WO2019044983A1 - X-ray ct device and image generating method - Google Patents

X-ray ct device and image generating method Download PDF

Info

Publication number
WO2019044983A1
WO2019044983A1 PCT/JP2018/032143 JP2018032143W WO2019044983A1 WO 2019044983 A1 WO2019044983 A1 WO 2019044983A1 JP 2018032143 W JP2018032143 W JP 2018032143W WO 2019044983 A1 WO2019044983 A1 WO 2019044983A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
data
time
projection data
estimated
Prior art date
Application number
PCT/JP2018/032143
Other languages
French (fr)
Japanese (ja)
Inventor
俊裕 利府
Original Assignee
株式会社根本杏林堂
株式会社コノシュア
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社根本杏林堂, 株式会社コノシュア filed Critical 株式会社根本杏林堂
Priority to JP2019539622A priority Critical patent/JPWO2019044983A1/en
Publication of WO2019044983A1 publication Critical patent/WO2019044983A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/02Devices for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/03Computerised tomographs

Definitions

  • the present invention relates to an X-ray CT apparatus and an image generation method, and more particularly to provide an X-ray CT apparatus and an image generation method and the like which are excellent in time resolution and can reduce artifacts due to movement of an object. .
  • CT computed tomography
  • MRI Magnetic Resonance Imaging
  • PET Positron Emission Tomography
  • ultrasound diagnostic devices ultrasound diagnostic devices
  • angiography imaging devices etc.
  • a subject is irradiated with X-rays, and an X-ray that has passed through the body of the subject is detected by a detector to acquire raw data, which is subjected to predetermined preprocessing to be projected data Generate Then, the projection data is used to reconstruct an image, and a tomographic image of the region of interest of the subject is generated.
  • image reconstruction a method of reconstructing an image from scan data in the range of 360 ° and a method of reconstructing an image from scan data in the range of 180 ° + fan beam angle ( ⁇ ) are known. ing.
  • Patent Document 1 relates to a technique for imaging a moving object (for example, the heart in one example), and for example, as shown in FIG. 16, it is disclosed to obtain data on the amount of movement of the object by comparing two images. It is done. Specifically, using the comparison image 1330 of the objects 1311 and 1312 of the first image 1310 and the objects 1321 and 1322 of the second image 1320, the movement amount of the object can be known. According to claim 1 of the same document, an intermediate time between a first time corresponding to a first image and a second time corresponding to a second image based on data of the amount of movement of the object. It is described that the image is obtained by reconstruction.
  • Patent Document 1 Although the image is generated based on the data of the motion amount, the image is generated only by performing reconstruction. The document does not disclose or suggest the generation of a final image regardless of reconstruction.
  • an object of the present invention is to provide an X-ray CT apparatus, an image generation method, and the like which are excellent in time resolution and can reduce an artifact due to the movement of an object by a method different from that of Patent Document 1.
  • An X-ray CT apparatus is as follows: A gantry having an emitter for emitting X-rays and a detector for detecting the X-rays; An image data processing unit that performs an operation based on detection data from the detector; An X-ray CT apparatus comprising The image data processing unit Generating an image using data including the first projection data, the second projection data, and the third projection data; a1: processing of performing partial reconstruction using the first projection data to generate a first image of an object at time t (A); a2: Partial reconstruction is performed using second projection data which is opposite data of the first projection data, and the second object of the object at time t (C) after time t (A) Processing to generate an image, a3: Partial reconstruction is performed using the third projection data between the first projection data and the second projection data, and time t (A) between time t (A) and time t (C) A process of generating a third image in B); a4: processing of acquiring data of motion
  • the first projection data and the second projection data are "opposite data", which means that they are 180 ° opposite data.
  • the invention is applicable to both parallel beam and fan beam CT devices.
  • -"Image data processing unit has, for example, a CPU (one or more processors) that performs arithmetic processing, a memory, an interface, etc., and executes various functions by executing a computer program stored in the memory. It may be a computer that realizes -"Subject” basically refers to a human, but may be for imaging an animal. “Operator” includes a doctor, a medical worker (eg, radiologist, nurse), and the like.
  • a drug solution injector basically refers to a drug solution injector for injecting a drug solution such as a contrast agent (for example, an iodine-based agent).
  • the drug solution injector may be used by being disposed in the vicinity of the X-ray CT apparatus.
  • the drug solution injector in one form comprises the following components: -One or more piston drive mechanisms, -1 or more control units (control units), and -One or display etc.
  • One embodiment of the liquid injector may include an injection head and a console connected thereto.
  • the injection head may be provided with a piston drive mechanism
  • the console may be provided with a control unit and a display
  • both the injection head and the console may be provided with a control unit
  • displays may be provided on both the infusion head and the console.
  • an X-ray CT apparatus an image generation method, and the like which are excellent in time resolution and capable of reducing an artifact due to the movement of an object.
  • FIG. 6 is a diagram showing an image generated from each data set. It is a figure for demonstrating making an intermediate
  • An X-ray CT apparatus 1 (also referred to simply as “CT apparatus 1”) shown in FIG. 1 includes a gantry 100 and a control unit 150 connected thereto. Although not shown in FIG. 1, the CT apparatus 1 also includes a bed on which the subject is placed and moved. In the present embodiment, the gantry 100 itself may use a conventionally known one. The basic functions (control of operation of gantry, reconstruction of tomographic image layer, etc.) of the control unit 150 can also be implemented with a conventionally known configuration.
  • the gantry 100 is provided with an X-ray irradiator 101 that emits X-rays toward the subject S, and an X-ray detector 111 disposed opposite to the X-ray irradiator. These are held by the rotation mechanism 105, and configured to integrally rotate at the time of imaging (at the time of scanning).
  • the X-ray irradiator 101 has an X-ray tube (not shown), and generates a X-ray upon receiving a high voltage pulse generated from a high voltage generator (not shown).
  • the irradiated X-rays may have, for example, a conical or pyramidal beam shape.
  • the X-ray irradiation unit 101 is provided with a collimator having a slit of a predetermined width, whereby a fan angle of X-ray (a spread angle in the channel direction (details below)) Is to be prescribed.
  • the rotation mechanism 105 has a rotation frame 102 which is formed to a size surrounding the subject S and rotates around the subject S at the time of scanning.
  • the rotation mechanism 105 may be provided with a plurality of pairs of the X-ray irradiator 101 and the detector 111. However, in the present embodiment, only one pair is provided as an example.
  • the X-ray detector 111 is one in which a plurality of X-ray detection elements (not shown) are arranged along the channel direction (details described below).
  • the X-ray detection element outputs intensity data of X-rays transmitted through the subject S as an electric signal (raw data).
  • the X-ray detector 111 may have, for example, multiple rows of surface detectors arranged respectively in the slice direction and the channel direction.
  • the “slice direction” corresponds to the body axis direction of the subject S
  • the “channel direction” corresponds to the rotation direction of the X-ray irradiator 101.
  • the X-ray detector 111 is connected to a data acquisition unit 106 including a data acquisition circuit 104 called a DAS (data acquisition system).
  • the data acquisition circuit 104 periodically integrates an IV converter that converts the current signal of each channel of the X-ray detector 111 into a voltage, and this voltage signal in synchronization with the X-ray irradiation cycle.
  • an integrator Further, an amplifier for amplifying the output signal of the integrator, and an analog-digital converter for converting the output signal of the amplifier into a digital signal are provided.
  • the data acquisition unit 106 performs predetermined pre-processing on the signal from the detector and outputs it as “projection data”.
  • the preprocessing is not particularly limited, but may be, for example, logarithmic conversion processing, offset processing, sensitivity correction processing, beam hardening processing, or the like.
  • the control unit 150 includes, for example, a scanner controller 151, an input device 153, a display device 155, a storage device 157, an image data processing unit 160, and the like.
  • the control unit 150 is an example, and is configured by one computer, and specifically, a processing device such as a central processing unit (CPU) or a graphic processing unit (GPU), and a read only memory (ROM) And a storage device (not shown) such as a RAM (Random Access Memory) or an HDD (Hard Disc Drive).
  • the storage device stores a control program for executing the function of each unit.
  • a processing device such as a CPU executes each program stored in the storage device to execute each function. It is also possible to configure the control unit 150 with a plurality of computers.
  • the computer including the scanner controller 151 and the computer including the image data processing unit 160 may be configured separately.
  • the input device 153 for example, a device such as a keyboard or a mouse used for input from the operator is provided. Besides, in addition or as an alternative, a voice input device, a non-contact motion detection device or the like may be used. It is also possible to use a touch pad or a touch pen.
  • the display device 155 may be provided with one or more displays.
  • the storage device 157 may also be anything as long as it can store predetermined data (projection data, generated image data, etc.), and uses a hard disk drive (HDD) or a solid state drive (SSD) can do.
  • HDD hard disk drive
  • SSD solid state drive
  • the scanner controller 151 is a control unit for controlling the operation and the like of each part of the gantry 100 of the CT apparatus 1, and may be a conventionally known one. Although not limited, the scanner controller 151 may control operations of the X-ray irradiation unit 101, the detector 111, the rotation mechanism 105, a high voltage generation unit (not shown), and the like.
  • the image data processing unit 160 (i) generates a tomographic image based on the data output from the data acquisition unit 106 (function) and (ii) generates an estimated tomographic image according to the present embodiment. It has a part (function) that executes a function (details below). In addition to that, it also has a function of rendering the generated tomographic image, etc. However, since a conventionally known method can be used for this, detailed description will be omitted.
  • the above (i) may be performed by the reconstruction processing unit, and as a specific example, reconstruction is performed based on the projection data output from the data acquisition unit 106, Tomographic image data (two-dimensional data or three-dimensional volume data) is generated.
  • Tomographic image data two-dimensional data or three-dimensional volume data
  • any method such as Fourier transform method, convolution back projection method, successive approximation method, integral integration method, filter back projection method, etc. can be adopted.
  • the volume data may be generated by performing interpolation processing using a plurality of reconstructed tomographic image data.
  • the Feldkamp method is a reconstruction method in the case where projection rays intersect the reconstruction surface like a cone beam.
  • the cone beam reconstruction method is a reconstruction method which corrects projection data according to the angle of the ray with respect to the reconstruction surface as a method in which the error of the cone angle is suppressed more than the Feldkamp method.
  • the image data processing unit 160 also has the function of comparing two images to obtain data of motion information.
  • edge detection of an image may be performed to acquire information such as a movement amount and / or a deformation amount of a predetermined point, and a direction.
  • Various other methods can be adopted as a technique for acquiring motion vector information.
  • the image data processing unit 160 also has a function to deform and move the first image and / or the second image based on the data of the motion information acquired as described above. Specifically, the first image and / or the second image is generated so as to generate an intermediate image between the first image (time t (A)) and the second image (time t (C)) Has a function to move the Note that “deformed movement” means either performing deformation only, performing movement only, or performing both of them, and is necessarily limited to always performing both deformation and movement. It is not a thing.
  • the image data processing unit 160 also partially reconstructs the first image and / or the second image generated by the deformation movement and a part of the scan data in order to generate a final estimated tomographic image. It also has a function of superimposing an image obtained in detail (described in detail later) into one image.
  • the operation of the CT apparatus 1 of the present embodiment configured as described above will be described.
  • the CT apparatus 1 of this embodiment also has a function of general tomographic image generation known in the prior art, the description thereof is omitted, and the procedure of generating an estimated tomographic image which is the main feature of the present application.
  • the explanation will be focused on Although flowcharts are shown in FIG. 2 and FIG. 3, the method of the present invention is not necessarily limited to that order, and the order of one or more steps is changed without departing from the scope of the present invention. Or you may make it implement simultaneously.
  • step S1 An outline of a flow from imaging by the CT apparatus 1 to tomographic image generation is as shown in FIG. That is, first, in this example, the contrast agent is injected into the subject in step S1. Then, in step S2 at which a predetermined time has elapsed from the start of contrast agent injection, the CT apparatus 1 performs a scan. In step S3, predetermined preprocessing and the like are performed on the data obtained thereby to generate projection data, and then in step S4, a predetermined image generation process is performed based on the projection data.
  • data 120 in FIG. 5 (which may be regarded as sinogram data) is data including projection data A, projection data B, and projection data C in order from the rotation angle 0 degree side (upper end side in the figure). is there.
  • Step S11 Using the data 120, in step S11, partial reconstruction is first performed using the first projection data A to generate a first image Im (A) corresponding to this range.
  • FIG. 6 is a diagram for explaining the positional relationship and the like of the scan time and the image corresponding thereto.
  • the horizontal axis indicates time, and the vertical axis indicates the image position of the object.
  • the first projection data A is captured at time t (A)
  • the image Im (A) is displayed at the time t (A).
  • Step S12 Next, in step S12, partial reconstruction is performed using the second projection data C, and a second image Im (C) corresponding to this range is generated.
  • the second projection data C is data corresponding to the opposite beam whose angle is shifted by 180 ° with respect to the first projection data A.
  • the image Im (C) is displayed at the time t (C).
  • Step S13 Referring back to the flowchart of FIG. 3 again, in step S13, the third projection data B is used to generate an image Im (B) corresponding to this portion.
  • Step S14 Now, as described above, the position and shape of the object at time t (A) and the position of the object at time t (C) by reconstruction and imaging for each of the projection data A and C. You will know the shape. Therefore, based on these two images Im (A) and Im (C), it is possible to obtain data of motion information of the object.
  • Step S15 Thus, if data of motion information is obtained, for example, the image Im (A) at time t (A) is deformed and moved to an image at time t (B), as shown in FIG.
  • the estimated image Im (A) 'in (B) can be generated.
  • the estimated image Im (A) ′ can be realized, for example, by image processing in which the position is linearly moved, or the size and shape are linearly deformed, using data of motion information.
  • the data processing may be nonlinear data processing that is not necessarily linear in a strict sense, but linear.
  • an estimated tomographic image at time t (B) is generated.
  • the estimated image Im (C) ′ at time t (B) may be generated based on the image Im (B) at time t (C), and may be superimposed on the image Im (B).
  • Im (A) ′ modified from the image Im (A) and Im (C) ′ modified from the image Im (C) are prepared, and the following equation You may choose to do the superposition with: [(Im (A) ′ + Im (C) ′) / 2] + Im (B) According to such a method, even when the contrast agent concentration largely changes during scanning, the change can be reduced, which is preferable.
  • the estimated tomographic image finally obtained by the method of the present embodiment is generated by virtually preparing images of the same time (here, time t (B)) and superimposing them. Therefore, it is possible to obtain a good image with excellent temporal resolution and reduced motion artifacts with relatively simple data processing without requiring reconstruction processing. Moreover, it is preferable also in the point which can reduce the exposure dose of a test object compared with the case of a full scan.
  • time t (B) does not necessarily have to be exactly halfway between the first time t (A) and the second time t (C). It may be any time between the two times t (A) and t (C).
  • the estimated tomographic image generated in step S15 may be displayed on one or more display devices 155 of the CT apparatus 1, but is not necessarily limited thereto.
  • the data may be stored in the storage device 157 or a predetermined external storage means, and may be displayed on another device.
  • the computer that constitutes a part of the CT apparatus performs the image generation process according to an aspect of the present invention, but another computer may perform the image generation process.
  • the image generation processing program according to an aspect of the present invention may be installed on a predetermined computer so that the image generation processing can be performed.
  • the images Im (A) and Im (B) are generated using the data of the opposite beam.
  • the images Im (A) and Im (B) are two images that are essentially the same if there is no movement of the subject. As described above, movement and / or deformation occur between the image Im (A) and the image Im (B) when the subject moves. Information on movement and deformation can be obtained by comparing the two images. In the above embodiment, information on the movement and deformation is used, but if it is the images Im (A) and Im (B) from which such information can be obtained, the data is not necessarily limited to the opposite data, You may use the data of For example, assume a scan in which the tube is rotated several times.
  • projection data A during one rotation (see FIG. 5) and projection data A 'during the next rotation (data delayed by 360 ° with respect to the previous projection data A) And may be used.
  • the two images created from these data will also move and / or deform if there is movement of the subject. Then, information on movement and deformation can be obtained similarly to the above by comparing the two images.
  • the angle ⁇ is in the range of 10 ° to 120 ° as an example.
  • projection data B (see FIG. 5) is data of an angle (that is, 170 °) from 10 ° to 180 °. In the present invention, it is also possible to use projection data B in such a range.
  • projection data may be obtained from an imaging device, but the present invention is not necessarily limited to this.
  • the configuration may be such that projection data stored in a data storage device other than the imaging device is used.
  • at least two component images for example, a component image captured in a first time phase and a component image captured in a second time phase
  • the first time phase is (a + b) and the second time phase is (b + c)
  • the movement / deformation information may be obtained by comparison or subtraction processing.
  • MRI Magnetic resonance imaging
  • PET positron emission tomography
  • SPECT Single Photon Emission Computed Tomography
  • an image may be generated by the following method. That is, in this example, first, as shown in FIG. 8, it is assumed that there is scan data (including data A to C, A and C are opposite data) for 180 ° + ⁇ , and this is used . First, with respect to the region I (180 ° range), reconstruction is performed based on the data of A + B to generate a corresponding first image (see also Im (A + B) in FIG. 9).
  • motion information can be obtained based on them as in the above-described embodiment, and the intermediate time (time t (B And the above-described embodiment) can be generated.
  • Such a method that is, a method using data A and C shifted by an angle ⁇ can be implemented by a general CT apparatus, for example, by a conventionally known half reconstruction method, and is useful.
  • the data 220 of FIG. 10 is data including two scan data for 180 °, and includes a first data set 221 and a second data set 222.
  • the first data set 221 includes data of the area a and data of the area b, and each data is, for example, data for an angle of 90 °.
  • the second data set 222 is shifted by 90 ° with respect to the first data set 211, and is composed of the data of the area b and the data of the area c. These data are also data for an angle of 90 ° as an example.
  • the data in the area b is duplicate data in the first and second data sets 221 and 222.
  • t (A), t (B) and t (C) be the central times collected for the regions a, b and c. Data is collected in the order of the area a to the area c.
  • the pair of data sets 221 and 222 may be, for example, ones respectively generated by reconstruction processing on the CT apparatus side.
  • the present invention relates to an image data set having a plurality of data in the body axis direction. It can also be implemented and may be premised on the use of volume data.
  • the image processing apparatus (not shown) includes a CPU (one or more processors) for performing arithmetic processing and an image processing unit having a memory, an interface, etc., and a computer program stored in the memory. Implement various functions by executing.
  • the image processing apparatus may be provided as a stand-alone device or may be provided as part of another apparatus.
  • the image processing apparatus (not shown) performs half reconstruction processing based on the first data set 221, and generates a corresponding first image Img1 (see FIG. 11). In addition, half reconstruction processing is performed based on the second data set 222 to generate a second image Img2.
  • the image processing apparatus performs a difference operation between the first image Img1 and the second image Img2. Specifically, as an example, an absolute value of (first image-second image) may be taken, and this value may be determined whether it is zero or not. A difference of zero means that the image portion has not moved. On the other hand, the part where the difference is not zero means the part of the image that has moved.
  • the first image Img1 is divided into an image portion Img (f) having no motion and an image portion Img1 (m) having motion. Understandable.
  • the second image Img2 is divided into an image portion Img (f) having no motion and an image portion Img2 (m) having motion.
  • the first image Img1 and the second image Img2 have relative motions and partially differ in the position of the object on the image.
  • the image portions Img (f) are common.
  • the remaining image portion Img1 (m) changes so as to move to the image portion Img2 (m) from time t (A) to t (C).
  • edge extraction processing is performed on the image site Img1 and the image site Img2, and in order to determine how each of the image site Img1 and the image site Img2 corresponds, Perform registration process.
  • estimated intermediate images Img ' can be drawn at those intermediate positions (see also FIGS. 12 and 13).
  • the "intermediate position" may not necessarily be exactly halfway between the image sites Img1 and Img2.
  • edge extraction various methods and algorithms known in the prior art can be used, and they are not limited to specific ones.
  • one final estimated tomographic image can be generated by combining the image portion Img (f) that has not moved and the estimated intermediate image Img ′ generated above.
  • (P1) An image processing apparatus for generating a tomographic image using projection data obtained by imaging an object by an imaging apparatus, the image processing apparatus including an image processing unit, The image processing unit Projection data of a first data set (221) obtained by the imaging device and projection of a second data set (222) whose angle is deviated by 90 ° (or a predetermined angle) with respect to the first data set
  • the first data set includes data of time (t (A)) and time (t (B))
  • the second data set includes data of time (t (B)) and time (t (C)).
  • the entire estimated image is an estimated image at time t (B).
  • the invention of the image processing apparatus described above can be expressed as an invention of an image generation method and an image generation program using the image processing apparatus: (P4) a first image and a second created based on the projection data of the first data set and the projection data of the second data set that is offset by a predetermined angle with respect to the first data set
  • An image generating method for generating an estimated image using an image comprising: Calculating a difference between the first image and the second image to identify a non-moving part and a moving part in the first and second images; Generating an intermediate estimated image using the data of the first image portion in motion and the data of the second image portion in motion; Combining the non-moving portion and the intermediate estimated image to generate an overall estimated image.
  • a computer program for causing a computer or a specific data processing unit to perform the method.
  • the first data set 221 includes two areas a and b
  • the second data set 222 also includes two areas b and c.
  • the present invention may use a data set including three or more multiple regions.
  • the first data set A220 includes areas a, b, c, d
  • the second data set A 221 includes areas c, d, e, f. That is, the second data set A 221 is data delayed from the first data set by a and b.
  • the regions c and d are common parts (corresponding to the region b in FIG. 10).
  • the areas a and e are opposite data
  • the areas b and f are opposite data.
  • estimated image generation similar to that of the above embodiment can be implemented. Specifically, those intermediate estimated images may be combined into a partially reconstructed image based on the common part (regions c, d).
  • the CT apparatus 1 may have a plurality of tubes, but based on the projection data collected by the CT apparatus of such a plurality of tubes, the following It is also possible to perform such an estimated image generation.
  • a first emitting unit 101a and a second emitting unit 101b are provided with an angle of 90 °.
  • projection data for each 90 ° may be collected by each of the emission units 101a and 101b.
  • the data of “90 °” are described here, the present invention is not necessarily limited to this.
  • the first emission part 101a is rotated from the position of angle 0 ° to the position of angle (90 ° + ⁇ ), and the second emission part 101b is angle 90 °. Rotate from the position of to the position of angle (180 ° + ⁇ ).
  • the data of 180 ° as a whole obtained as a result is divided into a plurality of regions a, b, c (c1, c2), d, e as shown in FIG. 15 (b).
  • the time of data collection is the center time of each area. That is, for the regions a, b, c (c1) scanned by the first emission unit 101a, data are collected at times t (A), t (B), t (C), respectively, and the second emission Data will be collected at time t (A), t (B) and t (C) for the regions c (c2), d and e scanned by the unit 101b, respectively.
  • the area c1 is the data scanned by the first emission unit 101a
  • the area c2 is the data scanned by the second emission unit 101b, which differ from the same direction for the same object
  • Data collected at time (C) and t (A) respectively: c1 ... collected at time t (C) c2 ... collected at time t (A)
  • the data in the regions a and e are collected at different times in this way, but since they are opposite data, if there is movement between time t (A) and t (C), the generated image Will be different.
  • an image a '(not shown) corresponding to time t (B) is created from the data of the regions a and e. Then, from c1 and c2, an image c '(not shown) corresponding to time t (B) is created.
  • the same idea as in the first embodiment can be used.
  • an estimated image at time t (B) can be generated at (a ′ + b + c ′ + d).
  • a gantry (100) having an emitting unit (101) for emitting an X-ray and a detector (111) for detecting the X-ray;
  • An image data processing unit (160) for performing an operation based on detection data from the detector;
  • An X-ray CT apparatus (1) comprising The image data processing unit (160)
  • An image is generated using data (120) including the first projection data (A), the second projection data (C) and the third projection data (B), a1: processing of performing partial reconstruction using the first projection data (A) to generate a first image (Im (A)) of the object at time t (A);
  • a process of generating a second image (Im (C)) of the object ;
  • both of a5 and a6 can be implemented, but only one of the processes of a5 and a6 may be performed.
  • the present invention also discloses a computer device (for example, a work station or the like) having a function corresponding to the image data processing unit (160). That is, the present invention may be expressed as an invention of a computer apparatus such as a workstation, not an invention of an X-ray CT apparatus, and the image processing as described above is executed by the computer apparatus Good.
  • An X-ray CT apparatus wherein a scan angle for generating the first to third projection data is 180 ° + additional angle ( ⁇ ).
  • the X-ray CT apparatus wherein the rotation speed of the light emitting unit is in the range of 0.1 sec / rotation to 60 sec / rotation.
  • the X-ray CT apparatus wherein the data of the image is a single slice image or a multi-slice volume image.
  • a method of generating a medical image using data including first projection data, second projection data and third projection data obtained by scanning and imaging a subject with an X-ray CT apparatus (or simply, A method of generating a medical image using data including the first projection data, the second projection data, and the third projection data), b1: performing partial reconstruction using the first projection data to generate a first image of the object at time t (A); b2: Partial reconstruction is performed using second projection data which is opposite data of the first projection data, and the second object of the object at time t (C) after time t (A) Generating an image; b3: Partial reconstruction is performed using the third projection data between the first projection data and the second projection data, and time t (A) between time t (A) and time t (C) Generating a third image in B); b4: acquiring motion information data based on the first image and the second image; b5: transforming the first image using the data of the motion information to generate a first estimated image at time t (B
  • the present invention can also be expressed as an invention of a computer program as follows. That is, the image generation program is an image generation program for executing a method of generating a medical image using data including the first projection data, the second projection data, and the third projection data.
  • the image generation program is an image generation program for executing a method of generating a medical image using data including the first projection data, the second projection data, and the third projection data.
  • the image generation program is an image generation program for executing a method of generating a medical image using data including the first projection data, the second projection data, and the third projection data.
  • the image generation program is an image generation program for executing a method of generating a medical image using data including the first projection data, the second projection data, and the third projection data.
  • the image generation program is an image generation program for executing a method of generating a medical image using data including the first projection data, the second projection data, and the third projection data.
  • the image generation program is an image generation program for executing a method of generating
  • a gantry (100) having an emitting unit (101) for emitting an X-ray and a detector (111) for detecting the X-ray; An image data processing unit (160) for performing an operation based on detection data from the detector; An X-ray CT apparatus (1) comprising The image data processing unit (160) An image is generated using data (120) including the first projection data (A), the second projection data (C) and the third projection data (B), d1: a process of performing partial reconstruction using the first projection data (A) to generate a first image (Im (A)) of the object at time t (A); d2: Partial reconstruction is performed using the second projection data (C) which is opposite data of the first projection data, and the target object at time t (C) after time t (A) A process of generating a second image (Im (C)); d3: Partial reconstruction is performed using the third projection data (B), which is between the first projection data and the second projection data, and between the time t (A) and the time
  • the expression “the average of the first estimated image (Im (A) ′) and the second estimated image (Im (C) ′) is expressed as“ [Im (A) ′ + Im ( C) ') / 2].
  • the present application also discloses the invention of goods expressed as the invention of method and the invention of computer program.
  • the aspect such as half reconstruction has been described above as an example, the present invention is not limited thereto, and may be applied to the case of utilizing full reconstruction (360 ° reconstruction) without departing from the spirit of the present invention. It is.
  • X-ray CT device (imaging device) 100 gantry 101, 101a, 101b X-ray irradiation unit 102 rotation frame 104 data acquisition circuit (DAS) 105 rotation mechanism 106 data acquisition unit 120 data 150 control unit 151 scanner controller 153 input device 155 display device 157 storage device 160 image data processing unit (data processing unit)
  • DAS data acquisition circuit

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medical Informatics (AREA)
  • Engineering & Computer Science (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • Pathology (AREA)
  • Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

An image data processing unit (160) of this CT device is characterized by performing: a process of acquiring movement information data on the basis of a first image and a second image; a process of performing at least one of a process of generating a first estimated image Im(A)' at a time t(B) by using the movement information data to deform the first image, and a process of generating a second estimated image Im(C)' at the time t(B) by using the movement information data to deform the second image; and a6: a process of combining a third image (Im(B)) and either the first estimated image (Im(A)') or the second estimated image (Im(C)') to generate an estimated tomographic image of a location of interest at the time t(B).

Description

X線CT装置および画像生成方法X-ray CT apparatus and image generation method
 本発明は、X線CT装置および画像生成方法等に関し、特には、時間分解能に優れかつ対象物の動きによるアーチファクトを低減することができるX線CT装置および画像生成方法等を提供することにある。 The present invention relates to an X-ray CT apparatus and an image generation method, and more particularly to provide an X-ray CT apparatus and an image generation method and the like which are excellent in time resolution and can reduce artifacts due to movement of an object. .
 従来、医用画像診断装置として、X線CT(Computed Tomography)装置、MRI(Magnetic Resonance Imaging)装置、PET(Positron Emission Tomography)装置、超音波診断装置、血管造影(アンギオグラフィ)撮像装置等が公知である。 Conventionally, X-ray computed tomography (CT) devices, Magnetic Resonance Imaging (MRI) devices, Positron Emission Tomography (PET) devices, ultrasound diagnostic devices, angiography imaging devices, etc. are known as medical image diagnostic devices. is there.
 X線CT装置においては、被検体にX線を照射するとともに被検体の身体を通過したX線を検出器で検出して生データを取得し、それに対して所定の前処理を施して投影データを生成する。そして、その投影データを用いて画像の再構成を行なって、被検体の関心部位の断層画像を生成する。画像の再構成としては、360°の範囲のスキャンデータから画像の再構成を行う手法と、180°+ファンビーム角(α)の範囲のスキャンデータから画像の再構成を行う手法などが知られている。なお、ファンビームの場合にはこのように180°+αのデータを用いることとなるが、パラレルビームの場合には180°分のデータでよく、また、ファンビームデータとパラレルビームとの変換(ファン-パラ変換などとも言われる)に関してもそれ自体従来公知である。 In an X-ray CT apparatus, a subject is irradiated with X-rays, and an X-ray that has passed through the body of the subject is detected by a detector to acquire raw data, which is subjected to predetermined preprocessing to be projected data Generate Then, the projection data is used to reconstruct an image, and a tomographic image of the region of interest of the subject is generated. As image reconstruction, a method of reconstructing an image from scan data in the range of 360 ° and a method of reconstructing an image from scan data in the range of 180 ° + fan beam angle (α) are known. ing. In the case of a fan beam, data of 180 ° + α is used as described above, but in the case of a parallel beam, data of 180 ° may be used, and conversion between fan beam data and parallel beam (fan -Also known as para-transformation etc. per se.
 特許文献1では、動きのある対象物(一例で心臓など)を撮像する技術に関し、例えば図16に示すように、2つの画像を比較することで対象物の動き量のデータを得ることが開示されている。具体的には、第1の画像1310の対象物1311、1312と、第2の画像1320の対象物1321、1322との比較画像1330を利用して、対象物の動き量を知ることができる。同文献の請求項1では、こうした対象物の動きの量のデータに基づき、第1の画像に対応する第1の時刻と第2の画像に対応する第2の時刻との間の中間時刻の画像を、再構成(reconstruction)により得ることが記載されている。 Patent Document 1 relates to a technique for imaging a moving object (for example, the heart in one example), and for example, as shown in FIG. 16, it is disclosed to obtain data on the amount of movement of the object by comparing two images. It is done. Specifically, using the comparison image 1330 of the objects 1311 and 1312 of the first image 1310 and the objects 1321 and 1322 of the second image 1320, the movement amount of the object can be known. According to claim 1 of the same document, an intermediate time between a first time corresponding to a first image and a second time corresponding to a second image based on data of the amount of movement of the object. It is described that the image is obtained by reconstruction.
国際公開公報WO2015/126205号International Publication WO2015 / 126205
 特許文献1の手法では、動き量のデータに基づき画像の生成を行っているが、あくまで再構成を実施して生成されるものである。再構成によらず、最終的な画像を生成することについては、同文献では何ら開示も示唆もされていない。 In the method of Patent Document 1, although the image is generated based on the data of the motion amount, the image is generated only by performing reconstruction. The document does not disclose or suggest the generation of a final image regardless of reconstruction.
 そこで本発明の目的は、特許文献1とは異なる手法で、時間分解能に優れかつ対象物の動きによるアーチファクトを低減することができるX線CT装置および画像生成方法等を提供することにある。 Therefore, an object of the present invention is to provide an X-ray CT apparatus, an image generation method, and the like which are excellent in time resolution and can reduce an artifact due to the movement of an object by a method different from that of Patent Document 1.
 本発明の一形態に係るX線CT装置は以下の通りである:
 X線を出射する出射部およびX線を検出する検出器を有するガントリと、
 上記検出器からの検出データに基づき演算を行う画像データ処理ユニットと、
 を備えるX線CT装置であって、
 上記画像データ処理ユニットは、
 第1の投影データ、第2の投影データおよび第3の投影データを含むデータを使用して画像を生成するものであって、
a1:上記第1の投影データを用い、部分再構成を行って、時刻t(A)における対象物の第1の画像を生成する処理と、
a2:上記第1の投影データの対向データである第2の投影データを用い、部分再構成を行って、時刻t(A)よりも後の時刻t(C)における上記対象物の第2の画像を生成する処理と、
a3:上記第1の投影データと第2の投影データとの間である第3の投影データを用い部分再構成を行って、時刻t(A)と時刻t(C)の間の時刻t(B)における第3の画像を生成する処理と、
a4:上記第1の画像と上記第2の画像とに基づき、動き情報のデータを取得する処理と、
a5:上記動き情報のデータを利用し、上記第1の画像を変形させ、時刻t(B)における第1の推定画像を生成する処理と、上記動き情報のデータを利用し、上記第2の画像を変形させ、時刻t(B)における第2の推定画像を生成する処理との少なくとも一方を行う処理と、
a6:上記第3の画像と、上記第1の推定画像または上記第2の推定画像を組み合わせて、時刻t(B)における関心部位の推定断層画像を生成する処理と、
 を行うことを特徴とする、X線CT装置。
An X-ray CT apparatus according to an aspect of the present invention is as follows:
A gantry having an emitter for emitting X-rays and a detector for detecting the X-rays;
An image data processing unit that performs an operation based on detection data from the detector;
An X-ray CT apparatus comprising
The image data processing unit
Generating an image using data including the first projection data, the second projection data, and the third projection data;
a1: processing of performing partial reconstruction using the first projection data to generate a first image of an object at time t (A);
a2: Partial reconstruction is performed using second projection data which is opposite data of the first projection data, and the second object of the object at time t (C) after time t (A) Processing to generate an image,
a3: Partial reconstruction is performed using the third projection data between the first projection data and the second projection data, and time t (A) between time t (A) and time t (C) A process of generating a third image in B);
a4: processing of acquiring data of motion information based on the first image and the second image;
a5: processing of generating the first estimated image at time t (B) by deforming the first image using the data of the motion information, and using the data of the motion information, the second A process of performing at least one of a process of deforming the image and generating a second estimated image at time t (B);
a6: processing of combining the third image with the first estimated image or the second estimated image to generate an estimated tomographic image of a region of interest at time t (B);
An X-ray CT apparatus characterized in that
 なお、上記のとおり第1の投影データと第2の投影データとは「対向データ」であるが、これは、180°対向したデータであるあることを意味する。本発明は、パラレルビームおよびファンビームのいずれのCT装置にも適用し得る。 As described above, the first projection data and the second projection data are "opposite data", which means that they are 180 ° opposite data. The invention is applicable to both parallel beam and fan beam CT devices.
(用語の説明)
・「画像データ処理ユニット」とは、例えば、演算処理を行うCPU(1つまたは複数のプロセッサ)とメモリとインターフェース等を有し、メモリ内に格納されたコンピュータプログラムを実行することで様々な機能を実現するコンピュータであってもよい。
・「被検体」は、基本的にはヒトを指すが、動物を撮像するものであってもよい。
・「操作者」には、医師、医療従事者(例えば放射線技師、看護師)などが含まれる。
・「薬液注入装置」とは、本明細書では、基本的には、造影剤(例えばヨード系)などの薬液を注入する薬液注入装置のことをいう。薬液注入装置は、X線CT装置の付近に配置して使用されるものであってもよい。薬液注入装置は、一形態では、次の構成要素を備えている:
-1つまたは複数のピストン駆動機構、
-1または複数の制御部(制御ユニット)、および、
-1つまたはディスプレイ等。
(Explanation of terms)
-"Image data processing unit" has, for example, a CPU (one or more processors) that performs arithmetic processing, a memory, an interface, etc., and executes various functions by executing a computer program stored in the memory. It may be a computer that realizes
-"Subject" basically refers to a human, but may be for imaging an animal.
“Operator” includes a doctor, a medical worker (eg, radiologist, nurse), and the like.
In the present specification, “a drug solution injector” basically refers to a drug solution injector for injecting a drug solution such as a contrast agent (for example, an iodine-based agent). The drug solution injector may be used by being disposed in the vicinity of the X-ray CT apparatus. The drug solution injector in one form comprises the following components:
-One or more piston drive mechanisms,
-1 or more control units (control units), and
-One or display etc.
 薬液注入装置の一形態としては、注入ヘッドおよびそれに接続されたコンソールとを備えたものであってもよい。この場合、(i)注入ヘッドにピストン駆動機構が備えられ、コンソールに制御ユニットとディスプレイとが備えられていてもよいし、(ii)注入ヘッドとコンソールの双方に制御ユニットが設けられていてもよいし、(iii)注入ヘッドとコンソールの双方にディスプレイが設けられていてもよい。 One embodiment of the liquid injector may include an injection head and a console connected thereto. In this case, (i) the injection head may be provided with a piston drive mechanism, and the console may be provided with a control unit and a display, or (ii) both the injection head and the console may be provided with a control unit And (iii) displays may be provided on both the infusion head and the console.
 本発明によれば、時間分解能に優れかつ対象物の動きによるアーチファクトを低減することができるX線CT装置および画像生成方法等を提供することができる。 According to the present invention, it is possible to provide an X-ray CT apparatus, an image generation method, and the like which are excellent in time resolution and capable of reducing an artifact due to the movement of an object.
本発明の一形態に係るX線CT装置の構成を模式的に示す図である。It is a figure which shows typically the structure of the X-ray CT apparatus which concerns on one form of this invention. 本発明の一形態に係る画像生成方法の手順を示すフローチャートである。It is a flowchart which shows the procedure of the image generation method which concerns on one form of this invention. 本発明の一形態に係る画像生成方法のより具体的な手順を示すフローチャートである。It is a flowchart which shows the more specific procedure of the image generation method which concerns on one form of this invention. CT装置でスキャンされたスキャン範囲およびデータを説明するための図である。It is a figure for demonstrating the scan range and data which were scanned by CT apparatus. 横方向を検出器のチャンネル番号、縦方向をスキャン角度として示すサイノグラムデータである。It is sinogram data which shows a horizontal direction as a channel number of a detector, and a vertical direction as a scan angle. 時刻t(A)における画像と時刻t(C)における画像の変形移動を示す図である。It is a figure which shows the deformation | transformation movement of the image in time t (A), and the image in time t (C). 時刻t(A)の画像を時刻t(B)における画像に変形移動させることを示す図である。It is a figure which shows carrying out deformation | transformation movement of the image of time t (A) to the image in time t (B). 他の態様の画像生成について説明するための図である。It is a figure for demonstrating the image generation of another aspect. 角度β分だけずらし生成したデータを示す模式図である。It is a schematic diagram which shows the data which shifted and produced | generated by angle (beta). 一対のデータセットを利用した推定画像の作成を説明するための図である。It is a figure for demonstrating preparation of the presumed image using a pair of data set. 各データセットから作られた画像を示す図である。FIG. 6 is a diagram showing an image generated from each data set. 動きのあった画像部分から中間推定画像を作ることを説明するための図である。It is a figure for demonstrating making an intermediate | middle estimated image from the image part with a motion. エッジ間の中間推定画像を示す図である。It is a figure which shows the intermediate | middle estimation image between edges. データセットの他の例を示す図である。It is a figure which shows the other example of a data set. 二管球システムを利用した場合の画像生成を説明するための図である。It is a figure for demonstrating the image generation at the time of utilizing a double-tube system. 対象物の動きに関する動き量について説明するための図である(従来技術)。It is a figure for demonstrating the movement amount regarding the movement of a target object (prior art).
 本発明の実施の形態を図面を参照して以下に説明する。 Embodiments of the present invention will be described below with reference to the drawings.
1.第1の実施形態
[構成]
 図1に示すX線CT装置1(単に「CT装置1」ともいう)は、ガントリ100と、それに接続されたコントロールユニット150とを備えている。図1では描かれていないが、CT装置1は、また、被検体を載せて移動させる寝台も備えている。なお、本実施系形態において、ガントリ100自体は従来公知のものを使用してもよい。コントロールユニット150の基本的な機能(ガントリの動作制御や、断層画層の再構成等)についても従来公知の構成で実施可能である。
1. First Embodiment [Configuration]
An X-ray CT apparatus 1 (also referred to simply as “CT apparatus 1”) shown in FIG. 1 includes a gantry 100 and a control unit 150 connected thereto. Although not shown in FIG. 1, the CT apparatus 1 also includes a bed on which the subject is placed and moved. In the present embodiment, the gantry 100 itself may use a conventionally known one. The basic functions (control of operation of gantry, reconstruction of tomographic image layer, etc.) of the control unit 150 can also be implemented with a conventionally known configuration.
[ガントリ]
 ガントリ100には、被検体Sに向けてX線を照射するX線照射部101と、それに対向配置されたX線検出器111とが設けられている。これらは、回転機構105によって保持され、撮像時(スキャン時)に、一体的に回転するように構成されている。
Gantry
The gantry 100 is provided with an X-ray irradiator 101 that emits X-rays toward the subject S, and an X-ray detector 111 disposed opposite to the X-ray irradiator. These are held by the rotation mechanism 105, and configured to integrally rotate at the time of imaging (at the time of scanning).
 X線照射部101はX線管(不図示)を有しており、高電圧発生装置(不図示)から発生される高電圧パルスを受けてX線を発生させる。照射されるX線は、例えば、円錐状または角錐状のビーム形状であってもよい。図1では描かれていないが、X線照射部101には、所定幅のスリットを有するコリメータが配置されており、これにより、X線のファン角(チャンネル方向(詳細下記)の広がり角)等が規定されるようになっている。 The X-ray irradiator 101 has an X-ray tube (not shown), and generates a X-ray upon receiving a high voltage pulse generated from a high voltage generator (not shown). The irradiated X-rays may have, for example, a conical or pyramidal beam shape. Although not depicted in FIG. 1, the X-ray irradiation unit 101 is provided with a collimator having a slit of a predetermined width, whereby a fan angle of X-ray (a spread angle in the channel direction (details below)) Is to be prescribed.
 回転機構105は、被検体Sを包囲する大きさに形成されスキャン時に被検体Sの周りを回転する回転フレーム102を有している。回転機構105には、X線照射部101および検出器111の対が複数設けられてもよいが、本実施形態では、一例として、一対のみが設けられている。 The rotation mechanism 105 has a rotation frame 102 which is formed to a size surrounding the subject S and rotates around the subject S at the time of scanning. The rotation mechanism 105 may be provided with a plurality of pairs of the X-ray irradiator 101 and the detector 111. However, in the present embodiment, only one pair is provided as an example.
 X線検出器111は、複数のX線検出素子(不図示)がチャンネル方向(詳細下記)に沿って配列されたものである。このX線検出素子により、被検体Sを透過したX線の強度データが電気信号として出力される(生データ)。 The X-ray detector 111 is one in which a plurality of X-ray detection elements (not shown) are arranged along the channel direction (details described below). The X-ray detection element outputs intensity data of X-rays transmitted through the subject S as an electric signal (raw data).
 X線検出器111は、一例で、スライス方向とチャンネル方向にそれぞれ複数配置された多列の面検出器を有するものであってもよい。「スライス方向」は被検体Sの体軸方向に相当する方向であり、「チャンネル方向」はX線照射部101の回転方向に相当する方向である。このような多列のX線検出器を用いることで、1回転(ハーフスキャンであれば略半回転)のスキャンで、スライス方向に幅を有する3次元の撮影領域の画像化が可能となる。 The X-ray detector 111 may have, for example, multiple rows of surface detectors arranged respectively in the slice direction and the channel direction. The “slice direction” corresponds to the body axis direction of the subject S, and the “channel direction” corresponds to the rotation direction of the X-ray irradiator 101. By using such a multi-row X-ray detector, imaging of a three-dimensional imaging region having a width in the slice direction becomes possible by scanning of one rotation (approximately half rotation in the case of half scanning).
 X線検出器111には、DAS(data acquisition system)と呼ばれるデータ収集回路104を含むデータ収集部106が接続される。データ収集回路104は、一例で、X線検出器111の各チャンネルの電流信号を電圧に変換するI-V変換器と、この電圧信号をX線の照射周期に同期して周期的に積分する積分器とを有する。また、この積分器の出力信号を増幅するアンプと、このアンプの出力信号をディジタル信号に変換するアナログ・ディジタル・コンバータ等が設けられている。データ収集部106は、検出器からの信号に所定の前処理を施し、それを「投影データ」として出力する。 The X-ray detector 111 is connected to a data acquisition unit 106 including a data acquisition circuit 104 called a DAS (data acquisition system). In one example, the data acquisition circuit 104 periodically integrates an IV converter that converts the current signal of each channel of the X-ray detector 111 into a voltage, and this voltage signal in synchronization with the X-ray irradiation cycle. And an integrator. Further, an amplifier for amplifying the output signal of the integrator, and an analog-digital converter for converting the output signal of the amplifier into a digital signal are provided. The data acquisition unit 106 performs predetermined pre-processing on the signal from the detector and outputs it as “projection data”.
 前処理としては、特に限定されるものではないが、一例で、対数変換処理、オフセット処理、感度補正処理、ビームハードニング処理等であってもよい。 The preprocessing is not particularly limited, but may be, for example, logarithmic conversion processing, offset processing, sensitivity correction processing, beam hardening processing, or the like.
[コントロールユニット]
 コントロールユニット150は、一例で、スキャナコントローラ151と、入力デバイス153と、表示デバイス155と、記憶デバイス157と、画像データ処理ユニット160等を有している。
[control unit]
The control unit 150 includes, for example, a scanner controller 151, an input device 153, a display device 155, a storage device 157, an image data processing unit 160, and the like.
 コントロールユニット150は、一例で、1台のコンピュータで構成されたものであり、具体的には、CPU(Central Processing Unit)、GPU(Graphic Processing Unit)などの処理装置と、ROM(Read Only Memory)、RAM(Random Access Memory)や、またはHDD(Hard Disc Drive)などの図示しない記憶装置とによって構成されている。記憶装置には、各部の機能を実行するための制御プログラムが記憶される。CPUなどの処理装置が、記憶装置に記憶されている各プログラムを実行することで各機能が実行されるようになっている。なお、複数のコンピュータでコントロールユニット150を構成することも可能であり、例えば、スキャナコントローラ151を含むコンピュータと、画像データ処理ユニット160を含むコンピュータとが別々に構成されていてもよい。 The control unit 150 is an example, and is configured by one computer, and specifically, a processing device such as a central processing unit (CPU) or a graphic processing unit (GPU), and a read only memory (ROM) And a storage device (not shown) such as a RAM (Random Access Memory) or an HDD (Hard Disc Drive). The storage device stores a control program for executing the function of each unit. A processing device such as a CPU executes each program stored in the storage device to execute each function. It is also possible to configure the control unit 150 with a plurality of computers. For example, the computer including the scanner controller 151 and the computer including the image data processing unit 160 may be configured separately.
 入力デバイス153としては、例えば、キーボードやマウスなど操作者からの入力に用いられるものが設けられている。他にも、追加でまたは代替で、音声入力デバイスや非接触の動作検出デバイス等が利用されてもよい。タッチパッドやタッチペンを利用することも可能である。 As the input device 153, for example, a device such as a keyboard or a mouse used for input from the operator is provided. Besides, in addition or as an alternative, a voice input device, a non-contact motion detection device or the like may be used. It is also possible to use a touch pad or a touch pen.
 表示デバイス155としては、1つまたは複数のディスプレイが設けられていてもよい。記憶デバイス157に関しても、所定のデータ(投影データや生成した画像データ等)を保存できるものであればどのようなものであってもよく、ハードディスクドライブ(HDD)やソリッドステートドライブ(SSD)を利用することができる。 The display device 155 may be provided with one or more displays. The storage device 157 may also be anything as long as it can store predetermined data (projection data, generated image data, etc.), and uses a hard disk drive (HDD) or a solid state drive (SSD) can do.
 スキャナコントローラ151は、CT装置1のガントリ100の各部の動作等を制御するための制御部であり、従来公知のものを用いることができる。限定されるものではないが、スキャナコントローラ151は、X線照射部101、検出器111、回転機構105、不図示の高電圧発生部等の動作を制御するものであってもよい。 The scanner controller 151 is a control unit for controlling the operation and the like of each part of the gantry 100 of the CT apparatus 1, and may be a conventionally known one. Although not limited, the scanner controller 151 may control operations of the X-ray irradiation unit 101, the detector 111, the rotation mechanism 105, a high voltage generation unit (not shown), and the like.
[画像データ処理ユニット]
 画像データ処理ユニット160は、(i)データ収集部106から出力されたデータに基づき断層画像を生成する機能を実行する部分(機能)と、(ii)本実施形態に係る推定断層画像を生成する機能(詳細下記)を実行する部分(機能)とを有している。また、それに加えて、生成された断層画像をレンダリングする機能等も有しているが、これについては従来公知の手法を利用可能であるので、詳細な説明は省略するものとする。
[Image data processing unit]
The image data processing unit 160 (i) generates a tomographic image based on the data output from the data acquisition unit 106 (function) and (ii) generates an estimated tomographic image according to the present embodiment. It has a part (function) that executes a function (details below). In addition to that, it also has a function of rendering the generated tomographic image, etc. However, since a conventionally known method can be used for this, detailed description will be omitted.
 上記(i)は、例えば、再構成処理部によって実施されるものであってもよく、具体的な一例としては、データ収集部106から出力された投影データに基づいて、再構成を行って、断層画像データ(2次元データもしくは3次元のボリュームデータ)を生成する。再構成には、例えば、フーリエ変換法、コンボリューション・バックプロジェクション法、逐次近似法、重積積分法、フィルタ逆投影法等、任意の方法を採用することができる。ボリュームデータは、再構成された複数の断層画像データを利用し、補間処理を行うことで生成されるものであってもよい。 For example, the above (i) may be performed by the reconstruction processing unit, and as a specific example, reconstruction is performed based on the projection data output from the data acquisition unit 106, Tomographic image data (two-dimensional data or three-dimensional volume data) is generated. For the reconstruction, for example, any method such as Fourier transform method, convolution back projection method, successive approximation method, integral integration method, filter back projection method, etc. can be adopted. The volume data may be generated by performing interpolation processing using a plurality of reconstructed tomographic image data.
 より詳しくは、再構成に関し、フェルドカンプ法またはコーンビーム再構成法など従来公知の手法を利用可能である。フェルドカンプ法は、コーンビームのように再構成面に対して投影レイが交差する場合の再構成法である。コーンビーム再構成法は、フェルドカンプ法よりもコーン角のエラーが抑えられる方法として、再構成面に対するレイの角度に応じて投影データを補正する再構成法である。 More specifically, for reconstruction, conventionally known techniques such as Feldkamp method or cone beam reconstruction method can be used. The Feldkamp method is a reconstruction method in the case where projection rays intersect the reconstruction surface like a cone beam. The cone beam reconstruction method is a reconstruction method which corrects projection data according to the angle of the ray with respect to the reconstruction surface as a method in which the error of the cone angle is suppressed more than the Feldkamp method.
 上記(ii)は、後述する動作の説明でより詳しく述べるが、180°+追加角度βのスキャンデータ(図4参照)の全部または一部を読み込み、部分再構成(partial reconstruction)を行うことで画像化を行うものであってもよい。 The above (ii) will be described in more detail in the description of the operation to be described later, but by reading all or part of scan data of 180 ° + additional angle β (see FIG. 4) and performing partial reconstruction. It may be imaging.
 画像データ処理ユニット160は、また、2つの画像を比較して、動き情報のデータを取得する機能も有する。動き情報のデータの取得には、例えば、画像のエッジ検出を行ない、所定の点の移動量および/または変形量、方向などの情報を取得するものであってもよい。モーションベクトル情報を取得する技術としてはこの他にも種々の方式を採用しうる。 The image data processing unit 160 also has the function of comparing two images to obtain data of motion information. For acquisition of data of motion information, for example, edge detection of an image may be performed to acquire information such as a movement amount and / or a deformation amount of a predetermined point, and a direction. Various other methods can be adopted as a technique for acquiring motion vector information.
 画像データ処理ユニット160は、また、上記のようにして取得した動き情報のデータに基づき、第1の画像および/または第2の画像を変形移動させる機能も有する。具体的には、第1の画像(時刻t(A))と第2の画像(時刻t(C))の間の中間画像を生成するように、第1の画像および/または第2の画像を変形移動させる機能を有する。なお「変形移動」とは、変形のみを行うこと、移動のみを行うこと、またはそれらの両方を行うことのいずれかを意味し、必ずしも、変形と移動との両方を常に行うことに限定されるものではない。 The image data processing unit 160 also has a function to deform and move the first image and / or the second image based on the data of the motion information acquired as described above. Specifically, the first image and / or the second image is generated so as to generate an intermediate image between the first image (time t (A)) and the second image (time t (C)) Has a function to move the Note that “deformed movement” means either performing deformation only, performing movement only, or performing both of them, and is necessarily limited to always performing both deformation and movement. It is not a thing.
 画像データ処理ユニット160は、また、最終的な推定断層画像を生成するために、上記変形移動により生成した第1の画像および/または第2の画像と、スキャンデータの一部を部分再構成して得た画像(詳細後述)とを重畳して1つの画像とする機能も有する。 The image data processing unit 160 also partially reconstructs the first image and / or the second image generated by the deformation movement and a part of the scan data in order to generate a final estimated tomographic image. It also has a function of superimposing an image obtained in detail (described in detail later) into one image.
[動作]
 以上のように構成された本実施形態のCT装置1の動作について、以下、説明する。なお、本実施形態のCT装置1は従来公知の一般的な断層画像生成の機能も有しているが、これについては説明を省略し、以下、本願の主たる特徴である推定断層画像の生成手順を中心に説明を行うものとする。図2、図3ではフローチャートが示されているが、本願発明の方法は必ずしもその順番に限定されるものではなく、本発明の趣旨を逸脱しない範囲で、1つまたは複数のステップの順番を入れ替える、あるいは、同時に実施するようにしてもよい。
[Operation]
Hereinafter, the operation of the CT apparatus 1 of the present embodiment configured as described above will be described. Although the CT apparatus 1 of this embodiment also has a function of general tomographic image generation known in the prior art, the description thereof is omitted, and the procedure of generating an estimated tomographic image which is the main feature of the present application. The explanation will be focused on Although flowcharts are shown in FIG. 2 and FIG. 3, the method of the present invention is not necessarily limited to that order, and the order of one or more steps is changed without departing from the scope of the present invention. Or you may make it implement simultaneously.
(全体の概略フロー)
 CT装置1による撮像から断層画像生成までのフローの概要は図2に示す通りである。すなわち、まず、この例では、ステップS1において被検体に造影剤の注入を行う。そして、造影剤注入開始より所定時間が経過したタイミングのステップS2において、CT装置1でスキャンを実施する。ステップS3では、それにより得られたデータに対して所定の前処理等を行なって投影データを生成し、次いで、ステップS4において、その投影データに基づき所定の画像生成処理を実施する。
(Overall schematic flow)
An outline of a flow from imaging by the CT apparatus 1 to tomographic image generation is as shown in FIG. That is, first, in this example, the contrast agent is injected into the subject in step S1. Then, in step S2 at which a predetermined time has elapsed from the start of contrast agent injection, the CT apparatus 1 performs a scan. In step S3, predetermined preprocessing and the like are performed on the data obtained thereby to generate projection data, and then in step S4, a predetermined image generation process is performed based on the projection data.
(モーションコレクションによる推定画像の生成)
 まず、本発明の一形態に係る推定画像生成の前提として、図4に示すように、被検体をスキャンして得られたデータがあるものとする。これは180°+追加角度βの範囲のデータである。このようなデータに基いて画像を生成するということは、いわゆるフル再構成の場合と比較して、スキャンに要する時間(スキャン時間)が短縮される。よって、時間分解能を向上させることができる点で好ましい。なお、角度βは、例えば10°~120°の範囲内であることが一形態において好ましい。出射部の回転速度は、0.2sec/回転~60sec/回転の範囲内であることが一形態において好ましい。
(Generation of estimated image by motion collection)
First, as a premise of generation of an estimated image according to an embodiment of the present invention, as shown in FIG. 4, it is assumed that there is data obtained by scanning an object. This is data in the range of 180 ° + additional angle β. Generating an image based on such data reduces the time required for scanning (scan time) as compared to the case of so-called full reconstruction. Therefore, it is preferable at the point which can improve time resolution. The angle β is preferably in a range of, for example, 10 ° to 120 ° in one embodiment. In one embodiment, it is preferable that the rotational speed of the emitting unit is in the range of 0.2 sec / rotation to 60 sec / rotation.
 本実施形態で使用するデータとしては図5のように、180°分のデータ+追加の角度β分のデータととらえると分かり易い。図5のデータ120(サイノグラムデータと捉えてよい)は、具体的には、回転角度0度側(図中の上端側)から順に、投影データA、投影データB、投影データCを含むデータである。 The data used in the present embodiment can be easily understood as data of 180 ° + data of additional angle β as shown in FIG. Specifically, data 120 in FIG. 5 (which may be regarded as sinogram data) is data including projection data A, projection data B, and projection data C in order from the rotation angle 0 degree side (upper end side in the figure). is there.
(ステップS11)
 上記データ120を使用して、ステップS11では、まず、第1の投影データAを用い、部分再構成を行って、この範囲に対応する第1の画像Im(A)を生成する。
(Step S11)
Using the data 120, in step S11, partial reconstruction is first performed using the first projection data A to generate a first image Im (A) corresponding to this range.
 図6は、スキャン時刻とそれに対応する画像の位置関係等を説明するための図である。横軸が時刻を示し、縦軸が対象物の画像位置を示している。ここでは、第1の投影データAは時刻t(A)に撮像されたものと想定し、時刻t(A)の個所に画像Im(A)が表示されている。 FIG. 6 is a diagram for explaining the positional relationship and the like of the scan time and the image corresponding thereto. The horizontal axis indicates time, and the vertical axis indicates the image position of the object. Here, it is assumed that the first projection data A is captured at time t (A), and the image Im (A) is displayed at the time t (A).
(ステップS12)
 次いで、ステップS12では、第2の投影データCを用い、部分再構成を行って、この範囲に対応する第2の画像Im(C)を生成する。第2の投影データCは、第1の投影データAに対して角度を180°シフトさせた対向ビームに相当するデータである。図6では、時刻t(C)の個所に画像Im(C)が表示されている。
(Step S12)
Next, in step S12, partial reconstruction is performed using the second projection data C, and a second image Im (C) corresponding to this range is generated. The second projection data C is data corresponding to the opposite beam whose angle is shifted by 180 ° with respect to the first projection data A. In FIG. 6, the image Im (C) is displayed at the time t (C).
 なお、このような対向データのそれぞれを再構成して画像化する場合、時刻t(A)からt(C)までの間に対象物が動いていなければ、画像Im(A)と画像Im(C)は実質的に同一となる。ただし、本実施形態では、時刻t(A)からt(C)までの間に画像の中のある特定の位置にある対象物が所定の距離d1(図6参照)だけ動いたものとする。 In the case of reconstructing and imaging each of such opposing data, if the object does not move between time t (A) and t (C), the image Im (A) and the image Im ( C) will be substantially identical. However, in the present embodiment, it is assumed that the object at a specific position in the image moves from the time t (A) to t (C) by a predetermined distance d1 (see FIG. 6).
(ステップS13)
 再び図3のフローチャートに戻り、続いてステップS13では、第3の投影データBを用い、この部分に対応する画像Im(B)を生成する。
(Step S13)
Referring back to the flowchart of FIG. 3 again, in step S13, the third projection data B is used to generate an image Im (B) corresponding to this portion.
(ステップS14)
 さて、ここまで説明したように、投影データA、Cのそれぞれについての再構成および画像化により、時刻t(A)の対象物の位置・形状と、時刻t(C)における対象物の位置・形状とが分かることとなる。したがって、これら2つの画像Im(A)と画像Im(C)に基いて、対象物の動き情報のデータを求めることが可能となる。
(Step S14)
Now, as described above, the position and shape of the object at time t (A) and the position of the object at time t (C) by reconstruction and imaging for each of the projection data A and C. You will know the shape. Therefore, based on these two images Im (A) and Im (C), it is possible to obtain data of motion information of the object.
 動き情報としては、本実施形態では、時刻t(A)における対象物の画像Im(A)が、時刻t(C)までリニアもしくは実質的にリニアに移動するものと仮定する(図6中の破線Lも参照)。 As motion information, in this embodiment, it is assumed that the image Im (A) of the object at time t (A) moves linearly or substantially linearly until time t (C) (FIG. 6). See also dashed line L 1 ).
(ステップS15)
 このように、動き情報のデータが得られれば、例えば、時刻t(A)の画像Im(A)を時刻t(B)における画像に変形移動させることで、図7に示すように、時刻t(B)における推定画像Im(A)′を生成することができる。推定画像Im(A)′は、動き情報のデータを用いて、例えば位置をリニアに移動させたり、大きさ・形状をリニアに変形させたりする画像処理により実現することが可能である。なお、必ずしも厳密な意味でのリニアではなく、線形と見做せるような非線形のデータ処理であってもよい。
(Step S15)
Thus, if data of motion information is obtained, for example, the image Im (A) at time t (A) is deformed and moved to an image at time t (B), as shown in FIG. The estimated image Im (A) 'in (B) can be generated. The estimated image Im (A) ′ can be realized, for example, by image processing in which the position is linearly moved, or the size and shape are linearly deformed, using data of motion information. The data processing may be nonlinear data processing that is not necessarily linear in a strict sense, but linear.
 こうして得た推定画像Im(A)′とスキャン範囲Bに対応する画像Im(B)とを重畳することで、時刻t(B)の推定断層画像が生成される。なお、時刻t(C)の画像Im(B)に基づき時刻t(B)における推定画像Im(C)′を生成し、画像Im(B)とを重畳するようにしてもよい。 By superimposing the estimated image Im (A) ′ thus obtained and the image Im (B) corresponding to the scan range B, an estimated tomographic image at time t (B) is generated. Note that the estimated image Im (C) ′ at time t (B) may be generated based on the image Im (B) at time t (C), and may be superimposed on the image Im (B).
 さらに、別の手法としては、例えば、画像Im(A)から変形させたIm(A)′と、画像Im(C)から変形させたIm(C)′とを用意し、下記のような式で重畳を行うようにしてもよい:
   [(Im(A)′+Im(C)′)/2]+Im(B)
 このような手法によれば、造影剤濃度がスキャン中に大きく変わるような場合であっても、変化を小さくすることができ、好ましい。
Furthermore, as another method, for example, Im (A) ′ modified from the image Im (A) and Im (C) ′ modified from the image Im (C) are prepared, and the following equation You may choose to do the superposition with:
[(Im (A) ′ + Im (C) ′) / 2] + Im (B)
According to such a method, even when the contrast agent concentration largely changes during scanning, the change can be reduced, which is preferable.
 以上一連の工程により、180°+追加角度βのデータ(図5参照)に基づき対象物の推定断層画像を生成することができる。特に、本実施形態の手法で最終的に得られる推定断層画像は、仮想的に同時刻(ここでは時刻t(B))の画像を用意しそれらを重畳して生成するものである。したがって、再構成処理を要することなく、比較的簡単なデータ処理で、時間分解能に優れ、かつ、モーションアーチファクトも低減された良好な画像を得ることが可能となる。またフルスキャンの場合と比較して、被検体の被曝量も低減させることができる点でも好ましい。 According to the above series of steps, it is possible to generate an estimated tomographic image of the object based on the data of 180 ° + additional angle β (see FIG. 5). In particular, the estimated tomographic image finally obtained by the method of the present embodiment is generated by virtually preparing images of the same time (here, time t (B)) and superimposing them. Therefore, it is possible to obtain a good image with excellent temporal resolution and reduced motion artifacts with relatively simple data processing without requiring reconstruction processing. Moreover, it is preferable also in the point which can reduce the exposure dose of a test object compared with the case of a full scan.
 以上、本発明を具体的な一例に沿って説明したが、本発明は、上記の内容に限定されるものではなく、その趣旨を逸脱しない範囲で適宜変更可能である。また、本発明はその趣旨を逸脱しない範囲で種々変更可能であり、上記例に限定されるものではない。本明細書の所定の実施態様として開示された技術的事項は、本発明の趣旨を逸脱しない範囲で他の実施態様と組み合わせることができる。 As mentioned above, although this invention was demonstrated along a specific example, this invention is not limited to said content, It can change suitably in the range which does not deviate from the meaning. Further, the present invention can be variously modified without departing from the scope of the present invention, and is not limited to the above example. The technical matters disclosed as certain embodiments of the present specification can be combined with other embodiments without departing from the spirit of the present invention.
(他の態様)
 「時刻t(B)」(図6参照)に関し、この時刻は、必ずしも第1の時刻t(A)と第2の時刻t(C)とのちょうど中間である必要はない。両時刻t(A)、t(C)の間の任意の時点としてもよい。
(Other aspects)
With respect to "time t (B)" (see FIG. 6), this time does not necessarily have to be exactly halfway between the first time t (A) and the second time t (C). It may be any time between the two times t (A) and t (C).
 ステップS15(図3参照)において生成した推定断層画像は、CT装置1の1つまたは複数の表示デバイス155に表示されるようになっていてもよいが必ずしもこれに限定されるものではない。そのデータが記憶デバイス157または外部の所定の記憶手段に保存され、他の機器で表示されるようになっていてもよい。 The estimated tomographic image generated in step S15 (see FIG. 3) may be displayed on one or more display devices 155 of the CT apparatus 1, but is not necessarily limited thereto. The data may be stored in the storage device 157 or a predetermined external storage means, and may be displayed on another device.
 上述の実施形態ではCT装置の一部を構成するコンピュータが本発明の一形態に係る画像生成処理を行うことを説明したが、別のコンピュータで画像生成処理を行うようにしてもよい。この場合、一例として、本発明の一形態に係る画像生成処理プログラムが所定のコンピュータにインストールされ、それにより当該画像生成処理が実施できるようになっていてもよい。 In the above-described embodiment, it has been described that the computer that constitutes a part of the CT apparatus performs the image generation process according to an aspect of the present invention, but another computer may perform the image generation process. In this case, as an example, the image generation processing program according to an aspect of the present invention may be installed on a predetermined computer so that the image generation processing can be performed.
 なお、上記の例では対向ビームのデータを利用して画像Im(A)、Im(B)を生成した。画像Im(A)、Im(B)は、被写体の動きがなければ本来同一となるような2つの画像である。上述したように、被写体に動きがあれば画像Im(A)と画像Im(B)との間に移動および/または変形が生じることとなる。両画像を比較することで、動きや変形に関する情報を得ることができる。上記実施形態ではこの動きや変形に関する情報を利用するものであるが、このような情報を得ることができる画像Im(A)、Im(B)であれば、必ずしも対向したデータに限られず、他のデータを使用してもよい。例えば、管球を複数回回転させるスキャンを想定する。この場合に、例えば、ある一回転中の投影データA(図5参照)と、その次の回転中での投影データA′(先の投影データAに対して360°分遅れたデータとなる)とを使用するようにしてもよい。これらのデータから作られる2つの画像も、被写体の動きがあれば移動および/または変形が生じることとなる。そこで、両画像の比較から、上記同様に動きや変形に関する情報を得ることができる。 In the above example, the images Im (A) and Im (B) are generated using the data of the opposite beam. The images Im (A) and Im (B) are two images that are essentially the same if there is no movement of the subject. As described above, movement and / or deformation occur between the image Im (A) and the image Im (B) when the subject moves. Information on movement and deformation can be obtained by comparing the two images. In the above embodiment, information on the movement and deformation is used, but if it is the images Im (A) and Im (B) from which such information can be obtained, the data is not necessarily limited to the opposite data, You may use the data of For example, assume a scan in which the tube is rotated several times. In this case, for example, projection data A during one rotation (see FIG. 5) and projection data A 'during the next rotation (data delayed by 360 ° with respect to the previous projection data A) And may be used. The two images created from these data will also move and / or deform if there is movement of the subject. Then, information on movement and deformation can be obtained similarly to the above by comparing the two images.
 図4、図5に関し、角度βは一例として10°~120°の範囲内であることを述べた。角度βが10°の例を想定すると、投影データB(図5参照)は10°から180°までの角度(つまり170°)のデータということになる。本発明においては、このような範囲の投影データBを使用することも可能である。 Referring to FIGS. 4 and 5, it has been described that the angle β is in the range of 10 ° to 120 ° as an example. Assuming that the angle β is 10 °, projection data B (see FIG. 5) is data of an angle (that is, 170 °) from 10 ° to 180 °. In the present invention, it is also possible to use projection data B in such a range.
 投影データは基本的には撮像装置から取得されたものを利用すればよいが、必ずしもこれに限定されるものではない。例えば、撮像装置とは別のデータ保存デバイスに格納された投影データを利用する構成であってもよい。また、一例として、少なくとも2枚の構成画像(例えば、第1の時相で撮像された構成画像と第2の時相で撮像された構成画像。)を利用し、それらから動きや変形に関する情報を取得し、その動き/変形情報を使って推定画像を生成するものであってもよい。限定されるものではないが、第1の時相としては(a+b)であり第2の時相としては(b+c)であり、第1の時相の画像と第2の時相の画像との比較やサブトラクション処理によって動き/変形情報を得るものであってもよい。 Basically, projection data may be obtained from an imaging device, but the present invention is not necessarily limited to this. For example, the configuration may be such that projection data stored in a data storage device other than the imaging device is used. In addition, as an example, at least two component images (for example, a component image captured in a first time phase and a component image captured in a second time phase) are used, from which information on movement and deformation is obtained. , And may generate an estimated image using the motion / deformation information. Although it is not limited, the first time phase is (a + b) and the second time phase is (b + c), and the first time phase image and the second time phase image The movement / deformation information may be obtained by comparison or subtraction processing.
 撮像装置に関しても、X線CT装置以外の他のモダリティ(MRI:Magnetic resonance imaging、血管造影装置、PET:positron emission tomography、SPECT:Single Photon Emission Computed Tomography)を利用可能である。 As for the imaging apparatus, other modality (MRI: Magnetic resonance imaging, angiography apparatus, PET: positron emission tomography, and SPECT: Single Photon Emission Computed Tomography) other than the X-ray CT apparatus can be used.
 なお、以上、本発明で適用可能な種々の形態について説明したが、これらの事項は第1の実施形態についてのみ当てはまるものではなく、本出願の他の実施形態および変形例にも適用可能である点に留意すべきである。 Although various forms applicable to the present invention have been described above, these matters do not apply only to the first embodiment, and can be applied to other embodiments and modifications of the present application. It should be noted that.
2.第2の実施形態
 本発明としては、次のような手法で画像を生成するものであってもよい。すなわち、この例では、まず、図8に示すように、180°+β分のスキャンデータ(データA~Cを含み、AおよびCが対向データとなっている)があるものとし、これを利用する。まず、領域I(180°範囲)に関し、A+Bのデータに基づき再構成を行ってそれに対応する1つ目の画像を生成する(図9のIm(A+B)も参照)。
2. Second Embodiment In the present invention, an image may be generated by the following method. That is, in this example, first, as shown in FIG. 8, it is assumed that there is scan data (including data A to C, A and C are opposite data) for 180 ° + β, and this is used . First, with respect to the region I (180 ° range), reconstruction is performed based on the data of A + B to generate a corresponding first image (see also Im (A + B) in FIG. 9).
 次に、領域II(領域Iに対してβ分だけずらした180°範囲)に関し、B+Cのデータに基づき再構成を行ってそれに対応する2つ目の画像を生成する(図8のIm(B+C)も参照)。 Next, with respect to the region II (180 ° range shifted from the region I by β), reconstruction is performed based on the data of B + C to generate a corresponding second image (Im (B + C in FIG. 8). See also)).
 このようにして2つの画像が得られたら、上述した実施形態と同様に、それらに基いて動き情報を取得することができ、さらに、その動き情報を利用して、中間時刻(時刻t(B)に相当、上記実施形態も参照)の推定画像を生成することができる。 As described above, when two images are obtained, motion information can be obtained based on them as in the above-described embodiment, and the intermediate time (time t (B And the above-described embodiment) can be generated.
 このような手法、すなわち、角度β分だけずれたデータA、Cを利用する手法は、一般的なCT装置で、例えば従来公知のハーフ再構成法によって実施し得るものであり、有用である。 Such a method, that is, a method using data A and C shifted by an angle β can be implemented by a general CT apparatus, for example, by a conventionally known half reconstruction method, and is useful.
[一対のデータセットを利用した推定画像の生成]
 図10に示すような一対のデータセットを利用して推定断層画像を生成することも可能である。以下、具体的に説明する。以下の手順は、一例として次のステップを含む:
- 一対のデータセットの用意、
- データセットに基づく画像の生成、
- 生成した画像どうしの差分演算、
- 動かなかった画像部分の検出処理、
- 動いた画像部分の検出処理、
- 動いた画像部分から推定される推定中間画像の生成処理。
[Generation of estimated image using a pair of data sets]
It is also possible to generate an estimated tomographic image by using a pair of data sets as shown in FIG. The details will be described below. The following procedure includes, by way of example, the following steps:
-Prepare a pair of data sets,
-Image generation based on datasets,
-Difference operation between generated images,
-Detection of image parts that did not move,
-Detection of moving image parts,
-Generation process of an estimated intermediate image estimated from a moving image part.
(データセットの用意)
 図10のデータ220は、180°分のスキャンデータを2つ含んだデータであり、第1のデータセット221と、第2のデータセット222とを含んでいる。第1のデータセット221は、領域aのデータと領域bのデータとからなり、各データは一例として角度90°分のデータである。第2のデータセット222は、第1のデータセット211に対して90°シフトしたものであり、領域bのデータと領域cのデータとからなる。これらのデータも一例として角度90°分のデータである。ここで、領域bのデータは、第1および第2のデータセット221、222における重複データである。
(Preparation of data set)
The data 220 of FIG. 10 is data including two scan data for 180 °, and includes a first data set 221 and a second data set 222. The first data set 221 includes data of the area a and data of the area b, and each data is, for example, data for an angle of 90 °. The second data set 222 is shifted by 90 ° with respect to the first data set 211, and is composed of the data of the area b and the data of the area c. These data are also data for an angle of 90 ° as an example. Here, the data in the area b is duplicate data in the first and second data sets 221 and 222.
 領域a、b、cに対して、収集された中心時刻をt(A)、t(B)、t(C)とする。なお、領域a~領域cの順にデータは収集される。 Let t (A), t (B) and t (C) be the central times collected for the regions a, b and c. Data is collected in the order of the area a to the area c.
 一対のデータセット221、222は、例えば、一例として、CT装置側での再構成処理によってそれぞれ作られたものを用いることができる。なお、以下の説明では、CT装置で収集された投影データを利用し「画像」を生成する例について説明するが、当然ながら、本発明は、体軸方向に複数のデータをもつ画像データセットを用いても実施可能であり、ボリュームデータの利用を前提とするものであってもよい。 The pair of data sets 221 and 222 may be, for example, ones respectively generated by reconstruction processing on the CT apparatus side. In the following description, although an example of generating an “image” using projection data collected by a CT apparatus will be described, naturally, the present invention relates to an image data set having a plurality of data in the body axis direction. It can also be implemented and may be premised on the use of volume data.
 画像処理装置(不図示)としては、演算処理を行うCPU(1つまたは複数のプロセッサ)とメモリとインターフェース等を有した画像処理ユニットを備えたものであり、メモリ内に格納されたコンピュータプログラムを実行することで様々な機能を実現する。この画像処理装置は、スタンドアロンなデバイスとして設けられたものであってもよいし、他の機器の一部として設けられたものであってもよい。 The image processing apparatus (not shown) includes a CPU (one or more processors) for performing arithmetic processing and an image processing unit having a memory, an interface, etc., and a computer program stored in the memory. Implement various functions by executing. The image processing apparatus may be provided as a stand-alone device or may be provided as part of another apparatus.
(データセットに基づく画像の生成)
 次いで、画像処理装置(不図示)は、第1のデータセット221に基いてハーフ再構成処理を行い、それに対応する第1の画像Img1を生成する(図11参照)。また、第2のデータセット222に基いてハーフ再構成処理を行なって第2の画像Img2を生成する。
(Generation of image based on data set)
Next, the image processing apparatus (not shown) performs half reconstruction processing based on the first data set 221, and generates a corresponding first image Img1 (see FIG. 11). In addition, half reconstruction processing is performed based on the second data set 222 to generate a second image Img2.
(生成した画像どうしの差分演算等)
 次いで、画像処理装置(不図示)は、第1の画像Img1と第2の画像Img2との差分演算を行う。具体的には、一例として(第1の画像-第2の画像)の絶対値をとり、この値が、ゼロかそうでないかを判定するものであってもよい。差分がゼロということは、その画像部分は動きが無かったことを意味する。一方、差分がゼロでない部分は、動きのあった画像部分を意味する。
(Difference operation between generated images, etc.)
Next, the image processing apparatus (not shown) performs a difference operation between the first image Img1 and the second image Img2. Specifically, as an example, an absolute value of (first image-second image) may be taken, and this value may be determined whether it is zero or not. A difference of zero means that the image portion has not moved. On the other hand, the part where the difference is not zero means the part of the image that has moved.
 図11の例を参照しながら説明すると、この例では、第1の画像Img1は、動きのなかった画像部分Img(f)と、動きのあった画像部分Img1(m)とに分けられることが理解できる。同様に、第2の画像Img2は、動きのなかった画像部分Img(f)と、動きのあった画像部分Img2(m)とに分けられる。 To explain with reference to the example of FIG. 11, in this example, the first image Img1 is divided into an image portion Img (f) having no motion and an image portion Img1 (m) having motion. Understandable. Similarly, the second image Img2 is divided into an image portion Img (f) having no motion and an image portion Img2 (m) having motion.
 第1の画像Img1および第2の画像Img2は、図11から理解されるように、それぞれ相対的に動きがあって一部対象物の位置が画像上で異なっているものである。この例では、画像部分Img(f)は共通である。残りの画像部分Img1(m)は、時刻t(A)からt(C)にかけて、画像部分Img2(m)へと移動するような変化をしている。 As understood from FIG. 11, the first image Img1 and the second image Img2 have relative motions and partially differ in the position of the object on the image. In this example, the image portions Img (f) are common. The remaining image portion Img1 (m) changes so as to move to the image portion Img2 (m) from time t (A) to t (C).
(動いた画像部分から推定される推定画像の生成処理)
 しかし、このままでは、時刻t(B)において対象物がどこに存在していたか不明であるので、次のようなステップにより推定画像の生成を行う:
(Process of generating estimated image estimated from moving image part)
However, since it is unclear where the object was at time t (B) as it is, generation of an estimated image is performed by the following steps:
 具体的には、一例で、画像部位Img1と、画像部位Img2とについてエッジ抽出処理を行ない、画像部位Img1と、画像部位Img2の各々の部位が、どのように対応しているかを決めるために、レジストレーション(Registration)処理を行う。それによって、それらの中間位置に、推定中間画像Img′を描画することができる(図12、図13も参照)。なお、「中間位置」は、必ずしも画像部位Img1、Img2のちょうど中間でなくてもよい。エッジ抽出としては、従来公知の種々の手法およびアルゴリズムを利用することができ、特定のものに限定されるものではない。 Specifically, in one example, edge extraction processing is performed on the image site Img1 and the image site Img2, and in order to determine how each of the image site Img1 and the image site Img2 corresponds, Perform registration process. As a result, estimated intermediate images Img 'can be drawn at those intermediate positions (see also FIGS. 12 and 13). The "intermediate position" may not necessarily be exactly halfway between the image sites Img1 and Img2. As edge extraction, various methods and algorithms known in the prior art can be used, and they are not limited to specific ones.
 次いで、動かなかった画像部分Img(f)と、上記で生成した推定中間画像Img′とを合成することで、最終的な1つの推定断層画像を生成することができる。 Then, one final estimated tomographic image can be generated by combining the image portion Img (f) that has not moved and the estimated intermediate image Img ′ generated above.
 以上に説明した発明は下記のように表現することができる:
(p1)撮像装置が被検体を撮像して収集された投影データを利用して断層画像を生成する画像処理装置であって、該画像処理装置は画像処理ユニットを備え、
 前記画像処理ユニットは、
 撮像装置で得られた第1のデータセット(221)の投影データと、前記第1のデータセットに対して角度が90°(または所定角度)ずれている第2のデータセット(222)の投影データとを識別する処理と、
 前記第1のデータセットの投影データから第1の画像を生成する処理と、
 前記第2のデータセットの投影データから第2の画像を生成する処理と、
 前記第1の画像と第2の画像の差分をとって、第1および第2の画像で動きのなかった部分(Img(f))および動きのあった部分を特定する処理と、
 動きのあった第1の画像部分のデータ(Img1(m))と動きのあった第2の画像部分のデータImg2(m)を用いて、その中間推定画像(Img′)を生成する処理と、
 前記動きのなかった部分(Img(f))と前記中間推定画像(Img′)とを合成して全体の推定画像を生成する処理と、
 を行うように構成されている、画像処理装置。
The invention described above can be expressed as follows:
(P1) An image processing apparatus for generating a tomographic image using projection data obtained by imaging an object by an imaging apparatus, the image processing apparatus including an image processing unit,
The image processing unit
Projection data of a first data set (221) obtained by the imaging device and projection of a second data set (222) whose angle is deviated by 90 ° (or a predetermined angle) with respect to the first data set The process of identifying data and
Generating a first image from projection data of the first data set;
Generating a second image from projection data of the second data set;
A process of obtaining a difference between the first image and the second image, and identifying a portion without movement (Img (f)) and a portion with movement in the first and second images;
A process of generating an intermediate estimated image (Img ′) using data (Img1 (m)) of the first image part having movement and data Img2 (m) of the second image part having movement ,
A process of combining the portion without movement (Img (f)) and the intermediate estimated image (Img ′) to generate an overall estimated image;
An image processing device that is configured to
(p2)上記画像処理装置において、
 第1のデータセットは、時刻(t(A))と時刻(t(B))のデータを含むものであり、
 第2のデータセットは、時刻(t(B))と時刻(t(C))のデータを含むものである。
(P2) In the image processing apparatus,
The first data set includes data of time (t (A)) and time (t (B)),
The second data set includes data of time (t (B)) and time (t (C)).
(p3)上記画像処理装置において、
 前記全体の推定画像は、時刻t(B)における推定画像である。
(P3) In the image processing apparatus,
The entire estimated image is an estimated image at time t (B).
 なお、上記記載の画像処理装置の発明は、画像処理装置を用いた画像生成方法および画像生成プログラムの発明として表現することが可能である:
(p4)第1のデータセットの投影データと、前記第1のデータセットに対して所定角度ずれている第2のデータセットの投影データとに基づいて作成された第1の画像および第2の画像を利用して推定画像を生成する画像生成方法であって、
 前記第1の画像と第2の画像の差分をとって、第1および第2の画像で動きのなかった部分および動きのあった部分を特定するステップと、
 動きのあった第1の画像部分のデータと動きのあった第2の画像部分のデータを用いて、その中間推定画像を生成するステップと、
 前記動きのなかった部分と前記中間推定画像とを合成して全体の推定画像を生成するステップと、を含む方法。および、コンピュータもしくは特定のデータ処理ユニットに当該方法を実行させるためのコンピュータプログラム。
Note that the invention of the image processing apparatus described above can be expressed as an invention of an image generation method and an image generation program using the image processing apparatus:
(P4) a first image and a second created based on the projection data of the first data set and the projection data of the second data set that is offset by a predetermined angle with respect to the first data set An image generating method for generating an estimated image using an image, comprising:
Calculating a difference between the first image and the second image to identify a non-moving part and a moving part in the first and second images;
Generating an intermediate estimated image using the data of the first image portion in motion and the data of the second image portion in motion;
Combining the non-moving portion and the intermediate estimated image to generate an overall estimated image. And a computer program for causing a computer or a specific data processing unit to perform the method.
 なお、上記の説明では、第1のデータセット221は2つの領域a、bを含むものであり、第2のデータセット222も2つの領域b、cを含むものであった。しかしながら、本発明としては、3つ以上の複数の領域を含むデータセットを利用するものであってもよい。 In the above description, the first data set 221 includes two areas a and b, and the second data set 222 also includes two areas b and c. However, the present invention may use a data set including three or more multiple regions.
 例えば図14のようなデータセットを想定する。第1のデータセットA220は領域a、b、c、dを含み、第2のデータセットA221は領域c、d、e、fを含んでいる。すなわち、第2のデータセットA221はa、bの分だけ第1のデータセットより遅れたデータということになる。 For example, assume a data set as shown in FIG. The first data set A220 includes areas a, b, c, d, and the second data set A 221 includes areas c, d, e, f. That is, the second data set A 221 is data delayed from the first data set by a and b.
 このようなデータセットA220、A221では、領域c、dは共通部分(図10の領域bに相当)ということなる。一方、領域a、eが対向データとなり、領域b、fが対向データということにある。このような場合であっても、領域a、eの対向データに基づいて生成される中間推定画像と、領域b、fの対向データに基づいて生成される別の中間推定画像とを利用することで、上記実施形態と同様の推定画像生成を実施することができる。具体的には、それらの中間推定画像を、共通部分(領域c、d)に基づく部分再構成画像に合成するようにしてもよい。 In such data sets A220 and A221, the regions c and d are common parts (corresponding to the region b in FIG. 10). On the other hand, the areas a and e are opposite data, and the areas b and f are opposite data. Even in such a case, using the intermediate estimated image generated based on the opposed data of the regions a and e and another intermediate estimated image generated based on the opposed data of the regions b and f Then, estimated image generation similar to that of the above embodiment can be implemented. Specifically, those intermediate estimated images may be combined into a partially reconstructed image based on the common part (regions c, d).
[二管球システムの利用〕
 CT装置1(図1参照)が複数の管球を有していてもよいことは前述したとおりであるが、このような複数の管球のCT装置で収集された投影データに基づき、下記のような推定画像生成を行うことも可能である。
[Use of double tube system]
As described above, the CT apparatus 1 (see FIG. 1) may have a plurality of tubes, but based on the projection data collected by the CT apparatus of such a plurality of tubes, the following It is also possible to perform such an estimated image generation.
 前提として、図15(a)に示すように90°分だけ角度をずらして配置された第1の出射部101aと、第2の出射部101bとが設けられているとする。ハーフ再構成を行なって画像生成を行うためには、全体として180°分のデータがあればよい(平行ビーム相当。ファンビームの場合には180°+ファン角であるが、以下「180°分のデータ」等と表現する)。そして、このような構成においては、各出射部101a、101bで90°分ずつの投影データを収集すればよい。なお、ここでは「90°」のデータで説明を行うが、本発明は必ずしもこれに限定されるものではない。 As a premise, as shown in FIG. 15A, it is assumed that a first emitting unit 101a and a second emitting unit 101b are provided with an angle of 90 °. In order to perform image reconstruction by half reconstruction, it is sufficient if there is data for 180 ° as a whole (parallel beam equivalent. In the case of fan beam, 180 ° + fan angle, but in the following “180 ° Data, etc.)). Then, in such a configuration, projection data for each 90 ° may be collected by each of the emission units 101a and 101b. In addition, although the data of “90 °” are described here, the present invention is not necessarily limited to this.
 具体的には、図15(b)に示すように、第1の出射部101aを角度0°の位置から角度(90°+β)の位置まで回転させ、第2の出射部101bを角度90°の位置から角度(180°+β)の位置まで回転させる。 Specifically, as shown in FIG. 15B, the first emission part 101a is rotated from the position of angle 0 ° to the position of angle (90 ° + β), and the second emission part 101b is angle 90 °. Rotate from the position of to the position of angle (180 ° + β).
 そして、それにより得られた全体として180°分のデータを、図15(b)のように複数の領域a、b、c(c1、c2)、d、eに区分する。データ収集した時刻は、各領域の中心時刻とする。すなわち、第1の出射部101aがスキャンする領域a、b、c(c1)については、それぞれ、時刻t(A)、t(B)、t(C)でデータが収集され、第2の出射部101bがスキャンする領域c(c2)、d、eについては、それぞれ、時刻t(A)、t(B)、t(C)でデータが収集されることとなる。 Then, the data of 180 ° as a whole obtained as a result is divided into a plurality of regions a, b, c (c1, c2), d, e as shown in FIG. 15 (b). The time of data collection is the center time of each area. That is, for the regions a, b, c (c1) scanned by the first emission unit 101a, data are collected at times t (A), t (B), t (C), respectively, and the second emission Data will be collected at time t (A), t (B) and t (C) for the regions c (c2), d and e scanned by the unit 101b, respectively.
 ここで、領域cについて着目する。領域c1は、第1の出射部101aでスキャンされたデータであり、領域c2は、第2の出射部101bでスキャンされたデータであるが、これらは、同一の対象物に対し同じ方向から異なる時刻(C)、t(A)にそれぞれ収集されたデータである:
   c1・・・時刻t(C)に収集
   c2・・・時刻t(A)に収集
Here, attention is paid to the area c. The area c1 is the data scanned by the first emission unit 101a, and the area c2 is the data scanned by the second emission unit 101b, which differ from the same direction for the same object Data collected at time (C) and t (A) respectively:
c1 ... collected at time t (C) c2 ... collected at time t (A)
 また、対向データである領域a、eに関しては、
   a・・・時刻t(A)に収集
   e・・・時刻t(C)に収集
 ということになる。
Also, regarding the areas a and e that are opposite data,
a ... collection at time t (A) e ... collection at time t (C).
 領域a、eのデータはこのように異なる時刻に収集されたものであるが、対向データであるので、時刻t(A)からt(C)までの間に動きがあれば、生成される画像も異なるものとなる。 The data in the regions a and e are collected at different times in this way, but since they are opposite data, if there is movement between time t (A) and t (C), the generated image Will be different.
 続く処理としては、領域aとeのデータから、時刻t(B)に相当する画像a′(不図示)を作る。次いで、c1とc2から、時刻t(B)に相当する画像c′(不図示)を作る。これらの処理としては、第1の実施形態と同様の考え方を利用することができる。こうして用意したデータを利用し、(a′+b+c′+d)で時刻t(B)の推定画像を生成することができる。 As subsequent processing, an image a '(not shown) corresponding to time t (B) is created from the data of the regions a and e. Then, from c1 and c2, an image c '(not shown) corresponding to time t (B) is created. As these processes, the same idea as in the first embodiment can be used. Using the data prepared in this way, an estimated image at time t (B) can be generated at (a ′ + b + c ′ + d).
 上述した手法によれば、二管球のシステムを略90°分だけ回転させて収集したデータで画像生成を実施できることから、時間分解能の向上を図ることができるという利点がある。 According to the above-described method, since it is possible to perform image generation using data collected by rotating a two-tube system by approximately 90 °, there is an advantage that time resolution can be improved.
(付記)
 本明細書はさらに下記の発明を開示する(なお、括弧中の符号は本発明を何ら限定するものではない):
1.X線を出射する出射部(101)およびX線を検出する検出器(111)を有するガントリ(100)と、
 上記検出器からの検出データに基づき演算を行う画像データ処理ユニット(160)と、
 を備えるX線CT装置(1)であって、
 上記画像データ処理ユニット(160)は、
 第1の投影データ(A)、第2の投影データ(C)および第3の投影データ(B)を含むデータ(120)を使用して画像を生成するものであって、
a1:上記第1の投影データ(A)を用い、部分再構成を行って、時刻t(A)における対象物の第1の画像(Im(A))を生成する処理と、
a2:上記第1の投影データ(C)の対向データである第2の投影データ(C)を用い、部分再構成を行って、時刻t(A)よりも後の時刻t(C)における上記対象物の第2の画像(Im(C))を生成する処理と、
a3:上記第1の投影データと第2の投影データとの間である第3の投影データ(B)を用い部分再構成を行って、時刻t(A)と時刻t(C)の間の時刻t(B)における第3の画像(Im(B))を生成する処理と、
a4:上記第1の画像と上記第2の画像とに基づき、動き情報のデータを取得する処理と、
a5:上記動き情報のデータを利用し、上記第1の画像を変形させ、時刻t(B)における第1の推定画像(Im(A)′)を生成する処理と、上記動き情報のデータを利用し、上記第2の画像を変形させ、時刻t(B)における第2の推定画像(Im(C)′)を生成する処理との少なくとも一方を行う処理と、
a6:上記第3の画像(Im(B))と、上記第1の推定画像(Im(A)′)または上記第2の推定画像(Im(C)′)を組み合わせて、時刻t(B)における関心部位の推定断層画像を生成する処理と、
 を行うことを特徴とする、X線CT装置。
(Supplementary note)
This specification further discloses the following invention (note that the reference numerals in parentheses do not limit the present invention at all):
1. A gantry (100) having an emitting unit (101) for emitting an X-ray and a detector (111) for detecting the X-ray;
An image data processing unit (160) for performing an operation based on detection data from the detector;
An X-ray CT apparatus (1) comprising
The image data processing unit (160)
An image is generated using data (120) including the first projection data (A), the second projection data (C) and the third projection data (B),
a1: processing of performing partial reconstruction using the first projection data (A) to generate a first image (Im (A)) of the object at time t (A);
a2: Partial reconstruction is performed using the second projection data (C) which is the opposite data of the first projection data (C), and the above at time t (C) after time t (A) A process of generating a second image (Im (C)) of the object;
a3: Partial reconstruction is performed using the third projection data (B) between the first projection data and the second projection data, and the time between time t (A) and time t (C) A process of generating a third image (Im (B)) at time t (B);
a4: processing of acquiring data of motion information based on the first image and the second image;
a5: A process of generating the first estimated image (Im (A) ′) at time t (B) by transforming the first image using the data of the motion information, and the data of the motion information A process of using at least one of the process of transforming the second image and generating the second estimated image (Im (C) ′) at time t (B);
a6: A combination of the third image (Im (B)) and the first estimated image (Im (A) ') or the second estimated image (Im (C)') at time t (B) Generating an estimated tomographic image of the region of interest in
An X-ray CT apparatus characterized in that
 なお、上記において、a5とa6の両方が実施可能であるが、a5とa6の処理の一方のみが行われるような構成であってよい。本発明はまた、上記画像データ処理ユニット(160)に相当する機能を備えたコンピュータ装置(例えばワークステーション等)も開示する。すなわち、X線CT装置の発明ではなくワークステーションのようなコンピュータ装置の発明として、本発明は表現されてもよく、上述したような画像処理が当該コンピュータ装置で実行されるようになっていてもよい。 In the above, both of a5 and a6 can be implemented, but only one of the processes of a5 and a6 may be performed. The present invention also discloses a computer device (for example, a work station or the like) having a function corresponding to the image data processing unit (160). That is, the present invention may be expressed as an invention of a computer apparatus such as a workstation, not an invention of an X-ray CT apparatus, and the image processing as described above is executed by the computer apparatus Good.
2.上記第1から第3の投影データを生成するためのスキャン角度は、180°+追加角度(β)である、X線CT装置。 2. An X-ray CT apparatus, wherein a scan angle for generating the first to third projection data is 180 ° + additional angle (β).
3.上記第1の投影データ(A)および第2の投影データ(C)は、上記追加角度(β)分のスキャンデータに対応するデータである、X線CT装置。 3. An X-ray CT apparatus, wherein the first projection data (A) and the second projection data (C) are data corresponding to scan data for the additional angle (β).
4.上記追加角度(β)は、10°~120°の範囲内である、X線CT装置。 4. The X-ray CT apparatus, wherein the additional angle (β) is in the range of 10 ° to 120 °.
5.上記出射部の回転速度は、0.1sec/回転~60sec/回転の範囲内である、X線CT装置。 5. The X-ray CT apparatus, wherein the rotation speed of the light emitting unit is in the range of 0.1 sec / rotation to 60 sec / rotation.
6.上記画像のデータは、単一スライス画像、または、マルチスライスによるボリューム画像である、X線CT装置。 6. The X-ray CT apparatus, wherein the data of the image is a single slice image or a multi-slice volume image.
7.被検体をX線CT装置でスキャン撮像して得た第1の投影データ、第2の投影データおよび第3の投影データを含むデータを使用して医療用画像を生成する方法(もしくは、単に、第1の投影データ、第2の投影データおよび第3の投影データを含むデータを使用して医療用画像を生成する方法と表現してもよい)であって、
b1:上記第1の投影データを用い、部分再構成を行って、時刻t(A)における対象物の第1の画像を生成するステップと、
b2:上記第1の投影データの対向データである第2の投影データを用い、部分再構成を行って、時刻t(A)よりも後の時刻t(C)における上記対象物の第2の画像を生成するステップと、
b3:上記第1の投影データと第2の投影データとの間である第3の投影データを用い部分再構成を行って、時刻t(A)と時刻t(C)の間の時刻t(B)における第3の画像を生成するステップと、
b4:上記第1の画像と上記第2の画像とに基づき、動き情報のデータを取得するステップと、
b5:上記動き情報のデータを利用し上記第1の画像を変形させ、時刻t(B)における第1の推定画像を生成するステップと、上記動き情報のデータを利用し上記第2の画像を変形させ、時刻t(B)における第2の推定画像を生成するステップとの少なくとも一方を行う処理と、
b6:上記第3の画像と、上記第1の推定画像または上記第2の推定画像を組み合わせて、時刻t(B)における関心部位の推定断層画像を生成するステップと、
 を含む、画像生成方法。
7. A method of generating a medical image using data including first projection data, second projection data and third projection data obtained by scanning and imaging a subject with an X-ray CT apparatus (or simply, A method of generating a medical image using data including the first projection data, the second projection data, and the third projection data),
b1: performing partial reconstruction using the first projection data to generate a first image of the object at time t (A);
b2: Partial reconstruction is performed using second projection data which is opposite data of the first projection data, and the second object of the object at time t (C) after time t (A) Generating an image;
b3: Partial reconstruction is performed using the third projection data between the first projection data and the second projection data, and time t (A) between time t (A) and time t (C) Generating a third image in B);
b4: acquiring motion information data based on the first image and the second image;
b5: transforming the first image using the data of the motion information to generate a first estimated image at time t (B), and using the data of the motion information to generate the second image A process of performing at least one of the steps of deforming and generating a second estimated image at time t (B);
b6: combining the third image and the first estimated image or the second estimated image to generate an estimated tomographic image of a region of interest at time t (B);
Image generation methods, including:
 本発明は、次のように、コンピュータプログラムの発明として表現することも可能である。すなわち、この画像生成プログラムは、第1の投影データ、第2の投影データおよび第3の投影データを含むデータを使用して医療用画像を生成する方法を実行するための画像生成プログラムであって、1つまたは複数のコンピュータ(プロセッサ)に次のステップを実行させる:
c1:上記第1の投影データを用い、部分再構成を行って、時刻t(A)における対象物の第1の画像を生成するステップと、
c2:上記第1の投影データの対向データである第2の投影データを用い、部分再構成を行って、時刻t(A)よりも後の時刻t(C)における上記対象物の第2の画像を生成するステップと、
c3:上記第1の投影データと第2の投影データとの間である第3の投影データを用い部分再構成を行って、時刻t(A)と時刻t(C)の間の時刻t(B)における第3の画像を生成するステップと、
c4:上記第1の画像と上記第2の画像とに基づき、動き情報のデータを取得するステップと、
c5:上記動き情報のデータを利用し、上記第1の画像を変形させ、時刻t(B)における第1の推定画像を生成するステップと、上記動き情報のデータを利用し、上記第2の画像を変形させ、時刻t(B)における第2の推定画像を生成するステップとの少なくとも一方を行う処理と、
c6:上記第3の画像と、上記第1の推定画像または上記第2の推定画像を組み合わせて、時刻t(B)における関心部位の推定断層画像を生成するステップ。
The present invention can also be expressed as an invention of a computer program as follows. That is, the image generation program is an image generation program for executing a method of generating a medical image using data including the first projection data, the second projection data, and the third projection data. , Have one or more computers (processors) perform the following steps:
c1: performing partial reconstruction using the first projection data to generate a first image of the object at time t (A);
c2: Partial reconstruction is performed using second projection data which is opposite data of the first projection data, and the second object of the object at time t (C) after time t (A) Generating an image;
c3: Partial reconstruction is performed using the third projection data between the first projection data and the second projection data, and time t (A) between time t (A) and time t (C) Generating a third image in B);
c4: acquiring motion information data based on the first image and the second image;
c5: using the data of the motion information, deforming the first image, and generating a first estimated image at time t (B); and using the data of the motion information, the second Performing at least one of the steps of transforming the image and generating a second estimated image at time t (B);
c6: combining the third image and the first estimated image or the second estimated image to generate an estimated tomographic image of a region of interest at time t (B).
 なお、上記でX線CT装置に関する発明として記載した2.~5.の技術的特徴は、当然ながら、方法の発明およびコンピュータプログラムの発明としても表現することができる。また、方法の各ステップ、および、コンピュータプログラムによって実行される各ステップの実施主体は、必ずしも単一のコンピュータ(プロセッサ)に限定されるものではない。 Note that the invention described above regarding the X-ray CT apparatus 2. To 5. The technical features of can of course also be expressed as a method invention and a computer program invention. In addition, an implementation subject of each step of the method and each step executed by the computer program is not necessarily limited to a single computer (processor).
8.X線を出射する出射部(101)およびX線を検出する検出器(111)を有するガントリ(100)と、
 上記検出器からの検出データに基づき演算を行う画像データ処理ユニット(160)と、
 を備えるX線CT装置(1)であって、
 上記画像データ処理ユニット(160)は、
 第1の投影データ(A)、第2の投影データ(C)および第3の投影データ(B)を含むデータ(120)を使用して画像を生成するものであって、
d1:上記第1の投影データ(A)を用い、部分再構成を行って、時刻t(A)における対象物の第1の画像(Im(A))を生成する処理と、
d2:上記第1の投影データの対向データである第2の投影データ(C)を用い、部分再構成を行って、時刻t(A)よりも後の時刻t(C)における上記対象物の第2の画像(Im(C))を生成する処理と、
d3:上記第1の投影データと第2の投影データとの間である第3の投影データ(B)を用い部分再構成を行って、時刻t(A)と時刻t(C)の間の時刻t(B)における第3の画像(Im(B))を生成する処理と、
d4:上記第1の画像と上記第2の画像とに基づき、動き情報のデータを取得する処理と、
d5:上記動き情報のデータを利用し、上記第1の画像を変形させ、時刻t(XB)における第1の推定画像(Im(A)′)を生成する処理と、上記動き情報のデータを利用し、上記第2の画像を変形させ、時刻t(B)における第2の推定画像(Im(C)′)を生成する処理との少なくとも一方を行う処理と、
d6:上記第1の推定画像(Im(A)′)と上記第2の推定画像(Im(C)′)との平均をとり、その画像と、上記第3の画像(Im(B))とを組み合わせて、時刻t(B)における関心部位の推定断層画像を生成する処理と、
 を行うことを特徴とする、X線CT装置。
8. A gantry (100) having an emitting unit (101) for emitting an X-ray and a detector (111) for detecting the X-ray;
An image data processing unit (160) for performing an operation based on detection data from the detector;
An X-ray CT apparatus (1) comprising
The image data processing unit (160)
An image is generated using data (120) including the first projection data (A), the second projection data (C) and the third projection data (B),
d1: a process of performing partial reconstruction using the first projection data (A) to generate a first image (Im (A)) of the object at time t (A);
d2: Partial reconstruction is performed using the second projection data (C) which is opposite data of the first projection data, and the target object at time t (C) after time t (A) A process of generating a second image (Im (C));
d3: Partial reconstruction is performed using the third projection data (B), which is between the first projection data and the second projection data, and between the time t (A) and the time t (C) A process of generating a third image (Im (B)) at time t (B);
d4: a process of acquiring motion information data based on the first image and the second image;
d5: processing of generating the first estimated image (Im (A) ′) at time t (XB) by using the data of the motion information to deform the first image, and the data of the motion information A process of using at least one of the process of transforming the second image and generating the second estimated image (Im (C) ′) at time t (B);
d6: The average of the first estimated image (Im (A) ') and the second estimated image (Im (C)') is calculated, and that image and the third image (Im (B)) Processing for generating an estimated tomographic image of the site of interest at time t (B) by combining
An X-ray CT apparatus characterized in that
 「上記第1の推定画像(Im(A)′)と上記第2の推定画像(Im(C)′)との平均をとり」とは、数式で表現すると[(Im(A)′+Im(C)′)/2]である。 The expression “the average of the first estimated image (Im (A) ′) and the second estimated image (Im (C) ′) is expressed as“ [Im (A) ′ + Im ( C) ') / 2].
 本出願は、物の発明を、方法の発明およびコンピュータプログラムの発明として表現したものも開示する。なお、以上では一例としてハーフ再構成等の態様を説明したが、本発明はそれに限らず、本発明の趣旨を逸脱しない範囲でフル再構成(360°再構成)を利用する場合にも適用可能である。 The present application also discloses the invention of goods expressed as the invention of method and the invention of computer program. Although the aspect such as half reconstruction has been described above as an example, the present invention is not limited thereto, and may be applied to the case of utilizing full reconstruction (360 ° reconstruction) without departing from the spirit of the present invention. It is.
1 X線CT装置(撮像装置)
100 ガントリ
101、101a、101b X線照射部
102 回転フレーム
104 データ収集回路(DAS)
105 回転機構
106 データ収集部
120 データ
150 コントロールユニット
151 スキャナコントローラ
153 入力デバイス
155 表示デバイス
157 記憶デバイス
160 画像データ処理ユニット(データ処理ユニット)
1 X-ray CT device (imaging device)
100 gantry 101, 101a, 101b X-ray irradiation unit 102 rotation frame 104 data acquisition circuit (DAS)
105 rotation mechanism 106 data acquisition unit 120 data 150 control unit 151 scanner controller 153 input device 155 display device 157 storage device 160 image data processing unit (data processing unit)

Claims (9)

  1.  X線を出射する出射部およびX線を検出する検出器を有するガントリと、
     前記検出器からの検出データに基づき演算を行う画像データ処理ユニットと、
     を備えるX線CT装置であって、
     前記画像データ処理ユニットは、
     第1の投影データ、第2の投影データおよび第3の投影データを含むデータを使用して画像を生成するものであって、
    a1:前記第1の投影データを用い、部分再構成を行って、時刻t(A)における対象物の第1の画像を生成する処理と、
    a2:前記第1の投影データの対向データである第2の投影データを用い、部分再構成を行って、時刻t(A)よりも後の時刻t(C)における前記対象物の第2の画像を生成する処理と、
    a3:前記第1の投影データと第2の投影データとの間である第3の投影データを用い部分再構成を行って、時刻t(A)と時刻t(C)の間の時刻t(B)における第3の画像を生成する処理と、
    a4:前記第1の画像と前記第2の画像とに基づき、動き情報のデータを取得する処理と、
    a5:前記動き情報のデータを利用し、前記第1の画像を変形させ、時刻t(B)における第1の推定画像を生成する処理と、前記動き情報のデータを利用し、前記第2の画像を変形させ、時刻t(B)における第2の推定画像を生成する処理との少なくとも一方を行う処理と、
    a6:前記第3の画像と、前記第1の推定画像または前記第2の推定画像を組み合わせて、時刻t(B)における関心部位の推定断層画像を生成する処理と、
     を行うことを特徴とする、X線CT装置。
    A gantry having an emitter for emitting X-rays and a detector for detecting the X-rays;
    An image data processing unit that performs an operation based on detection data from the detector;
    An X-ray CT apparatus comprising
    The image data processing unit
    Generating an image using data including the first projection data, the second projection data, and the third projection data;
    a1: processing of performing partial reconstruction using the first projection data to generate a first image of an object at time t (A);
    a2: Partial reconstruction is performed using second projection data which is opposite data of the first projection data, and the second object of the object at time t (C) after time t (A) Processing to generate an image,
    a3: Partial reconstruction is performed using third projection data between the first projection data and the second projection data, and time t (A) between time t (A) and time t (C) A process of generating a third image in B);
    a4: processing of acquiring data of motion information based on the first image and the second image;
    a5: using the data of the motion information, deforming the first image, and generating a first estimated image at time t (B); and using the data of the motion information, the second A process of performing at least one of a process of deforming the image and generating a second estimated image at time t (B);
    a6: processing of combining the third image and the first estimated image or the second estimated image to generate an estimated tomographic image of a region of interest at time t (B);
    An X-ray CT apparatus characterized in that
  2.  前記第1から第3の投影データを生成するためのスキャン角度は、180°+追加角度である、請求項1に記載のX線CT装置。 The X-ray CT apparatus according to claim 1, wherein a scan angle for generating the first to third projection data is 180 ° + additional angle.
  3.  前記第1の投影データおよび第2の投影データは、前記追加角度分に対応するデータである、請求項1または2に記載のX線CT装置。 The X-ray CT apparatus according to claim 1, wherein the first projection data and the second projection data are data corresponding to the additional angle.
  4.  前記追加角度は、10°~120°の範囲内である、請求項2または3に記載のX線CT装置。 The X-ray CT apparatus according to claim 2 or 3, wherein the additional angle is in a range of 10 属 to 120 属.
  5.  前記出射部の回転速度は、0.1sec/回転~60sec/回転の範囲内である、請求項1~4のいずれか一項に記載のX線CT装置。 The X-ray CT apparatus according to any one of claims 1 to 4, wherein a rotation speed of the emission unit is in a range of 0.1 sec / rotation to 60 sec / rotation.
  6.  前記画像のデータは、単一スライス画像、または、マルチスライスによるボリューム画像である、請求項1~5のいずれか一項に記載のX線CT装置。 The X-ray CT apparatus according to any one of claims 1 to 5, wherein the data of the image is a single slice image or a multi-slice volume image.
  7.  第1の投影データ、第2の投影データおよび第3の投影データを含むデータを使用して医療用画像を生成する方法であって、
    b1:前記第1の投影データを用い、部分再構成を行って、時刻t(A)における対象物の第1の画像を生成するステップと、
    b2:前記第1の投影データの対向データである第2の投影データを用い、部分再構成を行って、時刻t(A)よりも後の時刻t(C)における前記対象物の第2の画像を生成するステップと、
    b3:前記第1の投影データと第2の投影データとの間である第3の投影データを用い部分再構成を行って、時刻t(A)と時刻t(C)の間の時刻t(B)における第3の画像を生成するステップと、
    b4:前記第1の画像と前記第2の画像とに基づき、動き情報のデータを取得するステップと、
    b5:前記動き情報のデータを利用し、前記第1の画像を変形させ、時刻t(B)における第1の推定画像を生成するステップと、前記動き情報のデータを利用し、前記第2の画像を変形させ、時刻t(B)における第2の推定画像を生成するステップとの少なくとも一方を行う処理と、
    b6:前記第3の画像と、前記第1の推定画像または前記第2の推定画像を組み合わせて、時刻t(B)における関心部位の推定断層画像を生成するステップと、
     を含む、画像生成方法。
    A method of generating a medical image using data comprising first projection data, second projection data and third projection data, comprising:
    b1: performing partial reconstruction using the first projection data to generate a first image of the object at time t (A);
    b2: Partial reconstruction is performed using second projection data which is opposite data of the first projection data, and the second of the object at time t (C) after time t (A) Generating an image;
    b3: Partial reconstruction is performed using third projection data between the first projection data and the second projection data, and time t (A) between time t (A) and time t (C) Generating a third image in B);
    b4: acquiring motion information data based on the first image and the second image;
    b5: using the data of the motion information to deform the first image to generate a first estimated image at time t (B); and using the data of the motion information, the second Performing at least one of the steps of transforming the image and generating a second estimated image at time t (B);
    b6: combining the third image and the first estimated image or the second estimated image to generate an estimated tomographic image of a region of interest at time t (B);
    Image generation methods, including:
  8.  X線を出射する出射部およびX線を検出する検出器を有するガントリと、
     前記検出器からの検出データに基づき演算を行う画像データ処理ユニットと、
     を備えるX線CT装置であって、
     前記画像データ処理ユニットは、
     第1の投影データ、第2の投影データおよび第3の投影データを含むデータを使用して画像を生成するものであって、
    d1:前記第1の投影データを用い、部分再構成を行って、時刻t(A)における対象物の第1の画像を生成する処理と、
    d2:前記第1の投影データの対向データである第2の投影データを用い、部分再構成を行って、時刻t(A)よりも後の時刻t(C)における前記対象物の第2の画像を生成する処理と、
    d3:前記第1の投影データと第2の投影データとの間である第3の投影データを用い部分再構成を行って、時刻t(A)と時刻t(C)の間の時刻t(B)における第3の画像を生成する処理と、
    d4:前記第1の画像と前記第2の画像とに基づき、動き情報のデータを取得する処理と、
    d5:前記動き情報のデータを利用し、前記第1の画像を変形させ、時刻t(B)における第1の推定画像を生成する処理と、前記動き情報のデータを利用し、前記第2の画像を変形させ、時刻t(B)における第2の推定画像を生成する処理との少なくとも一方を行う処理と、
    d6:前記第1の推定画像と前記第2の推定画像との平均をとり、その画像と、前記第3の画像とを組み合わせて、時刻t(B)における関心部位の推定断層画像を生成する処理と、
     を行うことを特徴とする、X線CT装置。
    A gantry having an emitter for emitting X-rays and a detector for detecting the X-rays;
    An image data processing unit that performs an operation based on detection data from the detector;
    An X-ray CT apparatus comprising
    The image data processing unit
    Generating an image using data including the first projection data, the second projection data, and the third projection data;
    d1: processing for performing partial reconstruction using the first projection data to generate a first image of the object at time t (A);
    d2: Partial reconstruction is performed using second projection data which is opposite data of the first projection data, and a second one of the objects at time t (C) after time t (A) Processing to generate an image,
    d3: Partial reconstruction is performed using third projection data between the first projection data and the second projection data, and time t (A) between time t (A) and time t (C) A process of generating a third image in B);
    d4: a process of acquiring motion information data based on the first image and the second image;
    d5: using the data of the motion information to deform the first image to generate a first estimated image at time t (B), and using the data of the motion information, the second A process of performing at least one of a process of deforming the image and generating a second estimated image at time t (B);
    d6: The average of the first estimated image and the second estimated image is taken, and the image and the third image are combined to generate an estimated tomographic image of the region of interest at time t (B) Processing and
    An X-ray CT apparatus characterized in that
  9.  X線を出射する出射部およびX線を検出する検出器を有するガントリと、前記検出器からの検出データに基づき演算を行う画像データ処理ユニットと、を備えるX線CT装置であって、
     前記画像データ処理ユニットは、
    e1:連続するスキャンデータを使って、所定角度分だけ時間をずらして再構成することで2つの画像を生成する処理と、
    e2:前記2つの画像の中間時刻の画像を生成する処理と、
     を実施するように構成されている、X線CT装置。
    An X-ray CT apparatus comprising: a gantry having an emission unit for emitting an X-ray and a detector for detecting the X-ray; and an image data processing unit for performing an operation based on detection data from the detector,
    The image data processing unit
    e1: processing of generating two images by reconstructing by shifting time by a predetermined angle using continuous scan data;
    e2: generating an image at an intermediate time between the two images;
    An X-ray CT apparatus that is configured to perform.
PCT/JP2018/032143 2017-08-30 2018-08-30 X-ray ct device and image generating method WO2019044983A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019539622A JPWO2019044983A1 (en) 2017-08-30 2018-08-30 X-ray CT device and image generation method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017-165994 2017-08-30
JP2017165994 2017-08-30
JP2018-011960 2018-01-26
JP2018011960 2018-01-26

Publications (1)

Publication Number Publication Date
WO2019044983A1 true WO2019044983A1 (en) 2019-03-07

Family

ID=65525534

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/032143 WO2019044983A1 (en) 2017-08-30 2018-08-30 X-ray ct device and image generating method

Country Status (2)

Country Link
JP (1) JPWO2019044983A1 (en)
WO (1) WO2019044983A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009297314A (en) * 2008-06-16 2009-12-24 Ge Medical Systems Global Technology Co Llc X-ray tomographic apparatus
JP2011511654A (en) * 2007-12-20 2011-04-14 ウイスコンシン アラムナイ リサーチ ファウンデーシヨン Dynamic a priori image limited image reconstruction method
JP2011092366A (en) * 2009-10-29 2011-05-12 Ge Medical Systems Global Technology Co Llc X-ray ct apparatus and method for reconstructing x-ray ct image
JP2011200656A (en) * 2010-03-17 2011-10-13 General Electric Co <Ge> System and method for tomographic data acquisition and image reconstruction
US20150243045A1 (en) * 2014-02-21 2015-08-27 Korea Advanced Institute Of Science And Technology Tomography apparatus and method for reconstructing tomography image thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011511654A (en) * 2007-12-20 2011-04-14 ウイスコンシン アラムナイ リサーチ ファウンデーシヨン Dynamic a priori image limited image reconstruction method
JP2009297314A (en) * 2008-06-16 2009-12-24 Ge Medical Systems Global Technology Co Llc X-ray tomographic apparatus
JP2011092366A (en) * 2009-10-29 2011-05-12 Ge Medical Systems Global Technology Co Llc X-ray ct apparatus and method for reconstructing x-ray ct image
JP2011200656A (en) * 2010-03-17 2011-10-13 General Electric Co <Ge> System and method for tomographic data acquisition and image reconstruction
US20150243045A1 (en) * 2014-02-21 2015-08-27 Korea Advanced Institute Of Science And Technology Tomography apparatus and method for reconstructing tomography image thereof

Also Published As

Publication number Publication date
JPWO2019044983A1 (en) 2020-10-01

Similar Documents

Publication Publication Date Title
US10748293B2 (en) Tomography apparatus and method for reconstructing tomography image thereof
JP6270760B2 (en) Method and apparatus for large field imaging and motion artifact detection and compensation
US8055050B2 (en) Motion compensation in energy-sensitive computed tomography
Tang et al. Temporal resolution improvement in cardiac CT using PICCS (TRI‐PICCS): Performance studies
US8731269B2 (en) Method and system for substantially reducing artifacts in circular cone beam computer tomography (CT)
CN107427274B (en) Tomographic apparatus and method for reconstructing tomographic image thereof
US9576391B2 (en) Tomography apparatus and method of reconstructing a tomography image by the tomography apparatus
JP2020036877A (en) Iterative image reconstruction framework
US7848480B2 (en) X-ray CT scanner and data processing method of X-ray CT scanner
US20040136490A1 (en) Method and apparatus for correcting motion in image reconstruction
US20080267455A1 (en) Method for Movement Compensation of Image Data
JP2008006288A (en) System and method for iterative image reconstruction
US8768030B2 (en) CT measurement with multiple X-ray sources
US10034648B2 (en) System and method for motion artifacts reduction
JP2007000408A (en) X-ray ct apparatus
US8364244B2 (en) Methods and systems to facilitate reducing banding artifacts in images
US20130051644A1 (en) Method and apparatus for performing motion artifact reduction
JP2018020120A (en) Medical image processor and medical image processing program
US9858688B2 (en) Methods and systems for computed tomography motion compensation
CN107886554B (en) Reconstruction of stream data
Chen et al. Prior image constrained compressed sensing (PICCS) and applications in X-ray computed tomography
JP2007159878A (en) X-ray ct apparatus and method of reconstructing x-ray ct image of the same
CN110073412B (en) Image noise estimation using alternating negatives
WO2019044983A1 (en) X-ray ct device and image generating method
EP3143591A1 (en) Computerized tomographic image exposure and reconstruction method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18850673

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019539622

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18850673

Country of ref document: EP

Kind code of ref document: A1