WO2019045103A1 - Charging system for autonomous underwater vehicle (auv) and method for lifting and recovering auv - Google Patents

Charging system for autonomous underwater vehicle (auv) and method for lifting and recovering auv Download PDF

Info

Publication number
WO2019045103A1
WO2019045103A1 PCT/JP2018/032640 JP2018032640W WO2019045103A1 WO 2019045103 A1 WO2019045103 A1 WO 2019045103A1 JP 2018032640 W JP2018032640 W JP 2018032640W WO 2019045103 A1 WO2019045103 A1 WO 2019045103A1
Authority
WO
WIPO (PCT)
Prior art keywords
pole
auv
station
charging station
light
Prior art date
Application number
PCT/JP2018/032640
Other languages
French (fr)
Japanese (ja)
Inventor
峰彦 向田
紀幸 岡矢
学 松居
利哉 林
興佑 益田
誠士 柏木
崇志 岡田
史貴 立浪
Original Assignee
川崎重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 川崎重工業株式会社 filed Critical 川崎重工業株式会社
Priority to JP2019539707A priority Critical patent/JP6990708B2/en
Priority to GB2003178.7A priority patent/GB2579951B/en
Priority to US16/644,419 priority patent/US11586198B2/en
Priority to AU2018325058A priority patent/AU2018325058B2/en
Publication of WO2019045103A1 publication Critical patent/WO2019045103A1/en
Priority to NO20200405A priority patent/NO20200405A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63CLAUNCHING, HAULING-OUT, OR DRY-DOCKING OF VESSELS; LIFE-SAVING IN WATER; EQUIPMENT FOR DWELLING OR WORKING UNDER WATER; MEANS FOR SALVAGING OR SEARCHING FOR UNDERWATER OBJECTS
    • B63C11/00Equipment for dwelling or working underwater; Means for searching for underwater objects
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/0011Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot associated with a remote control arrangement
    • G05D1/0022Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot associated with a remote control arrangement characterised by the communication link
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63GOFFENSIVE OR DEFENSIVE ARRANGEMENTS ON VESSELS; MINE-LAYING; MINE-SWEEPING; SUBMARINES; AIRCRAFT CARRIERS
    • B63G8/00Underwater vessels, e.g. submarines; Equipment specially adapted therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63GOFFENSIVE OR DEFENSIVE ARRANGEMENTS ON VESSELS; MINE-LAYING; MINE-SWEEPING; SUBMARINES; AIRCRAFT CARRIERS
    • B63G8/00Underwater vessels, e.g. submarines; Equipment specially adapted therefor
    • B63G8/001Underwater vessels adapted for special purposes, e.g. unmanned underwater vessels; Equipment specially adapted therefor, e.g. docking stations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63GOFFENSIVE OR DEFENSIVE ARRANGEMENTS ON VESSELS; MINE-LAYING; MINE-SWEEPING; SUBMARINES; AIRCRAFT CARRIERS
    • B63G8/00Underwater vessels, e.g. submarines; Equipment specially adapted therefor
    • B63G8/08Propulsion
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/10Simultaneous control of position or course in three dimensions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63GOFFENSIVE OR DEFENSIVE ARRANGEMENTS ON VESSELS; MINE-LAYING; MINE-SWEEPING; SUBMARINES; AIRCRAFT CARRIERS
    • B63G8/00Underwater vessels, e.g. submarines; Equipment specially adapted therefor
    • B63G8/001Underwater vessels adapted for special purposes, e.g. unmanned underwater vessels; Equipment specially adapted therefor, e.g. docking stations
    • B63G2008/002Underwater vessels adapted for special purposes, e.g. unmanned underwater vessels; Equipment specially adapted therefor, e.g. docking stations unmanned
    • B63G2008/005Underwater vessels adapted for special purposes, e.g. unmanned underwater vessels; Equipment specially adapted therefor, e.g. docking stations unmanned remotely controlled
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63GOFFENSIVE OR DEFENSIVE ARRANGEMENTS ON VESSELS; MINE-LAYING; MINE-SWEEPING; SUBMARINES; AIRCRAFT CARRIERS
    • B63G8/00Underwater vessels, e.g. submarines; Equipment specially adapted therefor
    • B63G8/001Underwater vessels adapted for special purposes, e.g. unmanned underwater vessels; Equipment specially adapted therefor, e.g. docking stations
    • B63G2008/002Underwater vessels adapted for special purposes, e.g. unmanned underwater vessels; Equipment specially adapted therefor, e.g. docking stations unmanned
    • B63G2008/008Docking stations for unmanned underwater vessels, or the like
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Definitions

  • the present invention relates to a charging system for an autonomous unmanned underwater vehicle and a method of recovering the autonomous unmanned underwater vehicle.
  • An autonomous underwater vehicle travels underwater with an internal power source, without the need for a power supply from the mother ship for undersea work, sea bottom survey, etc. .
  • AUV autonomous underwater vehicle
  • development of a charging system that enables charging of AUVs in water without being collected on a mother ship has been advanced.
  • the AUV approaches the charging station prepared in the water to couple to each other for charging.
  • Patent Document 1 a charging system has been proposed, as shown in Patent Document 1, in which the AUV can approach and couple to the charging station from any direction from 360 degrees.
  • the charging system comprises a charging station suspended in the water by a string from an offshore vessel and an AUV coupled in water to the charging station so as to be rotatable about the string.
  • the charging station has a non-contact power feeding portion, and when the offshore ship tows the charging station, the charging station is in a posture in which the non-contact power feeding portion is located downstream of the string in the water flow direction. .
  • the AUV has a non-contact power reception unit, and when it is towed in a state of being coupled to the charging station, it receives a flow of water and rotates around the cord-like body, and the non-contact power reception unit It becomes a posture located in the lower stream side of a string-like body in the flow direction of water.
  • the direction of the charging station and the direction of the AUV are matched, and the non-contact power reception unit of the AUV and the non-contact power supply unit of the charging station are aligned at a position where power can be supplied.
  • the present invention enables an AUV approach to the charging station from any direction 360 degrees, and allows for easy alignment of the AUV with the charging station for charging the AUV, charging for the AUV
  • the purpose is to provide a system and a recovery method of AUV.
  • the charging system for AUV comprises a base located in water, a pole provided on the base and extending in the vertical direction, and horizontal from the pole on the base
  • a charging station having a feeding part provided at a position separated in a direction, a submersible main body, a power receiving part provided on the submersible main body and supplied with power from the feeding part, and the submersible main body
  • the distance between the poles increases toward the advancing direction side, and a pair of guide portions for guiding the pole in contact from the advancing direction side to the holding position and the pole guided to the holding position can be relatively rotated.
  • a holding device having a holding portion, and the submersible main body, in which the holding device holds the pole, generates thrust at least in the horizontal direction to rotate the pole about the pole.
  • a controller for controlling the thrust generator wherein one of the light emitter and the light receiver is at a position horizontally separated from the pole on the base. The other of the light emitter and the light receiver is provided at a position horizontally separated from the holding position in the submersible main body, and the control device is configured to hold the pole in the holding device.
  • the thrust generator is controlled such that the held submersible body is at a rotational position for receiving light emitted from the light emitter with respect to the pole.
  • the guide portion in the holding device guides the pole, which is in contact from the advancing direction side of the diving machine main body, to the holding position.
  • a holding part in the holding device holds the pole relatively rotatably.
  • the control device controls the thrust generator by using a simple determination method as to whether or not the light receiver receives the light emitted from the light emitter, and performs alignment between the power reception unit and the power supply unit. Can. For this reason, alignment with the charge station for charging AUV, and AUV can be performed easily.
  • the light emitter is a submersible light transmitter that emits light as a light signal
  • the light receiver receives a light signal from the submersible light transmitter.
  • a station-side light receiver wherein the charging station has a station-side light transmitter for emitting light as a light signal, and the AUV receives a light signal from the station-side light transmitter.
  • a controller which is an optical signal transmitted from the station-side optical transmitter to the submersible-side optical receiver, comprising: the submersible-side optical transmitter and the station-side optical receiver
  • the thrust generator may be controlled on the basis of an optical signal indicating a communication state between them. According to this configuration, alignment between the power receiving unit and the power feeding unit can be performed using the light transmitter and the light receiver for performing optical communication with each other between the charging station and the AUV.
  • the thrust generating device generates a thrust for moving the submersible body in the traveling direction and the vertical direction
  • the station-side optical transmitter generates an optical signal radially about the pole
  • the AUV has a direction detection device for detecting the arrival direction of the light emitted from the station-side light transmitter, and the control device uses the direction detection device to detect light.
  • the thrust generator may be controlled so that the AUV advances and the guide portion abuts on the pole based on the detected arrival direction. According to this configuration, since the station-side optical transmitter is provided to emit light as an optical signal radially about the pole, the AUV travels toward the light emitted from the station-side optical transmitter. By doing this, the AUV can approach the pole with high accuracy.
  • the above AUV charging system comprises a floating floating body floating on water, the charging station being suspended in water by a cord extending from the floating floating body, and the pole extending downward from the base Good.
  • the pole extends downward from the base, and the cable extends from the base side to the water in the opposite direction to the pole.
  • the cords and the base can be easily connected so as not to interfere with the AUV approaching the pole.
  • one of the AUV and the charging station has a locking device, and the other of the AUV and the charging station has a locked portion locked by the locking device.
  • the AUV is docked to the charging station in a state where the power receiving unit is disposed at a position where power can be supplied from the power feeding unit by the locking device locking the locked portion. It is also good.
  • the locking device can fix the diving machine main body to the charging station by locking the engaged portion provided in the diving machine main body.
  • the thrust generating device generates a thrust for moving the diving machine main body, in which the holding device holds the pole, along the pole, and the diving located at the rotational position
  • the locked portion reaches a locking position locked by the locking device.
  • the locking device locks the locked pin provided on the diving machine body, whereby the position of the diving machine body is a rotational position where the light receiver receives the light emitted from the light emitter. It can be fixed to For this reason, even if it receives the flow of water by the influence of a tidal flow etc., a submersible main body can be stopped at the target rotation position, without driving a thrust generator.
  • the locked portion is a locked pin extending upward or downward from the submersible body
  • the charging station has the locking device
  • the locking device Is moved by the submersible main body along the pole so that the power feeding unit and the power receiving unit approach each other, the locked pin abuts, and the abutted locked pin abuts
  • It may have a guide surface which guides to a position, and a locking part which locks the locked pin guided to the locked position. According to this configuration, even if the AUV moves along the pole in a state where the locked pin is slightly shifted with respect to the locked position, the guide surface absorbs the shift and the locked pin is set to the locked position. In order to guide, the locked pin of the AUV can be accurately guided to the locking position.
  • the charging station contacts the diving machine body or the guide portion while the diving machine body moves along the pole, and the rotation range of the diving machine body with respect to the pole May have a rotation restricting portion that mechanically restricts.
  • the rotation restricting portion mechanically restricts the rotation range of the submersible body with respect to the pole. It is possible to reduce the load on the thrust generator for holding the submersible body at the target rotational position.
  • the charging system for AUV comprises a floating body floating on water, the charging station being suspended in water by a cord extending from the floating body, A pole may extend downwardly from the base and the floating body may have a lifting arrangement to lift the charging station into the air integrally with the docked AUV by pulling the cords.
  • the AUV can be removed from the water to the floating body or can be introduced from the floating body into the water while being docked to the charging station.
  • the pole extends downward from the base, the AUV docks to the charging station while being located below the charging station.
  • the degree of freedom in design of the connection between the base and the cord is increased. For this reason, for example, when the charging station is lifted into the air while being docked to the AUV, it is easy to connect the base and the cord so that unnecessary stress is not applied to each part of the charging station. it can.
  • the charging station may have a thrust generator for maintaining at least one of an attitude in the water and an orientation in the water.
  • the thrust generator can control at least one of the attitude in the water and the orientation in the water of the charging station.
  • the AUV recovery method of the present invention there is provided a method of suspending the AUV and a dockable station from the floating floating body floating on the water, and the AUV approaching the station in water. And docking the station, and withdrawing the station with the AUV docked, and then withdrawing the station onto the floating body.
  • the AUV in the step of docking the AUV in the water to the station, the AUV is docked to the station from below the station, and the AUV docked in the station.
  • the station where the AUV is docked may be lifted into the air while maintaining a posture in the water when docked.
  • a charge for AUV which enables an AUV approach to the charge station from any direction 360 degrees, and which can be easily aligned with the charge station for charging the AUV. System can be provided.
  • FIG. 1 It is a schematic block diagram of the charge system for AUVs concerning a 1st embodiment of the present invention. It is a figure which shows the state which AUV docked to the charging station shown in FIG. It is a side view of AUV shown in FIG. It is a top view of AUV shown in FIG. It is a side view of the charge station shown in FIG. It is a top view of the charging station shown in FIG. It is a front view of the charging station shown in FIG. It is the enlarged plan view which expanded the holding
  • FIG. 11 It is a top view which shows a mode that AUV approaches a charge station. It is a side view which shows a mode that AUV shown in FIG. 1 rotates centering on a pole in the state holding a pole. It is a schematic block diagram of the charge system of AUV concerning a 2nd embodiment of the present invention. It is a figure which shows the state which AUV docked to the charging station shown in FIG. It is a side view which shows a mode that AUV shown in FIG. 11 rotates centering on a pole in the state holding a pole. It is a schematic diagram for demonstrating the effect
  • FIG. 1 is a schematic configuration diagram of the charging system 1 according to the first embodiment.
  • the charging system 1 is for charging the AUV 10 in water.
  • the charging system 1 includes an AUV 10 and a charging station 40.
  • the AUV 10 has a power receiving unit 11, and the charging station 40 has a power feeding unit 41.
  • the underwater AUV 10 approaches the charging station 40 and docks with the charging station 40.
  • FIG. 2 shows the charging station 40 with the AUV 10 docked.
  • the power receiving unit 11 of the AUV 10 is disposed at a position to which power is supplied from the power feeding unit 41 (see FIG. 1) of the charging station 40.
  • the configurations of the AUV 10 and the charging station 40 will be respectively described below.
  • FIG. 3 is a side view of the AUV 10
  • FIG. 4 is a plan view of the AUV 10.
  • the advancing direction of the AUV 10 when the AUV 10 approaches the charging station 40 is forward, the opposite direction of the advancing direction is backward, the left with respect to the advancing direction
  • Upper and lower are defined as left, right, upper and lower, respectively.
  • the AUV 10 has a submersible main body 12 incorporating a storage battery as a power source.
  • the submersible body 12 has a streamlined shape with less water resistance on the front side.
  • the above-mentioned power receiving part 11 is provided in the submersible main body 12 lower part.
  • the power receiving unit 11 is a non-contact type power receiving device which receives power from the power feeding unit 41 of the charging station 40 in a non-contact manner.
  • the power receiving unit 11 is disposed at a position opposite to the power feeding unit 41 so that the power from the power feeding unit 41 is supplied without contact.
  • the submersible main body 12 is provided with a thrust generating device that generates a thrust for moving the submersible main body 12 in water.
  • the thrust generator includes two main thrusters 13 for moving the submersible body 12 forward, four vertical thrusters 14 for moving the submersible body 12 in the vertical direction, and the submersible body 12 in the left and right direction. Includes two horizontal thrusters 15 for moving to.
  • a control device 16 for controlling the main thruster 13, the vertical thrusters 14, and the horizontal thrusters 15 is provided in the submersible main body 12.
  • the control device 16 has a storage unit that stores various programs, and an operation unit that executes the programs stored in the storage unit.
  • the arithmetic unit executes a predetermined program stored in the storage unit in the control device 16 to autonomously run underwater or to dock the charging station 40.
  • An acoustic positioning device 21 is provided on the upper portion of the diving machine body 12.
  • the acoustic positioning device 21 constitutes an acoustic positioning system for specifying the distance from the AUV 10 to the charging station 40 and the direction of the charging station 40 with respect to the AUV 10 together with a transponder 44 of the charging station 40 described later.
  • the acoustic positioning device 21 calculates the distance to the transponder 44 from the round trip time of the sound wave with respect to the transponder 44, and the reaching acoustic wave to each element in the receiving array of the acoustic positioning device 21
  • the positioning system of the USBL (Ultra Short Base Line) method or the SSBL (Super Short Base Line) method that calculates the direction of the transponder 44 based on the phase difference of
  • the acoustic positioning system may not be the method described above, and may be, for example, a short base line (SBL) method.
  • a submersible light transmitter 22 (corresponding to the “light emitter” of the present invention) for transmitting light signals downward is provided at the lower rear side of the submersible main body 12. Further, a submersible light receiver 23 for receiving light signals from the front and the bottom of the AUV 10 is provided at the lower front of the submersible body 12.
  • the submersible light receiver 23 also functions as a direction detection device that detects the arrival direction of light emitted from the charging station 40 (more specifically, the station light transmitter 45 described later). .
  • the submersible light receiver 23 includes a light receiving array (not shown) having a plurality of light receiving elements which are independent of each other as a light receiving unit.
  • the submersible light receiver 23 detects the arrival direction of the light emitted from the charging station 40 by comparing the light reception intensity of each light receiving element of the light reception array.
  • the controller 16 uses the incoming direction acquired by the submersible light receiver 23 to approach the AUV 10 to the charging station 40.
  • a holding device 31 is provided at the front end of the diving machine body 12.
  • the holding device 31 abuts and holds the pole 43 of the charging station 40 described later when the AUV 10 docks to the charging station 40.
  • the lower part of the diving machine main body 12 is provided with a locking pin 35 (corresponding to the “locking portion” of the present invention) extending downward.
  • the locked pin 35 is locked by the locking device 51 of the charging station 40 described later. Details of the holding of the pole 43 by the holding device 31 and the locking of the locked pin 35 by the locking device 51 will be described later.
  • FIG. 5 is a side view of the charging station 40
  • FIG. 6 is a plan view of the charging station 40
  • FIG. 7 is a front view of the charging station 40.
  • the front, back, left, right, upper, and lower portions of the AUV 10 in the state where the AUV 10 shown in FIG. Backward, left, right, upper, and lower.
  • the charging station 40 has a base 42 located in the water.
  • the charging station 40 is a bottom-mounted type, and the base 42 is fixed to the bottom.
  • the base 42 is configured by connecting a plurality of metal bone members, plate members, and the like.
  • a pole 43 extending upward is provided at the top of the base 42.
  • the pole 43 is the point where the AUV 10 approaches the charging station 40 first abuts when the AUV 10 docks to the charging station 40. In other words, when the AUV 10 docks to the charging station 40, the AUV 10 advances towards the charging station 40 such that the holding device 31 abuts the pole 43.
  • FIG. 8 shows how the holding device 31 of the AUV 10 holds the pole 43 of the charging station 40.
  • the holding device 31 holds the pole 43 relatively rotatably.
  • a holding position P1 for holding the pole 43 is determined in advance.
  • the cross section of the pole 43 in the middle of being guided to the holding position P1 and the cross section of the pole 43 guided to the holding position P1 are respectively shown by broken lines.
  • the holding device 31 holds the pair of guide portions 32a and 32b for guiding the pole 43, which abuts from the traveling direction side of the AUV 10, to the holding position P1 and the pole 43 guided to the holding position P1 relatively rotatably. And a pair of holding claws 33a and 33b (corresponding to the "holding portion" of the present invention).
  • the distance between the pair of guide portions 32a and 32b gradually increases as it goes from the diving machine main body 12 to the traveling direction side (that is, from the rear side to the front side). Therefore, when the AUV 10 advances in the forward direction with the pole 43 in contact with one of the pair of guide portions 32a and 32b, the pole 43 presses the guide portion 32a or 32b which is in contact with the submersible body While changing the direction of 12, it moves to the holding position P1 along the abutted guide portion 32a or 32b.
  • the pair of holding claws 33a and 33b are provided on the pair of guide portions 32a and 32b, respectively.
  • the pair of holding claws 33a and 33b presses the pole 43 located at the holding position P1 from the front side of the AUV 10 to prevent the pole 43 from deviating from the holding position P1.
  • the pair of holding claws 33a and 33b are configured to be able to protrude and retract from the pair of guide portions 32a and 32b to the center side in the left-right direction of the diving machine body 12, respectively. Specifically, the holding claws 33a and 33b move between the exit position of the guide portions 32a and 32b and the retracted position retracted into the guide portions 32a and 32b, respectively.
  • the holding claws 33a, 33b hold the pole 43 in the holding position P1 when they are in the out position. Further, when the holding claws 33a and 33b are in the retracted position, the holding claws 33a and 33b release the state in which the pole 43 is held at the holding position P1.
  • the holding claws 33a and 33b are biased to the ejection position side, and the holding claws 33a and 33b are moved to the sunk position side by being pressed by the pole 43 on the way to the holding position P1.
  • the holding device 31 includes an actuator (not shown) that moves the holding claws 33a and 33b from the outgoing position to the retracted position by a control signal sent from the control device 16.
  • the control device 16 drives the actuator to move the holding claws 33a and 33b from the outgoing position to the retracted position.
  • a transponder 44 is provided at the upper end of the pole 43.
  • the transponder 44 receives the sound wave sent from the above-mentioned sound positioning device 21 and sends back the sound wave to the sound positioning device 21.
  • the transponder 44 constitutes an acoustic positioning system for positioning the position of the AUV 10 with respect to the charging station 40 together with the above-mentioned acoustic positioning device 21.
  • the above-described power feeding portion 41 is provided at a position spaced apart from the pole 43 in the base 42 in the horizontal direction. Specifically, the feeding portion 41 is provided at the upper portion of the base 42 and at a position separated rearwardly from the pole 43.
  • the distance from the holding position P1 in the front-rear direction of the AUV 10 to the power receiving unit 11 and the distance from the pole 43 to the power supply unit 41 in the front-rear direction of the charging station 40 substantially coincide with each other. Therefore, when the AUV 10 is docked to the charging station 40, the power receiving unit 11 and the power feeding unit 41 face each other in the vertical direction.
  • the station side optical transmitter 45 is provided on the base 42.
  • the station-side light transmitter 45 is disposed around the lower end of the pole 43 at the top of the base 42.
  • the station-side light transmitter 45 radiates light radially to a region above the lower end of the pole 43, as shown by an arrow in FIG. Therefore, even if the AUV 10 approaches the charging station 40 from any direction 360 degrees, the submersible light receiver 23 can receive the light from the station light transmitter 45.
  • the submersible light receiver 23 and the station light transmitter 45 are disposed to face each other. Therefore, even after the AUV 10 is docked to the charging station 40, the station-side optical transmitter 45 can transmit an optical signal to the submersible-side optical receiver 23 described above.
  • the light emitted from the station-side light transmitter 45 is also for the AUV 10 to approach the charging station 40 by the submersible-side light receiver 23 functioning as a direction detection device. It is used.
  • a station-side light receiver 46 (corresponding to the “light receiver” of the present invention) is provided at a position apart from the pole 43 in the base 42 in the horizontal direction. Specifically, the base 42 is provided at a position lower than the position where the station-side optical transmitter 45 is provided. In addition, the distance from the holding position P1 in the front-rear direction of the AUV 10 to the submersible-side light transmitter 22 and the distance from the pole 43 in the front-rear direction of the charging station 40 to the station-side light receiver 46 substantially coincide.
  • the station-side optical receiver 46 and the submersible-side optical transmitter 22 face vertically, and the station-side optical receiver 46 receives light from the submersible-side optical transmitter 22. It is possible to receive a signal.
  • the station-side optical receiver 46 can receive the optical signal sent from the submersible-side optical transmitter 22 when the AUV 10 holding the pole 43 is held at a predetermined rotational position with respect to the pole 43 become.
  • the station optical receiver 46 when the submersible optical transmitter 22 enters the angle range ⁇ centered on the pole 43 when the charging station 40 is planarly viewed, the station optical receiver 46 The light emitted from the submersible light transmitter 22 can be received.
  • the above-described angular range ⁇ is adjusted by limiting the direction of light that can be received by the station-side light receiver 46.
  • a cylindrical light shielding unit 47 is erected around the light receiving unit of the station-side light receiver 46.
  • the light shielding unit 47 blocks the light coming from outside the predetermined angle range so as not to enter the light receiving unit of the station side light receiver 46.
  • the angular range ⁇ may be adjusted by limiting the angular range of the light emitted from the submersible light transmitter 22.
  • the base 42 is provided with a rotation restricting portion 48 that mechanically restricts the rotation range of the diving machine main body 12 with respect to the pole 43.
  • the rotation restricting portion 48 extends upward at a position opposite to the position where the feeding portion 41 is disposed with respect to the pole 43 in the base 42, that is, in a position on the front side with respect to the pole 43 in the base 42.
  • the upper end 48 a of the rotation restricting portion 48 is located between the upper end and the lower end of the pole 43 in the vertical direction. Therefore, the rotation restricting portion 48 enters the space between the pair of guide portions 32a and 32b while the submersible body 12 descends along the pole 43 (see FIG. 2). Mechanically restrict the rotation range of.
  • the rotation restricting portion 48 has a pair of spread portions 48 b and 48 c in which the interval gradually widens in the left-right direction of the charging station 40 as it goes downward from the upper end portion 48 a. That is, after the rotation restricting portion 48 enters between the pair of guide portions 32a and 32b while the submersible body 12 descends along the pole 43, the rotation restricting portion 48 has the pair of guide portions 32a and 32b. Spread in the direction of separation. Therefore, as the diving machine main body 12 descends along the pole 43, the rotation range of the diving machine main body 12 relative to the pole 43 gradually narrows.
  • the base 42 is provided with a locking device 51 for locking the locked pin 35 of the AUV 10 described above to fix the direction of the AUV 10 with respect to the charging station 40.
  • the locking device 51 is disposed at a position horizontally separated from the pole 43 in the base 42. Specifically, as shown in FIG. 5 and FIG. 6, the locking device 51 is provided at the upper part of the base 42 and at a position separated rearwardly from the pole 43.
  • the distance from the holding position P1 in the front-rear direction of the AUV 10 to the locked pin 35 and the distance from the pole 43 in the front-rear direction of the charging station 40 to the locking device 51 (more specifically, a fitting hole 52 described later) It almost agrees with the distance.
  • the locking of the locked pin 35 by the locking device 51 is performed by lowering the AUV 10 holding the pole 43 with the holding device 31 coming to the predetermined rotational position with respect to the pole 43.
  • FIG. 9 is a view for explaining locking of the locked pin 35 by the locking device 51.
  • the locking device 51 has a fitting hole 52, a guide surface 53, and a pair of locking claws 54a and 54b (corresponding to the "locking portion" of the present invention).
  • the fitting hole 52 is a hole into which the locked pin 35 is fitted, and is a locking position P2 for locking the locked pin 35.
  • the fitting hole 52 is open at the top, and when the AUV 10 descends, the locked pin 35 is fitted from above.
  • the guide surface 53 guides the locked pin 35, which has been in contact from above, to the fitting hole 52 when the AUV 10 is lowered.
  • the guide surface 53 is an inclined surface in which the opening gradually spreads upward.
  • the guide surface 53 presses the locked pin 35 which is in contact, changing the direction of the diving machine main body 12,
  • the locked pin 35 is guided along the guide surface 53 to the locking position P2. Therefore, even if the AUV 10 descends in a state where the fitting hole 52 and the locked pin 35 are slightly deviated in plan view, the locked pin 35 abuts on the guide surface 53 so as to contact the fitting hole 52. Be sure to be guided.
  • the pair of locking claws 54 a and 54 b lock the locked pin 35 guided to the fitting hole 52.
  • the locking pin 35 is provided with a groove 36 into which the pair of locking claws 54a and 54b is fitted.
  • the locked pin 35 is locked in a state of being fitted into the fitting hole 52.
  • the pair of locking claws 54a and 54b are provided in the wall portion of the fitting hole 52, and are configured to be able to protrude and retract from the wall portion.
  • the pair of locking claws 54 a and 54 b respectively move between a position where the locking claws 54 a and 54 b protrude from the wall of the fitting hole 52 and a retracted position retracted into the wall of the fitting hole 52.
  • the pair of locking claws 54a and 54b lock the locked pins 35 when they move to the out position and fit into the groove portion 36 of the locked pin 35, and when they are in the retracted position, The locked state of the locking pin 35 is released.
  • the locking claws 54a and 54b are biased toward the outlet position, and the locking claws 54a and 54b are pressed by the lower end portion of the locking pin 35 that enters the fitting hole 52. It is configured to move to the retracted position side and to return to the out position when the height of the groove portion 36 of the locked pin 35 and the locking claws 54a and 54b match.
  • the locking device 51 includes an actuator (not shown) that moves the locking claws 54a and 54b from the outgoing position to the retracted position according to a control signal sent from the control device 16.
  • the control device 16 drives the actuator to move the locking claws 54a and 54b from the outgoing position to the retracted position.
  • support portions 55 are disposed on the upper side of the base 42 and on both sides in the left-right direction of the locking device 51.
  • the support portion 55 has a surface that abuts on the lower portion of the AUV 10.
  • the support portion 55 supports the AUV 10 in which the locked pin 35 is locked to the locking device 51 from below.
  • the base 42 is provided with a main control unit 61 and a feed control unit 62.
  • the main control unit 61 controls communication between the submersible light transmitter 22 and the submersible light receiver 23 of the AUV 10 using the station light transmitter 45 and the station light receiver 46.
  • the feed control unit 62 controls the feeding of power to the power receiving unit 11 by the feeding unit 41 and the stop of the feeding.
  • FIG. 10A is a plan view showing the AUV 10 approaching the charging station 40.
  • FIG. 10B is a side view showing that the AUV 10 rotates about the pole 43 in a state in which the holding device 31 holds the pole 43.
  • the range where the light emitted from the station-side light transmitter 45 reaches is schematically shown by a two-dot chain line, and in FIG. 10B, the range of the light emitted from the submersible-side light transmitter 22 is two. It is shown schematically by a dotted line.
  • the AUV 10 when the AUV 10 is sufficiently away from the charging station 40, the AUV 10 approaches the charging station 40 by the acoustic positioning system. Specifically, the AUV 10 measures the relative position of the AUV 10 to the charging station 40 based on the sound waves sent from the transponder 44 of the charging station 40. The controller 16 of the AUV 10 moves the AUV 10 toward the charging station 40 by controlling the main thruster 13, the vertical thruster 14, and the horizontal thruster 15 based on the obtained position data of the AUV 10.
  • the control device 16 Switching from the acoustic positioning approach to the approach using the submersible optical receiver 23 as a direction detection device.
  • the submersible light receiver 23 detects the arrival direction of the light emitted from the station light transmitter 45 by comparing the light reception intensity of each light receiving element of the light reception array.
  • the controller 16 controls the main thruster 13, the vertical thruster 14, and the horizontal thruster 15 based on the direction of arrival of the obtained light so that the holding unit 31 of the AUV 10 abuts on the pole 43 of the charging station 40. , AUV 10 toward the charging station 40.
  • the control device 16 controls the AUV 10 in which the holding device 31 holds the pole 43 and the light emitted from the submersible light transmitter 22 by the station-side light receiver 46 with respect to the pole 43.
  • the horizontal thruster 15 is controlled so as to come to a rotational position (angle range ⁇ (see FIG. 6)) that receives the
  • the horizontal thruster 15 is driven to rotate the submersible light transmitter 22 with respect to the pole 43.
  • the main control unit 61 monitors the reception state of the station-side optical receiver 46 of the optical signal from the submersible-side optical transmitter 22.
  • the main control unit 61 sends a signal indicating the reception state as an optical signal from the station-side optical transmitter 45 to the submersible-side optical receiver 23.
  • the controller 16 controls the horizontal thruster 15 so that the submersible light transmitter 22 can receive the station light receiver 46.
  • the controller 16 controls the vertical thruster 14 to set the submersible body 12 to the pole 43. Lower along. As described above, the rotation restricting portion 48 is inserted between the pair of guide portions 32a and 32b while the submersible main body 12 descends along the pole 43, whereby the rotation range of the submersible main body 12 with respect to the pole 43 is set. Mechanically regulate. For this reason, the accuracy of rotational positioning of the submersible body 12 with respect to the pole 43 can be further improved.
  • the diving machine main body 12 descends and the locked pin 35 abuts on the guide surface 53 of the locking device 51, the locked pin 35 is fitted along the guide surface 53 as described above. You will be guided to (see Figure 9). Thereafter, the pair of locking claws 54 a and 54 b lock the locked pin 35 guided to the fitting hole 52. Thus, docking of the AUV 10 to the charging station 40 is completed.
  • the power supply unit 41 and the power reception unit 11 face each other in the vertical direction, and power can be supplied from the power supply unit 41 to the power reception unit 11.
  • the submersible light transmitter 22 and the station light receiver 46 face each other, and the submersible light receiver 23 and the station light transmitter 45 face each other.
  • the AUV 10 and the charging station 40 can communicate with each other.
  • the guide portion 32 a or 32 b of the holding device 31 By guiding the pole 43 abutted from the traveling direction side to the holding position P1, the holding claws 33a and 33b in the holding device 31 hold the pole 43 relatively rotatably.
  • the AUV 10 can approach the charging station 40 from any direction 360 degrees.
  • control device 16 controls the horizontal thruster 15 using a simple determination method as to whether or not the station side light receiver 46 receives the light emitted from the submersible light transmitter 22, Alignment between the power reception unit 11 and the power supply unit 41 can be performed. Therefore, alignment between the charging station 40 for charging the AUV 10 and the AUV 11 can be easily performed.
  • alignment between the power receiving unit 11 and the power feeding unit 41 is performed using an optical transmitter and an optical receiver for performing optical communication with each other between the charging station 40 and the AUV 10. It can be carried out.
  • the submersible light receiver 23 functions as a direction detection device for detecting the arrival direction of the light radially emitted from the station light transmitter 45, and the control device 16 uses the direction detection device. Based on the detected arrival direction, the horizontal thruster 15 is controlled such that the AUV 10 advances and the guide portion 32 a or 32 b abuts on the pole 43. Therefore, by advancing the AUV 10 toward the light emitted from the station-side light transmitter 45, the AUV 10 can approach the pole accurately.
  • the position of the diving machine main body 12 is determined by the station-side light receiver 46. It can be fixed at a rotational position for receiving the light emitted from the side light transmitter 22. For this reason, even if it receives the flow of water by the influence of a tidal flow etc., the submersible main body 12 can be stopped at the target rotation position, without driving the horizontal thruster 15.
  • the locking device 51 is a guide for guiding the locking pin 35, which is in contact from the upper side by lowering the AUV 10, to the locking position P2 while the opening gradually widens toward the upper side. It has a surface 53 and locking claws 54a and 54b for locking the locked pin 35 guided to the locking position P2. For this reason, even if the AUV 10 is lowered with the locked pin 35 slightly shifted with respect to the locking position P2, the guide is brought down even if the submersible main body 12 is lowered while the rotational position with respect to the pole 43 is slightly shifted. Since the surface 53 absorbs the displacement and guides the locked pin 35 to the locking position P2, the locked pin 35 of the AUV 10 can be accurately guided to the locking position P2.
  • the rotation restricting portion 48 since the charging station 40 has the rotation restricting portion 48, even if the submersible main body 12 receives a flow of water such as a tidal flow while descending, the rotation restricting portion 48 controls the diving main body 12 to the pole 43. The range of rotation is mechanically restricted. As a result, the load of the horizontal thruster 15 for holding the submersible body 12 at the target rotational position while the submersible body 12 is lowered can be reduced.
  • the rotation restricting portion 48 spreads in the direction in which the pair of guide portions 32a and 32b separate from each other as the rotation restricting portion 48 moves downward from the upper end portion 48a.
  • the rotation range of the submersible body 12 with respect to the pole 43 can be narrowed gradually. Thereby, the locked pin 35 of the AUV 10 can be guided to the locking position P2 with high accuracy.
  • a charging system 1A according to a second embodiment will be described with reference to FIG. 11 to FIG. In the present embodiment, detailed description of the same configuration as that of the first embodiment will be omitted. Further, the definitions of the directions of the AUV 110 and the charging station 140 in the charging system 1A are also the same as in the first embodiment.
  • FIG. 11 is a schematic configuration diagram of a charging system 1A according to the second embodiment.
  • FIG. 12 is a diagram showing a state where the AUV 110 is docked to the charging station 140 in the charging system 1A.
  • FIG. 13 is a side view showing that the AUV 110 rotates around the pole 143 while holding the pole 143.
  • the charging station 140 is supported by being suspended from the floating object 170 floating on the water, without the base 142 being fixed to the water bottom. Details of the suspension of the charging station 140 will be described later.
  • the pole 143 extends downward from the base 142. That is, as shown in FIG. 2 and FIG. 3, in the present embodiment, unlike the first embodiment, the AUV 110 is docked to the charging station 140 while being disposed below the charging station 140. More specifically, after holding the pole 143 by the holding device 131, the AUV 110 is docked to the charging station 140 by rising along the pole 143.
  • the power reception unit 111 is provided on the upper portion of the submersible main body 112.
  • the feeding portion 141 is provided at a position below the base 142 and spaced apart from the pole 143 in the horizontal direction (backward).
  • the power receiving unit 111 and the power feeding unit 141 face each other in the vertical direction.
  • a submersible light transmitter 122 (corresponding to the “light emitter” of the present invention) for transmitting an optical signal upward is provided on the upper rear side of the submersible main body 112, and the lower portion of the base 142 is A station-side light receiver 146 (corresponding to the “light receiver” of the present invention) in which the light receiving unit faces downward is provided at a position separated horizontally from the pole 143.
  • the station-side light receiver 146 and the submersible-side light transmitter 122 face up and down, and the station-side light receiver 146 receives light from the submersible-side light transmitter 122 It is possible to receive a signal.
  • a pair of locked pins 135a and 135b (corresponding to the "locked portion" of the present invention) extending upward are provided.
  • the pair of locked pins 135a and 135b are arranged at an upper portion of the diving machine main body 112 at intervals in the front-rear direction.
  • the base 142 is provided with a pair of locking devices 151a and 151b for locking the pair of locked pins 135a and 135b, respectively.
  • Each locked pin 135a, 135b has the same configuration as the locked pin 35 of the first embodiment, and each locking device 151a, 151b is similar to the locking device 51 of the first embodiment. Because of the configuration, detailed description will be omitted.
  • the AUV 110 has a thrust generator including the main thruster 113 and the horizontal thruster 115, the control device 116, the acoustic positioning device 121, the submersible light transmitter 122, the submersible light receiver 123, and the holding device 131. doing.
  • the submersible light receiver 23 is provided on the lower front side of the submersible main body 112.
  • the charging station 140 further includes a transponder 144, a station-side optical transmitter 145, a station-side optical receiver 146, a main control unit 161, and a power supply control unit 162.
  • the station-side optical transmitter 145 is provided at the lower end of the pole 143. Since these configurations are the same as those of the first embodiment, the description thereof is omitted.
  • the base 142 is provided with a rotation restricting portion 148 having a configuration different from that of the rotation restricting portion 48 of the first embodiment.
  • the rotation restricting portion 148 mechanically restricts the rotation range of the diving machine main body 112 with respect to the pole 143.
  • the rotation restricting portion 148 is disposed on the same side as the position at which the feeding portion 141 is disposed with respect to the pole 143 in the base 142, that is, at a position on the rear side with respect to the pole 143 in the base 142.
  • the rotation restricting portion 148 has a pair of projecting portions 148 a and 148 b that project downward from the base 142.
  • FIG. 14 is a schematic view for explaining the operation of the rotation restricting portion 148 when the AUV 110 ascends along the pole 143.
  • the rotation restricting portion 148 when the charging station 140 is viewed from the front, and the diving machine main body 112 in a state in which the pole 143 is held by the holding device 131 are schematically shown.
  • the pole 143 is shown by a broken line.
  • the pair of projecting portions 148 a and 148 b are arranged at intervals in the left-right direction.
  • the submersible main body 112 enters the space between the pair of protrusions 148 a and 148 b while rising along the pole 143, whereby the range of rotation of the submersible main body 112 with respect to the pole 143 is restricted.
  • the lower surfaces of the pair of protrusions 148 a and 148 b when the charging station 140 is viewed from the front have a shape that follows the contour of the submersible body 112 when the AUV 110 is viewed from the front.
  • the rotation restricting portion 148 is configured to gradually narrow the rotation range of the submersible body 112 with respect to the pole 143 as the power feeding portion 141 and the power receiving portion 111 approach each other.
  • the pins 135a and 135b can be guided to the locking positions of the locking devices 151a and 151b with high accuracy.
  • a horizontal wing 163 is provided on the base 142 of the charging station 140.
  • the horizontal wing 163 serves to define the vertical attitude of the charging station 110 which has received the flow of water.
  • the submersible main body 112 is provided with a plurality of horizontal wings 24 and one vertical wing 25.
  • the horizontal wing 24 serves to define the vertical attitude of the submersible body 112 which has received the flow of water.
  • the vertical wing 25 serves to define the horizontal attitude of the submersible body 112 which has received the flow of water.
  • the charging station 140 is suspended and supported from the floating object 170 floating on water.
  • the charging station 140 is suspended in water by a cord 172 extending from the floating body 170.
  • the floating body 170 is a ship traveling on water.
  • the cord 172 is not particularly limited, but in the present embodiment, includes a cable for power transmission to send electricity from the floating body 170 to the charging station 140 and / or a communication cable for communicating with the floating body 170.
  • the connecting member 173 is a rod-like body 173a extending in the front-rear direction above the charging station 140, and two string-like bodies extending toward the front upper two points of the base 142 from the front end of the rod-like body 173a. 173b and two string-like bodies 173c extending from the rear end of the rod-like body 173a toward two points on the rear upper side of the base 142.
  • connection between the rope 172 and the base 142 shown here is an example, and the rope 172 may be directly connected to the base 142, for example.
  • the electric wire etc. which lead to the main control part 161, the electric power feeding control part 162, etc. from the rope 172 are abbreviate
  • FIG. 15 is a side view showing a state where the charging station 140 with the AUV 110 docked is lifted in the air.
  • the lifting equipment 171 is, for example, a crane.
  • the center of gravity of the docked AUV 110 and the charging station 140 extends the cord 172 extending downward from the loading equipment 171.
  • the connection point between the rope 172 and the base 142 by the connection member 173 is adjusted so as to be generally positioned on the line.
  • the floating body 170 carrying the AUV 110 and the charging station 140 is anchored above the water to be operated by the AUV 110. Thereafter, using the unloading facility 171, the charging station 140 with the AUV 110 docked is lifted in the air and put into water. When the charging station 140 descends into water and sinks to a predetermined position, the locking devices 151a and 151b release the locking of the locked pins 135a and 135b. Thereafter, the AUV 110 moves along the pole 143 by driving, for example, a vertical thruster such that the locking devices 151a and 151b and the locked pins 135a and 135b are separated from each other. Thereafter, the holding of the pole 143 by the holding device 131 is released. Thus, the docking between the charging station 140 and the AUV 110 is released, and the AUV 110 starts predetermined work in water.
  • the floating body 170 is anchored on the water at the bottom of the water where the AUV 110 is working or above the water.
  • the charging station 140 is suspended in the water from the floating body 170 with a cord 172.
  • the finished AUV 110 approaches the charging station 140 underwater and docks to the charging station 140.
  • the method for the AUV 110 to approach the charging station 140 in water is the same as that of the first embodiment, so the description is omitted.
  • the AUV 110 docks to the charging station 40 from above the charging station 40 in the first embodiment, while the AUV 110 docks to the charging station 40 in the first embodiment.
  • the difference is that docking to the charging station 140 from below 140 (the reverse direction in which the submersible body 112 moves along the pole 143) is the same except for that.
  • the horizontal thruster 115 is positioned so that the AUV 110 holding the pole 143 by the holding device 131 receives the light emitted from the substation light transmitter 122 with respect to the pole 143 at the station light receiver 146. Control. Thereafter, when the station-side light receiver 146 comes to a position to receive the light emitted from the submersible light transmitter 122, the submersible body 112 is raised along the pole 143, and thereafter, by the locking devices 151a and 151b, The locked pins 135a and 135b are locked.
  • the charging station 140 transmits a notification signal to the floating object 170 notifying that docking with the AUV 110 is completed.
  • the notification signal may be sent, for example, via a communication line included in the rope 172, or the charging station 140 may include an acoustic communication device for performing acoustic communication with the floating body 170. May be sent by acoustic communication.
  • the completion of the docking may be determined, for example, by providing a sensor that detects the pair of locked pins 135a and 135b at the locking position P1 of the pair of locking devices 151a and 151b. .
  • the occupant of the floating body 170 operates the loading equipment 171 to withdraw the charging station 140 in a state where the AUV 110 is docked, and lifts it in the air.
  • the charging station 140 with the AUV 110 docked is suspended in the air while maintaining its posture in water when docked.
  • This method is also effective for stations other than the charging station, that is, stations not having a power feeding unit, in that the AUV can be easily recovered to the floating body.
  • the pole 143 extends downward from the base 142, and the rope 172 extends from the base 142 side to the water in the opposite direction to the pole 143. For this reason, the rope 172 and the base 142 can be easily connected so as not to disturb the AUV 110 approaching the pole 143.
  • the floating body 170 since the floating body 170 has a loading facility 171 that lifts up the rope 172 and lifts the charging station 140 integrally with the docked AUV 110 to the air, the AUV 110 becomes a charging station 140 It can be removed from the water to the floating body in the docked state, or can be thrown into the water from the floating body.
  • the AUV 110 is designed to be docked to the charging station 140 while being disposed below the charging station 140. Freedom goes up. Therefore, for example, when the charging station 140 is docked to the AUV 110, it is easy to connect the base 142 and the cord 172 so that unnecessary stress is not applied to each part of the charging station 140 when being lifted in the air. be able to.
  • FIG. 16 is a side view of the charging station 140A according to the first modification.
  • the charging station 140A according to the first modification includes a thrust generating device for maintaining at least one of an attitude in the water and an orientation in the water.
  • the thrust generators provided in the charging station 140A are two horizontal thrusters 181 and 182 that generate thrust in the lateral direction of the charging station 140.
  • Two horizontal thrusters 181 and 182 are provided on the top of the base 142.
  • the two horizontal thrusters 181, 182 are arranged to generate thrust in the left-right direction of the charging station 140A.
  • Two horizontal thrusters 181, 182 are spaced apart in the front-rear direction of the charging station 140A. More specifically, the two horizontal thrusters 181 and 182 are arranged to sandwich the extension line of the rope 172 in the front-rear direction.
  • the two horizontal thrusters 181, 182 are arranged to generate thrust in the lateral direction of the charging station 140A.
  • the two horizontal thrusters 181 and 182 are controlled by the main control unit 161.
  • the charging station 140A turns in water while the water floating body 170 is introduced into the water and then descends in the water, the rope 172 is twisted.
  • Two horizontal thrusters 181, 182 are driven, for example, to eliminate any kinks that occur in the rope 172.
  • the base 142 is provided with a measuring device 183 for measuring the direction in which the base 142 pivots about the vertical axis passing through the charging station 140A and the angular displacement amount of the pivot.
  • the measuring device 183 includes, for example, a gyro sensor.
  • the measuring device 183 starts the measurement after inserting the charging station 140A from the floating body 170 into water.
  • the main control section 161 causes the base 142 to pivot in the direction to eliminate the twist of the rope 172 by causing the two horizontal thrusters 181 and 182 to generate thrust in the directions opposite to each other.
  • the main control unit 161 drives the two horizontal thrusters 181 and 182 so that the amount of angular displacement measured by the measuring device 183 decreases, and is opposite to the direction measured by the measuring device 183.
  • the base 142 is pivoted in the direction.
  • the charging station 140A can rotate integrally with the AUV 110 due to the friction between the pole 143 and the holding device 131. There is sex. Two horizontal thrusters 181, 182 may be driven to prevent the charging station 140A from rotating integrally with the AUV 110.
  • the main control unit 161 drives the two horizontal thrusters 181 and 182 so as to maintain the orientation of the charging station 140A constant. It is also good.
  • the charging station 140A may include an orientation detection device that detects the orientation of the charging station 140A.
  • the measurement device 183 described above may be used as the orientation detection device.
  • the main control unit 161 drives the two horizontal thrusters 181 and 182 so that the azimuth detected by the azimuth detecting device is maintained constant while the AUV 110 holding the pole 143 is rotated by the holding device 131. Good.
  • the number and arrangement of the thrust generating devices provided in the charging station 140A are not limited to the above-described configuration.
  • two horizontal thrusters 181 and 182 may be provided on the front and rear of the base 142, or may be provided on both sides in the left-right direction of the base 142.
  • the charging station 140A may include one or more horizontal thrusters as a thrust generator.
  • charging station 140A generates thrust in the front-rear direction or up-down direction of charging station 140A in addition to or instead of one or more horizontal thrusters that generate thrust in the left-right direction of charging station 140A as a thrust generator. It may comprise one or more thrusters.
  • the two horizontal thrusters 181, 182 may be arranged to generate thrust in the front-rear direction of the charging station 140A at intervals in the left-right direction of the charging station 140A.
  • the configuration in which the charging station is provided with a thrust generator for maintaining the attitude in water is a system in which the AUV is docked in water at the charging station suspended from the floating body.
  • the charging system of the present invention performs alignment between the power receiving unit and the power feeding unit with light emitted from the light emitter by the light receiver, it is also effective for systems other than this configuration. .
  • FIG. 17 is a side view of the charging station 200 according to the second modification.
  • the charging station 200 according to the second modification is a bottom-mounted charging station having a configuration different from that of the first embodiment.
  • the charging station 200 includes an upper structure 201 disposed with a space between it and the water bottom, and a plurality of pillars 202 extending in the vertical direction and supporting the upper structure 201 from below. Have.
  • the plurality of columns 202 are connected by a lower structure 203 fixed to the bottom of the water.
  • a space surrounded by the upper structural body 201, the lower structural body 203, and the plurality of pillars 202 is a space in which the AUV 110 passes through between the plurality of pillars 202, and a pole is provided at the center of this space.
  • 143 extend downward from the upper structure 201.
  • a feed portion 141 is provided at a lower portion of the upper structural body 201 and spaced apart from the pole 143 in the horizontal direction (backward).
  • the upper structure body 201 corresponds to the "base" of the present invention
  • the charging station 200 is the charging station of the second embodiment except that the upper structure body 201 is not suspended and supported by the floating body. It has the same configuration as 140.
  • the pole 143 extends downward from the upper structure 201, for example, even when the charging station 200 is installed on a relatively shallow seabed or the like, the pole 143 can be prevented from being hooked by the bottom pulling net or the like.
  • the shapes of the charging stations 40, 140, 140A, 200 and the AUVs 10, 110 shown in the above embodiment, and the shapes, arrangements, etc. of the components provided in them have meanings and ranges equivalent to the claims. It is intended to include all changes within.
  • the charging station 40 does not need to be installed in the bottom of a water.
  • the charging station 40 may be suspended and supported on the floating body by connecting a rope hanging from the floating body and the upper end of the pole 43.
  • the charging station 140 is suspended from the floating floating body that travels on the water, but the floating floating body that suspends and supports the charging station 140 is a floating body such as a buoy or the like. It may be a structure on water or in water.
  • the charging station of the present invention may be fixed relative to the underwater structure.
  • the AUV 10 includes the main thruster 13, the vertical thruster 14 and the horizontal thruster 15 as a thrust generator for moving the submersible body 12.
  • the AUV 10 may Instead of part or all, a thruster may have a swing type thruster capable of changing the direction in which the thrust is generated.
  • the non-contact electric power feeding system which electrically feeds without the electric power feeding part 41,141 and the power receiving part 11,111 contacting was employ
  • adopted it is not restricted to this, The electric power feeding part 41,141 and the power receiving part 11 , 111 may be in contact with each other to supply power.
  • the power feeding units 41 and 141 and the power receiving units 11 and 111 sufficiently In the case where they are close to each other, power may be supplied from the power feeding unit 41 or 141 to the power receiving unit 11 or 111 without moving the AUV 10 or 110 along the pole 43 or 143.
  • alignment between the power receiving unit 11, 111 and the power feeding unit 41, 141 is performed depending on whether the station side light receivers 46, 146 receive the light emitted from the submersible light transmitters 22, 122 or not.
  • the submersible optical transmitters 22 and 122 may be simple light emitters that do not transmit signals
  • the station side optical receivers 46 and 146 may be simple light receivers that do not receive signals. Good. Even in this case, alignment can be performed between the power receiving units 11 and 111 and the power feeding units 41 and 141 depending on whether the light receiver on the charging station side receives light emitted from the light emitter on the AUV side or not. .
  • light transmitters or light emitters may be provided at the station side light receivers 46 and 146, and light transmitters may be provided at the submersible light transmitters 22 and 122 instead of light transmitters.
  • An optical receiver or an optical receiver may be provided.
  • the direction detecting device for detecting the incoming direction of the light from the charging station 40, 140 may not be the submersible light receiver 23, 123.
  • the AUV may have an imaging device, and the control device 16, 116 determines the position of the light source (station-side light transmitter 45, 145) from the image captured by the imaging device 40. , 140 may be detected.
  • the rotational alignment of the AUVs 10 and 110 with respect to the poles 43 and 143 can be performed with sufficient accuracy only by the alignment by the station side light receivers 46 and 146 and the submersible light transmitters 22 and 122, the rotation is performed.
  • One or both of the restricting portions 48 and 148 and the guide surfaces 53 of the locking devices 51 and 151 may not be provided on the bases 42 and 142.
  • the charging station has the locking device and the AUV has the locked portion locked by the locking device.
  • the AUV has the locking device
  • the charging station has the locking device. You may have the to-be-locked part latched by the latching apparatus.
  • the locked portion is a locked pin extending from the submersible body 12 and the locking device has a hole into which the locked pin is fitted.
  • the configuration of the locking device is not limited to this.
  • the locked portions may be holes respectively formed on the left and right sides of the submersible body, and the charging station may have a locking device provided with hooks engageable with these holes.

Abstract

A charging system according to one embodiment of the present invention comprises: a charging station having a base positioned in water, a pole extending in the vertical direction, and a charging unit; and an AUV having an underwater vehicle body, a power reception unit, a holding device having a pair of guide parts that guide a contacted pole from the advancing-direction side into a holding position and a holding part that holds the pole guided into the holding position such that the pole is capable of relative rotation, a propulsion generation device that generates propulsion force in the horizontal direction, and a control device that controls the propulsion generation device; the base and the underwater vehicle body being provided, respectively, with a light emitter and a light receiver, and the control device controlling the propulsion generation device so that the light receiver reaches a rotation position, in relation to the pole, at which light emitted from the light emitter is received.

Description

自律型無人潜水機用の充電システムおよび自律型無人潜水機の揚収方法Charging system for autonomous unmanned underwater vehicle and method of recovering autonomous unmanned underwater vehicle
 本発明は、自律型無人潜水機用の充電システムおよび自律型無人潜水機の揚収方法に関する。 The present invention relates to a charging system for an autonomous unmanned underwater vehicle and a method of recovering the autonomous unmanned underwater vehicle.
 自律型無人潜水機(AUV:Autonomous Underwater Vehicle。以下、AUVともいう。)は、海底作業や海底調査等のために、母船からの電力供給を要せず、内蔵動力源によって水中を航走する。従来から、母船に揚収することなく水中でのAUVの充電を可能にする充電システムの開発が進められている。このような充電システムでは、水中に用意した充電ステーションにAUVがアプローチして互いに結合して充電を行う。AUVが潮流等の影響下でも安定した姿勢で充電ステーションにアプローチできるように、充電システムとしては、AUVが360度どの方向からでも充電ステーションにアプローチして結合できるものであることが望ましい。 An autonomous underwater vehicle (AUV: hereinafter referred to as AUV) travels underwater with an internal power source, without the need for a power supply from the mother ship for undersea work, sea bottom survey, etc. . BACKGROUND ART Conventionally, development of a charging system that enables charging of AUVs in water without being collected on a mother ship has been advanced. In such a charging system, the AUV approaches the charging station prepared in the water to couple to each other for charging. It is desirable for the charging system to be such that the AUV can approach and be coupled to the charging station from any direction 360 degrees so that the AUV can approach the charging station in a stable attitude even under the influence of a power flow or the like.
 近年、特許文献1に示すような、AUVが360度どの方向からでも充電ステーションにアプローチして結合できる充電システムが提案されている。この充電システムは、洋上の船から紐状体により水中に吊下げられた充電ステーションと、当該紐状体の回りに回転可能となるように充電ステーションに水中で結合するAUVとを備える。充電ステーションは、非接触給電部を有しており、洋上の船が充電ステーションを曳航すると、充電ステーションは、非接触給電部が水の流れ方向において紐状体の下流側に位置する姿勢となる。一方、AUVは、非接触受電部を有しており、充電ステーションに結合された状態で曳航されると、水の流れを受けることにより紐状体の回りに回転して、非接触受電部が水の流れ方向において紐状体の下流側に位置する姿勢となる。こうして、充電ステーションの向きとAUVの向きとを合致させて、AUVの非接触受電部と充電ステーションの非接触給電部とを給電可能な位置に合わせる。 In recent years, a charging system has been proposed, as shown in Patent Document 1, in which the AUV can approach and couple to the charging station from any direction from 360 degrees. The charging system comprises a charging station suspended in the water by a string from an offshore vessel and an AUV coupled in water to the charging station so as to be rotatable about the string. The charging station has a non-contact power feeding portion, and when the offshore ship tows the charging station, the charging station is in a posture in which the non-contact power feeding portion is located downstream of the string in the water flow direction. . On the other hand, the AUV has a non-contact power reception unit, and when it is towed in a state of being coupled to the charging station, it receives a flow of water and rotates around the cord-like body, and the non-contact power reception unit It becomes a posture located in the lower stream side of a string-like body in the flow direction of water. In this way, the direction of the charging station and the direction of the AUV are matched, and the non-contact power reception unit of the AUV and the non-contact power supply unit of the charging station are aligned at a position where power can be supplied.
特開2017-71265号公報JP, 2017-71265, A
 しかしながら、上述の充電システムでは、AUVの非接触受電部と充電ステーションの非接触給電部とを給電可能な位置に合わせるために、充電ステーションとAUVとが互いに結合した状態で水の流れを受ける必要がある。すなわち、潮流などの水の流れがないところで充電ステーションとAUVの位置合わせを行うためには、充電ステーションとAUVとが互いに結合した状態で洋上の船により曳航しなければならない。このため、充電ステーションとAUVの給電のための位置合わせをより容易に行う充電システムが望まれる。 However, in the above-mentioned charging system, it is necessary to receive the flow of water in a state where the charging station and the AUV are coupled to each other in order to align the non-contact power reception portion of the AUV and the non-contact power feeding portion of the charging station There is. That is, in order to align the charging station and the AUV where there is no flow of water, such as a tidal current, the charging station and the AUV must be towed by an offshore ship with the charging station and the AUV coupled to one another. For this reason, a charging system is desired that more easily aligns the charging station with the AUV power supply.
 そこで、本発明は、360度どの方向からでも充電ステーションへのAUVのアプローチを可能にするとともに、AUVを充電するための充電ステーションとAUVの位置合わせを容易に行うことができる、AUV用の充電システムおよびAUVの揚収方法を提供することを目的とする。 Thus, the present invention enables an AUV approach to the charging station from any direction 360 degrees, and allows for easy alignment of the AUV with the charging station for charging the AUV, charging for the AUV The purpose is to provide a system and a recovery method of AUV.
 上記の課題を解決するために、本発明に係るAUV用の充電システムは、水中に位置する基台と、前記基台に設けられ、上下方向に延びるポールと、前記基台における前記ポールより水平方向に離間した位置に設けられた給電部と、を有する、充電ステーションと、潜水機本体と、前記潜水機本体に設けられた、前記給電部から給電される受電部と、前記潜水機本体から進行方向側にいくにつれて互いに間隔が広がるとともに、前記進行方向側から当接した前記ポールを保持位置へと案内する一対のガイド部、および前記保持位置に案内された前記ポールを相対的に回転可能に保持する保持部を有する保持装置と、前記ポールを前記保持装置が保持した前記潜水機本体を、前記ポールを中心に回転させる少なくとも水平方向に推力を発生させる推力発生装置と、前記推力発生装置を制御する制御装置と、を有する、AUVと、を備え、前記基台における前記ポールより水平方向に離間した位置に、光放出器および受光器の一方が設けられており、前記潜水機本体における前記保持位置より水平方向に離間した位置に、前記光放出器および前記受光器の他方が設けられており、前記制御装置は、前記ポールを前記保持装置が保持した前記潜水機本体が、前記ポールに対して前記受光器が前記光放出器から放出した光を受ける回転位置にくるように、前記推力発生装置を制御する。 In order to solve the above problems, the charging system for AUV according to the present invention comprises a base located in water, a pole provided on the base and extending in the vertical direction, and horizontal from the pole on the base A charging station having a feeding part provided at a position separated in a direction, a submersible main body, a power receiving part provided on the submersible main body and supplied with power from the feeding part, and the submersible main body The distance between the poles increases toward the advancing direction side, and a pair of guide portions for guiding the pole in contact from the advancing direction side to the holding position and the pole guided to the holding position can be relatively rotated. And a holding device having a holding portion, and the submersible main body, in which the holding device holds the pole, generates thrust at least in the horizontal direction to rotate the pole about the pole. And a controller for controlling the thrust generator, wherein one of the light emitter and the light receiver is at a position horizontally separated from the pole on the base. The other of the light emitter and the light receiver is provided at a position horizontally separated from the holding position in the submersible main body, and the control device is configured to hold the pole in the holding device. The thrust generator is controlled such that the held submersible body is at a rotational position for receiving light emitted from the light emitter with respect to the pole.
 上記の構成によれば、AUVが充電ステーションに対して多少ずれて進入しても、保持装置におけるガイド部が、潜水機本体の進行方向側から当接したポールを保持位置へと案内して、保持装置における保持部が、ポールを相対的に回転可能に保持するする。このため、AUVは360度どの方向からでも充電ステーションにアプローチすることができる。また、制御装置が、受光器が光放出器から放出した光を受けるか否かのシンプルな判定方法を用いて推力発生装置を制御し、受電部と給電部との間の位置合わせを行うことができる。このため、AUVを充電するための充電ステーションとAUVの位置合わせを容易に行うことができる。 According to the above configuration, even if the AUV enters the charging station with a slight shift, the guide portion in the holding device guides the pole, which is in contact from the advancing direction side of the diving machine main body, to the holding position. A holding part in the holding device holds the pole relatively rotatably. Thus, the AUV can approach the charging station from any direction 360 degrees. In addition, the control device controls the thrust generator by using a simple determination method as to whether or not the light receiver receives the light emitted from the light emitter, and performs alignment between the power reception unit and the power supply unit. Can. For this reason, alignment with the charge station for charging AUV, and AUV can be performed easily.
 上記のAUV用の充電システムにおいて、前記光放出器は、光信号として光を放出する潜水機側光送信器であり、前記受光器は、前記潜水機側光送信器からの光信号を受信するステーション側光受信器であり、前記充電ステーションは、光信号として光を放出するステーション側光送信器を有し、前記AUVは、前記ステーション側光送信器からの光信号を受信する潜水機側光受信器を有し、前記制御装置は、前記ステーション側光送信器から前記潜水機側光受信器へと送られる光信号であって、前記潜水機側光送信器と前記ステーション側光受信器との間の通信状態を示す光信号に基づき、前記推力発生装置を制御してもよい。この構成によれば、充電ステーションとAUVとの間で相互に光通信を行うための光送信器および光受信器を利用して、受電部と給電部との間の位置合わせを行うことができる。 In the above AUV charging system, the light emitter is a submersible light transmitter that emits light as a light signal, and the light receiver receives a light signal from the submersible light transmitter. A station-side light receiver, wherein the charging station has a station-side light transmitter for emitting light as a light signal, and the AUV receives a light signal from the station-side light transmitter. And a controller, which is an optical signal transmitted from the station-side optical transmitter to the submersible-side optical receiver, comprising: the submersible-side optical transmitter and the station-side optical receiver The thrust generator may be controlled on the basis of an optical signal indicating a communication state between them. According to this configuration, alignment between the power receiving unit and the power feeding unit can be performed using the light transmitter and the light receiver for performing optical communication with each other between the charging station and the AUV. .
 上記のAUV用の充電システムにおいて、前記推力発生装置は、前記潜水機本体を進行方向および上下方向に移動させる推力を発生させ、前記ステーション側光送信器は、前記ポールを中心に放射状に光信号として光を放出するように設けられており、前記AUVは、前記ステーション側光送信器から放出された光の到来方向を検出する方向検出装置を有し、前記制御装置は、前記方向検出装置により検出した到来方向に基づいて、前記AUVが進行して前記ガイド部が前記ポールに当接するように、前記推力発生装置を制御してもよい。この構成によれば、ステーション側光送信器が、ポールを中心に放射状に光信号として光を放出するように設けられているため、ステーション側光送信器から放射される光に向かうようAUVを進行させることで、AUVを精度良くポールにアプローチさせることができる。 In the above charging system for AUV, the thrust generating device generates a thrust for moving the submersible body in the traveling direction and the vertical direction, and the station-side optical transmitter generates an optical signal radially about the pole The AUV has a direction detection device for detecting the arrival direction of the light emitted from the station-side light transmitter, and the control device uses the direction detection device to detect light. The thrust generator may be controlled so that the AUV advances and the guide portion abuts on the pole based on the detected arrival direction. According to this configuration, since the station-side optical transmitter is provided to emit light as an optical signal radially about the pole, the AUV travels toward the light emitted from the station-side optical transmitter. By doing this, the AUV can approach the pole with high accuracy.
 上記のAUVの充電システムは、水上に浮かんだ水上浮体を備え、前記充電ステーションは、前記水上浮体から延びる索で水中に吊り下げられており、前記ポールは、前記基台から下方に延びてもよい。この構成によれば、ポールは基台から下方に延びており、索は基台側からポールとは反対方向に水上へ延びている。このため、索と基台とを、ポールにアプローチするAUVの邪魔にならないように容易に連結できる。 The above AUV charging system comprises a floating floating body floating on water, the charging station being suspended in water by a cord extending from the floating floating body, and the pole extending downward from the base Good. According to this configuration, the pole extends downward from the base, and the cable extends from the base side to the water in the opposite direction to the pole. Thus, the cords and the base can be easily connected so as not to interfere with the AUV approaching the pole.
 上記のAUVの充電システムにおいて、前記AUVおよび前記充電ステーションの一方は、係止装置を有し、前記AUVおよび前記充電ステーションの他方は、前記係止装置により係止される被係止部を有し、前記AUVは、前記係止装置が前記被係止部を係止することにより、前記受電部が前記給電部から給電可能な位置に配置された状態で、前記充電ステーションに対しドッキングしてもよい。この構成によれば、係止装置が、潜水機本体に設けられた被係止部を係止することにより、潜水機本体を充電ステーションに対して固定することができる。 In the above AUV charging system, one of the AUV and the charging station has a locking device, and the other of the AUV and the charging station has a locked portion locked by the locking device. And the AUV is docked to the charging station in a state where the power receiving unit is disposed at a position where power can be supplied from the power feeding unit by the locking device locking the locked portion. It is also good. According to this configuration, the locking device can fix the diving machine main body to the charging station by locking the engaged portion provided in the diving machine main body.
 上記のAUV用の充電システムにおいて、前記推力発生装置は、前記ポールを前記保持装置が保持した前記潜水機本体を、前記ポールに沿って移動させる推力を発生させ、前記回転位置に位置する前記潜水機本体が、前記給電部と前記受電部とが互いに近づくように前記ポールに沿って移動することにより、前記被係止部は、前記係止装置により係止される係止位置に到達してもよい。この構成によれば、係止装置が、潜水機本体に設けられた被係止ピンを係止することにより、潜水機本体の位置を、受光器が光放出器から放出した光を受ける回転位置に固定することができる。このため、潮流などの影響で水の流れを受けても、推力発生装置を駆動させることなく、潜水機本体を目的の回転位置に留めることができる。 In the charging system for AUV described above, the thrust generating device generates a thrust for moving the diving machine main body, in which the holding device holds the pole, along the pole, and the diving located at the rotational position When the machine body moves along the pole so that the power feeding unit and the power receiving unit approach each other, the locked portion reaches a locking position locked by the locking device. It is also good. According to this configuration, the locking device locks the locked pin provided on the diving machine body, whereby the position of the diving machine body is a rotational position where the light receiver receives the light emitted from the light emitter. It can be fixed to For this reason, even if it receives the flow of water by the influence of a tidal flow etc., a submersible main body can be stopped at the target rotation position, without driving a thrust generator.
 上記のAUV用の充電システムにおいて、前記被係止部は、前記潜水機本体から上方または下方に延びる被係止ピンであり、前記充電ステーションは、前記係止装置を有し、前記係止装置は、前記給電部と前記受電部とが互いに近づくように前記潜水機本体が前記ポールに沿って移動することにより前記被係止ピンが当接し、当接した前記被係止ピンを前記係止位置へと案内するガイド面、および前記係止位置に案内された前記被係止ピンを係止する係止部を有してもよい。この構成によれば、係止位置に対して被係止ピンが多少ずれた状態でAUVがポールに沿って移動しても、ガイド面がずれを吸収して被係止ピンを係止位置に案内するため、AUVの被係止ピンを係止位置に精度良く導くことができる。 In the above charging system for AUV, the locked portion is a locked pin extending upward or downward from the submersible body, and the charging station has the locking device, and the locking device Is moved by the submersible main body along the pole so that the power feeding unit and the power receiving unit approach each other, the locked pin abuts, and the abutted locked pin abuts It may have a guide surface which guides to a position, and a locking part which locks the locked pin guided to the locked position. According to this configuration, even if the AUV moves along the pole in a state where the locked pin is slightly shifted with respect to the locked position, the guide surface absorbs the shift and the locked pin is set to the locked position. In order to guide, the locked pin of the AUV can be accurately guided to the locking position.
 上記のAUV用の充電システムにおいて、前記充電ステーションは、前記潜水機本体が前記ポールに沿って移動する途中で前記潜水機本体または前記ガイド部に当接し、前記ポールに対する前記潜水機本体の回転範囲を機械的に規制する回転規制部を有してもよい。この構成によれば、潜水機本体がポールに沿って移動する途中で潮流などの水の流れを受けても、回転規制部によりポールに対する潜水機本体の回転範囲が機械的に規制されるため、目的の回転位置に潜水機本体を留めるための推力発生装置の負荷を低減することができる。 In the charging system for AUV described above, the charging station contacts the diving machine body or the guide portion while the diving machine body moves along the pole, and the rotation range of the diving machine body with respect to the pole May have a rotation restricting portion that mechanically restricts. According to this configuration, even if the submersible body receives a flow of water such as tidal current while moving along the pole, the rotation restricting portion mechanically restricts the rotation range of the submersible body with respect to the pole. It is possible to reduce the load on the thrust generator for holding the submersible body at the target rotational position.
 上記の充電ステーションに対しAUVがドッキングする構成において、AUV用の充電システムは、水上に浮かんだ水上浮体を備え、前記充電ステーションは、前記水上浮体から延びる索で水中に吊り下げられており、前記ポールは、前記基台から下方に延び、前記水上浮体は、前記索を引いて、ドッキングされた前記AUVと一体的に前記充電ステーションを空中に吊り上げる揚荷設備を有してもよい。この構成によれば、AUVを充電ステーションにドッキングした状態で水中から水上浮体に揚収したり、水上浮体から水中に投入したりすることができる。また、ポールが基台から下方に延びていることから、AUVは充電ステーションの下方に配置された状態で充電ステーションにドッキングする。このため、基台と索との連結箇所の設計自由度が上がる。このため、例えば、充電ステーションが、AUVにドッキングされた状態で空中に吊り上げられたときに、充電ステーションの各部位に不要な応力がかからないような基台と索との連結を容易に行うことができる。 In the AUV docking configuration with respect to the above charging station, the charging system for AUV comprises a floating body floating on water, the charging station being suspended in water by a cord extending from the floating body, A pole may extend downwardly from the base and the floating body may have a lifting arrangement to lift the charging station into the air integrally with the docked AUV by pulling the cords. According to this configuration, the AUV can be removed from the water to the floating body or can be introduced from the floating body into the water while being docked to the charging station. Also, since the pole extends downward from the base, the AUV docks to the charging station while being located below the charging station. As a result, the degree of freedom in design of the connection between the base and the cord is increased. For this reason, for example, when the charging station is lifted into the air while being docked to the AUV, it is easy to connect the base and the cord so that unnecessary stress is not applied to each part of the charging station. it can.
 上記のAUV用の充電システムにおいて、前記充電ステーションは、水中での姿勢および水中での向きの少なくとも一方を維持するための推力発生装置を有してもよい。この構成によれば、推力発生装置によって充電ステーションの水中での姿勢および水中での向きの少なくとも一方を制御することができる。 In the above charging system for AUV, the charging station may have a thrust generator for maintaining at least one of an attitude in the water and an orientation in the water. According to this configuration, the thrust generator can control at least one of the attitude in the water and the orientation in the water of the charging station.
 また、本発明に係るAUVの揚収方法は、AUVの揚収方法水上に浮かんだ水上浮体から、AUVとドッキング可能なステーションを水中に吊り下げる工程と、前記AUVが水中で前記ステーションにアプローチして、前記ステーションにドッキングする工程と、前記AUVがドッキングした状態の前記ステーションを引き揚げて、前記水上浮体に揚収する工程と、を含む。 Further, according to the AUV recovery method of the present invention, there is provided a method of suspending the AUV and a dockable station from the floating floating body floating on the water, and the AUV approaching the station in water. And docking the station, and withdrawing the station with the AUV docked, and then withdrawing the station onto the floating body.
 また、上記のAUVの揚収方法において、前記AUVが水中で前記ステーションにドッキングする工程において、前記AUVは、前記ステーションの下方から前記ステーションに対してドッキングし、前記AUVがドッキングした状態の前記ステーションを引き揚げる工程において、前記AUVがドッキングした状態の前記ステーションを、ドッキングしたときの水中での姿勢を維持しつつ空中に吊り上げてもよい。 In the AUV unloading method described above, in the step of docking the AUV in the water to the station, the AUV is docked to the station from below the station, and the AUV docked in the station. In the step of withdrawing, the station where the AUV is docked may be lifted into the air while maintaining a posture in the water when docked.
 本発明によれば、360度どの方向からでも充電ステーションへのAUVのアプローチを可能にするとともに、AUVを充電するための充電ステーションとAUVの位置合わせを容易に行うことができる、AUV用の充電システムを提供することができる。 According to the present invention, a charge for AUV, which enables an AUV approach to the charge station from any direction 360 degrees, and which can be easily aligned with the charge station for charging the AUV. System can be provided.
本発明の第1実施形態に係るAUV用の充電システムの概略構成図である。It is a schematic block diagram of the charge system for AUVs concerning a 1st embodiment of the present invention. 図1に示す充電ステーションにAUVがドッキングした状態を示す図である。It is a figure which shows the state which AUV docked to the charging station shown in FIG. 図1に示すAUVの側面図である。It is a side view of AUV shown in FIG. 図1に示すAUVの平面図である。It is a top view of AUV shown in FIG. 図1に示す充電ステーションの側面図である。It is a side view of the charge station shown in FIG. 図1に示す充電ステーションの平面図である。It is a top view of the charging station shown in FIG. 図1に示す充電ステーションの正面図である。It is a front view of the charging station shown in FIG. 図1に示すAUVの保持装置を拡大した拡大平面図である。It is the enlarged plan view which expanded the holding | maintenance apparatus of AUV shown in FIG. 図1に示す充電ステーションの係止装置によるAUVの被係止ピンの固定を説明するための図である。It is a figure for demonstrating fixation of the to-be-locked pin of AUV by the latching apparatus of the charging station shown in FIG. AUVが充電ステーションにアプローチする様子を示す平面図である。It is a top view which shows a mode that AUV approaches a charge station. 図1に示すAUVが、ポールを保持した状態でポールを中心に回転する様子を示す側面図である。It is a side view which shows a mode that AUV shown in FIG. 1 rotates centering on a pole in the state holding a pole. 本発明の第2実施形態に係るAUVの充電システムの概略構成図である。It is a schematic block diagram of the charge system of AUV concerning a 2nd embodiment of the present invention. 図11に示す充電ステーションにAUVがドッキングした状態を示す図である。It is a figure which shows the state which AUV docked to the charging station shown in FIG. 図11に示すAUVがポールを保持した状態でポールを中心に回転する様子を示す側面図である。It is a side view which shows a mode that AUV shown in FIG. 11 rotates centering on a pole in the state holding a pole. 図11に示すAUVがポールに沿って上昇するときの回転規制部の作用を説明するための模式図である。It is a schematic diagram for demonstrating the effect | action of a rotation control part when AUV shown in FIG. 11 raises along a pole. 図12に示すAUVがドッキングした充電ステーションを空中に吊り上げた状態を示す側面図である。It is a side view which shows the state which lifted the charging station which AUV shown in FIG. 12 docked in the air. 変形例1に係る充電ステーションの側面図である。It is a side view of the charge station concerning modification 1. FIG. 変形例2に係る充電ステーションの側面図である。It is a side view of the charge station concerning modification 2. FIG.
 (第1実施形態)
 以下、図面を参照しながら、本発明の第1実施形態について説明する。
First Embodiment
Hereinafter, a first embodiment of the present invention will be described with reference to the drawings.
 図1は、第1実施形態に係る充電システム1の概略構成図である。充電システム1は、AUV10を水中で充電するためのものである。充電システム1は、AUV10および充電ステーション40を備える。AUV10は、受電部11を有し、充電ステーション40は、給電部41を有する。この充電システム1では、水中を航走するAUV10が充電ステーション40にアプローチし、充電ステーション40に対してドッキングする。 FIG. 1 is a schematic configuration diagram of the charging system 1 according to the first embodiment. The charging system 1 is for charging the AUV 10 in water. The charging system 1 includes an AUV 10 and a charging station 40. The AUV 10 has a power receiving unit 11, and the charging station 40 has a power feeding unit 41. In the charging system 1, the underwater AUV 10 approaches the charging station 40 and docks with the charging station 40.
 図2に、充電ステーション40にAUV10がドッキングした状態を示す。AUV10が充電ステーション40にドッキングすることにより、AUV10の受電部11は、充電ステーション40の給電部41(図1参照)から電力を供給される位置に配置される。以下、AUV10および充電ステーション40の構成をそれぞれ説明する。 FIG. 2 shows the charging station 40 with the AUV 10 docked. When the AUV 10 docks to the charging station 40, the power receiving unit 11 of the AUV 10 is disposed at a position to which power is supplied from the power feeding unit 41 (see FIG. 1) of the charging station 40. The configurations of the AUV 10 and the charging station 40 will be respectively described below.
 (AUVの構成)
 まずAUV10の構成について説明する。図3は、AUV10の側面図であり、図4は、AUV10の平面図である。なお、本明細書において、説明の便宜上、AUV10に関して、AUV10が充電ステーション40にアプローチする際のAUV10の進行方向を前方、進行方向の反対方向を後方、進行方向に対して左方、右方、上方、および下方を、それぞれ左方、右方、上方、および下方と定義する。
(Configuration of AUV)
First, the configuration of the AUV 10 will be described. FIG. 3 is a side view of the AUV 10, and FIG. 4 is a plan view of the AUV 10. In the present specification, for convenience of explanation, with regard to the AUV 10, the advancing direction of the AUV 10 when the AUV 10 approaches the charging station 40 is forward, the opposite direction of the advancing direction is backward, the left with respect to the advancing direction, Upper and lower are defined as left, right, upper and lower, respectively.
 AUV10は、動力源としての蓄電池を内蔵した潜水機本体12を有する。潜水機本体12は、その前方側が水の抵抗の少ない流線型をなしている。また、図3に示すように、潜水機本体12下部に、上述の受電部11が設けられている。受電部11は、充電ステーション40の給電部41から非接触で電力供給される非接触式の受電装置である。AUV10が充電ステーション40にドッキングすることにより、受電部11は、給電部41からの電力が非接触で供給されるよう当該給電部41に対向する位置に配置される。 The AUV 10 has a submersible main body 12 incorporating a storage battery as a power source. The submersible body 12 has a streamlined shape with less water resistance on the front side. Moreover, as shown in FIG. 3, the above-mentioned power receiving part 11 is provided in the submersible main body 12 lower part. The power receiving unit 11 is a non-contact type power receiving device which receives power from the power feeding unit 41 of the charging station 40 in a non-contact manner. When the AUV 10 is docked to the charging station 40, the power receiving unit 11 is disposed at a position opposite to the power feeding unit 41 so that the power from the power feeding unit 41 is supplied without contact.
 また、潜水機本体12には、当該潜水機本体12を水中で移動させる推力を発生させる推力発生装置が設けられている。推力発生装置は、潜水機本体12を前方へ移動させるための2つの主推進器13と、潜水機本体12を上下方向に移動させるための4つの垂直スラスタ14と、潜水機本体12を左右方向に移動させるための2つの水平スラスタ15を含む。 Further, the submersible main body 12 is provided with a thrust generating device that generates a thrust for moving the submersible main body 12 in water. The thrust generator includes two main thrusters 13 for moving the submersible body 12 forward, four vertical thrusters 14 for moving the submersible body 12 in the vertical direction, and the submersible body 12 in the left and right direction. Includes two horizontal thrusters 15 for moving to.
 また、潜水機本体12の内部には、これら主推進器13、垂直スラスタ14、水平スラスタ15をそれぞれ制御する制御装置16が設けられている。制御装置16は、各種プログラムを記憶する記憶部と、当該記憶部に記憶されたプログラムを実行する演算部とを有する。AUV10は、制御装置16において記憶部に記憶された所定のプログラムを演算部が実行することにより、水中を自律航走したり、充電ステーション40に対してドッキングしたりする。 Further, a control device 16 for controlling the main thruster 13, the vertical thrusters 14, and the horizontal thrusters 15 is provided in the submersible main body 12. The control device 16 has a storage unit that stores various programs, and an operation unit that executes the programs stored in the storage unit. In the AUV 10, the arithmetic unit executes a predetermined program stored in the storage unit in the control device 16 to autonomously run underwater or to dock the charging station 40.
 潜水機本体12の上部には、音響測位装置21が設けられている。音響測位装置21は、後述する充電ステーション40のトランスポンダ44とともに、AUV10から充電ステーション40までの距離やAUV10に対する充電ステーション40の方向を特定するための音響測位システムを構成している。この音響測位システムは、例えば、音響測位装置21がトランスポンダ44との間の音波の往復時間からトランスポンダ44までの距離を計算し、音響測位装置21の有する受波アレイ内の各素子への到達音波の位相差をもとにトランスポンダ44の方位を計算するUSBL(Ultra Short Base Line)方式、あるいはSSBL(Super Short Base Line)方式の測位システムである。ただし、音響測位システムは、上述の方式でなくてもよく、例えばSBL(Short Base Line)方式などでもよい。 An acoustic positioning device 21 is provided on the upper portion of the diving machine body 12. The acoustic positioning device 21 constitutes an acoustic positioning system for specifying the distance from the AUV 10 to the charging station 40 and the direction of the charging station 40 with respect to the AUV 10 together with a transponder 44 of the charging station 40 described later. In this acoustic positioning system, for example, the acoustic positioning device 21 calculates the distance to the transponder 44 from the round trip time of the sound wave with respect to the transponder 44, and the reaching acoustic wave to each element in the receiving array of the acoustic positioning device 21 The positioning system of the USBL (Ultra Short Base Line) method or the SSBL (Super Short Base Line) method that calculates the direction of the transponder 44 based on the phase difference of However, the acoustic positioning system may not be the method described above, and may be, for example, a short base line (SBL) method.
 また、潜水機本体12の後方側下部には、下方へ光信号を送信する潜水機側光送信器22(本発明の「光放出器」に対応)が設けられている。また、潜水機本体12の前方側下部には、AUV10の前方および下方からの光信号を受信する潜水機側光受信器23が設けられている。 Further, a submersible light transmitter 22 (corresponding to the “light emitter” of the present invention) for transmitting light signals downward is provided at the lower rear side of the submersible main body 12. Further, a submersible light receiver 23 for receiving light signals from the front and the bottom of the AUV 10 is provided at the lower front of the submersible body 12.
 本実施形態では、潜水機側光受信器23は、充電ステーション40(より詳細には、後述のステーション側光送信器45)から放出された光の到来方向を検出する方向検出装置としても機能する。具体的には、潜水機側光受信器23は、受光部として、互いに独立する複数の受光素子を有する受光アレイ(図示せず)を備える。潜水機側光受信器23は、この受光アレイの各受光素子の受光強度を比較することによって、充電ステーション40から放出される光の到来方向を検出する。後述するように、制御装置16は、潜水機側光受信器23にて取得した到来方向を、AUV10を充電ステーション40にアプローチするために利用する。 In the present embodiment, the submersible light receiver 23 also functions as a direction detection device that detects the arrival direction of light emitted from the charging station 40 (more specifically, the station light transmitter 45 described later). . Specifically, the submersible light receiver 23 includes a light receiving array (not shown) having a plurality of light receiving elements which are independent of each other as a light receiving unit. The submersible light receiver 23 detects the arrival direction of the light emitted from the charging station 40 by comparing the light reception intensity of each light receiving element of the light reception array. As will be described later, the controller 16 uses the incoming direction acquired by the submersible light receiver 23 to approach the AUV 10 to the charging station 40.
 潜水機本体12の前端部には、保持装置31が設けられている。保持装置31は、AUV10が充電ステーション40にドッキングする際に、後述する充電ステーション40のポール43に当接し、保持する。また、図3に示すように、潜水機本体12の下部には、下方へ延びる被係止ピン35(本発明の「被係止部」に対応)が設けられている。被係止ピン35は、後述する充電ステーション40の係止装置51により係止される。保持装置31によるポール43の保持や、係止装置51による被係止ピン35の係止について、詳細は後述する。 A holding device 31 is provided at the front end of the diving machine body 12. The holding device 31 abuts and holds the pole 43 of the charging station 40 described later when the AUV 10 docks to the charging station 40. Further, as shown in FIG. 3, the lower part of the diving machine main body 12 is provided with a locking pin 35 (corresponding to the “locking portion” of the present invention) extending downward. The locked pin 35 is locked by the locking device 51 of the charging station 40 described later. Details of the holding of the pole 43 by the holding device 31 and the locking of the locked pin 35 by the locking device 51 will be described later.
 (充電ステーションの構成)
 次に、充電ステーション40の構成について説明する。図5は、充電ステーション40の側面図であり、図6は、充電ステーション40の平面図であり、図7は、充電ステーション40の正面図である。なお、本明細書において、説明の便宜上、図2に示したAUV10が充電ステーション40にドッキングした状態におけるAUV10の前方、後方、左方、右方、上方、および下方を、それぞれ充電ステーション40の前方、後方、左方、右方、上方、および下方と定義する。
(Configuration of charging station)
Next, the configuration of the charging station 40 will be described. FIG. 5 is a side view of the charging station 40, FIG. 6 is a plan view of the charging station 40, and FIG. 7 is a front view of the charging station 40. In the present specification, for convenience of explanation, the front, back, left, right, upper, and lower portions of the AUV 10 in the state where the AUV 10 shown in FIG. , Backward, left, right, upper, and lower.
 充電ステーション40は、水中に位置する基台42を有する。本実施形態では、充電ステーション40は、水底設置型であり、基台42は、水底に固定される。基台42は、金属製の複数の骨部材や板部材などが連結されて構成される。 The charging station 40 has a base 42 located in the water. In the present embodiment, the charging station 40 is a bottom-mounted type, and the base 42 is fixed to the bottom. The base 42 is configured by connecting a plurality of metal bone members, plate members, and the like.
 基台42の上部には、上方に延びるポール43が設けられている。ポール43は、AUV10が充電ステーション40に対してドッキングを行う際に、充電ステーション40にアプローチしたAUV10が最初に当接する箇所である。言い換えれば、AUV10が充電ステーション40にドッキングを行う際に、AUV10は、保持装置31がポール43に当接するように充電ステーション40に向かって進行する。 A pole 43 extending upward is provided at the top of the base 42. The pole 43 is the point where the AUV 10 approaches the charging station 40 first abuts when the AUV 10 docks to the charging station 40. In other words, when the AUV 10 docks to the charging station 40, the AUV 10 advances towards the charging station 40 such that the holding device 31 abuts the pole 43.
 図8に、AUV10の保持装置31が充電ステーション40のポール43を保持する様子を示す。保持装置31は、ポール43を相対的に回転可能に保持する。保持装置31には、ポール43を保持するための保持位置P1が予め定められている。なお、図8では、保持位置P1に導かれる途中のポール43の断面、および保持位置P1に導かれたポール43の断面をそれぞれ破線で示す。 FIG. 8 shows how the holding device 31 of the AUV 10 holds the pole 43 of the charging station 40. The holding device 31 holds the pole 43 relatively rotatably. In the holding device 31, a holding position P1 for holding the pole 43 is determined in advance. In FIG. 8, the cross section of the pole 43 in the middle of being guided to the holding position P1 and the cross section of the pole 43 guided to the holding position P1 are respectively shown by broken lines.
 保持装置31は、AUV10の進行方向側から当接したポール43を保持位置P1へと案内する一対のガイド部32a,32bと、保持位置P1に案内されたポール43を相対的に回転可能に保持する一対の保持爪33a,33b(本発明の「保持部」に対応)を有する。 The holding device 31 holds the pair of guide portions 32a and 32b for guiding the pole 43, which abuts from the traveling direction side of the AUV 10, to the holding position P1 and the pole 43 guided to the holding position P1 relatively rotatably. And a pair of holding claws 33a and 33b (corresponding to the "holding portion" of the present invention).
 一対のガイド部32a,32bは、潜水機本体12から進行方向側(すなわち後ろ側から前側)にいくにつれて間隔が徐々に広がっている。このため、一対のガイド部32a,32bの一方にポール43が当接した状態でAUV10が進行方向前方へと進むと、ポール43は、当接したガイド部32aまたは32bを押圧して潜水機本体12の向きを変えながら、当接したガイド部32aまたは32bに沿って保持位置P1へと移動する。 The distance between the pair of guide portions 32a and 32b gradually increases as it goes from the diving machine main body 12 to the traveling direction side (that is, from the rear side to the front side). Therefore, when the AUV 10 advances in the forward direction with the pole 43 in contact with one of the pair of guide portions 32a and 32b, the pole 43 presses the guide portion 32a or 32b which is in contact with the submersible body While changing the direction of 12, it moves to the holding position P1 along the abutted guide portion 32a or 32b.
 一対の保持爪33a,33bは、それぞれ一対のガイド部32a,32bに設けられている。一対の保持爪33a,33bは、保持位置P1に位置するポール43をAUV10の前側から押さえて、ポール43が保持位置P1から逸脱するのを防止する。 The pair of holding claws 33a and 33b are provided on the pair of guide portions 32a and 32b, respectively. The pair of holding claws 33a and 33b presses the pole 43 located at the holding position P1 from the front side of the AUV 10 to prevent the pole 43 from deviating from the holding position P1.
 一対の保持爪33a,33bは、それぞれ一対のガイド部32a,32bから潜水機本体12の左右方向中央側に出没可能に構成される。具体的には、保持爪33a,33bは、それぞれ、ガイド部32a,32bから出た出位置と、ガイド部32a,32b内に退避した没位置との間で移動する。保持爪33a,33bは、それらが出位置にあるとき、ポール43を保持位置P1に保持する。また、保持爪33a,33bは、それらが没位置にあるとき、ポール43を保持位置P1に保持した状態を解除する。 The pair of holding claws 33a and 33b are configured to be able to protrude and retract from the pair of guide portions 32a and 32b to the center side in the left-right direction of the diving machine body 12, respectively. Specifically, the holding claws 33a and 33b move between the exit position of the guide portions 32a and 32b and the retracted position retracted into the guide portions 32a and 32b, respectively. The holding claws 33a, 33b hold the pole 43 in the holding position P1 when they are in the out position. Further, when the holding claws 33a and 33b are in the retracted position, the holding claws 33a and 33b release the state in which the pole 43 is held at the holding position P1.
 本実施形態では、保持爪33a,33bが出位置側に付勢されており、保持爪33a,33bが保持位置P1に向かう途中のポール43に押圧されることにより没位置側へと移動し、ポール43が保持位置P1に到達したときに出位置へと戻るように構成されている。また、保持装置31は、制御装置16から送られる制御信号により、保持爪33a,33bを出位置から没位置に移動させる図略のアクチュエータを備える。制御装置16は、AUV10が充電ステーション40から離脱する際に、当該アクチュエータを駆動して、保持爪33a,33bを出位置から没位置に移動させる。 In the present embodiment, the holding claws 33a and 33b are biased to the ejection position side, and the holding claws 33a and 33b are moved to the sunk position side by being pressed by the pole 43 on the way to the holding position P1. When the pole 43 reaches the holding position P1, it is configured to return to the out position. Further, the holding device 31 includes an actuator (not shown) that moves the holding claws 33a and 33b from the outgoing position to the retracted position by a control signal sent from the control device 16. When the AUV 10 separates from the charging station 40, the control device 16 drives the actuator to move the holding claws 33a and 33b from the outgoing position to the retracted position.
 保持装置31がポール43を相対的に回転可能に保持するため、ポール43を保持装置31が保持した状態で水平スラスタ15を駆動させると、潜水機本体12は、ポール43を中心に回転する。 When the horizontal thruster 15 is driven while the holding device 31 holds the pole 43 so that the holding device 31 can relatively rotate the pole 43, the submersible main body 12 rotates about the pole 43.
 図5~図7に戻って、ポール43の上端部には、トランスポンダ44が設けられている。トランスポンダ44は、上述の音響測位装置21から送られる音波を受信するとともに、音響測位装置21に音波を送り返す。トランスポンダ44は、上述の音響測位装置21とともに、充電ステーション40に対するAUV10の位置を測位するための音響測位システムを構成する。 Returning to FIGS. 5 to 7, at the upper end of the pole 43, a transponder 44 is provided. The transponder 44 receives the sound wave sent from the above-mentioned sound positioning device 21 and sends back the sound wave to the sound positioning device 21. The transponder 44 constitutes an acoustic positioning system for positioning the position of the AUV 10 with respect to the charging station 40 together with the above-mentioned acoustic positioning device 21.
 また、上述の給電部41は、基台42におけるポール43より水平方向に離間した位置に設けられている。具体的には、給電部41は、基台42の上部であって、ポール43より後方に離間した位置に設けられている。AUV10の前後方向における保持位置P1から受電部11までの距離と、充電ステーション40の前後方向におけるポール43から給電部41までの距離とは概ね一致する。このため、AUV10が充電ステーション40にドッキングした状態では、受電部11および給電部41は、上下方向に対向する。 Further, the above-described power feeding portion 41 is provided at a position spaced apart from the pole 43 in the base 42 in the horizontal direction. Specifically, the feeding portion 41 is provided at the upper portion of the base 42 and at a position separated rearwardly from the pole 43. The distance from the holding position P1 in the front-rear direction of the AUV 10 to the power receiving unit 11 and the distance from the pole 43 to the power supply unit 41 in the front-rear direction of the charging station 40 substantially coincide with each other. Therefore, when the AUV 10 is docked to the charging station 40, the power receiving unit 11 and the power feeding unit 41 face each other in the vertical direction.
 また、基台42には、ステーション側光送信器45が設けられている。ステーション側光送信器45は、基台42の上部におけるポール43の下端部の周りに配置されている。本実施形態では、ステーション側光送信器45は、図5に矢印で示すように、ポール43の下端部を中心に、当該下端部より上側の領域に光を放射状に放射する。このため、AUV10が充電ステーション40に対して360度どの方向からアプローチしても、ステーション側光送信器45からの光を潜水機側光受信器23は受光することができる。 In addition, the station side optical transmitter 45 is provided on the base 42. The station-side light transmitter 45 is disposed around the lower end of the pole 43 at the top of the base 42. In the present embodiment, the station-side light transmitter 45 radiates light radially to a region above the lower end of the pole 43, as shown by an arrow in FIG. Therefore, even if the AUV 10 approaches the charging station 40 from any direction 360 degrees, the submersible light receiver 23 can receive the light from the station light transmitter 45.
 また、AUV10が充電ステーション40にドッキングした状態では、潜水機側光受信器23およびステーション側光送信器45は、互いに対向するように配置される。このため、充電ステーション40にAUV10がドッキングした後も、ステーション側光送信器45は、上述の潜水機側光受信器23へと光信号を送ることが可能である。 Further, in the state where the AUV 10 is docked to the charging station 40, the submersible light receiver 23 and the station light transmitter 45 are disposed to face each other. Therefore, even after the AUV 10 is docked to the charging station 40, the station-side optical transmitter 45 can transmit an optical signal to the submersible-side optical receiver 23 described above.
 なお、本実施形態では、ステーション側光送信器45から放出する光は、上述したように、方向検出装置として機能する潜水機側光受信器23により、AUV10を充電ステーション40にアプローチするためにも利用される。 In the present embodiment, as described above, the light emitted from the station-side light transmitter 45 is also for the AUV 10 to approach the charging station 40 by the submersible-side light receiver 23 functioning as a direction detection device. It is used.
 また、基台42におけるポール43より水平方向に離間した位置に、ステーション側光受信器46(本発明の「受光器」に対応)が設けられている。具体的には、基台42におけるステーション側光送信器45が設けられた位置より下方の位置に設けられている。また、AUV10の前後方向における保持位置P1から潜水機側光送信器22までの距離と、充電ステーション40の前後方向におけるポール43からステーション側光受信器46までの距離とは概ね一致する。AUV10が充電ステーション40にドッキングした状態では、ステーション側光受信器46および潜水機側光送信器22は、上下方向に対向し、ステーション側光受信器46は、潜水機側光送信器22から光信号を受信することが可能である。 A station-side light receiver 46 (corresponding to the “light receiver” of the present invention) is provided at a position apart from the pole 43 in the base 42 in the horizontal direction. Specifically, the base 42 is provided at a position lower than the position where the station-side optical transmitter 45 is provided. In addition, the distance from the holding position P1 in the front-rear direction of the AUV 10 to the submersible-side light transmitter 22 and the distance from the pole 43 in the front-rear direction of the charging station 40 to the station-side light receiver 46 substantially coincide. When the AUV 10 is docked to the charging station 40, the station-side optical receiver 46 and the submersible-side optical transmitter 22 face vertically, and the station-side optical receiver 46 receives light from the submersible-side optical transmitter 22. It is possible to receive a signal.
 本実施形態では、充電システム1におけるドッキングの際に充電ステーション40に対するAUV10の向きを合わせるために、ステーション側光受信器46と潜水機側光送信器22との通信状態を利用する。すなわち、ステーション側光受信器46は、ポール43を保持装置31が保持したAUV10がポール43に対して所定の回転位置にきたときに、潜水機側光送信器22から送られる光信号を受信可能になる。具体的には、図6に示すように、充電ステーション40を平面視してポール43を中心とした角度範囲α内に潜水機側光送信器22が入ると、ステーション側光受信器46は、潜水機側光送信器22から放出される光を受光可能になる。 In the present embodiment, in order to align the AUV 10 with respect to the charging station 40 when docking in the charging system 1, the communication state between the station-side optical receiver 46 and the submersible-side optical transmitter 22 is used. That is, the station-side optical receiver 46 can receive the optical signal sent from the submersible-side optical transmitter 22 when the AUV 10 holding the pole 43 is held at a predetermined rotational position with respect to the pole 43 become. Specifically, as shown in FIG. 6, when the submersible optical transmitter 22 enters the angle range α centered on the pole 43 when the charging station 40 is planarly viewed, the station optical receiver 46 The light emitted from the submersible light transmitter 22 can be received.
 本実施形態では、上述の角度範囲αが、ステーション側光受信器46における受光可能な光の方向を制限することにより調節されている。具体的には、ステーション側光受信器46が有する受光部の周りには、筒状の遮光部47が立設されている。遮光部47は、所定の角度範囲外から到来する光がステーション側光受信器46の受光部に入らないよう遮断する。なお、角度範囲αは、潜水機側光送信器22から放出される光の角度範囲を制限することにより調節されてもよい。 In the present embodiment, the above-described angular range α is adjusted by limiting the direction of light that can be received by the station-side light receiver 46. Specifically, a cylindrical light shielding unit 47 is erected around the light receiving unit of the station-side light receiver 46. The light shielding unit 47 blocks the light coming from outside the predetermined angle range so as not to enter the light receiving unit of the station side light receiver 46. The angular range α may be adjusted by limiting the angular range of the light emitted from the submersible light transmitter 22.
 また、基台42には、ポール43に対する潜水機本体12の回転範囲を機械的に規制する回転規制部48が設けられている。回転規制部48は、基台42におけるポール43に対して給電部41が配置された位置とは反対側、すなわち基台42におけるポール43に対して前側の位置で、上方に延びる。回転規制部48の上端部48aは、上下方向におけるポール43の上端部と下端部の間に位置する。このため、回転規制部48は、潜水機本体12がポール43に沿って下降する途中から、一対のガイド部32a,32bの間に入ることにより(図2参照)、ポール43に対する潜水機本体12の回転範囲を機械的に規制する。 Further, the base 42 is provided with a rotation restricting portion 48 that mechanically restricts the rotation range of the diving machine main body 12 with respect to the pole 43. The rotation restricting portion 48 extends upward at a position opposite to the position where the feeding portion 41 is disposed with respect to the pole 43 in the base 42, that is, in a position on the front side with respect to the pole 43 in the base 42. The upper end 48 a of the rotation restricting portion 48 is located between the upper end and the lower end of the pole 43 in the vertical direction. Therefore, the rotation restricting portion 48 enters the space between the pair of guide portions 32a and 32b while the submersible body 12 descends along the pole 43 (see FIG. 2). Mechanically restrict the rotation range of.
 また、図7に示すように、回転規制部48は、その上端部48aから下方にいくにつれ、充電ステーション40の左右方向に間隔が徐々に広がる一対の広がり部48b,48cを有する。すなわち、潜水機本体12がポール43に沿って下降する途中から、回転規制部48が一対のガイド部32a,32bの間に入った後、回転規制部48は、一対のガイド部32a,32bが離間する方向に広がる。このため、潜水機本体12がポール43に沿って下降するにつれて、徐々にポール43に対する潜水機本体12の回転範囲が狭まる。 Further, as shown in FIG. 7, the rotation restricting portion 48 has a pair of spread portions 48 b and 48 c in which the interval gradually widens in the left-right direction of the charging station 40 as it goes downward from the upper end portion 48 a. That is, after the rotation restricting portion 48 enters between the pair of guide portions 32a and 32b while the submersible body 12 descends along the pole 43, the rotation restricting portion 48 has the pair of guide portions 32a and 32b. Spread in the direction of separation. Therefore, as the diving machine main body 12 descends along the pole 43, the rotation range of the diving machine main body 12 relative to the pole 43 gradually narrows.
 また、基台42には、上述のAUV10の被係止ピン35を係止して、充電ステーション40に対するAUV10の向きを固定する係止装置51が設けられている。係止装置51は、基台42におけるポール43より水平方向に離間した位置に配置される。具体的には、図5および図6に示すように、係止装置51は、基台42の上部であって、ポール43より後方に離間した位置に設けられている。また、AUV10の前後方向における保持位置P1から被係止ピン35までの距離と、充電ステーション40の前後方向におけるポール43から係止装置51(より詳細には、後述の嵌合穴52)までの距離とは概ね一致する。係止装置51による被係止ピン35の係止は、ポール43を保持装置31が保持したAUV10がポール43に対して所定の回転位置にきた状態で下降することにより行われる。 Further, the base 42 is provided with a locking device 51 for locking the locked pin 35 of the AUV 10 described above to fix the direction of the AUV 10 with respect to the charging station 40. The locking device 51 is disposed at a position horizontally separated from the pole 43 in the base 42. Specifically, as shown in FIG. 5 and FIG. 6, the locking device 51 is provided at the upper part of the base 42 and at a position separated rearwardly from the pole 43. In addition, the distance from the holding position P1 in the front-rear direction of the AUV 10 to the locked pin 35 and the distance from the pole 43 in the front-rear direction of the charging station 40 to the locking device 51 (more specifically, a fitting hole 52 described later) It almost agrees with the distance. The locking of the locked pin 35 by the locking device 51 is performed by lowering the AUV 10 holding the pole 43 with the holding device 31 coming to the predetermined rotational position with respect to the pole 43.
 図9は、係止装置51による被係止ピン35の係止を説明するための図である。係止装置51は、嵌合穴52、ガイド面53、および一対の係止爪54a,54b(本発明の「係止部」に対応)を有する。 FIG. 9 is a view for explaining locking of the locked pin 35 by the locking device 51. As shown in FIG. The locking device 51 has a fitting hole 52, a guide surface 53, and a pair of locking claws 54a and 54b (corresponding to the "locking portion" of the present invention).
 嵌合穴52は、被係止ピン35が嵌合する穴であり、被係止ピン35を係止するための係止位置P2である。嵌合穴52は、上方に開口しており、AUV10が下降することにより上方から被係止ピン35が嵌まり込む。 The fitting hole 52 is a hole into which the locked pin 35 is fitted, and is a locking position P2 for locking the locked pin 35. The fitting hole 52 is open at the top, and when the AUV 10 descends, the locked pin 35 is fitted from above.
 ガイド面53は、AUV10が下降することにより上方から当接した被係止ピン35を嵌合穴52へと案内する。ガイド面53は、上方にいくにつれて徐々に開口が広がる傾斜面である。被係止ピン35の下端部がガイド面53に当接した状態でAUV10が下降すると、ガイド面53は、当接した被係止ピン35を押圧して潜水機本体12の向きを変えながら、当該ガイド面53に沿って係止位置P2に被係止ピン35を案内する。このため、平面視して嵌合穴52と被係止ピン35とが多少ずれた状態でAUV10が下降しても、被係止ピン35はガイド面53に当接することにより嵌合穴52に確実に案内される。 The guide surface 53 guides the locked pin 35, which has been in contact from above, to the fitting hole 52 when the AUV 10 is lowered. The guide surface 53 is an inclined surface in which the opening gradually spreads upward. When the AUV 10 is lowered with the lower end portion of the locked pin 35 in contact with the guide surface 53, the guide surface 53 presses the locked pin 35 which is in contact, changing the direction of the diving machine main body 12, The locked pin 35 is guided along the guide surface 53 to the locking position P2. Therefore, even if the AUV 10 descends in a state where the fitting hole 52 and the locked pin 35 are slightly deviated in plan view, the locked pin 35 abuts on the guide surface 53 so as to contact the fitting hole 52. Be sure to be guided.
 一対の係止爪54a,54bは、嵌合穴52に案内された被係止ピン35を係止する。図9に示すように、被係止ピン35には、一対の係止爪54a,54bが嵌り込む溝部36が設けられている。この溝部36に一対の係止爪54a,54bが嵌り込むことにより、被係止ピン35は嵌合穴52に嵌り込んだ状態でロックされる。 The pair of locking claws 54 a and 54 b lock the locked pin 35 guided to the fitting hole 52. As shown in FIG. 9, the locking pin 35 is provided with a groove 36 into which the pair of locking claws 54a and 54b is fitted. When the pair of locking claws 54 a and 54 b is fitted into the groove portion 36, the locked pin 35 is locked in a state of being fitted into the fitting hole 52.
 具体的には、一対の係止爪54a,54bは、嵌合穴52の壁部に設けられており、当該壁部から出没可能に構成される。一対の係止爪54a,54bは、それぞれ、嵌合穴52の壁部から出た出位置と、嵌合穴52の壁部内に退避した没位置との間で移動する。一対の係止爪54a,54bは、それらが出位置に移動して被係止ピン35の溝部36に嵌り込むとき、被係止ピン35を係止し、それらが没位置にあるとき、被係止ピン35を係止した状態を解除する。 Specifically, the pair of locking claws 54a and 54b are provided in the wall portion of the fitting hole 52, and are configured to be able to protrude and retract from the wall portion. The pair of locking claws 54 a and 54 b respectively move between a position where the locking claws 54 a and 54 b protrude from the wall of the fitting hole 52 and a retracted position retracted into the wall of the fitting hole 52. The pair of locking claws 54a and 54b lock the locked pins 35 when they move to the out position and fit into the groove portion 36 of the locked pin 35, and when they are in the retracted position, The locked state of the locking pin 35 is released.
 本実施形態では、係止爪54a,54bが出位置側に付勢されており、係止爪54a,54bが、嵌合穴52に入り込む被係止ピン35の下端部に押圧されることにより、没位置側へと移動し、被係止ピン35の溝部36と係止爪54a,54bの高さが一致したときに出位置へと戻るように構成されている。また、係止装置51は、制御装置16から送られる制御信号により、係止爪54a,54bを出位置から没位置に移動させる図略のアクチュエータを備える。制御装置16は、AUV10が充電ステーション40から離脱する際に、当該アクチュエータを駆動して、係止爪54a,54bを出位置から没位置に移動させる。 In the present embodiment, the locking claws 54a and 54b are biased toward the outlet position, and the locking claws 54a and 54b are pressed by the lower end portion of the locking pin 35 that enters the fitting hole 52. It is configured to move to the retracted position side and to return to the out position when the height of the groove portion 36 of the locked pin 35 and the locking claws 54a and 54b match. Further, the locking device 51 includes an actuator (not shown) that moves the locking claws 54a and 54b from the outgoing position to the retracted position according to a control signal sent from the control device 16. When the AUV 10 separates from the charging station 40, the control device 16 drives the actuator to move the locking claws 54a and 54b from the outgoing position to the retracted position.
 また、図6に示すように、基台42の上部であって係止装置51の左右方向両側には、それぞれ支持部55が配置されている。支持部55は、AUV10の下部に当接する面を有している。支持部55は、係止装置51に被係止ピン35を係止されたAUV10を、下方から支持する。 Further, as shown in FIG. 6, support portions 55 are disposed on the upper side of the base 42 and on both sides in the left-right direction of the locking device 51. The support portion 55 has a surface that abuts on the lower portion of the AUV 10. The support portion 55 supports the AUV 10 in which the locked pin 35 is locked to the locking device 51 from below.
 また、基台42には、主制御部61および給電制御部62が設けられている。主制御部61は、ステーション側光送信器45とステーション側光受信器46とを用いた、AUV10の潜水機側光送信器22および潜水機側光受信器23との通信を制御する。給電制御部62は、給電部41による受電部11への給電と当該給電の停止を制御する。 Further, the base 42 is provided with a main control unit 61 and a feed control unit 62. The main control unit 61 controls communication between the submersible light transmitter 22 and the submersible light receiver 23 of the AUV 10 using the station light transmitter 45 and the station light receiver 46. The feed control unit 62 controls the feeding of power to the power receiving unit 11 by the feeding unit 41 and the stop of the feeding.
 (充電ステーションに対するAUVのドッキング)
 次に、充電システム1におけるAUV10が充電ステーション40にドッキングされるまでの流れを、図10Aおよび図10Bを参照して説明する。図10Aは、AUV10が充電ステーション40にアプローチする様子を示す平面図である。図10Bは、ポール43を保持装置31が保持した状態でAUV10がポール43を中心に回転する様子を示す側面図である。なお、図10Aでは、ステーション側光送信器45から放出される光が届く範囲を二点鎖線で模式的に示し、図10Bでは、潜水機側光送信器22から放出される光の範囲を二点鎖線で模式的に示す。
(AUV docking to charging station)
Next, the flow until the AUV 10 in the charging system 1 is docked to the charging station 40 will be described with reference to FIGS. 10A and 10B. FIG. 10A is a plan view showing the AUV 10 approaching the charging station 40. FIG. FIG. 10B is a side view showing that the AUV 10 rotates about the pole 43 in a state in which the holding device 31 holds the pole 43. In FIG. 10A, the range where the light emitted from the station-side light transmitter 45 reaches is schematically shown by a two-dot chain line, and in FIG. 10B, the range of the light emitted from the submersible-side light transmitter 22 is two. It is shown schematically by a dotted line.
 まず、AUV10が充電ステーション40から十分に離れた位置にある場合、AUV10は、音響測位システムにより充電ステーション40にアプローチする。具体的には、AUV10は、充電ステーション40のトランスポンダ44から送られてくる音波に基づいて充電ステーション40に対するAUV10の相対位置を計測する。AUV10の制御装置16は、得られたAUV10の位置データに基づいて、主推進器13、垂直スラスタ14、水平スラスタ15を制御することにより、AUV10は充電ステーション40に向かって移動する。 First, when the AUV 10 is sufficiently away from the charging station 40, the AUV 10 approaches the charging station 40 by the acoustic positioning system. Specifically, the AUV 10 measures the relative position of the AUV 10 to the charging station 40 based on the sound waves sent from the transponder 44 of the charging station 40. The controller 16 of the AUV 10 moves the AUV 10 toward the charging station 40 by controlling the main thruster 13, the vertical thruster 14, and the horizontal thruster 15 based on the obtained position data of the AUV 10.
 図10Aに示すように、AUV10が充電ステーション40に十分に近づいて、潜水機側光受信器23がステーション側光送信器45から放出された光を受光可能な範囲に入ると、制御装置16は、音響測位によるアプローチから方向検出装置としての潜水機側光受信器23を用いたアプローチに切り換える。 As shown in FIG. 10A, when the AUV 10 sufficiently approaches the charging station 40 and the submersible light receiver 23 enters a range in which the light emitted from the station light transmitter 45 can be received, the control device 16 Switching from the acoustic positioning approach to the approach using the submersible optical receiver 23 as a direction detection device.
 具体的には、潜水機側光受信器23が、その受光アレイの各受光素子の受光強度を比較することによって、ステーション側光送信器45から放出される光の到来方向を検出する。制御装置16は、AUV10の保持装置31が充電ステーション40のポール43に当接するように、得られた光の到来方向に基づいて、主推進器13、垂直スラスタ14、水平スラスタ15を制御して、AUV10を充電ステーション40に向かって移動させる。 Specifically, the submersible light receiver 23 detects the arrival direction of the light emitted from the station light transmitter 45 by comparing the light reception intensity of each light receiving element of the light reception array. The controller 16 controls the main thruster 13, the vertical thruster 14, and the horizontal thruster 15 based on the direction of arrival of the obtained light so that the holding unit 31 of the AUV 10 abuts on the pole 43 of the charging station 40. , AUV 10 toward the charging station 40.
 こうして、保持装置31の一対のガイド部32a,32bの一方にポール43が当接すると、上述したように、ポール43は、当接したガイド部32aまたは32bに沿って保持位置P1へと案内される(図8参照)。その後、一対の保持爪33a,33bが、保持位置P1に案内されたポール43を相対的に回転可能に保持する。 Thus, when the pole 43 abuts on one of the pair of guide portions 32a and 32b of the holding device 31, as described above, the pole 43 is guided to the holding position P1 along the abutted guide portion 32a or 32b. (See Figure 8). Thereafter, the pair of holding claws 33a and 33b relatively rotatably hold the pole 43 guided to the holding position P1.
 続いて、図10Bに示すように、制御装置16は、ポール43を保持装置31が保持したAUV10が、ポール43に対してステーション側光受信器46が潜水機側光送信器22から放出した光を受ける回転位置(角度範囲α(図6参照))にくるように、水平スラスタ15を制御する。 Subsequently, as shown in FIG. 10B, the control device 16 controls the AUV 10 in which the holding device 31 holds the pole 43 and the light emitted from the submersible light transmitter 22 by the station-side light receiver 46 with respect to the pole 43. The horizontal thruster 15 is controlled so as to come to a rotational position (angle range α (see FIG. 6)) that receives the
 具体的には、AUV10側では、水平スラスタ15を駆動して潜水機側光送信器22をポール43に対して回転させる。一方、充電ステーション40側では、主制御部61は、潜水機側光送信器22からの光信号のステーション側光受信器46の受信状態を監視する。主制御部61は、当該受信状態を示す信号を光信号としてステーション側光送信器45から潜水機側光受信器23へと送る。こうして、制御装置16は、潜水機側光送信器22がステーション側光受信器46と受信可能となる位置にくるよう水平スラスタ15を制御する。 Specifically, on the AUV 10 side, the horizontal thruster 15 is driven to rotate the submersible light transmitter 22 with respect to the pole 43. On the other hand, on the charging station 40 side, the main control unit 61 monitors the reception state of the station-side optical receiver 46 of the optical signal from the submersible-side optical transmitter 22. The main control unit 61 sends a signal indicating the reception state as an optical signal from the station-side optical transmitter 45 to the submersible-side optical receiver 23. Thus, the controller 16 controls the horizontal thruster 15 so that the submersible light transmitter 22 can receive the station light receiver 46.
 ステーション側光受信器46が、潜水機側光送信器22からの光信号を受信可能となる位置にくると、制御装置16は、垂直スラスタ14を制御して、潜水機本体12をポール43に沿って下降させる。上述したように、潜水機本体12がポール43に沿って下降する途中から、回転規制部48が一対のガイド部32a,32bの間に入ることにより、ポール43に対する潜水機本体12の回転範囲を機械的に規制する。このため、ポール43に対する潜水機本体12の回転位置決めの精度を更によくすることができる。 When the station-side optical receiver 46 comes to a position where it can receive the optical signal from the submersible-side optical transmitter 22, the controller 16 controls the vertical thruster 14 to set the submersible body 12 to the pole 43. Lower along. As described above, the rotation restricting portion 48 is inserted between the pair of guide portions 32a and 32b while the submersible main body 12 descends along the pole 43, whereby the rotation range of the submersible main body 12 with respect to the pole 43 is set. Mechanically regulate. For this reason, the accuracy of rotational positioning of the submersible body 12 with respect to the pole 43 can be further improved.
 潜水機本体12が下降して、被係止ピン35が係止装置51のガイド面53に当接すると、上述したように、被係止ピン35は、ガイド面53に沿って嵌合穴52へと案内される(図9参照)。その後、一対の係止爪54a,54bが、嵌合穴52に案内された被係止ピン35を係止する。こうして、充電ステーション40に対するAUV10のドッキングが完了する。充電ステーション40にAUV10がドッキングした状態では、給電部41と受電部11が上下方向に対向し、給電部41から受電部11への電力供給が可能となる。また、充電ステーション40にAUV10がドッキングした状態では、潜水機側光送信器22とステーション側光受信器46とが対向し、潜水機側光受信器23とステーション側光送信器45とが対向するため、AUV10と充電ステーション40が互いに通信可能である。 When the diving machine main body 12 descends and the locked pin 35 abuts on the guide surface 53 of the locking device 51, the locked pin 35 is fitted along the guide surface 53 as described above. You will be guided to (see Figure 9). Thereafter, the pair of locking claws 54 a and 54 b lock the locked pin 35 guided to the fitting hole 52. Thus, docking of the AUV 10 to the charging station 40 is completed. When the AUV 10 is docked to the charging station 40, the power supply unit 41 and the power reception unit 11 face each other in the vertical direction, and power can be supplied from the power supply unit 41 to the power reception unit 11. Further, in the state where the AUV 10 is docked to the charging station 40, the submersible light transmitter 22 and the station light receiver 46 face each other, and the submersible light receiver 23 and the station light transmitter 45 face each other. Thus, the AUV 10 and the charging station 40 can communicate with each other.
 以上説明したように、本実施形態に係るAUV10の充電システム1では、AUV10が充電ステーション40に対して多少ずれて進入しても、保持装置31におけるガイド部32aまたは32bが、潜水機本体12の進行方向側から当接したポール43を保持位置P1へと案内して、保持装置31における保持爪33a,33bが、ポール43を相対的に回転可能に保持する。このため、AUV10は、360度どの方向からでも充電ステーション40にアプローチすることができる。 As described above, in the charging system 1 of the AUV 10 according to the present embodiment, even if the AUV 10 enters the charging station 40 with a slight shift, the guide portion 32 a or 32 b of the holding device 31 By guiding the pole 43 abutted from the traveling direction side to the holding position P1, the holding claws 33a and 33b in the holding device 31 hold the pole 43 relatively rotatably. Thus, the AUV 10 can approach the charging station 40 from any direction 360 degrees.
 また、本実施形態では、制御装置16が、ステーション側光受信器46が潜水機側光送信器22から放出した光を受けるか否かのシンプルな判定方法を用いて水平スラスタ15を制御し、受電部11と給電部41との間の位置合わせを行うことができる。このため、AUV10を充電するための充電ステーション40とAUV11の位置合わせを容易に行うことができる。 Further, in the present embodiment, the control device 16 controls the horizontal thruster 15 using a simple determination method as to whether or not the station side light receiver 46 receives the light emitted from the submersible light transmitter 22, Alignment between the power reception unit 11 and the power supply unit 41 can be performed. Therefore, alignment between the charging station 40 for charging the AUV 10 and the AUV 11 can be easily performed.
 また、本実施形態では、充電ステーション40とAUV10との間で相互に光通信を行うための光送信器および光受信器を利用して、受電部11と給電部41との間の位置合わせを行うことができる。 Further, in the present embodiment, alignment between the power receiving unit 11 and the power feeding unit 41 is performed using an optical transmitter and an optical receiver for performing optical communication with each other between the charging station 40 and the AUV 10. It can be carried out.
 また、本実施形態では、潜水機側光受信器23をステーション側光送信器45から放射状に放出された光の到来方向を検出する方向検出装置として機能させ、制御装置16は、方向検出装置により検出した到来方向に基づいて、AUV10が進行してガイド部32aまたは32bがポール43に当接するように、水平スラスタ15を制御する。このため、ステーション側光送信器45から放射される光に向かうようAUV10を進行させることで、AUV10を精度良くポールにアプローチさせることができる。 Further, in the present embodiment, the submersible light receiver 23 functions as a direction detection device for detecting the arrival direction of the light radially emitted from the station light transmitter 45, and the control device 16 uses the direction detection device. Based on the detected arrival direction, the horizontal thruster 15 is controlled such that the AUV 10 advances and the guide portion 32 a or 32 b abuts on the pole 43. Therefore, by advancing the AUV 10 toward the light emitted from the station-side light transmitter 45, the AUV 10 can approach the pole accurately.
 また、本実施形態では、係止装置51が、潜水機本体12に設けられた被係止ピン35を係止することにより、潜水機本体12の位置を、ステーション側光受信器46が潜水機側光送信器22から放出した光を受ける回転位置に固定することができる。このため、潮流などの影響で水の流れを受けても、水平スラスタ15を駆動させることなく、潜水機本体12を目的の回転位置に留めることができる。 Further, in the present embodiment, when the locking device 51 locks the locked pin 35 provided on the diving machine main body 12, the position of the diving machine main body 12 is determined by the station-side light receiver 46. It can be fixed at a rotational position for receiving the light emitted from the side light transmitter 22. For this reason, even if it receives the flow of water by the influence of a tidal flow etc., the submersible main body 12 can be stopped at the target rotation position, without driving the horizontal thruster 15.
 また、本実施形態では、係止装置51は、上方にいくにつれて徐々に開口が広がるとともに、AUV10が下降することにより上方から当接した被係止ピン35を係止位置P2へと案内するガイド面53、および係止位置P2に案内された被係止ピン35を係止する係止爪54a,54bを有する。このため、係止位置P2に対して被係止ピン35が多少ずれた状態でAUV10が下降しても、潜水機本体12がポール43に対する回転位置が多少ずれた状態で下降しても、ガイド面53がずれを吸収して被係止ピン35を係止位置P2に案内するため、AUV10の被係止ピン35を係止位置P2に精度良く導くことができる。 Further, in the present embodiment, the locking device 51 is a guide for guiding the locking pin 35, which is in contact from the upper side by lowering the AUV 10, to the locking position P2 while the opening gradually widens toward the upper side. It has a surface 53 and locking claws 54a and 54b for locking the locked pin 35 guided to the locking position P2. For this reason, even if the AUV 10 is lowered with the locked pin 35 slightly shifted with respect to the locking position P2, the guide is brought down even if the submersible main body 12 is lowered while the rotational position with respect to the pole 43 is slightly shifted. Since the surface 53 absorbs the displacement and guides the locked pin 35 to the locking position P2, the locked pin 35 of the AUV 10 can be accurately guided to the locking position P2.
 また、本実施形態では、充電ステーション40が回転規制部48を有するため、潜水機本体12が下降途中に潮流などの水の流れを受けても、回転規制部48によりポール43に対する潜水機本体12の回転範囲が機械的に規制される。これにより、潜水機本体12の下降中に目的の回転位置に潜水機本体12を留めるための水平スラスタ15の負荷を低減することができる。 Further, in the present embodiment, since the charging station 40 has the rotation restricting portion 48, even if the submersible main body 12 receives a flow of water such as a tidal flow while descending, the rotation restricting portion 48 controls the diving main body 12 to the pole 43. The range of rotation is mechanically restricted. As a result, the load of the horizontal thruster 15 for holding the submersible body 12 at the target rotational position while the submersible body 12 is lowered can be reduced.
 また、本実施形態では、回転規制部48が、上端部48aから下方にいくにつれ、一対のガイド部32a,32bが離間する方向に広がるため、潜水機本体12がポール43に沿って下降するにつれて、徐々にポール43に対する潜水機本体12の回転可能な範囲を狭めることができる。これにより、AUV10の被係止ピン35を係止位置P2に精度良く導くことができる。 Further, in the present embodiment, the rotation restricting portion 48 spreads in the direction in which the pair of guide portions 32a and 32b separate from each other as the rotation restricting portion 48 moves downward from the upper end portion 48a. The rotation range of the submersible body 12 with respect to the pole 43 can be narrowed gradually. Thereby, the locked pin 35 of the AUV 10 can be guided to the locking position P2 with high accuracy.
 (第2実施形態)
 次に、第2実施形態に係る充電システム1Aについて、図11~図15を参照して説明する。なお、本実施形態において、第1実施形態と同様の構成について、詳細な説明を省略する。また、充電システム1AにおけるAUV110および充電ステーション140の方向の定義も、第1実施形態と同様とする。
Second Embodiment
Next, a charging system 1A according to a second embodiment will be described with reference to FIG. 11 to FIG. In the present embodiment, detailed description of the same configuration as that of the first embodiment will be omitted. Further, the definitions of the directions of the AUV 110 and the charging station 140 in the charging system 1A are also the same as in the first embodiment.
 図11は、第2実施形態に係る充電システム1Aの概略構成図である。図12は、充電システム1Aにおいて充電ステーション140にAUV110がドッキングした状態を示す図である。図13は、AUV110がポール143を保持した状態でポール143を中心に回転する様子を示す側面図である。図13に示すように、本実施形態の充電システム1Aでは、充電ステーション140は、基台142が水底に固定されておらず、水上に浮かんだ水上浮体170から吊下げ支持されている。充電ステーション140の吊下げについて、詳細は後述する。 FIG. 11 is a schematic configuration diagram of a charging system 1A according to the second embodiment. FIG. 12 is a diagram showing a state where the AUV 110 is docked to the charging station 140 in the charging system 1A. FIG. 13 is a side view showing that the AUV 110 rotates around the pole 143 while holding the pole 143. As shown in FIG. 13, in the charging system 1A of the present embodiment, the charging station 140 is supported by being suspended from the floating object 170 floating on the water, without the base 142 being fixed to the water bottom. Details of the suspension of the charging station 140 will be described later.
 また、本実施形態では、第1実施形態と異なり、ポール143は、基台142から下方へ延びている。すなわち、図2および図3に示すように、本実施形態では、第1実施形態と異なり、AUV110は充電ステーション140の下方に配置された状態で充電ステーション140にドッキングする。より詳しくは、AUV110は、保持装置131によりポール143を保持した後に、ポール143に沿って上昇することにより充電ステーション140に対してドッキングする。 Further, in the present embodiment, unlike the first embodiment, the pole 143 extends downward from the base 142. That is, as shown in FIG. 2 and FIG. 3, in the present embodiment, unlike the first embodiment, the AUV 110 is docked to the charging station 140 while being disposed below the charging station 140. More specifically, after holding the pole 143 by the holding device 131, the AUV 110 is docked to the charging station 140 by rising along the pole 143.
 従って、本実施形態では、潜水機本体112の上部に、受電部111が設けられている。また、基台142の下部であって、ポール143より水平方向に(後方に)離間した位置に、給電部141が設けられている。AUV110が充電ステーション140にドッキングした状態では、受電部111および給電部141は、上下方向に対向する。 Therefore, in the present embodiment, the power reception unit 111 is provided on the upper portion of the submersible main body 112. In addition, the feeding portion 141 is provided at a position below the base 142 and spaced apart from the pole 143 in the horizontal direction (backward). When the AUV 110 is docked to the charging station 140, the power receiving unit 111 and the power feeding unit 141 face each other in the vertical direction.
 また、潜水機本体112の後方側上部に、上方へ光信号を送信する潜水機側光送信器122(本発明の「光放出器」に対応)が設けられており、基台142の下部におけるポール143より水平方向に離間した位置に、受光部が下方を向いたステーション側光受信器146(本発明の「受光器」に対応)が設けられている。AUV110が充電ステーション140にドッキングした状態では、ステーション側光受信器146および潜水機側光送信器122は、上下方向に対向し、ステーション側光受信器146は、潜水機側光送信器122から光信号を受信することが可能である。 In addition, a submersible light transmitter 122 (corresponding to the “light emitter” of the present invention) for transmitting an optical signal upward is provided on the upper rear side of the submersible main body 112, and the lower portion of the base 142 is A station-side light receiver 146 (corresponding to the “light receiver” of the present invention) in which the light receiving unit faces downward is provided at a position separated horizontally from the pole 143. When the AUV 110 is docked to the charging station 140, the station-side light receiver 146 and the submersible-side light transmitter 122 face up and down, and the station-side light receiver 146 receives light from the submersible-side light transmitter 122 It is possible to receive a signal.
 また、潜水機本体112の上部には、上方へ延びる一対の被係止ピン135a,135b(本発明の「被係止部」に対応)が設けられている。一対の被係止ピン135a,135bは、潜水機本体112の上部において、前後方向に間隔をあけて並んでいる。また、基台142には、一対の被係止ピン135a,135bをそれぞれ係止する一対の係止装置151a,151bが設けられている。各被係止ピン135a,135bは、第1実施形態の被係止ピン35と同様の構成であり、また、各係止装置151a,151bは、第1実施形態の係止装置51と同様の構成であるため、詳細な説明を省略する。 Further, on the upper portion of the submersible main body 112, a pair of locked pins 135a and 135b (corresponding to the "locked portion" of the present invention) extending upward are provided. The pair of locked pins 135a and 135b are arranged at an upper portion of the diving machine main body 112 at intervals in the front-rear direction. Further, the base 142 is provided with a pair of locking devices 151a and 151b for locking the pair of locked pins 135a and 135b, respectively. Each locked pin 135a, 135b has the same configuration as the locked pin 35 of the first embodiment, and each locking device 151a, 151b is similar to the locking device 51 of the first embodiment. Because of the configuration, detailed description will be omitted.
 さらに、AUV110は、主推進器113および水平スラスタ115などを含む推力発生装置、制御装置116、音響測位装置121、潜水機側光送信器122、潜水機側光受信器123、保持装置131を有している。潜水機側光受信器23は、潜水機本体112の前方側下部に設けられている。また、充電ステーション140は、トランスポンダ144、ステーション側光送信器145、ステーション側光受信器146、主制御部161、給電制御部162を有している。ステーション側光送信器145は、ポール143の下端部に設けられている。これらの構成は、第1実施形態と同様であるため、これらの説明を省略する。 Furthermore, the AUV 110 has a thrust generator including the main thruster 113 and the horizontal thruster 115, the control device 116, the acoustic positioning device 121, the submersible light transmitter 122, the submersible light receiver 123, and the holding device 131. doing. The submersible light receiver 23 is provided on the lower front side of the submersible main body 112. The charging station 140 further includes a transponder 144, a station-side optical transmitter 145, a station-side optical receiver 146, a main control unit 161, and a power supply control unit 162. The station-side optical transmitter 145 is provided at the lower end of the pole 143. Since these configurations are the same as those of the first embodiment, the description thereof is omitted.
 また、基台142には、第1実施形態の回転規制部48とは異なる構成の回転規制部148が設けられている。回転規制部148は、ポール143に対する潜水機本体112の回転範囲を機械的に規制する。回転規制部148は、基台142におけるポール143に対して給電部141が配置された位置と同じ側、すなわち基台142におけるポール143に対して後側の位置に配置される。回転規制部148は、基台142から下方に突出する一対の突出部148a,148bを有する。 Further, the base 142 is provided with a rotation restricting portion 148 having a configuration different from that of the rotation restricting portion 48 of the first embodiment. The rotation restricting portion 148 mechanically restricts the rotation range of the diving machine main body 112 with respect to the pole 143. The rotation restricting portion 148 is disposed on the same side as the position at which the feeding portion 141 is disposed with respect to the pole 143 in the base 142, that is, at a position on the rear side with respect to the pole 143 in the base 142. The rotation restricting portion 148 has a pair of projecting portions 148 a and 148 b that project downward from the base 142.
 図14は、AUV110がポール143に沿って上昇するときの回転規制部148の作用を説明するための模式図である。図14では、充電ステーション140を正面視したときの回転規制部148と、ポール143を保持装置131で保持した状態の潜水機本体112が模式的に示される。また、図14では、ポール143が破線で示される。図14に示すように、一対の突出部148a,148bは、左右方向に間隔をあけて並んでいる。このため、潜水機本体112は、ポール143に沿って上昇する途中から、一対の突出部148a,148bの間に入り込むことにより、ポール143に対する潜水機本体112の回転範囲が規制される。 FIG. 14 is a schematic view for explaining the operation of the rotation restricting portion 148 when the AUV 110 ascends along the pole 143. In FIG. 14, the rotation restricting portion 148 when the charging station 140 is viewed from the front, and the diving machine main body 112 in a state in which the pole 143 is held by the holding device 131 are schematically shown. Also, in FIG. 14, the pole 143 is shown by a broken line. As shown in FIG. 14, the pair of projecting portions 148 a and 148 b are arranged at intervals in the left-right direction. For this reason, the submersible main body 112 enters the space between the pair of protrusions 148 a and 148 b while rising along the pole 143, whereby the range of rotation of the submersible main body 112 with respect to the pole 143 is restricted.
 また、図14に示すように、一対の突出部148a,148bの下部は、基台142から下方にいくにつれ、充電ステーション140の左右方向に互いの間隔が徐々に広がる。一対の突出部148a,148bは、上方にいくにつれ、充電ステーション140の左右方向に互いの間隔が徐々に狭まる。本実施形態では、充電ステーション140を正面視したときの一対の突出部148a,148bの下面は、AUV110を正面視したときの潜水機本体112の輪郭に沿った形状を呈している。このように、回転規制部148は、給電部141と受電部111とが互いに近づくにつれて、ポール143に対する潜水機本体112の回転範囲を徐々に狭めるように構成されているため、AUV110の被係止ピン135a,135bを係止装置151a,151bの各係止位置に精度良く導くことができる。 Further, as shown in FIG. 14, as the lower portions of the pair of projecting portions 148 a and 148 b move downward from the base 142, the distance between the charging stations 140 gradually widens in the left-right direction. The distance between the pair of protrusions 148a and 148b gradually narrows in the left-right direction of the charging station 140 as it goes upward. In the present embodiment, the lower surfaces of the pair of protrusions 148 a and 148 b when the charging station 140 is viewed from the front have a shape that follows the contour of the submersible body 112 when the AUV 110 is viewed from the front. Thus, the rotation restricting portion 148 is configured to gradually narrow the rotation range of the submersible body 112 with respect to the pole 143 as the power feeding portion 141 and the power receiving portion 111 approach each other. The pins 135a and 135b can be guided to the locking positions of the locking devices 151a and 151b with high accuracy.
 また、本実施形態では、充電ステーション140の基台142には、水平翼163が設けられている。水平翼163は、水の流れを受けた充電ステーション110の垂直方向の姿勢を規定する役割を果たす。また、潜水機本体112には、複数の水平翼24と1つの垂直翼25が設けられている。水平翼24は、水の流れを受けた潜水機本体112の垂直方向の姿勢を規定する役割を果たす。垂直翼25は、水の流れを受けた潜水機本体112の水平方向の姿勢を規定する役割を果たす。 Further, in the present embodiment, a horizontal wing 163 is provided on the base 142 of the charging station 140. The horizontal wing 163 serves to define the vertical attitude of the charging station 110 which has received the flow of water. In addition, the submersible main body 112 is provided with a plurality of horizontal wings 24 and one vertical wing 25. The horizontal wing 24 serves to define the vertical attitude of the submersible body 112 which has received the flow of water. The vertical wing 25 serves to define the horizontal attitude of the submersible body 112 which has received the flow of water.
 上述したように、本実施形態の充電システム1Aでは、充電ステーション140は、水上に浮かんだ水上浮体170から吊下げ支持されている。充電ステーション140は、水上浮体170から延びる索172で水中に吊り下げられている。本実施形態において、水上浮体170は、水上を航走する船である。索172は、特に限定されないが、本実施形態では、水上浮体170から充電ステーション140に電気を送るための送電用の、および/または、水上浮体170と通信するための通信用のケーブルを含む。 As described above, in the charging system 1A of the present embodiment, the charging station 140 is suspended and supported from the floating object 170 floating on water. The charging station 140 is suspended in water by a cord 172 extending from the floating body 170. In the present embodiment, the floating body 170 is a ship traveling on water. The cord 172 is not particularly limited, but in the present embodiment, includes a cable for power transmission to send electricity from the floating body 170 to the charging station 140 and / or a communication cable for communicating with the floating body 170.
 図11に示すように、索17における充電ステーション140側近傍部分または端部と、基台142の上部の複数点(本例では、4点)とが、連結部材173によって連結されている。なお、本実施形態では、連結部材173は、充電ステーション140の上方で前後方向に延びる棒状体173a、棒状体173aの前端から基台142の前側上部の2点に向かって延びる2つの紐状体173b、および、棒状体173aの後端から基台142の後側上部の2点に向かって延びる2つの紐状体173cを含む。ただし、ここで示す索172と基台142との連結は、一例であり、例えば、索172が基台142に直接連結されてもよい。また、図では、索172から主制御部161や給電制御部162などにつながる電線などは省略している。 As shown in FIG. 11, a portion near the charging station 140 side or end portion of the rope 17 and a plurality of points (four points in this example) on the upper side of the base 142 are connected by a connecting member 173. In the present embodiment, the connecting member 173 is a rod-like body 173a extending in the front-rear direction above the charging station 140, and two string-like bodies extending toward the front upper two points of the base 142 from the front end of the rod-like body 173a. 173b and two string-like bodies 173c extending from the rear end of the rod-like body 173a toward two points on the rear upper side of the base 142. However, the connection between the rope 172 and the base 142 shown here is an example, and the rope 172 may be directly connected to the base 142, for example. Moreover, in the figure, the electric wire etc. which lead to the main control part 161, the electric power feeding control part 162, etc. from the rope 172 are abbreviate | omitted.
 また、水上浮体170は、索172を引いて(例えば、巻き上げて)、ドッキングされたAUV110と一体的に充電ステーション140を空中に吊り上げる揚荷設備171を有する。図15は、AUV110がドッキングした充電ステーション140を空中に吊り上げた状態を示す側面図である。揚荷設備171は、例えばクレーンである。本実施形態では、互いにドッキングしたAUV110および充電ステーション140を揚荷設備171で空中に吊り上げたときに、ドッキングしたAUV110および充電ステーション140の重心位置が、揚荷設備171から下方に延びる索172の延長線上に概ね位置するように、連結部材173による索172と基台142との連結箇所が調整されている。このため、図15に示すように、互いにドッキングしたAUV110および充電ステーション140を揚荷設備171で空中に吊り上げたときにも、AUV110および充電ステーション140は、水中に位置するときと概ね同じ姿勢(ポール143が概ね鉛直な方向に延びた状態の姿勢)を維持する。 In addition, the floating body 170 has a lifting equipment 171 that lifts the charging station 140 into the air integrally with the docked AUV 110 by pulling the rope 172 (for example, winding it up). FIG. 15 is a side view showing a state where the charging station 140 with the AUV 110 docked is lifted in the air. The lifting equipment 171 is, for example, a crane. In the present embodiment, when the AUV 110 docked to each other and the charging station 140 are lifted in the air by the loading equipment 171, the center of gravity of the docked AUV 110 and the charging station 140 extends the cord 172 extending downward from the loading equipment 171. The connection point between the rope 172 and the base 142 by the connection member 173 is adjusted so as to be generally positioned on the line. For this reason, as shown in FIG. 15, even when the AUV 110 and the charging station 140 docked to each other are lifted in the air by the loading equipment 171, the AUV 110 and the charging station 140 have substantially the same posture (pole The position 143 is maintained in a substantially vertically extending direction.
 (AUVの投入および揚収)
 次に、本実施形態における充電システム1Aを用いたAUV110の投入および揚収方法について説明する。
(AUV input and recovery)
Next, a method of charging and recovering the AUV 110 using the charging system 1A in the present embodiment will be described.
 まず、水中にAUV110を投入する流れを説明する。AUV110および充電ステーション140を乗せた水上浮体170を、AUV110に作業させる水中の上方に停泊させる。その後、揚荷設備171を用いて、AUV110がドッキングした状態の充電ステーション140を空中に吊り上げ、水中に投入する。充電ステーション140が水中を下降し、所定の位置まで沈むと、係止装置151a,151bによる被係止ピン135a,135bの係止を解除する。その後、AUV110は、係止装置151a,151bと被係止ピン135a,135bとが互いに離れるように、例えば垂直スラスタを駆動してポール143に沿って移動する。その後、保持装置131によるポール143の保持を解除する。こうして、充電ステーション140とAUV110とのドッキングは解除され、AUV110は、水中で所定の作業を開始する。 First, the flow of injecting the AUV 110 into water will be described. The floating body 170 carrying the AUV 110 and the charging station 140 is anchored above the water to be operated by the AUV 110. Thereafter, using the unloading facility 171, the charging station 140 with the AUV 110 docked is lifted in the air and put into water. When the charging station 140 descends into water and sinks to a predetermined position, the locking devices 151a and 151b release the locking of the locked pins 135a and 135b. Thereafter, the AUV 110 moves along the pole 143 by driving, for example, a vertical thruster such that the locking devices 151a and 151b and the locked pins 135a and 135b are separated from each other. Thereafter, the holding of the pole 143 by the holding device 131 is released. Thus, the docking between the charging station 140 and the AUV 110 is released, and the AUV 110 starts predetermined work in water.
 次に、水中のAUV110を水上浮体170に揚収する流れを説明する。 Next, the flow for collecting the AUV 110 in water on the floating body 170 will be described.
 AUV110が作業を行っている水底または水中の上方において、水上浮体170が水上に停泊している。水上浮体170から索172で充電ステーション140を水中に吊り下げている。 The floating body 170 is anchored on the water at the bottom of the water where the AUV 110 is working or above the water. The charging station 140 is suspended in the water from the floating body 170 with a cord 172.
 作業を終えたAUV110は、水中で充電ステーション140にアプローチして、充電ステーション140にドッキングする。AUV110が水中で充電ステーション140にアプローチする方法は、第1実施形態と同様であるため、説明を省略する。 The finished AUV 110 approaches the charging station 140 underwater and docks to the charging station 140. The method for the AUV 110 to approach the charging station 140 in water is the same as that of the first embodiment, so the description is omitted.
 また、AUV110が水中で充電ステーション140にドッキングする方法は、第1実施形態では、AUV10が充電ステーション40の上方から充電ステーション40に対してドッキングするのに対し、本実施形態では、AUV110が充電ステーション140の下方から充電ステーション140に対してドッキングする点で異なる(潜水機本体112がポール143に沿って移動する方向が逆である)が、それ以外は概ね同じである。 Also, in the first embodiment, the AUV 110 docks to the charging station 40 from above the charging station 40 in the first embodiment, while the AUV 110 docks to the charging station 40 in the first embodiment. The difference is that docking to the charging station 140 from below 140 (the reverse direction in which the submersible body 112 moves along the pole 143) is the same except for that.
 すなわち、ポール143を保持装置131が保持したAUV110が、ポール143に対してステーション側光受信器146が潜水機側光送信器122から放出した光を受ける回転位置にくるように、水平スラスタ115を制御する。その後、ステーション側光受信器146が潜水機側光送信器122から放出した光を受ける位置にくると、潜水機本体112をポール143に沿って上昇させ、その後、係止装置151a,151bにより、被係止ピン135a,135bを係止する。 That is, the horizontal thruster 115 is positioned so that the AUV 110 holding the pole 143 by the holding device 131 receives the light emitted from the substation light transmitter 122 with respect to the pole 143 at the station light receiver 146. Control. Thereafter, when the station-side light receiver 146 comes to a position to receive the light emitted from the submersible light transmitter 122, the submersible body 112 is raised along the pole 143, and thereafter, by the locking devices 151a and 151b, The locked pins 135a and 135b are locked.
 AUV110と充電ステーション140とのドッキングが完了すると、充電ステーション140は、AUV110とのドッキングが完了したことを報知する報知信号を水上浮体170に送信する。この報知信号は、例えば索172が含む通信線を介して送られてもよいし、充電ステーション140が、水上浮体170との間で音響を用いた通信を行なうための音響通信装置を備える場合には音響通信により送られてもよい。なお、ドッキングが完了したことは、例えば一対の係止装置151a,151bの係止位置P1に、それぞれ、一対の被係止ピン135a,135bを検知するセンサを設けておくことで判定してよい。 When docking of the AUV 110 with the charging station 140 is completed, the charging station 140 transmits a notification signal to the floating object 170 notifying that docking with the AUV 110 is completed. The notification signal may be sent, for example, via a communication line included in the rope 172, or the charging station 140 may include an acoustic communication device for performing acoustic communication with the floating body 170. May be sent by acoustic communication. The completion of the docking may be determined, for example, by providing a sensor that detects the pair of locked pins 135a and 135b at the locking position P1 of the pair of locking devices 151a and 151b. .
 水上浮体170が報知信号を受信した後、水上浮体170の乗員は、揚荷設備171を操作して、AUV110がドッキングした状態の充電ステーション140を引き揚げて、空中に吊り上げる。充電ステーション140を引き揚げる工程において、AUV110がドッキングした状態の充電ステーション140を、ドッキングしたときの水中での姿勢を維持しつつ空中に吊り上げる。 After the floating body 170 receives the notification signal, the occupant of the floating body 170 operates the loading equipment 171 to withdraw the charging station 140 in a state where the AUV 110 is docked, and lifts it in the air. In the process of withdrawing the charging station 140, the charging station 140 with the AUV 110 docked is suspended in the air while maintaining its posture in water when docked.
 なお、この揚収方法は、AUVを容易に水上浮体に揚収できるという点で、充電ステーション以外のステーション、すなわち給電部を有さないステーションにも有効である。 This method is also effective for stations other than the charging station, that is, stations not having a power feeding unit, in that the AUV can be easily recovered to the floating body.
 本実施形態でも、第1実施形態と同様の効果を得ることができる。 Also in this embodiment, the same effect as that of the first embodiment can be obtained.
 また、本実施形態では、ポール143は基台142から下方に延びており、索172は基台142側からポール143とは反対方向に水上へ延びている。このため、索172と基台142とを、ポール143にアプローチするAUV110の邪魔にならないように容易に連結できる。 Further, in the present embodiment, the pole 143 extends downward from the base 142, and the rope 172 extends from the base 142 side to the water in the opposite direction to the pole 143. For this reason, the rope 172 and the base 142 can be easily connected so as not to disturb the AUV 110 approaching the pole 143.
 さらに、本実施形態では、水上浮体170は、索172を巻き上げて、ドッキングされたAUV110と一体的に充電ステーション140を空中に吊り上げる揚荷設備171を有しているため、AUV110を充電ステーション140にドッキングした状態で水中から水上浮体に揚収したり、水上浮体から水中に投入したりすることができる。 Furthermore, in the present embodiment, since the floating body 170 has a loading facility 171 that lifts up the rope 172 and lifts the charging station 140 integrally with the docked AUV 110 to the air, the AUV 110 becomes a charging station 140 It can be removed from the water to the floating body in the docked state, or can be thrown into the water from the floating body.
 また、ポール143が基台142から下方に延びていることから、AUV110は充電ステーション140の下方に配置された状態で充電ステーション140にドッキングするため、基台142と索172との連結箇所の設計自由度が上がる。このため、例えば、充電ステーション140がAUV110にドッキングされた状態で空中に吊り上げられたときに充電ステーション140の各部位に不要な応力がかからないような基台142と索172との連結を容易に行うことができる。 In addition, since the pole 143 extends downward from the base 142, the AUV 110 is designed to be docked to the charging station 140 while being disposed below the charging station 140. Freedom goes up. Therefore, for example, when the charging station 140 is docked to the AUV 110, it is easy to connect the base 142 and the cord 172 so that unnecessary stress is not applied to each part of the charging station 140 when being lifted in the air. be able to.
 (変形例1)
 図16は、変形例1に係る充電ステーション140Aの側面図である。この変形例1に係る充電ステーション140Aは、第2実施形態の充電ステーション140の構成に加え、水中での姿勢および水中での向きの少なくとも一方を維持するための推力発生装置を備えている。
(Modification 1)
FIG. 16 is a side view of the charging station 140A according to the first modification. In addition to the configuration of the charging station 140 of the second embodiment, the charging station 140A according to the first modification includes a thrust generating device for maintaining at least one of an attitude in the water and an orientation in the water.
 この変形例1では、充電ステーション140Aが備える推力発生装置は、充電ステーション140の左右方向に推力を発生させる2つの水平スラスタ181,182である。2つの水平スラスタ181,182は、基台142の上部に設けられている。2つの水平スラスタ181,182は、充電ステーション140Aの左右方向に推力を発生させるように配置される。2つの水平スラスタ181,182は、充電ステーション140Aの前後方向に間隔をあけて並んでいる。より詳しくは、2つの水平スラスタ181,182は、索172の延びる延長線を前後方向に挟むように並んでいる。2つの水平スラスタ181,182は、互いに充電ステーション140Aの左右方向に推力を発生させるように配置される。2つの水平スラスタ181,182は、主制御部161により制御される。 In the first modification, the thrust generators provided in the charging station 140A are two horizontal thrusters 181 and 182 that generate thrust in the lateral direction of the charging station 140. Two horizontal thrusters 181 and 182 are provided on the top of the base 142. The two horizontal thrusters 181, 182 are arranged to generate thrust in the left-right direction of the charging station 140A. Two horizontal thrusters 181, 182 are spaced apart in the front-rear direction of the charging station 140A. More specifically, the two horizontal thrusters 181 and 182 are arranged to sandwich the extension line of the rope 172 in the front-rear direction. The two horizontal thrusters 181, 182 are arranged to generate thrust in the lateral direction of the charging station 140A. The two horizontal thrusters 181 and 182 are controlled by the main control unit 161.
 例えば、水上浮体170から水中に投入されてから水中を下降する途中などに、充電ステーション140Aが水中で旋回すると、索172にはよじれが生じる。2つの水平スラスタ181,182は、例えば索172に生じたよじれを解消するために駆動される。 For example, when the charging station 140A turns in water while the water floating body 170 is introduced into the water and then descends in the water, the rope 172 is twisted. Two horizontal thrusters 181, 182 are driven, for example, to eliminate any kinks that occur in the rope 172.
 具体的には、この変形例1では、基台142に、充電ステーション140Aを通過する鉛直軸を中心に基台142が旋回した方向および旋回した角度変位量を計測する計測装置183が設けられている。計測装置183は、例えばジャイロセンサを含む。例えば、計測装置183は、水上浮体170から充電ステーション140Aを水中に投入してから計測を開始する。主制御部161は、2つの水平スラスタ181,182に互いに逆向きの推力を発生させることによって、索172のよじれを解消する方向に基台142を旋回させる。具体的には、主制御部161は、計測装置183により計測された角度変位量が減少するように、2つの水平スラスタ181,182を駆動して、計測装置183により計測された方向とは逆向きに基台142を旋回させる。 Specifically, in the first modification, the base 142 is provided with a measuring device 183 for measuring the direction in which the base 142 pivots about the vertical axis passing through the charging station 140A and the angular displacement amount of the pivot. There is. The measuring device 183 includes, for example, a gyro sensor. For example, the measuring device 183 starts the measurement after inserting the charging station 140A from the floating body 170 into water. The main control section 161 causes the base 142 to pivot in the direction to eliminate the twist of the rope 172 by causing the two horizontal thrusters 181 and 182 to generate thrust in the directions opposite to each other. Specifically, the main control unit 161 drives the two horizontal thrusters 181 and 182 so that the amount of angular displacement measured by the measuring device 183 decreases, and is opposite to the direction measured by the measuring device 183. The base 142 is pivoted in the direction.
 また、例えば、ポール143を保持装置131が保持した状態でAUV110がポール143を中心に回転する際に、ポール143と保持装置131との摩擦により、充電ステーション140AがAUV110と一体的に回転する可能性がある。2つの水平スラスタ181,182は、充電ステーション140AがAUV110と一体的に回転するのを防ぐために駆動されてもよい。 Also, for example, when the AUV 110 rotates around the pole 143 while the holding device 131 holds the pole 143, the charging station 140A can rotate integrally with the AUV 110 due to the friction between the pole 143 and the holding device 131. There is sex. Two horizontal thrusters 181, 182 may be driven to prevent the charging station 140A from rotating integrally with the AUV 110.
 具体的には、主制御部161は、保持装置131によりポール143を保持したAUV110が回転する間、充電ステーション140Aの向きを一定に維持するように、2つの水平スラスタ181,182を駆動してもよい。例えば、充電ステーション140Aは、充電ステーション140Aの向く方位を検出する方位検出装置を備えてもよい。方位検出装置には、例えば上述の計測装置183が用いられてもよい。主制御部161は、保持装置131によりポール143を保持したAUV110が回転する間、方位検出装置により検出される方位が一定に維持されるように、2つの水平スラスタ181,182を駆動してもよい。 Specifically, while the AUV 110 holding the pole 143 is rotated by the holding device 131, the main control unit 161 drives the two horizontal thrusters 181 and 182 so as to maintain the orientation of the charging station 140A constant. It is also good. For example, the charging station 140A may include an orientation detection device that detects the orientation of the charging station 140A. For example, the measurement device 183 described above may be used as the orientation detection device. The main control unit 161 drives the two horizontal thrusters 181 and 182 so that the azimuth detected by the azimuth detecting device is maintained constant while the AUV 110 holding the pole 143 is rotated by the holding device 131. Good.
 なお、この変形例1において、充電ステーション140Aが備える推力発生装置の数や配置は、上述した構成に限定されない。例えば、2つの水平スラスタ181,182は、基台142の前部および後部にそれぞれ設けれてもよいし、基台142の左右方向両側に設けられてもよい。また、例えば、充電ステーション140Aは、推力発生装置として、1つまたは3つ以上の水平スラスタを備えてもよい。また、充電ステーション140Aは、推力発生装置として、充電ステーション140Aの左右方向に推力を発生させる1つまたは複数の水平スラスタに加えてまたは代わりに、充電ステーション140Aの前後方向あるいは上下方向に推力を発生させる1つまたは複数のスラスタを備えてもよい。例えば、2つの水平スラスタ181,182は、充電ステーション140Aの左右方向に間隔をあけて、充電ステーション140Aの前後方向に推力を発生させるように配置されてもよい。 In the first modification, the number and arrangement of the thrust generating devices provided in the charging station 140A are not limited to the above-described configuration. For example, two horizontal thrusters 181 and 182 may be provided on the front and rear of the base 142, or may be provided on both sides in the left-right direction of the base 142. Also, for example, the charging station 140A may include one or more horizontal thrusters as a thrust generator. Also, charging station 140A generates thrust in the front-rear direction or up-down direction of charging station 140A in addition to or instead of one or more horizontal thrusters that generate thrust in the left-right direction of charging station 140A as a thrust generator. It may comprise one or more thrusters. For example, the two horizontal thrusters 181, 182 may be arranged to generate thrust in the front-rear direction of the charging station 140A at intervals in the left-right direction of the charging station 140A.
 また、上記の変形例1のように、充電ステーションに水中での姿勢を維持するための推力発生装置を設ける構成は、水上浮体から吊り下げた充電ステーションに、AUVを水中でドッキングさせるシステムであれば、いかなるドッキングシステムにとって有効である。例えば、本発明の充電システムは、受光器が光放出器から放出した光で受電部と給電部との間の位置合わせを行うものであるが、この構成以外のシステムに対しても有効である。 In addition, as in the first modification described above, the configuration in which the charging station is provided with a thrust generator for maintaining the attitude in water is a system in which the AUV is docked in water at the charging station suspended from the floating body. For example, for any docking system. For example, although the charging system of the present invention performs alignment between the power receiving unit and the power feeding unit with light emitted from the light emitter by the light receiver, it is also effective for systems other than this configuration. .
 (変形例2)
 図17は、変形例2に係る充電ステーション200の側面図である。この変形例2に係る充電ステーション200は、第1実施形態と異なる構成の水底設置型の充電ステーションである。
(Modification 2)
FIG. 17 is a side view of the charging station 200 according to the second modification. The charging station 200 according to the second modification is a bottom-mounted charging station having a configuration different from that of the first embodiment.
 具体的には、充電ステーション200は、水底との間にスペースをあけて配置された上部構造体201と、上下方向に延びて当該上部構造体201を下方から支持する複数の柱部202とを有する。複数の柱部202は、水底に固定された下部構造体203により連結されている。上部構造体201、下部構造体203および複数の柱部202に囲まれた空間は、AUV110が複数の柱部202の間を通過して入り込む空間となっており、この空間の中央には、ポール143が上部構造体201から下方に延びている。上部構造体201の下部であって、ポール143より水平方向に(後方に)離間した位置に、給電部141が設けられている。すなわち、上部構造体201が本発明の「基台」に対応しており、充電ステーション200は、上部構造体201が水上浮体により吊下げ支持されていないこと以外は、第2実施形態の充電ステーション140と同様の構成を備えている。この変形例2では、上部構造体201から下方にポール143が延びているため、例えば充電ステーション200が比較的浅い海底などに設置された場合でも、底引き網などによってポール143が引っ掛かることを回避できる。 Specifically, the charging station 200 includes an upper structure 201 disposed with a space between it and the water bottom, and a plurality of pillars 202 extending in the vertical direction and supporting the upper structure 201 from below. Have. The plurality of columns 202 are connected by a lower structure 203 fixed to the bottom of the water. A space surrounded by the upper structural body 201, the lower structural body 203, and the plurality of pillars 202 is a space in which the AUV 110 passes through between the plurality of pillars 202, and a pole is provided at the center of this space. 143 extend downward from the upper structure 201. A feed portion 141 is provided at a lower portion of the upper structural body 201 and spaced apart from the pole 143 in the horizontal direction (backward). That is, the upper structure body 201 corresponds to the "base" of the present invention, and the charging station 200 is the charging station of the second embodiment except that the upper structure body 201 is not suspended and supported by the floating body. It has the same configuration as 140. In the second modification, since the pole 143 extends downward from the upper structure 201, for example, even when the charging station 200 is installed on a relatively shallow seabed or the like, the pole 143 can be prevented from being hooked by the bottom pulling net or the like.
 (その他の実施形態)
 上記実施形態は、全ての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は、上述の説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。
(Other embodiments)
The above embodiments are to be considered in all respects as illustrative and not restrictive. The scope of the present invention is indicated not by the above description but by the claims, and is intended to include all modifications within the meaning and scope equivalent to the claims.
 例えば、上記実施形態で示された充電ステーション40,140,140A,200およびAUV10,110の形状や、それらに設けられた構成要素の形状、配置等は、特許請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。 For example, the shapes of the charging stations 40, 140, 140A, 200 and the AUVs 10, 110 shown in the above embodiment, and the shapes, arrangements, etc. of the components provided in them have meanings and ranges equivalent to the claims. It is intended to include all changes within.
 また、上記第1実施形態では、充電ステーション40は水底設置型だったが、充電ステーション40は、水底に設置されなくてもよい。例えば、充電ステーション40は、水上浮体から垂らした索とポール43の上端部とを連結することにより、水上浮体に吊下げ支持されてもよい。また、第2実施形態では、充電ステーション140は、水上を航走する水上浮体から吊下げ支持されていたが、充電ステーション140を吊下げ支持する水上浮体は、ブイなどの浮体物であってもよいし、水上または水中の構造物であってもよい。例えば、本発明の充電ステーションは、水中の構造物に対して固定されてもよい。 Moreover, in the said 1st Embodiment, although the charging station 40 was a bottom-mounted type, the charging station 40 does not need to be installed in the bottom of a water. For example, the charging station 40 may be suspended and supported on the floating body by connecting a rope hanging from the floating body and the upper end of the pole 43. Further, in the second embodiment, the charging station 140 is suspended from the floating floating body that travels on the water, but the floating floating body that suspends and supports the charging station 140 is a floating body such as a buoy or the like. It may be a structure on water or in water. For example, the charging station of the present invention may be fixed relative to the underwater structure.
 また、上記実施形態では、AUV10が、潜水機本体12を移動させる推力発生装置として、主推進器13、垂直スラスタ14、および水平スラスタ15を含む構成であったが、例えばAUV10は、これらの一部または全部の代わりに、推力発生装置として、推力を発生させる方向を変更可能な首振り式のスラスタを有していてもよい。 In the above-described embodiment, the AUV 10 includes the main thruster 13, the vertical thruster 14 and the horizontal thruster 15 as a thrust generator for moving the submersible body 12. For example, the AUV 10 may Instead of part or all, a thruster may have a swing type thruster capable of changing the direction in which the thrust is generated.
 また、上記実施形態では、給電部41,141と受電部11,111とが接触せずに給電を行う非接触給電方式を採用したが、これに限られず、給電部41,141と受電部11,111とが接触して給電を行う接触式給電方式を採用してもよい。また、保持装置31,131がポール43,143を保持した後に、AUV10,110がポール43,143に対する所定の回転位置にきたときに、給電部41,141と受電部11,111とが十分に近い場合には、AUV10,110をポール43,143に沿って移動させることなく給電部41,141から受電部11,111への電力供給を行なってもよい。 Moreover, in the said embodiment, although the non-contact electric power feeding system which electrically feeds without the electric power feeding part 41,141 and the power receiving part 11,111 contacting was employ | adopted, it is not restricted to this, The electric power feeding part 41,141 and the power receiving part 11 , 111 may be in contact with each other to supply power. In addition, after the holding devices 31 and 131 hold the poles 43 and 143, when the AUVs 10 and 110 come to predetermined rotational positions with respect to the poles 43 and 143, the power feeding units 41 and 141 and the power receiving units 11 and 111 sufficiently In the case where they are close to each other, power may be supplied from the power feeding unit 41 or 141 to the power receiving unit 11 or 111 without moving the AUV 10 or 110 along the pole 43 or 143.
 また、ステーション側光受信器46,146が潜水機側光送信器22,122から放出した光を受けるか否かにより、受電部11,111と給電部41,141との間の位置合わせを行ったが、潜水機側光送信器22,122は、信号を送信しない単なる光放出器であってもよいし、ステーション側光受信器46,146は、信号を受信しない単なる受光器であってもよい。この場合でも、AUV側の光放出器から放出した光を充電ステーション側の受光器が受けるか否かにより、受電部11,111と給電部41,141との間の位置合わせを行うことができる。 Also, alignment between the power receiving unit 11, 111 and the power feeding unit 41, 141 is performed depending on whether the station side light receivers 46, 146 receive the light emitted from the submersible light transmitters 22, 122 or not. However, the submersible optical transmitters 22 and 122 may be simple light emitters that do not transmit signals, and the station side optical receivers 46 and 146 may be simple light receivers that do not receive signals. Good. Even in this case, alignment can be performed between the power receiving units 11 and 111 and the power feeding units 41 and 141 depending on whether the light receiver on the charging station side receives light emitted from the light emitter on the AUV side or not. .
 また、ステーション側光受信器46,146の位置に、光受信器の代わりに、光送信器または光放出器を設け、潜水機側光送信器22,122の位置に、光送信器の代わりに、光受信器または受光器を設けてもよい。 Also, instead of light receivers, light transmitters or light emitters may be provided at the station side light receivers 46 and 146, and light transmitters may be provided at the submersible light transmitters 22 and 122 instead of light transmitters. , An optical receiver or an optical receiver may be provided.
 また、充電ステーション40,140からの光の到来方向を検出する方向検出装置は、潜水機側光受信器23,123でなくてもよい。例えば、AUVは、撮像装置を有してもよく、制御装置16,116が、この撮像装置が撮像した画像から光源位置(ステーション側光送信器45,145)を特定することにより、充電ステーション40,140からの光の到来方向を検出してもよい。 Further, the direction detecting device for detecting the incoming direction of the light from the charging station 40, 140 may not be the submersible light receiver 23, 123. For example, the AUV may have an imaging device, and the control device 16, 116 determines the position of the light source (station-side light transmitter 45, 145) from the image captured by the imaging device 40. , 140 may be detected.
 また、ポール43,143に対するAUV10,110の回転位置合わせを、ステーション側光受信器46,146と潜水機側光送信器22,122による位置合わせのみで十分に精度良く行うことができる場合、回転規制部48,148および係止装置51,151のガイド面53の一方または双方は、基台42,142になくてもよい。 In addition, when the rotational alignment of the AUVs 10 and 110 with respect to the poles 43 and 143 can be performed with sufficient accuracy only by the alignment by the station side light receivers 46 and 146 and the submersible light transmitters 22 and 122, the rotation is performed. One or both of the restricting portions 48 and 148 and the guide surfaces 53 of the locking devices 51 and 151 may not be provided on the bases 42 and 142.
 また、上記実施形態では、充電ステーションが係止装置を有し、AUVが係止装置により係止される被係止部を有していたが、AUVが係止装置を有し、充電ステーションが係止装置により係止される被係止部を有してもよい。また、上記実施形態では、被係止部は、潜水機本体12から延びる被係止ピンであり、係止装置は、被係止ピンが嵌合する穴を備えていたが、被係止部および係止装置の構成はこれに限定されない。例えば、被係止部は潜水機本体の左右の側部にそれぞれ形成された穴であり、充電ステーションには、これらの穴に係合可能なフックを備える係止装置を有してもよい。 In the above embodiment, the charging station has the locking device and the AUV has the locked portion locked by the locking device. However, the AUV has the locking device, and the charging station has the locking device. You may have the to-be-locked part latched by the latching apparatus. In the above embodiment, the locked portion is a locked pin extending from the submersible body 12 and the locking device has a hole into which the locked pin is fitted. The configuration of the locking device is not limited to this. For example, the locked portions may be holes respectively formed on the left and right sides of the submersible body, and the charging station may have a locking device provided with hooks engageable with these holes.
1,1A    :充電システム
10,110  :AUV
11,111  :受電部
12,112  :潜水機本体
14      :垂直スラスタ
15,115  :水平スラスタ
16,116  :制御装置
22,122  :潜水機側光送信器(光放出器)
23,123  :潜水機側光受信器
31,131  :保持装置
32a,32b :ガイド部
33a,33b :保持爪
35,135a,135b    :被係止ピン(被係止部)
40,140,140A,200 :充電ステーション
41,141  :給電部
42,142  :基台
43,143  :ポール
45,145  :ステーション側光送信器
46,146  :ステーション側光受信器(受光器)
48,148  :回転規制部
51,151a,151b :係止装置
52  :嵌合穴
53  :ガイド面
54a,54b :係止爪
61,161  :主制御部
62,162  :給電制御部
170  :水上浮体
171  :揚荷設備
172  :索
173  :連結部材
181,182 :水平スラスタ
P1  :保持位置
P2  :係止位置
1, 1A: charging system 10, 110: AUV
11, 111: power receiving unit 12, 112: submersible body 14: vertical thruster 15, 115: horizontal thruster 16, 116: control device 22, 122: submersible light transmitter (light emitter)
23, 123: Submersible light receiver 31, 131: Holding device 32a, 32b: Guide portion 33a, 33b: Holding claw 35, 135a, 135b: Locked pin (locked portion)
40, 140, 140A, 200: charging station 41, 141: power feeding unit 42, 142: base 43, 143: pole 45, 145: station side optical transmitter 46, 146: station side optical receiver (light receiver)
48, 148: Rotation restricting portion 51, 151a, 151b: Locking device 52: Fitting hole 53: Guide surface 54a, 54b: Locking claw 61, 161: Main control portion 62, 162: Power supply control portion 170: Floating on water 171: Lifting equipment 172: Cable 173: Connection member 181, 182: Horizontal thruster P1: Holding position P2: Locking position

Claims (12)

  1.  水中に位置する基台と、
     前記基台に設けられ、上下方向に延びるポールと、
     前記基台における前記ポールより水平方向に離間した位置に設けられた給電部と、を有する、充電ステーションと、
     潜水機本体と、
     前記潜水機本体に設けられた、前記給電部から給電される受電部と、
     前記潜水機本体から進行方向側にいくにつれて互いの間隔が広がるとともに、前記進行方向側から当接した前記ポールを保持位置へと案内する一対のガイド部、および前記保持位置に案内された前記ポールを相対的に回転可能に保持する保持部を有する保持装置と、
     前記ポールを前記保持装置が保持した前記潜水機本体を、前記ポールを中心に回転させる少なくとも水平方向に推力を発生させる推力発生装置と、
     前記推力発生装置を制御する制御装置と、を有する、自律型無人潜水機と、を備え、
     前記基台における前記ポールより水平方向に離間した位置に、光放出器および受光器の一方が設けられており、
     前記潜水機本体における前記保持位置より水平方向に離間した位置に、前記光放出器および前記受光器の他方が設けられており、
     前記制御装置は、前記ポールを前記保持装置が保持した前記潜水機本体が、前記ポールに対して前記受光器が前記光放出器から放出した光を受ける回転位置にくるように、前記推力発生装置を制御する、自律型無人潜水機用の充電システム。
    A base located in the water,
    A pole provided on the base and extending in the vertical direction;
    A charging station having a feeding portion provided at a position horizontally separated from the pole in the base;
    With the diving machine body,
    A power receiving unit provided in the diving machine main body and supplied with power from the power feeding unit;
    The distance between the main body and the submersible body extends from the submersible main body toward the advancing direction side, and a pair of guide portions for guiding the pole in contact from the advancing direction side to the holding position and the pole guided to the holding position A holding device having a holding portion that holds the relative rotation rotatably,
    A thrust generating device that generates a thrust in at least a horizontal direction that rotates the diving machine main body in which the holding device holds the pole about the pole;
    An autonomous unmanned underwater vehicle having a control device for controlling the thrust generating device;
    One of a light emitter and a light receiver is provided at a position on the base horizontally spaced from the pole,
    The other of the light emitter and the light receiver is provided at a position horizontally separated from the holding position in the diving machine main body,
    The control device is configured to generate the thrust generating device such that the submersible main body in which the holding device holds the pole is at a rotational position to receive light emitted from the light emitter with respect to the pole A charging system for autonomous unmanned underwater vehicles that controls
  2.  前記光放出器は、光信号として光を放出する潜水機側光送信器であり、
     前記受光器は、前記潜水機側光送信器からの光信号を受信するステーション側光受信器であり、
     前記充電ステーションは、光信号として光を放出するステーション側光送信器を有し、
     前記自律型無人潜水機は、前記ステーション側光送信器からの光信号を受信する潜水機側光受信器を有する、請求項1に記載の自律型無人潜水機用の充電システム。
    The light emitter is a submersible light transmitter that emits light as a light signal,
    The light receiver is a station-side light receiver that receives a light signal from the submersible light transmitter.
    The charging station has a station-side light transmitter that emits light as a light signal,
    The charging system for an autonomous unmanned underwater vehicle according to claim 1, wherein the autonomous unmanned underwater vehicle includes an underwater light receiver that receives an optical signal from the station-side optical transmitter.
  3.  前記推力発生装置は、前記潜水機本体を進行方向および上下方向に移動させる推力を発生させ、
     前記ステーション側光送信器は、前記ポールを中心に放射状に光信号として光を放出するように設けられており、
     前記自律型無人潜水機は、前記ステーション側光送信器から放出された光の到来方向を検出する方向検出装置を有し、
     前記制御装置は、前記方向検出装置により検出した到来方向に基づいて、前記自律型無人潜水機が進行して前記ガイド部が前記ポールに当接するように、前記推力発生装置を制御する、請求項2に記載の自律型無人潜水機用の充電システム。
    The thrust generator generates a thrust that moves the diving machine main body in the traveling direction and the vertical direction.
    The station-side optical transmitter is provided to emit light as an optical signal radially about the pole,
    The autonomous unmanned underwater vehicle has a direction detection device for detecting an arrival direction of light emitted from the station-side light transmitter.
    The said control apparatus controls the said thrust generator so that the said autonomic-type unmanned underwater vehicle advances and the said guide part contact | abuts to the pole based on the arrival direction detected by the said direction detection apparatus. A charging system for an autonomous unmanned underwater vehicle according to claim 2.
  4.  水上に浮かんだ水上浮体を備え、
     前記充電ステーションは、前記水上浮体から延びる索で水中に吊り下げられており、
     前記ポールは、前記基台から下方に延びる、請求項1~3のいずれか1項に記載の自律型無人潜水機用の充電システム。
    Equipped with a floating body floating on the water,
    The charging station is suspended in water by a cord extending from the floating body,
    The charging system for an autonomous unmanned underwater vehicle according to any one of claims 1 to 3, wherein the pole extends downward from the base.
  5.  前記自律型無人潜水機および前記充電ステーションの一方は、係止装置を有し、
     前記自律型無人潜水機および前記充電ステーションの他方は、前記係止装置により係止される被係止部を有し、
     前記自律型無人潜水機は、前記係止装置が前記被係止部を係止することにより、前記受電部が前記給電部から給電可能な位置に配置された状態で、前記充電ステーションに対しドッキングする、請求項1~3のいずれか1項に記載の自律型無人潜水機用の充電システム。
    One of the autonomous unmanned underwater vehicle and the charging station has a locking device,
    The other of the autonomous unmanned underwater vehicle and the charging station has a locked portion locked by the locking device,
    The autonomous type unmanned underwater vehicle is docked to the charging station in a state where the power receiving unit is disposed at a position where power can be supplied from the power feeding unit by the locking device locking the locked portion. The charging system for an autonomous unmanned underwater vehicle according to any one of claims 1 to 3.
  6.  前記推力発生装置は、前記ポールを前記保持装置が保持した前記潜水機本体を、前記ポールに沿って移動させる推力を発生させ、
     前記回転位置に位置する前記潜水機本体が、前記給電部と前記受電部とが互いに近づくように前記ポールに沿って移動することにより、前記被係止部は、前記係止装置により係止される係止位置に配置される、請求項5に記載の自律型無人潜水機用の充電システム。
    The thrust generator generates a thrust for moving the diving machine main body, in which the holding device holds the pole, along the pole.
    The to-be-locked portion is locked by the locking device as the submersible main body located at the rotational position moves along the pole such that the power feeding portion and the power receiving portion approach each other. The charging system for an autonomous unmanned underwater vehicle according to claim 5, wherein the charging system is disposed in a locked position.
  7.  前記被係止部は、前記潜水機本体から上方または下方に延びる被係止ピンであり、
     前記充電ステーションは、前記係止装置を有し、
     前記係止装置は、前記給電部と前記受電部とが互いに近づくように前記潜水機本体が前記ポールに沿って移動することにより前記被係止ピンが当接し、当接した前記被係止ピンを前記係止位置へと案内するガイド面、および前記係止位置に案内された前記被係止ピンを係止する係止部を有する、請求項6に記載の自律型無人潜水機用の充電システム。
    The locked portion is a locked pin extending upward or downward from the diving machine body,
    The charging station comprises the locking device;
    The locking device is in contact with the locked pin by moving the submersible main body along the pole such that the power feeding unit and the power receiving unit approach each other, and the locked pin is in contact The charging device for an autonomous unmanned underwater vehicle according to claim 6, further comprising: a guide surface for guiding the locking position to the locking position; and a locking portion for locking the locked pin guided to the locking position. system.
  8.  前記充電ステーションは、前記潜水機本体が前記ポールに沿って移動する途中で前記潜水機本体または前記ガイド部に当接し、前記ポールに対する前記潜水機本体の回転範囲を機械的に規制する回転規制部を有する、請求項6または7に記載の自律型無人潜水機用の充電システム。 The charge station contacts the diving machine body or the guide portion while the diving machine body moves along the pole, and restricts the rotation range of the diving machine body with respect to the pole mechanically. The charging system for an autonomous unmanned underwater vehicle according to claim 6 or 7, comprising:
  9.  水上に浮かんだ水上浮体を備え、
     前記充電ステーションは、前記水上浮体から延びる索で水中に吊り下げられており、
     前記ポールは、前記基台から下方に延び、
     前記水上浮体は、前記索を引いて、ドッキングされた前記自律型無人潜水機と一体的に前記充電ステーションを空中に吊り上げる揚荷設備を有する、請求項5~8のいずれか1項に記載の自律型無人潜水機用の充電システム。
    Equipped with a floating body floating on the water,
    The charging station is suspended in water by a cord extending from the floating body,
    The pole extends downwardly from the base,
    The floating floating body according to any one of claims 5 to 8, wherein the floating body has a loading and unloading facility for lifting the charging station into the air integrally with the docked autonomous unmanned underwater vehicle by pulling the cord. Charging system for autonomous unmanned underwater vehicles.
  10.  前記充電ステーションは、水中での姿勢および水中での向きの少なくとも一方を維持するための推力発生装置を有する、請求項1~9のいずれか1項に記載の自律型無人潜水機用の充電システム。 The charging system for an autonomous unmanned underwater vehicle according to any one of claims 1 to 9, wherein the charging station has a thrust generator for maintaining at least one of an attitude in the water and an attitude in the water. .
  11.  水上に浮かんだ水上浮体から、自律型無人潜水機とドッキング可能なステーションを水中に吊り下げる工程と、
     前記自律型無人潜水機が水中で前記ステーションにアプローチして、前記ステーションにドッキングする工程と、
     前記自律型無人潜水機がドッキングした状態の前記ステーションを引き揚げて、前記水上浮体に揚収する工程と、を含む、自律型無人潜水機の揚収方法。
    Suspending the autonomous unmanned underwater vehicle and the dockable station from the floating body floating on the water;
    The autonomous unmanned underwater vehicle approaching the station underwater and docking at the station;
    And a step of withdrawing the station in a state in which the autonomous type unmanned submersible unit is docked and being recovered on the water floating body.
  12.  前記自律型無人潜水機が水中で前記ステーションにドッキングする工程において、前記自律型無人潜水機は、前記ステーションの下方から前記ステーションに対してドッキングし、
     前記自律型無人潜水機がドッキングした状態の前記ステーションを引き揚げる工程において、前記自律型無人潜水機がドッキングした状態の前記ステーションを、ドッキングしたときの水中での姿勢を維持しつつ空中に吊り上げる、請求項11に記載の自律型無人潜水機の揚収方法。
    In the step of the autonomous unmanned underwater vehicle being docked in the water in the water, the autonomous unmanned underwater vehicle is docked with the station from below the station,
    In the step of withdrawing the station in a state in which the autonomous type unmanned submersible is docked, the station in a state in which the autonomous unmanned submersible is docked is suspended in the air while maintaining a posture in water when docked. A method of recovering an autonomous unmanned underwater vehicle according to item 11.
PCT/JP2018/032640 2017-09-04 2018-09-03 Charging system for autonomous underwater vehicle (auv) and method for lifting and recovering auv WO2019045103A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2019539707A JP6990708B2 (en) 2017-09-04 2018-09-03 Charging system for autonomous underwater vehicle and method of unloading autonomous underwater vehicle
GB2003178.7A GB2579951B (en) 2017-09-04 2018-09-03 Charging system for autonomous underwater vehicle and method of lifting and recovering autonomous underwater vehicle
US16/644,419 US11586198B2 (en) 2017-09-04 2018-09-03 Charging system for autonomous underwater vehicle and method of lifting and recovering autonomous underwater vehicle
AU2018325058A AU2018325058B2 (en) 2017-09-04 2018-09-03 Charging system for autonomous underwater vehicle and method of lifting and recovering autonomous underwater vehicle
NO20200405A NO20200405A1 (en) 2017-09-04 2020-04-02 Charging system for autonomous underwater vehicle and method of lifting and recovering autonomous underwater vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-169724 2017-09-04
JP2017169724 2017-09-04

Publications (1)

Publication Number Publication Date
WO2019045103A1 true WO2019045103A1 (en) 2019-03-07

Family

ID=65524995

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/032640 WO2019045103A1 (en) 2017-09-04 2018-09-03 Charging system for autonomous underwater vehicle (auv) and method for lifting and recovering auv

Country Status (6)

Country Link
US (1) US11586198B2 (en)
JP (1) JP6990708B2 (en)
AU (1) AU2018325058B2 (en)
GB (1) GB2579951B (en)
NO (1) NO20200405A1 (en)
WO (1) WO2019045103A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112061352A (en) * 2020-09-21 2020-12-11 鹏城实验室 Modular charging device for AUV dynamic charging
KR20230006655A (en) * 2021-07-01 2023-01-11 동명대학교산학협력단 buoy robot for charging battery
JP7441740B2 (en) 2020-06-18 2024-03-01 三菱重工業株式会社 Underwater vehicle, underwater navigation system, control method for underwater vehicle, and program

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020162397A (en) * 2019-03-28 2020-10-01 本田技研工業株式会社 Autonomous driving machine and charging station
CN113772061B (en) * 2021-10-11 2022-06-24 中国船舶科学研究中心 Underwater unmanned vehicle recovery device and operation method
US20230229314A1 (en) * 2022-01-14 2023-07-20 Northrop Grumman Systems Corporation Self-insulating high bandwidth external media storage device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07223589A (en) * 1994-02-07 1995-08-22 Mitsubishi Heavy Ind Ltd Electric charging system for submersible body
JPH08282588A (en) * 1995-04-17 1996-10-29 Tech Res & Dev Inst Of Japan Def Agency Raising and suspending device of underwater cruising body
JP2000272583A (en) * 1999-03-25 2000-10-03 Kawasaki Heavy Ind Ltd Device and method for docking autonomic unmanned submarine in water
JP2016515060A (en) * 2013-03-05 2016-05-26 タレス System and apparatus for retrieving autonomous underwater vehicle
US20160176487A1 (en) * 2014-12-19 2016-06-23 William C. Stone System and Method for Automated Rendezvous, Docking and Capture of Autonomous Underwater Vehicles
WO2017061427A1 (en) * 2015-10-06 2017-04-13 川崎重工業株式会社 Underwater docking system for autonomous unmanned submarine

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7077072B2 (en) * 2003-12-11 2006-07-18 Honeywell International, Inc. Unmanned underwater vehicle turbine powered charging system and method
DE102010056539A1 (en) * 2010-12-29 2012-07-05 Atlas Elektronik Gmbh Coupling head, coupling device with coupling head, attachable Rendezvouskopf, Rendevouseinrichtung with Rendezvouskopf, underwater vehicle with it, coupling system, coupling method and application method for an underwater vehicle
JP6581874B2 (en) 2015-10-06 2019-09-25 川崎重工業株式会社 Autonomous unmanned submersible charging system
JP2017178198A (en) 2016-03-31 2017-10-05 川崎重工業株式会社 Approach system of an autonomous unmanned diving machine into a water equipment

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07223589A (en) * 1994-02-07 1995-08-22 Mitsubishi Heavy Ind Ltd Electric charging system for submersible body
JPH08282588A (en) * 1995-04-17 1996-10-29 Tech Res & Dev Inst Of Japan Def Agency Raising and suspending device of underwater cruising body
JP2000272583A (en) * 1999-03-25 2000-10-03 Kawasaki Heavy Ind Ltd Device and method for docking autonomic unmanned submarine in water
JP2016515060A (en) * 2013-03-05 2016-05-26 タレス System and apparatus for retrieving autonomous underwater vehicle
US20160176487A1 (en) * 2014-12-19 2016-06-23 William C. Stone System and Method for Automated Rendezvous, Docking and Capture of Autonomous Underwater Vehicles
WO2017061427A1 (en) * 2015-10-06 2017-04-13 川崎重工業株式会社 Underwater docking system for autonomous unmanned submarine

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
SINGH, HANUMANT ET AL.: "Docking for an Autonomous Ocean Sampling Network", IEEE JOURNAL OF OCEANIC ENGINEERING, vol. 26, no. 4, October 2001 (2001-10-01), pages 498 - 514, XP011042614, ISSN: 0364-9059 *
WIRTZ, MARIUS ET AL.: "Design and Test of a Robust Docking System for Hovering AUVs", OCEANS, October 2012 (2012-10-01), pages 1 - 6, XP032299944, DOI: doi:10.1109/OCEANS.2012.6404975 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7441740B2 (en) 2020-06-18 2024-03-01 三菱重工業株式会社 Underwater vehicle, underwater navigation system, control method for underwater vehicle, and program
CN112061352A (en) * 2020-09-21 2020-12-11 鹏城实验室 Modular charging device for AUV dynamic charging
CN112061352B (en) * 2020-09-21 2021-11-19 鹏城实验室 Modular charging device for AUV dynamic charging
KR20230006655A (en) * 2021-07-01 2023-01-11 동명대학교산학협력단 buoy robot for charging battery
KR102531057B1 (en) * 2021-07-01 2023-05-10 동명대학교 산학협력단 buoy robot for charging battery

Also Published As

Publication number Publication date
GB2579951B (en) 2022-04-20
US11586198B2 (en) 2023-02-21
GB2579951A (en) 2020-07-08
AU2018325058A1 (en) 2020-03-26
JP6990708B2 (en) 2022-01-12
JPWO2019045103A1 (en) 2020-10-15
AU2018325058B2 (en) 2021-10-21
GB202003178D0 (en) 2020-04-22
NO20200405A1 (en) 2020-04-02
US20210072746A1 (en) 2021-03-11

Similar Documents

Publication Publication Date Title
WO2019045103A1 (en) Charging system for autonomous underwater vehicle (auv) and method for lifting and recovering auv
AU2016334659B2 (en) Underwater docking system for autonomous underwater vehicle
US10759508B2 (en) Charging system for autonomous underwater vehicle
US8757083B2 (en) Coupling head, coupling device with coupling head, rendezvous head couplable thereto, rendezvous device with rendezvous head and underwater vehicle therewith, coupling system, coupling method and deployment method for an underwater vehicle
US9592895B2 (en) Underwater docking system and docking method using the same
CN203786566U (en) Submarine cable maintenance underwater robot system
US8109223B2 (en) Apparatus and method for operating autonomous underwater vehicles
CN107187565B (en) Underwater online charging system and method
US9001623B1 (en) Sonar systems and sonar methods that use a tow body having a towed acoustic projector for which an orientation can be changed while being towed
KR20180094608A (en) Underwater robot system based surface craft
CN106809358A (en) Nuclear power station cooling water diversion culvert detects robot system and implementation
JP2010190726A (en) Method and system for surveying terrain of bottom of water
CN109969343A (en) A kind of underwater synthetic measuring system
CN112896471B (en) Multifunctional suspended underwater robot and base station system thereof
US20160138554A1 (en) Power generating systems
JP6252330B2 (en) Underwater elevator
WO2017170136A1 (en) System for approach of autonomous underwater vehicle to underwater equipment
CN110601089B (en) High-precision deep-sea cable laying equipment for manned submersible
KR101981627B1 (en) UUV Recovery Device and System using Active Pinger
JP2019085703A (en) Mining system of seabed deposit, mining machine and diving machine used for mining of the same, and mining method of the same
CN114789772A (en) Docking device for recovering underwater robot, unmanned ship and recovery method
JP2018058492A (en) Connection system for underwater vessel
CN117775236A (en) Underwater pipeline external detection robot system and detection method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18851156

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019539707

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 202003178

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20180903

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018325058

Country of ref document: AU

Date of ref document: 20180903

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18851156

Country of ref document: EP

Kind code of ref document: A1