WO2019045200A1 - Laser light control device of laser measurement device - Google Patents

Laser light control device of laser measurement device Download PDF

Info

Publication number
WO2019045200A1
WO2019045200A1 PCT/KR2018/000796 KR2018000796W WO2019045200A1 WO 2019045200 A1 WO2019045200 A1 WO 2019045200A1 KR 2018000796 W KR2018000796 W KR 2018000796W WO 2019045200 A1 WO2019045200 A1 WO 2019045200A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
magnetic force
unit
tube
compressed air
Prior art date
Application number
PCT/KR2018/000796
Other languages
French (fr)
Korean (ko)
Inventor
박호영
김현희
임현수
Original Assignee
한국전력공사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국전력공사 filed Critical 한국전력공사
Publication of WO2019045200A1 publication Critical patent/WO2019045200A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/005Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping
    • H01S5/0071Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping for beam steering, e.g. using a mirror outside the cavity to change the beam direction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/39Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using tunable lasers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • G02B26/105Scanning systems with one or more pivoting mirrors or galvano-mirrors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/39Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using tunable lasers
    • G01N2021/396Type of laser source
    • G01N2021/399Diode laser

Definitions

  • the present invention relates to a laser light control apparatus for a laser measurement apparatus, and more particularly, to a laser light control apparatus for a laser measurement apparatus for measuring a concentration of gas in a power plant boiler so that a power plant boiler can maintain an optimal combustion state will be.
  • the optimum combustion condition setting at the power plant site is based on the operator, reflecting the flue gas concentration, NO emission, and the boiler steam temperature. As the recent diversification of imported coal and the generalization of the hoego are generalized, Reflective combustion tuning and combustion optimization are needed.
  • the CO concentration is further measured by using a laser-based non-contact type measurement sensor TDLAS (Tunable Diode Laser Absorption Spectroscopy), and a new control method using the CO concentration value is applied to the existing control method And a combustion control technique for always maintaining an optimum combustion state is provided.
  • TDLAS Laser-based non-contact type measurement sensor
  • optical alignment is essential for existing laser measurement systems.
  • the signal focus and intensity of the transmitter and receiver are monitored to manually adjust the lens set in three dimensions.
  • the present invention has been made in order to solve the above-mentioned problems, and it is an object of the present invention to provide a laser measuring apparatus capable of controlling vibration reduction and alignment of a lens, A laser light control apparatus of a laser measuring apparatus is provided.
  • a tube according to one aspect of the present invention A tube according to one aspect of the present invention; A first aligning part movably installed inside the tube part to align the first lens inside the tube part; And a second alignment unit movably installed inside the tube to align the second lens inside the tube.
  • the first aligning unit may include a first distance adjusting unit that adjusts a distance between the first lens and the second lens by moving the first lens toward the front and rear of the tube, And a first damping unit for aligning the first lens so that the first lens holds a focus.
  • the first distance adjuster of the present invention is coupled with the inner surface of the tube portion in the form of a ring by a first thread to move the first lens in forward and backward directions according to the rotation direction.
  • the first damping unit of the present invention is characterized in that the first damping unit includes a plurality of first spring units, one side of which is provided on the first distance adjusting unit and the other side of which is provided on the first lens to fix the first lens to a focus position .
  • the first damping unit of the present invention includes a plurality of first magnetic force units that fix the first lens at a focal position using a magnetic force.
  • the first magnetic portion of the present invention may include a first inner magnetic portion installed in the first lens; And a first outside magnetic force part installed in the first distance adjusting part, wherein the first inside magnetic force part and the first outside magnetic force part are arranged so as to have the same polarity in a direction opposite to each other.
  • the second aligning unit may include a second distance adjusting unit that adjusts the distance between the second lens and the first lens by moving the second lens toward the front and rear of the tube, And a second damping unit for aligning the second lens so that the second lens is in focus.
  • the second distance adjuster of the present invention is coupled with the inner surface of the tube portion in the form of a ring by a second screw thread, and is moved forward and backward along the rotation direction.
  • the second damping unit of the present invention is characterized in that the second damping unit includes a plurality of second spring units, one side of which is provided on the second distance adjusting unit and the other side of which is provided on the second lens, for fixing the second lens to the focus position .
  • the second damping unit of the present invention includes a plurality of second magnetic force units that fix the second lens at a focus position using a magnetic force.
  • the second magnetic portion of the present invention may include: a second inner magnetic portion installed in the second lens; And a second outside magnetic force part installed in the second distance adjusting part, wherein the second inside magnetic force part and the second outside magnetic force part are arranged so as to have the same polarity in directions opposite to each other.
  • the present invention is characterized in that compressed air or nitrogen is injected into a window for transmitting the laser light transmitted through the first lens and the second lens to the inside of the combustion furnace or for transmitting the laser light transmitted from the inside of the combustion furnace to the parabolic mirror And a removing unit for removing the dust on the window, or for removing the slag attached to the inner wall by the burning.
  • the removing unit of the present invention includes: a compressed air tank for storing compressed air; A first jetting section for jetting the compressed air supplied from the compressed air tank to the window; A second jetting section for jetting the compressed air supplied from the compressed air tank to the slag; And an intermittent control unit for controlling the first jetting unit or the second jetting unit to jet compressed air stored in the compressed air tank to a window or a slag, respectively.
  • the present invention further includes an angle adjusting unit for adjusting the angle of the parabolic mirror according to the intensity of the laser beam transmitted through the second lens.
  • the angle adjusting unit may include a detector for receiving laser light condensed by the parabolic mirror; A driving unit for rotating the parabolic mirror; And a parabolic mirror controller for comparing the signal intensity of the detector with a predetermined set value and controlling the driving unit according to the comparison result.
  • a laser light control apparatus of a laser measuring apparatus aligns a lens for controlling a laser light size of a laser measuring apparatus and maintains a light intensity at a high intensity.
  • the laser light control apparatus of the laser measuring apparatus ensures accurate and stable laser light when measuring the temperature and concentration distribution in the boiler, thereby enabling more reliable measurement.
  • a laser light control apparatus for controlling a dust and a slag by using air for high-pressure working at a power plant site so as to secure the operation stability and optical signal of the laser system at a relatively low price do.
  • FIG. 1 is a conceptual view illustrating a laser light intensity control method of a laser light control apparatus of a laser measuring apparatus according to an embodiment of the present invention.
  • FIG. 2 is a configuration diagram of an angle adjusting unit according to an embodiment of the present invention.
  • FIGS. 3 and 4 are block diagrams of a first alignment unit and a second alignment unit according to an embodiment of the present invention.
  • FIG. 5 is a block diagram of a removal unit according to an embodiment of the present invention. Referring to FIG.
  • FIG. 1 is a conceptual view of a laser light intensity control method of a laser light control apparatus of a laser measuring apparatus according to an embodiment of the present invention.
  • FIG. 2 is a configuration diagram of an angle adjusting unit according to an embodiment of the present invention
  • FIGS. 3 and 4 are block diagrams of a first aligning unit and a second aligning unit according to an embodiment of the present invention
  • FIG. 5 is a block diagram of a removing unit according to an embodiment of the present invention.
  • a laser light control apparatus of a laser measuring apparatus includes a tube portion 30, an angle adjusting portion 40, a first aligning portion 50, (60) and a removal unit (70).
  • the laser light emitted from the laser diode (LD) is combined with the first lens 10 and the second lens 20, Is controlled.
  • a tunable laser measuring system used for controlling and optimizing combustion in coal-fired power plants or heavy oil-fired power plants can be employed.
  • the first lens 10 and the second lens 20 are respectively installed in the tube portion 30 and include a condensing type lens or a dispersion type lens capable of enlarging or reducing the laser light and a lens for guiding parallel progression Can be employed.
  • a condensing type lens or a dispersion type lens capable of enlarging or reducing the laser light and a lens for guiding parallel progression Can be employed.
  • a convergent lens may be employed as the first lens 10
  • a collimation lens may be employed as the second lens 20.
  • the size of the laser light is the diameter of the parallel light, and the smaller the size of the laser light, the higher the reception intensity, but the alignment is difficult and the laser light is weak. Therefore, the size of the laser beam needs to be defined in advance according to the test conditions and the like.
  • alignment of the first lens 10 and the second lens 20 should be understood to match the centerline of the first lens 10 and the centerline of the second lens 20.
  • the distance between the first lens 10 and the second lens 20 is adjusted to adjust the size of the laser light. This will be described later.
  • the reception ratio of the laser light can be increased in the parabolic mirror (41).
  • the laser light control apparatus of the laser measuring apparatus includes the angle adjusting unit 40 for adjusting the angle of the parabolic mirror 41 to improve the signal intensity and accuracy.
  • the angle adjusting unit 40 includes a parabolic mirror 41, a detector 42, a driving unit 43, and a parabolic mirror control unit 44.
  • the parabolic mirror 41 condenses the laser light entering in parallel by the second lens 20 with the detector 42.
  • the detector 42 detects the laser beam condensed by the parabolic mirror 41 and outputs a signal corresponding to the laser beam.
  • the driving unit 43 adjusts the angle of the parabolic mirror 41 in accordance with the control signal of the parabolic mirror control unit 44. Even if the alignment of the first lens 10 and the second lens 20 is not perfectly aligned by adjusting the angle of the parabolic mirror 41 by the driving unit 43 as described above, Make sure you can enter correctly.
  • the parabolic mirror control unit 44 compares the signal intensity of the signal output from the detector 42 with a predetermined set value and controls the driving unit 43 when the signal intensity is equal to or lower than the set value, So that the signal intensity of the signal is greater than or equal to the set value.
  • the parabolic mirror 41 So that the laser light can enter the detector 42 accurately.
  • the first alignment unit 50 is provided movably within the tube 30 to align the first lens 10 inside the tube 30 and the second alignment unit 60 aligns the inside of the tube 30 So as to align the second lens 20 inside the tube portion 30.
  • the first alignment unit 50 and the second alignment unit 60 are provided so as to be movable along the tube portion 30 as described above so that the distance between the first lens 10 and the second lens 20 Thereby adjusting the thickness of the laser beam and fixing each of the first lens 10 and the second lens 20 to the focal position.
  • the first alignment unit 50 includes a first distance adjustment unit 51 and a first damping unit 53, as shown in FIG.
  • the first distance adjuster 51 is formed in a ring shape and its outer surface is in contact with the inner surface of the tube portion 30.
  • the first distance adjusting portion 51 is connected to the first lens 10 through the first damping portion 53, 10 are moved forward and backward of the tube portion 30 to adjust the distance to the second lens 20.
  • a thread is formed on the inner surface of the tube portion 30, and a first thread 52 is formed on the outer surface of the first distance adjusting portion 51.
  • the first distance adjusting portion 51 is threadedly coupled to the tube portion 30 so that the first distance adjusting portion 51 moves forward or backward of the tube portion 30 as the first distance adjusting portion 51 rotates clockwise or counterclockwise do.
  • the threads formed on the inner surface of the tube portion 30 may be formed in various lengths depending on the range in which the first lens 10 can be moved.
  • the first damping portion 53 includes a first spring portion 54 and a first magnetic force portion 55.
  • a plurality of first spring portions 54 are provided, one side of which is provided on the first distance adjusting portion 51 and the other side of which is provided on the first lens 10 to fix the first lens 10 to the focal position.
  • first spring portions 54 may be provided, each disposed in a 90 degree orientation. Therefore, even if the tube portion 30 is vibrated by the vibration, the variation due to the vibration can be canceled by the first spring portion 54.
  • first spring portions 54 are provided and they are arranged in the direction of 90 degrees.
  • the position and number of the first spring portions 54 are specifically limited And may be provided in various positions and in a number as long as the first lens 10 can be accurately positioned at the focus position.
  • the first magnetic force part 55 fixes the first lens 10 at the focal position by using a magnetic force, and a plurality of them are provided.
  • the first magnetic force part 55 includes four first inner magnetic force parts 551 provided on the first lens 10 and a first outer magnetic force part 551 provided on the first distance adjustment part 51.
  • the first inner magnetic force part 551 is provided on the first lens 10, And a magnetic portion 552.
  • the first inside magnetic force part 551 and the first outside magnetic force part 552 are arranged so as to have the same polarity in the directions opposite to each other.
  • the outer polarity of the first inside magnetic force part 551 and the inside polarity of the first outside magnetic force part 552 are arranged to be equal to each other, .
  • the first magnetic force portions 55 are provided in the direction of 90 degrees, respectively.
  • first inside magnetic force part 551 and the first outside magnetic force part 552 may employ variable magnets, which makes it easier to align the lenses. The same can be applied to the second magnetic force described later.
  • first magnetic force portions 55 are provided and they are disposed in the direction of 90 degrees.
  • the position and the number of the first magnetic force portions 55 are specifically limited And may be provided in various positions and in a number as long as the first lens 10 can be accurately positioned at the focus position.
  • the first damping portion 53 includes the first spring portion 54 and the first magnetic force portion 55 to minimize the variation of the position of the first lens 10 and enable rapid damping.
  • the second alignment part 60 is movably installed in the tube part 30 to align the second lens 20 inside the tube part 30.
  • the second alignment unit 60 has the same structure as the first alignment unit 50 in that the second lens 20 is aligned.
  • the second alignment unit 60 includes a second distance adjustment unit 61 and a second damping unit (not shown).
  • the second alignment unit 60 is the same as the first alignment unit 50 except that the second lens 20 is aligned, and will be briefly described below.
  • the second distance adjuster 61 is formed in a ring shape and is in contact with the inner surface of the tube portion 30 and is connected to the second lens 20 through the second damping portion to connect the second lens 20 to the tube portion 30. [ The distance from the first lens 10 is adjusted.
  • the second distance adjuster 61 has a second screw thread 62 formed on the outer surface thereof and is threadedly engaged with the tube portion 30.
  • the second distance adjuster 61 is rotated clockwise or counterclockwise And moves toward the front or rear of the tube portion 30 as it rotates.
  • the second damping portion includes a second spring portion (not shown) and a second magnetic portion (not shown).
  • a plurality of second spring portions are provided, one side of which is provided on the second distance adjusting portion 61, and the other side of which is provided on the second lens 20 to fix the second lens 20 to the focal position. Therefore, even if the tube portion 30 is vibrated by the vibration, the variation due to the vibration can be canceled by the second spring portion.
  • second spring portions like the first spring portion 54, and they can be arranged in the 90-degree direction, respectively.
  • the second magnetic force unit fixes the second lens 20 to the focal position using the magnetic force.
  • the second magnetic force part includes a second inside magnetic force part (not shown) installed in the second lens 20 and a second outside magnetic force part (not shown) installed in the second distance adjusting part 61,
  • the magnetic force portion and the second outside magnetic force portion are disposed so as to have the same polarity in the directions opposite to each other. That is, the outer polarity of the second inside magnetic force portion and the inside polarity of the second outside magnetic force portion are arranged to be equal to each other, so that a repulsive force acts between the second inside magnetic force portion and the second outside magnetic force portion.
  • the mounting position and the number of the second magnetic force portions are not particularly limited, and may be provided in various positions and numbers as long as the second lens 20 can be accurately positioned at the focus position.
  • the second damping portion minimizes the positional variation of the first lens 10 through the second spring portion and the second magnetic force portion, and enables rapid damping.
  • first and second alignment units 50 and 60 are provided to be movable along the tube unit 30 to move the first lens 10 and the second lens 20, So that it can be adjusted appropriately.
  • the first alignment unit 50 and the second alignment unit 60 respectively position the first lens 10 and the second lens 20 at a focus position using a magnetic force and an elastic force, The positional change of the first lens 10 and the second lens 20 can be minimized by not being transmitted to the first lens 10 and the second lens 20.
  • the removing unit 70 removes the dust attached to the window or the fly ash or slag attached to the inner wall of the combustion furnace.
  • the window is provided to prevent dust and the like inside the combustion furnace from being discharged to the outside, and to transfer the laser light transmitted through the first lens 10 and the second lens 20 to the inside of the combustion furnace or to be transmitted from the inside of the combustion furnace And transmits the laser beam to the parabolic mirror 41.
  • the removing unit 70 includes a compressed air tank 71, a first jetting unit 73, a second jetting unit 72, and an intermittent control unit 74.
  • the compressed air tank 71 stores compressed air.
  • the first jetting section 73 includes a first jetting tube 731 and a first valve 732 by jetting the compressed air supplied from the compressed air tank 71 to the window.
  • the first spray tube 731 guides the compressed air supplied from the compressed air tank 71 to the window surface inside the combustion furnace.
  • the first valve 732 interrupts the compressed air supplied from the compressed air tank 71 to the window through the first injection pipe 731 in accordance with the control signal from the intermittent control unit 74.
  • the second jetting section 72 includes a second jetting tube 721 and a second valve 722 by injecting the compressed air supplied from the compressed air tank 71 to the slag attached to the inner wall of the furnace do.
  • the second spray tube 721 guides the compressed air supplied from the compressed air tank 71 to the slag attached to the inner wall of the combustion furnace.
  • the second valve 722 interrupts the compressed air supplied from the compressed air tank 71 to the slag through the second spray pipe 721 in accordance with the control signal of the intermittent control unit 74.
  • the intermittent control unit 74 controls the first valve 732 or the second valve 722 to pulse the compressed air through the first injection pipe 731 or the second injection pipe 721 to inject the compressed air into the window Remove the slag attached to the inner wall by the attached dust or combustion.
  • compressed air is used as an example to remove dust and slag, but nitrogen may also be used in addition to air.
  • the laser light control apparatus of the laser measuring apparatus aligns the lens for laser light size control of the laser measuring apparatus, reduces vibration, and maintains the light intensity at a high intensity.
  • the laser light control apparatus of the laser measuring apparatus ensures accurate and stable laser light when measuring the temperature and concentration distribution in the boiler, thereby enabling more reliable measurement.
  • the laser light control apparatus of the laser measuring apparatus controls the dust and slag using the high-pressure working air at the power plant site, thereby ensuring the operation stability of the laser system and the accurate optical signal at relatively low cost .

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

Disclosed is a laser light control device of a laser measurement device. The laser light control device of a laser measurement device of the present invention comprises: a tube unit; a first alignment unit movably installed inside the tube unit to align a first lens disposed inside the tube unit; and a second alignment unit movably installed inside the tube unit to align a second lens disposed inside the tube unit.

Description

레이저 계측 장치의 레이저 광 제어 장치Laser light control device of laser measuring apparatus
본 발명은 레이저 계측 장치의 레이저 광 제어 장치에 관한 것으로서, 보다 상세하게는 발전소 보일러가 최적 연소 상태를 유지할 수 있도록 발전소 보일러 내 가스의 농도 등을 측정하는, 레이저 계측 장치의 레이저 광 제어 장치에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a laser light control apparatus for a laser measurement apparatus, and more particularly, to a laser light control apparatus for a laser measurement apparatus for measuring a concentration of gas in a power plant boiler so that a power plant boiler can maintain an optimal combustion state will be.
발전소 현장에서의 최적 연소조건 설정은 배가스 농도와 NO 배출량, 그리고 보일러 증기 온도 등을 반영하여 운전원이 하고 있으며, 최근의 수입탄종 다변화와 혼고가 일반화됨에 따라 보일러의 종합적 열효율을 고려하여 로내 연소상태를 반영한 연소 튜닝과 연소 최적화가 필요하다.The optimum combustion condition setting at the power plant site is based on the operator, reflecting the flue gas concentration, NO emission, and the boiler steam temperature. As the recent diversification of imported coal and the generalization of the hoego are generalized, Reflective combustion tuning and combustion optimization are needed.
이에, 레이저 기반의 비접촉식 계측 센서인 TDLAS(Tunable Diode Laser Absorption Spectroscopy)를 이용하여 배가스의 산소 농도뿐만 아니라 CO 농도를 추가 계측하고, 기존 제어 방식에 CO 농도값을 추가로 이용하는 새로운 제어 방식을 적용하여 최적 연소 상태를 상시 유지하는 연소제어 기술을 제공하고 있다.In addition to the oxygen concentration of the flue gas, the CO concentration is further measured by using a laser-based non-contact type measurement sensor TDLAS (Tunable Diode Laser Absorption Spectroscopy), and a new control method using the CO concentration value is applied to the existing control method And a combustion control technique for always maintaining an optimum combustion state is provided.
한편, 기존의 상용화된 제품을 이용하여 발전용 미분탄/중유 화염의 온도/농도를 측정할 경우 많은 어려움을 겪고 있다. 특히, 레이저 송수신 거리가 길어지게 되면 응답속도나 측정 오차율이 증가하게 되는 바, 설치 부위의 진동 저감 및 렌즈 정렬에 보다 깊은 주의가 필요하다.On the other hand, when measuring the temperature / concentration of the pulverized coal / heavy oil flame for power generation using conventional commercialized products, many difficulties are experienced. In particular, as the distance of the laser transmission / reception increases, the response speed and the measurement error rate increase. Therefore, it is necessary to pay more attention to vibration reduction and lens alignment at the installation site.
이에 기존의 레이저 계측 시스템에 대해서는 광 정렬이 필수적으로 필요하게 되었고, 그 결과 송수신부의 신호 초점 및 강도를 감시하여 3차원적으로 렌즈 세트를 수동으로 조정하고 있다. Therefore, optical alignment is essential for existing laser measurement systems. As a result, the signal focus and intensity of the transmitter and receiver are monitored to manually adjust the lens set in three dimensions.
본 발명의 배경기술은 대한민국 등록특허공보 10-1614851호(2016.04.18)의 '광학적 온도분포 정밀계측 장치 및 방법'에 개시되어 있다.BACKGROUND ART [0002] The background art of the present invention is disclosed in Korean Patent Registration No. 10-1614851 (2016.04.18) 'Apparatus and Method for Precise Measurement of Optical Temperature Distribution'.
종래에는 레이저 계측 장치의 레이저 광 정렬시, 수동으로 레이저의 정렬상태를 점검하여 정렬시키므로 광 정렬이 매우 번거로운 문제점이 있었고, 진동이 발생하는 일정시간 동안 신호를 누락시키므로, 진동을 최대한 댐핑할 수 있는 구조가 필요한 실정이다. Conventionally, there is a problem that the alignment of the laser is manually checked and aligned by aligning the laser light of the laser measurement device, so that the optical alignment is very troublesome and the signal is missed for a certain period of time in which the vibration occurs, It is necessary to structure.
또한, 장기간 사용으로 인한 미소한 열적 변형이 누적되어 정렬이 어긋나는 경우는 송수신부 간의 정렬상태 변형뿐만 아니라, 송신부 내 렌즈 간 정렬이 변형되는 문제점도 있었다. In addition, when the alignment is deviated due to accumulation of minute thermal deformation due to use for a long period of time, there is a problem that not only the alignment state change between the transmitting and receiving parts but also the alignment between the lenses in the transmitting part is deformed.
게다가, 종래에는 고분진의 경우도 윈도우에 부착된 먼지나, 보일러 화로벽에 부착된 석탄회나 슬래그를 수동으로 직접 제거하여야 하는 번거로움도 있었다. In addition, in the case of high dust, there has been a problem in that dust or dust attached to the window or coal fly ash attached to the wall of the boiler furnace or slag must be manually removed.
본 발명은 전술한 문제점을 개선하기 위해 창안된 것으로서, 본 발명의 일 측면에 따른 목적은 레이저 계측 장치의 레이저 광 크기 제어를 위해 렌즈의 진동 저감 및 정렬을 제어하고 광세기를 고강도로 유지할 수 있도록 한, 레이저 계측 장치의 레이저 광 제어 장치를 제공하는 것이다. SUMMARY OF THE INVENTION The present invention has been made in order to solve the above-mentioned problems, and it is an object of the present invention to provide a laser measuring apparatus capable of controlling vibration reduction and alignment of a lens, A laser light control apparatus of a laser measuring apparatus is provided.
본 발명의 일 측면에 따른 관부; 상기 관부 내부에서 이동 가능하게 설치되어 상기 관부 내부의 제1 렌즈를 정렬시키는 제1 정렬부; 및 상기 관부 내부에서 이동 가능하게 설치되어 상기 관부 내부의 제2 렌즈를 정렬시키는 제2 정렬부를 포함하는 것을 특징으로 한다.A tube according to one aspect of the present invention; A first aligning part movably installed inside the tube part to align the first lens inside the tube part; And a second alignment unit movably installed inside the tube to align the second lens inside the tube.
본 발명의 상기 제1 정렬부는 상기 제1 렌즈를 상기 관부의 전후방으로 이동시켜 상기 제2 렌즈와의 거리를 조절하는 제1 거리 조절부; 및 상기 제1 렌즈가 초점을 유지하도록 상기 제1 렌즈를 정렬시키는 제1 댐핑부를 포함하는 것을 특징으로 한다.The first aligning unit may include a first distance adjusting unit that adjusts a distance between the first lens and the second lens by moving the first lens toward the front and rear of the tube, And a first damping unit for aligning the first lens so that the first lens holds a focus.
본 발명의 상기 제1 거리 조절부는 링 형태로 상기 관부의 내측면과 제1 나사산으로 결합되어 회전 방향에 따라 상기 제1 렌즈를 전후방으로 이동시키는 것을 특징으로 한다.The first distance adjuster of the present invention is coupled with the inner surface of the tube portion in the form of a ring by a first thread to move the first lens in forward and backward directions according to the rotation direction.
본 발명의 상기 제1 댐핑부는 일측이 상기 제1 거리 조절부에 설치되고 타측이 상기 제1 렌즈에 설치되어 상기 제1 렌즈를 초점 위치에 고정시키는 복수 개의 제1 스프링부를 포함하는 것을 특징으로 한다.The first damping unit of the present invention is characterized in that the first damping unit includes a plurality of first spring units, one side of which is provided on the first distance adjusting unit and the other side of which is provided on the first lens to fix the first lens to a focus position .
본 발명의 상기 제1 댐핑부는 자력을 이용하여 상기 제1 렌즈를 초점 위치에 고정시키는 복수 개의 제1 자력부를 포함하는 것을 특징으로 한다.The first damping unit of the present invention includes a plurality of first magnetic force units that fix the first lens at a focal position using a magnetic force.
본 발명의 상기 제1 자력부는 상기 제1 렌즈에 설치되는 제1 내측 자력부; 및 상기 제1 거리 조절부에 설치되는 제1 외측 자력부를 포함하되, 상기 제1 내측 자력부와 상기 제1 외측 자력부는 서로 대향되는 방향으로 동일한 극성이 되도록 배치되는 것을 특징으로 한다.The first magnetic portion of the present invention may include a first inner magnetic portion installed in the first lens; And a first outside magnetic force part installed in the first distance adjusting part, wherein the first inside magnetic force part and the first outside magnetic force part are arranged so as to have the same polarity in a direction opposite to each other.
본 발명의 상기 제2 정렬부는 상기 제2 렌즈를 상기 관부의 전후방으로 이동시켜 상기 제1 렌즈와의 거리를 조절하는 제2 거리 조절부; 및 상기 제2 렌즈가 초점을 유지하도록 상기 제2 렌즈를 정렬시키는 제2 댐핑부를 포함하는 것을 특징으로 한다.The second aligning unit may include a second distance adjusting unit that adjusts the distance between the second lens and the first lens by moving the second lens toward the front and rear of the tube, And a second damping unit for aligning the second lens so that the second lens is in focus.
본 발명의 상기 제2 거리 조절부는 링 형태로 상기 관부의 내측면과 제2 나사산으로 결합되어 회전 방향에 따라 전후방으로 이동하는 것을 특징으로 한다.The second distance adjuster of the present invention is coupled with the inner surface of the tube portion in the form of a ring by a second screw thread, and is moved forward and backward along the rotation direction.
본 발명의 상기 제2 댐핑부는 일측이 상기 제2 거리 조절부에 설치되고 타측이 상기 제2 렌즈에 설치되어 상기 제2 렌즈를 초점 위치에 고정시키는 복수 개의 제2 스프링부를 포함하는 것을 특징으로 한다.The second damping unit of the present invention is characterized in that the second damping unit includes a plurality of second spring units, one side of which is provided on the second distance adjusting unit and the other side of which is provided on the second lens, for fixing the second lens to the focus position .
본 발명의 상기 제2 댐핑부는 자력을 이용하여 상기 제2 렌즈를 초점 위치에 고정시키는 복수 개의 제2 자력부를 포함하는 것을 특징으로 한다.The second damping unit of the present invention includes a plurality of second magnetic force units that fix the second lens at a focus position using a magnetic force.
본 발명의 상기 제2 자력부는 상기 제2 렌즈에 설치되는 제2 내측 자력부; 및 상기 제2 거리 조절부에 설치되는 제2 외측 자력부를 포함하되, 상기 제2 내측 자력부와 상기 제2 외측 자력부는 서로 대향되는 방향으로 동일한 극성이 되도록 배치되는 것을 특징으로 한다.The second magnetic portion of the present invention may include: a second inner magnetic portion installed in the second lens; And a second outside magnetic force part installed in the second distance adjusting part, wherein the second inside magnetic force part and the second outside magnetic force part are arranged so as to have the same polarity in directions opposite to each other.
본 발명은 상기 제1 렌즈 및 상기 제2 렌즈를 통해 전달되는 레이저 광을 연소로 내부에 전달하거나 또는 연소로 내부로부터 전달되는 레이저 광을 파라볼릭 미러에 전달하는 윈도우에 압축 공기 또는 질소를 분사하여 윈도우에 묻어 있는 먼지를 제거하나, 또는 연소로 내벽에 부착된 슬래그를 제거하는 제거부를 더 포함하는 것을 특징으로 한다.The present invention is characterized in that compressed air or nitrogen is injected into a window for transmitting the laser light transmitted through the first lens and the second lens to the inside of the combustion furnace or for transmitting the laser light transmitted from the inside of the combustion furnace to the parabolic mirror And a removing unit for removing the dust on the window, or for removing the slag attached to the inner wall by the burning.
본 발명의 상기 제거부는 압축 공기를 저장하는 압축 공기 탱크; 상기 압축 공기 탱크로부터 공급되는 압축 공기를 윈도우에 분사하는 제1 분사부; 상기 압축 공기 탱크로부터 공급되는 압축 공기를 슬래그에 분사하는 제2 분사부; 및 상기 제1 분사부 또는 상기 제2 분사부를 제어하여 상기 압축 공기 탱크에 저장된 압축 공기를 윈도우 또는 슬래그에 각각 분사하는 단속 제어부를 포함하는 것을 특징으로 한다.The removing unit of the present invention includes: a compressed air tank for storing compressed air; A first jetting section for jetting the compressed air supplied from the compressed air tank to the window; A second jetting section for jetting the compressed air supplied from the compressed air tank to the slag; And an intermittent control unit for controlling the first jetting unit or the second jetting unit to jet compressed air stored in the compressed air tank to a window or a slag, respectively.
본 발명은 상기 제2 렌즈를 통해 전달된 레이저 광의 신호 세기에 따라 파라볼릭 미러의 각도를 조절하는 각도 조절부를 더 포함하는 것을 특징으로 한다.The present invention further includes an angle adjusting unit for adjusting the angle of the parabolic mirror according to the intensity of the laser beam transmitted through the second lens.
본 발명의 상기 각도 조절부는 상기 파라볼릭 미러에 의해 집광된 레이저 광을 수광하는 디텍터; 상기 파라볼릭 미러를 회전시키는 구동부; 및 상기 디텍터의 신호 세기를 기 설정된 설정값과 비교하여 비교 결과에 따라 상기 구동부를 제어하는 파라볼릭 미러 제어부를 포함하는 것을 특징으로 한다.The angle adjusting unit may include a detector for receiving laser light condensed by the parabolic mirror; A driving unit for rotating the parabolic mirror; And a parabolic mirror controller for comparing the signal intensity of the detector with a predetermined set value and controlling the driving unit according to the comparison result.
본 발명의 일 측면에 따른 레이저 계측 장치의 레이저 광 제어 장치는 레이저 계측 장치의 레이저 광 크기 제어를 위해 렌즈를 정렬시키고 광세기를 고강도로 유지할 수 있도록 한다. A laser light control apparatus of a laser measuring apparatus according to an aspect of the present invention aligns a lens for controlling a laser light size of a laser measuring apparatus and maintains a light intensity at a high intensity.
본 발명의 다른 측면에 따른 레이저 계측 장치의 레이저 광 제어 장치는 보일러 내부의 온도 및 농도분포 측정시 정확하고 안정적인 레이저 광을 확보하여 보다 신뢰성 있는 계측이 가능하도록 한다. The laser light control apparatus of the laser measuring apparatus according to another aspect of the present invention ensures accurate and stable laser light when measuring the temperature and concentration distribution in the boiler, thereby enabling more reliable measurement.
본 발명의 또 다른 측면에 따른 레이저 계측 장치의 레이저 광 제어 장치는 발전소 현장의 고압 작업용 공기를 사용하여 먼지 및 슬래그를 제어함으로써, 비교적 저렴한 가격으로 레이저 시스템의 운전 안정성과 광신호를 확보할 수 있도록 한다. According to another aspect of the present invention, there is provided a laser light control apparatus for controlling a dust and a slag by using air for high-pressure working at a power plant site so as to secure the operation stability and optical signal of the laser system at a relatively low price do.
도 1 은 본 발명의 일 실시예에 따른 레이저 계측 장치의 레이저 광 제어 장치의 레이저 광 크기 제어 방식을 개념적으로 나타낸 도면이다.1 is a conceptual view illustrating a laser light intensity control method of a laser light control apparatus of a laser measuring apparatus according to an embodiment of the present invention.
도 2 는 본 발명의 일 실시예에 따른 각도 조절부의 구성도이다.2 is a configuration diagram of an angle adjusting unit according to an embodiment of the present invention.
도 3 및 도 4 는 본 발명의 일 실시예에 따른 제1 정렬부 및 제2 정렬부의 구성도이다.FIGS. 3 and 4 are block diagrams of a first alignment unit and a second alignment unit according to an embodiment of the present invention.
도 5 는 본 발명의 일 실시예에 따른 제거부의 블럭 구성도이다. FIG. 5 is a block diagram of a removal unit according to an embodiment of the present invention. Referring to FIG.
이하에서는 본 발명의 일 실시예에 따른 레이저 계측 장치의 레이저 광 제어 장치를 첨부된 도면들을 참조하여 상세하게 설명한다. 이러한 과정에서 도면에 도시된 선들의 두께나 구성요소의 크기 등은 설명의 명료성과 편의상 과장되게 도시되어 있을 수 있다. 또한 후술되는 용어들은 본 발명에서의 기능을 고려하여 정의된 용어들로서, 이는 이용자, 운용자의 의도 또는 관례에 따라 달라질 수 있다. 그러므로 이러한 용어들에 대한 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다. Hereinafter, a laser light control apparatus of a laser measuring apparatus according to an embodiment of the present invention will be described in detail with reference to the accompanying drawings. In this process, the thicknesses of the lines and the sizes of the components shown in the drawings may be exaggerated for clarity and convenience of explanation. Further, the terms described below are defined in consideration of the functions of the present invention, which may vary depending on the user, the intention or custom of the operator. Therefore, definitions of these terms should be made based on the contents throughout this specification.
도 1 은 본 발명의 일 실시예에 따른 레이저 계측 장치의 레이저 광 제어 장치의 레이저 광 크기 제어 방식을 개념적으로 나타낸 도면이고, 도 2 는 본 발명의 일 실시예에 따른 각도 조절부의 구성도이며, 도 3 및 도 4 는 본 발명의 일 실시예에 따른 제1 정렬부 및 제2 정렬부의 구성도이며, 도 5 는 본 발명의 일 실시예에 따른 제거부의 블럭 구성도이다. FIG. 1 is a conceptual view of a laser light intensity control method of a laser light control apparatus of a laser measuring apparatus according to an embodiment of the present invention. FIG. 2 is a configuration diagram of an angle adjusting unit according to an embodiment of the present invention, FIGS. 3 and 4 are block diagrams of a first aligning unit and a second aligning unit according to an embodiment of the present invention, and FIG. 5 is a block diagram of a removing unit according to an embodiment of the present invention.
도 1 내지 도 5 를 참조하면, 본 발명의 일 실시예에 따른 레이저 계측 장치의 레이저 광 제어 장치는 관부(30), 각도 조절부(40), 제1 정렬부(50), 제2 정렬부(60) 및 제거부(70)를 포함한다. 1 to 5, a laser light control apparatus of a laser measuring apparatus according to an embodiment of the present invention includes a tube portion 30, an angle adjusting portion 40, a first aligning portion 50, (60) and a removal unit (70).
본 발명의 일 실시예에 따른 레이저 계측 장치의 레이저 광 제어 장치에서, 레이저 다이오드(Lasee Diode;LD)로부터 방출된 레이저 광은 제1 렌즈(10)와 제2 렌즈(20) 간의 조합으로 그 크기가 제어된다. In the laser light control apparatus of the laser measuring apparatus according to the embodiment of the present invention, the laser light emitted from the laser diode (LD) is combined with the first lens 10 and the second lens 20, Is controlled.
본 실시예에서 레이저 계측 장치로는 석탄화력이나 중유화력 발전소에 연소 제어 및 최적화를 위하여 사용되는 파장가변형 레이저 계측시스템이 채용될 수 있다. In this embodiment, as the laser measuring apparatus, a tunable laser measuring system used for controlling and optimizing combustion in coal-fired power plants or heavy oil-fired power plants can be employed.
제1 렌즈(10)와 제2 렌즈(20)는 관부(30) 내부에 각각 설치되며, 레이저 광을 확대 또는 축소시킬 수 있는 집광형 렌즈 또는 분산형 렌즈, 및 평행하게 진행하도록 유도하는 렌즈가 채용될 수 있다. 일 예로, 제1 렌즈(10)로 Convergent lens가 채용되고, 제2 렌즈(20)로 Collimation lens가 채용될 수 있다. The first lens 10 and the second lens 20 are respectively installed in the tube portion 30 and include a condensing type lens or a dispersion type lens capable of enlarging or reducing the laser light and a lens for guiding parallel progression Can be employed. For example, a convergent lens may be employed as the first lens 10, and a collimation lens may be employed as the second lens 20. [
여기서, 레이저 광의 크기는 평행광의 직경이며, 레이저 광의 크기가 작을수록 수신 강도는 높아지나 정렬이 어렵고 진동에 취약하다. 따라서, 레이저 광의 크기는 시험 조건 등에 따라 사전에 정의되어야 할 필요가 있다. Here, the size of the laser light is the diameter of the parallel light, and the smaller the size of the laser light, the higher the reception intensity, but the alignment is difficult and the laser light is weak. Therefore, the size of the laser beam needs to be defined in advance according to the test conditions and the like.
참고로, 제1 렌즈(10)와 제2 렌즈(20)를 정렬시키는 것은, 제1 렌즈(10)의 중심선과 제2 렌즈(20)의 중심선이 일치시키는 것으로 이해되어야할 것이다. For reference, alignment of the first lens 10 and the second lens 20 should be understood to match the centerline of the first lens 10 and the centerline of the second lens 20.
이에 본 발명의 일 실시에에서는 제1 렌즈(10)와 제2 렌즈(20) 간의 거리를 조절하여 레이저 광의 크기를 조절한다. 이에 대해서는 후술한다. In one embodiment of the present invention, the distance between the first lens 10 and the second lens 20 is adjusted to adjust the size of the laser light. This will be described later.
더욱이, 본 발명의 일 실시예에 따른 레이저 계측 장치의 레이저 광 제어 장치에서, 레이저 광의 수신율은 파라볼릭 미러(Parabolic Mirror)(41)에서 증대될 수 있다. Furthermore, in the laser light control apparatus of the laser measuring apparatus according to the embodiment of the present invention, the reception ratio of the laser light can be increased in the parabolic mirror (41).
이에 본 발명의 일 실시예에 따른 레이저 계측 장치의 레이저 광 제어 장치는 상기한 파라볼릭 미러(41)의 각도를 조절하여 신호 강도 및 정확도를 개선하도록 각도 조절부(40)를 포함한다.Accordingly, the laser light control apparatus of the laser measuring apparatus according to the embodiment of the present invention includes the angle adjusting unit 40 for adjusting the angle of the parabolic mirror 41 to improve the signal intensity and accuracy.
도 2 를 참조하면, 각도 조절부(40)는 파라볼릭 미러(41), 디텍터(42), 구동부(43) 및 파라볼릭 미러 제어부(44)를 포함한다. 2, the angle adjusting unit 40 includes a parabolic mirror 41, a detector 42, a driving unit 43, and a parabolic mirror control unit 44.
파라볼릭 미러(41)는 제2 렌즈(20)에 의해 평행하게 진입한 레이저 광을 디텍터(42)로 집광한다.The parabolic mirror 41 condenses the laser light entering in parallel by the second lens 20 with the detector 42. [
디텍터(42)는 파라볼릭 미러(41)에 의해 집광된 레이저 광을 검출하여 해당 레이저 광에 대응되는 신호를 출력한다. The detector 42 detects the laser beam condensed by the parabolic mirror 41 and outputs a signal corresponding to the laser beam.
구동부(43)는 파라볼릭 미러 제어부(44)의 제어신호에 따라 파라볼릭 미러(41)의 각도를 조절한다. 이와 같이, 구동부(43)에 의해 파라볼릭 미러(41)의 각도가 조절됨으로써, 제1 렌즈(10)와 제2 렌즈(20)의 정렬이 완벽하게 이루어지지 않더라도 레이저 광이 디텍터(42)에 정확하게 진입할 수 있도록 한다. The driving unit 43 adjusts the angle of the parabolic mirror 41 in accordance with the control signal of the parabolic mirror control unit 44. Even if the alignment of the first lens 10 and the second lens 20 is not perfectly aligned by adjusting the angle of the parabolic mirror 41 by the driving unit 43 as described above, Make sure you can enter correctly.
파라볼릭 미러 제어부(44)는 디텍터(42)로부터 출력된 신호의 신호 세기를 기 설정된 설정값과 비교하여 신호 세기가 설정값 이하이면 구동부(43)를 제어함으로써, 디텍터(42)로부터 출력된 신호의 신호 세기가 설정값 이상이 되도록 한다. The parabolic mirror control unit 44 compares the signal intensity of the signal output from the detector 42 with a predetermined set value and controls the driving unit 43 when the signal intensity is equal to or lower than the set value, So that the signal intensity of the signal is greater than or equal to the set value.
이에 따라, 1차적으로 제1 렌즈(10)와 제2 렌즈(20)를 정렬시킬 경우 제1 렌즈(10)와 제2 렌즈(20)의 정렬이 완벽하게 이루어지지 않더라도, 파라볼릭 미러(41)의 각도를 조절함으로써, 레이저 광이 디텍터(42)에 정확하게 진입할 수 있게 된다. Accordingly, even if the first lens 10 and the second lens 20 are not perfectly aligned when the first lens 10 and the second lens 20 are aligned with each other, the parabolic mirror 41 So that the laser light can enter the detector 42 accurately.
한편, 제1 정렬부(50)는 관부(30) 내부에서 이동 가능하게 설치되어 관부(30) 내부의 제1 렌즈(10)를 정렬시키고, 제2 정렬부(60)는 관부(30) 내부에서 이동 가능하게 설치되어 관부(30) 내부의 제2 렌즈(20)를 정렬시킨다. The first alignment unit 50 is provided movably within the tube 30 to align the first lens 10 inside the tube 30 and the second alignment unit 60 aligns the inside of the tube 30 So as to align the second lens 20 inside the tube portion 30. [
이 경우, 제1 정렬부(50)와 제2 정렬부(60)는 상기한 바와 같이 관부(30)를 따라 이동 가능하게 설치되어 제1 렌즈(10)와 제2 렌즈(20) 간의 거리를 조절함으로써 레이저 광의 두께를 조절함과 더불어, 제1 렌즈(10)와 제2 렌즈(20) 각각을 초점 위치에 고정시킨다. In this case, the first alignment unit 50 and the second alignment unit 60 are provided so as to be movable along the tube portion 30 as described above so that the distance between the first lens 10 and the second lens 20 Thereby adjusting the thickness of the laser beam and fixing each of the first lens 10 and the second lens 20 to the focal position.
먼저, 제1 정렬부(50)는 도 3 에 도시된 바와 같이, 제1 거리 조절부(51)와 제1 댐핑부(53)를 포함한다. First, the first alignment unit 50 includes a first distance adjustment unit 51 and a first damping unit 53, as shown in FIG.
제1 거리 조절부(51)는 링 형태로 형성되어 외측면이 관부(30)의 내측면과 면접되며, 제1 댐핑부(53)를 통해 제1 렌즈(10)와 연결되어 제1 렌즈(10)를 관부(30)의 전후방으로 이동시킴으로써 제2 렌즈(20)와의 거리를 조절한다. The first distance adjuster 51 is formed in a ring shape and its outer surface is in contact with the inner surface of the tube portion 30. The first distance adjusting portion 51 is connected to the first lens 10 through the first damping portion 53, 10 are moved forward and backward of the tube portion 30 to adjust the distance to the second lens 20.
이 경우, 관부(30) 내측면에는 나사산이 형성되고, 제1 거리 조절부(51)의 외측면에는 제1 나사산(52)이 형성된다. 이에 따라 제1 거리 조절부(51)는 관부(30)와 나사산으로 결합되어 제1 거리 조절부(51)가 시계 방향 또는 반시계 방향으로 회전함에 따라 관부(30)의 전방 또는 후방으로 이동하게 된다. In this case, a thread is formed on the inner surface of the tube portion 30, and a first thread 52 is formed on the outer surface of the first distance adjusting portion 51. The first distance adjusting portion 51 is threadedly coupled to the tube portion 30 so that the first distance adjusting portion 51 moves forward or backward of the tube portion 30 as the first distance adjusting portion 51 rotates clockwise or counterclockwise do.
여기서, 관부(30) 내측면에 형성되는 나사산은 제1 렌즈(10)가 이동 가능한 범위에 따라 다양한 길이로 형성될 수 있다. Here, the threads formed on the inner surface of the tube portion 30 may be formed in various lengths depending on the range in which the first lens 10 can be moved.
도 4 를 참조하면, 제1 댐핑부(53)는 제1 스프링부(54) 및 제1 자력부(55)를 포함한다. Referring to FIG. 4, the first damping portion 53 includes a first spring portion 54 and a first magnetic force portion 55.
제1 스프링부(54)는 복수 개가 구비되며, 일측이 제1 거리 조절부(51)에 설치되고 타측이 제1 렌즈(10)에 설치되어 제1 렌즈(10)를 초점 위치에 고정시킨다. A plurality of first spring portions 54 are provided, one side of which is provided on the first distance adjusting portion 51 and the other side of which is provided on the first lens 10 to fix the first lens 10 to the focal position.
제1 스프링부(54)는 4개가 구비될 수 있으며 각각은 90도 방향으로 각각 배치된다. 따라서, 진동에 의해 관부(30)가 흔들리더라도, 제1 스프링부(54)에 의해 진동에 의한 변이가 상쇄될 수 있다. Four first spring portions 54 may be provided, each disposed in a 90 degree orientation. Therefore, even if the tube portion 30 is vibrated by the vibration, the variation due to the vibration can be canceled by the first spring portion 54. [
참고로, 본 실시예에서는 제1 스프링부(54)가 4개가 구비되고 이들이 90도 방향으로 각각 배치되는 것을 예시로 설명하였으나, 제1 스프링부(54)의 설치 위치 및 개수는 특별히 한정되는 것은 아니며, 제1 렌즈(10)가 초점 위치에 정확하게 위치할 수 있도록 하는 것이라면, 다양한 위치와 개수로 설치될 수 있다. For example, in the present embodiment, four first spring portions 54 are provided and they are arranged in the direction of 90 degrees. However, the position and number of the first spring portions 54 are specifically limited And may be provided in various positions and in a number as long as the first lens 10 can be accurately positioned at the focus position.
제1 자력부(55)는 자력을 이용하여 제1 렌즈(10)를 초점 위치에 고정시키는 것으로써, 복수 개가 마련된다. The first magnetic force part 55 fixes the first lens 10 at the focal position by using a magnetic force, and a plurality of them are provided.
제1 자력부(55)는 일 예로 4개가 구비되며, 각각은 제1 렌즈(10)에 설치되는 제1 내측 자력부(551), 및 제1 거리 조절부(51)에 설치되는 제1 외측 자력부(552)를 포함한다. 이 경우, 제1 내측 자력부(551)와 제1 외측 자력부(552)는 서로 대향되는 방향으로 동일한 극성이 되도록 배치된다. The first magnetic force part 55 includes four first inner magnetic force parts 551 provided on the first lens 10 and a first outer magnetic force part 551 provided on the first distance adjustment part 51. The first inner magnetic force part 551 is provided on the first lens 10, And a magnetic portion 552. In this case, the first inside magnetic force part 551 and the first outside magnetic force part 552 are arranged so as to have the same polarity in the directions opposite to each other.
즉, 제1 내측 자력부(551)의 외측 극성과 제1 외측 자력부(552)의 내측 극성이 동일하도록 배치됨으로써, 제1 내측 자력부(551)와 제1 외측 자력부(552) 간에는 척력이 작용하게 된다. That is, the outer polarity of the first inside magnetic force part 551 and the inside polarity of the first outside magnetic force part 552 are arranged to be equal to each other, .
이 경우, 제1 자력부(55)는 상기한 바와 같이 4개가 구비되고 90도 방향으로 각각 배치된다. In this case, as described above, the first magnetic force portions 55 are provided in the direction of 90 degrees, respectively.
따라서, 진동에 의해 관부(30)가 흔들리더라도, 자력에 의해 진동에 의한 변이가 상쇄될 수 있다. Therefore, even if the tube portion 30 is vibrated by the vibration, the variation due to the vibration can be canceled by the magnetic force.
여기서, 제1 내측 자력부(551)와 제1 외측 자력부(552)는 가변 자석이 채용될 수 있으며, 이를 통해 렌즈 정렬이 더욱 손쉽게 이루어질 수 있다. 이는 후술한 제2 자력에 대해서도 동일하게 적용될 수 있다. Here, the first inside magnetic force part 551 and the first outside magnetic force part 552 may employ variable magnets, which makes it easier to align the lenses. The same can be applied to the second magnetic force described later.
참고로, 본 실시예에서는 제1 자력부(55)가 4개가 구비되고 이들이 90도 방향으로 각각 배치되는 것을 예시로 설명하였으나, 제1 자력부(55)의 설치 위치 및 개수는 특별히 한정되는 것은 아니며, 제1 렌즈(10)가 초점 위치에 정확하게 위치할 수 있도록 하는 것이라면, 다양한 위치와 개수로 설치될 수 있다. For reference, in the present embodiment, four first magnetic force portions 55 are provided and they are disposed in the direction of 90 degrees. However, the position and the number of the first magnetic force portions 55 are specifically limited And may be provided in various positions and in a number as long as the first lens 10 can be accurately positioned at the focus position.
이와 같이, 제1 댐핑부(53)는 제1 스프링부(54)와 제1 자력부(55)를 구비하여 제1 렌즈(10)의 위치 변동을 최소화하고 빠른 댐핑이 가능하게 한다. The first damping portion 53 includes the first spring portion 54 and the first magnetic force portion 55 to minimize the variation of the position of the first lens 10 and enable rapid damping.
제2 정렬부(60)는 관부(30)에서 이동 가능하게 설치되어 관부(30) 내부의 제2 렌즈(20)를 정렬시킨다. 이러한 제2 정렬부(60)는 제2 렌즈(20)를 정렬시킨다는 점에서 상기한 제1 정렬부(50)와 그 구조가 동일한다. The second alignment part 60 is movably installed in the tube part 30 to align the second lens 20 inside the tube part 30. [ The second alignment unit 60 has the same structure as the first alignment unit 50 in that the second lens 20 is aligned.
제2 정렬부(60)는 제2 거리 조절부(61)와 제2 댐핑부(미도시)를 포함한다. 참고로, 제2 정렬부(60)는 제2 렌즈(20)를 정렬시키는 점을 제외하고는 제1 정렬부(50)와 동일하므로, 이하 간단하게 설명한다. The second alignment unit 60 includes a second distance adjustment unit 61 and a second damping unit (not shown). For reference, the second alignment unit 60 is the same as the first alignment unit 50 except that the second lens 20 is aligned, and will be briefly described below.
제2 거리 조절부(61)는 링 형태로 형성되어 관부(30)의 내측면과 면접되며, 제2 댐핑부를 통해 제2 렌즈(20)와 연결되어 제2 렌즈(20)를 관부(30)의 전후방으로 이동시킴으로써 제1 렌즈(10)와의 거리를 조절한다. The second distance adjuster 61 is formed in a ring shape and is in contact with the inner surface of the tube portion 30 and is connected to the second lens 20 through the second damping portion to connect the second lens 20 to the tube portion 30. [ The distance from the first lens 10 is adjusted.
이 경우, 제2 거리 조절부(61)는 외측면에 제2 나사산(62)이 형성되어 관부(30)와 나사산으로 결합되며, 제2 거리 조절부(61)가 시계 방향 또는 반시계 방향으로 회전함에 따라 관부(30)의 전방 또는 후방으로 이동하게 된다. In this case, the second distance adjuster 61 has a second screw thread 62 formed on the outer surface thereof and is threadedly engaged with the tube portion 30. When the second distance adjuster 61 is rotated clockwise or counterclockwise And moves toward the front or rear of the tube portion 30 as it rotates.
제2 댐핑부는 제2 스프링부(미도시) 및 제2 자력부(미도시)를 포함한다. The second damping portion includes a second spring portion (not shown) and a second magnetic portion (not shown).
제2 스프링부는 복수 개가 구비되며, 일측이 제2 거리 조절부(61)에 설치되고 타측이 제2 렌즈(20)에 설치되어 제2 렌즈(20)를 초점 위치에 고정시킨다. 따라서, 진동에 의해 관부(30)가 흔들리더라도, 제2 스프링부에 의해 진동에 의한 변이가 상쇄될 수 있다. A plurality of second spring portions are provided, one side of which is provided on the second distance adjusting portion 61, and the other side of which is provided on the second lens 20 to fix the second lens 20 to the focal position. Therefore, even if the tube portion 30 is vibrated by the vibration, the variation due to the vibration can be canceled by the second spring portion.
참고로, 제2 스프링부가 제1 스프링부(54)와 같이 4개가 구비되고 이들이 90도 방향으로 각각 배치될 수 있다. For reference, there are four second spring portions like the first spring portion 54, and they can be arranged in the 90-degree direction, respectively.
제2 자력부는 자력을 이용하여 제2 렌즈(20)를 초점 위치에 고정시킨다. 제2 자력부는 제2 렌즈(20)에 설치되는 제2 내측 자력부(미도시) 및 제2 거리 조절부(61)에 설치되는 제2 외측 자력부(미도시)를 포함하는데, 제2 내측 자력부와 제2 외측 자력부는 서로 대향되는 방향으로 동일한 극성이 되도록 배치된다. 즉, 제2 내측 자력부의 외측 극성과 제2 외측 자력부의 내측 극성이 동일하도록 배치됨으로써, 제2 내측 자력부와 제2 외측 자력부 간에는 척력이 작용하게 된다. And the second magnetic force unit fixes the second lens 20 to the focal position using the magnetic force. The second magnetic force part includes a second inside magnetic force part (not shown) installed in the second lens 20 and a second outside magnetic force part (not shown) installed in the second distance adjusting part 61, The magnetic force portion and the second outside magnetic force portion are disposed so as to have the same polarity in the directions opposite to each other. That is, the outer polarity of the second inside magnetic force portion and the inside polarity of the second outside magnetic force portion are arranged to be equal to each other, so that a repulsive force acts between the second inside magnetic force portion and the second outside magnetic force portion.
따라서, 진동에 의해 관부(30)가 흔들리더라도, 진동에 의한 변이가 상쇄될 수 있다. Therefore, even if the tube portion 30 is vibrated by the vibration, the variation due to the vibration can be canceled.
참고로, 제2 자력부의 설치 위치 및 개수는 특별히 한정되는 것은 아니며, 제2 렌즈(20)가 초점 위치에 정확하게 위치할 수 있도록 하는 것이라면, 다양한 위치와 개수로 설치될 수 있다. For reference, the mounting position and the number of the second magnetic force portions are not particularly limited, and may be provided in various positions and numbers as long as the second lens 20 can be accurately positioned at the focus position.
이와 같이, 제2 댐핑부는 제2 스프링부와 제2 자력부를 통해 제1 렌즈(10)의 위치 변동을 최소화하고 빠른 댐핑이 가능하게 한다. Thus, the second damping portion minimizes the positional variation of the first lens 10 through the second spring portion and the second magnetic force portion, and enables rapid damping.
즉, 제1 정렬부(50)와 제2 정렬부(60)는 관부(30)를 따라 이동 가능하게 설치되어 제1 렌즈(10)와 제2 렌즈(20)를 이동시킴으로써, 레이저 광의 크기를 적절하게 조절할 수 있도록 한다. That is, the first and second alignment units 50 and 60 are provided to be movable along the tube unit 30 to move the first lens 10 and the second lens 20, So that it can be adjusted appropriately.
또한, 제1 정렬부(50)와 제2 정렬부(60)는 각각이 제1 렌즈(10)와 제2 렌즈(20)를 자력과 탄성력을 이용하여 초점 위치에 위치시키고 외부의 진동이 제1 렌즈(10)와 제2 렌즈(20)에 전달되지 않도록 함으로써 제1 렌즈(10)와 제2 렌즈(20)의 위치 변동을 최소화시킬 수 있다. The first alignment unit 50 and the second alignment unit 60 respectively position the first lens 10 and the second lens 20 at a focus position using a magnetic force and an elastic force, The positional change of the first lens 10 and the second lens 20 can be minimized by not being transmitted to the first lens 10 and the second lens 20.
제거부(70)는 윈도우(Window)에 부착되어 있는 먼지나, 연소로 내벽에 부착된 석탄회나 슬래그를 제거한다. 윈도우는 연소로 내부의 먼지 등이 외부로 배출되지 않도록 차단함과 더불어 제1 렌즈(10) 및 제2 렌즈(20)를 통해 전달되는 레이저 광을 연소로 내부에 전달하거나 연소로 내부로부터 전달되는 레이저 광을 파라볼릭 미러(41)에 전달한다. The removing unit 70 removes the dust attached to the window or the fly ash or slag attached to the inner wall of the combustion furnace. The window is provided to prevent dust and the like inside the combustion furnace from being discharged to the outside, and to transfer the laser light transmitted through the first lens 10 and the second lens 20 to the inside of the combustion furnace or to be transmitted from the inside of the combustion furnace And transmits the laser beam to the parabolic mirror 41.
제거부(70)는 압축 공기 탱크(71), 제1 분사부(73), 제2 분사부(72) 및 단속 제어부(74)를 포함한다.The removing unit 70 includes a compressed air tank 71, a first jetting unit 73, a second jetting unit 72, and an intermittent control unit 74.
압축 공기 탱크(71)는 압축 공기를 저장한다. The compressed air tank 71 stores compressed air.
제1 분사부(73)는 압축 공기 탱크(71)로부터 공급되는 압축 공기를 윈도우에 분사하는 것으로써, 제1 분사관(731) 및 제1 밸브(732)를 포함한다. The first jetting section 73 includes a first jetting tube 731 and a first valve 732 by jetting the compressed air supplied from the compressed air tank 71 to the window.
제1 분사관(731)은 압축 공기 탱크(71)로부터 공급되는 압축 공기를 연소로 내부의 윈도우 면으로 유도한다. 제1 밸브(732)는 단속 제어부(74)의 제어신호에 따라 압축 공기 탱크(71)로부터 제1 분사관(731)을 통해 윈도우로 공급되는 압축 공기를 단속한다. The first spray tube 731 guides the compressed air supplied from the compressed air tank 71 to the window surface inside the combustion furnace. The first valve 732 interrupts the compressed air supplied from the compressed air tank 71 to the window through the first injection pipe 731 in accordance with the control signal from the intermittent control unit 74.
제2 분사부(72)는 압축 공기 탱크(71)로부터 공급되는 압축 공기를 연소로 내측벽에 부착된 슬래그에 분사하는 것으로써, 제2 분사관(721) 및 제2 밸브(722)를 포함한다. The second jetting section 72 includes a second jetting tube 721 and a second valve 722 by injecting the compressed air supplied from the compressed air tank 71 to the slag attached to the inner wall of the furnace do.
제2 분사관(721)은 압축 공기 탱크(71)로부터 공급되는 압축 공기를 연소로 내벽에 붙어 있는 슬래그로 유도한다. 제2 밸브(722)는 단속 제어부(74)의 제어신호에 따라 압축 공기 탱크(71)로부터 제2 분사관(721)을 통해 슬래그로 공급되는 압축 공기를 단속한다. The second spray tube 721 guides the compressed air supplied from the compressed air tank 71 to the slag attached to the inner wall of the combustion furnace. The second valve 722 interrupts the compressed air supplied from the compressed air tank 71 to the slag through the second spray pipe 721 in accordance with the control signal of the intermittent control unit 74.
단속 제어부(74)는 제1 밸브(732) 또는 제2 밸브(722)를 제어하여 제1 분사관(731) 또는 제2 분사관(721)을 통해 압축 공기를 펄스식으로 분사함으로써, 윈도우에 부착되어 있는 먼지나 연소로 내벽에 붙어 있는 슬래그를 제거한다. The intermittent control unit 74 controls the first valve 732 or the second valve 722 to pulse the compressed air through the first injection pipe 731 or the second injection pipe 721 to inject the compressed air into the window Remove the slag attached to the inner wall by the attached dust or combustion.
참고로, 본 실시예에서는 먼지나 슬래그를 제거하기 위해 압축 공기를 이용하는 것을 예시로 설명하였으나, 공기 이외에 질소도 이용될 수 있다. For reference, in the present embodiment, compressed air is used as an example to remove dust and slag, but nitrogen may also be used in addition to air.
이와 같이 본 발명의 일 실시예에 따른 레이저 계측 장치의 레이저 광 제어 장치는 레이저 계측 장치의 레이저 광 크기 제어를 위해 렌즈를 정렬시키고, 진동을 저감시키며, 광세기를 고강도로 유지할 수 있도록 한다. As described above, the laser light control apparatus of the laser measuring apparatus according to an embodiment of the present invention aligns the lens for laser light size control of the laser measuring apparatus, reduces vibration, and maintains the light intensity at a high intensity.
또한, 본 발명의 일 실시예에 따른 레이저 계측 장치의 레이저 광 제어 장치는 보일러 내부의 온도 및 농도분포 측정시 정확하고 안정적인 레이저 광을 확보하여 보다 신뢰성 있는 계측이 가능하도록 한다. Further, the laser light control apparatus of the laser measuring apparatus according to an embodiment of the present invention ensures accurate and stable laser light when measuring the temperature and concentration distribution in the boiler, thereby enabling more reliable measurement.
게다가, 본 발명의 일 실시예에 따른 레이저 계측 장치의 레이저 광 제어 장치는 발전소 현장의 고압 작업용 공기를 사용하여 먼지 및 슬래그를 제어함으로써, 비교적 저렴한 가격으로 레이저 시스템의 운전 안정성 및 정확한 광신호를 확보할 수 있도록 한다. In addition, the laser light control apparatus of the laser measuring apparatus according to the embodiment of the present invention controls the dust and slag using the high-pressure working air at the power plant site, thereby ensuring the operation stability of the laser system and the accurate optical signal at relatively low cost .
본 발명은 도면에 도시된 실시예를 참고로 하여 설명되었으나, 이는 예시적인 것에 불과하며 당해 기술이 속하는 기술분야에서 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 타 실시예가 가능하다는 점을 이해할 것이다. 따라서, 본 발명의 진정한 기술적 보호범위는 아래의 특허청구범위에 의하여 정해져야할 것이다.While the present invention has been particularly shown and described with reference to exemplary embodiments thereof, it is clearly understood that the same is by way of illustration and example only and is not to be taken by way of limitation, I will understand. Accordingly, the true scope of the present invention should be determined by the following claims.

Claims (15)

  1. 관부; Tube;
    상기 관부 내부에서 이동 가능하게 설치되어 상기 관부 내부의 제1 렌즈를 정렬시키는 제1 정렬부; 및A first aligning part movably installed inside the tube part to align the first lens inside the tube part; And
    상기 관부 내부에서 이동 가능하게 설치되어 상기 관부 내부의 제2 렌즈를 정렬시키는 제2 정렬부를 포함하는 레이저 계측 장치의 레이저 광 제어 장치. And a second alignment unit movably installed in the tube to align the second lens inside the tube.
  2. 제 1 항에 있어서, 상기 제1 정렬부는 The apparatus of claim 1, wherein the first alignment unit
    상기 제1 렌즈를 상기 관부의 전후방으로 이동시켜 상기 제2 렌즈와의 거리를 조절하는 제1 거리 조절부; 및 A first distance adjuster for adjusting the distance between the first lens and the second lens by moving the first lens toward the front and rear of the tube; And
    상기 제1 렌즈가 초점을 유지하도록 상기 제1 렌즈를 정렬시키는 제1 댐핑부를 포함하는 것을 특징으로 하는 레이저 계측 장치의 레이저 광 제어 장치.And a first damping unit for aligning the first lens so that the first lens maintains a focal point.
  3. 제 2 항에 있어서, 상기 제1 거리 조절부는 3. The apparatus of claim 2, wherein the first distance adjuster
    링 형태로 상기 관부의 내측면과 제1 나사산으로 결합되어 회전 방향에 따라 상기 제1 렌즈를 전후방으로 이동시키는 것을 특징으로 하는 레이저 계측 장치의 레이저 광 제어 장치. Wherein the first lens is coupled to the inner surface of the tube portion in a ring shape by a first screw thread to move the first lens in the forward and backward directions according to the rotation direction.
  4. 제 2 항에 있어서, 상기 제1 댐핑부는 3. The apparatus of claim 2, wherein the first damping portion
    일측이 상기 제1 거리 조절부에 설치되고 타측이 상기 제1 렌즈에 설치되어 상기 제1 렌즈를 초점 위치에 고정시키는 복수 개의 제1 스프링부를 포함하는 것을 특징으로 하는 레이저 계측 장치의 레이저 광 제어 장치. And a plurality of first spring portions for fixing the first lens to a focus position, one side of which is provided on the first distance adjusting portion and the other side is provided on the first lens. .
  5. 제 2 항에 있어서, 상기 제1 댐핑부는 3. The apparatus of claim 2, wherein the first damping portion
    자력을 이용하여 상기 제1 렌즈를 초점 위치에 고정시키는 복수 개의 제1 자력부를 포함하는 것을 특징으로 하는 레이저 계측 장치의 레이저 광 제어 장치. And a plurality of first magnetic force portions for fixing the first lens at a focus position using a magnetic force.
  6. 제 5 항에 있어서, 상기 제1 자력부는 6. The apparatus of claim 5, wherein the first magnetic portion
    상기 제1 렌즈에 설치되는 제1 내측 자력부; 및A first inner magnetic force part installed on the first lens; And
    상기 제1 거리 조절부에 설치되는 제1 외측 자력부를 포함하되, And a first outer magnetic force part installed in the first distance adjusting part,
    상기 제1 내측 자력부와 상기 제1 외측 자력부는 서로 대향되는 방향으로 동일한 극성이 되도록 배치되는 것을 특징으로 하는 레이저 계측 장치의 레이저 광 제어 장치. Wherein the first inside magnetic force portion and the first outside magnetic force portion are disposed so as to have the same polarity in a direction opposite to each other.
  7. 제 1 항에 있어서, 상기 제2 정렬부는 The apparatus of claim 1, wherein the second alignment unit
    상기 제2 렌즈를 상기 관부의 전후방으로 이동시켜 상기 제1 렌즈와의 거리를 조절하는 제2 거리 조절부; 및 A second distance adjuster that adjusts the distance between the second lens and the first lens by moving the second lens in the front and rear directions of the tube portion; And
    상기 제2 렌즈가 초점을 유지하도록 상기 제2 렌즈를 정렬시키는 제2 댐핑부를 포함하는 것을 특징으로 하는 레이저 계측 장치의 레이저 광 제어 장치.And a second damping unit for aligning the second lens so that the second lens maintains the focal point.
  8. 제 7 항에 있어서, 상기 제2 거리 조절부는 8. The apparatus of claim 7, wherein the second distance adjuster
    링 형태로 상기 관부의 내측면과 제2 나사산으로 결합되어 회전 방향에 따라 전후방으로 이동하는 것을 특징으로 하는 레이저 계측 장치의 레이저 광 제어 장치. And a second screw thread coupled to an inner surface of the tube portion in a ring shape to move back and forth along a rotation direction.
  9. 제 7 항에 있어서, 상기 제2 댐핑부는 8. The apparatus of claim 7, wherein the second damping portion
    일측이 상기 제2 거리 조절부에 설치되고 타측이 상기 제2 렌즈에 설치되어 상기 제2 렌즈를 초점 위치에 고정시키는 복수 개의 제2 스프링부를 포함하는 것을 특징으로 하는 레이저 계측 장치의 레이저 광 제어 장치. And a plurality of second spring portions for fixing the second lens to a focus position, one side of which is provided on the second distance adjusting portion and the other side is provided on the second lens. .
  10. 제 7 항에 있어서, 상기 제2 댐핑부는 8. The apparatus of claim 7, wherein the second damping portion
    자력을 이용하여 상기 제2 렌즈를 초점 위치에 고정시키는 복수 개의 제2 자력부를 포함하는 것을 특징으로 하는 레이저 계측 장치의 레이저 광 제어 장치. And a plurality of second magnetic force portions for fixing the second lens at a focus position using a magnetic force.
  11. 제 10 항에 있어서, 상기 제2 자력부는 The apparatus of claim 10, wherein the second magnetic portion
    상기 제2 렌즈에 설치되는 제2 내측 자력부; 및A second inner magnetic force part installed on the second lens; And
    상기 제2 거리 조절부에 설치되는 제2 외측 자력부를 포함하되, And a second outer magnetic force part installed in the second distance adjusting part,
    상기 제2 내측 자력부와 상기 제2 외측 자력부는 서로 대향되는 방향으로 동일한 극성이 되도록 배치되는 것을 특징으로 하는 레이저 계측 장치의 레이저 광 제어 장치. Wherein the second inside magnetic force portion and the second outside magnetic force portion are disposed so as to have the same polarity in a direction opposite to each other.
  12. 제 1 항에 있어서, 상기 제1 렌즈 및 상기 제2 렌즈를 통해 전달되는 레이저 광을 연소로 내부에 전달하거나, 또는 연소로 내부로부터 전달되는 레이저 광을 파라볼릭 미러에 전달하는 윈도우에 압축 공기 또는 질소를 분사하여 윈도우에 묻어 있는 먼지를 제거하나, 또는 연소로 내벽에 부착된 슬래그를 제거하는 제거부를 더 포함하는 것을 특징으로 하는 레이저 계측 장치의 레이저 광 제어 장치. The method as claimed in claim 1, further comprising the steps of: delivering the laser beam transmitted through the first lens and the second lens to the inside of the combustion furnace; or transferring the laser beam transmitted from the inside of the combustion furnace to the parabolic mirror, Further comprising a removal section for removing dust adhering to the window by spraying nitrogen or for removing slag attached to the inner wall of the combustion furnace.
  13. 제 12 항에 있어서, 상기 제거부는 13. The apparatus of claim 12, wherein the removing unit
    압축 공기를 저장하는 압축 공기 탱크; A compressed air tank for storing compressed air;
    상기 압축 공기 탱크로부터 공급되는 압축 공기를 윈도우에 분사하는 제1 분사부; A first jetting section for jetting the compressed air supplied from the compressed air tank to the window;
    상기 압축 공기 탱크로부터 공급되는 압축 공기를 슬래그에 분사하는 제2 분사부; 및A second jetting section for jetting the compressed air supplied from the compressed air tank to the slag; And
    상기 제1 분사부 또는 상기 제2 분사부를 제어하여 상기 압축 공기 탱크에 저장된 압축 공기를 윈도우 또는 슬래그에 각각 분사하는 단속 제어부를 포함하는 것을 특징으로 하는 레이저 계측 장치의 레이저 광 제어 장치. And an intermittent control unit for controlling the first jetting unit or the second jetting unit to jet compressed air stored in the compressed air tank to a window or a slag, respectively.
  14. 제 1 항에 있어서, 상기 제2 렌즈를 통해 전달된 레이저 광의 신호 세기에 따라 파라볼릭 미러의 각도를 조절하는 각도 조절부를 더 포함하는 것을 특징으로 하는 레이저 계측 장치의 레이저 광 제어 장치. The laser light control apparatus of claim 1, further comprising an angle adjuster for adjusting an angle of the parabolic mirror according to a signal intensity of laser light transmitted through the second lens.
  15. 제 14 항에 있어서, 상기 각도 조절부는 15. The apparatus of claim 14, wherein the angle adjuster
    상기 파라볼릭 미러에 의해 집광된 레이저 광을 수광하는 디텍터; A detector for receiving the laser beam condensed by the parabolic mirror;
    상기 파라볼릭 미러를 회전시키는 구동부; 및A driving unit for rotating the parabolic mirror; And
    상기 디텍터의 신호 세기를 기 설정된 설정값과 비교하여 비교 결과에 따라 상기 구동부를 제어하는 파라볼릭 미러 제어부를 포함하는 것을 특징으로 하는 레이저 계측 장치의 레이저 광 제어 장치.And a parabolic mirror controller for comparing the signal intensity of the detector with a predetermined set value and controlling the driving unit according to the comparison result.
PCT/KR2018/000796 2017-08-31 2018-01-17 Laser light control device of laser measurement device WO2019045200A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2017-0110877 2017-08-31
KR1020170110877A KR101981927B1 (en) 2017-08-31 2017-08-31 Apparatus for controlling laser of laser measurement apparatus

Publications (1)

Publication Number Publication Date
WO2019045200A1 true WO2019045200A1 (en) 2019-03-07

Family

ID=65527618

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/000796 WO2019045200A1 (en) 2017-08-31 2018-01-17 Laser light control device of laser measurement device

Country Status (2)

Country Link
KR (1) KR101981927B1 (en)
WO (1) WO2019045200A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210119404A1 (en) * 2017-11-09 2021-04-22 Compact Laser Solutions Gmbh Device for adjusting an optical component

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102249069B1 (en) * 2020-01-14 2021-05-07 주식회사 아이엠티 Apparatus for cleaning of semiconductor mold

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020007459A (en) * 2000-07-13 2002-01-29 구자홍 Supporting structure of actuator for tilting drive
KR200425740Y1 (en) * 2006-06-27 2006-09-06 김용근 Light projector using laser
JP2007199076A (en) * 2007-02-26 2007-08-09 Mitsubishi Heavy Ind Ltd Method and system for measuring laser
KR20120108052A (en) * 2010-04-13 2012-10-04 미츠비시 쥬고교 가부시키가이샤 Flow rate measurement device and flow speed measurement device
JP2013156113A (en) * 2012-01-30 2013-08-15 Fuji Electric Co Ltd Laser type gas analyzer

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102019098B1 (en) * 2013-04-19 2019-11-04 엘지이노텍 주식회사 Micro electro mechanical systems device
KR20140135410A (en) * 2013-05-16 2014-11-26 주식회사 만도 Adjusting method, device and system for radar alignment

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020007459A (en) * 2000-07-13 2002-01-29 구자홍 Supporting structure of actuator for tilting drive
KR200425740Y1 (en) * 2006-06-27 2006-09-06 김용근 Light projector using laser
JP2007199076A (en) * 2007-02-26 2007-08-09 Mitsubishi Heavy Ind Ltd Method and system for measuring laser
KR20120108052A (en) * 2010-04-13 2012-10-04 미츠비시 쥬고교 가부시키가이샤 Flow rate measurement device and flow speed measurement device
JP2013156113A (en) * 2012-01-30 2013-08-15 Fuji Electric Co Ltd Laser type gas analyzer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210119404A1 (en) * 2017-11-09 2021-04-22 Compact Laser Solutions Gmbh Device for adjusting an optical component

Also Published As

Publication number Publication date
KR20190025174A (en) 2019-03-11
KR101981927B1 (en) 2019-05-29

Similar Documents

Publication Publication Date Title
WO2019045200A1 (en) Laser light control device of laser measurement device
KR950004882B1 (en) Lighting connecter
WO2016115704A1 (en) Laser measurement system and method capable of detecting 21 geometric errors
CN201166586Y (en) Optical probe for optical fibre infrared temperature measurement instrument
ATE519092T1 (en) LASER-ASSISTED COORDINATE MEASURING APPARATUS AND LASER-ASSISTED COORDINATE MEASURING METHOD
WO2018212395A1 (en) Lidar device and lidar system including the same
US20090263085A1 (en) Device for injecting light into an optical wave guide
WO2020204458A1 (en) Wide-angle, high-resolution distance measurement device
CN100360894C (en) Laser interferometer for repeatable mounting on the wall of a vacuum chamber
JP3089802B2 (en) Stage position measuring apparatus, projection exposure apparatus and projection exposure method
CN102308150B (en) Method and apparatus for monitoring combustion properties in an interior of a boiler
WO2020071570A1 (en) Method for two-dimensional measurement of concentration and temperature of fine dust precursor material and active control thereof
CN104180969A (en) Ellipsoidal-reflector focal-point detection device and detection method thereof
WO2016017849A1 (en) Real-time correction dust analyzer having varying measurement point
US4844618A (en) Alignment apparatus with single mode fiber optic stabilizer
US9982946B2 (en) Optical monitoring system for observing internal conditions in the tuyere zone of a blast furnace
JPS62140118A (en) Axis line analyzer for variable view guidance unit
US20080309907A1 (en) Adjusting device for a microlithography projection exposure installation, and related illumination system and projection exposure installation
CN203217154U (en) Device for realizing pipeline optical path aligning adjustment of laser on-line gas analysis apparatus
WO2022050568A1 (en) Optical device for vehicle
WO2017176070A1 (en) Distance measuring sensor assembly and electronic device having same
WO2019203377A1 (en) Automatic position correction device for laser scanning equipment
WO2014193134A1 (en) High speed laser processing method and apparatus
CN103364920A (en) Device for realizing pipeline light path collimation adjustment for laser online gas analyzer
CN216557203U (en) Double-probe flame detection system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18850967

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18850967

Country of ref document: EP

Kind code of ref document: A1