WO2019044612A1 - Electric motor - Google Patents

Electric motor Download PDF

Info

Publication number
WO2019044612A1
WO2019044612A1 PCT/JP2018/030954 JP2018030954W WO2019044612A1 WO 2019044612 A1 WO2019044612 A1 WO 2019044612A1 JP 2018030954 W JP2018030954 W JP 2018030954W WO 2019044612 A1 WO2019044612 A1 WO 2019044612A1
Authority
WO
WIPO (PCT)
Prior art keywords
stator
peripheral surface
motor housing
electric motor
outer peripheral
Prior art date
Application number
PCT/JP2018/030954
Other languages
French (fr)
Japanese (ja)
Inventor
岡本 敦志
俊弘 竹荒
篤 勝田
Original Assignee
株式会社ミツバ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ミツバ filed Critical 株式会社ミツバ
Publication of WO2019044612A1 publication Critical patent/WO2019044612A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/18Means for mounting or fastening magnetic stationary parts on to, or to, the stator structures

Definitions

  • the present invention relates to an electric motor.
  • a general brushless motor has a stator fixed to a motor housing and a rotor rotatably provided radially inward of the stator.
  • the stator has a cylindrical core body fixed to the motor housing, and a plurality of teeth protruding radially inward from the inner peripheral surface of the core body. Slots opened radially inward are respectively formed between the teeth. A winding is wound on each tooth through this slot.
  • the stator in order to facilitate the winding operation of the winding to each tooth and to improve the space factor of the winding, the stator is formed by a plurality of divided cores which are divided in the circumferential direction.
  • the stator is formed by arranging and arranging a plurality of divided cores in the circumferential direction (see, for example, Patent Document 1).
  • the divided cores adjacent to each other are integrally connected by welding, fitting, or the like.
  • the stator which consists of a plurality of division cores into the motor housing
  • a compression stress may occur between the division cores adjacent to each other with the motor housing.
  • the electromagnetic steel sheet constituting the stator has a characteristic that when a compressive stress is generated, the magnetic flux hardly flows in that portion. For this reason, in the circumferential direction of the stator, portions with low magnetic flux density are generated at a plurality of places due to the compressive stress generated at the connection portion between the divided cores. If the compressive stress generated at the connection portion between the split cores is unevenly generated in the circumferential direction, the distribution of the magnetic flux density in the circumferential direction of the stator will vary. And the site
  • a recess that is recessed inward in the radial direction is formed in the outer peripheral portion of the connection portion of the divided cores adjacent to each other.
  • the divided cores adjacent to each other in the circumferential direction are rotatably connected by pins.
  • the recessed part formed in the outer peripheral part of the connection part of mutually adjacent division cores is formed so that the division cores adjacent to each other can rotate centering on a pin.
  • a recess is provided on the outer peripheral portion of the connected portion between the divided cores as disclosed in Patent Document 1 It is conceivable to press the stator into the motor housing.
  • the contact margin of the motor housing and the stator decreases, and the fixing strength of the stator press-fit into the motor housing becomes insufficient. There is.
  • the tip of the teeth is displaced in the circumferential direction of the stator by the electromagnetic force generated in the stator.
  • the outer peripheral portion of the split core is displaced, and this displacement is transmitted to the motor housing to vibrate the motor housing, which may generate an operation noise of the electric motor.
  • the present invention has been made in view of the above-described circumstances, and the stator is securely press-fitted and fixed to the motor housing to suppress the operation noise, and at the connection portion between the stator divided bodies adjacent to each other in the circumferential direction. It is an object of the present invention to provide an electric motor capable of suppressing the cogging torque by suppressing the occurrence of compressive stress.
  • the present invention adopts the following means in order to solve the above problems. That is, in the electric motor according to the present invention, a plurality of stator divisions are disposed in the circumferential direction, and a stator is formed by connecting adjacent stator divisions to each other, and a motor housing in which the stator is fixed by press fitting inside.
  • a relief portion is formed to avoid interference with the other, and the relief portion has an angle in the circumferential direction about the central axis of the stator per one connection portion as ⁇ , and the number of stator divisions is X
  • the coefficient is K
  • the relief portion is formed on at least one of the inner peripheral surface of the motor housing and the outer peripheral surface of the connecting portion of the stator divisions adjacent to each other, whereby the inner peripheral surface of the motor housing and the stator division It is possible to avoid interference with the other of the outer peripheral surface of the connecting portion of As a result, it is possible to suppress the occurrence of compressive stress due to interference with the motor housing at the connection portion of the stator divided body.
  • the connection part of stator division bodies is located in multiple places in the circumferential direction of a stator. Therefore, the relief portions formed on the outer peripheral portion of the connecting portion of the stator divided bodies are also located at a plurality of locations in the circumferential direction of the stator. For this reason, the stator fixed by press-fitting to the motor housing is securely fixed to the motor housing.
  • the relief portion is formed at nine locations in the circumferential direction, and the relief portion is centered around the central axis of the stator at one location.
  • it is formed in the range of 5 to 14 °.
  • the relief portion is 0.2% or more of the diameter of the stator in the radial direction of the stator with respect to the other of the inner peripheral surface of the motor housing and the outer peripheral surface of the connecting portion. It may be formed with a gap set to the dimension of.
  • the relief portion is formed on an outer peripheral surface of the stator, and is formed of an arc-shaped surface located radially inward with respect to the inner peripheral surface of the motor housing.
  • the relief portion is formed on a flat portion which is formed on the outer peripheral surface of the stator and spaced radially inward with respect to the inner peripheral surface of the motor housing. It is also good.
  • the relief portion may be a V-shaped or U-shaped recess formed on the outer peripheral surface of the stator and recessed inward in the radial direction with respect to the inner peripheral surface of the motor housing. Good.
  • the relief portion is formed on an inner peripheral surface of the motor housing, and is formed of an arc-shaped surface located radially outward with respect to the outer peripheral surface of the stator.
  • the stator is securely press-fit and fixed to the motor housing to suppress the operation noise, and the cogging torque is suppressed by suppressing the generation of the compressive stress at the connecting portion of the stator divided bodies adjacent to each other in the circumferential direction. It becomes possible.
  • FIG. 1 is a perspective view of the electric motor 1 according to the first embodiment. As shown to the same figure, the electric motor 1 becomes a drive source of electrical components, such as an electric power steering mounted in a vehicle, for example.
  • the electric motor 1 is a so-called brushless motor.
  • the electric motor 1 is provided radially inside the motor housing 2, the substantially cylindrical stator 3 housed in the motor housing 2, and the stator 3, and a rotor provided rotatably with respect to the stator 3 ( Not shown) and.
  • the motor housing 2 is formed of, for example, a material having excellent heat dissipation such as aluminum die casting.
  • the motor housing 2 has a bottomed cylindrical shape integrally including a cylindrical portion 21 extending in a cylindrical shape and an end closing portion 22 closing the one end of the cylindrical portion 21.
  • a flange portion 23 extending outward in the radial direction is formed at the other end of the cylindrical portion 21.
  • bolt insertion holes 23h through which bolts for fixing at predetermined positions of the vehicle body of the vehicle are formed are formed at a plurality of places.
  • FIG. 2 is a plan view of the electric motor 1.
  • FIG. 3 is a perspective view of the stator 3.
  • the stator 3 is formed in a substantially cylindrical shape.
  • the stator 3 is press-fit into the motor housing 2 in a state in which the central axis direction coincides with the central axis direction of the cylindrical portion 21 (see FIG. 1) of the motor housing 2.
  • the stator 3 includes a stator core 31, an insulator 32 covering the stator core 31, and a coil 33 wound on the stator 32 from above the insulator 32.
  • the stator core 31 includes a cylindrical core portion 34 forming a magnetic path, and a plurality of (nine in the present embodiment) teeth 35 protruding radially inward from the core portion 34.
  • the stator core 31 is formed of a plurality of (seven in the present embodiment) stator divisions 30 arranged in the circumferential direction.
  • FIG. 4 is a perspective view of the stator divided body 30.
  • FIG. FIG. 5 is a perspective view of the split core 36 constituting the stator split body 30.
  • FIG. FIG. 6 is an enlarged view of an essential part showing the connecting part 30J of the stator divided bodies 30 with each other.
  • each stator division body 30 protrudes radially inward from a division core 36 of an arc-shaped cross section formed by dividing the core portion 34 into a plurality of pieces in the circumferential direction. And the teeth 35 to be integrated.
  • Such a stator division body 30 is formed by laminating a plurality of metal plates in the axial direction.
  • the stator division body 30 is not limited to the case where the plurality of metal plates are stacked in the axial direction, and may be formed, for example, by pressure molding soft magnetic powder.
  • each split core 36 At the circumferential direction both ends of each split core 36, a fitting projection 37A and a fitting recess 37B for coupling to other split cores 36 adjacent in the circumferential direction are formed.
  • the fitting convex portion 37A formed at one circumferential end of the split core 36 is formed such that a radial intermediate portion of the split core 36 protrudes to one circumferential side.
  • the fitting concave portion 37B formed at the other end of the split core 36 in the circumferential direction is formed such that the radial intermediate portion of the split core 36 is recessed toward one side in the circumferential direction.
  • the fitting convex portion 37A of the split core 36 on one side in the circumferential direction fits in the fitting recess 37B of the split core 36 on the other side in the circumferential direction It is mutually connected by being united.
  • the insulator 32 is formed of an insulating material such as a resin. It is provided so as to cover the circumference of the teeth 35 of each stator divided body 30 and to be axially dividable. Then, by mounting the insulators 32 from both axial ends of the teeth 35, the teeth 35 are covered with the insulators 32.
  • the coil 33 is wound around the teeth 35 from above the insulator 32.
  • the coils 33 wound around the teeth 35 are arranged side by side in the circumferential direction in the order of the U phase, the V phase, and the W phase.
  • the stator 3 is further provided with the bus-bar member 38 arrange
  • the bus bar member 38 includes a coil connection portion 38a to which end portions of U-phase, V-phase, and W-phase coils 33 are connected, a three-phase connector terminal portion 38b to which a vehicle-side connector is connected, and coil connection portions And a bus bar main body 38c (see FIG. 3) for connecting each of the phases 38a and the connector terminal portion 38b.
  • a magnetic field is generated in the coil 33 for rotating a rotor (not shown).
  • Rotor One end of the rotor (not shown) is rotatably supported around its central axis via a bearing (not shown) provided at the end closing portion 22 of the motor housing 2.
  • the rotor is provided with a ring-shaped magnet on its outer peripheral surface.
  • the magnet is magnetized such that a plurality of magnetic poles are sequentially formed in the circumferential direction. For example, in the present embodiment, the magnet is magnetized in four poles.
  • the stator 3 is provided with a relief portion 50 on the outer peripheral surface of the connecting portion 30 J of the stator divisions 30 adjacent to each other to avoid interference with the inner peripheral surface 2 i of the motor housing 2. It is done.
  • nine stator divisions 30 are provided in the circumferential direction. Therefore, there are nine connecting portions 30J of stator divisions 30 adjacent to each other.
  • the relief portions 50 are formed on the outer peripheral surface of all the connection portions 30J, and provided at a total of nine places.
  • each relief portion 50 is formed of a recessed groove 51 having an arc-shaped surface 51 f.
  • the arcuate surface 51 f is located radially inward of the inner circumferential surface 2 i of the motor housing 2 at an interval, and is formed concentrically with the center of the stator 3.
  • the arc-shaped surface 51f is formed so as to straddle both sides in the circumferential direction in a portion where the end portions 30e and 30f of the outer peripheral surface side of the stator divided bodies 30 adjacent to each other in the connecting portion 30J abut.
  • the opening angle ⁇ of the relief 50 is 5 ° ⁇ ⁇ ⁇ 15 °. Therefore, the opening angle ⁇ of the relief portion 50 of the first embodiment satisfies the above formulas (1) and (2).
  • the recessed groove 51 has a gap set to a dimension d which is twice or more the maximum press-fit allowance between the motor housing 2 and the stator 3 in the radial direction of the stator 3 with respect to the inner peripheral surface 2i of the motor housing 2 It is formed.
  • the maximum press-fit allowance between the motor housing 2 and the stator 3 is set to 0.1 mm.
  • the arc-shaped surface 51 f of the recessed groove 51 is formed so as to separate a gap of a dimension d of 0.2 mm or more with respect to the inner peripheral surface 2 i of the motor housing 2.
  • the electric power supplied to the controller board (not shown) provided outside is selectively supplied to the coils 33 of the electric motor 1. Then, a predetermined magnetic field is formed on the stator 3 (the teeth 35), and a magnetic attractive force or repulsive force is generated between the magnetic field and the magnet of the rotor (not shown). Thereby, a rotor (not shown) rotates continuously.
  • the stator 3 is press-fit into the motor housing 2, but the relief portion 50 is formed on the outer peripheral surface of the connecting portion 30 J of the stator divisions 30 adjacent to each other.
  • the connecting portion 30J of the stator divided body 30 avoids interference with the inner peripheral surface 2i of the motor housing 2.
  • generation of compressive stress due to interference with the motor housing 2 can be suppressed in the connecting portion 30J of the stator divided body 30.
  • FIG. 7 is a diagram showing the results of simulation analysis of the distribution of compressive stress generated in the stator and the motor housing in which the relief portion 50 is not formed.
  • FIG. 8 is a diagram showing the results of simulation analysis of the distribution of compressive stress generated in the stator 3 including the relief 50 shown in the first embodiment and the motor housing 2.
  • FIG. 7 in the case of the stator in which the relief portion 50 is not formed, it can be confirmed that high compressive stress is generated in the connecting portion 100J of the stator divided bodies 100 adjacent to each other in the circumferential direction.
  • FIG. 8 in the case of the stator 3 provided with the relief portion 50 shown in the above embodiment, generation of high compressive stress is suppressed in the connection portion 30J of the stator divisions 30 adjacent to each other. You can confirm that.
  • FIG. 9 is a figure which shows the result of having obtained distribution of the magnetic flux density in the stator which does not form the relief part 50, and a motor housing by simulation analysis.
  • FIG. 10 is a diagram showing the results of simulation analysis of the magnetic flux density distribution in the motor housing 2 and the stator 3 provided with the relief 50 shown in the first embodiment.
  • the flow of magnetic flux is blocked by the portion P where the magnetic flux density is low in the connecting portion 100J of the stator divided bodies 100 adjacent to each other in the circumferential direction. You can confirm that.
  • FIG. 9 shows the case of the stator in which the relief portion 50 is not formed, the flow of magnetic flux is blocked by the portion P where the magnetic flux density is low in the connecting portion 100J of the stator divided bodies 100 adjacent to each other in the circumferential direction. You can confirm that.
  • FIG. 9 shows the case of the stator in which the relief portion 50 is not formed, the flow of magnetic flux is blocked by the portion P where the magnetic flux density is low in the connecting portion 100J of the stator divided bodies
  • the flow of the magnetic flux is caused by the low magnetic flux density portion in the connecting portion 30J of the stator divisions 30 adjacent to each other. It is possible to confirm that the blocked portion is reduced and the magnetic flux is continuously flowing in the circumferential direction.
  • the provision of the relief portion 50 makes it possible to make the compression stress distribution in the circumferential direction of the stator 3 uniform. As a result, in the electromagnetic steel sheet forming the stator 3, it is possible to suppress the partial flow of the magnetic flux from flowing, and to suppress the cogging torque generated when the electric motor 1 is operated.
  • FIG. 11 is a diagram showing a change in cogging torque when the opening angle ⁇ of the relief portion 50 is changed. As shown in the figure, by setting the opening angle ⁇ of the relief portion 50 to 4 ° or more, the cogging torque becomes lower compared to the case where the opening angle ⁇ is 0 °, that is, the relief portion 50 is not formed. Can be confirmed.
  • each relief portion 50 formed in the circumferential direction are formed such that the opening angle ⁇ per one location of the connection portion 30J satisfies the above-described formulas (1) and (2). More specifically, each relief portion 50 is formed such that the opening angle ⁇ is in the range of 5 ° to 14 °.
  • FIG. 12 is a diagram showing a change in displacement of the motor housing 2 that occurs during operation of the electric motor 1 when the opening angle ⁇ of the relief 50 is changed.
  • the opening angle ⁇ of the relief portion 50 when the opening angle ⁇ of the relief portion 50 is set to be larger than 15 °, the displacement of the stator division body 30 caused by the circumferential displacement of the teeth 35 which occurs during operation of the electric motor 1 It can be confirmed that the displacement amount of the motor housing 2 is large. Therefore, by setting the opening angle ⁇ of the relief portion 50 to 15 ° or less, the displacement amount of the motor housing 2 generated during the operation of the electric motor 1 is suppressed, and the stator 3 and the motor housing 2 are firmly fixed. , Suppress the operation noise of the electric motor 1. Further, by setting the opening angle ⁇ of the relief portion 50 to 14 ° or less, the displacement amount of the motor housing 2 is further suppressed, and the operation noise of the electric motor 1 is suppressed more reliably.
  • the stator 3 is formed by connecting the plurality of stator divisions 30 in the circumferential direction, and connecting the stator divisions 30 adjacent to each other, and is rotatable inward in the radial direction of the stator 3 And a motor housing 2 in which a stator 3 is fixed by press-fitting. Further, on the outer peripheral surface of the connecting portion 30J of the stator divided bodies 30 adjacent to each other in the stator 3, a relief portion 50 for avoiding interference with the inner peripheral surface 2i of the motor housing 2 is formed. The relief portion 50 is formed such that the opening angle ⁇ per one location of the connecting portion 30J satisfies the above-described equations (1) and (2).
  • interference with the inner circumferential surface 2i of the motor housing 2 can be avoided by forming the relief portion 50 on the outer circumferential surface of the connecting portion 30J of the stator divisions 30 adjacent to each other.
  • the connecting portions 30 J of the stator divided bodies 30 are located at a plurality of locations in the circumferential direction of the stator 3. Therefore, the relief portions 50 formed on the outer peripheral portion of the connecting portion 30J of the stator divided bodies 30 are also located at a plurality of locations in the circumferential direction of the stator 3.
  • the motor housing 2 is formed by forming the relief portions 50 formed at a plurality of locations such that the opening angle ⁇ per one location of the connection portion 30J satisfies the above formulas (1) and (2).
  • the stator 3 is fixed to the motor housing 2 by press-fitting. As a result, the motor housing 2 is displaced with respect to the stator 3 and the generation of the operation noise of the electric motor 1 can be suppressed.
  • relief portions 50 are formed at nine locations in the circumferential direction.
  • the relief portion 50 is formed in a range of 5 ° to 14 ° with respect to the central axis of the stator 3 at one point. According to such a configuration, the stator 3 and the motor housing 2 are firmly fixed while suppressing the generation of the compressive stress due to the interference with the motor housing 2 at the connecting portion 30J of the stator divided bodies 30 adjacent to each other. be able to. Therefore, generation of the operation noise of the electric motor 1 can be suppressed more reliably.
  • the clearance 50 is the maximum press-fit margin between the motor housing 2 and the stator 3 in the radial direction of the stator 3 with respect to the other of the inner peripheral surface 2 i of the motor housing 2 and the outer peripheral surface of the connecting portion 30 J It is formed with a gap set to a size of twice or more of. According to such a configuration, it is possible to reliably avoid interference with the motor housing 2 and prevent the generation of compressive stress in the connecting portions 30J of the stator divided bodies 30 adjacent to each other.
  • the relief portion 50 is formed on the outer peripheral surface of the stator 3 and is a recessed groove having an arc-shaped surface 51 f located radially inward with respect to the inner peripheral surface 2 i of the motor housing 2. It was made to be 51. According to such a configuration, by forming the relief portion 50 on the outer peripheral surface of the stator 3, interference with the motor housing 2 is surely avoided in the connecting portion 30J of the stator divided bodies 30 adjacent to each other, and a compression stress is generated. Can be suppressed.
  • FIG. 13 is a view showing an electric motor 1 in a first modified example of the first embodiment.
  • the relief portion 50B is formed on the outer peripheral surface of the stator 3 so as to be composed of a flat portion 52 positioned radially inward with respect to the inner peripheral surface 2i of the motor housing 2. It is also good.
  • the flat portion 52 is formed so that the end portions 30e and 30f on the outer peripheral surface side of the stator divided body 30 adjacent to each other in the connecting portion 30J abut on both sides in the circumferential direction.
  • the stator 3 can be securely press-fitted to the motor housing 2 and the operation noise can be suppressed. .
  • FIG. 14 is a view showing an electric motor 1 according to a second modification of the first embodiment.
  • the relief portion 50C is formed on the outer peripheral surface of the stator 3 so as to be composed of a flat portion 52B which is positioned radially inward with respect to the inner peripheral surface 2i of the motor housing 2. It is also good.
  • the flat portion 52B is formed so that the end portions 30e and 30f on the outer peripheral surface side of the stator divided body 30 adjacent to each other in the connecting portion 30J abut on both sides in the circumferential direction.
  • the flat portion 52B is formed offset to one side in the circumferential direction with respect to a portion where the end portions 30e and 30f on the outer peripheral surface side of the stator divided bodies 30 adjacent to each other abut each other.
  • the stator 3 can be securely press-fitted to the motor housing 2 and the operation noise can be suppressed.
  • FIG. 15 is a view showing an electric motor 1 according to a third modification of the first embodiment.
  • the relief portion 50D is formed on the outer peripheral surface of the stator 3 and includes a V-shaped recessed portion 53A formed so as to be recessed inward in the radial direction with respect to the inner peripheral surface 2i of the motor housing 2.
  • the concave portion 53A is formed so as to straddle both sides in the circumferential direction in a portion where the end portions 30e and 30f of the outer peripheral surface side of the stator divided body 30 adjacent to each other in the connecting portion 30J abut each other.
  • the stator 3 can be securely press-fitted to the motor housing 2 to suppress the operation noise.
  • FIG. 16 is a view showing an electric motor 1 according to a fourth modification of the first embodiment.
  • the relief portion 50E is formed of a U-shaped recess 53B formed on the outer peripheral surface of the stator 3 and recessed inward in the radial direction with respect to the inner peripheral surface 2i of the motor housing 2. You may The recessed portion 53B is formed so as to straddle both sides in the circumferential direction in a portion where the end portions 30e and 30f of the outer peripheral surface side of the stator divided body 30 adjacent to each other in the connecting portion 30J abut each other.
  • the stator 3 can be securely press-fitted to the motor housing 2 and the operation noise can be suppressed.
  • FIG. 17 is an enlarged view of an essential part showing a connecting part 30J of the stator divided bodies 30 constituting the electric motor 1F in the second embodiment.
  • the electric motor 1F is provided radially inward of the motor housing 2F, the substantially cylindrical stator 3F housed in the motor housing 2F, and the stator 3F, and rotates relative to the stator 3 And a rotor (not shown) provided possible.
  • no relief is formed on the outer peripheral surface 3g of the stator 3F.
  • the relief portion 50F is formed on the inner peripheral surface 2i of the motor housing 2F, and comprises a housing side recessed groove 54 having an arc-shaped surface 54f spaced apart from the outer peripheral surface of the stator 3 radially outward.
  • the housing-side recessed groove 54 is formed so as to straddle both sides in the circumferential direction at a position opposed to a portion where the end portions 30e and 30f of the outer peripheral surface side of the stator divided body 30 adjacent to each other abut in the connecting portion 30J. It is done.
  • Such a relief portion 50F avoids the interference between the motor housing 2F and the outer peripheral surface 3f of the stator 3F in the connecting portion 30J of the stator divided bodies 30 adjacent to each other in the stator 3F.
  • the coupling portion 30J of the stator divided body 30 is compressed due to interference with the motor housing 2F. Stress can be suppressed.
  • FIG. 18 is a diagram showing the results of simulation analysis of the distribution of the compressive stress generated in the stator 3F having the relief portion 50F shown in the second embodiment and the motor housing 2F. As shown in the figure, in the case of the motor housing 2F provided with the relief portion 50F, it can be confirmed that high compressive stress is not generated in the connecting portion 30J of the stator divisions 30 adjacent to each other in the stator 3F.
  • FIG. 19 is a diagram showing the results of simulation analysis of the magnetic flux density distribution in the motor housing 2FR and the stator 3F including the relief 50F described in the second embodiment.
  • the portion where the flow of the magnetic flux is blocked by the portion having a low magnetic flux density is reduced. Do. Then, it can be confirmed that the magnetic flux flows continuously in the circumferential direction.
  • the relief portions 50 F formed at a plurality of circumferential positions are formed such that the opening angle ⁇ per one position of the connection portion 30 J satisfies the above formulas (1) and (2).
  • the motor housing 2 is displaced.
  • the stator 3F can be securely press-fitted and fixed to the motor housing 2F to suppress the operation noise.
  • it is possible to suppress the cogging torque by suppressing the generation of the compressive stress at the connecting portion 30J of the divided cores 30 adjacent to each other in the circumferential direction.
  • composition of each part of electric motors 1 and 1F was explained.
  • the present invention is not limited to this, and the detailed configuration thereof can be changed as appropriate.
  • the case where the number of the stator division bodies 30 which comprise the stators 3 and 3F was nine was demonstrated.
  • the present invention is not limited to this, and the number of stator divisions 30 can be appropriately changed.
  • the number of stator divisions 30 may be twelve or the like.
  • the electric motors 1 and 1F are used for the electric power steering and the like, but the application thereof is not limited at all. Furthermore, the electric motors 1 and 1F may be integrally provided with a reduction gear unit. In addition to this, it is possible to select the configuration described in the above embodiment or to appropriately change it to another configuration without departing from the spirit of the present invention.

Abstract

The purpose of the present invention is to suppress operating noise by reliably press-fixing a stator in a motor housing, and to suppress cogging torque by suppressing the development of compressive stress where stator segments adjacent to each other in a circumferential direction are linked. An electric motor 1 is provided with: a stator 3 which includes a plurality of stator segments 30 arranged in the circumferential direction and which is formed by linking stator segments 30 that are adjacent to each other; and a motor housing 2 on the inside of which the stator 3 is fixed by pressing. At least one of an inner peripheral surface 2i of the motor housing 2 and an outer peripheral surface of a link portion 30J of the adjacent stator segments 30 of the stator 3 is formed with a clearance portion 50 for avoiding interference with the other of the inner peripheral surface 2i of the motor housing 2 and the outer peripheral surface of the link portion 30J. A plurality of the clearance portions 50 are formed in a range of a total of 45° to 126° in the circumferential direction about the central axis of the stator 3.

Description

電動モータElectric motor
 本発明は、電動モータに関するものである。 The present invention relates to an electric motor.
 電動モータとして、例えばブラシレスモータがある。一般的なブラシレスモータは、モータハウジングに固定されているステータと、ステータの径方向内側に回転自在に設けられたロータと、を有している。ステータは、モータハウジングに固定される円筒状のコア本体と、このコア本体の内周面から径方向内側に向かって放射状に突設された複数のティースと、を有している。各ティース間には、径方向内側が開口されたスロットがそれぞれ形成される。このスロットを介して、各ティースに巻線が巻回される。 An example of the electric motor is a brushless motor. A general brushless motor has a stator fixed to a motor housing and a rotor rotatably provided radially inward of the stator. The stator has a cylindrical core body fixed to the motor housing, and a plurality of teeth protruding radially inward from the inner peripheral surface of the core body. Slots opened radially inward are respectively formed between the teeth. A winding is wound on each tooth through this slot.
 このような電動モータにおいて、各ティースへの巻線の巻回作業を容易にし、巻線の占積率を向上させるために、ステータを、周方向に複数に分割してなる分割コアによって形成する場合がある。すなわち、ステータは、周方向に複数の分割コアを並べて配置することで形成されている(例えば、特許文献1参照)。
 これら複数の分割コアは、溶接や嵌合等によって、互いに隣り合う分割コア同士が一体に連結されている。
In such an electric motor, in order to facilitate the winding operation of the winding to each tooth and to improve the space factor of the winding, the stator is formed by a plurality of divided cores which are divided in the circumferential direction. There is a case. That is, the stator is formed by arranging and arranging a plurality of divided cores in the circumferential direction (see, for example, Patent Document 1).
The divided cores adjacent to each other are integrally connected by welding, fitting, or the like.
 ところで、複数の分割コアからなるステータを、モータハウジングに圧入して固定する場合、互いに隣り合う分割コア同士の連結部分において、モータハウジングとの間で圧縮応力が発生することがある。ステータを構成する電磁鋼板は、圧縮応力が生じると、その部分で磁束が流れにくくなる特性を有している。このため、ステータの周方向において、分割コア同士の連結部分で生じる圧縮応力によって、磁束密度が低い部分が複数個所に生じることとなる。分割コア同士の連結部分で生じる圧縮応力が、周方向において不均一に生じると、ステータの周方向における磁束密度の分布にばらつきが生じてしまう。そして、磁束の流れが部分的に阻害される部位が生じてしまう。その結果、電動モータを作動させたときに、コギングトルクが大きくなってしまう。 By the way, when pressing and fixing the stator which consists of a plurality of division cores into the motor housing, a compression stress may occur between the division cores adjacent to each other with the motor housing. The electromagnetic steel sheet constituting the stator has a characteristic that when a compressive stress is generated, the magnetic flux hardly flows in that portion. For this reason, in the circumferential direction of the stator, portions with low magnetic flux density are generated at a plurality of places due to the compressive stress generated at the connection portion between the divided cores. If the compressive stress generated at the connection portion between the split cores is unevenly generated in the circumferential direction, the distribution of the magnetic flux density in the circumferential direction of the stator will vary. And the site | part to which the flow of magnetic flux is interrupted | blocked partially will arise. As a result, when the electric motor is operated, the cogging torque becomes large.
 例えば、特許文献1に開示された回転電機では、互いに隣り合う分割コア同士の連結部分の外周部に、径方向内側に向かって窪む凹部が形成されている。この回転電機において、周方向で互いに隣り合う分割コア同士は、ピンによって回動可能に連結されている。互いに隣り合う分割コア同士の連結部分の外周部に形成された凹部は、ピンを中心として互いに隣り合う分割コア同士が回転できるように形成されたものである。 For example, in the rotating electrical machine disclosed in Patent Document 1, a recess that is recessed inward in the radial direction is formed in the outer peripheral portion of the connection portion of the divided cores adjacent to each other. In this electric rotating machine, the divided cores adjacent to each other in the circumferential direction are rotatably connected by pins. The recessed part formed in the outer peripheral part of the connection part of mutually adjacent division cores is formed so that the division cores adjacent to each other can rotate centering on a pin.
特開2015-96024号公報JP, 2015-96024, A
 ここで、分割コア同士の連結部分に、モータハウジングとの間で圧縮応力が発生することを抑えるため、特許文献1に開示されたような、分割コア同士の連結部分の外周部に凹部を備えたステータを、モータハウジングに圧入することが考えられる。
 しかし、本発明者らの検討によると、凹部の大きさ等によっては、凹部を形成すると、モータハウジングとステータの接触代が減少し、モータハウジングに圧入したステータの固定強度が不足してしまう場合がある。すると、モータが作動した際に、ステータで発生する電磁力によって、ティースの先端部がステータの周方向に変位する。その結果、分割コアの外周部が変位し、この変位がモータハウジングに伝達されてモータハウジングが振動し、電動モータの作動音が発生する可能性があった。
Here, in order to suppress the generation of a compressive stress between the divided cores and the motor housing, a recess is provided on the outer peripheral portion of the connected portion between the divided cores as disclosed in Patent Document 1 It is conceivable to press the stator into the motor housing.
However, according to the study of the present inventors, depending on the size and the like of the recess, when the recess is formed, the contact margin of the motor housing and the stator decreases, and the fixing strength of the stator press-fit into the motor housing becomes insufficient. There is. Then, when the motor operates, the tip of the teeth is displaced in the circumferential direction of the stator by the electromagnetic force generated in the stator. As a result, the outer peripheral portion of the split core is displaced, and this displacement is transmitted to the motor housing to vibrate the motor housing, which may generate an operation noise of the electric motor.
 そこで、本発明は、上述した事情に鑑みてなされたものであって、モータハウジングにステータを確実に圧入固定して作動音を抑えるとともに、周方向で互いに隣り合うステータ分割体同士の連結部分で圧縮応力が生じるのを抑えて、コギングトルクを抑えることのできる電動モータを提供することである。 Therefore, the present invention has been made in view of the above-described circumstances, and the stator is securely press-fitted and fixed to the motor housing to suppress the operation noise, and at the connection portion between the stator divided bodies adjacent to each other in the circumferential direction. It is an object of the present invention to provide an electric motor capable of suppressing the cogging torque by suppressing the occurrence of compressive stress.
 本発明は、上記課題を解決するため、以下の手段を採用する。
 すなわち、本発明の電動モータは、周方向に複数のステータ分割体が配置され、互いに隣り合う前記ステータ分割体同士を連結してなるステータと、前記ステータが内側に圧入により固定されたモータハウジングと、を備え、前記モータハウジングの内周面、及び前記ステータにおいて互いに隣り合う前記ステータ分割体の連結部の外周面の少なくとも何れか一方に、前記モータハウジングの内周面及び前記連結部の外周面の他方との干渉を避ける逃げ部が形成され、前記逃げ部は、前記連結部1箇所あたりの前記ステータの中心軸を中心とした周方向の角度をθとし、前記ステータ分割体の個数をXとし、係数をKとしたとき、角度θ、個数X、及び係数Kが、
 θ=(360÷X)×K
 0.125≦K≦0.375
を満たすように形成されていることを特徴とする。
The present invention adopts the following means in order to solve the above problems.
That is, in the electric motor according to the present invention, a plurality of stator divisions are disposed in the circumferential direction, and a stator is formed by connecting adjacent stator divisions to each other, and a motor housing in which the stator is fixed by press fitting inside. And at least one of the inner peripheral surface of the motor housing and the outer peripheral surface of the connecting portion of the stator divisions adjacent to each other in the stator, the inner peripheral surface of the motor housing and the outer peripheral surface of the connecting portion A relief portion is formed to avoid interference with the other, and the relief portion has an angle in the circumferential direction about the central axis of the stator per one connection portion as θ, and the number of stator divisions is X When the coefficient is K, the angle θ, the number X, and the coefficient K are
θ = (360 ÷ X) × K
0.125 ≦ K ≦ 0.375
It is characterized in that it is formed so as to satisfy
 このような構成によれば、モータハウジングの内周面、及び互いに隣り合うステータ分割体の連結部の外周面の少なくとも一方に逃げ部を形成することで、モータハウジングの内周面及びステータ分割体の連結部の外周面の他方との干渉を避けることができる。これにより、ステータ分割体の連結部に、モータハウジングとの干渉による圧縮応力が生じるのを抑えることができる。
 また、ステータ分割体同士の連結部は、ステータの周方向において複数個所に位置する。したがって、ステータ分割体同士の連結部の外周部に形成された逃げ部も、ステータの周方向において複数個所に位置する。このため、モータハウジングに対して圧入により固定されたステータが、モータハウジングに確実に固定される。
According to such a configuration, the relief portion is formed on at least one of the inner peripheral surface of the motor housing and the outer peripheral surface of the connecting portion of the stator divisions adjacent to each other, whereby the inner peripheral surface of the motor housing and the stator division It is possible to avoid interference with the other of the outer peripheral surface of the connecting portion of As a result, it is possible to suppress the occurrence of compressive stress due to interference with the motor housing at the connection portion of the stator divided body.
Moreover, the connection part of stator division bodies is located in multiple places in the circumferential direction of a stator. Therefore, the relief portions formed on the outer peripheral portion of the connecting portion of the stator divided bodies are also located at a plurality of locations in the circumferential direction of the stator. For this reason, the stator fixed by press-fitting to the motor housing is securely fixed to the motor housing.
 また、本発明の電動モータは、前記ステータ分割体を9個有し、周方向に9個所に前記逃げ部が形成され、前記逃げ部は、1個所あたり、前記ステータの中心軸を中心として、5~14°の範囲に形成されているのが好ましい。 In the electric motor according to the present invention, nine of the stator divided bodies are formed, and the relief portion is formed at nine locations in the circumferential direction, and the relief portion is centered around the central axis of the stator at one location. Preferably, it is formed in the range of 5 to 14 °.
 このような構成によれば、互いに隣り合うステータ分割体同士の連結部において、モータハウジングとの干渉による圧縮応力が生じるのを抑えつつ、ステータとモータハウジングとを強固に固定することができる。 According to such a configuration, it is possible to firmly fix the stator and the motor housing while suppressing the generation of the compressive stress due to the interference with the motor housing at the connection portion of the stator divided bodies adjacent to each other.
 また、本発明の電動モータは、前記逃げ部は、前記モータハウジングの内周面及び前記連結部の外周面の他方に対し、前記ステータの径方向において、前記ステータの直径の0.2%以上の寸法に設定された隙間を有して形成されているようにしてもよい。 In the electric motor according to the present invention, the relief portion is 0.2% or more of the diameter of the stator in the radial direction of the stator with respect to the other of the inner peripheral surface of the motor housing and the outer peripheral surface of the connecting portion. It may be formed with a gap set to the dimension of.
 このような構成によれば、互いに隣り合うステータ分割体同士の連結部において、モータハウジングとの干渉を確実に避け、圧縮応力が生じるのを抑えることができる。 According to such a configuration, it is possible to reliably avoid interference with the motor housing and to suppress the occurrence of compressive stress in the connection portion between the stator divided bodies adjacent to each other.
 また、本発明の電動モータは、前記逃げ部は、前記ステータの外周面に形成され、前記モータハウジングの内周面に対して径方向内側に間隔を隔てて位置する円弧状面からなるようにしてもよい。 Further, in the electric motor according to the present invention, the relief portion is formed on an outer peripheral surface of the stator, and is formed of an arc-shaped surface located radially inward with respect to the inner peripheral surface of the motor housing. May be
 また、本発明の電動モータは、前記逃げ部は、前記ステータの外周面に形成され、前記モータハウジングの内周面に対して径方向内側に間隔を隔てて位置する平面部からなるようにしてもよい。 Further, in the electric motor according to the present invention, the relief portion is formed on a flat portion which is formed on the outer peripheral surface of the stator and spaced radially inward with respect to the inner peripheral surface of the motor housing. It is also good.
 さらに、前記逃げ部は、前記ステータの外周面に形成され、前記モータハウジングの内周面に対して径方向内側に窪んで形成されたV字状又はU字状の凹部からなるようにしてもよい。 Furthermore, the relief portion may be a V-shaped or U-shaped recess formed on the outer peripheral surface of the stator and recessed inward in the radial direction with respect to the inner peripheral surface of the motor housing. Good.
 このような構成によれば、ステータの外周面に逃げ部を形成することで、互いに隣り合うステータ分割体同士の連結部において、モータハウジングとの干渉を確実に避け、圧縮応力が生じるのを抑えることができる。 According to such a configuration, by forming the relief portion on the outer peripheral surface of the stator, interference with the motor housing is surely avoided at the connection portion of the stator divisions adjacent to each other, and the generation of the compressive stress is suppressed. be able to.
 また、本発明の電動モータは、前記逃げ部は、前記モータハウジングの内周面に形成され、前記ステータの外周面に対して径方向外側に間隔を隔てて位置する円弧状面からなるようにしてもよい。 Further, in the electric motor of the present invention, the relief portion is formed on an inner peripheral surface of the motor housing, and is formed of an arc-shaped surface located radially outward with respect to the outer peripheral surface of the stator. May be
 このような構成によれば、モータハウジングの内周面に逃げ部を形成することで、互いに隣り合うステータ分割体同士の連結部において、モータハウジングとの干渉を確実に避け、圧縮応力が生じるのを抑えることができる。 According to such a configuration, by forming the relief portion on the inner peripheral surface of the motor housing, interference with the motor housing is surely avoided at the connection portion between adjacent stator divided bodies, and a compressive stress is generated. Can be reduced.
 本発明によれば、モータハウジングにステータを確実に圧入固定して作動音を抑えるとともに、周方向で互いに隣り合うステータ分割体同士の連結部分で圧縮応力が生じるのを抑えて、コギングトルクを抑えることが可能となる。 According to the present invention, the stator is securely press-fit and fixed to the motor housing to suppress the operation noise, and the cogging torque is suppressed by suppressing the generation of the compressive stress at the connecting portion of the stator divided bodies adjacent to each other in the circumferential direction. It becomes possible.
本発明の第1の実施形態における電動モータの斜視図である。It is a perspective view of the electric motor in a 1st embodiment of the present invention. 本発明の第1の実施形態における電動モータの平面図である。It is a top view of the electric motor in a 1st embodiment of the present invention. 本発明の第1の実施形態における電動モータを構成するステータの斜視図である。It is a perspective view of a stator which constitutes an electric motor in a 1st embodiment of the present invention. 本発明の第1の実施形態における電動モータのステータを構成するステータ分割体30の斜視図である。It is a perspective view of stator division object 30 which constitutes a stator of an electric motor in a 1st embodiment of the present invention. 本発明の第1の実施形態におけるステータ分割体を構成する分割コアの斜視図である。It is a perspective view of a division core which constitutes a stator division object in a 1st embodiment of the present invention. 本発明の第1の実施形態におけるステータ分割体同士の連結部を示す要部拡大図である。It is a principal part enlarged view which shows the connection part of the stator division bodies in the 1st Embodiment of this invention. 逃げ部を形成しないステータとモータハウジングに生じる圧縮応力の分布を、シミュレーション解析により得た結果を示す図である。It is a figure which shows the result of having obtained distribution of the compression stress which arises in the stator and motor housing which do not form a relief part by simulation analysis. 本発明の第1の実施形態における逃げ部を備えたステータとモータハウジング2に生じる圧縮応力の分布を、シミュレーション解析により得た結果を示す図である。It is a figure which shows the result of having obtained distribution of the compression stress which arises in the stator provided with the relief part in 1st Embodiment of this invention, and the motor housing 2 by simulation analysis. 逃げ部を形成しないステータとモータハウジングにおける磁束密度の分布を、シミュレーション解析により得た結果を示す図である。It is a figure which shows the result of having obtained distribution of the magnetic flux density in the stator which does not form a relief part, and a motor housing by simulation analysis. 本発明の第1の実施形態における逃げ部を備えるステータとモータハウジングにおける磁束密度の分布を、シミュレーション解析により得た結果を示す図である。It is a figure which shows the result of having obtained distribution of the magnetic flux density in the stator provided with the relief part in the 1st Embodiment of this invention, and a motor housing by simulation analysis. 本発明の第1の実施形態における逃げ部の開き角を変化させた場合のコギングトルクの変化を示す図である。It is a figure which shows the change of the cogging torque at the time of changing the opening angle of the relief part in the 1st Embodiment of this invention. 本発明の第1の実施形態における逃げ部の開き角を変化させた場合の、電動モータの作動中に生じるモータハウジングの変位量の変化を示す図である。It is a figure which shows the change of the displacement amount of the motor housing which arises during the action | operation of an electric motor at the time of changing the opening angle of the relief part in the 1st Embodiment of this invention. 本発明の第1の実施形態における電動モータの第1変形例を示す図である。It is a figure which shows the 1st modification of the electric motor in the 1st Embodiment of this invention. 本発明の第1の実施形態における電動モータの第2変形例を示す図である。It is a figure which shows the 2nd modification of the electric motor in the 1st Embodiment of this invention. 本発明の第1の実施形態における電動モータの第3変形例を示す図である。It is a figure which shows the 3rd modification of the electric motor in the 1st Embodiment of this invention. 本発明の第1の実施形態における電動モータの第4変形例を示す図である。It is a figure which shows the 4th modification of the electric motor in the 1st Embodiment of this invention. 本発明の第2の実施形態における電動モータを構成するステータ分割体同士の連結部を示す要部拡大図である。It is a principal part enlarged view which shows the connection part of the stator division bodies which comprise the electric motor in the 2nd Embodiment of this invention. 本発明の第2の実施形態における逃げ部を備えるステータとモータハウジングに生じる圧縮応力の分布を、シミュレーション解析により得た結果を示す図である。It is a figure which shows the result of having obtained distribution of the compressive stress which arises in the stator provided with the relief part in the 2nd Embodiment of this invention, and a motor housing by simulation analysis. 本発明の第2の実施形態における逃げ部を備えるステータとモータハウジングにおける磁束密度の分布を、シミュレーション解析により得た結果を示す図である。It is a figure which shows the result of having obtained distribution of the magnetic flux density in the stator provided with the relief part in the 2nd Embodiment of this invention, and a motor housing by simulation analysis.
 次に、本発明の実施形態に係る電動モータについて、図面を参照して説明をする。 Next, an electric motor according to an embodiment of the present invention will be described with reference to the drawings.
(第1の実施形態)
 図1は、第1の実施形態における電動モータ1の斜視図である。
 同図に示すように、電動モータ1は、例えば車両に搭載される電動パワーステアリング等の電装品の駆動源となるものである。
First Embodiment
FIG. 1 is a perspective view of the electric motor 1 according to the first embodiment.
As shown to the same figure, the electric motor 1 becomes a drive source of electrical components, such as an electric power steering mounted in a vehicle, for example.
(電動モータ)
 電動モータ1は、いわゆるブラシレスモータである。電動モータ1は、モータハウジング2と、モータハウジング2内に収納されている略円筒状のステータ3と、ステータ3の径方向内側に設けられ、ステータ3に対して回転可能に設けられたロータ(図示無し)と、を備えている。
(Electric motor)
The electric motor 1 is a so-called brushless motor. The electric motor 1 is provided radially inside the motor housing 2, the substantially cylindrical stator 3 housed in the motor housing 2, and the stator 3, and a rotor provided rotatably with respect to the stator 3 ( Not shown) and.
(モータハウジング)
 モータハウジング2は、例えばアルミダイキャスト等の放熱性の優れた材料に形成されている。モータハウジング2は、円筒状に延びる筒状部21と、筒状部21の一端を閉塞する端部閉塞部22と、を一体に備えた有底筒状をなしている。モータハウジング2は、筒状部21の他端に、径方向外側に延びるフランジ部23が形成されている。フランジ部23には、車両の車体の所定位置に固定するためのボルトが挿通されるボルト挿通穴23hが、複数個所に形成されている。
(Motor housing)
The motor housing 2 is formed of, for example, a material having excellent heat dissipation such as aluminum die casting. The motor housing 2 has a bottomed cylindrical shape integrally including a cylindrical portion 21 extending in a cylindrical shape and an end closing portion 22 closing the one end of the cylindrical portion 21. In the motor housing 2, a flange portion 23 extending outward in the radial direction is formed at the other end of the cylindrical portion 21. In the flange portion 23, bolt insertion holes 23h through which bolts for fixing at predetermined positions of the vehicle body of the vehicle are formed are formed at a plurality of places.
(ステータ)
 図2は、電動モータ1の平面図である。図3は、ステータ3の斜視図である。
 図2に示すように、ステータ3は、略円筒状に形成されている。ステータ3は、その中心軸方向とモータハウジング2の筒状部21(図1参照)の中心軸方向とが一致した状態で、モータハウジング2に圧入されている。
 図2、図3に示すように、ステータ3は、ステータコア31と、ステータコア31を被覆するインシュレータ32と、このインシュレータ32の上からステータコア31に巻回されるコイル33と、を備えている。
(Stator)
FIG. 2 is a plan view of the electric motor 1. FIG. 3 is a perspective view of the stator 3.
As shown in FIG. 2, the stator 3 is formed in a substantially cylindrical shape. The stator 3 is press-fit into the motor housing 2 in a state in which the central axis direction coincides with the central axis direction of the cylindrical portion 21 (see FIG. 1) of the motor housing 2.
As shown in FIGS. 2 and 3, the stator 3 includes a stator core 31, an insulator 32 covering the stator core 31, and a coil 33 wound on the stator 32 from above the insulator 32.
 ステータコア31は、磁路を形成する円筒状のコア部34と、コア部34から径方向内側に向かって突出する複数(本実施形態においては9個)のティース35と、を備えている。このステータコア31は、周方向に複数(本実施形態においては9個)配置されたステータ分割体30から形成されている。 The stator core 31 includes a cylindrical core portion 34 forming a magnetic path, and a plurality of (nine in the present embodiment) teeth 35 protruding radially inward from the core portion 34. The stator core 31 is formed of a plurality of (seven in the present embodiment) stator divisions 30 arranged in the circumferential direction.
 図4は、ステータ分割体30の斜視図である。図5は、ステータ分割体30を構成する分割コア36の斜視図である。図6は、ステータ分割体30同士の連結部30Jを示す要部拡大図である。
 図4、図5に示すように、各ステータ分割体30は、コア部34を周方向に複数に分割してなる円弧状断面の分割コア36と、分割コア36から径方向内側に向かって突出するティース35と、を一体に有している。このようなステータ分割体30は、複数の金属板を軸方向に積層することにより形成されている。なお、ステータ分割体30は、複数の金属板を軸方向に積層して形成する場合に限られるものではなく、例えば、軟磁性粉を加圧成形することにより形成してもよい。
FIG. 4 is a perspective view of the stator divided body 30. FIG. FIG. 5 is a perspective view of the split core 36 constituting the stator split body 30. FIG. FIG. 6 is an enlarged view of an essential part showing the connecting part 30J of the stator divided bodies 30 with each other.
As shown in FIGS. 4 and 5, each stator division body 30 protrudes radially inward from a division core 36 of an arc-shaped cross section formed by dividing the core portion 34 into a plurality of pieces in the circumferential direction. And the teeth 35 to be integrated. Such a stator division body 30 is formed by laminating a plurality of metal plates in the axial direction. The stator division body 30 is not limited to the case where the plurality of metal plates are stacked in the axial direction, and may be formed, for example, by pressure molding soft magnetic powder.
 各分割コア36の周方向両端部には、周方向で隣り合う他の分割コア36と連結するための嵌合凸部37A、嵌合凹部37Bが形成されている。分割コア36の周方向一方の端部に形成された嵌合凸部37Aは、分割コア36の径方向中間部が、周方向一方の側に突出して形成されている。分割コア36の周方向他方の端部に形成された嵌合凹部37Bは、分割コア36の径方向中間部が周方向一方の側に窪んで形成されている。 At the circumferential direction both ends of each split core 36, a fitting projection 37A and a fitting recess 37B for coupling to other split cores 36 adjacent in the circumferential direction are formed. The fitting convex portion 37A formed at one circumferential end of the split core 36 is formed such that a radial intermediate portion of the split core 36 protrudes to one circumferential side. The fitting concave portion 37B formed at the other end of the split core 36 in the circumferential direction is formed such that the radial intermediate portion of the split core 36 is recessed toward one side in the circumferential direction.
 図6に示すように、互いに隣り合うステータ分割体30同士は、周方向一方の側の分割コア36の嵌合凸部37Aが、周方向他方の側の分割コア36の嵌合凹部37Bに嵌合されることにより、互いに連結されている。 As shown in FIG. 6, in the stator divided bodies 30 adjacent to each other, the fitting convex portion 37A of the split core 36 on one side in the circumferential direction fits in the fitting recess 37B of the split core 36 on the other side in the circumferential direction It is mutually connected by being united.
 図4に詳示するように、インシュレータ32は、樹脂等の絶縁性材料により形成されている。各ステータ分割体30のティース35の周囲を覆うように、且つ軸方向に分割可能に設けられている。そすて、ティース35の軸方向両端からインシュレータ32を装着することにより、このインシュレータ32によってティース35が被覆される。 As shown in detail in FIG. 4, the insulator 32 is formed of an insulating material such as a resin. It is provided so as to cover the circumference of the teeth 35 of each stator divided body 30 and to be axially dividable. Then, by mounting the insulators 32 from both axial ends of the teeth 35, the teeth 35 are covered with the insulators 32.
 コイル33は、インシュレータ32の上から、各ティース35に巻回されている。本実施形態において、各ティース35に巻回されたコイル33は、U相、V相、W相の順に周方向に並んで配置される。 The coil 33 is wound around the teeth 35 from above the insulator 32. In the present embodiment, the coils 33 wound around the teeth 35 are arranged side by side in the circumferential direction in the order of the U phase, the V phase, and the W phase.
 図1、図3に示すように、ステータ3は、軸方向一端側に配置されたバスバー部材38をさらに備えている。バスバー部材38は、U相、V相、W相のコイル33の端部が接続されるコイル接続部38aと、車体側のコネクタが接続される3相のコネクタ端子部38bと、各コイル接続部38aとコネクタ端子部38bとを相ごとに接続するバスバー本体38c(図3参照)と、を備えている。各コイル33に給電が行われると、このコイル33に、ロータ(図示無し)を回転させるための磁界が生成される。 As shown to FIG. 1, FIG. 3, the stator 3 is further provided with the bus-bar member 38 arrange | positioned at the axial direction one end side. The bus bar member 38 includes a coil connection portion 38a to which end portions of U-phase, V-phase, and W-phase coils 33 are connected, a three-phase connector terminal portion 38b to which a vehicle-side connector is connected, and coil connection portions And a bus bar main body 38c (see FIG. 3) for connecting each of the phases 38a and the connector terminal portion 38b. When each coil 33 is fed, a magnetic field is generated in the coil 33 for rotating a rotor (not shown).
(ロータ)
 ロータ(図示無し)は、その一端が、モータハウジング2の端部閉塞部22に設けられた図示しない軸受を介し、その中心軸回りに回転自在に支持されている。このロータは、その外周面に、リング状のマグネットを備えている。このマグネットには、複数の磁極が周方向に順番に形成されるように着磁されている。例えば、本実施形態では、マグネットは、4極に着磁されている。
(Rotor)
One end of the rotor (not shown) is rotatably supported around its central axis via a bearing (not shown) provided at the end closing portion 22 of the motor housing 2. The rotor is provided with a ring-shaped magnet on its outer peripheral surface. The magnet is magnetized such that a plurality of magnetic poles are sequentially formed in the circumferential direction. For example, in the present embodiment, the magnet is magnetized in four poles.
(逃げ部)
 図2、図6に示すように、上記ステータ3には、互いに隣り合うステータ分割体30の連結部30Jの外周面に、モータハウジング2の内周面2iとの干渉を避ける逃げ部50が形成されている。
 本実施の形態において、ステータ分割体30は、周方向に9個設けられている。したがって、互いに隣り合うステータ分割体30の連結部30Jは9個所である。逃げ部50は、全ての連結部30Jの外周面に形成され、計9個所に設けられている。
(Runaway part)
As shown in FIG. 2 and FIG. 6, the stator 3 is provided with a relief portion 50 on the outer peripheral surface of the connecting portion 30 J of the stator divisions 30 adjacent to each other to avoid interference with the inner peripheral surface 2 i of the motor housing 2. It is done.
In the present embodiment, nine stator divisions 30 are provided in the circumferential direction. Therefore, there are nine connecting portions 30J of stator divisions 30 adjacent to each other. The relief portions 50 are formed on the outer peripheral surface of all the connection portions 30J, and provided at a total of nine places.
 図6に示すように、各逃げ部50は、円弧状面51fを有した凹溝51からなる。円弧状面51fは、モータハウジング2の内周面2iに対し、径方向内側に間隔を隔てて位置し、ステータ3の中心と同心円状に形成されている。円弧状面51fは、連結部30Jにおいて、互いに隣り合うステータ分割体30の外周面側の端部30e,30f同士が突き当たる部分を、周方向の両側に跨がるように形成されている。 As shown in FIG. 6, each relief portion 50 is formed of a recessed groove 51 having an arc-shaped surface 51 f. The arcuate surface 51 f is located radially inward of the inner circumferential surface 2 i of the motor housing 2 at an interval, and is formed concentrically with the center of the stator 3. The arc-shaped surface 51f is formed so as to straddle both sides in the circumferential direction in a portion where the end portions 30e and 30f of the outer peripheral surface side of the stator divided bodies 30 adjacent to each other in the connecting portion 30J abut.
 このような凹溝51からなる逃げ部50は、連結部30Jの1箇所あたりにおけるステータ3の中心軸を中心とした開き角(周方向の角度、以下、単に開き角という)をθとし、ステータ分割体30の個数をXとし、係数をKとしたとき、角度θ、個数X、及び係数Kが、
 θ=(360÷X)×K     ・・・(1)
 0.125≦K≦0.375 ・・・(2)
を満たすように形成されている。
 本第1の実施形態において、逃げ部50は、開き角θが、5°~14°の範囲に形成されている。本第1の実施形態において、ステータ分割体30の個数は9個であるので、上記式(1)のXに9を代入すると、逃げ部50の開き角θは、5°≦θ≦15°になるので、本第1の実施形態の逃げ部50の開き角θは、上記式(1)、式(2)を満たす。
The clearance portion 50 formed of such recessed grooves 51 has an opening angle (circumferential angle, hereinafter simply referred to as opening angle) centered on the central axis of the stator 3 at one location of the connecting portion 30J as θ, and the stator Assuming that the number of divided bodies 30 is X and the coefficient is K, the angle θ, the number X, and the coefficient K are
θ = (360 ÷ X) × K (1)
0.125 ≦ K ≦ 0.375 (2)
It is formed to meet the
In the first embodiment, the relief portion 50 is formed to have an opening angle θ in the range of 5 ° to 14 °. In the first embodiment, the number of stator divisions 30 is nine. Therefore, when 9 is substituted for X in the above equation (1), the opening angle θ of the relief 50 is 5 ° ≦ θ ≦ 15 °. Therefore, the opening angle θ of the relief portion 50 of the first embodiment satisfies the above formulas (1) and (2).
 また、凹溝51は、モータハウジング2の内周面2iに対し、ステータ3の径方向において、モータハウジング2とステータ3との最大圧入代の2倍以上の寸法dに設定された隙間を有して形成されている。本実施形態において、モータハウジング2とステータ3との最大圧入代は0.1mmに設定されている。また、凹溝51の円弧状面51fは、モータハウジング2の内周面2iに対し、0.2mm以上の寸法dの隙間を隔てるよう形成されている。 Further, the recessed groove 51 has a gap set to a dimension d which is twice or more the maximum press-fit allowance between the motor housing 2 and the stator 3 in the radial direction of the stator 3 with respect to the inner peripheral surface 2i of the motor housing 2 It is formed. In the present embodiment, the maximum press-fit allowance between the motor housing 2 and the stator 3 is set to 0.1 mm. Further, the arc-shaped surface 51 f of the recessed groove 51 is formed so as to separate a gap of a dimension d of 0.2 mm or more with respect to the inner peripheral surface 2 i of the motor housing 2.
 上記したような電動モータ1は、外部に設けられたコントローラ基板(図示無し)に供給された電力が、電動モータ1の各コイル33に選択的に供給される。すると、ステータ3(ティース35)に所定の磁界が形成され、この磁界とロータ(図示無し)のマグネットとの間で磁気的な吸引力や反発力が生じる。これにより、ロータ(図示無し)が継続的に回転する。 In the electric motor 1 as described above, the electric power supplied to the controller board (not shown) provided outside is selectively supplied to the coils 33 of the electric motor 1. Then, a predetermined magnetic field is formed on the stator 3 (the teeth 35), and a magnetic attractive force or repulsive force is generated between the magnetic field and the magnet of the rotor (not shown). Thereby, a rotor (not shown) rotates continuously.
 このような電動モータ1において、ステータ3は、モータハウジング2に圧入されているが、互いに隣り合うステータ分割体30の連結部30Jの外周面に逃げ部50が形成されている。これにより、ステータ分割体30の連結部30Jが、モータハウジング2の内周面2iとの干渉を避ける。これにより、ステータ分割体30の連結部30Jに、モータハウジング2との干渉による圧縮応力が生じてしまうのを抑えられる。 In the electric motor 1 as described above, the stator 3 is press-fit into the motor housing 2, but the relief portion 50 is formed on the outer peripheral surface of the connecting portion 30 J of the stator divisions 30 adjacent to each other. Thereby, the connecting portion 30J of the stator divided body 30 avoids interference with the inner peripheral surface 2i of the motor housing 2. As a result, generation of compressive stress due to interference with the motor housing 2 can be suppressed in the connecting portion 30J of the stator divided body 30.
 図7は、逃げ部50を形成しないステータとモータハウジングに生じる圧縮応力の分布を、シミュレーション解析により得た結果を示す図である。図8は、上記第1の実施形態で示した逃げ部50を備えるステータ3とモータハウジング2とに生じる圧縮応力の分布を、シミュレーション解析により得た結果を示す図である。
 図7に示すように、逃げ部50を形成しないステータの場合、周方向で互いに隣り合うステータ分割体100同士の連結部100Jにおいて、高い圧縮応力が生じていることが確認できる。これに対し、図8に示すように、上記実施形態で示した逃げ部50を備えるステータ3の場合、互いに隣り合うステータ分割体30の連結部30Jにおいて、高い圧縮応力の発生が抑えられていることが確認できる。
FIG. 7 is a diagram showing the results of simulation analysis of the distribution of compressive stress generated in the stator and the motor housing in which the relief portion 50 is not formed. FIG. 8 is a diagram showing the results of simulation analysis of the distribution of compressive stress generated in the stator 3 including the relief 50 shown in the first embodiment and the motor housing 2.
As shown in FIG. 7, in the case of the stator in which the relief portion 50 is not formed, it can be confirmed that high compressive stress is generated in the connecting portion 100J of the stator divided bodies 100 adjacent to each other in the circumferential direction. On the other hand, as shown in FIG. 8, in the case of the stator 3 provided with the relief portion 50 shown in the above embodiment, generation of high compressive stress is suppressed in the connection portion 30J of the stator divisions 30 adjacent to each other. You can confirm that.
 また、図9は、逃げ部50を形成しないステータとモータハウジングにおける磁束密度の分布を、シミュレーション解析により得た結果を示す図である。図10は、上記第1の実施形態で示した逃げ部50を備えるステータ3とモータハウジング2とにおける磁束密度の分布を、シミュレーション解析により得た結果を示す図である。
 図9に示すように、逃げ部50を形成しないステータの場合、周方向で互いに隣り合うステータ分割体100同士の連結部100Jにおいて、磁束密度が低い部分Pによって、磁束の流れが阻害されていることが確認できる。これに対し、図10に示すように、上記実施形態で示した逃げ部50を備えるステータ3の場合、互いに隣り合うステータ分割体30の連結部30Jにおいて、磁束密度が低い部分によって磁束の流れが阻害される部分が減り、磁束が周方向に連続的に流れていることが確認できる。
Moreover, FIG. 9 is a figure which shows the result of having obtained distribution of the magnetic flux density in the stator which does not form the relief part 50, and a motor housing by simulation analysis. FIG. 10 is a diagram showing the results of simulation analysis of the magnetic flux density distribution in the motor housing 2 and the stator 3 provided with the relief 50 shown in the first embodiment.
As shown in FIG. 9, in the case of the stator in which the relief portion 50 is not formed, the flow of magnetic flux is blocked by the portion P where the magnetic flux density is low in the connecting portion 100J of the stator divided bodies 100 adjacent to each other in the circumferential direction. You can confirm that. On the other hand, as shown in FIG. 10, in the case of the stator 3 provided with the relief portion 50 shown in the above embodiment, the flow of the magnetic flux is caused by the low magnetic flux density portion in the connecting portion 30J of the stator divisions 30 adjacent to each other. It is possible to confirm that the blocked portion is reduced and the magnetic flux is continuously flowing in the circumferential direction.
 このように、逃げ部50を備えることにより、ステータ3の周方向における圧縮応力分布の均一化を図ることができる。その結果、ステータ3を形成する電磁鋼板において、部分的に磁束が流れにくくなるのを抑えることができ、電動モータ1を作動させたときに生じるコギングトルクを抑える。 As described above, the provision of the relief portion 50 makes it possible to make the compression stress distribution in the circumferential direction of the stator 3 uniform. As a result, in the electromagnetic steel sheet forming the stator 3, it is possible to suppress the partial flow of the magnetic flux from flowing, and to suppress the cogging torque generated when the electric motor 1 is operated.
 図11は、逃げ部50の開き角θを変化させた場合のコギングトルクの変化を示す図である。
 同図に示すように、逃げ部50の開き角θを4°以上に設定することにより、開き角θを0°、すなわち逃げ部50を形成しない場合と比較して、コギングトルクが低くなっていることが確認できる。
FIG. 11 is a diagram showing a change in cogging torque when the opening angle θ of the relief portion 50 is changed.
As shown in the figure, by setting the opening angle θ of the relief portion 50 to 4 ° or more, the cogging torque becomes lower compared to the case where the opening angle θ is 0 °, that is, the relief portion 50 is not formed. Can be confirmed.
 また、周方向に複数形成された逃げ部50は、連結部30Jの1箇所あたりの開き角θが、上記式(1)、式(2)を満たすように形成されている。より具体的には、各逃げ部50は、開き角θが5°~14°の範囲となるように形成されている。 Further, the plurality of relief portions 50 formed in the circumferential direction are formed such that the opening angle θ per one location of the connection portion 30J satisfies the above-described formulas (1) and (2). More specifically, each relief portion 50 is formed such that the opening angle θ is in the range of 5 ° to 14 °.
 図12は、逃げ部50の開き角θを変化させた場合の、電動モータ1の作動中に生じるモータハウジング2の変位量の変化を示す図である。
 同図に示すように、逃げ部50の開き角θを15°よりも大きく設定すると、電動モータ1の作動中に生じるティース35の周方向の変位にともなうステータ分割体30の変位に起因する、モータハウジング2の変位量が大きくなっていることが確認できる。したがって、逃げ部50の開き角θを、15°以下に設定することにより、電動モータ1の作動中に生じるモータハウジング2の変位量を抑え、ステータ3とモータハウジング2とを強固に固定して、電動モータ1の作動音を抑える。さらに、逃げ部50の開き角θを14°以下に設定することにより、モータハウジング2の変位量をさらに抑え、より確実に電動モータ1の作動音を抑える。
FIG. 12 is a diagram showing a change in displacement of the motor housing 2 that occurs during operation of the electric motor 1 when the opening angle θ of the relief 50 is changed.
As shown in the figure, when the opening angle θ of the relief portion 50 is set to be larger than 15 °, the displacement of the stator division body 30 caused by the circumferential displacement of the teeth 35 which occurs during operation of the electric motor 1 It can be confirmed that the displacement amount of the motor housing 2 is large. Therefore, by setting the opening angle θ of the relief portion 50 to 15 ° or less, the displacement amount of the motor housing 2 generated during the operation of the electric motor 1 is suppressed, and the stator 3 and the motor housing 2 are firmly fixed. , Suppress the operation noise of the electric motor 1. Further, by setting the opening angle θ of the relief portion 50 to 14 ° or less, the displacement amount of the motor housing 2 is further suppressed, and the operation noise of the electric motor 1 is suppressed more reliably.
 このように、上述の電動モータ1は、周方向に複数のステータ分割体30が配置され、互いに隣り合うステータ分割体30同士を連結してなるステータ3と、ステータ3の径方向内側に回転自在に設けられたロータ(図示無し)と、ステータ3が内側に圧入により固定されたモータハウジング2と、を備えている。そして、ステータ3において互いに隣り合うステータ分割体30の連結部30Jの外周面に、モータハウジング2の内周面2iとの干渉を避ける逃げ部50が形成されている。逃げ部50は、連結部30Jの1箇所あたりの開き角θが、上記式(1)、式(2)を満たすように形成されている。 As described above, in the electric motor 1 described above, the stator 3 is formed by connecting the plurality of stator divisions 30 in the circumferential direction, and connecting the stator divisions 30 adjacent to each other, and is rotatable inward in the radial direction of the stator 3 And a motor housing 2 in which a stator 3 is fixed by press-fitting. Further, on the outer peripheral surface of the connecting portion 30J of the stator divided bodies 30 adjacent to each other in the stator 3, a relief portion 50 for avoiding interference with the inner peripheral surface 2i of the motor housing 2 is formed. The relief portion 50 is formed such that the opening angle θ per one location of the connecting portion 30J satisfies the above-described equations (1) and (2).
 このように、互いに隣り合うステータ分割体30の連結部30Jの外周面に逃げ部50を形成することにより、モータハウジング2の内周面2iとの干渉を避けることができる。これにより、ステータ分割体30の連結部30Jに、モータハウジング2との干渉による圧縮応力が生じるのを抑えることができる。その結果、ステータ3に、部分的に磁束が流れにくい部位が生じるのを抑え、コギングトルクを抑えることができる。 Thus, interference with the inner circumferential surface 2i of the motor housing 2 can be avoided by forming the relief portion 50 on the outer circumferential surface of the connecting portion 30J of the stator divisions 30 adjacent to each other. Thereby, it is possible to suppress the occurrence of the compressive stress due to the interference with the motor housing 2 in the connecting portion 30J of the stator divided body 30. As a result, it is possible to suppress the cogging torque from being generated partially in the stator 3 at which the part where the magnetic flux hardly flows is generated.
 また、ステータ分割体30同士の連結部30Jは、ステータ3の周方向において複数個所に位置している。したがって、ステータ分割体30同士の連結部30Jの外周部に形成された逃げ部50も、ステータ3の周方向において複数個所に位置する。
 このように、複数個所に形成された逃げ部50を、連結部30Jの1箇所あたりの開き角θが、上記式(1)、式(2)を満たすように形成することにより、モータハウジング2に対して圧入により固定されたステータ3が、モータハウジング2に確実に固定される。これにより、ステータ3に対してモータハウジング2が変位し、電動モータ1の作動音が生じてしまうのを抑えることができる。
The connecting portions 30 J of the stator divided bodies 30 are located at a plurality of locations in the circumferential direction of the stator 3. Therefore, the relief portions 50 formed on the outer peripheral portion of the connecting portion 30J of the stator divided bodies 30 are also located at a plurality of locations in the circumferential direction of the stator 3.
As described above, the motor housing 2 is formed by forming the relief portions 50 formed at a plurality of locations such that the opening angle θ per one location of the connection portion 30J satisfies the above formulas (1) and (2). The stator 3 is fixed to the motor housing 2 by press-fitting. As a result, the motor housing 2 is displaced with respect to the stator 3 and the generation of the operation noise of the electric motor 1 can be suppressed.
 また、電動モータ1は、周方向に9個所に逃げ部50が形成されている。逃げ部50は、1個所あたり、ステータ3の中心軸を中心として、5°~14°の範囲に形成されている。
 このような構成によれば、互いに隣り合うステータ分割体30同士の連結部30Jにおいて、モータハウジング2との干渉による圧縮応力が生じるのを抑えつつ、ステータ3とモータハウジング2とを強固に固定することができる。よって、電動モータ1の作動音が生じてしまうのを、より確実に抑えることができる。
In the electric motor 1, relief portions 50 are formed at nine locations in the circumferential direction. The relief portion 50 is formed in a range of 5 ° to 14 ° with respect to the central axis of the stator 3 at one point.
According to such a configuration, the stator 3 and the motor housing 2 are firmly fixed while suppressing the generation of the compressive stress due to the interference with the motor housing 2 at the connecting portion 30J of the stator divided bodies 30 adjacent to each other. be able to. Therefore, generation of the operation noise of the electric motor 1 can be suppressed more reliably.
 また、電動モータ1は、逃げ部50が、モータハウジング2の内周面2i及び連結部30Jの外周面の他方に対し、ステータ3の径方向において、モータハウジング2とステータ3との最大圧入代の2倍以上の寸法に設定された隙間を有して形成されている。
 このような構成によれば、互いに隣り合うステータ分割体30同士の連結部30Jにおいて、モータハウジング2との干渉を確実に避け、圧縮応力が生じるのを抑えることができる。
Further, in the electric motor 1, the clearance 50 is the maximum press-fit margin between the motor housing 2 and the stator 3 in the radial direction of the stator 3 with respect to the other of the inner peripheral surface 2 i of the motor housing 2 and the outer peripheral surface of the connecting portion 30 J It is formed with a gap set to a size of twice or more of.
According to such a configuration, it is possible to reliably avoid interference with the motor housing 2 and prevent the generation of compressive stress in the connecting portions 30J of the stator divided bodies 30 adjacent to each other.
 さらに、電動モータ1は、逃げ部50が、ステータ3の外周面に形成され、モータハウジング2の内周面2iに対して径方向内側に間隔を隔てて位置する円弧状面51fからなる凹溝51であるようにした。
 このような構成によれば、ステータ3の外周面に逃げ部50を形成することで、互いに隣り合うステータ分割体30同士の連結部30Jにおいて、モータハウジング2との干渉を確実に避け、圧縮応力が生じるのを抑えることができる。
Furthermore, in the electric motor 1, the relief portion 50 is formed on the outer peripheral surface of the stator 3 and is a recessed groove having an arc-shaped surface 51 f located radially inward with respect to the inner peripheral surface 2 i of the motor housing 2. It was made to be 51.
According to such a configuration, by forming the relief portion 50 on the outer peripheral surface of the stator 3, interference with the motor housing 2 is surely avoided in the connecting portion 30J of the stator divided bodies 30 adjacent to each other, and a compression stress is generated. Can be suppressed.
(第1の実施形態の第1変形例)
 次に、本発明にかかる電動モータ1の第1の実施形態の第1変形例について説明する。
 図13は、第1の実施形態の第1変形例における電動モータ1を示す図である。
 同図に示すように、逃げ部50Bは、ステータ3の外周面に形成され、モータハウジング2の内周面2iに対して径方向内側に間隔を隔てて位置する平面部52からなるようにしてもよい。この平面部52は、連結部30Jにおいて互いに隣り合うステータ分割体30の外周面側の端部30e,30f同士が突き当たる部分を、周方向の両側に跨がるように形成されている。
First Modification of First Embodiment
Next, a first modification of the first embodiment of the electric motor 1 according to the present invention will be described.
FIG. 13 is a view showing an electric motor 1 in a first modified example of the first embodiment.
As shown in the figure, the relief portion 50B is formed on the outer peripheral surface of the stator 3 so as to be composed of a flat portion 52 positioned radially inward with respect to the inner peripheral surface 2i of the motor housing 2. It is also good. The flat portion 52 is formed so that the end portions 30e and 30f on the outer peripheral surface side of the stator divided body 30 adjacent to each other in the connecting portion 30J abut on both sides in the circumferential direction.
 このような構成においても、上記第1の実施形態と同様、平面部52からなる逃げ部50Bを形成することにより、モータハウジング2にステータ3を確実に圧入固定して作動音を抑えることができる。また、周方向で互いに隣り合うステータ分割体30同士の連結部30Jで圧縮応力が生じるのを抑えて、コギングトルクを抑えることが可能となる。 Even in such a configuration, as in the first embodiment, by forming the relief portion 50B including the flat portion 52, the stator 3 can be securely press-fitted to the motor housing 2 and the operation noise can be suppressed. . In addition, it is possible to suppress the cogging torque by suppressing the generation of the compressive stress at the connecting portions 30J of the stator divided bodies 30 adjacent to each other in the circumferential direction.
(第1の実施形態の第2変形例)
 次に、本発明にかかる電動モータ1の第1の実施形態の第2変形例について説明する。
 図14は、第1の実施形態の第2変形例における電動モータ1を示す図である。
 同図に示すように、逃げ部50Cは、ステータ3の外周面に形成され、モータハウジング2の内周面2iに対して径方向内側に間隔を隔てて位置する平面部52Bからなるようにしてもよい。この平面部52Bは、連結部30Jにおいて互いに隣り合うステータ分割体30の外周面側の端部30e,30f同士が突き当たる部分を、周方向の両側に跨がるように形成されている。ただし、この平面部52Bは、互いに隣り合うステータ分割体30の外周面側の端部30e,30f同士が突き当たる部分に対し、周方向の一方の側にオフセットして形成されている。
Second Modification of First Embodiment
Next, a second modification of the first embodiment of the electric motor 1 according to the present invention will be described.
FIG. 14 is a view showing an electric motor 1 according to a second modification of the first embodiment.
As shown in the figure, the relief portion 50C is formed on the outer peripheral surface of the stator 3 so as to be composed of a flat portion 52B which is positioned radially inward with respect to the inner peripheral surface 2i of the motor housing 2. It is also good. The flat portion 52B is formed so that the end portions 30e and 30f on the outer peripheral surface side of the stator divided body 30 adjacent to each other in the connecting portion 30J abut on both sides in the circumferential direction. However, the flat portion 52B is formed offset to one side in the circumferential direction with respect to a portion where the end portions 30e and 30f on the outer peripheral surface side of the stator divided bodies 30 adjacent to each other abut each other.
 このような構成においても、上記実施形態と同様、平面部52からなる逃げ部50Cを形成することにより、モータハウジング2にステータ3を確実に圧入固定して作動音を抑えることができる。また、周方向で互いに隣り合うステータ分割体30同士の連結部30Jで圧縮応力が生じるのを抑えて、コギングトルクを抑えることが可能となる。 Also in such a configuration, as in the above embodiment, by forming the relief portion 50C including the flat portion 52, the stator 3 can be securely press-fitted to the motor housing 2 and the operation noise can be suppressed. In addition, it is possible to suppress the cogging torque by suppressing the generation of the compressive stress at the connecting portions 30J of the stator divided bodies 30 adjacent to each other in the circumferential direction.
(第1の実施形態の第3変形例)
 次に、本発明にかかる電動モータ1の第1の実施形態の第3変形例について説明する。
 図15は、第1の実施形態の第3変形例における電動モータ1を示す図である。
 同図に示すように、逃げ部50Dは、ステータ3の外周面に形成され、モータハウジング2の内周面2iに対して径方向内側に窪んで形成されたV字状の凹部53Aからなるようにしてもよい。この凹部53Aは、連結部30Jにおいて互いに隣り合うステータ分割体30の外周面側の端部30e,30f同士が突き当たる部分を、周方向の両側に跨がるように形成されている。
(Third Modification of First Embodiment)
Next, a third modification of the first embodiment of the electric motor 1 according to the present invention will be described.
FIG. 15 is a view showing an electric motor 1 according to a third modification of the first embodiment.
As shown in the figure, the relief portion 50D is formed on the outer peripheral surface of the stator 3 and includes a V-shaped recessed portion 53A formed so as to be recessed inward in the radial direction with respect to the inner peripheral surface 2i of the motor housing 2. You may The concave portion 53A is formed so as to straddle both sides in the circumferential direction in a portion where the end portions 30e and 30f of the outer peripheral surface side of the stator divided body 30 adjacent to each other in the connecting portion 30J abut each other.
 このような構成においても、上記第1の実施形態と同様、凹部53Aからなる逃げ部50Dを形成することにより、モータハウジング2にステータ3を確実に圧入固定して作動音を抑えることができる。また、周方向で互いに隣り合うステータ分割体30同士の連結部30Jで圧縮応力が生じるのを抑えて、コギングトルクを抑えることが可能となる。 Also in such a configuration, as in the first embodiment, by forming the relief portion 50D including the recess portion 53A, the stator 3 can be securely press-fitted to the motor housing 2 to suppress the operation noise. In addition, it is possible to suppress the cogging torque by suppressing the generation of the compressive stress at the connecting portions 30J of the stator divided bodies 30 adjacent to each other in the circumferential direction.
(第1の実施形態の第4変形例)
 次に、本発明にかかる電動モータ1の第1の実施形態の第4変形例について説明する。
 図16は、第1の実施形態の第4変形例における電動モータ1を示す図である。
 同図に示すように、逃げ部50Eは、ステータ3の外周面に形成され、モータハウジング2の内周面2iに対して径方向内側に窪んで形成されたU字状の凹部53Bからなるようにしてもよい。この凹部53Bは、連結部30Jにおいて互いに隣り合うステータ分割体30の外周面側の端部30e,30f同士が突き当たる部分を、周方向の両側に跨がるように形成されている。
(Fourth Modification of the First Embodiment)
Next, a fourth modification of the first embodiment of the electric motor 1 according to the present invention will be described.
FIG. 16 is a view showing an electric motor 1 according to a fourth modification of the first embodiment.
As shown in the figure, the relief portion 50E is formed of a U-shaped recess 53B formed on the outer peripheral surface of the stator 3 and recessed inward in the radial direction with respect to the inner peripheral surface 2i of the motor housing 2. You may The recessed portion 53B is formed so as to straddle both sides in the circumferential direction in a portion where the end portions 30e and 30f of the outer peripheral surface side of the stator divided body 30 adjacent to each other in the connecting portion 30J abut each other.
 このような構成においても、上記第1の実施形態と同様、凹部53Bからなる逃げ部50Eを形成することにより、モータハウジング2にステータ3を確実に圧入固定して作動音を抑えることができる。また、周方向で互いに隣り合うステータ分割体30同士の連結部30Jで圧縮応力が生じるのを抑えて、コギングトルクを抑えることが可能となる。 Also in such a configuration, as in the first embodiment, by forming the relief portion 50E including the recess portion 53B, the stator 3 can be securely press-fitted to the motor housing 2 and the operation noise can be suppressed. In addition, it is possible to suppress the cogging torque by suppressing the generation of the compressive stress at the connecting portions 30J of the stator divided bodies 30 adjacent to each other in the circumferential direction.
(第2の実施形態)
 次に、本発明にかかる電動モータ1Fの第2の実施形態について説明する。
 図17は、第2の実施形態における電動モータ1Fを構成するステータ分割体30同士の連結部30Jを示す要部拡大図である。
 同図に示すように、電動モータ1Fは、モータハウジング2Fと、モータハウジング2F内に収納されている略円筒状のステータ3Fと、ステータ3Fの径方向内側に設けられ、ステータ3に対して回転可能に設けられたロータ(図示無し)と、を備えている。
 この第2の実施形態において、ステータ3Fの外周面3gには、逃げ部は形成されていない。
Second Embodiment
Next, a second embodiment of the electric motor 1F according to the present invention will be described.
FIG. 17 is an enlarged view of an essential part showing a connecting part 30J of the stator divided bodies 30 constituting the electric motor 1F in the second embodiment.
As shown in the figure, the electric motor 1F is provided radially inward of the motor housing 2F, the substantially cylindrical stator 3F housed in the motor housing 2F, and the stator 3F, and rotates relative to the stator 3 And a rotor (not shown) provided possible.
In the second embodiment, no relief is formed on the outer peripheral surface 3g of the stator 3F.
 逃げ部50Fは、モータハウジング2Fの内周面2iに形成され、ステータ3の外周面に対して径方向外側に間隔を隔てて位置する円弧状面54fを有したハウジング側凹溝54からなる。このハウジング側凹溝54は、連結部30Jにおいて互いに隣り合うステータ分割体30の外周面側の端部30e,30f同士が突き当たる部分に対向する位置を、周方向の両側に跨がるように形成されている。
 このような逃げ部50Fは、ステータ3Fで互いに隣り合うステータ分割体30同士の連結部30Jにおいて、ステータ3Fの外周面3fとモータハウジング2Fとの干渉を避ける。
The relief portion 50F is formed on the inner peripheral surface 2i of the motor housing 2F, and comprises a housing side recessed groove 54 having an arc-shaped surface 54f spaced apart from the outer peripheral surface of the stator 3 radially outward. The housing-side recessed groove 54 is formed so as to straddle both sides in the circumferential direction at a position opposed to a portion where the end portions 30e and 30f of the outer peripheral surface side of the stator divided body 30 adjacent to each other abut in the connecting portion 30J. It is done.
Such a relief portion 50F avoids the interference between the motor housing 2F and the outer peripheral surface 3f of the stator 3F in the connecting portion 30J of the stator divided bodies 30 adjacent to each other in the stator 3F.
 このような構成においても、上記第1の実施形態と同様、ハウジング側凹溝54からなる逃げ部50Fを形成することで、ステータ分割体30の連結部30Jに、モータハウジング2Fとの干渉による圧縮応力が生じるのを抑えることができる。 Also in such a configuration, as in the first embodiment, by forming the relief portion 50F including the housing-side recessed groove 54, the coupling portion 30J of the stator divided body 30 is compressed due to interference with the motor housing 2F. Stress can be suppressed.
 図18は、上記第2の実施形態で示した逃げ部50Fを備えるステータ3Fとモータハウジング2Fとに生じる圧縮応力の分布を、シミュレーション解析により得た結果を示す図である。
 同図に示すように、逃げ部50Fを備えるモータハウジング2Fの場合、ステータ3Fで互いに隣り合うステータ分割体30の連結部30Jにおいて、高い圧縮応力は生じていないことが確認できる。
FIG. 18 is a diagram showing the results of simulation analysis of the distribution of the compressive stress generated in the stator 3F having the relief portion 50F shown in the second embodiment and the motor housing 2F.
As shown in the figure, in the case of the motor housing 2F provided with the relief portion 50F, it can be confirmed that high compressive stress is not generated in the connecting portion 30J of the stator divisions 30 adjacent to each other in the stator 3F.
 図19は、上記第2の実施形態で示した逃げ部50Fを備えるステータ3Fとモータハウジング2FRとにおける磁束密度の分布を、シミュレーション解析により得た結果を示す図である。
 同図に示すように、逃げ部50Fを備えるモータハウジング2Fの場合、ステータ3Fで互いに隣り合うステータ分割体30の連結部30Jにおいて、磁束密度が低い部分によって磁束の流れが阻害される部分が減少する。そして、磁束が周方向で連続的に流れていることが確認できる。
FIG. 19 is a diagram showing the results of simulation analysis of the magnetic flux density distribution in the motor housing 2FR and the stator 3F including the relief 50F described in the second embodiment.
As shown in the figure, in the case of the motor housing 2F having the relief portion 50F, in the connecting portion 30J of the stator divisions 30 adjacent to each other in the stator 3F, the portion where the flow of the magnetic flux is blocked by the portion having a low magnetic flux density is reduced. Do. Then, it can be confirmed that the magnetic flux flows continuously in the circumferential direction.
 また、周方向複数個所に形成された逃げ部50Fを、連結部30Jの1箇所あたりの開き角θが、上記式(1)、式(2)を満たすように形成することにより、ステータ3に対してモータハウジング2が変位する。この結果、電動モータ1Fの作動音が生じてしまうのを抑えることができる。
 したがって、モータハウジング2Fにステータ3Fを確実に圧入固定して作動音を抑えることができる。また、周方向で互いに隣り合う分割コア30同士の連結部30Jで圧縮応力が生じるのを抑えて、コギングトルクを抑えることが可能となる。
Further, in the stator 3, the relief portions 50 F formed at a plurality of circumferential positions are formed such that the opening angle θ per one position of the connection portion 30 J satisfies the above formulas (1) and (2). In contrast, the motor housing 2 is displaced. As a result, it is possible to suppress the occurrence of the operation noise of the electric motor 1F.
Therefore, the stator 3F can be securely press-fitted and fixed to the motor housing 2F to suppress the operation noise. In addition, it is possible to suppress the cogging torque by suppressing the generation of the compressive stress at the connecting portion 30J of the divided cores 30 adjacent to each other in the circumferential direction.
(その他の実施形態)
 なお、本発明は上述の各実施形態およびその変形例に限られるものではなく、本発明の趣旨を逸脱しない範囲において、上述の実施形態に種々の変更を加えたものを含む。
(Other embodiments)
The present invention is not limited to the above-described embodiments and the modifications thereof, and includes various modifications of the above-described embodiments without departing from the spirit of the present invention.
 例えば、上記実施形態において、電動モータ1,1Fの各部の構成について説明した。しかしながら、これに限られるものではなく、その詳細な構成については、適宜変更することが可能である。
 また、ステータ3,3Fを構成するステータ分割体30の数を9個とした場合について説明した。しかしながら、これに限られるものではなく、ステータ分割体30の個数について適宜変更可能である。例えば、ステータ分割体30の個数を12個等としてもよい。
For example, in the above-mentioned embodiment, composition of each part of electric motors 1 and 1F was explained. However, the present invention is not limited to this, and the detailed configuration thereof can be changed as appropriate.
Moreover, the case where the number of the stator division bodies 30 which comprise the stators 3 and 3F was nine was demonstrated. However, the present invention is not limited to this, and the number of stator divisions 30 can be appropriately changed. For example, the number of stator divisions 30 may be twelve or the like.
 また、上記実施形態では、電動モータ1,1Fを、電動パワーステアリング等に用いるものとしたが、その用途については何ら限定するものではない。さらに、電動モータ1,1Fに、減速機部を一体に備えた構成とすることも可能である。
 これ以外にも、本発明の主旨を逸脱しない限り、上記実施の形態で挙げた構成を取捨選択したり、他の構成に適宜変更したりすることが可能である。
In the above embodiment, the electric motors 1 and 1F are used for the electric power steering and the like, but the application thereof is not limited at all. Furthermore, the electric motors 1 and 1F may be integrally provided with a reduction gear unit.
In addition to this, it is possible to select the configuration described in the above embodiment or to appropriately change it to another configuration without departing from the spirit of the present invention.
 1、1F…電動モータ
 2…モータハウジング
 2i…内周面
 3、3F…ステータ
 4…ロータ
 30…ステータ分割体
 30J…連結部
 50、50B、50C、50D、50E、50F…逃げ部
 51…凹溝
 51f…円弧状面
 52、52B…平面部
 53A、53B…凹部
 54…ハウジング側凹溝
 54f…円弧状面
DESCRIPTION OF SYMBOLS 1, 1F ... Electric motor 2 ... Motor housing 2i ... Inner peripheral surface 3, 3F ... Stator 4 ... Rotor 30 ... Stator division body 30J ... Connection part 50, 50B, 50C, 50D, 50E, 50F ... Relief part 51 ... Concave groove 51f ... arc-shaped surface 52, 52B ... flat portion 53A, 53B ... recess 54 ... housing-side recessed groove 54f ... arc-shaped surface

Claims (7)

  1.  周方向に複数のステータ分割体が配置され、互いに隣り合う前記ステータ分割体同士を連結してなるステータと、
     前記ステータが内側に圧入により固定されたモータハウジングと、を備え、
     前記モータハウジングの内周面、及び前記ステータにおいて互いに隣り合う前記ステータ分割体の連結部の外周面の少なくとも何れか一方に、前記モータハウジングの内周面及び前記連結部の外周面の他方との干渉を避ける逃げ部が形成され、
     前記逃げ部は、前記連結部1箇所あたりの前記ステータの中心軸を中心とした周方向の角度をθとし、前記ステータ分割体の個数をXとし、係数をKとしたとき、角度θ、個数X、及び係数Kが、
     θ=(360÷X)×K
     0.125≦K≦0.375
    を満たすように形成されていることを特徴とする電動モータ。
    A stator in which a plurality of stator divisions are disposed in the circumferential direction, and the stator divisions adjacent to each other are connected to each other;
    A motor housing in which the stator is fixed by press fitting inside;
    At least one of the inner peripheral surface of the motor housing and the outer peripheral surface of the connecting portion of the stator divisions adjacent to each other in the stator with the other of the inner peripheral surface of the motor housing and the outer peripheral surface of the connecting portion A relief is formed to avoid interference,
    When the angle of the circumferential direction around the central axis of the stator per connecting part is θ, the number of the stator divisions is X, and the coefficient is K, the clearance θ is the number θ X and the coefficient K are
    θ = (360 ÷ X) × K
    0.125 ≦ K ≦ 0.375
    An electric motor characterized in that it is formed to satisfy the following conditions.
  2.  前記ステータ分割体を9個有し、
     周方向に9個所に前記逃げ部が形成され、
     前記逃げ部は、1個所あたり、前記ステータの中心軸を中心として、5~14°の範囲に形成されている
    ことを特徴とする請求項1に記載の電動モータ。
    There are nine said stator divisions,
    The relief portion is formed at nine places in the circumferential direction,
    The electric motor according to claim 1, wherein the relief portion is formed in a range of 5 to 14 ° around one center of the central axis of the stator.
  3.  前記逃げ部は、前記モータハウジングの内周面及び前記連結部の外周面の他方に対し、前記ステータの径方向において、前記ステータの直径の0.2%以上の寸法に設定された隙間を有して形成されていることを特徴とする請求項1または請求項2に記載の電動モータ。 The relief portion has a clearance set to 0.2% or more of the diameter of the stator in the radial direction of the stator with respect to the other of the inner peripheral surface of the motor housing and the outer peripheral surface of the connecting portion. The electric motor according to claim 1, wherein the electric motor is formed.
  4.  前記逃げ部は、前記ステータの外周面に形成され、前記モータハウジングの内周面に対して径方向内側に間隔を隔てて位置する円弧状面からなる
    ことを特徴とする請求項1~請求項3の何れか1項に記載の電動モータ。
    The relief portion is formed on an outer peripheral surface of the stator, and is formed of an arc-shaped surface located radially inward with respect to the inner peripheral surface of the motor housing. The electric motor according to any one of 3.
  5.  前記逃げ部は、前記ステータの外周面に形成され、前記モータハウジングの内周面に対して径方向内側に間隔を隔てて位置する平面部からなる
    ことを特徴とする請求項1~請求項3の何れか1項に記載の電動モータ。
    4. The flat surface portion according to claim 1, wherein the relief portion is formed on an outer peripheral surface of the stator and is spaced apart radially inward from an inner peripheral surface of the motor housing. The electric motor according to any one of the above.
  6.  前記逃げ部は、前記ステータの外周面に形成され、前記モータハウジングの内周面に対して径方向内側に窪んで形成されたV字状又はU字状の凹部からなる
    ことを特徴とする請求項1~請求項3の何れか1項に記載の電動モータ。
    The relief portion is a V-shaped or U-shaped concave portion formed on an outer peripheral surface of the stator and recessed inward in a radial direction with respect to an inner peripheral surface of the motor housing. An electric motor according to any one of claims 1 to 3.
  7.  前記逃げ部は、前記モータハウジングの内周面に形成され、前記ステータの外周面に対して径方向外側に間隔を隔てて位置する円弧状面からなる
    ことを特徴とする請求項1~請求項3の何れか1項に記載の電動モータ。
    The relief portion is formed on an inner peripheral surface of the motor housing, and is formed of an arc-shaped surface located radially outward with respect to the outer peripheral surface of the stator. The electric motor according to any one of 3.
PCT/JP2018/030954 2017-09-04 2018-08-22 Electric motor WO2019044612A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-169753 2017-09-04
JP2017169753A JP2019047658A (en) 2017-09-04 2017-09-04 Electric motor

Publications (1)

Publication Number Publication Date
WO2019044612A1 true WO2019044612A1 (en) 2019-03-07

Family

ID=65525405

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/030954 WO2019044612A1 (en) 2017-09-04 2018-08-22 Electric motor

Country Status (2)

Country Link
JP (1) JP2019047658A (en)
WO (1) WO2019044612A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210044572A (en) * 2019-10-15 2021-04-23 엘지이노텍 주식회사 Motor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11252842A (en) * 1998-02-27 1999-09-17 Hitachi Ltd Molded coil element, its manufacture, core, its manufacture and dynamoelectric machine
JP2001238376A (en) * 2000-02-21 2001-08-31 Mitsubishi Electric Corp Motor stator core
JP2009177907A (en) * 2008-01-23 2009-08-06 Yaskawa Electric Corp Stator of rotary electric machine, and rotary electric machine with the same
JP2015156756A (en) * 2014-02-20 2015-08-27 三菱電機株式会社 Single phase induction motor, sealed compressor and refrigeration cycle system
WO2017145332A1 (en) * 2016-02-25 2017-08-31 株式会社安川電機 Rotary electric machine and method for manufacturing rotary electric machine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11252842A (en) * 1998-02-27 1999-09-17 Hitachi Ltd Molded coil element, its manufacture, core, its manufacture and dynamoelectric machine
JP2001238376A (en) * 2000-02-21 2001-08-31 Mitsubishi Electric Corp Motor stator core
JP2009177907A (en) * 2008-01-23 2009-08-06 Yaskawa Electric Corp Stator of rotary electric machine, and rotary electric machine with the same
JP2015156756A (en) * 2014-02-20 2015-08-27 三菱電機株式会社 Single phase induction motor, sealed compressor and refrigeration cycle system
WO2017145332A1 (en) * 2016-02-25 2017-08-31 株式会社安川電機 Rotary electric machine and method for manufacturing rotary electric machine

Also Published As

Publication number Publication date
JP2019047658A (en) 2019-03-22

Similar Documents

Publication Publication Date Title
JP4807219B2 (en) Stator core and rotating electric machine
US9136746B2 (en) Stator for electric rotating machine and method of manufacturing the same
US20130119808A1 (en) Motor
JP5446406B2 (en) Stator in electric machine
US20110018384A1 (en) Motor
JP6461381B2 (en) Rotating electric machine stator, rotating electric machine, and method of manufacturing rotating electric machine stator
US20150135519A1 (en) Rotary electric machine
JP4297929B2 (en) Motor and motor manufacturing method
JP5267751B1 (en) Rotating electric machine
EP3920382A1 (en) Stator
WO2019044612A1 (en) Electric motor
CN110574257B (en) Stator for electric motor and electric motor
WO2018180345A1 (en) Electric motor stator and electric motor
WO2022249525A1 (en) Insulator, stator, dynamo-electric machine, method for manufacturing stator, and method for manufacturing dynamo-electric machine
WO2018220936A1 (en) Motor
JP2018133850A (en) Rotary electric machine
CN111630752B (en) Stator of rotating electric machine and method for manufacturing stator of rotating electric machine
JP2022190332A (en) stator and motor
JP2017046369A (en) Armature, manufacturing method of the same, and rotary electric machine
JP2011125180A (en) Stator
WO2018180343A1 (en) Electric motor stator and electric motor
JP2008199856A (en) Stator core, rotary electric machine and rotary electric machine unit
JP2016032355A (en) Stator of dynamo-electric machine
WO2018168108A1 (en) Rotating electric machine
JP2001251792A (en) Stator core for rotating electric machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18851043

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18851043

Country of ref document: EP

Kind code of ref document: A1