manganese ion and chromium ion and removal of the first precipitate.
  • FIG. 8 is a photograph showing a decontamination waste liquid in which (a) iron (III) precipitate is formed and (b) iron (III) precipitate separated from the decontamination waste solution in the method for treating decontamination waste liquid of the present invention.
  • FIG. 9 is a photograph showing a decontamination waste liquid in which (a) iron (III) and manganese (II) precipitates are formed in the method of treating the decontamination waste liquid of the present invention, and (B) iron (III), manganese ) ≪ / RTI >
  • the concentration of Mn 2 + was decreased to 1.12 mmol / L in the case of 6-4, which was adjusted to pH 6.96, so that it was not suitable for the efficient removal of Mn 2 + .
  • the concentration of Mn 2 + was decreased to 0.12 mmol / L in the case of 6 - 5, which was adjusted to pH 9.
  • the concentration of CO 3 2- was completely removed by binding of CO 3 2- and Mn 2 + to MnCO 3 .
  • Na 2 CO 3 was not added to the simulated decontamination waste solution of pH 6, which reached 6, and the pH reached 6.96 as a result of stirring for 90 minutes at a constant rate or more.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Food Science & Technology (AREA)
  • Removal Of Specific Substances (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

The present invention relates to a method for treating the chemical decontamination process waste of a nuclear facility by using oxidation-reduction and precipitation reactions, the method: being readily applicable to a primary cooling system-based chemical decontamination process of a nuclear facility, particularly, a pressurized water reactor nuclear power plant; using oxidation-reduction and precipitation reactions so as to precipitate the metal oxide of process waste into a precipitate and remove the same, thereby minimizing the generation of waste; and enabling the acceptance of waste disposal to increase.

Description

산화환원과 침전반응을 이용한 원자력시설 화학제염 공정 폐기물의 처리방법Decomposition process of nuclear facility using oxidation-reduction and precipitation reaction
본 발명은 산화환원과 침전반응을 이용한 원자력시설 화학제염 공정 폐기물의 처리방법에 관한 것으로, 더욱 상세하게는 원자력시설, 특히 가압경수로형 원자력발전소 1차계통의 화학제염 공정에 용이하게 적용할 수 있고, 산화환원과 침전 반응을 이용하여 공정 폐기물의 금속산화물을 침전물로 석출 및 제거함으로써 폐기물 발생량을 최소화하며, 폐기물의 처분 수용성을 높일 수 있는 폐기물 처리방법에 대한 것이다.The present invention relates to a method for treating chemical decontamination wastes in a nuclear facility using oxidation-reduction and precipitation reactions, and more particularly to a chemical decontamination process for a nuclear power plant, particularly a primary system of a pressurized light water reactor type nuclear power plant To a waste treatment method capable of minimizing the amount of waste generated by precipitating and removing metal oxides of process wastes into sediments using oxidation-reduction and precipitation reactions, and increasing the water-solubility of waste.
원자력발전소 1차계통의 산화, 환원 다단계 화학제염 기술은 작업자 방사선 피폭감소와 해체폐기물 감용 및 저준위화를 위해 1970년부터 개발되어 현재 전 세계적으로 널리 사용되고 있다. 우리나라에서도 원자력연구원, 한수원, 한전KPS, 경북대에서 연구개발을 해왔고, 1차 계통의 일부 부품(RCP) 제염기술은 한전KPS에서 10여년 전 부터 산업화하였다.Oxidation and reduction multi - stage chemical decontamination technology of the primary system of nuclear power plant has been developed since 1970 for reduction of radiation exposure of workers, reduction of waste disposal and low level, and it is widely used worldwide now. In Korea, research and development has been carried out at Korea Atomic Energy Research Institute, KHNP, KEPCO KPS, Kyungpook National University, and some parts (RCP) decontamination technology in the first line has been industrialized from KEPCO 10 years ago.
원자력발전소 1차계통은 고온(300℃ 이상), 고압(150기압 이상), 고속으로 물을 순환시키는 시스템이기 때문에 SUS, INCONEL 같은 내부식 재질을 사용하여도 계통 내부 표면에 주로 spinel 구조의 산화막(Fe(3-x-y)NixCryO4)이 생성되고, 방사성물질이 침적이 되어 작업자 방사선 피폭의 원인이 되고 있다. 이 부식산화막을 화학적으로 용해 제거하는 것이 화학제염이다. 부식산화막은 주로 환원제염 공정으로 제거하지만 크롬 산화막의 존재량이 많은 가압 경수로형 원자력발전소는 산화제염 공정과 환원제염 공정을 순차적으로 반복 적용해야 한다. 우리나라 원자력발전소는 대부분 가압경수로형 발전소이다.The primary system of the nuclear power plant is a system that circulates water at high temperature (over 300 ℃), high pressure (over 150 atmospheres) and high speed. Therefore, even if using internal materials such as SUS and INCONEL, Fe (3-xy) Ni x Cr y O 4 ) is generated and the radioactive material is deposited, causing radiation exposure of the worker. Chemical decontamination is a process in which the corrosion oxide film is chemically dissolved and removed. The corrosion oxide film is mainly removed by the reduction decontamination process. However, the pressurized light water reactor type nuclear power plant which has a large amount of chromium oxide film needs to be repeatedly applied repeatedly with the oxidizing salt process and the reduction decontamination process. Korea's nuclear power plants are mostly PWR-type power plants.
산화 및 환원 다단계 화학제염 공정 폐기물은 금속(Fe, Ni, Co, Cr, Sr, Cs 등) 부식산화막 용해 폐기물인 1차폐기물과 화학제염제(산화제염제, 환원제염제) 폐기물인 2차 폐기물로 구분되어 진다. 초창기 화학제염 기술은 제염 성능에 중점을 두어 2차 화학제 폐기물의 발생량이 매우 많았다. 그러다 방사성 폐기물 처분의 사회적 수용성 문제로 처분비가 크게 상승하여(국내 방사성폐기물 처분비 6000만원/m3 이상; 산업폐기물은 대부분 20~30만원/m3 이하) 방사성 폐기물 발생량을 줄이는 방향으로 기술개발이 이루어져 왔다.Oxidation and reduction multistage chemical decontamination process Waste is divided into primary wastes which are metal oxide (Fe, Ni, Co, Cr, Sr, Cs, etc.) corrosion oxide film wastes and secondary wastes which are chemical decontamination (oxidizing agent and reducing agent) wastes. . The early chemical decontamination technology focused on decontamination performance and generated a lot of secondary chemical waste. However, due to the social acceptability of radioactive waste disposal, the disposal cost has risen sharply (domestic radioactive waste disposal ratio is 60 million Yuan / m 3 or more, industrial waste is mostly 20-30 million yuan / m 3 or less) .
현재 전 세계적으로 가장 많이 사용되는 원전 1차계통 화학제염 기술은 산화/환원 제염공정을 순차적으로 반복 적용하는 HP_CORD_UV(Hydrgen Permanganate_Chemical Oxdation and Reduction Decontamination_Ultra Violate) 기술이다.Currently, the world's most used primary chemical chemical decontamination technology is HP_CORD_UV (Hydrgen Permanganate_Chemical Oxidation and Reduction Decontamination_Ultra Violate) technology which is repeatedly applied the oxidation / reduction decontamination process sequentially.
HP_CORD 기술 외에 현재 상용화된 제염기술들에서 서로 다른 제염제를 사용한다. 예를 들면, 산화제염 기술인 NP(Nitric Acid Permanganate)는 산도 조절 위해 HNO3를 사용하고, AP(Alkaline Permanganate)는 NaOH를 사용하여 Alkaline 분위기에서 제염하는 방법이다. AP는 Cr 산화물 산화공정에서의 중간 생성물인 MnO2의 제타 전위(Zata Potential)에 따른 계통과의 정전기적 부착을 방지하기 위한 것이나, 환원제염은 산성 분위기이여야 하므로 추가적인 pH조절에 따른 폐기물 발생의 단점이 있다. In addition to HP_CORD technology, different decontamination agents are used in currently commercialized decontamination technologies. For example, NP (Nitric Acid Permanganate), an oxidant salt technique, uses HNO 3 to control acidity and AP (Alkaline Permanganate) is a method to decontaminate in an alkaline environment using NaOH. AP is intended to prevent electrostatic adhesion to the system due to the zeta potential of MnO 2 , which is an intermediate product in the Cr oxide oxidation process. However, the reduction decontamination must be an acidic atmosphere, .
환원제염 기술은 Oxalic Acid와 Citric Acid를 함께 사용하는 Citrox 제염 기술과, 그 외 분해 및 제거가 불가한 무기산도 첨가하는 기술들도 있다. 따라서 HP_CORD 제염기술은 환원제염제를 분해가 제일 용이하면서도 유기산 중 pKa가 가장 작아 낮은 농도로 pH 조절이 가능한 Oxalic Acid만 사용하므로 폐기물 발생량을 줄이도록 개발된 기술이다.Reduction and decontamination technologies include Citrox decontamination technology, which uses Oxalic Acid and Citric Acid together, and technologies that add inorganic acids that can not be decomposed or removed. Therefore, HP_CORD decontamination technology is a technology developed to reduce the amount of waste generated by using Oxalic Acid, which has the smallest pKa of organic acids and can be adjusted to a low concentration, while it is the easiest to decompose the reducing agent.
대부분 제염기술이 부식산화막 금속 이온과 화학제염제를 주로 이온교환수지로 포집하고 있어 주된 최종 폐기물이 이온교환수지 폐기물이다. 즉, 이온교환수지 1ℓ 당 금속이온 1.9 당량을 포집할 수 있어서, 20㎖의 금속이온을 제거하기 위해 약 2,000㎖의 이온교환수지를 사용해야 하므로, 제거되는 방사성 금속물질에 비해 방사성 폐기물의 양이 지나치게 많이 발생하는 문제점이 있다.Most of the decontamination technology is caustic oxide metal ion and chemical decontamination agent mainly collecting as ion exchange resin, and the main final waste is ion exchange resin waste. That is, since it is possible to collect 1.9 equivalents of metal ion per liter of ion exchange resin, it is necessary to use about 2,000 ml of ion exchange resin in order to remove 20 ml of metal ion, so that the amount of radioactive waste is excessively There is a problem that a lot occurs.
또한, 이온교환수지 폐기물은 대부분 이온교환 수지가 차지하고 있고, 또한 이온교환 수지 폐기물은 유기물이라 처분에 제한이 있어 처분 수용성이 좋지 않은 문제점이 있다.In addition, most of the ion exchange resin waste is occupied by the ion exchange resin, and since the ion exchange resin waste is an organic matter, there is a limitation in the disposal, and the disposal water solubility is poor.
또한, 이온교환수지 폐기물 내의 수지의 구성성분은 유기물인 Styrene과 Divinyl Benzene 공중합체로 되어 있어, 가열을 하거나, MnO4 -, HCrO4 - 같은 강 산화제와 접촉하면 CO2, H2O, N2 등으로 분해되어 처분장의 장기안전성을 저해한다. 그래서 국내 처분장에서는 시멘트 고화 등의 방법으로 처분을 금하고 있으며, HIC 용기(High Integrated Container: 1m 이상 두께의 용기) 같은 곳에 담아 처분하는 방안을 현재 방사성 폐기물처분 전담 관리기관인 KORAD(한국원자력환경공단)에서 검토하고 있는 바, 처분 안정성을 향상시킬 수 있는 방사성 폐기물의 처리방법 기술이 요구되고 있는 실정이다.The resin in the ion exchange resin waste is composed of organic styrene and divinyl benzene copolymer. When it is heated or comes into contact with a strong oxidizing agent such as MnO 4 - or HCrO 4 - , CO 2 , H 2 O, N 2 And disadvantages the long-term safety of the disposal site. Therefore, the disposal of cement is prohibited at the domestic disposal sites, and disposal methods such as HIC containers (High Integrated Containers: thickness of 1m or more) are currently being carried out by KORAD (Korea Atomic Energy Authority) As a result, there is a need for a technique for treating radioactive waste that can improve disposal stability.
본 발명은 상기와 같은 문제점을 해결하기 위해 안출된 것으로, 방사성 폐기물의 양을 현저하게 줄이기 위하여 종래의 이온수지교환법이 아닌 새로운 방식으로 금속이온을 포집할 수 있는 산화환원과 침전반응을 이용한 원자력시설 화학제염 공정 폐기물의 처리방법을 제공하는데 그 목적이 있다.DISCLOSURE OF THE INVENTION The present invention has been made in order to solve the above problems, and it is an object of the present invention to provide a nuclear power plant using a redox and a precipitation reaction capable of collecting metal ions, It is an object of the present invention to provide a method for treating chemical decontamination waste.
또한, 1차 및 2차 폐기물의 형태를 수산화물 또는 산화물로 형성시켜 처분 수용성이 우수하고, 기존의 원자력 발전소에 용이하게 적용할 수 있는 산화환원과 침전반응을 이용한 원자력시설 화학제염 공정 폐기물의 처리방법을 제공하는데 그 목적이 있다.In addition, it can be applied to the nuclear waste disposal system of the nuclear facility using the oxidation and reduction and precipitation reaction which can be easily applied to the existing nuclear power plant by forming the primary and secondary wastes in the form of hydroxide or oxide. The purpose is to provide.
상기 목적을 달성하기 위한 본 발명에 따른 산화환원과 침전반응을 이용한 원자력시설 화학제염 공정 폐기물의 처리방법은 방사성 핵종을 함유하는 금속산화막(FenNimCrlO4)을 가지는 금속폐기물에 산화제염제인 과망간산을 투입하여 상기 금속산화막으로부터 크롬이온을 산화시켜 제염 폐액 상에 용해시키는 제1단계; 상기 과망간산 및 크롬이온이 용해된 제염 폐액에 제1환원제염제를 투입하고 망간이온 및 크롬이온을 환원시켜 제1침전물로 석출 및 제거하는 제2단계; 상기 제2단계를 거친 상기 제염 폐액에 유기산 제2환원제염제인 옥살산을 투입하여 상기 금속산화막으로부터 철이온 및 니켈이온을 포함하는 금속산화물과, 미반응 잔류 망간이온을 환원시켜 상기 제염 폐액 상에 용해시키는 제3단계; 상기 제염 폐액 내의 옥살산을 분해하는 제4단계; 및 상기 제염 폐액에 침전제인 탄산이온 전구체를 투입하여 실시간으로 상기 제염 폐액의 pH를 조절하고, 상기 옥살산의 분해생성물인 이산화탄소 및 상기 탄산이온 전구체와, 상기 제염 폐액 상의 금속이온들이 반응하여 형성된 제2침전물을 석출하는 제5단계;를 포함한다.In order to accomplish the above object, the present invention provides a method for treating a chemical decontamination process using an oxidation-reduction reaction and a precipitation reaction, comprising the steps of: (a) mixing a metal waste having a radionuclide-containing metal oxide film (Fe n Ni m Cr 1 O 4 ) A first step of adding permanganic acid as a salt to oxidize the chromium ions from the metal oxide film and dissolving the chromium ions on the decontamination waste solution; A second step of introducing a first reducing agent salt into the decontamination waste solution in which permanganic acid and chromium ions are dissolved, and reducing and precipitating manganese ions and chromium ions into a first precipitate; And oxalic acid as an organic acid second reducing agent salt is added to the decontamination wastewater that has undergone the second step to reduce metal ions including iron ion and nickel ion and unreacted residual manganese ions from the metal oxide film to dissolve A third step; A fourth step of decomposing oxalic acid in the decontamination waste liquid; And a carbonic acid ion precursor which is a precipitant in the decontamination waste solution to adjust the pH of the decontamination waste solution in real time to form a carbonic acid ion precursor which is a decomposition product of oxalic acid, And a fifth step of precipitating the precipitate.
상기 과제의 해결 수단에 의해, 본 발명의 산화환원과 침전반응을 이용한 원자력시설 화학제염 공정 폐기물의 처리방법은 산화제염 후 미반응 산화제염제인 망간이온(MnO4 -) 및 크롬이온(HCrO4 -)을 제1환원제염제를 이용하여 석출하고, 유기산인 제2환원제염제의 분해생성물인 이산화탄소 및 침전제를 사용하여 금속이온들을 탄산염 형태로 석출하며, 금속산화막의 금속 이온 및 잔존 산화제염제(Mn2+)를 수산화물이나 산화물 형태로 제거할 수 있으므로, 기존의 이온교환수지법을 이용한 폐기물 처리방법에 비해 폐기물의 발생량을 현저하게 줄일 수 있다.According to the solution of the above problems, the method of treating chemical decontamination wastes of nuclear facilities using oxidation-reduction and precipitation reaction of the present invention is characterized in that manganese ions (MnO 4 - ) and chromium ions (HCrO 4 - ) Is precipitated using a first reducing agent salt, and the metal ions are precipitated in the form of a carbonate by using carbon dioxide, which is a decomposition product of the second reducing agent salt, which is an organic acid, and a precipitant, and the metal ion of the metal oxide and the residual oxidizing agent (Mn 2+ ) Can be removed in the form of hydroxides or oxides, so that the amount of waste generated can be significantly reduced as compared with the conventional waste disposal method using an ion exchange resin process.
이에 따라, 금속산화막의 용해물인 금속이온들 및 산화제염제 폐기물인 Mn2 +이온을 산화물이나 수산화물 침전물, MnO2 침전물로 여과 제거하여 기존 이온교화 수지 폐기물에 비해 감용효과가 있어서, 경제성이 뛰어난 효과가 있다. 특히 중저준위 고화체 폐기물의 국내 처분단가가 200L 드럼 당 1200만원 이상이고, 이온교환 수지폐기물은 수지 유기물의 분해로 처분장 장기(수백~수천년) 안정성 문제로 수용이 되지 않아 값비싼 HIC 용기(High Integrated Container: 1m 이상 두께의 용기)에 담아 처분해야 하는 비용을 감축할 수 있다.As a result, metal ions and metal oxide ions, which are dissolved in a metal oxide film, and Mn 2 + ions, which are oxidant-based waste wastes, are removed by filtration with oxides, hydroxide precipitates and MnO 2 precipitates, . In particular, the cost of low-grade solid wastes is over KRW 12 million per 200L drums, and ion exchange resin wastes are not accepted due to long-term (hundreds to thousands of years) stability problems due to the decomposition of resin organic materials. Therefore, expensive HIC containers (High Integrated Container: 1 m or more in thickness) can be reduced.
또한, 금속산화막의 용해물인 금속이온들과 산화제염제 폐기물인 Mn2 +이온을 산화물이나 수산화물 침전물, MnO2 침전물로 여과 제거하여 이온교환수지 폐기물에 비해 처분 안전성이 크게 향상될 수 있는 효과가 있다. 이는, 이온교환수지 폐기물 내 수지의 구성성분이 유기물인 Styrene과 Divinyl Benzene 공중합체이어서, 가열을 하거나 MnO4 -, HCrO4 - 같은 강 산화제염제와 접촉하면 CO2와 H2O, N2 등으로 분해되어 처분장의 장기 안전성을 저해하기 때문이다.In addition, the disposal safety can be greatly improved as compared with the ion exchange resin waste by filtering out the metal ions as the metal oxide lysate and the Mn 2 + ions as the oxidizer salt waste with the oxides, hydroxide precipitates and MnO 2 precipitates . This is because styrene and divinyl benzene copolymers, organic constituents of the resin in the waste ion exchange resin, are heated and contacted with a strong oxidizing agent such as MnO 4 - or HCrO 4 - to form CO 2 , H 2 O or N 2 Decomposition and deteriorate the long-term safety of the repository.
도 1은 본 발명의 산화환원과 침전반응을 이용한 원자력시설 화학제염 공정 폐기물의 처리방법을 나타낸 모식도이다.FIG. 1 is a schematic view showing a method of treating a waste chemical decontamination process using a redox reaction and a precipitation reaction of the present invention.
도 2는 본 발명의 제염 폐액의 pH에 따른 탄산 이온의 함유율을 나타낸 그래프이다.2 is a graph showing the content of carbonic acid ions according to the pH of the decontamination waste solution of the present invention.
도 3은 본 발명의 처리방법에 따른 폐기물 및 종래의 이온교환수지법을 이용한 처리방법에 따른 폐기물의 부피를 비교한 도면이다.FIG. 3 is a graph comparing the volumes of wastes according to the treatment method of the present invention and the wastes according to a conventional treatment method using the ion exchange resin method.
도 4는 본 발명의 제1환원제염반응에 따라 금속이온이 제거된 모의 금속폐기물을 나타낸 사진이다.4 is a photograph showing a simulated metal waste in which metal ions have been removed according to the first reduction decontamination reaction of the present invention.
도 5는 본 발명의 산화제염반응만 수행한 모의 금속폐기물 및 제1환원제염반응을 수행하지 않은 결과를 나타낸 도면이다.FIG. 5 is a graph showing the results of the simulated metal waste performed only with the oxidant salt reaction of the present invention and the first reduced decontamination reaction.
도 6은 본 발명의 산화제염 후 제1환원제염제의 첨가에 따른 환원반응 특성 및 침전물 여과 결과를 나타낸 사진이다.FIG. 6 is a photograph showing reduction characteristics and precipitation filtration results of the first reducing agent salt after addition of the oxidizing agent salt of the present invention. FIG.
도 7은 본 발명의 산화제염을 거친 제염 폐액에 제1환원제염제 첨가 후 발생한 제1침전물 입도를 분석한 결과를 나타낸 그래프이다.FIG. 7 is a graph showing the results of analyzing the particle size of the first precipitate generated after adding the first reducing agent salt to the decontamination waste solution through the oxidant salt of the present invention. FIG.
도 8은 본 발명의 철(Ⅲ) 침전물이 형성된 제염 폐액 및 분리된 철 침전물을을 나타낸 사진이다.8 is a photograph showing the decontamination waste solution and the separated iron precipitate in which the iron (III) precipitate of the present invention is formed.
도 9는 본 발명의 철(Ⅲ), 망간(Ⅱ) 침전물이 형성된 제염 폐액 및 분리된 철, 망간 침전물을 나타낸 사진이다.FIG. 9 is a photograph showing the decontamination waste solution and separated iron and manganese precipitate in which iron (III), manganese (II) precipitates of the present invention are formed.
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이다. 그리고 본 명세서에서 사용된 용어는 실시예들을 설명하기 위한 것이며, 본 발명을 제한하고자 하는 것이 아니다. 본 명세서에서 단수형은 문구에서 특별히 언급하지 않는 한 복수형도 포함한다.BRIEF DESCRIPTION OF THE DRAWINGS The advantages and features of the present invention and the manner of achieving them will become apparent with reference to the embodiments described in detail below with reference to the accompanying drawings. However, the present invention is not limited to the embodiments described below, but may be embodied in various different forms, and these embodiments are not intended to be exhaustive or to limit the scope of the present invention to the precise form disclosed, It is provided to inform the person completely of the scope of the invention. And the terminology used herein is for the purpose of illustrating embodiments and is not intended to be limiting of the present invention. The singular forms herein include plural forms unless the context clearly dictates otherwise.
이하, 첨부된 도면들을 참조하면서 본 발명의 바람직한 실시예에 대해 상세히 설명하기로 한다. 한편, 해당 기술분야의 통상적인 지식을 가진자로부터 용이하게 알 수 있는 구성과 그에 대한 작용 및 효과에 대한 도시 및 상세한 설명은 간략히 하거나 생략하고 본 발명과 관련된 부분들을 중심으로 상세히 설명하도록 한다.Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. Brief Description of Drawings FIG. 1 is a block diagram of a computer system according to an embodiment of the present invention; FIG. 2 is a block diagram of a computer system according to an embodiment of the present invention; FIG.
도 1은 본 발명의 산화환원과 침전반응을 이용한 원자력시설 화학제염 공정 폐기물의 처리방법을 나타낸 모식도이다.FIG. 1 is a schematic view showing a method of treating a waste chemical decontamination process using a redox reaction and a precipitation reaction of the present invention.
도 1을 참조하면, 본 발명에 따른 산화환원과 침전반응을 이용한 원자력시설 화학제염 공정 폐기물의 처리방법은 산화제염 공정인 제1단계, 산화제염페기물처리 공정인 제2단계, 환원제염 공정인 제3단계, 제2환원제염제 분해공정인 제4단계 및 폐기물 침전처리 공정인 제5단계를 포함한다.Referring to FIG. 1, the method of treating the chemical decontamination waste in the nuclear facility using the redox reaction and the precipitation reaction according to the present invention includes a first step of an oxidant salt process, a second step of an oxidant salt waste treatment process, A fourth step of a second reducing agent-based cracking process, and a fifth step of a waste precipitation treatment process.
제1단계를 상세히 설명하기 앞서, 방사성 핵종을 함유하는 금속산화막이 생성된 계통 내부를 전처리하는 단계가 더 포함될 수 있다. 상기 전처리는 금속산화막이 생성된 계통을 초순수에 담지하여 초음파로 세척함으로써, 계통 내부의 불순물을 제거하여 후술할 제2단계 내지 제5단계에서 불순물에 의한 부반응이 발생하는 것을 방지하기 위함이다.Prior to describing the first step in detail, the step of pre-treating the inside of the system in which the metal oxide film containing the radionuclide is generated may be further included. In the pretreatment, the system in which the metal oxide film is formed is supported on ultrapure water and is washed with ultrasonic waves to remove impurities in the system to prevent side reactions caused by impurities in the second to fifth steps to be described later.
제1단계는 방사성 핵종을 함유하는 계통 내부에 생성된 금속산화막에 산화제염제인 과망간산 또는 과망간산염을 투입하여 상기 금속산화막으로부터 크롬산화물을 크롬이온으로 산화시켜 제염 폐액 상에 용해시킨다.In the first step, permanganic acid or permanganate, which is an oxidizer salt, is added to the metal oxide film formed in the system containing the radionuclide, and the chromium oxide is oxidized to chromium ions from the metal oxide film and dissolved in the decontamination waste solution.
본 발명에서 계통은 원자력 발전소의 1차 계통 및 2차 계통을 의미한다. 1차 계통은 원자로계통 또는 프라이머리(primary) 시스템을 말하며, 원자로를 둘러싼 각종 기기와 설비를 즉, 원자로의 출력을 제어하는 제어봉, 냉각재가 순환되는 배관들, 가압기, 증기발생기, 격납용기 등이 포함된다. 2차 계통은 이차적인(secondary) 시스템을 말하며, 전기 생산에 필요한 터빈, 발전기 및 복수기가 중심이 되고, 물을 증기발생기로 공급하는 각종 설비들을 포함한다.The system in the present invention means a primary system and a secondary system of a nuclear power plant. The primary system is the reactor system or the primary system. It is used to control various devices and facilities surrounding the reactor, ie, control rods for controlling the output of the reactor, piping for circulating coolant, pressurizer, steam generator, . The secondary system is a secondary system, which includes the turbines, generators, and condensers necessary for electricity production, and various facilities that supply water to the steam generator.
또한, 본 발명의 계통은 SUS304(steel use stainless) 합금으로 이루어질 수 있고, 금속산화막은 상기 SUS304 합금으로부터 용해된 금속성분들에 의해 형성된 것이며, Fe(3-x-y)NixCryO4의 spinel 구조일 수 있다.Also, the system of the present invention may be made of SUS 304 (steel use stainless) alloy, the metal oxide film is formed of metallic components dissolved from the SUS 304 alloy, and the spinel structure of Fe (3-xy) Ni x Cr y O 4 Lt; / RTI >
한편, 산화제염제인 과망간산 또는 과망간산염은 강산화제이고, 금속산화막에서의 크롬산화물(Cr2O3)을 HCrO4 - 또는 CrO4 -로 즉, Cr3 +을 Cr6 +로 산화시켜 제염 페액에 용해시키는데, Cr6 +는 산성 조건에서 환원될 수 있으므로 Cr3 + 상태로 다량 용해되어 있을 수 있다. 특별히 한정하는 것은 아니나, 상기 과망간산염으로 과망간산 칼륨(KMnO4)을 사용할 수 있으며, 산화제염제를 대신하여 산도 조절제로서 무기산을 투입하여 사용할 수도 있다.On the other hand, the oxidizer salts of permanganic acid or permanganate is a strong oxidizing agent, and a chromium oxide in the metal oxide (Cr 2 O 3) HCrO 4 - or CrO 4 - in other words, by the oxidation of Cr 3 + to Cr 6 + the decontamination peaek Since Cr 6 + can be reduced in acidic conditions, it can be dissolved in Cr 3 + state. Although potassium permanganate (KMnO 4 ) can be used as the permanganate salt, inorganic acid can be used as an acidity controlling agent instead of an oxidizing agent.
본 발명의 제1단계에서 산화제염제로 1 ~ 10 mmol/L의 용액을 사용할 수 있으며, 상기 범위를 벗어날 경우 MnO2 입자의 과도한 집적으로 인해 크롬이온의 용해 효율이 저하되는 문제점이 발생한다.In the first step of the present invention, a solution of 1 to 10 mmol / L can be used as an oxidizing agent. If the concentration is outside the above range, the efficiency of chromium ion dissolution decreases due to excessive accumulation of MnO 2 particles.
또한, 상기 산화제염제를 투입한 후 크롬산화물이 산화 제염되는 시간은 60분 내지 600분일 수 있으며, 더 바람직하게는 120분 내지 300분일 수 있다.In addition, the time for oxidizing and decontaminating the chromium oxide after the oxidizing agent is added may be 60 minutes to 600 minutes, and more preferably 120 minutes to 300 minutes.
예를 들어, 제1단계에서 산화제염제인 과망간산은 크롬산화물을 산화시키면서, 하기 반응식 1과 같이, 자신은 환원되어 MnO2를 생성할 수 있다.For example, in the first step, permanganic acid, which is an oxidant salt, oxidizes chromium oxide and, as shown in Reaction Scheme 1 below, can be reduced to produce MnO 2 .
[반응식 1][Reaction Scheme 1]
4H+ + MnO4 - + 3e- → MnO2(s) + 2H2O4H + + MnO 4 - + 3e - ? MnO 2 (s) + 2H 2 O
다음으로, 제2단계는 상기 크롬이온이 용해된 제염 폐액에 제1환원제염제를 투입하고 미반응된 상기 산화제염제 및 크롬이온을 환원시켜 제1침전물로 석출 및 제거한다. Next, in the second step, the first reducing agent salt is added to the decontamination waste solution in which the chromium ions are dissolved, and the unreacted oxidant salt and the chromium ions are reduced to precipitate and remove the first precipitate.
이때, 상기 제1환원제염제의 환원력은 후술할 제3단계에서 제2환원제염제인 옥살산의 환원력보다 작은 것이 바람직하다.At this time, the reducing power of the first reducing agent salt is preferably smaller than the reducing power of oxalic acid as the second reducing agent salt in the third step described later.
이를 구체적으로 설명하면, 제1단계를 거친 제염 페액에는 Cr3 +와 함께, 과망간산이 환원되어 생성된 MnO2 및 잔류하는 MnO4 -이 함유되어 있을 수 있다. 이러한 제염 폐액에 제1환원제염제를 사용하지 않고 환원력이 강한 옥살산을 투입할 경우, MnO2의 Mn4 + 이 Mn2 + 로 환원되어 제염 폐액에 용해되므로, Mn2 + 를 제거하기 위해서는 이온교환수지법을 이용해야 하는 문제가 발생한다.Specifically, the decontamination solution after the first step may contain CrO 3 + , MnO 2 produced by reduction of permanganic acid, and residual MnO 4 - . When oxalic acid with strong reducing power is added to the decontamination waste solution without using the first reducing agent salt, Mn 4 + of MnO 2 is reduced to Mn 2 + and dissolved in the decontamination waste solution. In order to remove Mn 2 + There is a problem to use the law.
반면에, 제2단계에서의 제1환원제염제는 옥살산보다 환원력이 작아 MnO2의 Mn4+ 를 Mn2 + 로 환원시키기 어려워 침전물 형태의 MnO2로 유지시킬 수 있어서 고액분리로 편리하게 제거할 수 있다. 이에 따라, 제1단계 및 옥살산을 투입하는 제3단계의 사이에 옥살산보다 환원력이 작은 제1환원제염제를 투입하는 제2단계를 진행하는 것이 바람직하다.On the other hand, the first reducing agent salts in the second step may be conveniently removed by solid-liquid separation method capable of holding an Mn 4+ of reducing power smaller than oxalic MnO 2 MnO 2 in the precipitate was difficult to form the reduction in Mn + 2 have. Accordingly, it is preferable to carry out a second step of introducing a first reducing agent salt having a reducing power lower than that of oxalic acid between the first step and the third step of adding oxalic acid.
또한, 제1환원제염제는 제염 폐액의 pH를 상승시켜서 제염 폐액 상에 용해되어 있는 Cr3 +을 Cr(OH)3 로 석출하고, MnO2 침전물의 제타 전위(zeta potential)가 (-)값을 가지도록 강알칼리성 물질을 사용하는 것이 바람직하다. 예를 들어, MnO2의 등전점(isoelectric point)의 pH는 4~5이므로, 강알칼리성의 제염 폐액 상에서 음전하의 제타 전위을 가지게 된다. 이때 SUS304 합금 재질의 계통 또한 강알칼리 조건에서 음전하의 제타 전위를 가지게 되어서 MnO2와 척력이 발생하게 되므로, 보다 더 안정적으로 침전물을 금속폐기물로부터 분리할 수 있다.In addition, the first reducing agent salt causes the pH of the decontamination waste liquid to rise so that the Cr 3 + dissolved in the decontamination waste liquid is precipitated as Cr (OH) 3 , and the zeta potential of the MnO 2 precipitate is It is preferable to use a strong alkaline substance. For example, since the pH of the isoelectric point of MnO 2 is 4 to 5, it has a negative zeta potential on the strongly alkaline decontamination waste liquid. At this time, SUS304 because the system also be strong alkaline conditions have a negative zeta potential of MnO 2 and the repulsive force from the alloys will occur, it is possible to separate the precipitate from the more stable metallic waste.
따라서, 본 발명의 제1환원제염제로서 제2환원제염제보다 환원력이 작고 강알칼리성인 물질을 사용하는 것이 바람직하며, 예를 들어 하이드라진(hydrazine, N2H4)을 사용할 수 있다.Therefore, as the first reducing agent salt of the present invention, it is preferable to use a substance having a stronger reducing power and stronger alkali than the second reducing agent salt. For example, hydrazine (N 2 H 4 ) may be used.
제2단계에서 제1환원제염제로 하이드라진을 이용하여 미반응 잔류 산화제염제인 HMnO4 및 HCrO4 -은 하기 반응식 2와 같이 반응할 수 있다.In the second step, unreacted residual oxidizing agents HMnO 4 and HCrO 4 - using hydrazine as the first reducing agent salt may be reacted as shown in the following reaction formula 2.
[반응식 2][Reaction Scheme 2]
3N2H5 + + 4MnO4 - + H+ → 3N2 + 4MnO2 + 8H2O3N 2 H 5 + + 4MnO 4 - + H + ? 3N 2 + 4MnO 2 + 8H 2 O
3N2H5 + + 4HCrO4 - + 13H+ → 4Cr3+ + 3N2 + 16H2O3N 2 H 5 + + 4HCrO 4 - + 13H + - > 4Cr 3+ + 3N 2 + 16H 2 O
상기 반응식 2에서 알수 있듯이, 하이드라진은 무해한 N2로 산화되어 무해한 반응물을 생성하고, 수소이온이 소모되어 제염 폐액의 pH를 상승시키며, 착화제가 없어 Cr3+는 용이하게 수산화물로 침전될 수 있다.As shown in Reaction Scheme 2, hydrazine is oxidized to harmless N 2 to produce a harmless reaction product, the hydrogen ion is consumed, the pH of the decontamination waste solution is raised, and Cr 3+ can easily precipitate as a hydroxide because of no complexing agent.
상기 제1환원제염제는 산화환원 반응에 필요한 적정량이 첨가될 수 있고, 예를 들어 5 ~ 15mmol/L 첨가될 수 있고, 바람직하게는 6 ~ 12mmol/L 사용될 수 있다. 또한, 제1환원제염제를 투입한 후 망간이온 및 크롬이온이 환원 제염되는 시간은 1분 내지 60분인 것이 바람직하다. 제1환원제염제의 첨가량이 5mmol/L 미만이거나 환원제염시간이 1분 미만일 경우 망간이온 및 크롬이온의 환원반응을 충분히 유도할 수 없기 때문에 바람직하지 않고, 첨가량이 15mmol/L 또는 환원제염시간이 60분을 초과할 경우 완벽한 환원물을 형성한 후 불필요하게 에너지를 소모한다는 측면에서 바람직하지 않다.The first reducing agent salt may be added in an appropriate amount for the oxidation-reduction reaction, for example, 5-15 mmol / L, preferably 6-12 mmol / L. Further, it is preferable that the time for reduction decontamination of manganese ion and chromium ion after the first reducing agent salt is added is 1 to 60 minutes. When the addition amount of the first reducing agent salt is less than 5 mmol / L or when the reduction decontamination time is less than 1 minute, the reduction reaction of manganese ions and chromium ions can not be sufficiently induced, and the addition amount is preferably 15 mmol / Minute, it is undesirable from the viewpoint that energy is unnecessarily consumed after forming a complete reduction product.
다음으로, 제3단계는 상기 제2단계를 거친 상기 제염 폐액에 제2환원제염제인 옥살산을 포함하는 유기산을 투입하여 상기 금속산화막으로부터 철이온 및 니켈이온을 포함하는 금속산화물과, 미반응 잔류 망간이온을 환원시켜 상기 제염 폐액 상에 용해시킨다.Next, in the third step, an organic acid including oxalic acid, which is a second reducing agent salt, is added to the decontamination waste solution that has undergone the second step, and a metal oxide containing iron ion and nickel ion is removed from the metal oxide film, Ions are reduced and dissolved on the decontamination waste solution.
옥살산을 포함하는 유기산은 금속폐기물의 금속산화막으로부터 철산화물(Fe2O3, Fe3O4) 및 니켈산화물(NiO)을 산화시켜 철이온(Fe2 +, Fe3 +) 및 니켈이온(Ni2+)을 제염하는 환원 제염 공정의 주제염제이다. 예를 들어 Fe2O3의 철 이온은 하기 반응식 3과 같이 환원될 수 있다.Organic acids including oxalic acid oxidize iron oxides (Fe 2 O 3 , Fe 3 O 4 ) and nickel oxides (NiO) from metal oxide films of metal waste to produce iron ions (Fe 2 + , Fe 3 + ) and nickel ions 2+ ) is a decontamination process. For example, iron ions of Fe 2 O 3 can be reduced as shown in Reaction Scheme 3 below.
[반응식 3][Reaction Scheme 3]
Fe2O3 + H2C2O4 + 4H+ → Fe2+ + 3H2O + 2CO2 Fe 2 O 3 + H 2 C 2 O 4 + 4H + → Fe 2+ + 3H 2 O + 2CO 2
덧붙여, 상기 제2단계 후 여과되지 않은 MnO2, 잔류 산화제염제인 HMnO4가 있어도 환원제염 공정에서 Mn2 +로 모두 환원될 수 있으므로, MnO2가 계통 내에 잔류하는 문제가 발생하지 않는다.In addition, even after the second step, unreacted MnO 2 and HMnO 4 as a residual oxidizing agent can be reduced to Mn 2 + in the reduction decontamination step, so that MnO 2 does not remain in the system.
산화제염 후, 본 발명과 같이 제1환원제염제를 사용하지 않고 바로 옥살산을 투입하여 환원제염 공정을 진행할 시, 잔류 금속이온들 중 Cr3 +가 옥살산과 음이온 착화물을 형성하므로, 양이온 교환수지로 제거되지 않아 별도의 음이온 교환수지를 이용해야 하는데, 이럴 경우 옥살산이 HC2O4 - 음이온으로 존재하여 환원제염제까지 제거해야 하기 때문에 음이온교환처리가 어렵다. 반면에, 본 발명에서는 Cr3 +가 옥살산과 음이온 착화물을 형성하지 않으므로 용이하게 수산화물로 침전되어 MnO2와 함께 여과처리로 제거할 수 있다. 덧붙이자면, 본 발명의 3단계에서 미량의 금속이온들을 제거하기 위해 추가적으로 이온교환수지법을 이용할 수도 있으나, 종래의 이온교환수지법을 이용한 처리방법보다는 폐기물의 양을 매우 감소시킬 수 있다.When oxalic acid is directly added to the reducing chemical decontamination process without using the first reducing agent salt as in the present invention, Cr 3 + of the residual metal ions forms an anionic complex with oxalic acid, It is necessary to use a separate anion exchange resin because oxalic acid is present as HC 2 O 4 - anion and it is necessary to remove even the reducing agent salt, so that anion exchange treatment is difficult. On the other hand, in the present invention, since Cr 3 + does not form an anion complex with oxalic acid, it can be easily precipitated as a hydroxide and removed by filtration together with MnO 2 . In addition, although the ion exchange resin method may be additionally used to remove a trace amount of metal ions in the third step of the present invention, the amount of waste can be significantly reduced rather than the conventional ion exchange resin processing method.
다음으로, 제4단계는 상기 제염 폐액 내의 제2환원제염제를 분해한다. 예를 들어, 옥살산은 물 및 이산화탄소로 분해되는데, 물은 액체상태로 제염 폐액 상에 용해되고, 이산화탄소는 탄산으로 용해된다.Next, the fourth step decomposes the second reducing agent salt in the decontamination waste liquid. For example, oxalic acid is decomposed into water and carbon dioxide, water is dissolved in a liquid state on decontamination waste liquid, and carbon dioxide is dissolved in carbonic acid.
제염 폐액 상의 제2환원제염제를 분해시키기 위한 방법으로 염소나 오존과 같은 산화력이 강한 물질을 투입하는 보통의 산화공정을 이용할 수 있으나, 고도산화공정(Advanced Oxidation Process, AOP)을 이용하는 것이 바람직하다.The second reducing agent on the decontamination waste liquid may be an ordinary oxidation process for decomposing a salt of a reducing agent, such as chlorine or ozone, but it is preferable to use an advanced oxidation process (AOP).
고도산화공정은 보통의 산화공정에서 사용하는 산화제보다 더 강한 산화력을 가지는 수산화 라디칼을 중간 생성물질로 생성하여 수중의 물질을 분해하는 수처리 기술을 총칭한다. 예를 들어, 오존을 투입하고 pH를 조절하는 방식 또는 과산화수소와 자외선으로 처리하는 방식을 사용할 수 있는데, 바람직하게는 과산화수소와 자외선을 이용한 자외선 고도산화공법 (UV-AOP)을 통해 분해할 수 있다.The advanced oxidation process is collectively referred to as a water treatment technique in which a hydroxide radical having an oxidizing power stronger than an oxidizing agent used in an ordinary oxidation process is produced as an intermediate product to decompose the substance in the water. For example, a method of adding ozone and controlling the pH or a method of treating with hydrogen peroxide and ultraviolet rays can be used. Preferably, the ultraviolet ray can be decomposed by UV-AOP using hydrogen peroxide and ultraviolet rays.
마지막으로, 제5단계는 상기 제염 폐액에 침전제인 탄산이온 전구체를 투입하여 실시간으로 상기 제염 폐액의 pH를 조절하고, 상기 제2환원제염제의 분해생성물인 이산화탄소 및 상기 탄산이온 전구체와, 상기 제염 폐액 상의 금속이온들이 반응하여 형성된 제2침전물을 석출한다.Finally, in the fifth step, a carbonic acid ion precursor, which is a precipitant, is added to the decontamination waste solution to control the pH of the decontamination waste solution in real time, and carbon dioxide and the carbonate ion precursor, which are decomposition products of the second reducing agent salt, And the precipitated second precipitate is formed.
탄산이온 전구체의 투입으로 인하여 상기 제염 폐액의 pH는 5 내지 12로 조절되는 것이 바람직하다. 이때, 제염 폐액의 pH가 조절되면서, 이산화탄소 및 탄산이온 전구체로부터 탄산이온(CO3 2-)이 형성되고, 상기 탄산이온은 상기 제염 폐액 상의 금속이온들과 반응하여 탄산염 또는 금속수산화물 형태의 상기 제2침전물을 형성한다.The pH of the decontamination waste solution is preferably adjusted to 5 to 12 due to the introduction of the carbonate ion precursor. At this time, while the pH of the decontamination waste liquid is controlled, carbonate ions (CO 3 2- ) are formed from carbon dioxide and carbonate ion precursors, and the carbonate ion reacts with metal ions on the decontamination waste solution to form carbonates or metal hydroxides 2 Form a precipitate.
구체적으로, 상기 탄산이온 전구체는 탄산나트륨, 탄산수소나트륨 및 이들의 혼합물로 이루어지는 군으로부터 선택된 어느 하나일 수 있다.Specifically, the carbonate ion precursor may be any one selected from the group consisting of sodium carbonate, sodium hydrogencarbonate, and mixtures thereof.
도 2는 본 발명의 제염 폐액의 pH에 따른 탄산 이온의 함유율을 나타낸 그래프이다.2 is a graph showing the content of carbonic acid ions according to the pH of the decontamination waste solution of the present invention.
도 2를 참조하면, 탄산나트륨 또는 탄산수소나트륨과, 탄산은 대부분 pH 8 이상에서 탄산이온으로 분해되므로, 제염 폐액의 pH는 8 내지 12로 조절되는 것이 더 바람직하다.Referring to FIG. 2, it is more preferable that the pH of the decontamination waste solution is adjusted to 8 to 12 since sodium carbonate, sodium hydrogencarbonate, and carbonic acid are mostly decomposed to carbonate ion at pH 8 or higher.
예를 들어, 옥살산에 의해 제염 폐액 상에 용해된 철이온(Fe2 +) 및 니켈이온(Ni2+), 잔류하는 망간이온(Mn2+)와 같은 2가 금속 방사성 핵종들 뿐만 아니라 잔류하는 크롬이온(Cr3 +) 및 철이온(Fe3+)와 같은 3가 금속 방사성 핵종들은, 제염 폐액의 pH가 조절되어 형성된 탄산 이온을 통해 탄산염 형태로 석출할 수 있다. 탄산염 형태의 제2침전물은 하기 반응식 4에 의하여 형성될 수 있다.For example, divalent metal radionuclides such as iron ions (Fe 2 + ) and nickel ions (Ni 2+ ) and residual manganese ions (Mn 2+ ) dissolved in decontamination effluent by oxalic acid, chromium ions (Cr + 3) and iron ion (Fe 3+) and trivalent metal radionuclides are the same, through a carbonate ion is a pH adjustment formed of decontamination waste liquid can be precipitated to form a carbonate. A second precipitate in the carbonate form can be formed according to the following Reaction Scheme 4.
[반응식 4][Reaction Scheme 4]
Fe2+ + CO3 2- → FeCO3(s)Fe 2+ + CO 3 2- ? FeCO 3 (s)
Ni2+ + CO3 2- → NiCO3(s)Ni 2+ + CO 3 2- ? NiCO 3 (s)
Mn2+ + CO3 2- → MnCO3(s)Mn 2+ + CO 3 2- ? MnCO 3 (s)
2Fe3+ + 3CO3 2- → Fe2(CO3)3(s)2Fe 3+ + 3CO 3 2- ? Fe 2 (CO 3 ) 3 (s)
2Cr3+ + 3CO3 2- → Cr2(CO3)3(s)2Cr 3+ + 3CO 3 2- ? Cr 2 (CO 3 ) 3 (s)
도 3은 본 발명의 처리방법에 따른 폐기물 및 종래의 이온교환수지법을 이용한 처리방법에 따른 폐기물의 부피를 비교한 도면으로서, (a)는 종래의 이온교환수지법을 이용한 처리방법에 따른 폐기물, (b)는 본 발명의 처리방법에 따른 폐기물의 양을 개략적으로 도시한 도면이다.FIG. 3 is a graph comparing the volumes of wastes according to the treatment method of the present invention and the wastes according to the conventional treatment methods using the ion exchange resin method, wherein (a) shows the wastes according to the conventional treatment method using ion exchange resin , (b) are diagrams schematically showing the amount of waste according to the treatment method of the present invention.
도 3에 도시된 바와 같이, 종래의 이온교환수지법을 이용한 처리방법은 이온교환수지를 사용하므로 제거되는 방사성 금속물질에 비해 방사성 폐기물의 양이 지나치게 많이 발생하는 반면, 본 발명의 폐기물의 처리방법은 금속산화막의 용해물인 금속이온들 및 산화제염제 폐기물인 Mn2 +이온을 산화물이나 수산화물 침전물, MnO2 침전물로 여과 제거하여 기존 이온교화 수지 폐기물에 비해 감용효과가 있어서, 경제성이 뛰어난 효과가 있다.As shown in FIG. 3, since the conventional ion exchange resin processing method uses an ion exchange resin, the amount of radioactive waste is excessively larger than that of the radioactive metal material to be removed. On the other hand, The metal ions which are metal oxide films dissolved in the metal oxide film and the Mn 2 + ions which are the oxidizer salt waste are filtered out by the precipitates of oxides, hydroxide precipitates and MnO 2 , .
구체적인 예를 들면, 종래의 이온교환수지법을 이용한 처리방법을 통해 1몰의 망간이온(Mn2 +)을 제거하기 위해서 1.05L의 이온교환수지 폐기물이 발생하며, 본 발명의 처리방법을 통해 석출 및 제거되는 1몰 MnO2의 질량은 86.9g이고, 비중은 5g/cm3이므로, 1몰의 MnO2의 부피는 0.01738L이다. 즉, 종래기술에 따라 1몰의 망간이온을 제거하기 위해 1.05L의 폐기물이 발생하였고, 본 발명에 따라 제거된 1몰의 MnO2의 부피는 0.01738L이므로, 종래기술 대비 본 발명의 처리방법을 이용할 경우 폐기물의 부피를 약 1/64 감용할 수 있다.For example, 1.05 L of ion exchange resin waste is generated in order to remove 1 moles of manganese ions (Mn 2 + ) through the conventional treatment method using the ion exchange resin method, and through the treatment method of the present invention, And the mass of 1 mol of MnO 2 to be removed is 86.9 g and the specific gravity is 5 g / cm 3, the volume of 1 mol of MnO 2 is 0.01738 L. That is, according to the prior art, 1.05 L of waste was generated in order to remove 1 mol of manganese ions, and the volume of 1 mol of MnO 2 removed according to the present invention was 0.01738 L, When used, the volume of waste can be reduced by about 1/64.
이러한 본 발명에 따른 산화환원과 침전반응을 이용한 원자력시설 화학제염 공정 폐기물의 처리방법은 HC CORD(Hydrazine Carbonate Chemical Oxidation Reduction Decontamination)라고 명명할 수 있다.The method of treating the chemical decontamination process waste using the oxidation reduction and precipitation reaction according to the present invention can be called HC CORD (Hydrazine Carbonate Chemical Oxidation Reduction Decontamination).
이하, 본 발명을 실시예에 의하여 더욱 상세히 설명하나, 본 발명의 범위가 실시예에 의해 제한되는 것은 아니다.Hereinafter, the present invention will be described in more detail by way of examples, but the scope of the present invention is not limited by the examples.
<실험예><Experimental Example>
1. 제염 폐액에서의 Mn과 Cr 제거1. Removal of Mn and Cr from decontamination waste liquid
모의 금속폐기물로서 금속산화막(FenNimCrlO4)을 가지는 펠렛 형상의 SUS304를 준비하고, 상기 SUS304 펠렛에 HMnO4 용액을 3mmol/L 투입하여 Cr2O3 의 Cr3 +를 HCrO4 -의 Cr6 +로 산화시켜 제염 폐액 상에 용해시켰다. 산화반응은 총 3시간 동안 진행되었으며, 1시간 간격으로 제염 폐액의 pH 및 금속이온들의 농도를 측정하여 기록하였다.Pellet-shaped SUS304 having a metal oxide film (Fe n Ni m Cr 1 O 4 ) as a simulated metal waste was prepared and 3 mol / L of HMnO 4 solution was added to the SUS304 pellet to prepare Cr 3 + of Cr 2 O 3 as HCrO 4 - &lt; / RTI &gt; of Cr &lt; 6 + &gt; to dissolve on the decontamination waste solution. Oxidation reactions were carried out for a total of 3 hours and the pH and concentration of metal ions in the decontamination wastewater were measured and recorded at 1 hour intervals.
산화반응 종료 후, N2H4 용액을 투입하여 미반응 MnO4 -, HCrO4 -를 각각 MnO2, Cr3+로 환원시킨 후, MnO2 및 Cr(OH)3로 침전시켰다. 환원반응은 총 15분 동안 진행되었으며, 5분 간격으로 N2H4 용액을 더 첨가한 후 모의 제염 폐액의 pH 및 금속이온들의 농도를 측정하여 기록하였다. 구체적으로, N2H4 용액 3.73mmol/L 투입하고 5분동안 반응시킨 후, N2H4 용액 3.73mmol/L를 더 투입하여 5분동안 반응시켰으며, N2H4 용액 3.73mmol/L를 더 투입하여 5분동안 반응시켰다.After completion of the oxidation reaction, N 2 H 4 solution was added to reduce unreacted MnO 4 - and HCrO 4 - into MnO 2 and Cr 3 + , respectively, and then precipitated with MnO 2 and Cr (OH) 3 . The reduction reaction was carried out for a total of 15 minutes. After addition of N 2 H 4 solution every 5 minutes, the pH and the concentration of metal ions in the decontamination waste solution were measured and recorded. Specifically, 3.73 mmol / L of N 2 H 4 solution was added and reacted for 5 minutes. Then, 3.73 mmol / L of N 2 H 4 solution was further added for 5 minutes, and 3.73 mmol / L of N 2 H 4 solution Was further added thereto and reacted for 5 minutes.
하기 표 1 및 표 2는 본 발명의 제1환원제염반응 및 제2환원제염반응에 따른 제염 폐액에서의 금속이온 제거 효율을 나타낸 것이고, 도 4는 본 발명의 제1환원제염반응에 따라 금속이온이 제거된 모의 금속폐기물을 나타낸 사진이다. 도 5는 본 발명의 제1환원제염반응의 효과를 나타내기 위한 도면으로서, (a)는 본 발명의 산화제염반응만 수행한 모의 금속폐기물을 나타낸 사진이고, (b)는 본 발명의 제1환원제염반응을 수행하지 않은 결과를 나타낸 그래프이다. The following Table 1 and Table 2 show the metal ion removal efficiency in the decontamination waste solution according to the first reduction decontamination reaction and the second reduction decontamination reaction of the present invention. Is a photograph showing the removed simulated metal waste. FIG. 5 is a photograph showing the effect of the first reduction decontamination reaction of the present invention, wherein FIG. 5 (a) is a photograph showing a simulated metal waste subjected to only the oxidant salt reaction of the present invention, Which is a graph showing the results obtained when the reduction decontamination reaction is not performed.
구분division HMnO4(mmol/L)HMnO 4 (mmol / L) N2H4(mmol/L)N 2 H 4 (mmol / L) 시간(분)Time (minutes) pHpH H+(mmol/L)H + (mmol / L) MnO4 -(mmol/L)MnO 4 - (mmol / L) MnO2(mmol/L)MnO 2 (mmol / L) HClO4 -(mg/L)HClO 4 - (mg / L) Cr3 +(mg/L)Cr 3 + (mg / L) Cr3 +(mmol/L)Cr 3 + (mmol / L)
산화제염Oxidant salt 초기Early -- -- 00 2.642.64 2.292.29 3.003.00 00 00 -- --
1-11-1 33 -- 6060 2.722.72 1.911.91 2.462.46 0.540.54 5.355.35 -- --
1-21-2 33 -- 120120 2.72.7 2.002.00 2.462.46 0.540.54 8.78.7 -- --
1-31-3 33 -- 180180 2.682.68 2.092.09 2.082.08 0.920.92 11.8511.85 -- --
제1환원제염1st reduction decontamination 1-3a1-3a -- 3.733.73 55 3.283.28 0.520.52 0.380.38 2.622.62 00 1515 0.290.29
1-3b1-3b -- 7.467.46 1010 7.537.53 00 0.020.02 2.982.98 00 00 00
1-3c1-3c -- 11.1911.19 1515 9.259.25 00 0.020.02 2.982.98 00 00 00
상기 표 1을 참조하면, HCrO4 -의 농도는 180분 동안 산화제염 반응시킨 1-3에서 가장 높게 측정되었으며, 120분 동안 산화제염 반응시킨 1-2가 그 뒤를 이었다. 즉, Cr2O3 의 Cr3 +를 HCrO4 -의 Cr6 +의 산화제염 반응을 효율적으로 진행하기 위해서 HMnO4 용액 3mM/L을 사용하고, 120분 이상 산화제염 반응시키는 것이 바람직한 것을 알 수 있다.Referring to Table 1 above, the concentration of HCrO 4 - was the highest in the group 1-3 which was subjected to the oxidant salt reaction for 180 minutes, followed by the group 1-2 which was the oxidant salt reaction for 120 minutes. That is, it is preferable to use 3 mM / L of HMnO 4 solution for oxidative salt reaction for 120 minutes or more in order to efficiently conduct the oxidative salt reaction of Cr 6 + of Cr 2 O 3 with Cr 3 + of HCrO 4 - have.
또한, 1-3의 산화제염반응 후, 제1환원제염반응을 진행한 1-3a 내지 1-3c 중 1-3b 및 1-3c에서 Cr3 + 이온이 모두 Cr(OH)3로 침전되어 Cr3 +의 농도가 0 mmol/L을 나타낸 것을 알 수 있고, MnO4 -의 농도가 0.02mmol/L로 나타났으나 이는 실험 오차로 MnO4 -가 MnO2로 완전히 침전된 것으로 봐도 무방하다.After 1-3 oxidizer salt reactions, the Cr 3 + ions were precipitated as Cr (OH) 3 in 1-3b and 1-3c of 1-3a to 1-3c where the first reduction decontamination reaction proceeded to form Cr 3 + concentration was 0 mmol / L, and the concentration of MnO 4 - was 0.02 mmol / L. However, it can be considered that MnO 4 - was completely precipitated with MnO 2 by the experimental error.
이는 도 4를 참조하여 모의 금속폐기물인 SUS304 펠렛을 살펴보면 1-3c에서 모의 제염 폐액의 pH가 상승함에 따라 SUS304 펠렛의 표면에 집적되었던 MnO2 입자들이 떨어져 나가 SUS304 펠렛의 색상이 변한 것을 알 수 있기 때문이며, 도 5 (a)의 사진과 비교하였을 때 차이가 더 확연히 드러날 수 있다.This is because with reference to Figure 4 looking simulated waste metal of SUS304 pellet can be seen that as the pH of the simulated decontamination waste liquid rising from 1-3c out MnO 2 particle that was accumulated in the surface of the SUS304 pellets are turned away from the color of the pellets SUS304 , And the difference can be more evident when compared with the photograph of FIG. 5 (a).
구분division 산화제염Oxidant salt HMnO4 HMnO 4 제1환원제염1st reduction decontamination N2H4 N 2 H 4 제2환원제염2nd reduction decontamination C2H2O4 C 2 H 2 O 4 고액분리Solid-liquid separation IXIX
2-12-1 3mmol/L3 mmol / L ×× -- ×× -- -- --
2-22-2 ×× -- ×× -- 30mmol/L30 mmol / L --
상기 표 2 및 도 5 (a)를 참조하면, 2-1에서는 3M HMnO4 용액 3 mmol/L 를 첨가하여 산화제염반응만 수행하였으며, 2-1에 따라 산화제염 처리된 SUS304 펠렛은 도 4와 달리 표면에 MnO2가 집적되어 완전히 검은색을 띠는 것을 확인할 수 있다. Referring to Table 2 and FIG. 5 (a), in 2-1, only 3 mmol / L of 3M HMnO 4 solution was added to perform the oxidant salt reaction. SUS304 pellets treated with oxidizing agent according to 2-1, It can be seen that MnO 2 is integrated on the surface and is completely black.
2-2에서는 산화제염반응 후 C2H2O4 용액 30 mmol/L 을 첨가하여 제2환원제염반응을 바로 수행하였고, 방사성 핵종 금속이온들을 제거하기 위하여 이온교환수지(IX, ion-exchange)를 이용하였다. 이때, 옥살산은 Cr3 +와 반응하여 착화물을 형성하는데, 이 착화물은 시간이 지나도 양이온 교환되지 않아서 완전히 제거되지 않는다(도 5 (b) 참고). 옥살산 및 Cr3 +의 착화물을 제거하기 위해서 음이온 교환수지를 이용해야 하는데, 이럴 경우 폐기물의 양이 매우 증가하는 문제가 발생한다.In 2-2, after the oxidant salt reaction, 30 mmol / L of C 2 H 2 O 4 solution was added to perform the second reduction decontamination reaction. In order to remove the radioactive nuclide metal ions, an ion exchange resin (IX, ion exchange) Respectively. At this time, oxalic acid reacts with Cr 3 + to form a complex, which is not completely removed by cation exchange over time (see FIG. 5 (b)). In order to remove complex oxalic acid and Cr 3 + , anion exchange resin should be used. In this case, the amount of waste increases very much.
하기 표 3은 제1환원제염제 첨가량에 따른 제1침전물 형성 효율을 나타낸 것이고, 도 6은 본 발명의 산화제염 후 제1환원제염제의 첨가에 따른 환원반응 특성 및 침전물 여과 결과를 나타낸 사진이며, 도 7은 본 발명의 산화제염을 거친 제염 폐액에 제1환원제염제 첨가 후 발생한 제1침전물 입도를 분석한 결과를 나타낸 그래프이다.FIG. 6 is a photograph showing the reduction reaction characteristics and precipitate filtration results according to addition of the first reducing agent salt after the oxidizing agent salt of the present invention, and FIG. 6 7 is a graph showing the result of analyzing the particle size of the first precipitate generated after adding the first reducing agent dye to the decontamination waste solution passing through the oxidant salt of the present invention.
구분division N2H4 첨가량(mmol/L)Amount of N 2 H 4 added (mmol / L) pHpH H+(mmol/L)H + (mmol / L) MnO4 -(mmol/L)MnO 4 - (mmol / L) HCrO4 -(mmol/L)HCrO 4 - (mmol / L)
3-13-1 00 2.622.62 2.402.40 2.572.57 0.0070.007
3-23-2 2.79752.7975 2.832.83 1.481.48 1.941.94 0.0080.008
3-33-3 5.5955.595 3.063.06 0.870.87 1.091.09 0.0070.007
3-43-4 8.39258.3925 4.014.01 0.100.10 0.220.22 0.0070.007
3-53-5 11.1911.19 99 0.000010.00001 0.010.01 0.0020.002
상기 표 3을 참조하면, N2H4의 첨가량이 증가할수록 H+의 농도가 줄어들면서 pH가 상승하였고, MnO4 -와 HCrO4 -의 농도가 감소하였는데, 이는 N2H4에 의해 각각 MnO2와 Cr(OH)3로 침전물을 형성하기 때문이다.Referring to Table 3, as the addition amount of N 2 H 4 was increased, the concentration of H + was decreased and the pH was increased. The concentration of MnO 4 - and HCrO 4 - was decreased by N 2 H 4 , 2 and Cr (OH) 3 .
도 6 (a)는 3-1, (b)는 3-2, (c)는 3-4, (d)는 3-5에 따른 모의 제염 폐액에서 제1침전물을 여과한 결과를 나타낸 사진이다. 도 6을 참조하면, N2H4의 첨가량이 증가함에 따라 모의 제염 폐액의 색상이 검은색에서 점점 옅어지는 것을 알 수 있으며, N2H4의 첨가량이 가장 높은 3-5에 해당하는 도 6 (d)에서 제1침전물의 여과 결과가 가장 우수하게 나타났다. 즉, 망간이온 및 크롬이온의 환원 및 제1침전물의 제거를 위해 N2H4은 10mmol/L 이상 첨가되는 것이 바람직하다. 그리고 도 7을 참조하면, 모의 제염 폐액에 하이드라진 11.19mmol/L 첨가한 3-5의 경우 폐액의 pH가 충분이 상승하고 MnO4 -와 HCrO4 -가 충분히 환원되어 MnO2와 Cr(OH)3 침전물이 형성되므로 0.45um 필터로 대부분 제거할 수 있었다.6 (a) is a photograph showing the result of filtration of the first precipitate in the simulated decontamination waste liquid according to 3-1, (b), 3-2, (c) . Referring to FIG. 6, as the amount of N 2 H 4 increases, the color of the decontamination waste solution gradually decreases from black, and the amount of N 2 H 4 is the highest (d), the filtration result of the first precipitate was the best. That is, N 2 H 4 is preferably added in an amount of 10 mmol / L or more for reduction of manganese ion and chromium ion and removal of the first precipitate. And, simulated decontamination waste liquid. Referring to Fig hydrazine 11.19mmol / L For a 3-5 was added and the pH of the waste solution is raised sufficiently MnO 4 - and HCrO 4 - is sufficiently reduced MnO 2 3 and Cr (OH) Since the precipitate forms, most of it can be removed with 0.45um filter.
2. 탄산 이온을 이용한 제염 폐액에서의 Fe2+ 제거2. Removal of Fe 2+ from decontamination waste solution using carbonate ion
모의 제염 폐액으로서 1mM Fe(NH4)2(SO4)2 용액 500ml를 이용하였고, 상기 모의 제염 폐액에 Na2CO3를 첨가하여 pH를 상승시켰으며, pH 변화에 따른 모의 제염 폐액 내의 Fe2+ 농도를 측정하여 하기 표 4와 같이 기록하였다.500 ml of 1 mM Fe (NH 4 ) 2 (SO 4 ) 2 solution was used as a simulated decontamination waste solution. Na 2 CO 3 was added to the simulated decontamination waste solution to raise the pH. In the simulated decontamination waste solution, Fe 2 + Concentration were measured and recorded as shown in Table 4 below.
구분division pHpH Na2CO3 (g)Na 2 CO 3 (g) CO3 2-(mmol/L)CO 3 2- (mmol / L) △CO3 2-(mmol/L)? CO 3 2- (mmol / L) Fe2+(mmol/L)Fe 2+ (mmol / L)
초기Early 2.872.87 -- -- -- 0.7730.773
4-14-1 4.124.12 0.07170.0717 1.3801.380 2.2202.220 0.3600.360
4-24-2 5.035.03 0.00340.0034 1.4471.447 0.0660.066 00
4-34-3 6.016.01 0.00860.0086 1.6161.616 0.1690.169 00
4-44-4 6.966.96 -- 1.6161.616 0.0000.000 00
4-54-5 99 0.09370.0937 3.4763.476 1.8601.860 00
4-64-6 10.9510.95 2.38032.3803 51.23351.233 47.75747.757 00
상기 표 4를 참조하면, pH 4.12로 조절된 4-1의 경우 Fe2 + 농도가 초기의 0.773mmol/L에서 0.360mmol/L으로 줄어들었으나 완전히 제거되지 않은 것으로 나타났다. 반면에 4-1 ~ 4-6의 경우 pH가 5 이상으로 증가함에 따라 CO3 2-의 농도가 증가하였으며, 이 CO3 2-와 Fe2 +가 FeCO3로 결합하여 Fe2 +가 완전히 제거된 것을 확인할 수 있다. 이때, pH 6에 도달한 4-3의 모의 제염 폐액에 Na2CO3를 더 첨가하지 않고, 일정 속도 이상의 교반속도로 약 90분 동안 교반한 결과 pH 6.96에 도달하였다. Referring to Table 4, in the case of the 4-1 pH adjusted to 4.12 eoteuna Fe 2 + concentration is reduced from the beginning of 0.773mmol / L in 0.360mmol / L was found that is not completely removed. On the other hand, 4-1 through 4-6, as the pH increased to over 5 for the increase of the concentration of the CO 3 2-, CO 3 2- and the Fe 2 + is coupled to a FeCO 3 Fe 2 + is completely removed . At this time, Na 2 CO 3 was not added to the simulated decontamination waste solution of 4-3 which reached pH 6, and the pH reached 6.96 as a result of stirring for 90 minutes at a constant speed or more.
따라서, Fe2 +가 함유된 제염 폐액의 pH를 5 이상으로 조절함으로써, Fe2 +를 효율적으로 제거할 수 있다.Therefore, by controlling the pH of the decontamination waste liquid containing Fe 2 + to 5 or more, it is possible to efficiently remove Fe 2 + .
3. 탄산 이온을 이용한 제염 폐액에서의 Fe3+ 제거3. Removal of Fe 3+ from decontamination waste solution using carbonate ion
모의 제염 폐액으로서 1mM FeCl3 용액 500ml를 이용하였고, 상기 모의 제염 폐액에 Na2CO3를 첨가하여 pH를 상승시켰으며, pH 변화에 따른 모의 제염 폐액 내의 Fe3+ 농도를 측정하여 하기 표 5와 같이 기록하였다. 그리고 도 8은 본 발명의 제염 폐액의 처리방법에서 (a) 철(Ⅲ) 침전물이 형성된 제염 폐액을 나타낸 사진과 (b) 제염 폐액으로부터 분리된 철(Ⅲ) 침전물을 나타낸 사진이다.500 ml of 1 mM FeCl 3 solution was used as a simulated decontamination waste solution and the pH was raised by adding Na 2 CO 3 to the simulated decontamination waste solution. The Fe 3+ concentration in the simulated decontamination waste liquid was measured according to the pH change, I recorded it together. And FIG. 8 is a photograph showing a decontamination waste liquid in which (a) iron (III) precipitate is formed and (b) iron (III) precipitate separated from the decontamination waste solution in the method for treating decontamination waste liquid of the present invention.
구분division pHpH Na2CO3 (g)Na 2 CO 3 (g) CO3 2-(mmol/L)CO 3 2- (mmol / L) △CO3 2-(mmol/L)? CO 3 2- (mmol / L) Fe3+(mmol/L)Fe 3+ (mmol / L)
초기Early 2.962.96 -- -- -- 0.9920.992
5-15-1 4.14.1 0.07370.0737 1.4191.419 1.4191.419 0.6640.664
5-25-2 5.115.11 0.00320.0032 1.4811.481 0.0620.062 0.1120.112
5-35-3 6.056.05 0.00290.0029 1.5381.538 0.0570.057 00
5-45-4 77 -- 1.5381.538 00 00
5-55-5 9.019.01 0.00490.0049 1.6351.635 0.0970.097 00
5-65-6 11.0111.01 0.81640.8164 18.01518.015 16.3816.38 00
상기 표 5 및 도 8을 참조하면, pH 4.1로 조절된 5-1의 경우 Fe3 + 농도가 초기의 0.992mmol/L에서 0.664mmol/L로 미미하게 줄어들어 Fe3 +를 효율적으로 제거하는데 적합하지 않은 것으로 나타났다. 반면에, pH 5.11로 조절된 5-2의 경우 Fe3 + 농도가 0.112mmol/L로 나타나 초기농도에 비해 급감하였고, 특히 5-3 ~ 5-6의 경우 pH가 6 이상으로 증가함에 따라 CO3 2-의 농도가 증가하였으며, 이 CO3 2-와 Fe3 +가 Fe2(CO3)3로 결합하여 Fe3 +가 완전히 제거된 것을 확인할 수 있다. 이때, pH 6에 도달한 5-3의 모의 제염 폐액에 Na2CO3를 더 첨가하지 않고, 일정 속도 이상의 교반속도로 약 90분 동안 교반한 결과 pH 7에 도달하였다. Referring to Table 5 and 8, the case of the 5-1 pH adjusted to 4.1 Fe 3 + concentration is reduced to negligible at the beginning of 0.992mmol / L in 0.664mmol / L not suitable for efficient removal of the Fe 3 + . On the other hand, in the case of the 5-2 adjusted to pH 5.11 as Fe 3 + concentration 0.112mmol / L indicated by the sharp drop was compared to the initial concentration, in particular 5-3 ~ 5-6 pH is increased to more than 6 for CO 3 2- increased, and it was confirmed that this CO 3 2- and Fe 3 + were combined with Fe 2 (CO 3 ) 3 to completely remove Fe 3 + . At this time, Na 2 CO 3 was not added to the simulated decontamination waste solution of pH 5-6, and pH 7 was reached by stirring for 90 minutes at a constant stirring rate or more.
따라서, Fe3 +가 함유된 제염 폐액의 pH를 5 이상으로 조절함으로써, Fe3 +를 효율적으로 제거할 수 있다.Therefore, by controlling the pH of the decontamination waste liquid containing Fe 3 + to 5 or more, it is possible to efficiently remove Fe 3 + .
4. 탄산 이온을 이용한 제염 폐액에서의 Fe3+ 및 Mn2+ 제거4. Removal of Fe 3+ and Mn 2+ from decontamination waste solution using carbonate ion
모의 제염 폐액으로서 1mM FeCl3 및 1mM MnCl2 용액을 혼합한 혼합액 500ml를 이용하였고, 상기 모의 제염 폐액에 Na2CO3를 첨가하여 pH를 상승시켰으며, pH 변화에 따른 모의 제염 폐액 내의 Fe3 + 및 Mn2 + 농도를 측정하여 하기 표 6과 같이 기록하였다. 그리고 도 9는 본 발명의 제염 폐액의 처리방법에서 (a) 철(Ⅲ), 망간(Ⅱ) 침전물이 형성된 제염 폐액을 나타낸 사진과 (b) 제염 폐액으로부터 분리된 철(Ⅲ), 망간(Ⅱ) 침전물을 나타낸 사진이다.A simulated decontamination waste liquid was used to 1mM FeCl 3 and 1mM MnCl mixed liquid 500ml mixed with the second solution, was to raise the pH brought by the addition of Na 2 CO 3 to the simulated decontamination waste liquid, Fe in the simulated decontamination waste liquid according to the pH change 3+ and to measure the Mn + 2 concentration was recorded as shown in Table 6. And FIG. 9 is a photograph showing a decontamination waste liquid in which (a) iron (III) and manganese (II) precipitates are formed in the method of treating the decontamination waste liquid of the present invention, and (B) iron (III), manganese ) &Lt; / RTI &gt;
구분division pHpH Na2CO3 (g)Na 2 CO 3 (g) CO3 2-(mmol/L)CO 3 2- (mmol / L) △CO3 2-(mmol/L)? CO 3 2- (mmol / L) Fe3+(mmol/L)Fe 3+ (mmol / L) Mn2+(mmol/L)Mn 2+ (mmol / L)
초기Early 2.872.87 -- -- -- 0.7730.773 1.211.21
6-16-1 4.124.12 0.0710.071 1.3801.380 2.2202.220 0.3600.360 1.161.16
6-26-2 5.035.03 0.00340.0034 1.4471.447 0.0660.066 00 1.171.17
6-36-3 6.016.01 0.00860.0086 1.6161.616 0.1690.169 00 1.161.16
6-46-4 6.966.96 -- 1.6161.616 00 00 1.121.12
6-56-5 99 0.09370.0937 3.4763.476 1.8601.860 00 0.120.12
6-66-6 10.9510.95 2.38032.3803 51.23351.233 47.75747.757 00 00
상기 표 6 및 도 9를 참조하면, pH 4.12로 조절된 6-1의 경우 Fe3 + 농도가 0.360 mmol/L으로 초기의 농도에 비해 미미하게 줄어들어 Fe3 +를 효율적으로 제거하는데 적합하지 않은 것으로 나타났다. 반면에, 6-2 ~ 6-6의 경우 pH가 5 이상으로 증가함에 따라 CO3 2-의 농도가 증가하였으며, 이 CO3 2-와 Fe3 +가 Fe2(CO3)3로 결합하여 Fe3+가 완전히 제거된 것을 확인할 수 있다.Referring to Table 6 and 9, the case of 6-1, adjusted to pH 4.12 Fe 3 + concentration that is not suitable for efficient removal of the Fe + 3 is reduced to insignificant compared to the initial concentration of 0.360 mmol / L appear. On the other hand, in the case of 6-2 ~ 6-6, the concentration of CO 3 2- increased as the pH increased to 5 or higher, and this CO 3 2- and Fe 3 + were combined with Fe 2 (CO 3 ) 3 It can be confirmed that Fe 3+ is completely removed.
또한, pH 6.96으로 조절된 6-4의 경우 Mn2 + 농도가 1.12mmol/L로 초기의 농도에 비해 미미하게 줄어들어 Mn2 +를 효율적으로 제거하는데 적합하지 않은 것으로 나타났다. 반면에 pH 9로 조절된 6-5의 경우 Mn2 +의 농도가 0.12mmol/L으로 나타나 초기농도에 비해 급감하였고, 특히 6-6의 경우 pH가 10.95로 증가함에 따라 CO3 2-의 농도가 급증하였으며, 이 CO3 2-와 Mn2 +가 MnCO3로 결합하여 Mn2 +가 완전히 제거된 것을 확인할 수 있다. 이때, pH 6에 도달한 6-3의 모의 제염 폐액에 Na2CO3를 더 첨가하지 않고, 일정 속도 이상의 교반속도로 약 90분 동안 교반한 결과 pH 6.96에 도달하였다. In addition, the concentration of Mn 2 + was decreased to 1.12 mmol / L in the case of 6-4, which was adjusted to pH 6.96, so that it was not suitable for the efficient removal of Mn 2 + . On the other hand, the concentration of Mn 2 + was decreased to 0.12 mmol / L in the case of 6 - 5, which was adjusted to pH 9. Especially, in case of 6-6, the concentration of CO 3 2- , And it was confirmed that Mn 2 + was completely removed by binding of CO 3 2- and Mn 2 + to MnCO 3 . At this time, Na 2 CO 3 was not added to the simulated decontamination waste solution of pH 6, which reached 6, and the pH reached 6.96 as a result of stirring for 90 minutes at a constant rate or more.
따라서, Fe3 + 및 Mn2 +가 함께 함유된 제염 폐액의 pH를 9 이상으로 조절함으로써, Fe3+ 및 Mn2+를 효율적으로 동시에 제거할 수 있다.Therefore, by controlling the pH of the decontamination waste solution containing Fe 3 + and Mn 2 + together to 9 or more, Fe 3+ and Mn 2+ can be efficiently removed at the same time.
전술한 내용은 후술할 발명의 청구범위를 더욱 잘 이해할 수 있도록 본 발명의 특징과 기술적 장점을 다소 폭넓게 상술하였다. 본 발명이 속하는 기술분야의 통상의 지식을 가진 자는 본 발명이 그 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. 본 발명의 범위는 상기 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.The foregoing has outlined rather broadly the features and technical advantages of the present invention in order that the claims of the invention to be described below may be better understood. It will be understood by those skilled in the art that the present invention may be embodied in other specific forms without departing from the spirit or essential characteristics thereof. It is therefore to be understood that the above-described embodiments are illustrative in all aspects and not restrictive. The scope of the present invention is defined by the appended claims rather than the foregoing detailed description, and all changes or modifications derived from the appended claims and their equivalents should be construed as being included within the scope of the present invention.

Claims (6)

  1. 방사성 핵종을 함유하는 계통 내부에 생성된 금속산화막에 산화제염제인 과망간산 또는 과망간산염을 투입하여 상기 금속산화막으로부터 크롬산화물을 크롬이온으로 산화시켜 제염 폐액 상에 용해시키는 제1단계;A first step of introducing permanganic acid or permanganate, which is an oxidant salt, into the metal oxide film formed inside the system containing the radionuclide to oxidize the chromium oxide from the metal oxide film to chromium ions and dissolve the decomposed waste solution on the decontamination waste solution;
    상기 크롬이온이 용해된 제염 폐액에 제1환원제염제를 투입하고 미반응된 상기 산화제염제 및 크롬이온을 환원시켜 제1침전물로 석출 및 제거하는 제2단계;A second step of introducing a first reducing agent salt into the decontamination waste solution in which the chromium ions are dissolved and reducing and precipitating the unreacted oxidant salt and chromium ions into a first precipitate;
    상기 제2단계를 거친 상기 제염 폐액에 유기산 제2환원제염제인 옥살산을 포함하는 유기산을 투입하여 상기 금속산화막으로부터 철이온 및 니켈이온을 포함하는 금속산화물과, 미반응 잔류 망간이온을 환원시켜 상기 제염 폐액 상에 용해시키는 제3단계;An organic acid including oxalic acid which is an organic acid second reducing agent salt is added to the decontamination waste solution that has undergone the second step to reduce iron oxide and nickel ion-containing metal oxide and unreacted residual manganese ion from the metal oxide film, A third step of dissolving in a waste solution;
    상기 제염 폐액 내의 제2환원제염제를 분해하는 제4단계; 및A fourth step of decomposing the second reducing agent salt in the decontamination waste solution; And
    상기 제염 폐액에 침전제인 탄산이온 전구체를 투입하여 실시간으로 상기 제염 폐액의 pH를 조절하고, 상기 제2환원제염제의 분해생성물인 이산화탄소 및 상기 탄산이온 전구체와, 상기 제염 폐액 상의 금속이온들이 반응하여 형성된 제2침전물을 석출하는 제5단계;를 포함하는 산화환원과 침전반응을 이용한 원자력시설 화학제염 공정 폐기물의 처리방법.The pH of the decontamination waste liquid is adjusted in real time by injecting a carbonate ion precursor as a precipitating agent into the decontamination waste liquid, and carbon dioxide and the carbonate ion precursor, which are decomposition products of the second reducing agent salt, and metal ions on the decontamination waste liquid are reacted And a fifth step of depositing a second precipitate on the surface of the waste water.
  2. 제1항에 있어서,The method according to claim 1,
    상기 제5단계에서 상기 제염 폐액의 pH는 5 내지 12로 조절되는 것을 특징으로 하는 산화환원과 침전반응을 이용한 원자력시설 화학제염 공정 폐기물의 처리방법.Wherein the pH of the decontamination waste solution is adjusted to 5 to 12 in the fifth step. &Lt; RTI ID = 0.0 &gt; 11. &lt; / RTI &gt;
  3. 제2항에 있어서,3. The method of claim 2,
    상기 제5단계에서 상기 제염 폐액의 pH가 조절되면서, 상기 이산화탄소 및 탄산이온 전구체로부터 탄산이온(CO3 2-)이 형성되고, 상기 탄산이온은 상기 제염 폐액 상의 금속이온들과 반응하여 탄산염 또는 금속수산화물 형태의 상기 제2침전물을 형성하는 것을 특징으로 하는 산화환원과 침전반응을 이용한 원자력시설 화학제염 공정 폐기물의 처리방법.In the fifth step, carbonate ion (CO 3 2- ) is formed from the carbon dioxide and the carbonate ion precursor while the pH of the decontamination waste liquid is controlled, and the carbonate ion reacts with the metal ions on the decontamination waste liquid, And the second precipitate in the form of hydroxide is formed. The method for treating chemical waste decontamination waste in a nuclear facility using a redox and precipitation reaction.
  4. 제1항에 있어서,The method according to claim 1,
    상기 탄산이온 전구체는 탄산나트륨, 탄산수소나트륨 및 이들의 혼합물로 이루어지는 군으로부터 선택된 어느 하나인 것을 특징으로 하는 산화환원과 침전반응을 이용한 원자력시설 화학제염 공정 폐기물의 처리방법.Wherein the carbonate ion precursor is any one selected from the group consisting of sodium carbonate, sodium bicarbonate, and mixtures thereof, and a method for treating the chemical decontamination waste of a nuclear power plant using the oxidation-reduction and precipitation reaction.
  5. 제1항에 있어서,The method according to claim 1,
    상기 제1환원제염제의 환원력은 상기 제2환원제염제의 환원력보다 작은 것을 특징으로 하는 산화환원과 침전반응을 이용한 원자력시설 화학제염 공정 폐기물의 처리방법.Wherein the reducing power of the first reducing agent salt is less than the reducing power of the second reducing agent salt.
  6. 제5항에 있어서,6. The method of claim 5,
    상기 제1환원제염제는 5 ~ 15mmol/L 투입되는 것을 특징으로 하는 산화환원과 침전반응을 이용한 원자력시설 화학제염 공정 폐기물의 처리방법.Wherein the first reducing agent salt is added in an amount of 5 to 15 mmol / L, and the method of treating the chemical decontamination waste in a nuclear facility using the redox reaction and the precipitation reaction.
PCT/KR2018/001718 2017-08-30 2018-02-08 Method for treating chemical decontamination process waste of nuclear facility by using oxidation-reduction and precipitation reactions WO2019045205A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020170110467A KR101995118B1 (en) 2017-08-30 2017-08-30 Treatment method of the process waste from the chemical decontamination of nuclear facilities by using redox and precipitation reaction
KR10-2017-0110467 2017-08-30

Publications (1)

Publication Number Publication Date
WO2019045205A1 true WO2019045205A1 (en) 2019-03-07

Family

ID=65525570

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/001718 WO2019045205A1 (en) 2017-08-30 2018-02-08 Method for treating chemical decontamination process waste of nuclear facility by using oxidation-reduction and precipitation reactions

Country Status (2)

Country Link
KR (1) KR101995118B1 (en)
WO (1) WO2019045205A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210080318A (en) * 2019-08-01 2021-06-30 한국원자력연구원 Method for removing Mn in solution and SP-HyBRID decontamination comprising the same
US11919782B2 (en) 2022-02-23 2024-03-05 Baker Hughes Oilfield Operations Llc Method for manganese oxides dissolution

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102539411B1 (en) 2021-05-21 2023-06-02 한국원자력연구원 Waste liquid treatment apparatus and waste liquid treatment method using the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000121791A (en) * 1998-10-12 2000-04-28 Hitachi Ltd Method and device for chemical decontamination
JP2005134407A (en) * 2005-01-31 2005-05-26 Hitachi Ltd Chemical decontamination method and its system
JP2010266393A (en) * 2009-05-18 2010-11-25 Hitachi-Ge Nuclear Energy Ltd Chemical decontamination method
JP2014092442A (en) * 2012-11-02 2014-05-19 Mitsubishi Heavy Ind Ltd Decontamination waste liquid processing method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5883675B2 (en) * 2012-02-22 2016-03-15 日立Geニュークリア・エナジー株式会社 Treatment method of radioactive liquid waste
KR101379789B1 (en) 2012-04-09 2014-03-31 한국원자력연구원 Method for chemical decontamination of surface of radioactive metal waste
KR101743263B1 (en) 2016-03-18 2017-06-07 한국원자력연구원 Treatment method of radioactive uranium waste

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000121791A (en) * 1998-10-12 2000-04-28 Hitachi Ltd Method and device for chemical decontamination
JP2005134407A (en) * 2005-01-31 2005-05-26 Hitachi Ltd Chemical decontamination method and its system
JP2010266393A (en) * 2009-05-18 2010-11-25 Hitachi-Ge Nuclear Energy Ltd Chemical decontamination method
JP2014092442A (en) * 2012-11-02 2014-05-19 Mitsubishi Heavy Ind Ltd Decontamination waste liquid processing method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JEONG, JONG HEON ET AL: "A Precedent Study on Nuclear Power Plants Primary Coolant 1-6 Pump Chemical Decontamination", KOREA ATOMIC ENERGY RESEARCH INSTITUTE, 31 January 2012 (2012-01-31), pages 5 - 28 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210080318A (en) * 2019-08-01 2021-06-30 한국원자력연구원 Method for removing Mn in solution and SP-HyBRID decontamination comprising the same
KR102400299B1 (en) * 2019-08-01 2022-05-23 한국원자력연구원 Method for removing Mn in solution and SP-HyBRID decontamination comprising the same
US11919782B2 (en) 2022-02-23 2024-03-05 Baker Hughes Oilfield Operations Llc Method for manganese oxides dissolution

Also Published As

Publication number Publication date
KR101995118B1 (en) 2019-07-02
KR20190023972A (en) 2019-03-08

Similar Documents

Publication Publication Date Title
US8457270B2 (en) Suppression method of radionuclide deposition on reactor component of nuclear power plant
WO2019045205A1 (en) Method for treating chemical decontamination process waste of nuclear facility by using oxidation-reduction and precipitation reactions
KR101883895B1 (en) Decontamination and Rad-waste treatment method and a kit therefor reducing the radioactive waste remarkably
CN102405500A (en) Method for decontaminating surfaces
CA2317795C (en) Method of chemical decontamination
TW301751B (en)
KR101919200B1 (en) Electrolytic decontamination method capable of regenerative electrolyte
KR102400299B1 (en) Method for removing Mn in solution and SP-HyBRID decontamination comprising the same
TWI675380B (en) Method of decontaminating metal surfaces in a cooling system of a nuclear reactor
JPS6091297A (en) Method of treating waste liquor of decontaminating agent
JP3866402B2 (en) Chemical decontamination method
US6716402B2 (en) Dissolution and decontamination process
Won et al. Reductive Dissolution of Spinel-Type Iron Oxide by N 2 H 4–Cu (I)–HNO 3
KR102452825B1 (en) Decontamination agent for corrosion oxide layer and decontamination method for corrosion oxide layer using the same
JPS61157539A (en) Decomposition treatment of ion exchange resin
JP2004233156A (en) Method and device for disposing waste liquid
Čubová Deliverable 4.5 Report on secondary waste management
CA3241832A1 (en) Systemic decontamination method of heavy water reactor
JP3179500B2 (en) Nuclear power plant and operation method thereof
SK278633B6 (en) Treatment method for cooling agent of the primary circuit of pressurized-water reactor
Filippov Oxidation of uranium dioxide by hydrogen peroxide in sulfuric acid medium
Gorichev et al. Complexation on the surface of iron hydroxides: I. Methods of investigation and model description of the acid-base properties at the iron oxide-electrolyte interface
Khain et al. Reduction of chromium (VI) to chromium (III) with sodium borohydride in an alkaline medium
Fedoseev et al. Selective Recovery of Chromium from Precipitates Containing d Elements and Actinides: I. Effects of O2
Jevec et al. Chemical-cleaning solvent and process testing. Final report.[PWR]

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18851870

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18851870

Country of ref document: EP

Kind code of ref document: A1