WO2019044586A1 - Synthetic polymer film having surface provided with bactericidal action, and sterilization method using surface of synthetic polymer film - Google Patents

Synthetic polymer film having surface provided with bactericidal action, and sterilization method using surface of synthetic polymer film Download PDF

Info

Publication number
WO2019044586A1
WO2019044586A1 PCT/JP2018/030788 JP2018030788W WO2019044586A1 WO 2019044586 A1 WO2019044586 A1 WO 2019044586A1 JP 2018030788 W JP2018030788 W JP 2018030788W WO 2019044586 A1 WO2019044586 A1 WO 2019044586A1
Authority
WO
WIPO (PCT)
Prior art keywords
synthetic polymer
film
polymer film
less
aluminum
Prior art date
Application number
PCT/JP2018/030788
Other languages
French (fr)
Japanese (ja)
Inventor
芝井 康博
美穂 山田
賢 厚母
箕浦 潔
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to JP2019539391A priority Critical patent/JP7042278B2/en
Publication of WO2019044586A1 publication Critical patent/WO2019044586A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/02Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/26Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
    • B32B3/30Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer characterised by a layer formed with recesses or projections, e.g. hollows, grooves, protuberances, ribs
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets

Definitions

  • the present invention relates to a synthetic polymer membrane having a surface with a bactericidal action and a sterilization method using the surface of the synthetic polymer membrane.
  • Non-patent Document 1 Nanosurface structures possessed by black silicon, semi- and dragonfly wings have a bactericidal action. It is believed that the physical structure of nanopillars possessed by black silicon, semi- and dragonfly wings exerts a bactericidal action.
  • Non-Patent Document 1 the bactericidal action against Gram-negative bacteria is the strongest in black silicon, and becomes weaker in the order of dragonfly wings and semi wings.
  • Black silicon has nanopillars with a height of 500 nm, and semi and dragonfly wings have nanopillars with a height of 240 nm.
  • the static contact angle (hereinafter simply referred to as the “contact angle”) of these surfaces against water is 80 ° for black silicon, while that of the dragonfly is 153 ° and that of the semi is It is 159 °.
  • black silicon is mainly formed of silicon, and the wings of semi and dragonfly are formed of chitin.
  • the composition of the surface of the black silicon is approximately silicon oxide, and the composition of the surface of the semi and dragonfly wings is a lipid.
  • Non-Patent Document 1 From the results described in Non-Patent Document 1, the mechanism by which bacteria are killed by nanopillars is not clear. Furthermore, whether the reason that black silicon has a stronger bactericidal action than dragonflies and semi-feathers is the difference in the height and shape of nanopillars, or the difference in surface free energy (which can be evaluated by the contact angle) It is unclear whether it is the constituent material or the chemical nature of the surface.
  • black silicon is poor in mass productivity and hard and brittle, so that there is a problem that shape processability is low.
  • the present invention has been made to solve the above-mentioned problems, and its main object is to provide a synthetic polymer membrane having a surface having a bactericidal action and a sterilization method using the surface of the synthetic polymer membrane. It is to do. Another object of the present invention is to provide a synthetic polymer film having a bactericidal surface, which is excellent in water resistance and / or mass productivity.
  • the synthetic polymer film according to an embodiment of the present invention is a synthetic polymer film provided with a surface having a plurality of first convex portions, and when viewed from the normal direction of the synthetic polymer film, the plurality of the synthetic polymer films
  • the two-dimensional size of the first convex portion is in the range of more than 20 nm and less than 500 nm, and has a crosslinked structure, and the crosslinked structure does not contain nitrogen and fluorine, and ethylene oxide units and / or water soluble monomers
  • the minimum value of the dynamic storage elastic modulus E ′ in the temperature range having a unit and exceeding the glass transition temperature is Er ′ (Pa), the minimum temperature giving Er ′ is Tr (K), and the gas constant R is 8.
  • the crosslinking density n calculated from the equation n Er '/ (3 ⁇ R ⁇ Tr) as 3 J / mol ⁇ K is 2.8 ⁇ 10 -3 mol / cc or more and 9.5 ⁇ 10 -3 mol / cc It is in the following range.
  • dynamic storage elastic modulus Er '(Pa) and Tr (K) are calculated
  • the crosslink density n is 8.4 ⁇ 10 ⁇ 3 mol / cc or less.
  • the crosslink density n is 5.8 ⁇ 10 ⁇ 3 mol / cc or less.
  • the crosslink density n is 3.7 ⁇ 10 ⁇ 3 mol / cc or more.
  • the total content of ethylene oxide units and water-soluble monomer units contained in the cross-linked structure is more than 40% by mass relative to the entire synthetic polymer film.
  • the total content of ethylene oxide units and water-soluble monomer units contained in the crosslinked structure is 70% by mass or less based on the total weight of the synthetic polymer film.
  • the dynamic storage modulus Er ' is greater than 20 MPa and less than 90 MPa.
  • the dynamic storage modulus Er ' is less than 75 MPa.
  • the crosslinked structure contains a monomer unit having a siloxane bond.
  • a method of sterilizing a liquid according to an embodiment of the present invention is a method of sterilizing the liquid by bringing the liquid containing water into contact with the surface of the synthetic polymer membrane described in any of the above.
  • a synthetic polymer membrane having a surface having a bactericidal action and a sterilization method using the surface of the synthetic polymer membrane are provided.
  • a synthetic polymer membrane having a bactericidal surface excellent in water resistance and / or mass productivity is provided.
  • FIG. 1 shows the SEM image of the surface of the aluminum substrate, (b) shows the SEM image of the surface of the aluminum film, and (c) shows the SEM image of the cross section of the aluminum film.
  • (A) is a schematic plan view of a porous alumina layer of a mold
  • (b) is a schematic cross-sectional view
  • (c) is a view showing an SEM image of a prototype manufactured. It is a figure for demonstrating the manufacturing method of the synthetic polymer film using the type
  • (A) And (b) is a figure which shows the SEM image which observed the Pseudomonas aeruginosa which died on the surface which has a moth-eye structure by SEM (scanning electron microscope). It is a graph which shows the result of having measured temperature dependence of dynamic storage elastic modulus E 'of a synthetic polymer film of Example 1. It is a graph which shows the relationship of the crosslink density of the synthetic polymer membrane of Examples 1-8 and Comparative Examples 2-7, and a viable cell rate.
  • Standardization refers to reducing the number of viable organisms contained in a limited space or an object such as an object or liquid, by an effective number.
  • Merobes include viruses, bacteria (bacteria), fungi (molds).
  • Antimicrobial broadly includes suppressing and preventing the growth of microorganisms, and includes suppressing darkening and slimming due to microorganisms.
  • the applicant has developed a method for producing an antireflective film (antireflective surface) having a moth-eye structure using an anodized porous alumina layer.
  • anodized porous alumina layer By using the anodized porous alumina layer, a mold having an inverted moth-eye structure can be manufactured with high mass productivity.
  • Patent Documents 5, 6 and 7 The entire disclosures of the above-mentioned Patent Documents 5, 6 and 7 are incorporated herein by reference.
  • FIGS. 1 (a) and (b) show schematic cross-sectional views of synthetic polymer films 34A and 34B, respectively, according to an embodiment of the present invention.
  • the synthetic polymer films 34A and 34B exemplified here are each formed on the base films 42A and 42B respectively, but of course is not limited thereto.
  • the synthetic polymer films 34A and 34B can be formed directly on the surface of any object.
  • a film 50A shown in FIG. 1A includes a base film 42A and a synthetic polymer film 34A formed on the base film 42A.
  • the synthetic polymer film 34A has a plurality of projections 34Ap on the surface, and the plurality of projections 34Ap form a moth-eye structure.
  • the two-dimensional size D p of the convex portion 34Ap is in the range of more than 20 nm and less than 500 nm.
  • the “two-dimensional size” of the convex portion 34Ap refers to the area circle equivalent diameter of the convex portion 34Ap when viewed from the normal direction of the surface.
  • the two-dimensional size of the convex portion 34Ap corresponds to the diameter of the base of the cone.
  • a typical adjacent distance D int of the convex portion 34Ap is more than 20 nm and 1000 nm or less.
  • the convex is The two-dimensional size D p of the part 34 Ap is equal to the distance D int between adjacent parts.
  • Typical height D h of convex part 34Ap is 50 nm or more and less than 500 nm. As described later, even if the height D h of the convex portion 34Ap is 150 nm or less, the bactericidal action is exhibited. There is no particular limitation on the thickness t s of the synthetic polymer film 34A, and it may be larger than the height D h of the convex portion 34Ap.
  • the synthetic polymer film 34A shown in FIG. 1 (a) has a moth-eye structure similar to the antireflective film described in Patent Documents 1 to 4. In order to exhibit an anti-reflection function, it is preferable that there is no flat portion on the surface, and the convex portions 34Ap are densely arranged.
  • the convex portion 34Ap has a shape in which a cross-sectional area (a cross section parallel to a plane perpendicular to the incident light beam, for example, a cross section parallel to the plane of the base film 42A) increases from the air side to the base film 42A side. Preferably it is conical.
  • the convex portions 34Ap preferably at random so as to have no regularity.
  • these characteristics are not necessary when the bactericidal action of the synthetic polymer film 34A is exclusively used.
  • the protrusions 34Ap do not have to be arranged densely, and may be arranged regularly.
  • the shape and arrangement of the projections 34Ap be selected so as to effectively act on microorganisms.
  • a film 50B shown in FIG. 1B has a base film 42B and a synthetic polymer film 34B formed on the base film 42B.
  • the synthetic polymer film 34B has a plurality of projections 34Bp on its surface, and the plurality of projections 34Bp constitute a moth-eye structure.
  • the structure of the projections 34Bp of the synthetic polymer film 34B is different from the structure of the projections 34Ap of the synthetic polymer film 34A of the film 50A. Description of features common to the film 50A may be omitted.
  • the two-dimensional size D p of the convex portion 34Bp is in the range of more than 20 nm and less than 500 nm. Further, a typical adjacent distance D int of the convex portion 34Bp is more than 20 nm and not more than 1000 nm, and D p ⁇ D int . That is, in the synthetic polymer film 34B, a flat portion exists between the adjacent convex portions 34Bp.
  • the convex portion 34Bp has a cylindrical shape having a conical portion on the air side, and a typical height D h of the convex portion 34Bp is 50 nm or more and less than 500 nm.
  • the convex portions 34Bp may be regularly arranged or irregularly arranged. If the projections 34Bp are regularly arranged, D int will also represent the period of the arrangement. This is, of course, the same for the synthetic polymer film 34A.
  • the “moth-eye structure” is a convex having a shape in which the cross-sectional area (the cross section parallel to the film surface) increases like the convex portion 34Ap of the synthetic polymer film 34A shown in FIG.
  • the cross-sectional area (cross section parallel to the film surface) is not only the nanosurface structure having an excellent reflection function, but also the convex portion 34Bp of the synthetic polymer film 34B shown in FIG. 1 (b).
  • the conical tip does not necessarily have to be a nanosurface structure, and may have a roundness (about 60 nm) of a nanopillar that constitutes a nanosurface structure possessed by semi-wings.
  • a mold for forming a moth-eye structure as illustrated in FIGS. 1A and 1B (hereinafter referred to as “moth-eye mold”) is an inverted moth-eye structure obtained by inverting the moth-eye structure.
  • the moth-eye structure can be manufactured inexpensively.
  • a moth-eye structure can be efficiently manufactured by a roll-to-roll method.
  • Such moth-eye molds can be manufactured by the methods described in Patent Documents 2 to 4.
  • a method of manufacturing the moth-eye mold 100A for forming the synthetic polymer film 34A will be described with reference to FIGS. 2 (a) to 2 (e).
  • an aluminum substrate 12, an inorganic material layer 16 formed on the surface of the aluminum substrate 12, and aluminum deposited on the inorganic material layer 16 are used as a mold substrate.
  • a mold base 10 having a membrane 18 is provided.
  • the aluminum base 12 a relatively rigid aluminum base having a purity of 99.50 mass% to less than 99.99 mass% is used.
  • the impurities contained in the aluminum base 12 include iron (Fe), silicon (Si), copper (Cu), manganese (Mn), zinc (Zn), nickel (Ni), titanium (Ti), lead (Pb) It is preferable to include at least one element selected from the group consisting of tin (Sn) and magnesium (Mg), and in particular, Mg is preferable.
  • the mechanism by which pits (pits) are formed in the etching step is a local cell reaction, ideally it contains no element nobler than aluminum at all, and it is a basic metal Mg (standard electrode potential is It is preferable to use an aluminum base 12 containing 2.36 V) as an impurity element. If the content of the element nobler than aluminum is 10 ppm or less, it can be said that the element is not substantially contained from an electrochemical viewpoint.
  • the content of Mg is preferably 0.1 mass% or more of the whole, and more preferably in the range of about 3.0 mass% or less. If the content of Mg is less than 0.1 mass%, sufficient rigidity can not be obtained. On the other hand, when the content ratio is high, segregation of Mg is likely to occur.
  • the content rate of the impurity element may be appropriately set in accordance with the required rigidity according to the shape, thickness and size of the aluminum base 12.
  • the content of Mg is suitably about 3.0 mass%, and the aluminum base 12 having a three-dimensional structure such as a cylinder is produced by extrusion.
  • the content of Mg is preferably 2.0 mass% or less. When the content of Mg exceeds 2.0 mass%, extrusion processability generally decreases.
  • the aluminum base 12 for example, a cylindrical aluminum pipe formed of JIS A1050, an Al-Mg-based alloy (for example, JIS A5052), or an Al-Mg-Si-based alloy (for example, JIS A6063) is used.
  • the surface of the aluminum base 12 is subjected to cutting with a cutting tool.
  • a cutting tool For example, when abrasive grains remain on the surface of the aluminum base 12, conduction between the aluminum film 18 and the aluminum base 12 is facilitated in the portion where the abrasives are present.
  • local conduction between the aluminum film 18 and the aluminum base 12 is facilitated. Local conduction between the aluminum film 18 and the aluminum substrate 12 may cause a cell reaction to occur locally between the impurity in the aluminum substrate 12 and the aluminum film 18.
  • the inorganic material layer 16 for example, tantalum oxide (Ta 2 O 5 ) or silicon dioxide (SiO 2 ) can be used.
  • the inorganic material layer 16 can be formed, for example, by sputtering.
  • the thickness of the tantalum oxide layer is, for example, 200 nm.
  • the thickness of the inorganic material layer 16 is preferably 100 nm or more and less than 500 nm. When the thickness of the inorganic material layer 16 is less than 100 nm, defects (mainly voids, that is, gaps between crystal grains) may occur in the aluminum film 18. In addition, when the thickness of the inorganic material layer 16 is 500 nm or more, the surface state of the aluminum base 12 easily insulates between the aluminum base 12 and the aluminum film 18. In order to anodize the aluminum film 18 by supplying the current to the aluminum film 18 from the aluminum base 12 side, it is necessary to flow the current between the aluminum base 12 and the aluminum film 18.
  • the thick inorganic material layer 16 In addition, in order to form the thick inorganic material layer 16, generally, it is necessary to prolong the film formation time. When the film forming time is long, the surface temperature of the aluminum base 12 is unnecessarily increased. As a result, the film quality of the aluminum film 18 may be deteriorated to cause defects (mainly voids). If the thickness of the inorganic material layer 16 is less than 500 nm, the occurrence of such a defect can also be suppressed.
  • the aluminum film 18 is a film formed of aluminum having a purity of 99.99 mass% or more (hereinafter, sometimes referred to as “high purity aluminum film”).
  • the aluminum film 18 is formed, for example, using a vacuum evaporation method or a sputtering method.
  • the thickness of the aluminum film 18 is preferably in the range of about 500 nm to about 1500 nm, for example, about 1 ⁇ m.
  • an aluminum alloy film described in Patent Document 4 may be used instead of the high purity aluminum film.
  • the aluminum alloy film described in Patent Document 4 contains aluminum, a metal element other than aluminum, and nitrogen.
  • the “aluminum film” includes not only the high purity aluminum film but also the aluminum alloy film described in Patent Document 4.
  • the average grain size of the crystal grains constituting the aluminum alloy film as viewed in the normal direction of the aluminum alloy film is, for example, 100 nm or less, and the maximum surface roughness Rmax of the aluminum alloy film is 60 nm or less.
  • the content of nitrogen contained in the aluminum alloy film is, for example, 0.5 mass% or more and 5.7 mass% or less.
  • the absolute value of the difference between the standard electrode potential of a metal element other than aluminum contained in the aluminum alloy film and the standard electrode potential of aluminum is 0.64 V or less, and the content of the metal element in the aluminum alloy film is 1.0 mass. % Or more and 1.9 mass% or less is preferable.
  • the metal element is, for example, Ti or Nd.
  • the metal element is not limited to this, and other metal elements (for example, Mn, Mg, Zr, V and the like) whose absolute value of the difference between the standard electrode potential of the metal element and the standard electrode potential of aluminum is 0.64 V or less It may be Pb).
  • the metal element may be Mo, Nb or Hf.
  • the aluminum alloy film may contain two or more of these metal elements.
  • the aluminum alloy film is formed, for example, by DC magnetron sputtering.
  • the thickness of the aluminum alloy film is also preferably in the range of about 500 nm to about 1500 nm, for example, about 1 ⁇ m.
  • the surface 18s of the aluminum film 18 is anodized to form a porous alumina layer 14 having a plurality of recesses (pores) 14p.
  • the porous alumina layer 14 has a porous layer having a recess 14 p and a barrier layer (the bottom of the recess (pore) 14 p). It is known that the distance (center-to-center distance) between adjacent recesses 14p corresponds to approximately twice the thickness of the barrier layer and is approximately proportional to the voltage at the time of anodic oxidation. This relationship also holds true for the final porous alumina layer 14 shown in FIG.
  • the porous alumina layer 14 is formed, for example, by anodizing the surface 18s in an acidic electrolyte solution.
  • the electrolytic solution used in the step of forming the porous alumina layer 14 is, for example, an aqueous solution containing an acid selected from the group consisting of oxalic acid, tartaric acid, phosphoric acid, sulfuric acid, chromic acid, citric acid and malic acid.
  • the porous alumina layer 14 is formed by anodizing the surface 18s of the aluminum film 18 for 55 seconds at an applied voltage of 80 V using a boric acid aqueous solution (concentration 0.3 mass%, solution temperature 10 ° C.).
  • the opening of the recess 14p is enlarged by etching the porous alumina layer 14 by a predetermined amount by bringing the porous alumina layer 14 into contact with an etchant of alumina.
  • the amount of etching (that is, the size and depth of the recess 14p) can be controlled by adjusting the type and concentration of the etching solution and the etching time.
  • an etching solution for example, an aqueous solution of 10 mass% of phosphoric acid, an organic acid such as formic acid, acetic acid, citric acid or the like, sulfuric acid, or a mixed aqueous solution of chromic acid and phosphoric acid can be used.
  • etching is performed using a phosphoric acid aqueous solution (10 mass%, 30 ° C.) for 20 minutes.
  • the aluminum film 18 is partially anodized again to grow the recess 14 p in the depth direction and to thicken the porous alumina layer 14.
  • the side surface of the recess 14p is stepped.
  • the pore diameter of the recess 14p is further expanded by further etching the porous alumina layer 14 by contacting it with an etchant of alumina.
  • an etchant of alumina As the etching solution, it is preferable to use the above-described etching solution, and in reality, the same etching bath may be used.
  • the anodization step and the etching step are alternately repeated a plurality of times (for example, 5 times: 5 times of anodization and 4 times of etching).
  • a moth-eye mold 100A having a porous alumina layer 14 having a moth-eye structure is obtained.
  • the bottom of the recess 14p can be made point. That is, a mold capable of forming a convex portion with a sharp tip is obtained.
  • the porous alumina layer 14 (thickness t p ) shown in FIG. 2 (e) has a porous layer (thickness corresponds to the depth D d of the recess 14 p) and a barrier layer (thickness t b ). Since the porous alumina layer 14 has a structure obtained by inverting the moth-eye structure of the synthetic polymer film 34A, the same symbol may be used as the corresponding parameter characterizing its size.
  • the recess 14 p of the porous alumina layer 14 is, for example, conical, and may have stepped side surfaces.
  • Two-dimensional size of the recess 14p is D p (area equivalent circle diameter of the recess when viewed from the direction normal to the surface) is less than 20nm ultra 500 nm, the depth D d in the order of less than 50nm over 1000 nm (1 [mu] m) Is preferred. Further, it is preferable that the bottom of the recess 14p be pointed (the bottom is a point).
  • the shape of the recess 14p when viewed from the normal direction of the porous alumina layer 14 is a circle when the recess 14p is densely packed, adjacent circles overlap each other, and a ridge is formed between the adjacent recesses 14p. It is formed.
  • two-dimensional size D p of the concave portion 14p is equal to the distance between adjacent D int.
  • the thickness t p of the porous alumina layer 14 is, for example, about 1 ⁇ m or less.
  • an aluminum remaining layer 18r which has not been anodized in the aluminum film 18 is present.
  • the aluminum film 18 may be substantially completely anodized so that the aluminum residual layer 18r is not present.
  • the inorganic material layer 16 is thin, current can be easily supplied from the aluminum base 12 side.
  • the moth-eye mold manufacturing method exemplified here can manufacture a mold for manufacturing the anti-reflection film described in Patent Documents 2 to 4. Since high uniformity is required for the antireflective film used for a high definition display panel, as described above, selection of the material of the aluminum substrate, mirror processing of the aluminum substrate, control of the purity and composition of the aluminum film Although it is preferable to carry out the above-mentioned method, it is possible to simplify the manufacturing method of the above-mentioned type since high uniformity is not required for the bactericidal action. For example, the surface of the aluminum substrate may be anodized directly.
  • a mold having low regularity of the arrangement of the recesses, which is suitable for the preparation of an antireflective film.
  • mold for forming the moth-eye structure which has the regularly arranged convex part can be manufactured as follows, for example.
  • the generated porous alumina layer may be removed by etching, and then anodic oxidation may be performed under the conditions for forming the above-mentioned porous alumina layer.
  • a 10 ⁇ m thick porous alumina layer is formed by prolonging the anodic oxidation time.
  • a relatively thick porous alumina layer is formed, and removing the porous alumina layer results in regular alignment without being affected by irregularities or processing distortion due to grains present on the surface of the aluminum film or aluminum substrate. It is possible to form a porous alumina layer having recessed portions.
  • liquid mixture of chromic acid and phosphoric acid for the removal of a porous alumina layer.
  • Galvanic corrosion may occur when etching is performed for a long time, but a mixture of chromic acid and phosphoric acid has an effect of suppressing galvanic corrosion.
  • the moth-eye mold for forming the synthetic polymer film 34B shown in FIG. 1 (b) can also be manufactured basically by combining the above-described anodic oxidation step and etching step.
  • a method of manufacturing the moth-eye mold 100B for forming the synthetic polymer film 34B will be described with reference to FIGS. 3 (a) to 3 (c).
  • the mold base 10 is prepared, and the surface 18s of the aluminum film 18 is anodized to form a plurality of recesses (pores).
  • a porous alumina layer 14 having 14p is formed.
  • the porous alumina layer 14 is etched by a predetermined amount by contacting with an etchant of alumina to enlarge the opening of the recess 14p.
  • the etching amount is made smaller than the etching process described with reference to FIG. That is, the size of the opening of the recess 14p is reduced.
  • etching is performed using a phosphoric acid aqueous solution (10 mass%, 30 ° C.) for 10 minutes.
  • the aluminum film 18 is partially anodized again to grow the recess 14 p in the depth direction and to thicken the porous alumina layer 14.
  • the concave portion 14p is made to grow deeper than the anodic oxidation process described with reference to FIG. 2 (d).
  • anodization is performed for 165 seconds at an applied voltage of 80 V using an aqueous oxalic acid solution (concentration 0.3 mass%, solution temperature 10 ° C.) (55 seconds in FIG. 2D).
  • the etching step and the anodizing step are alternately repeated several times in the same manner as described with reference to FIG.
  • a moth-eye mold 100B having a porous alumina layer 14 having an inverted moth-eye structure is obtained.
  • the two-dimensional size D p of the recess 14 p is smaller than the adjacent distance D int (D p ⁇ D int ).
  • the size of the microorganism depends on its type. For example, although the size of Pseudomonas aeruginosa is about 1 ⁇ m, some bacteria have a size of several hundred nm to about 5 ⁇ m, and fungi have several ⁇ m or more. For example, a convex portion having a two-dimensional size of about 200 nm is considered to have a bactericidal action against microorganisms having a size of about 0.5 ⁇ m or more, but for bacteria having a size of several hundred nm. Because the convex portion is too large, sufficient bactericidal action may not be exhibited.
  • the size of the virus is several tens nm to several hundreds nm, and many viruses are 100 nm or less.
  • the virus does not have a cell membrane, it has a protein shell called a capsid that surrounds the viral nucleic acid.
  • Viruses are divided into viruses with a membrane-like envelope outside this shell and viruses without an envelope.
  • the convex portion acts similarly on the envelope.
  • enveloped viruses include influenza virus and Ebola virus.
  • viruses that do not have an envelope it is thought that the convex portion acts similarly on the shell of a protein called this capsid.
  • affinity with a protein composed of amino acids can be strong.
  • size in the range of more than 20 nm and less than 500 nm which the synthetic polymer membrane illustrated above has is called 1st convex part.
  • a convex portion formed to overlap the first convex portion is referred to as a second convex portion
  • a two-dimensional size of the second convex portion is a two-dimensional size of the first convex portion. Less than 100 nm.
  • the concave portion of the mold corresponding to the first convex portion is referred to as a first concave portion
  • the concave portion of the mold corresponding to the second convex portion is referred to as a second concave portion.
  • the second recess can not be formed even if the method of forming the first recess having a predetermined size and shape is applied as it is.
  • FIG. 4 (a) shows a SEM image of the surface of the aluminum base (12 in FIG. 2)
  • FIG. 4 (b) shows a SEM image of the surface of the aluminum film (18 in FIG. 2).
  • FIG. 4C shows an SEM image of the cross section of the aluminum film (reference numeral 18 in FIG. 2).
  • grains are present on the surface of the aluminum substrate and the surface of the aluminum film.
  • the grains of the aluminum film form asperities on the surface of the aluminum film.
  • the surface asperities affect the formation of the recess during anodization, thus preventing the formation of a second recess in which D p or D int is smaller than 100 nm.
  • a method of producing a mold used for producing a synthetic polymer membrane comprises the steps of: (a) preparing an aluminum film deposited on an aluminum substrate or support; (b) Anodizing step of forming a porous alumina layer having a first recess by applying a first level voltage while the surface of the aluminum substrate or aluminum film is in contact with the electrolytic solution; (c) After the step (b), the porous alumina layer was brought into contact with the electrolytic solution after the etching step of enlarging the first recess by bringing the porous alumina layer into contact with the etching solution and (d) the step (c) Forming a second recess in the first recess by applying a second level voltage lower than the first level in the state.
  • the first level is above 40V and the second level is below 20V.
  • a first recess having a size that is not affected by the aluminum substrate or the grain of the aluminum film is formed, and then the thickness of the barrier layer is After being made smaller, a second recess is formed in the first recess in an anodizing process at a second level voltage lower than the first level. In this way, forming the second recess eliminates the influence of grains.
  • FIG. 5 (a) is a schematic plan view of a porous alumina layer of a mold
  • FIG. 5 (b) is a schematic cross-sectional view
  • FIG. 5 (c) shows an SEM image of the prototype manufactured.
  • the surface of the mold according to this embodiment has a plurality of first recesses 14pa having a two-dimensional size in the range of more than 20 nm and less than 500 nm; It further has a plurality of second recesses 14pb formed to overlap the first recesses 14pa.
  • the two-dimensional size of the plurality of second recesses 14pb is smaller than the two-dimensional size of the plurality of first recesses 14pa and does not exceed 100 nm.
  • the height of the second recess 14pb is, for example, more than 20 nm and not more than 100 nm.
  • the second recess 14pb preferably includes a substantially conical portion.
  • the porous alumina layer shown in FIG. 5 (c) was produced as follows.
  • an aluminum film As an aluminum film, an aluminum film containing 1 mass% of Ti was used. An aqueous solution of oxalic acid (concentration 0.3 mass%, temperature 10 ° C.) was used as the anodizing solution, and an aqueous solution of phosphoric acid (concentration 10 mass%, temperature 30 ° C.) was used as the etching solution. After anodizing at a voltage of 80 V for 52 seconds, etching was carried out for 25 minutes, followed by anodizing at a voltage of 80 V for 52 seconds and etching for 25 minutes. This was followed by anodizing at 20 V for 52 seconds, etching for 5 minutes, and anodizing at 20 V for 52 seconds.
  • Figure 5 (c) As can be seen from, among D p is in the first recess of about 200 nm, a second recess of D p is about 50nm is formed.
  • the porous alumina layer is formed by changing the voltage of the first level from 80 V to 45 V, the first recess having a D p of about 100 nm has a D p of about 50 nm Two recesses were formed.
  • a synthetic polymer film When a synthetic polymer film is produced using such a mold, a synthetic polymer having a convex portion obtained by inverting the structure of the first concave portion 14pa and the second concave portion 14pb shown in FIGS. 5A and 5B. A membrane is obtained. That is, a synthetic polymer film further having a plurality of second convex portions formed to overlap a plurality of first convex portions is obtained.
  • the synthetic polymer film having the first convex portion and the second convex portion formed to overlap the first convex portion is relatively large by 5 ⁇ m or more from relatively small microorganisms of about 100 nm. It can have a bactericidal action on microorganisms.
  • a mold for forming such a convex portion can be produced, for example, as follows.
  • Anodize with a neutral salt aqueous solution such as ammonium tartrate aqueous solution (ammonium borate, ammonium citrate etc.) or an organic acid with a low degree of ion dissociation (maleic acid, malonic acid, phthalic acid, citric acid, tartaric acid etc)
  • a neutral salt aqueous solution such as ammonium tartrate aqueous solution (ammonium borate, ammonium citrate etc.) or an organic acid with a low degree of ion dissociation (maleic acid, malonic acid, phthalic acid, citric acid, tartaric acid etc)
  • a predetermined voltage the voltage of the second level described above
  • the barrier type anodic oxide film is formed by performing anodic oxidation at 100 V for 2 minutes using an aqueous solution of tartaric acid (concentration 0.1 mol / l, temperature 23 ° C.) Form Thereafter, the barrier type anodic oxide film is removed by etching for 25 minutes using a phosphoric acid aqueous solution (concentration 10 mass%, temperature 30 ° C.).
  • an aqueous solution of oxalic acid (concentration 0.3 mass%, temperature 10 ° C.) is used as the anodic oxidation solution, anodic oxidation at 20 V for 52 seconds, etching using the above etching solution for 5 minutes alternately.
  • moth-eye molds capable of forming various moth-eye structures can be manufactured.
  • FIG. 6 is a schematic cross-sectional view for explaining a method for producing a synthetic polymer film by a roll-to-roll method.
  • a method of producing a synthetic polymer film on the surface of a base film as a workpiece using the above-mentioned roll type will be described, but a method of producing a synthetic polymer film according to an embodiment of the present invention is Other shapes of shapes can be used to produce synthetic polymer films on the surface of various workpieces.
  • a cylindrical moth-eye mold 100 is prepared.
  • the cylindrical moth-eye mold 100 is manufactured by, for example, the manufacturing method described with reference to FIG.
  • the ultraviolet curing resin 34' is irradiated with ultraviolet (UV) radiation. Cure the resin 34 '.
  • ultraviolet-ray cured resin 34 ' acrylic resin can be used, for example.
  • the base film 42 is, for example, a PET (polyethylene terephthalate) film or a TAC (triacetyl cellulose) film.
  • the base film 42 is unrolled from an unrolling roller (not shown), and then an ultraviolet curing resin 34 'is applied to the surface, for example, by a slit coater or the like.
  • the base film 42 is supported by support rollers 46 and 48, as shown in FIG.
  • the support rollers 46 and 48 have a rotation mechanism and transport the base film 42. Further, the cylindrical moth-eye mold 100 is rotated at a rotational speed corresponding to the transport speed of the base film 42 in the direction indicated by the arrow in FIG.
  • the synthetic polymer film 34 to which the inverted moth-eye structure of the moth-eye mold 100 is transferred is formed on the surface of the base film 42.
  • the base film 42 with the synthetic polymer film 34 formed on the surface is wound up by a winding roller (not shown).
  • the surface of the synthetic polymer film 34 has a moth-eye structure in which the nano surface structure of the moth-eye mold 100 is inverted.
  • the synthetic polymer films 34A and 34B shown in FIGS. 1 (a) and 1 (b) can be produced according to the nano surface structure of the moth-eye mold 100 used.
  • the material for forming the synthetic polymer film 34 is not limited to an ultraviolet curable resin, and a visible light curable photocurable resin can be used, or a thermosetting resin can also be used.
  • the bactericidal property of the synthetic polymer film having a moth-eye structure on the surface is correlated not only with the physical structure of the synthetic polymer film but also with the chemical properties of the synthetic polymer film.
  • the applicant of the present application has, as chemical properties, the contact angle of the surface of the synthetic polymer film (Patent Document 5), the concentration of nitrogen element contained in the surface (Patent Document 6), and the concentration of nitrogen element, further ethylene.
  • a correlation was found with the content of oxide units (—CH 2 CH 2 O—) (Patent Document 7).
  • FIGS. 7 (a) and 7 (b) are views showing SEM images of Pseudomonas aeruginosa that has died on the surface having the moth-eye structure shown in FIG. 1 (a) as observed by SEM (scanning electron microscope).
  • the lipid bilayer membrane when the outer membrane (lipid bilayer membrane) of a gram-negative bacterium is deformed in close proximity to the convex portion, the lipid bilayer membrane locally resembles a first-order phase transition (spontaneous reorientation)
  • An opening may be formed in a portion close to the projection, and the projection may intrude into the opening.
  • the convex part may be taken up by a mechanism (endocytosis) which takes in a substance having polarity (including a nutrient source) that the cell has.
  • the synthetic polymer films described in Patent Documents 5 to 7 use an acrylate containing elemental nitrogen and / or elemental fluorine.
  • the contribution of quaternary ammonium salt, amino group, amide group and urethane bond containing nitrogen element is considered.
  • a compound containing a quaternary ammonium salt or an amino group or an amido group has a high permeability to the release agent, so there is a concern that the releasability may be reduced.
  • the compound having a urethane bond has a relatively high viscosity, it tends to lower the releasability. Therefore, productivity declines when mass producing by roll-to-roll method.
  • the compound containing nitrogen element since the compound containing nitrogen element has high polarity, it acts against water resistance.
  • an acrylate containing a fluorine element when used, it works favorably for the releasability, but the water repellency is high and it becomes difficult for water to penetrate. As a result, there is a concern that the effect of sterilizing the liquid containing water may be weakened.
  • the present inventor manufactured various synthetic polymer films using acrylate (including methacrylate) containing neither nitrogen element nor fluorine element, and evaluated transferability and water resistance as well as sterilization.
  • Sample films having different contents of water-soluble monomers and / or ethylene oxide units (-CH 2 CH 2 O-, hereinafter sometimes referred to as "EO units") contained in the synthetic polymer film and crosslink density were prepared.
  • the water-soluble monomer refers to one in which the amount of water (about 20 ° C.) required to dissolve 1 g or 1 ml of monomer is less than 100 ml.
  • the water soluble monomer one having less than 30 ml of water (about 20 ° C.) required to dissolve 1 g or 1 ml of monomer is preferable.
  • the water soluble monomer has a hydroxyl group, a carbonyl group and / or a carboxyl group.
  • the monomer having a hydroxyl group include 2-hydroxyethyl methacrylate, 2-hydroxypropyl acrylate, 2-hydroxybutyl acrylate and 4-hydroxybutyl acrylate.
  • Examples of the monomer having a carbonyl group include 2-acetoacetoxyethyl methacrylate and the like.
  • Examples of the monomer having a carboxyl group include acrylic acid, methacrylic acid, 2-methacryloyloxyethyl succinic acid and the like.
  • Example 1 As sample films of synthetic polymer films, as in the synthetic polymer films described in Patent Documents 5 to 7, reference examples 1 to 4 containing nitrogen and / or fluorine elements, transferability and / or water resistance are improved Examples 1 to 9 and Comparative Examples 1 to 9 were prepared.
  • the compositions of Reference Examples 1 to 4 are shown in Table 2, the compositions of Examples 1 to 9 in Table 3, and the compositions of Comparative Examples 1 to 9 in Table 4.
  • Table 2 it is shown that (N) after the abbreviation of acrylic monomer contains a nitrogen element and (F) contains a fluorine element.
  • Comparative Example 1 the same ultraviolet curable resin as in Example 1 was used, and the moth-eye structure was not formed. That is, the sample film of Comparative Example 1 is a film (flat plate) having a flat surface.
  • a PET film (A4300 manufactured by Toyobo Co., Ltd.) having a thickness of 50 ⁇ m was used.
  • the synthetic polymer film was produced by the same method as that described with reference to FIG. 6 using the moth-eye mold 100A to produce a synthetic polymer film 34A having a moth-eye structure on the surface.
  • the exposure dose was about 200 mJ / cm 2 (based on light having a wavelength of 375 nm).
  • D p was about 200 nm
  • D int was about 200 nm
  • D h was about 150 nm.
  • a synthetic polymer film was produced without using any solvent.
  • Tables 5 to 7 The evaluation results of bactericidal property, transferability and water resistance, and the content of water-soluble monomer unit and / or ethylene oxide unit (EO unit) are shown in Tables 5 to 7 below for each sample film.
  • Table 5 shows Reference Examples 1 to 4
  • Table 6 shows Examples 1 to 9, and
  • Table 7 shows Comparative Examples 1 to 9.
  • washout solution was appropriately diluted with PBS, cultured on a standard agar medium or the like, and the number of bacteria was counted.
  • the bactericidal properties were evaluated on the basis of the bactericidal properties of the reference film.
  • a reference film a 50 ⁇ m-thick PET film (A4300 manufactured by Toyobo Co., Ltd.) used as a base film was used.
  • the number of bacteria was counted in the above-mentioned procedure for PET film, and the bactericidal property of each sample film was evaluated by the ratio (%) of the number of bacteria of each sample film to the number of bacteria obtained for this PET film.
  • the criteria for determining bactericidal properties were ⁇ ⁇ ⁇ : 0%,: 0: more than 0% and less than 10%, ⁇ : 10% or more and less than 50%, x: 50% or more based on the viable cell rate. That is, if the viable cell rate was less than 50%, it was considered as usable.
  • an aluminum film (thickness: about 1 ⁇ m) is formed on a glass substrate (about 5 cm ⁇ about 5 cm), and this aluminum film is alternately repeated by anodic oxidation and etching, similarly to the above.
  • porous alumina layer (D p is about 200 nm, D int of about 200 nm, D h is approximately 150 nm) were formed.
  • the surface of the obtained porous alumina layer was subjected to oxygen plasma cleaning (100 W, 25 seconds), and the contact angle to water was adjusted to 100 ° to 110 °. This is to reduce the releasability of the surface of the mold to the ultraviolet curable resin.
  • a synthetic polymer film was produced ten times on a PET film using an ultraviolet curable resin.
  • the formation of a synthetic polymer film on a PET film is expressed as transfer of the synthetic polymer film onto a PET film.
  • a UV lamp manufactured by Fusion UV Systems product name: LIGHT HANMAR 6J6P3 was used, and the exposure dose was about 200 mJ / cm 2 (based on light at 375 nm).
  • Transfer is performed manually, transferred ten times, and sense of lightness at transfer (degree of force required to peel the mold from the synthetic polymer film), and index of surface condition of the mold at transfer And ⁇ : No change after 10 transfers.
  • Crosslink density The synthetic polymer film produced here is formed of an ultraviolet curable resin containing a polyfunctional acrylate, and thus has a crosslinked structure (network structure).
  • the crosslink density of a polymer having a crosslink structure is a temperature giving Er ′ (Pa) as the minimum value of the dynamic storage elastic modulus E ′ in a temperature range exceeding the glass transition temperature. It is calculated
  • required from the formula of n Er '/ (3 * R * Tr) by making Tr (K) and the gas constant R into 8.3 J / mol * K.
  • the minimum value of the dynamic storage elastic modulus E' in the temperature range exceeding the glass transition temperature is Er '. (Pa), and the minimum temperature for giving Er 'may be Tr (K).
  • the dynamic storage elastic modulus Er '(Pa) is determined by DMA (Dynamic Mechanical Analysis: referred to as dynamic mechanical analysis or dynamic viscoelasticity measurement). Here, it asked as follows.
  • the temperature change of the dynamic storage modulus E ' was measured.
  • the minimum value (typically, the minimum value) of the dynamic storage modulus E 'in the temperature range above the glass transition temperature Tg is the dynamic storage modulus Er', and the minimum temperature giving Er 'is Tr (K) did.
  • the glass transition temperature Tg was determined, for example, as a temperature at which the loss elastic modulus E ′ ′ takes a maximum value (peak value).
  • the test piece had a length of 35 mm, a width of 5 mm, and a thickness of 1 mm, and the unclamped portion had a length of 20 mm.
  • Tr is expressed in degrees Celsius (° C.), but the absolute temperature (K) is used to calculate the crosslink density.
  • water soluble m amount in Tables 5 to 7 represents the mass% of the water soluble monomer with respect to the whole of each ultraviolet curable resin
  • EO amount represents ethylene oxide units with respect to the whole of each ultraviolet curable resin ( It represents the mass% of the EO unit).
  • the synthetic polymer films of Reference Examples 1 to 4 are produced using an acrylic monomer containing an element of nitrogen and / or an element of fluorine, and the element has a crosslinked structure containing an element of nitrogen and / or an element of fluorine.
  • these synthetic polymer membranes contain water soluble monomer units and EO units.
  • the "water-soluble monomer unit” refers to a structural unit after the water-soluble monomer is polymerized.
  • the reference examples 1 to 3 containing the nitrogen element have excellent bactericidal properties but have poor transferability.
  • the reference example 4 containing a fluorine element is excellent in transferability and water resistance, its bactericidal property is low. It is presumed that this is because bacteria contained in water are hard to approach the surface of the synthetic polymer film due to the water repellent effect of the fluorine element.
  • the synthetic polymer films of Examples 1 to 9 have ethylene oxide units and / or water-soluble monomer units in the cross-linked structure without containing any of the nitrogen element and the fluorine element.
  • the crosslink density n of any of the synthetic polymer films is in the range of 2.8 ⁇ 10 ⁇ 3 mol / cc to 9.5 ⁇ 10 ⁇ 3 mol / cc, and any of bactericidal property, transferability and water resistance Is also at a usable level.
  • the crosslink density n is preferably 8.4 ⁇ 10 ⁇ 3 mol / cc or less, and more preferably 5.8 ⁇ 10 ⁇ 3 mol / cc or less.
  • the crosslink density n is preferably 3.7 ⁇ 10 ⁇ 3 mol / cc or more.
  • the total content of ethylene oxide units and water-soluble monomer units contained in the cross-linked structure is over 40% by mass. From the fact that the water resistance of Examples 2, 4 and 5 is somewhat inferior, it is considered that the total content of the ethylene oxide unit and the water-soluble monomer unit contained in the crosslinked structure is preferably 70% by mass or less.
  • the dynamic storage moduli Er ' are all in the range of more than 20 MPa and less than 90 MPa. Since the bactericidal properties of Examples 6 and 7 are somewhat inferior, it is considered preferable that the dynamic storage elastic modulus Er 'is less than 75 MPa.
  • Example 9 is produced from what mixed the acrylic monomer which has a siloxane bond with the ultraviolet curable resin of Example 6, and its bactericidal property is improving.
  • the compound (silicone compound) which has a siloxane bond is often used as a material which provides mold release property like a fluorine-type compound. From the comparison between Example 9 and Example 6, it is considered that releasability, that is, transferability can be improved by using a monomer having a siloxane bond without sacrificing sterilization.
  • the synthetic polymer films of Comparative Examples 1 to 9 do not contain any of the nitrogen element and the fluorine element in the cross-linked structure, like the synthetic polymer films of the examples.
  • the synthetic polymer membranes of Comparative Examples 1 to 7 have ethylene oxide units and / or water-soluble monomer units.
  • the synthetic polymer film of Comparative Example 1 is a synthetic polymer film in which a moth-eye structure is not formed using the same ultraviolet curable resin as that of Example 1, and has a low sterilizing property. That is, it is understood that the bactericidal property can be imparted or improved by the moth-eye structure of the surface of the synthetic polymer film.
  • the synthetic polymer membranes of Comparative Examples 2 to 4 have excellent bactericidal properties but have poor water resistance.
  • the crosslink density n of these synthetic polymer films is 2.3 ⁇ 10 ⁇ 3 mol / cc or less. From the comparison with the examples, it is understood that when the crosslink density n is too small, the water resistance is lowered.
  • the synthetic polymer membranes of Comparative Examples 5 to 7 are excellent in water resistance but poor in bactericidal property.
  • the crosslinking density n of these synthetic polymer films is 11.0 ⁇ 10 ⁇ 3 mol / cc or more. As is clear from the graph showing the relationship between the crosslink density and the viable cell ratio of the synthetic polymer films of Examples 1 to 8 and Comparative Examples 2 to 7 shown in FIG. Is found to decrease.
  • the surface of the synthetic polymer film should have such a degree of hydrophilicity and crosslink density that it can be swollen by water. Is considered preferable. That is, the probability that the polymer chain on the surface of the synthetic polymer membrane interacts with the bacteria contained in water is considered to increase, as a result, the bactericidal property is improved.
  • the synthetic polymer membranes of Comparative Examples 8 and 9 do not contain ethylene oxide units and have poor sterilizing properties. From this, it is considered that the ethylene oxide unit contributes to the sterilization.
  • the synthetic polymer membrane according to the embodiment of the present invention can sterilize water attached to the surface in a short time. Therefore, the infection can be suppressed / prevented by arranging on the inner surface of the hand insertion space of the hand dryer.
  • the synthetic polymer membrane according to the embodiment of the present invention is suitably used in applications where it is desired to sterilize water in a short time.
  • 34A, 34B Synthetic polymer film 34Ap, 34Bp Convex part 42A, 42B Base film 50A, 50B film 100, 100A, 100B Moss eye mold

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Laminated Bodies (AREA)
  • Apparatus For Disinfection Or Sterilisation (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Shaping Of Tube Ends By Bending Or Straightening (AREA)

Abstract

A synthetic polymer film (34A, 34B) is provided with a surface having a plurality of first projections (34Ap, 34Bp); when viewed from the normal direction of the synthetic polymer film, the plurality of first projections (34Ap, 34Bp) has a two-dimensional size within the range from more than 20 nm to less than 500 nm and has a crosslinked structure; the crosslinked structure does not contain elemental nitrogen and elemental fluorine and has an ethylene oxide unit and/or water-soluble monomer unit; and the crosslinking density n determined from the formula n = Er'/(3∙R∙Tr), taking the minimum value of the dynamic storage modulus E' in the temperature region exceeding the glass transition temperature as Er' (Pa), taking the minimum temperature that gives Er' as Tr (K), and taking the gas constant R as 8.3 J/mol∙K, is within the range of 2.8 × 10-3 mol/cc to 9.5 × 10-3 mol/cc inclusive.

Description

殺菌作用を備えた表面を有する合成高分子膜および合成高分子膜の表面を用いた殺菌方法Synthetic polymer film having a surface having a bactericidal action and sterilization method using the surface of the synthetic polymer film
 本発明は、殺菌作用を備えた表面を有する合成高分子膜および合成高分子膜の表面を用いた殺菌方法に関する。 The present invention relates to a synthetic polymer membrane having a surface with a bactericidal action and a sterilization method using the surface of the synthetic polymer membrane.
 最近、ブラックシリコン、セミやトンボの羽が有するナノ表面構造が殺菌作用を有することが発表された(非特許文献1)。ブラックシリコン、セミやトンボの羽が有するナノピラーの物理的な構造が、殺菌作用を発現するとされている。 Recently, it was announced that nanosurface structures possessed by black silicon, semi- and dragonfly wings have a bactericidal action (Non-patent Document 1). It is believed that the physical structure of nanopillars possessed by black silicon, semi- and dragonfly wings exerts a bactericidal action.
 非特許文献1によると、グラム陰性菌に対する殺菌作用は、ブラックシリコンが最も強く、トンボの羽、セミの羽の順に弱くなる。ブラックシリコンは、高さが500nmのナノピラーを有し、セミやトンボの羽は、高さが240nmのナノピラーを有している。また、これらの表面の水に対する静的接触角(以下、単に「接触角」ということがある。)は、ブラックシリコンが80°であるのに対し、トンボの羽は153°、セミの羽は159°である。また、ブラックシリコンは主にシリコンから形成され、セミやトンボの羽はキチン質から形成されていると考えられる。非特許文献1によると、ブラックシリコンの表面の組成はほぼ酸化シリコン、セミおよびトンボの羽の表面の組成は脂質である。 According to Non-Patent Document 1, the bactericidal action against Gram-negative bacteria is the strongest in black silicon, and becomes weaker in the order of dragonfly wings and semi wings. Black silicon has nanopillars with a height of 500 nm, and semi and dragonfly wings have nanopillars with a height of 240 nm. In addition, the static contact angle (hereinafter simply referred to as the “contact angle”) of these surfaces against water is 80 ° for black silicon, while that of the dragonfly is 153 ° and that of the semi is It is 159 °. In addition, it is considered that black silicon is mainly formed of silicon, and the wings of semi and dragonfly are formed of chitin. According to Non-Patent Document 1, the composition of the surface of the black silicon is approximately silicon oxide, and the composition of the surface of the semi and dragonfly wings is a lipid.
特許第4265729号公報Patent No. 4265729 特開2009-166502号公報JP, 2009-166502, A 国際公開第2011/125486号International Publication No. 2011/125486 国際公開第2013/183576号International Publication No. 2013/183576 国際公開第2015/163018号(特許第5788128号)WO 2015/163018 (Patent No. 5788128) 国際公開第2016/080245号(特許第5933151号)WO 2016/080245 (Patent No. 5933151) 国際公開第2016/208540号International Publication No. 2016/208540
 非特許文献1に記載の結果からは、ナノピラーによって細菌が殺されるメカニズムは明らかではない。さらに、ブラックシリコンがトンボやセミの羽よりも強い殺菌作用を有する理由が、ナノピラーの高さや形状の違いにあるのか、表面自由エネルギー(接触角で評価され得る)の違いにあるのか、ナノピラーを構成する物質にあるのか、表面の化学的性質にあるのか、不明である。 From the results described in Non-Patent Document 1, the mechanism by which bacteria are killed by nanopillars is not clear. Furthermore, whether the reason that black silicon has a stronger bactericidal action than dragonflies and semi-feathers is the difference in the height and shape of nanopillars, or the difference in surface free energy (which can be evaluated by the contact angle) It is unclear whether it is the constituent material or the chemical nature of the surface.
 また、ブラックシリコンの殺菌作用を利用するにしても、ブラックシリコンは、量産性に乏しく、また、硬く脆いので、形状加工性が低いという問題がある。 Further, even if the bactericidal action of black silicon is used, black silicon is poor in mass productivity and hard and brittle, so that there is a problem that shape processability is low.
 本発明は、上記の課題を解決するためになされたものであり、その主な目的は、殺菌作用を備えた表面を有する合成高分子膜および合成高分子膜の表面を用いた殺菌方法を提供することにある。本発明はさらに、耐水性および/または量産性に優れた、殺菌作用を備えた表面を有する合成高分子膜を提供することを目的とする。 The present invention has been made to solve the above-mentioned problems, and its main object is to provide a synthetic polymer membrane having a surface having a bactericidal action and a sterilization method using the surface of the synthetic polymer membrane. It is to do. Another object of the present invention is to provide a synthetic polymer film having a bactericidal surface, which is excellent in water resistance and / or mass productivity.
 本発明のある実施形態の合成高分子膜は、複数の第1の凸部を有する表面を備える合成高分子膜であって、前記合成高分子膜の法線方向から見たとき、前記複数の第1の凸部の2次元的な大きさは20nm超500nm未満の範囲内にあり、架橋構造を有し、前記架橋構造は、窒素およびフッ素を含まず、エチレンオキサイド単位および/または水溶性モノマー単位を有し、ガラス転移温度を超える温度範囲における動的貯蔵弾性率E'の最小値をEr’(Pa)とし、Er’を与える最低温度をTr(K)とし、気体定数Rを8.3J/mol・Kとして、n=Er’/(3・R・Tr)の式から求められる架橋密度nが、2.8×10-3mol/cc以上9.5×10-3mol/cc以下の範囲にある。 The synthetic polymer film according to an embodiment of the present invention is a synthetic polymer film provided with a surface having a plurality of first convex portions, and when viewed from the normal direction of the synthetic polymer film, the plurality of the synthetic polymer films The two-dimensional size of the first convex portion is in the range of more than 20 nm and less than 500 nm, and has a crosslinked structure, and the crosslinked structure does not contain nitrogen and fluorine, and ethylene oxide units and / or water soluble monomers The minimum value of the dynamic storage elastic modulus E ′ in the temperature range having a unit and exceeding the glass transition temperature is Er ′ (Pa), the minimum temperature giving Er ′ is Tr (K), and the gas constant R is 8. The crosslinking density n calculated from the equation n = Er '/ (3 · R · Tr) as 3 J / mol · K is 2.8 × 10 -3 mol / cc or more and 9.5 × 10 -3 mol / cc It is in the following range.
 ここで、動的貯蔵弾性率Er’(Pa)およびTr(K)は、DMA(動的機械分析、動的粘弾性測定ともいう。)で求められる。 Here, dynamic storage elastic modulus Er '(Pa) and Tr (K) are calculated | required by DMA (it is also called dynamic mechanical analysis and dynamic viscoelasticity measurement).
 ある実施形態において、前記架橋密度nは、8.4×10-3mol/cc以下である。 In one embodiment, the crosslink density n is 8.4 × 10 −3 mol / cc or less.
 ある実施形態において、前記架橋密度nは、5.8×10-3mol/cc以下である。 In one embodiment, the crosslink density n is 5.8 × 10 −3 mol / cc or less.
 ある実施形態において、前記架橋密度nは、3.7×10-3mol/cc以上である。 In one embodiment, the crosslink density n is 3.7 × 10 −3 mol / cc or more.
 ある実施形態において、前記合成高分子膜の全体に対する、前記架橋構造に含まれるエチレンオキサイド単位および水溶性モノマー単位の合計の含有率は、40質量%超である。 In one embodiment, the total content of ethylene oxide units and water-soluble monomer units contained in the cross-linked structure is more than 40% by mass relative to the entire synthetic polymer film.
 ある実施形態において、前記合成高分子膜の全体に対する、前記架橋構造に含まれるエチレンオキサイド単位および水溶性モノマー単位の合計の含有率は、70質量%以下である。 In one embodiment, the total content of ethylene oxide units and water-soluble monomer units contained in the crosslinked structure is 70% by mass or less based on the total weight of the synthetic polymer film.
 ある実施形態において、前記動的貯蔵弾性率Er’は20MPa超90MPa未満である。 In one embodiment, the dynamic storage modulus Er 'is greater than 20 MPa and less than 90 MPa.
 ある実施形態において、前記動的貯蔵弾性率Er’は75MPa未満である。 In one embodiment, the dynamic storage modulus Er 'is less than 75 MPa.
 ある実施形態において、前記架橋構造は、シロキサン結合を有するモノマー単位を含む。 In one embodiment, the crosslinked structure contains a monomer unit having a siloxane bond.
 本発明のある実施形態による液体を殺菌する方法は、上記のいずれかに記載の合成高分子膜の前記表面に、水を含む液体を接触させることによって、前記液体を殺菌する方法である。 A method of sterilizing a liquid according to an embodiment of the present invention is a method of sterilizing the liquid by bringing the liquid containing water into contact with the surface of the synthetic polymer membrane described in any of the above.
 本発明の実施形態によると、殺菌作用を備えた表面を有する合成高分子膜および合成高分子膜の表面を用いた殺菌方法が提供される。本発明の実施形態によると、耐水性および/または量産性に優れた、殺菌作用を備えた表面を有する合成高分子膜が提供される。 According to an embodiment of the present invention, a synthetic polymer membrane having a surface having a bactericidal action and a sterilization method using the surface of the synthetic polymer membrane are provided. According to an embodiment of the present invention, a synthetic polymer membrane having a bactericidal surface excellent in water resistance and / or mass productivity is provided.
(a)および(b)は、それぞれ本発明の実施形態による合成高分子膜34Aおよび34Bの模式的な断面図である。(A) And (b) is typical sectional drawing of synthetic- polymer film 34A and 34B by embodiment of this invention, respectively. (a)~(e)は、モスアイ用型100Aの製造方法およびモスアイ用型100Aの構造を説明するための図である。(A) to (e) are diagrams for explaining the manufacturing method of the moth-eye mold 100A and the structure of the moth-eye mold 100A. (a)~(c)は、モスアイ用型100Bの製造方法およびモスアイ用型100Bの構造を説明するための図である。(A) to (c) are diagrams for explaining the manufacturing method of the moth-eye mold 100B and the structure of the moth-eye mold 100B. (a)はアルミニウム基材の表面のSEM像を示し、(b)はアルミニウム膜の表面のSEM像を示し、(c)はアルミニウム膜の断面のSEM像を示す。(A) shows the SEM image of the surface of the aluminum substrate, (b) shows the SEM image of the surface of the aluminum film, and (c) shows the SEM image of the cross section of the aluminum film. (a)は型のポーラスアルミナ層の模式的な平面図であり、(b)は模式的な断面図であり、(c)は試作した型のSEM像を示す図である。(A) is a schematic plan view of a porous alumina layer of a mold, (b) is a schematic cross-sectional view, and (c) is a view showing an SEM image of a prototype manufactured. モスアイ用型100を用いた合成高分子膜の製造方法を説明するための図である。It is a figure for demonstrating the manufacturing method of the synthetic polymer film using the type | mold 100 for moth-eye. (a)および(b)は、モスアイ構造を有する表面で死に至った緑膿菌をSEM(走査型電子顕微鏡)で観察したSEM像を示す図である。(A) And (b) is a figure which shows the SEM image which observed the Pseudomonas aeruginosa which died on the surface which has a moth-eye structure by SEM (scanning electron microscope). 実施例1の合成高分子膜の動的貯蔵弾性率E’の温度依存性を測定した結果を示すグラフである。It is a graph which shows the result of having measured temperature dependence of dynamic storage elastic modulus E 'of a synthetic polymer film of Example 1. 実施例1~8および比較例2~7の合成高分子膜の架橋密度と生菌率との関係を示すグラフである。It is a graph which shows the relationship of the crosslink density of the synthetic polymer membrane of Examples 1-8 and Comparative Examples 2-7, and a viable cell rate.
 以下、図面を参照して、本発明の実施形態による、表面が殺菌効果を有する合成高分子膜および合成高分子膜の表面を用いた殺菌方法を説明する。 Hereinafter, with reference to the drawings, a sterilizing method using a surface of a synthetic polymer film having a bactericidal effect and a surface of the synthetic polymer film according to an embodiment of the present invention will be described.
 なお、本明細書においては、以下の用語を用いることにする。 In the present specification, the following terms will be used.
 「殺菌(sterilization(microbicidal))」は、物体や液体といった対象物や、限られた空間に含まれる、増殖可能な微生物(microorganism)の数を、有効数減少させることをいう。 "Sterilization (microbicidal)" refers to reducing the number of viable organisms contained in a limited space or an object such as an object or liquid, by an effective number.
 「微生物」は、ウィルス、細菌(バクテリア)、真菌(カビ)を包含する。 "Microbes" include viruses, bacteria (bacteria), fungi (molds).
 「抗菌(antimicrobial)」は、微生物の繁殖を抑制・防止することを広く含み、微生物に起因する黒ずみやぬめりを抑制することを含む。 "Antimicrobial" broadly includes suppressing and preventing the growth of microorganisms, and includes suppressing darkening and slimming due to microorganisms.
 本出願人は、陽極酸化ポーラスアルミナ層を用いて、モスアイ構造を有する反射防止膜(反射防止表面)を製造する方法を開発した。陽極酸化ポーラスアルミナ層を用いることによって、反転されたモスアイ構造を有する型を高い量産性で製造することができる。 The applicant has developed a method for producing an antireflective film (antireflective surface) having a moth-eye structure using an anodized porous alumina layer. By using the anodized porous alumina layer, a mold having an inverted moth-eye structure can be manufactured with high mass productivity.
 本発明者は、上記の技術を応用することによって、表面が殺菌効果を有する合成高分子膜を開発するに至った(例えば、特許文献5、6および7参照)。参考のために、上記特許文献5、6および7の開示内容の全てを本明細書に援用する。 The inventor of the present invention has developed a synthetic polymer film having a bactericidal effect on the surface by applying the above-mentioned technology (see, for example, Patent Documents 5, 6 and 7). The entire disclosures of the above-mentioned Patent Documents 5, 6 and 7 are incorporated herein by reference.
 図1(a)および(b)を参照して、本発明の実施形態による合成高分子膜の構造を説明する。 The structure of a synthetic polymer membrane according to an embodiment of the present invention will be described with reference to FIGS. 1 (a) and (b).
 図1(a)および(b)は、本発明の実施形態による合成高分子膜34Aおよび34Bの模式的な断面図をそれぞれ示す。ここで例示する合成高分子膜34Aおよび34Bは、いずれもベースフィルム42Aおよび42B上にそれぞれ形成されているが、もちろんこれに限られない。合成高分子膜34Aおよび34Bは、任意の物体の表面に直接形成され得る。 FIGS. 1 (a) and (b) show schematic cross-sectional views of synthetic polymer films 34A and 34B, respectively, according to an embodiment of the present invention. The synthetic polymer films 34A and 34B exemplified here are each formed on the base films 42A and 42B respectively, but of course is not limited thereto. The synthetic polymer films 34A and 34B can be formed directly on the surface of any object.
 図1(a)に示すフィルム50Aは、ベースフィルム42Aと、ベースフィルム42A上に形成された合成高分子膜34Aとを有している。合成高分子膜34Aは、表面に複数の凸部34Apを有しており、複数の凸部34Apは、モスアイ構造を構成している。合成高分子膜34Aの法線方向から見たとき、凸部34Apの2次元的な大きさDpは20nm超500nm未満の範囲内にある。ここで、凸部34Apの「2次元的な大きさ」とは、表面の法線方向から見たときの凸部34Apの面積円相当径を指す。例えば、凸部34Apが円錐形の場合、凸部34Apの2次元的な大きさは、円錐の底面の直径に相当する。また、凸部34Apの典型的な隣接間距離Dintは20nm超1000nm以下である。図1(a)に例示するように、凸部34Apが密に配列されており、隣接する凸部34Ap間に間隙が存在しない(例えば、円錐の底面が部分的に重なる)場合には、凸部34Apの2次元的な大きさDpは隣接間距離Dintと等しい。凸部34Apの典型的な高さDhは、50nm以上500nm未満である。後述するように、凸部34Apの高さDhが150nm以下であっても殺菌作用を発現する。合成高分子膜34Aの厚さtsに特に制限はなく、凸部34Apの高さDhより大きければよい。 A film 50A shown in FIG. 1A includes a base film 42A and a synthetic polymer film 34A formed on the base film 42A. The synthetic polymer film 34A has a plurality of projections 34Ap on the surface, and the plurality of projections 34Ap form a moth-eye structure. When viewed in the normal direction of the synthetic polymer film 34A, the two-dimensional size D p of the convex portion 34Ap is in the range of more than 20 nm and less than 500 nm. Here, the “two-dimensional size” of the convex portion 34Ap refers to the area circle equivalent diameter of the convex portion 34Ap when viewed from the normal direction of the surface. For example, in the case where the convex portion 34Ap has a conical shape, the two-dimensional size of the convex portion 34Ap corresponds to the diameter of the base of the cone. Further, a typical adjacent distance D int of the convex portion 34Ap is more than 20 nm and 1000 nm or less. As illustrated in FIG. 1A, in the case where the convex portions 34Ap are densely arranged and there is no gap between adjacent convex portions 34Ap (for example, the bottom of the cone partially overlaps), the convex is The two-dimensional size D p of the part 34 Ap is equal to the distance D int between adjacent parts. Typical height D h of convex part 34Ap is 50 nm or more and less than 500 nm. As described later, even if the height D h of the convex portion 34Ap is 150 nm or less, the bactericidal action is exhibited. There is no particular limitation on the thickness t s of the synthetic polymer film 34A, and it may be larger than the height D h of the convex portion 34Ap.
 図1(a)に示した合成高分子膜34Aは、特許文献1~4に記載されている反射防止膜と同様のモスアイ構造を有している。反射防止機能を発現させるためには、表面に平坦な部分がなく、凸部34Apが密に配列されていることが好ましい。また、凸部34Apは、空気側からベースフィルム42A側に向かって、断面積(入射光線に直交する面に平行な断面、例えばベースフィルム42Aの面に平行な断面)が増加する形状、例えば、円錐形であることが好ましい。また、光の干渉を抑制するために、凸部34Apを規則性がないように、好ましくはランダムに、配列することが好ましい。しかしながら、合成高分子膜34Aの殺菌作用をもっぱら利用する場合には、これらの特徴は必要ではない。例えば、凸部34Apは密に配列される必要はなく、また、規則的に配列されてもよい。ただし、凸部34Apの形状や配置は、微生物に効果的に作用するように選択されることが好ましい。 The synthetic polymer film 34A shown in FIG. 1 (a) has a moth-eye structure similar to the antireflective film described in Patent Documents 1 to 4. In order to exhibit an anti-reflection function, it is preferable that there is no flat portion on the surface, and the convex portions 34Ap are densely arranged. In addition, the convex portion 34Ap has a shape in which a cross-sectional area (a cross section parallel to a plane perpendicular to the incident light beam, for example, a cross section parallel to the plane of the base film 42A) increases from the air side to the base film 42A side. Preferably it is conical. Further, in order to suppress light interference, it is preferable to arrange the convex portions 34Ap preferably at random so as to have no regularity. However, these characteristics are not necessary when the bactericidal action of the synthetic polymer film 34A is exclusively used. For example, the protrusions 34Ap do not have to be arranged densely, and may be arranged regularly. However, it is preferable that the shape and arrangement of the projections 34Ap be selected so as to effectively act on microorganisms.
 図1(b)に示すフィルム50Bは、ベースフィルム42Bと、ベースフィルム42B上に形成された合成高分子膜34Bとを有している。合成高分子膜34Bは、表面に複数の凸部34Bpを有しており、複数の凸部34Bpは、モスアイ構造を構成している。フィルム50Bは、合成高分子膜34Bが有する凸部34Bpの構造が、フィルム50Aの合成高分子膜34Aが有する凸部34Apの構造と異なっている。フィルム50Aと共通の特徴については説明を省略することがある。 A film 50B shown in FIG. 1B has a base film 42B and a synthetic polymer film 34B formed on the base film 42B. The synthetic polymer film 34B has a plurality of projections 34Bp on its surface, and the plurality of projections 34Bp constitute a moth-eye structure. In the film 50B, the structure of the projections 34Bp of the synthetic polymer film 34B is different from the structure of the projections 34Ap of the synthetic polymer film 34A of the film 50A. Description of features common to the film 50A may be omitted.
 合成高分子膜34Bの法線方向から見たとき、凸部34Bpの2次元的な大きさDpは20nm超500nm未満の範囲内にある。また、凸部34Bpの典型的な隣接間距離Dintは20nm超1000nm以下であり、かつ、Dp<Dintである。すなわち、合成高分子膜34Bでは、隣接する凸部34Bpの間に平坦部が存在する。凸部34Bpは、空気側に円錐形の部分を有する円柱状であり、凸部34Bpの典型的な高さDhは、50nm以上500nm未満である。また、凸部34Bpは、規則的に配列されていてもよいし、不規則に配列されていてもよい。凸部34Bpが規則的に配列されている場合、Dintは配列の周期をも表すことになる。このことは、当然ながら、合成高分子膜34Aについても同じである。 When viewed in the normal direction of the synthetic polymer film 34B, the two-dimensional size D p of the convex portion 34Bp is in the range of more than 20 nm and less than 500 nm. Further, a typical adjacent distance D int of the convex portion 34Bp is more than 20 nm and not more than 1000 nm, and D p <D int . That is, in the synthetic polymer film 34B, a flat portion exists between the adjacent convex portions 34Bp. The convex portion 34Bp has a cylindrical shape having a conical portion on the air side, and a typical height D h of the convex portion 34Bp is 50 nm or more and less than 500 nm. The convex portions 34Bp may be regularly arranged or irregularly arranged. If the projections 34Bp are regularly arranged, D int will also represent the period of the arrangement. This is, of course, the same for the synthetic polymer film 34A.
 なお、本明細書において、「モスアイ構造」は、図1(a)に示した合成高分子膜34Aの凸部34Apの様に、断面積(膜面に平行な断面)が増加する形状の凸部で構成される、優れた反射機能を有するナノ表面構造だけでなく、図1(b)に示した合成高分子膜34Bの凸部34Bpの様に、断面積(膜面に平行な断面)が一定の部分を有する凸部で構成されるナノ表面構造も包含する。なお、微生物の細胞壁および/または細胞膜を破壊するためには、円錐形の部分を有することが好ましい。ただし、円錐形の先端は、ナノ表面構造である必要は必ずしもなく、セミの羽が有するナノ表面構造を構成するナノピラー程度の丸み(約60nm)を有していてもよい。 Incidentally, in the present specification, the “moth-eye structure” is a convex having a shape in which the cross-sectional area (the cross section parallel to the film surface) increases like the convex portion 34Ap of the synthetic polymer film 34A shown in FIG. The cross-sectional area (cross section parallel to the film surface) is not only the nanosurface structure having an excellent reflection function, but also the convex portion 34Bp of the synthetic polymer film 34B shown in FIG. 1 (b). Also includes a nanosurface structure composed of a convex portion having a constant portion. In addition, in order to destroy the cell wall and / or cell membrane of microorganisms, it is preferable to have a conical part. However, the conical tip does not necessarily have to be a nanosurface structure, and may have a roundness (about 60 nm) of a nanopillar that constitutes a nanosurface structure possessed by semi-wings.
 図1(a)および(b)に例示したようなモスアイ構造を表面に形成するための型(以下、「モスアイ用型」という。)は、モスアイ構造を反転させた、反転されたモスアイ構造を有する。反転されたモスアイ構造を有する陽極酸化ポーラスアルミナ層をそのまま型として利用すると、モスアイ構造を安価に製造することができる。特に、円筒状のモスアイ用型を用いると、ロール・ツー・ロール方式によりモスアイ構造を効率良く製造することができる。このようなモスアイ用型は、特許文献2~4に記載されている方法で製造することができる。 A mold for forming a moth-eye structure as illustrated in FIGS. 1A and 1B (hereinafter referred to as “moth-eye mold”) is an inverted moth-eye structure obtained by inverting the moth-eye structure. Have. If the anodized porous alumina layer having the inverted moth-eye structure is used as a mold as it is, the moth-eye structure can be manufactured inexpensively. In particular, when a cylindrical moth-eye mold is used, a moth-eye structure can be efficiently manufactured by a roll-to-roll method. Such moth-eye molds can be manufactured by the methods described in Patent Documents 2 to 4.
 図2(a)~(e)を参照して、合成高分子膜34Aを形成するための、モスアイ用型100Aの製造方法を説明する。 A method of manufacturing the moth-eye mold 100A for forming the synthetic polymer film 34A will be described with reference to FIGS. 2 (a) to 2 (e).
 まず、図2(a)に示すように、型基材として、アルミニウム基材12と、アルミニウム基材12の表面に形成された無機材料層16と、無機材料層16の上に堆積されたアルミニウム膜18とを有する型基材10を用意する。 First, as shown in FIG. 2A, an aluminum substrate 12, an inorganic material layer 16 formed on the surface of the aluminum substrate 12, and aluminum deposited on the inorganic material layer 16 are used as a mold substrate. A mold base 10 having a membrane 18 is provided.
 アルミニウム基材12としては、アルミニウムの純度が99.50mass%以上99.99mass%未満である比較的剛性の高いアルミニウム基材を用いる。アルミニウム基材12に含まれる不純物としては、鉄(Fe)、ケイ素(Si)、銅(Cu)、マンガン(Mn)、亜鉛(Zn)、ニッケル(Ni)、チタン(Ti)、鉛(Pb)、スズ(Sn)およびマグネシウム(Mg)からなる群から選択された少なくとも1つの元素を含むことが好ましく、特にMgが好ましい。エッチング工程におけるピット(窪み)が形成されるメカニズムは、局所的な電池反応であるので、理想的にはアルミニウムよりも貴な元素を全く含まず、卑な金属であるMg(標準電極電位が-2.36V)を不純物元素として含むアルミニウム基材12を用いることが好ましい。アルミニウムよりも貴な元素の含有率が10ppm以下であれば、電気化学的な観点からは、当該元素を実質的に含んでいないと言える。Mgの含有率は、全体の0.1mass%以上であることが好ましく、約3.0mass%以下の範囲であることがさらに好ましい。Mgの含有率が0.1mass%未満では十分な剛性が得られない。一方、含有率が大きくなると、Mgの偏析が起こり易くなる。モスアイ用型を形成する表面付近に偏析が生じても電気化学的には問題とならないが、Mgはアルミニウムとは異なる形態の陽極酸化膜を形成するので、不良の原因となる。不純物元素の含有率は、アルミニウム基材12の形状、厚さおよび大きさに応じて、必要とされる剛性に応じて適宜設定すればよい。例えば圧延加工によって板状のアルミニウム基材12を作製する場合には、Mgの含有率は約3.0mass%が適当であるし、押出加工によって円筒などの立体構造を有するアルミニウム基材12を作製する場合には、Mgの含有率は2.0mass%以下であることが好ましい。Mgの含有率が2.0mass%を超えると、一般に押出加工性が低下する。 As the aluminum base 12, a relatively rigid aluminum base having a purity of 99.50 mass% to less than 99.99 mass% is used. The impurities contained in the aluminum base 12 include iron (Fe), silicon (Si), copper (Cu), manganese (Mn), zinc (Zn), nickel (Ni), titanium (Ti), lead (Pb) It is preferable to include at least one element selected from the group consisting of tin (Sn) and magnesium (Mg), and in particular, Mg is preferable. Since the mechanism by which pits (pits) are formed in the etching step is a local cell reaction, ideally it contains no element nobler than aluminum at all, and it is a basic metal Mg (standard electrode potential is It is preferable to use an aluminum base 12 containing 2.36 V) as an impurity element. If the content of the element nobler than aluminum is 10 ppm or less, it can be said that the element is not substantially contained from an electrochemical viewpoint. The content of Mg is preferably 0.1 mass% or more of the whole, and more preferably in the range of about 3.0 mass% or less. If the content of Mg is less than 0.1 mass%, sufficient rigidity can not be obtained. On the other hand, when the content ratio is high, segregation of Mg is likely to occur. Segregation near the surface forming the moth-eye mold causes no problem electrochemically, but Mg forms an anodic oxide film having a form different from that of aluminum, which causes defects. The content rate of the impurity element may be appropriately set in accordance with the required rigidity according to the shape, thickness and size of the aluminum base 12. For example, in the case of producing the plate-like aluminum base 12 by rolling, the content of Mg is suitably about 3.0 mass%, and the aluminum base 12 having a three-dimensional structure such as a cylinder is produced by extrusion. In the case where the content of Mg is to be added, the content of Mg is preferably 2.0 mass% or less. When the content of Mg exceeds 2.0 mass%, extrusion processability generally decreases.
 アルミニウム基材12として、例えば、JIS A1050、Al-Mg系合金(例えばJIS A5052)、またはAl-Mg-Si系合金(例えばJIS A6063)で形成された円筒状のアルミニウム管を用いる。 As the aluminum base 12, for example, a cylindrical aluminum pipe formed of JIS A1050, an Al-Mg-based alloy (for example, JIS A5052), or an Al-Mg-Si-based alloy (for example, JIS A6063) is used.
 アルミニウム基材12の表面は、バイト切削が施されていることが好ましい。アルミニウム基材12の表面に、例えば砥粒が残っていると、砥粒が存在する部分において、アルミニウム膜18とアルミニウム基材12との間で導通しやすくなる。砥粒以外にも、凹凸が存在するところでは、アルミニウム膜18とアルミニウム基材12との間で局所的に導通しやすくなる。アルミニウム膜18とアルミニウム基材12との間で局所的に導通すると、アルミニウム基材12内の不純物とアルミニウム膜18との間で局所的に電池反応が起こる可能性がある。 It is preferable that the surface of the aluminum base 12 is subjected to cutting with a cutting tool. For example, when abrasive grains remain on the surface of the aluminum base 12, conduction between the aluminum film 18 and the aluminum base 12 is facilitated in the portion where the abrasives are present. In addition to the abrasive grains, in the places where the unevenness is present, local conduction between the aluminum film 18 and the aluminum base 12 is facilitated. Local conduction between the aluminum film 18 and the aluminum substrate 12 may cause a cell reaction to occur locally between the impurity in the aluminum substrate 12 and the aluminum film 18.
 無機材料層16の材料としては、例えば酸化タンタル(Ta25)または二酸化シリコン(SiO2)を用いることができる。無機材料層16は、例えばスパッタ法により形成することができる。無機材料層16として、酸化タンタル層を用いる場合、酸化タンタル層の厚さは、例えば、200nmである。 As a material of the inorganic material layer 16, for example, tantalum oxide (Ta 2 O 5 ) or silicon dioxide (SiO 2 ) can be used. The inorganic material layer 16 can be formed, for example, by sputtering. When a tantalum oxide layer is used as the inorganic material layer 16, the thickness of the tantalum oxide layer is, for example, 200 nm.
 無機材料層16の厚さは、100nm以上500nm未満であることが好ましい。無機材料層16の厚さが100nm未満であると、アルミニウム膜18に欠陥(主にボイド、すなわち結晶粒間の間隙)が生じることがある。また、無機材料層16の厚さが500nm以上であると、アルミニウム基材12の表面状態によって、アルミニウム基材12とアルミニウム膜18との間が絶縁されやすくなる。アルミニウム基材12側からアルミニウム膜18に電流を供給することによってアルミニウム膜18の陽極酸化を行うためには、アルミニウム基材12とアルミニウム膜18との間に電流が流れる必要がある。円筒状のアルミニウム基材12の内面から電流を供給する構成を採用すると、アルミニウム膜18に電極を設ける必要がないので、アルミニウム膜18を全面にわたって陽極酸化できるとともに、陽極酸化の進行に伴って電流が供給され難くなるという問題も起こらず、アルミニウム膜18を全面にわたって均一に陽極酸化することができる。 The thickness of the inorganic material layer 16 is preferably 100 nm or more and less than 500 nm. When the thickness of the inorganic material layer 16 is less than 100 nm, defects (mainly voids, that is, gaps between crystal grains) may occur in the aluminum film 18. In addition, when the thickness of the inorganic material layer 16 is 500 nm or more, the surface state of the aluminum base 12 easily insulates between the aluminum base 12 and the aluminum film 18. In order to anodize the aluminum film 18 by supplying the current to the aluminum film 18 from the aluminum base 12 side, it is necessary to flow the current between the aluminum base 12 and the aluminum film 18. If a configuration is employed in which current is supplied from the inner surface of cylindrical aluminum base 12, no electrode needs to be provided on aluminum film 18, so that aluminum film 18 can be anodized over the entire surface, and the current flows as the anodic oxidation progresses. The aluminum film 18 can be uniformly anodized over the entire surface without the problem of difficulty in supplying the aluminum film 18.
 また、厚い無機材料層16を形成するためには、一般的には成膜時間を長くする必要がある。成膜時間が長くなると、アルミニウム基材12の表面温度が不必要に上昇し、その結果、アルミニウム膜18の膜質が悪化し、欠陥(主にボイド)が生じることがある。無機材料層16の厚さが500nm未満であれば、このような不具合の発生を抑制することもできる。 In addition, in order to form the thick inorganic material layer 16, generally, it is necessary to prolong the film formation time. When the film forming time is long, the surface temperature of the aluminum base 12 is unnecessarily increased. As a result, the film quality of the aluminum film 18 may be deteriorated to cause defects (mainly voids). If the thickness of the inorganic material layer 16 is less than 500 nm, the occurrence of such a defect can also be suppressed.
 アルミニウム膜18は、例えば、特許文献3に記載されているように、純度が99.99mass%以上のアルミニウムで形成された膜(以下、「高純度アルミニウム膜」ということがある。)である。アルミニウム膜18は、例えば、真空蒸着法またはスパッタ法を用いて形成される。アルミニウム膜18の厚さは、約500nm以上約1500nm以下の範囲にあることが好ましく、例えば、約1μmである。 For example, as described in Patent Document 3, the aluminum film 18 is a film formed of aluminum having a purity of 99.99 mass% or more (hereinafter, sometimes referred to as “high purity aluminum film”). The aluminum film 18 is formed, for example, using a vacuum evaporation method or a sputtering method. The thickness of the aluminum film 18 is preferably in the range of about 500 nm to about 1500 nm, for example, about 1 μm.
 また、アルミニウム膜18として、高純度アルミニウム膜に代えて、特許文献4に記載されている、アルミニウム合金膜を用いてもよい。特許文献4に記載のアルミニウム合金膜は、アルミニウムと、アルミニウム以外の金属元素と、窒素とを含む。本明細書において、「アルミニウム膜」は、高純度アルミニウム膜だけでなく、特許文献4に記載のアルミニウム合金膜を含むものとする。 Further, as the aluminum film 18, an aluminum alloy film described in Patent Document 4 may be used instead of the high purity aluminum film. The aluminum alloy film described in Patent Document 4 contains aluminum, a metal element other than aluminum, and nitrogen. In the present specification, the “aluminum film” includes not only the high purity aluminum film but also the aluminum alloy film described in Patent Document 4.
 上記アルミニウム合金膜を用いると、反射率が80%以上の鏡面を得ることができる。アルミニウム合金膜を構成する結晶粒の、アルミニウム合金膜の法線方向から見たときの平均粒径は、例えば、100nm以下であり、アルミニウム合金膜の最大表面粗さRmaxは60nm以下である。アルミニウム合金膜に含まれる窒素の含有率は、例えば、0.5mass%以上5.7mass%以下である。アルミニウム合金膜に含まれるアルミニウム以外の金属元素の標準電極電位とアルミニウムの標準電極電位との差の絶対値は0.64V以下であり、アルミニウム合金膜中の金属元素の含有率は、1.0mass%以上1.9mass%以下であることが好ましい。金属元素は、例えば、TiまたはNdである。但し、金属元素はこれに限られず、金属元素の標準電極電位とアルミニウムの標準電極電位との差の絶対値が0.64V以下である他の金属元素(例えば、Mn、Mg、Zr、VおよびPb)であってもよい。さらに、金属元素は、Mo、NbまたはHfであってもよい。アルミニウム合金膜は、これらの金属元素を2種類以上含んでもよい。アルミニウム合金膜は、例えば、DCマグネトロンスパッタ法で形成される。アルミニウム合金膜の厚さも約500nm以上約1500nm以下の範囲にあることが好ましく、例えば、約1μmである。 When the aluminum alloy film is used, a mirror surface having a reflectance of 80% or more can be obtained. The average grain size of the crystal grains constituting the aluminum alloy film as viewed in the normal direction of the aluminum alloy film is, for example, 100 nm or less, and the maximum surface roughness Rmax of the aluminum alloy film is 60 nm or less. The content of nitrogen contained in the aluminum alloy film is, for example, 0.5 mass% or more and 5.7 mass% or less. The absolute value of the difference between the standard electrode potential of a metal element other than aluminum contained in the aluminum alloy film and the standard electrode potential of aluminum is 0.64 V or less, and the content of the metal element in the aluminum alloy film is 1.0 mass. % Or more and 1.9 mass% or less is preferable. The metal element is, for example, Ti or Nd. However, the metal element is not limited to this, and other metal elements (for example, Mn, Mg, Zr, V and the like) whose absolute value of the difference between the standard electrode potential of the metal element and the standard electrode potential of aluminum is 0.64 V or less It may be Pb). Furthermore, the metal element may be Mo, Nb or Hf. The aluminum alloy film may contain two or more of these metal elements. The aluminum alloy film is formed, for example, by DC magnetron sputtering. The thickness of the aluminum alloy film is also preferably in the range of about 500 nm to about 1500 nm, for example, about 1 μm.
 次に、図2(b)に示すように、アルミニウム膜18の表面18sを陽極酸化することによって、複数の凹部(細孔)14pを有するポーラスアルミナ層14を形成する。ポーラスアルミナ層14は、凹部14pを有するポーラス層と、バリア層(凹部(細孔)14pの底部)とを有している。隣接する凹部14pの間隔(中心間距離)は、バリア層の厚さのほぼ2倍に相当し、陽極酸化時の電圧にほぼ比例することが知られている。この関係は、図2(e)に示す最終的なポーラスアルミナ層14についても成立する。 Next, as shown in FIG. 2B, the surface 18s of the aluminum film 18 is anodized to form a porous alumina layer 14 having a plurality of recesses (pores) 14p. The porous alumina layer 14 has a porous layer having a recess 14 p and a barrier layer (the bottom of the recess (pore) 14 p). It is known that the distance (center-to-center distance) between adjacent recesses 14p corresponds to approximately twice the thickness of the barrier layer and is approximately proportional to the voltage at the time of anodic oxidation. This relationship also holds true for the final porous alumina layer 14 shown in FIG.
 ポーラスアルミナ層14は、例えば、酸性の電解液中で表面18sを陽極酸化することによって形成される。ポーラスアルミナ層14を形成する工程で用いられる電解液は、例えば、蓚酸、酒石酸、燐酸、硫酸、クロム酸、クエン酸、リンゴ酸からなる群から選択される酸を含む水溶液である。例えば、アルミニウム膜18の表面18sを、蓚酸水溶液(濃度0.3mass%、液温10℃)を用いて、印加電圧80Vで55秒間陽極酸化を行うことにより、ポーラスアルミナ層14を形成する。 The porous alumina layer 14 is formed, for example, by anodizing the surface 18s in an acidic electrolyte solution. The electrolytic solution used in the step of forming the porous alumina layer 14 is, for example, an aqueous solution containing an acid selected from the group consisting of oxalic acid, tartaric acid, phosphoric acid, sulfuric acid, chromic acid, citric acid and malic acid. For example, the porous alumina layer 14 is formed by anodizing the surface 18s of the aluminum film 18 for 55 seconds at an applied voltage of 80 V using a boric acid aqueous solution (concentration 0.3 mass%, solution temperature 10 ° C.).
 次に、図2(c)に示すように、ポーラスアルミナ層14をアルミナのエッチャントに接触させることによって所定の量だけエッチングすることにより凹部14pの開口部を拡大する。エッチング液の種類・濃度、およびエッチング時間を調整することによって、エッチング量(すなわち、凹部14pの大きさおよび深さ)を制御することができる。エッチング液としては、例えば10mass%の燐酸や、蟻酸、酢酸、クエン酸などの有機酸や硫酸の水溶液やクロム酸燐酸混合水溶液を用いることができる。例えば、燐酸水溶液(10mass%、30℃)を用いて20分間エッチングを行う。 Next, as shown in FIG. 2C, the opening of the recess 14p is enlarged by etching the porous alumina layer 14 by a predetermined amount by bringing the porous alumina layer 14 into contact with an etchant of alumina. The amount of etching (that is, the size and depth of the recess 14p) can be controlled by adjusting the type and concentration of the etching solution and the etching time. As an etching solution, for example, an aqueous solution of 10 mass% of phosphoric acid, an organic acid such as formic acid, acetic acid, citric acid or the like, sulfuric acid, or a mixed aqueous solution of chromic acid and phosphoric acid can be used. For example, etching is performed using a phosphoric acid aqueous solution (10 mass%, 30 ° C.) for 20 minutes.
 次に、図2(d)に示すように、再び、アルミニウム膜18を部分的に陽極酸化することにより、凹部14pを深さ方向に成長させるとともにポーラスアルミナ層14を厚くする。ここで凹部14pの成長は、既に形成されている凹部14pの底部から始まるので、凹部14pの側面は階段状になる。 Next, as shown in FIG. 2D, the aluminum film 18 is partially anodized again to grow the recess 14 p in the depth direction and to thicken the porous alumina layer 14. Here, since the growth of the recess 14p starts from the bottom of the recess 14p already formed, the side surface of the recess 14p is stepped.
 さらにこの後、必要に応じて、ポーラスアルミナ層14をアルミナのエッチャントに接触させることによってさらにエッチングすることにより凹部14pの孔径をさらに拡大する。エッチング液としては、ここでも上述したエッチング液を用いることが好ましく、現実的には、同じエッチング浴を用いればよい。 After this, if necessary, the pore diameter of the recess 14p is further expanded by further etching the porous alumina layer 14 by contacting it with an etchant of alumina. As the etching solution, it is preferable to use the above-described etching solution, and in reality, the same etching bath may be used.
 このように、上述した陽極酸化工程およびエッチング工程を交互に複数回(例えば5回:陽極酸化を5回とエッチングを4回)繰り返すことによって、図2(e)に示すように、反転されたモスアイ構造を有するポーラスアルミナ層14を有するモスアイ用型100Aが得られる。陽極酸化工程で終わることによって、凹部14pの底部を点にできる。すなわち、先端が尖った凸部を形成することができる型が得られる。 Thus, as shown in FIG. 2 (e), the anodization step and the etching step are alternately repeated a plurality of times (for example, 5 times: 5 times of anodization and 4 times of etching). A moth-eye mold 100A having a porous alumina layer 14 having a moth-eye structure is obtained. By ending in the anodizing step, the bottom of the recess 14p can be made point. That is, a mold capable of forming a convex portion with a sharp tip is obtained.
 図2(e)に示すポーラスアルミナ層14(厚さtp)は、ポーラス層(厚さは凹部14pの深さDdに相当)とバリア層(厚さtb)とを有する。ポーラスアルミナ層14は、合成高分子膜34Aが有するモスアイ構造を反転した構造を有するので、その大きさを特徴づける対応するパラメータに同じ記号を用いることがある。 The porous alumina layer 14 (thickness t p ) shown in FIG. 2 (e) has a porous layer (thickness corresponds to the depth D d of the recess 14 p) and a barrier layer (thickness t b ). Since the porous alumina layer 14 has a structure obtained by inverting the moth-eye structure of the synthetic polymer film 34A, the same symbol may be used as the corresponding parameter characterizing its size.
 ポーラスアルミナ層14が有する凹部14pは、例えば円錐形であり、階段状の側面を有してもよい。凹部14pの二次元的な大きさ(表面の法線方向から見たときの凹部の面積円相当径)Dpは20nm超500nm未満で、深さDdは50nm以上1000nm(1μm)未満程度であることが好ましい。また、凹部14pの底部は尖っている(最底部は点になっている)ことが好ましい。凹部14pは密に充填されている場合、ポーラスアルミナ層14の法線方向から見たときの凹部14pの形状を円と仮定すると、隣接する円は互いに重なり合い、隣接する凹部14pの間に鞍部が形成される。なお、略円錐形の凹部14pが鞍部を形成するように隣接しているときは、凹部14pの二次元的な大きさDpは隣接間距離Dintと等しい。ポーラスアルミナ層14の厚さtpは、例えば、約1μm以下である。 The recess 14 p of the porous alumina layer 14 is, for example, conical, and may have stepped side surfaces. Two-dimensional size of the recess 14p is D p (area equivalent circle diameter of the recess when viewed from the direction normal to the surface) is less than 20nm ultra 500 nm, the depth D d in the order of less than 50nm over 1000 nm (1 [mu] m) Is preferred. Further, it is preferable that the bottom of the recess 14p be pointed (the bottom is a point). Assuming that the shape of the recess 14p when viewed from the normal direction of the porous alumina layer 14 is a circle when the recess 14p is densely packed, adjacent circles overlap each other, and a ridge is formed between the adjacent recesses 14p. It is formed. Incidentally, when the concave portion 14p of the substantially conical adjacent so as to form a saddle, two-dimensional size D p of the concave portion 14p is equal to the distance between adjacent D int. The thickness t p of the porous alumina layer 14 is, for example, about 1 μm or less.
 なお、図2(e)に示すポーラスアルミナ層14の下には、アルミニウム膜18のうち、陽極酸化されなかったアルミニウム残存層18rが存在している。必要に応じて、アルミニウム残存層18rが存在しないように、アルミニウム膜18を実質的に完全に陽極酸化してもよい。例えば、無機材料層16が薄い場合には、アルミニウム基材12側から容易に電流を供給することができる。 Under the porous alumina layer 14 shown in FIG. 2E, an aluminum remaining layer 18r which has not been anodized in the aluminum film 18 is present. If necessary, the aluminum film 18 may be substantially completely anodized so that the aluminum residual layer 18r is not present. For example, when the inorganic material layer 16 is thin, current can be easily supplied from the aluminum base 12 side.
 ここで例示したモスアイ用型の製造方法は、特許文献2~4に記載の反射防止膜を作製するための型を製造することができる。高精細な表示パネルに用いられる反射防止膜には、高い均一性が要求されるので、上記のようにアルミニウム基材の材料の選択、アルミニウム基材の鏡面加工、アルミニウム膜の純度や成分の制御を行うことが好ましいが、殺菌作用に高い均一性は求められないので、上記の型の製造方法を簡略化することができる。例えば、アルミニウム基材の表面を直接、陽極酸化してもよい。また、このときアルミニウム基材に含まれる不純物の影響でピットが形成されても、最終的に得られる合成高分子膜34Aのモスアイ構造に局所的な構造の乱れが生じるだけで、殺菌作用に与える影響はほとんどないと考えられる。 The moth-eye mold manufacturing method exemplified here can manufacture a mold for manufacturing the anti-reflection film described in Patent Documents 2 to 4. Since high uniformity is required for the antireflective film used for a high definition display panel, as described above, selection of the material of the aluminum substrate, mirror processing of the aluminum substrate, control of the purity and composition of the aluminum film Although it is preferable to carry out the above-mentioned method, it is possible to simplify the manufacturing method of the above-mentioned type since high uniformity is not required for the bactericidal action. For example, the surface of the aluminum substrate may be anodized directly. At this time, even if pits are formed due to the effect of impurities contained in the aluminum base, local structural disorder is generated in the moth-eye structure of the synthetic polymer film 34A finally obtained, which gives the bactericidal action. It is considered that there is almost no impact.
 また、上述の型の製造方法によると、反射防止膜の作製に好適な、凹部の配列の規則性が低い型を製造することができる。モスアイ構造の殺菌性を利用する場合には、凸部の配列の規則性は影響しないと考えられる。規則的に配列された凸部を有するモスアイ構造を形成するための型は、例えば、以下のようにして製造することができる。 In addition, according to the above-described method of manufacturing a mold, it is possible to manufacture a mold having low regularity of the arrangement of the recesses, which is suitable for the preparation of an antireflective film. When utilizing the bactericidal property of the moth-eye structure, it is considered that the regularity of the arrangement of the projections does not affect. The type | mold for forming the moth-eye structure which has the regularly arranged convex part can be manufactured as follows, for example.
 例えば厚さが約10μmのポーラスアルミナ層を形成した後、生成されたポーラスアルミナ層をエッチングにより除去してから、上述のポーラスアルミナ層を生成する条件で陽極酸化を行えばよい。厚さが10μmのポーラスアルミナ層は、陽極酸化時間を長くすることによって形成される。このように比較的厚いポーラスアルミナ層を生成し、このポーラスアルミナ層を除去すると、アルミニウム膜またはアルミニウム基材の表面に存在するグレインによる凹凸や加工ひずみの影響を受けることなく、規則的に配列された凹部を有するポーラスアルミナ層を形成することができる。なお、ポーラスアルミナ層の除去には、クロム酸と燐酸との混合液を用いることが好ましい。長時間にわたるエッチングを行うとガルバニック腐食が発生することがあるが、クロム酸と燐酸との混合液はガルバニック腐食を抑制する効果がある。 For example, after a porous alumina layer having a thickness of about 10 μm is formed, the generated porous alumina layer may be removed by etching, and then anodic oxidation may be performed under the conditions for forming the above-mentioned porous alumina layer. A 10 μm thick porous alumina layer is formed by prolonging the anodic oxidation time. Thus, a relatively thick porous alumina layer is formed, and removing the porous alumina layer results in regular alignment without being affected by irregularities or processing distortion due to grains present on the surface of the aluminum film or aluminum substrate. It is possible to form a porous alumina layer having recessed portions. In addition, it is preferable to use the liquid mixture of chromic acid and phosphoric acid for the removal of a porous alumina layer. Galvanic corrosion may occur when etching is performed for a long time, but a mixture of chromic acid and phosphoric acid has an effect of suppressing galvanic corrosion.
 図1(b)に示した合成高分子膜34Bを形成するためのモスアイ用型も、基本的に、上述した陽極酸化工程とエッチング工程とを組み合わせることによって製造することができる。図3(a)~(c)を参照して、合成高分子膜34Bを形成するための、モスアイ用型100Bの製造方法を説明する。 The moth-eye mold for forming the synthetic polymer film 34B shown in FIG. 1 (b) can also be manufactured basically by combining the above-described anodic oxidation step and etching step. A method of manufacturing the moth-eye mold 100B for forming the synthetic polymer film 34B will be described with reference to FIGS. 3 (a) to 3 (c).
 まず、図2(a)および(b)を参照して説明したのと同様に、型基材10を用意し、アルミニウム膜18の表面18sを陽極酸化することによって、複数の凹部(細孔)14pを有するポーラスアルミナ層14を形成する。 First, in the same manner as described with reference to FIGS. 2A and 2B, the mold base 10 is prepared, and the surface 18s of the aluminum film 18 is anodized to form a plurality of recesses (pores). A porous alumina layer 14 having 14p is formed.
 次に、図3(a)に示すように、ポーラスアルミナ層14をアルミナのエッチャントに接触させることによって所定の量だけエッチングすることにより凹部14pの開口部を拡大する。このとき、図2(c)を参照して説明したエッチング工程よりも、エッチング量を少なくする。すなわち、凹部14pの開口部の大きさを小さくする。例えば、燐酸水溶液(10mass%、30℃)を用いて10分間エッチングを行う。 Next, as shown in FIG. 3A, the porous alumina layer 14 is etched by a predetermined amount by contacting with an etchant of alumina to enlarge the opening of the recess 14p. At this time, the etching amount is made smaller than the etching process described with reference to FIG. That is, the size of the opening of the recess 14p is reduced. For example, etching is performed using a phosphoric acid aqueous solution (10 mass%, 30 ° C.) for 10 minutes.
 次に、図3(b)に示すように、再び、アルミニウム膜18を部分的に陽極酸化することにより、凹部14pを深さ方向に成長させるとともにポーラスアルミナ層14を厚くする。このとき、図2(d)を参照して説明した陽極酸化工程よりも、凹部14pを深く成長させる。例えば、蓚酸水溶液(濃度0.3mass%、液温10℃)を用いて、印加電圧80Vで165秒間陽極酸化を行う(図2(d)では55秒間)。 Next, as shown in FIG. 3B, the aluminum film 18 is partially anodized again to grow the recess 14 p in the depth direction and to thicken the porous alumina layer 14. At this time, the concave portion 14p is made to grow deeper than the anodic oxidation process described with reference to FIG. 2 (d). For example, anodization is performed for 165 seconds at an applied voltage of 80 V using an aqueous oxalic acid solution (concentration 0.3 mass%, solution temperature 10 ° C.) (55 seconds in FIG. 2D).
 その後、図2(e)を参照して説明したのと同様に、エッチング工程および陽極酸化工程を交互に複数回くり返す。例えば、エッチング工程を3回、陽極酸化工程を3回、交互に繰り返すことによって、図3(c)に示すように、反転されたモスアイ構造を有するポーラスアルミナ層14を有するモスアイ用型100Bが得られる。このとき、凹部14pの二次元的な大きさDpは隣接間距離Dintより小さい(Dp<Dint)。 Thereafter, the etching step and the anodizing step are alternately repeated several times in the same manner as described with reference to FIG. For example, by alternately repeating the etching process three times and the anodizing process three times alternately, as shown in FIG. 3C, a moth-eye mold 100B having a porous alumina layer 14 having an inverted moth-eye structure is obtained. Be At this time, the two-dimensional size D p of the recess 14 p is smaller than the adjacent distance D int (D p <D int ).
 微生物の大きさはその種類によって異なる。例えば緑膿菌の大きさは約1μmであるが、細菌には、数100nm~約5μmの大きさのものがあり、真菌は数μm以上である。例えば、2次元的な大きさが約200nmの凸部は、約0.5μm以上の大きさの微生物に対しては殺菌作用を有すると考えられるが、数100nmの大きさの細菌に対しては、凸部が大きすぎるために十分な殺菌作用を発現しない可能性がある。また、ウィルスの大きさは数10nm~数100nmであり、100nm以下のものも多い。なお、ウィルスは細胞膜を有しないが、ウィルス核酸を取り囲むカプシドと呼ばれるタンパク質の殻を有している。ウィルスは、この殻の外側に膜状のエンベロープを有するウィルスと、エンベロープを有しないウィルスとに分けられる。エンベロープを有するウィルスにおいては、エンベロープは主として脂質からなるので、エンベロープに対して凸部が同様に作用すると考えられる。エンベロープを有するウィルスとして、例えば、インフルエンザウィルスやエボラウィルスが挙げられる。エンベロープを有しないウィルスにおいては、このカプシドと呼ばれるタンパク質の殻に対して凸部が同様に作用すると考えられる。凸部が窒素元素を有すると、アミノ酸から構成されるタンパク質との親和性が強くなり得る。 The size of the microorganism depends on its type. For example, although the size of Pseudomonas aeruginosa is about 1 μm, some bacteria have a size of several hundred nm to about 5 μm, and fungi have several μm or more. For example, a convex portion having a two-dimensional size of about 200 nm is considered to have a bactericidal action against microorganisms having a size of about 0.5 μm or more, but for bacteria having a size of several hundred nm. Because the convex portion is too large, sufficient bactericidal action may not be exhibited. Further, the size of the virus is several tens nm to several hundreds nm, and many viruses are 100 nm or less. Although the virus does not have a cell membrane, it has a protein shell called a capsid that surrounds the viral nucleic acid. Viruses are divided into viruses with a membrane-like envelope outside this shell and viruses without an envelope. In the case of an enveloped virus, since the envelope is mainly composed of lipids, it is thought that the convex portion acts similarly on the envelope. Examples of enveloped viruses include influenza virus and Ebola virus. In viruses that do not have an envelope, it is thought that the convex portion acts similarly on the shell of a protein called this capsid. When the convex portion contains a nitrogen element, affinity with a protein composed of amino acids can be strong.
 そこで、数100nm以下の微生物に対しても殺菌作用を発現し得る凸部を有する合成高分子膜の構造およびその製造方法を以下に説明する。 Therefore, the structure of a synthetic polymer film having a convex portion capable of exhibiting a bactericidal action even against a microorganism having a size of several hundred nm or less and a method for producing the same will be described below.
 以下では、上記で例示した合成高分子膜が有する、2次元的な大きさが20nm超500nm未満の範囲にある凸部を第1の凸部という。また、第1の凸部に重畳して形成された凸部を第2の凸部といい、第2の凸部の2次元的な大きさは、第1の凸部の2次元的な大きさよりも小さく、かつ、100nmを超えない。なお、第1の凸部の2次元的な大きさが100nm未満、特に50nm未満の場合には、第2の凸部を設ける必要はない。また、第1の凸部に対応する型の凹部を第1の凹部といい、第2の凸部に対応する型の凹部を第2の凹部という。 Below, the convex part which has a two-dimensional magnitude | size in the range of more than 20 nm and less than 500 nm which the synthetic polymer membrane illustrated above has is called 1st convex part. Further, a convex portion formed to overlap the first convex portion is referred to as a second convex portion, and a two-dimensional size of the second convex portion is a two-dimensional size of the first convex portion. Less than 100 nm. When the two-dimensional size of the first convex portion is less than 100 nm, particularly less than 50 nm, it is not necessary to provide the second convex portion. Further, the concave portion of the mold corresponding to the first convex portion is referred to as a first concave portion, and the concave portion of the mold corresponding to the second convex portion is referred to as a second concave portion.
 上述の陽極酸化工程とエッチング工程とを交互に行うことによって、所定の大きさおよび形状の第1の凹部を形成する方法をそのまま適用しても、第2の凹部を形成することができない。 By alternately performing the anodizing step and the etching step described above, the second recess can not be formed even if the method of forming the first recess having a predetermined size and shape is applied as it is.
 図4(a)にアルミニウム基材(図2中の参照符号12)の表面のSEM像を示し、図4(b)にアルミニウム膜(図2中の参照符号18)の表面のSEM像を示し、図4(c)にアルミニウム膜(図2中の参照符号18)の断面のSEM像を示す。これらのSEM像からわかるように、アルミニウム基材の表面およびアルミニウム膜の表面に、グレイン(結晶粒)が存在している。アルミニウム膜のグレインは、アルミニウム膜の表面に凹凸を形成している。この表面の凹凸は、陽極酸化時の凹部の形成に影響を与えるので、DpまたはDintが100nmよりも小さい第2の凹部の形成を妨げる。 FIG. 4 (a) shows a SEM image of the surface of the aluminum base (12 in FIG. 2), and FIG. 4 (b) shows a SEM image of the surface of the aluminum film (18 in FIG. 2). FIG. 4C shows an SEM image of the cross section of the aluminum film (reference numeral 18 in FIG. 2). As can be seen from these SEM images, grains (grains) are present on the surface of the aluminum substrate and the surface of the aluminum film. The grains of the aluminum film form asperities on the surface of the aluminum film. The surface asperities affect the formation of the recess during anodization, thus preventing the formation of a second recess in which D p or D int is smaller than 100 nm.
 そこで、本発明の実施形態による合成高分子膜の製造に用いられる型を製造する方法は、(a)アルミニウム基材または支持体の上に堆積されたアルミニウム膜を用意する工程と、(b)アルミニウム基材またはアルミニウム膜の表面を電解液に接触させた状態で、第1のレベルの電圧を印加することによって、第1の凹部を有するポーラスアルミナ層を形成する陽極酸化工程と、(c)工程(b)の後に、ポーラスアルミナ層をエッチング液に接触させることによって、第1の凹部を拡大させるエッチング工程と、(d)工程(c)の後に、ポーラスアルミナ層を電解液に接触させた状態で、第1のレベルよりも低い第2のレベルの電圧を印加することによって、第1の凹部内に、第2の凹部を形成する工程とを包含する。例えば、第1のレベルは、40V超であり、第2のレベルは、20V以下である。 Thus, a method of producing a mold used for producing a synthetic polymer membrane according to an embodiment of the present invention comprises the steps of: (a) preparing an aluminum film deposited on an aluminum substrate or support; (b) Anodizing step of forming a porous alumina layer having a first recess by applying a first level voltage while the surface of the aluminum substrate or aluminum film is in contact with the electrolytic solution; (c) After the step (b), the porous alumina layer was brought into contact with the electrolytic solution after the etching step of enlarging the first recess by bringing the porous alumina layer into contact with the etching solution and (d) the step (c) Forming a second recess in the first recess by applying a second level voltage lower than the first level in the state. For example, the first level is above 40V and the second level is below 20V.
 すなわち、第1のレベルの電圧での陽極酸化工程で、アルミニウム基材またはアルミニウム膜のグレインの影響を受けない大きさを有する第1の凹部を形成し、その後、エッチングによってバリア層の厚さを小さくしてから、第1のレベルよりも低い第2のレベルの電圧での陽極酸化工程で、第1の凹部内に第2の凹部を形成する。このような方法で、第2の凹部を形成すると、グレインによる影響が排除される。 That is, in the anodizing process at a first level of voltage, a first recess having a size that is not affected by the aluminum substrate or the grain of the aluminum film is formed, and then the thickness of the barrier layer is After being made smaller, a second recess is formed in the first recess in an anodizing process at a second level voltage lower than the first level. In this way, forming the second recess eliminates the influence of grains.
 図5を参照して、第1の凹部14paと、第1の凹部14pa内に形成された第2の凹部14pbとを有する型を説明する。図5(a)は型のポーラスアルミナ層の模式的な平面図であり、図5(b)は模式的な断面図であり、図5(c)は試作した型のSEM像を示す。 Referring to FIG. 5, a mold having a first recess 14pa and a second recess 14pb formed in the first recess 14pa will be described. FIG. 5 (a) is a schematic plan view of a porous alumina layer of a mold, FIG. 5 (b) is a schematic cross-sectional view, and FIG. 5 (c) shows an SEM image of the prototype manufactured.
 図5(a)および(b)に示すように、本実施形態による型の表面は、2次元的な大きさは20nm超500nm未満の範囲内にある複数の第1の凹部14paと、複数の第1の凹部14paに重畳して形成された複数の第2の凹部14pbをさらに有している。複数の第2の凹部14pbの2次元的な大きさは、複数の第1の凹部14paの2次元的な大きさよりも小さく、かつ、100nmを超えない。第2の凹部14pbの高さは、例えば、20nm超100nm以下である。第2の凹部14pbも、第1の凹部14paと同様に、略円錐形の部分を含むことが好ましい。 As shown in FIGS. 5 (a) and 5 (b), the surface of the mold according to this embodiment has a plurality of first recesses 14pa having a two-dimensional size in the range of more than 20 nm and less than 500 nm; It further has a plurality of second recesses 14pb formed to overlap the first recesses 14pa. The two-dimensional size of the plurality of second recesses 14pb is smaller than the two-dimensional size of the plurality of first recesses 14pa and does not exceed 100 nm. The height of the second recess 14pb is, for example, more than 20 nm and not more than 100 nm. Similarly to the first recess 14pa, the second recess 14pb preferably includes a substantially conical portion.
 図5(c)に示すポーラスアルミナ層は、以下の様にして製造した。 The porous alumina layer shown in FIG. 5 (c) was produced as follows.
 アルミニウム膜として、Tiを1mass%含むアルミニウム膜を用いた。陽極酸化液には蓚酸水溶液(濃度0.3mass%、温度10℃)を使用して、エッチング液には、燐酸水溶液(濃度10mass%、温度30℃)を使用した。電圧80Vにおける陽極酸化を52秒間行った後、エッチングを25分間、続いて、電圧80Vにおける陽極酸化を52秒間、エッチング25分間を行った。この後、20Vにおける陽極酸化を52秒間、エッチングを5分間、さらに、20Vにおける陽極酸化を52秒間行った。 As an aluminum film, an aluminum film containing 1 mass% of Ti was used. An aqueous solution of oxalic acid (concentration 0.3 mass%, temperature 10 ° C.) was used as the anodizing solution, and an aqueous solution of phosphoric acid (concentration 10 mass%, temperature 30 ° C.) was used as the etching solution. After anodizing at a voltage of 80 V for 52 seconds, etching was carried out for 25 minutes, followed by anodizing at a voltage of 80 V for 52 seconds and etching for 25 minutes. This was followed by anodizing at 20 V for 52 seconds, etching for 5 minutes, and anodizing at 20 V for 52 seconds.
 図5(c)からわかるように、Dpが約200nmの第1の凹部の中に、Dpが約50nmの第2の凹部が形成されている。上記の製造方法において、第1のレベルの電圧を80Vから45Vに変更して、ポーラスアルミナ層を形成したところ、Dpが約100nmの第1の凹部の中に、Dpが約50nmの第2の凹部が形成された。 Figure 5 (c) As can be seen from, among D p is in the first recess of about 200 nm, a second recess of D p is about 50nm is formed. In the above manufacturing method, when the porous alumina layer is formed by changing the voltage of the first level from 80 V to 45 V, the first recess having a D p of about 100 nm has a D p of about 50 nm Two recesses were formed.
 このような型を用いて合成高分子膜を作製すると、図5(a)および(b)に示した第1の凹部14paおよび第2の凹部14pbの構造を反転した凸部を有する合成高分子膜が得られる。すなわち、複数の第1の凸部に重畳して形成された複数の第2の凸部をさらに有する合成高分子膜が得られる。 When a synthetic polymer film is produced using such a mold, a synthetic polymer having a convex portion obtained by inverting the structure of the first concave portion 14pa and the second concave portion 14pb shown in FIGS. 5A and 5B. A membrane is obtained. That is, a synthetic polymer film further having a plurality of second convex portions formed to overlap a plurality of first convex portions is obtained.
 このように第1の凸部と、第1の凸部に重畳して形成された第2の凸部を有する合成高分子膜は、100nm程度の比較的小さな微生物から、5μm以上の比較的大きな微生物に対して殺菌作用を有し得る。 Thus, the synthetic polymer film having the first convex portion and the second convex portion formed to overlap the first convex portion is relatively large by 5 μm or more from relatively small microorganisms of about 100 nm. It can have a bactericidal action on microorganisms.
 もちろん、対象とする微生物の大きさに応じて、2次元的な大きさが20nm超100nm未満の範囲内にある凹部だけを形成してもよい。このような凸部を形成するための型は、例えば、以下の様にして作製することができる。 Of course, depending on the size of the target microorganism, only recesses having a two-dimensional size in the range of more than 20 nm and less than 100 nm may be formed. A mold for forming such a convex portion can be produced, for example, as follows.
 酒石酸アンモニウム水溶液などの中性塩水溶液(ホウ酸アンモニウム、クエン酸アンモニウムなど)や、イオン解離度の小さい有機酸(マレイン酸、マロン酸、フタル酸、クエン酸、酒石酸など)を用いて陽極酸化を行い、バリア型陽極酸化膜を形成し、バリア型陽極酸化膜をエッチングによって除去した後、所定の電圧(上記の第2のレベルの電圧)で陽極酸化することによって、2次元的な大きさが20nm超100nm未満の範囲内にある凹部を形成することができる。 Anodize with a neutral salt aqueous solution such as ammonium tartrate aqueous solution (ammonium borate, ammonium citrate etc.) or an organic acid with a low degree of ion dissociation (maleic acid, malonic acid, phthalic acid, citric acid, tartaric acid etc) To form a barrier-type anodic oxide film, remove the barrier-type anodic oxide film by etching, and then anodize with a predetermined voltage (the voltage of the second level described above) to obtain a two-dimensional size. Recesses in the range of more than 20 nm and less than 100 nm can be formed.
 例えば、アルミニウム膜として、Tiを1mass%含むアルミニウム膜を用い、酒石酸水溶液(濃度0.1mol/l、温度23℃)を用いて、100Vにおいて2分間、陽極酸化を行うことによってバリア型陽極酸化膜を形成する。この後、燐酸水溶液(濃度10mass%、温度30℃)を用いて25分間、エッチングすることによって、バリア型陽極酸化膜を除去する。その後、上記と同様に、陽極酸化液には蓚酸水溶液(濃度0.3mass%、温度10℃)を使用し、20Vにおける陽極酸化を52秒間、上記エッチング液を用いたエッチングを5分間、交互に、陽極酸化を5回、エッチングを4回繰り返すことによって、2次元的な大きさが約50nmの凹部を均一に形成することができる。 For example, using an aluminum film containing 1 mass% of Ti as the aluminum film, the barrier type anodic oxide film is formed by performing anodic oxidation at 100 V for 2 minutes using an aqueous solution of tartaric acid (concentration 0.1 mol / l, temperature 23 ° C.) Form Thereafter, the barrier type anodic oxide film is removed by etching for 25 minutes using a phosphoric acid aqueous solution (concentration 10 mass%, temperature 30 ° C.). After that, similarly to the above, an aqueous solution of oxalic acid (concentration 0.3 mass%, temperature 10 ° C.) is used as the anodic oxidation solution, anodic oxidation at 20 V for 52 seconds, etching using the above etching solution for 5 minutes alternately. By repeating anodization five times and etching four times, it is possible to uniformly form a recess having a two-dimensional size of about 50 nm.
 上述のようにして、種々のモスアイ構造を形成することができるモスアイ用型を製造することができる。 As described above, moth-eye molds capable of forming various moth-eye structures can be manufactured.
 次に、図6を参照して、モスアイ用型100を用いた合成高分子膜の製造方法を説明する。図6は、ロール・ツー・ロール方式により合成高分子膜を製造する方法を説明するための模式的な断面図である。以下では、上記のロール型を用い、被加工物としてのベースフィルムの表面に合成高分子膜を製造する方法を説明するが、本発明の実施形態による合成高分子膜を製造する方法は、これに限られず、他の形状の形を用いて種々の被加工物の表面上に合成高分子膜を製造することができる。 Next, with reference to FIG. 6, a method of manufacturing a synthetic polymer film using the moth-eye mold 100 will be described. FIG. 6 is a schematic cross-sectional view for explaining a method for producing a synthetic polymer film by a roll-to-roll method. Hereinafter, a method of producing a synthetic polymer film on the surface of a base film as a workpiece using the above-mentioned roll type will be described, but a method of producing a synthetic polymer film according to an embodiment of the present invention is Other shapes of shapes can be used to produce synthetic polymer films on the surface of various workpieces.
 まず、円筒状のモスアイ用型100を用意する。なお、円筒状のモスアイ用型100は、例えば図2を参照して説明した製造方法で製造される。 First, a cylindrical moth-eye mold 100 is prepared. The cylindrical moth-eye mold 100 is manufactured by, for example, the manufacturing method described with reference to FIG.
 図6に示すように、紫外線硬化樹脂34'が表面に付与されたベースフィルム42を、モスアイ用型100に押し付けた状態で、紫外線硬化樹脂34'に紫外線(UV)を照射することによって紫外線硬化樹脂34'を硬化する。紫外線硬化樹脂34'としては、例えばアクリル系樹脂を用いることができる。ベースフィルム42は、例えば、PET(ポリエチレンテレフタレート)フィルムまたはTAC(トリアセチルセルロース)フィルムである。ベースフィルム42は、図示しない巻き出しローラから巻き出され、その後、表面に、例えばスリットコータ等により紫外線硬化樹脂34'が付与される。ベースフィルム42は、図6に示すように、支持ローラ46および48によって支持されている。支持ローラ46および48は、回転機構を有し、ベースフィルム42を搬送する。また、円筒状のモスアイ用型100は、ベースフィルム42の搬送速度に対応する回転速度で、図6に矢印で示す方向に回転される。 As shown in FIG. 6, in a state where the base film 42 to which the ultraviolet curing resin 34 'is applied is pressed against the moth-eye mold 100, the ultraviolet curing resin 34' is irradiated with ultraviolet (UV) radiation. Cure the resin 34 '. As ultraviolet-ray cured resin 34 ', acrylic resin can be used, for example. The base film 42 is, for example, a PET (polyethylene terephthalate) film or a TAC (triacetyl cellulose) film. The base film 42 is unrolled from an unrolling roller (not shown), and then an ultraviolet curing resin 34 'is applied to the surface, for example, by a slit coater or the like. The base film 42 is supported by support rollers 46 and 48, as shown in FIG. The support rollers 46 and 48 have a rotation mechanism and transport the base film 42. Further, the cylindrical moth-eye mold 100 is rotated at a rotational speed corresponding to the transport speed of the base film 42 in the direction indicated by the arrow in FIG.
 その後、ベースフィルム42からモスアイ用型100を分離することによって、モスアイ用型100の反転されたモスアイ構造が転写された合成高分子膜34がベースフィルム42の表面に形成される。表面に合成高分子膜34が形成されたベースフィルム42は、図示しない巻き取りローラにより巻き取られる。 Thereafter, by separating the moth-eye mold 100 from the base film 42, the synthetic polymer film 34 to which the inverted moth-eye structure of the moth-eye mold 100 is transferred is formed on the surface of the base film 42. The base film 42 with the synthetic polymer film 34 formed on the surface is wound up by a winding roller (not shown).
 合成高分子膜34の表面は、モスアイ用型100のナノ表面構造を反転したモスアイ構造を有する。用いるモスアイ用型100のナノ表面構造に応じて、図1(a)および(b)に示した合成高分子膜34Aおよび34Bを作製することができる。合成高分子膜34を形成する材料は、紫外線硬化性樹脂に限られず、可視光で硬化可能な光硬化性樹脂を用いることもできるし、熱硬化性樹脂を用いることもできる。 The surface of the synthetic polymer film 34 has a moth-eye structure in which the nano surface structure of the moth-eye mold 100 is inverted. The synthetic polymer films 34A and 34B shown in FIGS. 1 (a) and 1 (b) can be produced according to the nano surface structure of the moth-eye mold 100 used. The material for forming the synthetic polymer film 34 is not limited to an ultraviolet curable resin, and a visible light curable photocurable resin can be used, or a thermosetting resin can also be used.
 表面にモスアイ構造を有する合成高分子膜の殺菌性は、合成高分子膜の物理的構造のみならず、合成高分子膜の化学的性質とも相関関係を有する。例えば、本願出願人は、化学的な性質として、合成高分子膜の表面の接触角(特許文献5)、表面に含まれる窒素元素の濃度(特許文献6)、窒素元素の濃度に加えさらにエチレンオキサイド単位(-CH2CH2O-)の含有率(特許文献7)との相関関係を見出した。 The bactericidal property of the synthetic polymer film having a moth-eye structure on the surface is correlated not only with the physical structure of the synthetic polymer film but also with the chemical properties of the synthetic polymer film. For example, the applicant of the present application has, as chemical properties, the contact angle of the surface of the synthetic polymer film (Patent Document 5), the concentration of nitrogen element contained in the surface (Patent Document 6), and the concentration of nitrogen element, further ethylene. A correlation was found with the content of oxide units (—CH 2 CH 2 O—) (Patent Document 7).
 図7に上記特許文献6(図8)に示されているSEM像を示す。図7(a)および(b)は、図1(a)に示したモスアイ構造を有する表面で死に至った緑膿菌をSEM(走査型電子顕微鏡)で観察したSEM像を示す図である。 The SEM image shown by the said patent document 6 (FIG. 8) in FIG. 7 is shown. FIGS. 7 (a) and 7 (b) are views showing SEM images of Pseudomonas aeruginosa that has died on the surface having the moth-eye structure shown in FIG. 1 (a) as observed by SEM (scanning electron microscope).
 これらのSEM像を見ると、凸部の先端部分が緑膿菌の細胞壁(外膜)内に侵入している様子が見て取れる。また、図7(a)および図7(b)を見ると、凸部が細胞壁を突き破ったように見えず、凸部が細胞壁に取り込まれたかのように見える。これは、非特許文献1のSupplemental Informationにおいて示唆されているメカニズムで説明されるかもしれない。すなわち、グラム陰性菌の外膜(脂質二重膜)が凸部と近接して変形することによって、脂質二重膜が局所的に1次の相転移に似た転移(自発的な再配向)を起こし、凸部に近接する部分に開口が形成され、この開口に凸部が侵入したのかもしれない。あるいは、細胞が有する、極性を有する物質(栄養源を含む)を取り込む機構(エンドサイトーシス)によって、凸部が取り込まれたのかもしれない。 From these SEM images, it can be seen that the tip of the convex portion invades the cell wall (outer membrane) of P. aeruginosa. Also, looking at FIGS. 7 (a) and 7 (b), it does not appear that the convex part has pierced the cell wall, but it looks as if the convex part has been taken into the cell wall. This may be explained by the mechanism suggested in Supplemental Information of Non-Patent Document 1. That is, when the outer membrane (lipid bilayer membrane) of a gram-negative bacterium is deformed in close proximity to the convex portion, the lipid bilayer membrane locally resembles a first-order phase transition (spontaneous reorientation) An opening may be formed in a portion close to the projection, and the projection may intrude into the opening. Alternatively, the convex part may be taken up by a mechanism (endocytosis) which takes in a substance having polarity (including a nutrient source) that the cell has.
 本発明者が、水を含む液体を殺菌するために好適に用いられる合成高分子膜をさらに検討したところ、特許文献5から7に記載された合成高分子膜は、量産性(転写性)および/または耐水性において、改善の余地が残されていることがわかった。 When the present inventor further examined a synthetic polymer membrane suitably used for sterilizing a liquid containing water, the synthetic polymer membranes described in Patent Documents 5 to 7 have mass productivity (transferability) and It has been found that there is room for improvement in water resistance.
 特許文献5から7に記載の合成高分子膜は、窒素元素および/またはフッ素元素を含むアクリレートを用いていた。転写性および/または耐水性が低下する原因として、窒素元素を含む、4級アンモニウム塩やアミノ基、アミド基、ウレタン結合の寄与が考えられる。4級アンモニウム塩やアミノ基、アミド基を含有した化合物は離型剤への浸透性が高いため、離型性を低下させることが懸念される。また、ウレタン結合を有する化合物は粘度が比較的高いので、離型性を低下させる傾向にある。したがって、ロール・ツー・ロール方式で量産する際に生産性の低下を招く。また、窒素元素を含む化合物は極性が高いので、耐水性に対して不利に作用する。一方、フッ素元素を含むアクリレートを用いると、離型性には有利に作用するが、撥水性が高く、水が浸透しにくくなる。その結果、水を含む液体を殺菌する効果が弱まることが懸念される。 The synthetic polymer films described in Patent Documents 5 to 7 use an acrylate containing elemental nitrogen and / or elemental fluorine. As a cause of the decrease in transferability and / or water resistance, the contribution of quaternary ammonium salt, amino group, amide group and urethane bond containing nitrogen element is considered. A compound containing a quaternary ammonium salt or an amino group or an amido group has a high permeability to the release agent, so there is a concern that the releasability may be reduced. In addition, since the compound having a urethane bond has a relatively high viscosity, it tends to lower the releasability. Therefore, productivity declines when mass producing by roll-to-roll method. In addition, since the compound containing nitrogen element has high polarity, it acts against water resistance. On the other hand, when an acrylate containing a fluorine element is used, it works favorably for the releasability, but the water repellency is high and it becomes difficult for water to penetrate. As a result, there is a concern that the effect of sterilizing the liquid containing water may be weakened.
 そこで、本発明者は、窒素元素およびフッ素元素のいずれも含まないアクリレート(メタクリレートを含む)を用いて、種々の合成高分子膜を作製し、殺菌性とともに、転写性および耐水性を評価した。合成高分子膜に含まれる水溶性モノマーおよび/またはエチレンオキサイド単位(-CH2CH2O-、以下「EO単位」ということがある。)の含有率および架橋密度の異なる試料フィルムを作製した。 Therefore, the present inventor manufactured various synthetic polymer films using acrylate (including methacrylate) containing neither nitrogen element nor fluorine element, and evaluated transferability and water resistance as well as sterilization. Sample films having different contents of water-soluble monomers and / or ethylene oxide units (-CH 2 CH 2 O-, hereinafter sometimes referred to as "EO units") contained in the synthetic polymer film and crosslink density were prepared.
 ここで、水溶性モノマーとは、1gまたは1mlのモノマーを溶解させるのに必要な水(約20℃)の量が100ml未満のものをいう。水溶性モノマーとしては、1gまたは1mlのモノマーを溶解させるのに必要な水(約20℃)の量が30ml未満のものが好ましい。 Here, the water-soluble monomer refers to one in which the amount of water (about 20 ° C.) required to dissolve 1 g or 1 ml of monomer is less than 100 ml. As the water soluble monomer, one having less than 30 ml of water (about 20 ° C.) required to dissolve 1 g or 1 ml of monomer is preferable.
 水溶性モノマーは、水酸基、カルボニル基および/またはカルボキシル基を有する。水酸基を有するモノマーとしては、2-ヒドロキシエチルメタクリレート、2-ヒドロキシプロピルアクリレート、2-ヒドロキシブチルアクリレート、4-ヒドロキシブチルアクリレート等が挙げられる。カルボニル基を有するモノマーとしては、2-アセトアセトキシエチルメタクリレート等が挙げられる。カルボキシル基を有するモノマーとしては、アクリル酸、メタクリル酸、2-メタクリロイロキシエチルコハク酸等が挙げられる。 The water soluble monomer has a hydroxyl group, a carbonyl group and / or a carboxyl group. Examples of the monomer having a hydroxyl group include 2-hydroxyethyl methacrylate, 2-hydroxypropyl acrylate, 2-hydroxybutyl acrylate and 4-hydroxybutyl acrylate. Examples of the monomer having a carbonyl group include 2-acetoacetoxyethyl methacrylate and the like. Examples of the monomer having a carboxyl group include acrylic acid, methacrylic acid, 2-methacryloyloxyethyl succinic acid and the like.
 [合成高分子膜]
 組成の異なる紫外線硬化性樹脂を用いて、図1(a)に示したフィルム50Aと同様の構造を有する試料フィルムを作製した。使用した原材料を表1に示す。
[Synthetic polymer membrane]
The sample film which has a structure similar to the film 50A shown to Fig.1 (a) was produced using the ultraviolet curable resin from which a composition differs. The raw materials used are shown in Table 1.
 合成高分子膜の試料フィルムとしては、特許文献5~7に記載の合成高分子膜の様に、窒素元素および/またはフッ素元素を含む参考例1~4、転写性および/または耐水性が改善された実施例1~9、および比較例1~9を作製した。参考例1~4の組成を表2に、実施例1~9の組成を表3に、比較例1~9の組成を表4にそれぞれ示す。表2において、アクリルモノマーの略号の後の(N)は窒素元素を含むこと、(F)はフッ素元素を含むことを示している。なお、比較例1は、実施例1と同じ紫外線硬化性樹脂を用い、モスアイ構造を形成しなかった。すなわち、比較例1の試料フィルムは、平坦な表面を有するフィルム(平板)である。 As sample films of synthetic polymer films, as in the synthetic polymer films described in Patent Documents 5 to 7, reference examples 1 to 4 containing nitrogen and / or fluorine elements, transferability and / or water resistance are improved Examples 1 to 9 and Comparative Examples 1 to 9 were prepared. The compositions of Reference Examples 1 to 4 are shown in Table 2, the compositions of Examples 1 to 9 in Table 3, and the compositions of Comparative Examples 1 to 9 in Table 4. In Table 2, it is shown that (N) after the abbreviation of acrylic monomer contains a nitrogen element and (F) contains a fluorine element. In Comparative Example 1, the same ultraviolet curable resin as in Example 1 was used, and the moth-eye structure was not formed. That is, the sample film of Comparative Example 1 is a film (flat plate) having a flat surface.
 ベースフィルム42Aとしては、厚さが50μmのPETフィルム(東洋紡株式会社製A4300)を用いた。合成高分子膜の製造方法は、図6を参照して説明したのと同様の方法で、モスアイ用型100Aを用いて、表面にモスアイ構造を有する合成高分子膜34Aを作製した。露光量は約200mJ/cm2(波長が375nmの光を基準)とした。各試料フィルムにおけるDpは約200nm、Dintは約200nm、Dhは約150nmであった。いずれも無溶剤で合成高分子膜を作製した。 As the base film 42A, a PET film (A4300 manufactured by Toyobo Co., Ltd.) having a thickness of 50 μm was used. The synthetic polymer film was produced by the same method as that described with reference to FIG. 6 using the moth-eye mold 100A to produce a synthetic polymer film 34A having a moth-eye structure on the surface. The exposure dose was about 200 mJ / cm 2 (based on light having a wavelength of 375 nm). In each sample film, D p was about 200 nm, D int was about 200 nm, and D h was about 150 nm. In all cases, a synthetic polymer film was produced without using any solvent.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 各試料フィルムについて、殺菌性、転写性および耐水性の評価結果、ならびに水溶性モノマー単位および/またはエチレンオキサイド単位(EO単位)の含有率を下記の表5~7に示す。表5は参考例1~4、表6は実施例1~9、表7は比較例1~9について示す。 The evaluation results of bactericidal property, transferability and water resistance, and the content of water-soluble monomer unit and / or ethylene oxide unit (EO unit) are shown in Tables 5 to 7 below for each sample film. Table 5 shows Reference Examples 1 to 4, Table 6 shows Examples 1 to 9, and Table 7 shows Comparative Examples 1 to 9.
 [殺菌性の評価]
 試料フィルム上に飛散した菌液(水)に対する殺菌性を評価した。菌液を付与した試料フィルムを室温・大気中に放置した際の殺菌性を評価したので、乾燥による影響が加わっている。ここでは、黄色ブドウ球菌に対する殺菌性を評価した。具体的な評価方法は以下の通りである。各試料フィルムについて、N=3で実験を行った。
 (1)初期菌数が1E+06CFU/mLとなるように、黄色ブドウ球菌を含む菌液を1/500NB培地を用いて調製した。
 (2)各試料フィルム(5cm角)の上に、上記菌液10μLを滴下した。
 (3)室温(約25℃)、大気中に、15分間、放置した後、SCDLP培地を試料フィルムにかけ流し、菌を洗い出した(洗い出し液)。
 (4)洗い出し液を適宜PBSで希釈を行い、標準寒天培地等で培養し、菌数をカウントした。
[Evaluation of sterilization]
The bactericidal activity of the bacterial solution (water) scattered on the sample film was evaluated. Since the bactericidal property when the sample film to which the bacterial solution was applied was left in the air at room temperature was evaluated, the influence of drying is added. Here, the bactericidal activity against Staphylococcus aureus was evaluated. The specific evaluation method is as follows. An experiment was performed at N = 3 for each sample film.
(1) Bacterial fluid containing S. aureus was prepared using 1/500 NB medium such that the initial number of bacteria was 1E + 06 CFU / mL.
(2) 10 μL of the above bacterial solution was dropped onto each sample film (5 cm square).
(3) After leaving for 15 minutes in the air at room temperature (about 25 ° C.), the SCDLP medium was flushed on a sample film to wash out the bacteria (washout solution).
(4) The washout solution was appropriately diluted with PBS, cultured on a standard agar medium or the like, and the number of bacteria was counted.
 殺菌性は、参照フィルムの殺菌性を基準に評価した。参照フィルムとして、ベースフィルムとして用いた、厚さが50μmのPETフィルム(東洋紡株式会社製A4300)を用いた。PETフィルムについて、上記の手順で菌数をカウントし、このPETフィルムついて得られた菌数に対する、各試料フィルムの菌数の比率(%)で、各試料フィルムの殺菌性を評価した。具体的には、下記の式に従って、生菌率を求めた。
 生菌率(%)=各試料フィルムの菌数(N=3の合計)/PETフィルムの菌数(N=3の合計)×100
The bactericidal properties were evaluated on the basis of the bactericidal properties of the reference film. As a reference film, a 50 μm-thick PET film (A4300 manufactured by Toyobo Co., Ltd.) used as a base film was used. The number of bacteria was counted in the above-mentioned procedure for PET film, and the bactericidal property of each sample film was evaluated by the ratio (%) of the number of bacteria of each sample film to the number of bacteria obtained for this PET film. Specifically, the viable cell rate was determined according to the following formula.
Viable cell ratio (%) = number of bacteria of each sample film (total of N = 3) / number of bacteria of PET film (total of N = 3) x 100
 殺菌性の判定基準は、生菌率に基づいて、◎:0%、〇:0%超10%未満、△:10%以上50%未満、×:50%以上とした。すなわち、生菌率が50%未満であれば使用可とした。 The criteria for determining bactericidal properties were と し た: 0%,: 0: more than 0% and less than 10%, Δ: 10% or more and less than 50%, x: 50% or more based on the viable cell rate. That is, if the viable cell rate was less than 50%, it was considered as usable.
 [転写性の評価]
 転写性を評価するために、ガラス基板(約5cm×約5cm)上にアルミニウム膜(厚さ:約1μm)を形成し、このアルミニウム膜に陽極酸化とエッチングとを交互に繰り返すことによって、上記同様のポーラスアルミナ層(Dpは約200nm、Dintは約200nm、Dhは約150nm)を形成した。得られたポーラスアルミナ層の表面に酸素プラズマ洗浄(100W、25秒)を施し、水に対する接触角を100°~110°に調整した。これは、紫外線硬化性樹脂に対する型の表面の離型性を低下させるためである。
[Evaluation of transferability]
In order to evaluate the transferability, an aluminum film (thickness: about 1 μm) is formed on a glass substrate (about 5 cm × about 5 cm), and this aluminum film is alternately repeated by anodic oxidation and etching, similarly to the above. porous alumina layer (D p is about 200 nm, D int of about 200 nm, D h is approximately 150 nm) were formed. The surface of the obtained porous alumina layer was subjected to oxygen plasma cleaning (100 W, 25 seconds), and the contact angle to water was adjusted to 100 ° to 110 °. This is to reduce the releasability of the surface of the mold to the ultraviolet curable resin.
 紫外線硬化性樹脂を用いて、PETフィルム上に、合成高分子膜を10回作製した。PETフィルム上に合成高分子膜を形成することを、合成高分子膜をPETフィルム上に転写すると表現する。紫外線照射には、Fusion UV Systems社製のUVランプ(製品名:LIGHT HANMAR6J6P3)を用い、露光量は約200mJ/cm2(375nmの光を基準)とした。なお、転写は、手で行い、10回転写し、転写時の軽さ(型を合成高分子膜から引きはがすのに必要な力の程度)の感覚、および転写時の型の表面の状態を指標とした。
 〇: 10回の転写で変化なし。
 △: 10回の転写で、型を引きはがすときの重くなる傾向はあるが、型の表面に合成高分子膜(紫外線硬化樹脂)が残存する等の不具合の発生なし。
 ×: 10回の転写中に、型の表面に合成高分子膜が残存する不具合が発生。
 ××: 10回の転写中に、型の表面全体に合成高分子膜が残存する不具合が発生。
 ここで、〇および△のものを使用可とした。
A synthetic polymer film was produced ten times on a PET film using an ultraviolet curable resin. The formation of a synthetic polymer film on a PET film is expressed as transfer of the synthetic polymer film onto a PET film. For ultraviolet irradiation, a UV lamp manufactured by Fusion UV Systems (product name: LIGHT HANMAR 6J6P3) was used, and the exposure dose was about 200 mJ / cm 2 (based on light at 375 nm). Transfer is performed manually, transferred ten times, and sense of lightness at transfer (degree of force required to peel the mold from the synthetic polymer film), and index of surface condition of the mold at transfer And
○: No change after 10 transfers.
Fair: There is a tendency for the film to become heavy when peeling off the mold after 10 transfers, but there is no occurrence of a defect such as a synthetic polymer film (ultraviolet curable resin) remaining on the surface of the mold.
X: A defect occurs in which the synthetic polymer film remains on the surface of the mold during 10 times of transfer.
××: A problem occurs in which the synthetic polymer film remains on the entire surface of the mold during 10 times of transfer.
Here, 〇 and と し た were accepted.
 [耐水性の評価]
 各試料フィルムを水中に浸漬し、37℃で72時間放置後、水中より取り出し、各試料フィルムの状態を目視観察した。
 〇:浸漬前と変化がなかった。
 △:白化はあるが合成高分子膜がベースフィルムから剥がれている部分がない。
 ×:合成高分子膜がベースフィルムから剥がれている部分がある。
 ××:合成高分子膜がほぼ全面でベースフィルムから剥がれている。
 ここで、判定が○または△であるものを使用可とした。
[Evaluation of water resistance]
Each sample film was immersed in water and allowed to stand at 37 ° C. for 72 hours, then removed from the water, and the state of each sample film was visually observed.
○: There was no change from before immersion.
Fair: There is whitening but there is no part where the synthetic polymer film is peeled from the base film.
X: There is a portion where the synthetic polymer film is peeled from the base film.
×: The synthetic polymer film is peeled off from the base film over almost the entire surface.
Here, the ones with the judgment of ○ or と し た were made usable.
 [架橋密度]
 ここで作製した合成高分子膜は、多官能アクリレートを含む紫外線硬化性樹脂から形成されているので、架橋構造(網目構造)を有している。架橋構造を有する高分子の架橋密度は、よく知られているように、ガラス転移温度を超える温度範囲における動的貯蔵弾性率E'の極小値をEr’(Pa)とし、Er’を与える温度をTr(K)とし、気体定数Rを8.3J/mol・Kとして、n=Er’/(3・R・Tr)の式から求められる。
Crosslink density
The synthetic polymer film produced here is formed of an ultraviolet curable resin containing a polyfunctional acrylate, and thus has a crosslinked structure (network structure). As well known, the crosslink density of a polymer having a crosslink structure is a temperature giving Er ′ (Pa) as the minimum value of the dynamic storage elastic modulus E ′ in a temperature range exceeding the glass transition temperature. It is calculated | required from the formula of n = Er '/ (3 * R * Tr) by making Tr (K) and the gas constant R into 8.3 J / mol * K.
 なお、ガラス転移温度を超える温度範囲における動的貯蔵弾性率E'の極小値を特定しがたい場合には、ガラス転移温度を超える温度範囲における動的貯蔵弾性率E'の最小値をEr’(Pa)とし、Er’を与える最低温度をTr(K)とすればよい。 When it is difficult to specify the minimum value of the dynamic storage elastic modulus E 'in the temperature range exceeding the glass transition temperature, the minimum value of the dynamic storage elastic modulus E' in the temperature range exceeding the glass transition temperature is Er '. (Pa), and the minimum temperature for giving Er 'may be Tr (K).
 ここで、動的貯蔵弾性率Er’(Pa)は、DMA(Dynamic Mechanical Analysis:動的機械分析、または動的粘弾性測定といわれる。)によって求められる。ここでは、以下の様にして求めた。 Here, the dynamic storage elastic modulus Er '(Pa) is determined by DMA (Dynamic Mechanical Analysis: referred to as dynamic mechanical analysis or dynamic viscoelasticity measurement). Here, it asked as follows.
 日立ハイテクサイエンス社製の粘弾性測定装置(製品名:DMA7100)を用いて、引張モードで、測定温度範囲-50℃~250℃、昇温速度5℃/min、および、周波数10Hzの条件下で、動的貯蔵弾性率E’の温度変化を測定した。ガラス転移温度Tgを超えた温度領域における動的貯蔵弾性率E’の最小値(典型的には極小値)を動的貯蔵弾性率Er’とし、Er’を与える最低温度をTr(K)とした。ガラス転移温度Tgは、例えば、損失弾性率E’’が極大値(ピーク値)をとる温度として求めた。試験片は、長さ35mm、幅5mm、厚さ1mmで、クランプされていない部分の長さは20mmとした。 Using a visco-elasticity measuring device (product name: DMA7100) manufactured by Hitachi High-Tech Science, in the tensile mode, under the conditions of measurement temperature range -50 ° C to 250 ° C, temperature rising rate 5 ° C / min, and frequency 10Hz The temperature change of the dynamic storage modulus E 'was measured. The minimum value (typically, the minimum value) of the dynamic storage modulus E 'in the temperature range above the glass transition temperature Tg is the dynamic storage modulus Er', and the minimum temperature giving Er 'is Tr (K) did. The glass transition temperature Tg was determined, for example, as a temperature at which the loss elastic modulus E ′ ′ takes a maximum value (peak value). The test piece had a length of 35 mm, a width of 5 mm, and a thickness of 1 mm, and the unclamped portion had a length of 20 mm.
 図8に、実施例1の合成高分子膜の動的貯蔵弾性率E’の温度依存性を測定した結果を示す。ガラス転移温度(室温付近)を超えた温度範囲において、動的貯蔵弾性率E’は減少し、91℃(Tr=91+273K)で極小値を取っている。91℃における動的貯蔵弾性率Er’は53MPaである。これらの値から、上記の式に従うと、架橋密度nは、5.8×10-3mol/ccとなる。同様にして、参考例1~4、実施例1~9、比較例1~9について、架橋密度を求めた。 The result of having measured temperature dependence of dynamic storage elastic modulus E 'of a synthetic polymer film of Example 1 in Drawing 8 is shown. In the temperature range above the glass transition temperature (around room temperature), the dynamic storage modulus E ′ decreases and takes a local minimum value at 91 ° C. (Tr = 91 + 273 K). The dynamic storage modulus Er ′ at 91 ° C. is 53 MPa. From these values, according to the above equation, the crosslink density n is 5.8 × 10 −3 mol / cc. In the same manner, the crosslink density was determined for Reference Examples 1 to 4, Examples 1 to 9, and Comparative Examples 1 to 9.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 表5~表7において、Trを摂氏(℃)で表しているが、架橋密度の計算には絶対温度(K)を用いる。また、表5~7における「水溶性m量」は、各紫外線硬化性樹脂の全体に対する水溶性モノマーの質量%を表し、「EO量」は、各紫外線硬化性樹脂の全体に対するエチレンオキサイド単位(EO単位)の質量%を表す。 In Tables 5 to 7, Tr is expressed in degrees Celsius (° C.), but the absolute temperature (K) is used to calculate the crosslink density. Moreover, “water soluble m amount” in Tables 5 to 7 represents the mass% of the water soluble monomer with respect to the whole of each ultraviolet curable resin, and “EO amount” represents ethylene oxide units with respect to the whole of each ultraviolet curable resin ( It represents the mass% of the EO unit).
 表5を参照する。 See Table 5.
 参考例1~4の合成高分子膜は、窒素元素および/またはフッ素元素を含むアクリルモノマーを用いて作製されたものであり、架橋構造に窒素元素および/またはフッ素元素を含む。また、これらの合成高分子膜は、水溶性モノマー単位およびEO単位を含む。「水溶性モノマー単位」とは、水溶性モノマーが重合した後の構造単位を指す。 The synthetic polymer films of Reference Examples 1 to 4 are produced using an acrylic monomer containing an element of nitrogen and / or an element of fluorine, and the element has a crosslinked structure containing an element of nitrogen and / or an element of fluorine. Also, these synthetic polymer membranes contain water soluble monomer units and EO units. The "water-soluble monomer unit" refers to a structural unit after the water-soluble monomer is polymerized.
 窒素元素を含む参考例1~3は、優れた殺菌性を有するものの、転写性が悪い。フッ素元素を含む参考例4は、転写性および耐水性には優れるものの、殺菌性が低い。これは、フッ素元素による撥水効果によって、水に含まれる菌が合成高分子膜の表面に近づきづらくなったためと推察される。 The reference examples 1 to 3 containing the nitrogen element have excellent bactericidal properties but have poor transferability. Although the reference example 4 containing a fluorine element is excellent in transferability and water resistance, its bactericidal property is low. It is presumed that this is because bacteria contained in water are hard to approach the surface of the synthetic polymer film due to the water repellent effect of the fluorine element.
 次に、表6を参照する。 Next, refer to Table 6.
 実施例1~9の合成高分子膜は、架橋構造に、窒素元素およびフッ素元素のいずれも含まず、エチレンオキサイド単位および/または水溶性モノマー単位を有している。いずれの合成高分子膜も、架橋密度nが、2.8×10-3mol/cc以上9.5×10-3mol/cc以下の範囲にあり、殺菌性、転写性および耐水性のいずれも使用可のレベルにある。 The synthetic polymer films of Examples 1 to 9 have ethylene oxide units and / or water-soluble monomer units in the cross-linked structure without containing any of the nitrogen element and the fluorine element. The crosslink density n of any of the synthetic polymer films is in the range of 2.8 × 10 −3 mol / cc to 9.5 × 10 −3 mol / cc, and any of bactericidal property, transferability and water resistance Is also at a usable level.
 殺菌性の観点からは、架橋密度nは、8.4×10-3mol/cc以下であることが好ましく、5.8×10-3mol/cc以下であることがさらに好ましい。 From the viewpoint of sterilization, the crosslink density n is preferably 8.4 × 10 −3 mol / cc or less, and more preferably 5.8 × 10 −3 mol / cc or less.
 耐水性の観点からは、架橋密度nは、3.7×10-3mol/cc以上であることが好ましい。 From the viewpoint of water resistance, the crosslink density n is preferably 3.7 × 10 −3 mol / cc or more.
 架橋構造に含まれるエチレンオキサイド単位および水溶性モノマー単位の合計の含有率は、いずれも40質量%超である。実施例2、4および5の耐水性がやや劣ることから、架橋構造に含まれるエチレンオキサイド単位および水溶性モノマー単位の合計の含有率は70質量%以下であることが好ましいと考えられる。 The total content of ethylene oxide units and water-soluble monomer units contained in the cross-linked structure is over 40% by mass. From the fact that the water resistance of Examples 2, 4 and 5 is somewhat inferior, it is considered that the total content of the ethylene oxide unit and the water-soluble monomer unit contained in the crosslinked structure is preferably 70% by mass or less.
 動的貯蔵弾性率Er’は、いずれも20MPa超90MPa未満の範囲内にある。実施例6、7の殺菌性がやや劣ることから、動的貯蔵弾性率Er’は75MPa未満であることが好ましいと考えられる。 The dynamic storage moduli Er 'are all in the range of more than 20 MPa and less than 90 MPa. Since the bactericidal properties of Examples 6 and 7 are somewhat inferior, it is considered preferable that the dynamic storage elastic modulus Er 'is less than 75 MPa.
 実施例9は、実施例6の紫外線硬化性樹脂にシロキサン結合を有するアクリルモノマーを混合したものから作製されており、殺菌性が向上している。シロキサン結合を有する化合物(シリコーン化合物)は、フッ素系化合物と同様に、離型性を付与する材料としてよく用いられる。実施例9と実施例6との比較から、シロキサン結合を有するモノマーを用いると、殺菌性を犠牲にすることなく、離型性、すなわち転写性を改善することができると考えられる。 Example 9 is produced from what mixed the acrylic monomer which has a siloxane bond with the ultraviolet curable resin of Example 6, and its bactericidal property is improving. The compound (silicone compound) which has a siloxane bond is often used as a material which provides mold release property like a fluorine-type compound. From the comparison between Example 9 and Example 6, it is considered that releasability, that is, transferability can be improved by using a monomer having a siloxane bond without sacrificing sterilization.
 次に、表7を参照する。 Next, refer to Table 7.
 比較例1~9の合成高分子膜は、実施例の合成高分子膜と同様に、架橋構造に窒素元素およびフッ素元素のいずれも含まない。また、比較例1~7の合成高分子膜は、エチレンオキサイド単位および/または水溶性モノマー単位を有している。 The synthetic polymer films of Comparative Examples 1 to 9 do not contain any of the nitrogen element and the fluorine element in the cross-linked structure, like the synthetic polymer films of the examples. The synthetic polymer membranes of Comparative Examples 1 to 7 have ethylene oxide units and / or water-soluble monomer units.
 比較例1の合成高分子膜は、実施例1と同じ紫外線硬化性樹脂を用い、モスアイ構造を形成しなかった合成高分子膜であり、殺菌性が悪い。すなわち、合成高分子膜の表面がモスアイ構造を有していることによって、殺菌性が付与、または向上させられることがわかる。 The synthetic polymer film of Comparative Example 1 is a synthetic polymer film in which a moth-eye structure is not formed using the same ultraviolet curable resin as that of Example 1, and has a low sterilizing property. That is, it is understood that the bactericidal property can be imparted or improved by the moth-eye structure of the surface of the synthetic polymer film.
 比較例2~4の合成高分子膜は、優れた殺菌性を有しているが、耐水性が悪い。これらの合成高分子膜の架橋密度nは、2.3×10-3mol/cc以下である。実施例との比較から、架橋密度nが小さ過ぎると、耐水性が低下することがわかる。 The synthetic polymer membranes of Comparative Examples 2 to 4 have excellent bactericidal properties but have poor water resistance. The crosslink density n of these synthetic polymer films is 2.3 × 10 −3 mol / cc or less. From the comparison with the examples, it is understood that when the crosslink density n is too small, the water resistance is lowered.
 比較例5~7の合成高分子膜は、耐水性には優れるが、殺菌性が悪い。これらの合成高分子膜の架橋密度nは、11.0×10-3mol/cc以上である。図9に示す、実施例1~8および比較例2~7の合成高分子膜の架橋密度と生菌率との関係を示すグラフから明らかなように、架橋密度nが大き過ぎると、殺菌性が低下することがわかる。 The synthetic polymer membranes of Comparative Examples 5 to 7 are excellent in water resistance but poor in bactericidal property. The crosslinking density n of these synthetic polymer films is 11.0 × 10 −3 mol / cc or more. As is clear from the graph showing the relationship between the crosslink density and the viable cell ratio of the synthetic polymer films of Examples 1 to 8 and Comparative Examples 2 to 7 shown in FIG. Is found to decrease.
 このことから、水が、合成高分子膜の表面と接触することによって殺菌されるためには、合成高分子膜の表面が水によって膨潤可能な程度な親水性および架橋密度を有していることが好ましいと考えられる。すなわち、合成高分子膜の表面の高分子鎖が水に含まれる菌と相互作用する確率が増加し、その結果、殺菌性が向上すると考えられる。 From this, in order for water to be sterilized by contact with the surface of the synthetic polymer film, the surface of the synthetic polymer film should have such a degree of hydrophilicity and crosslink density that it can be swollen by water. Is considered preferable. That is, the probability that the polymer chain on the surface of the synthetic polymer membrane interacts with the bacteria contained in water is considered to increase, as a result, the bactericidal property is improved.
 比較例8および9の合成高分子膜は、エチレンオキサイド単位を含まず、殺菌性が悪い。このことから、エチレンオキサイド単位は、殺菌性に寄与していると考えられる。 The synthetic polymer membranes of Comparative Examples 8 and 9 do not contain ethylene oxide units and have poor sterilizing properties. From this, it is considered that the ethylene oxide unit contributes to the sterilization.
 本発明の実施形態による合成高分子膜は、その表面に付着した水を短時間で殺菌することができる。したがって、ハンドドライヤの手挿入空間の内面に配置することによって、感染を抑制・防止することができる。 The synthetic polymer membrane according to the embodiment of the present invention can sterilize water attached to the surface in a short time. Therefore, the infection can be suppressed / prevented by arranging on the inner surface of the hand insertion space of the hand dryer.
 本発明の実施形態による合成高分子膜は、短時間で水を殺菌することが望まれる用途に好適に用いられる。 The synthetic polymer membrane according to the embodiment of the present invention is suitably used in applications where it is desired to sterilize water in a short time.
 34A、34B  合成高分子膜
 34Ap、34Bp  凸部
 42A、42B  ベースフィルム
 50A、50B  フィルム
 100、100A、100B モスアイ用型
34A, 34B Synthetic polymer film 34Ap, 34Bp Convex part 42A, 42B Base film 50A, 50B film 100, 100A, 100B Moss eye mold

Claims (10)

  1.  複数の第1の凸部を有する表面を備える合成高分子膜であって、
     前記合成高分子膜の法線方向から見たとき、前記複数の第1の凸部の2次元的な大きさは20nm超500nm未満の範囲内にあり、
     架橋構造を有し、前記架橋構造は、窒素元素およびフッ素元素を含まず、エチレンオキサイド単位および/または水溶性モノマー単位を有し、
     ガラス転移温度を超える温度範囲における動的貯蔵弾性率E’の最小値をEr’(Pa)とし、Er’を与える最低温度をTr(K)とし、気体定数Rを8.3J/mol・Kとして、n=Er’/(3・R・Tr)の式から求められる架橋密度nが、2.8×10-3mol/cc以上9.5×10-3mol/cc以下の範囲にある、合成高分子膜。
    A synthetic polymer membrane comprising a surface having a plurality of first projections,
    When viewed in the normal direction of the synthetic polymer film, the two-dimensional size of the plurality of first protrusions is in the range of more than 20 nm and less than 500 nm,
    It has a crosslinked structure, and the crosslinked structure does not contain elemental nitrogen and elemental fluorine, and has ethylene oxide units and / or water-soluble monomer units,
    The minimum value of the dynamic storage elastic modulus E ′ in the temperature range exceeding the glass transition temperature is Er ′ (Pa), the minimum temperature giving Er ′ is Tr (K), and the gas constant R is 8.3 J / mol · K The crosslinking density n calculated from the formula n = Er '/ (3 · R · Tr) is in the range of 2.8 × 10 −3 mol / cc to 9.5 × 10 −3 mol / cc. , Synthetic polymer membrane.
  2.  前記架橋密度nは、8.4×10-3mol/cc以下である、請求項1に記載の合成高分子膜。 The synthetic polymer membrane according to claim 1, wherein the crosslink density n is 8.4 × 10 -3 mol / cc or less.
  3.  前記架橋密度nは、5.8×10-3mol/cc以下である、請求項1または2に記載の合成高分子膜。 The synthetic polymer membrane according to claim 1, wherein the crosslink density n is 5.8 × 10 −3 mol / cc or less.
  4.  前記架橋密度nは、3.7×10-3mol/cc以上である、請求項1から3のいずれかに記載の合成高分子膜。 The synthetic polymer membrane according to any one of claims 1 to 3, wherein the crosslink density n is at least 3.7 10-3 mol / cc.
  5.  前記合成高分子膜の全体に対する、前記架橋構造に含まれるエチレンオキサイド単位および水溶性モノマー単位の合計の含有率は、40質量%超である、請求項1から4のいずれかに記載の合成高分子膜。 5. The synthetic polymer according to any one of claims 1 to 4, wherein the total content of ethylene oxide units and water-soluble monomer units contained in the crosslinked structure with respect to the entire synthetic polymer film is more than 40% by mass. Molecular film.
  6.  前記合成高分子膜の全体に対する、前記架橋構造に含まれるエチレンオキサイド単位および水溶性モノマー単位の合計の含有率は、70質量%以下である、請求項5に記載の合成高分子膜。 The synthetic polymer film according to claim 5, wherein the total content of the ethylene oxide unit and the water-soluble monomer unit contained in the crosslinked structure with respect to the entire synthetic polymer film is 70% by mass or less.
  7.  前記動的貯蔵弾性率Er’は20MPa超90MPa未満である、請求項1から6のいずれかに記載の合成高分子膜。 The synthetic polymer membrane according to any one of claims 1 to 6, wherein the dynamic storage modulus Er 'is more than 20 MPa and less than 90 MPa.
  8.  前記動的貯蔵弾性率Er’は75MPa未満である、請求項7に記載の合成高分子膜。 The synthetic polymer membrane of claim 7, wherein said dynamic storage modulus Er 'is less than 75 MPa.
  9.  前記架橋構造は、シロキサン結合を有するモノマー単位を含む、請求項1から8のいずれかに記載の合成高分子膜。 The synthetic polymer membrane according to any one of claims 1 to 8, wherein the crosslinked structure comprises a monomer unit having a siloxane bond.
  10.  請求項1から9のいずれかに記載の合成高分子膜の前記表面に、水を含む液体を接触させることによって、前記液体を殺菌する方法。 A method of sterilizing the liquid by bringing the liquid containing water into contact with the surface of the synthetic polymer membrane according to any one of claims 1 to 9.
PCT/JP2018/030788 2017-08-29 2018-08-21 Synthetic polymer film having surface provided with bactericidal action, and sterilization method using surface of synthetic polymer film WO2019044586A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019539391A JP7042278B2 (en) 2017-08-29 2018-08-21 A synthetic polymer membrane having a surface having a bactericidal action and a sterilization method using the surface of the synthetic polymer membrane

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-164299 2017-08-29
JP2017164299 2017-08-29

Publications (1)

Publication Number Publication Date
WO2019044586A1 true WO2019044586A1 (en) 2019-03-07

Family

ID=65526146

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/030788 WO2019044586A1 (en) 2017-08-29 2018-08-21 Synthetic polymer film having surface provided with bactericidal action, and sterilization method using surface of synthetic polymer film

Country Status (2)

Country Link
JP (1) JP7042278B2 (en)
WO (1) WO2019044586A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016093939A (en) * 2014-11-13 2016-05-26 大日本印刷株式会社 Antibacterial article
WO2016208540A1 (en) * 2015-06-23 2016-12-29 シャープ株式会社 Synthetic polymer film provided with surface having sterilizing activity
WO2017047344A1 (en) * 2015-09-17 2017-03-23 シャープ株式会社 Synthetic polymer film provided with surface having sterilizing effect, method for manufacturing synthetic polymer film and sterilization method using surface of synthetic polymer film

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016093939A (en) * 2014-11-13 2016-05-26 大日本印刷株式会社 Antibacterial article
WO2016208540A1 (en) * 2015-06-23 2016-12-29 シャープ株式会社 Synthetic polymer film provided with surface having sterilizing activity
WO2017047344A1 (en) * 2015-09-17 2017-03-23 シャープ株式会社 Synthetic polymer film provided with surface having sterilizing effect, method for manufacturing synthetic polymer film and sterilization method using surface of synthetic polymer film

Also Published As

Publication number Publication date
JP7042278B2 (en) 2022-03-25
JPWO2019044586A1 (en) 2020-10-15

Similar Documents

Publication Publication Date Title
JP5933151B1 (en) Synthetic polymer membrane having surface with bactericidal action and method for sterilization using surface of synthetic polymer membrane
JP6470410B2 (en) Synthetic polymer membrane having a surface with bactericidal action
JP2019073710A (en) Synthetic polymer film, laminate having synthetic polymer film, film having synthetic polymer film, sterilization method using surface of synthetic polymer film, and method of reactivating surface of synthetic polymer film
US11364673B2 (en) Synthetic polymer film and production method of synthetic polymer film
JP6470413B2 (en) Synthetic polymer film having surface with bactericidal action and film having the same
JPWO2016175170A1 (en) Synthetic polymer membrane having a surface with bactericidal action
TWI714883B (en) Synthetic polymer film whose surface has microbicidal activity, photocurable resin composition, manufacturing method of synthetic polymer film, and sterilization method with use of surface of synthetic polymer film
JP6581296B2 (en) Synthetic polymer membrane having a surface with bactericidal action
JP6605612B2 (en) Synthetic polymer membrane having surface with bactericidal action, method for producing synthetic polymer membrane, and bactericidal method using surface of synthetic polymer membrane
JP6581159B2 (en) Method for producing a plastic product comprising a synthetic polymer film having a surface with bactericidal action
KR102183515B1 (en) Synthetic polymer film whose surface has microbicidal activity, photocurable resin composition, method for manufacturing a synthetic polymer film, and sterilization method with the use of surface of synthetic polymer film
JP7042278B2 (en) A synthetic polymer membrane having a surface having a bactericidal action and a sterilization method using the surface of the synthetic polymer membrane
JP6674554B2 (en) Method for producing synthetic polymer membrane having surface having bactericidal action

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18849547

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019539391

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18849547

Country of ref document: EP

Kind code of ref document: A1