WO2019044460A1 - Heat-insulating sound-absorbing material for transportation equipment - Google Patents

Heat-insulating sound-absorbing material for transportation equipment Download PDF

Info

Publication number
WO2019044460A1
WO2019044460A1 PCT/JP2018/030053 JP2018030053W WO2019044460A1 WO 2019044460 A1 WO2019044460 A1 WO 2019044460A1 JP 2018030053 W JP2018030053 W JP 2018030053W WO 2019044460 A1 WO2019044460 A1 WO 2019044460A1
Authority
WO
WIPO (PCT)
Prior art keywords
absorbing material
foam
fiber
transportation equipment
inorganic fiber
Prior art date
Application number
PCT/JP2018/030053
Other languages
French (fr)
Japanese (ja)
Inventor
和貴 村山
塚原 啓二
ひかり 佐々木
慧 塚田
小出 仁
安藤 大介
Original Assignee
ニチアス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ニチアス株式会社 filed Critical ニチアス株式会社
Publication of WO2019044460A1 publication Critical patent/WO2019044460A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R13/00Elements for body-finishing, identifying, or decorating; Arrangements or adaptations for advertising purposes
    • B60R13/08Insulating elements, e.g. for sound insulation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D29/00Superstructures, understructures, or sub-units thereof, characterised by the material thereof
    • B62D29/04Superstructures, understructures, or sub-units thereof, characterised by the material thereof predominantly of synthetic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C1/00Fuselages; Constructional features common to fuselages, wings, stabilising surfaces or the like
    • B64C1/40Sound or heat insulation, e.g. using insulation blankets
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/162Selection of materials
    • G10K11/168Plural layers of different materials, e.g. sandwiches

Definitions

  • the present invention relates to a heat insulating and sound absorbing material for transport equipment used for a wall of a fuselage of transport equipment such as aircraft.
  • the wall of an aircraft is required to have thermal insulation in case of fire, and sound absorption is also required in order to absorb the sound from inside and outside the aircraft and to maintain the comfort inside the aircraft. Therefore, the wall of the fuselage of the aircraft is doubled by the outer plate and the inner plate, and the adiabatic sound absorbing material is installed between them.
  • a heat insulating and sound absorbing material an organic sponge material such as polyimide resin and melamine resin is used (Patent Document 1 and the like).
  • Organic sponge materials are excellent as adiabatic sound absorbing materials, but they are low in heat resistance and easily burn when a fire occurs, making it difficult to secure time for evacuation of passengers when a fire occurs.
  • glass fiber is used as a heat insulation sound absorption material (patent document 2 grade
  • Glass fibers have higher heat resistance than organic materials.
  • a heat insulating material in which a glass fiber mat is packed in a film is used by being fixed to a wall surface with a pin. When installed on the wall on both sides of the fuselage, it is installed almost vertically along the wall.
  • glass fiber mats have problems such as low compressive stress, detachment and adhesion, and drop-off due to their own weight in the film due to vibrations during flight. As a result, the performance is degraded, and replacement by maintenance is required.
  • Patent Document 3 discloses that a foam is obtained by foaming an inorganic fiber having a charged surface, using a surfactant having a hydrophilic group of the opposite sign.
  • Patent 4639226 gazette Patent No. 5021316 International Publication No. 2016/121400
  • An object of the present invention is to provide a heat insulating and sound absorbing material for transport equipment which is noncombustible and difficult to slip off under its own weight.
  • porous bodies made of inorganic fibers are excellent in compressive stress and recovery rate, and are difficult to slip off due to their own weight even if they are vertically interposed between two members. I found it. Furthermore, this porous body is excellent in sound absorption, heat insulation, fire resistance and is lightweight.
  • the following heat insulating and absorbing material for transport equipment is provided.
  • Adiabatic sound absorbing material for transportation equipment having a porous body made of inorganic fiber.
  • the heat insulating and sound absorbing material for transportation equipment according to 1 or 2 wherein a bulk density of the porous body is 2 kg / m 3 to 18 kg / m 3 . 4.
  • the heat insulating and sound absorbing material for transport equipment of the present invention comprises a porous body composed of inorganic fibers.
  • a porous body (sponge) having a cell structure can be used as the porous body.
  • the cell structure is shown in FIG.
  • the cell structure is a structure in which a large number of pores (cells) and cell walls surrounding them are connected.
  • the cell wall is composed of inorganic fibers.
  • the average cell diameter is usually 100 to 1500 ⁇ m, for example 130 to 1000 ⁇ m or 150 to 800 ⁇ m.
  • the bulk density of the porous body of the cell structure is influenced by the thickness of the cell wall. Generally, the higher the bulk density, the higher the compressive stress. On the other hand, members used for transportation equipment are required to be lightweight.
  • the bulk density of the porous body is preferably 2 to 18 kg / m 3 , more preferably 3 to 17 kg / m 3 . More preferably, it is 4 to 16 kg / m 3 .
  • the average fiber diameter of the inorganic fibers used for the porous body is preferably 0.1 to 2.5 ⁇ m, for example, 0.15 to 1.0 ⁇ m.
  • the compression stress at the time of compression at a compression ratio of 30% is preferably 100 N / m 2 or more, more preferably 150 N / m 2 or more.
  • the upper limit is usually 2000 N / m 2 or less.
  • the recovery ratio after compression at a compression ratio of 30% is preferably 90% or more, more preferably 95% or more. The higher the compressive stress and the recovery rate, the more the position does not shift at the place where it is clamped and installed.
  • Bulk density, compressive stress, recovery rate and average cell diameter can be measured by the methods described in the examples.
  • the bulk density can be adjusted (controlled) by, for example, the method of surface activation treatment to inorganic fibers, the concentration (content ratio) of inorganic fibers, the expansion ratio, the amount of cells, the cell diameter, etc. in the method for producing foam described later.
  • inorganic fiber used in the present invention one or more selected from, for example, ceramic fiber, bio-soluble fiber (alkali earth silicate fiber, rock wool, etc.) and glass fiber can be used. It is desirable not to use asbestos fibers.
  • the biosoluble inorganic fiber is, for example, an inorganic fiber having a physiological saline dissolution rate of 1% or more at 40 ° C.
  • the physiological saline dissolution rate is measured, for example, as follows. That is, first, 1 g of a sample prepared by crushing inorganic fibers to 200 mesh or less and 150 mL of physiological saline are put in an Erlenmeyer flask (volume 300 mL) and placed in an incubator at 40 ° C. Next, a horizontal vibration of 120 revolutions per minute is continuously applied to the Erlenmeyer flask for 50 hours.
  • the concentration (mg / L) of each element (may be a main element) contained in the filtrate obtained by filtration is measured by an ICP emission analyzer. Then, based on the measured concentration of each element and the content (% by mass) of each element in the inorganic fiber before dissolution, the physiological saline dissolution rate (%) is calculated.
  • a1, a2, a3 and a4 are the measured concentrations of silicon, magnesium, calcium and aluminum (mg / L) respectively, and b1, b2, b3 and b4 are each in the inorganic fiber before dissolution Content (mass%) of silicon, magnesium, calcium and aluminum.
  • the biosoluble fiber has, for example, the following composition.
  • a total of 50% by weight to 82% by weight of SiO 2 , ZrO 2 , Al 2 O 3 and TiO 2 Total of 18 wt% to 50 wt% of alkali metal oxide and alkaline earth metal oxide
  • the biosoluble fiber can also be configured, for example, with the following composition. SiO 2 50 to 82% by weight 10 to 43% by weight of total of CaO and MgO
  • porous body (foam etc.) used by this invention can contain organic components, such as a coupling agent, besides an inorganic component.
  • the porous body used in the present invention can be produced by the following method.
  • the production method includes the production of an inorganic fibrous foam
  • the foam production method includes a production step of producing an inorganic fiber dispersion, a foaming step of foaming an inorganic fiber dispersion, and a dehydration step of drying the foam.
  • the binder may be previously added to the dispersion for foaming and heat treated after foam formation.
  • the surface of the inorganic fiber is brought into contact with an alkaline or acidic treatment liquid to charge the dispersion step by charging negatively or positively and adding a surfactant to the charged inorganic fiber. And a surfactant addition step to be created.
  • a surfactant addition step to be created.
  • the surface of the inorganic fiber is negatively charged, it is preferable to add a cationic surfactant, or when the surface of the inorganic fiber is positively charged, an anionic surfactant is added.
  • the zeta potential of the surface of the inorganic fiber is controlled by pH adjustment using an alkaline or acidic treatment liquid. Specifically, the zeta potential of the surface of the inorganic fiber is made negative or positive.
  • a surfactant having a hydrophilic group of the opposite sign is added to the charged inorganic fiber, and the hydrophilic group side of the surfactant is adsorbed on the surface of the inorganic fiber to form a hydrophobic group.
  • the inorganic fiber (the outermost surface) is hydrophobized.
  • the inorganic fibers ceramic fibers, bio-soluble fibers (alkali earth silicate fibers, rock wool, etc.), glass fibers, etc. can be used.
  • the treatment liquid may be any solution that can be dissolved in water to change the pH, and an acid or a base of an inorganic compound or an acid or a base of an organic compound can be used.
  • the zeta potential of the surface of the inorganic fiber is not zero, for example, ⁇ 5 mV to ⁇ 70 mV, ⁇ 7 mV to ⁇ 60 mV, ⁇ 10 mV to ⁇ 45 mV, +5 mV to +65 mV, +7 mV to +60 mV, or +10 mV to +45 mV.
  • the pH for achieving a predetermined zeta potential differs depending on the type of fiber, the pH can not be uniquely determined.
  • a fiber having a pH of 7 at which the zeta potential is 0 isoelectricity The point pH is 7
  • it can be negatively charged at pH higher than pH 2 and positively charged at pH lower than pH 2 .
  • the zeta potential is obtained by dispersing the fiber in an aqueous dispersion medium adjusted to a predetermined pH and measuring the fiber using a general-purpose zeta potentiometer (for example, Model FPA, manufactured by AFG Analytik).
  • a general-purpose zeta potentiometer for example, Model FPA, manufactured by AFG Analytik.
  • the charging step and the surfactant addition step in the preparation step may be performed sequentially or simultaneously. If the charging step and the surfactant addition step are performed simultaneously, the processing solution, inorganic fibers and surfactant can be mixed together. On the other hand, when the charging step and the surfactant addition step are performed over time, the inorganic fibers can be previously opened, dispersed and charged with the treatment liquid, and then mixed with the surfactant.
  • an amphiphilic substance, a silane coupling agent having a hydrophobic functional group, a titanium coupling agent having a hydrophobic functional group or the like may be used without using a surfactant.
  • the coupling agent in this step is to render it hydrophobic to form a foam.
  • the coupling agent used in the subsequent binder application step is for preventing the foam form from collapsing when it gets wet with water.
  • the amount of surfactant in the dispersion can be adjusted more appropriately than the inorganic fiber, but for example, the surfactant may be 0.01 to 1.0 part by weight with respect to 100 parts by weight of glass fiber.
  • the surfactant may be preferably 0.1 to 0.8 parts by weight, more preferably 0.2 to 0.7 parts by weight. If the amount of surfactant added is too small, the surface of the inorganic fibers may not be sufficiently hydrophobized and the foamability may be reduced. If the amount of surfactant is too large, the surfactants may adhere to each other. It can be adjusted in view of the possibility that the surface of the inorganic fiber may not be sufficiently hydrophobized.
  • the dispersion may also be composed free of organic binders (resin emulsions, rubber (elastomer) components (such as gum arabic) or magnesium oxides or hydroxides.
  • organic binders resin emulsions, rubber (elastomer) components (such as gum arabic) or magnesium oxides or hydroxides.
  • air bubbles
  • the inorganic fiber dispersion liquid obtained by mixing the treatment liquid, the inorganic fibers and the surfactant, and the air is bubbled.
  • air bubbles
  • air (bubbles) may be supplied to the inorganic fiber dispersion liquid by stirring without using a bubble supply device to cause foaming.
  • the cell diameter and the bulk density can be adjusted by adjusting the bubble diameter or the bubble amount by the bubble supply device.
  • the foam is dewatered by drying (including natural drying) the dispersion medium contained in the dispersion for a predetermined time (for example, 4 hours) at a normal temperature or a predetermined temperature outside the normal temperature.
  • the foam is fired at a high temperature (eg, 450 ° C.) to remove the surfactant.
  • a high temperature eg, 450 ° C.
  • bonds fibers can be used, for example, a coupling agent, an inorganic binder, etc.
  • a coupling agent it is preferable to react the foam, the coupling agent, and the water vapor to be applied. Specifically, the coupling agent is heated to cause the generated vapor to adhere to the foam and react with the water vapor. By treating with steam, the coupling agent is hydrolyzed, dehydrated and condensed to adhere to the foam. For example, the foam and the coupling agent vapor are brought into contact in a closed container (a closed container which does not mix gas into the container from the outside but the pressure can be increased by internal heating).
  • the foam After contact, water is placed in a closed vessel to generate water vapor and react with the coupling agent.
  • the foam may be directly impregnated with the coupling agent and heated instead of or in addition to the above-mentioned treatment. It is then contacted with steam.
  • SiO 2 series SiO 2 particles, water glass (sodium silicate), Al 2 O 3 series (Al 2 O 3 particles, basic acid aluminum such as polyaluminum chloride, etc.), phosphate as an inorganic binder And clay minerals (synthetic and natural).
  • Examples of coupling agents include silane coupling agents, titanium coupling agents and the like.
  • silane coupling agent methyl triethoxysilane etc. are mentioned.
  • the amount of the binder is not particularly limited and may be limited depending on the inorganic fiber, and is about 1 to 10% by weight, for example.
  • the porous body may consist essentially of, or consist of, inorganic fibers, surfactants and binders, or inorganic fibers and binders.
  • "essentially” means that 95% by weight or more, 98% by weight or more or 99% by weight or more consists of these.
  • the porous material of this invention can remove the composite material of an airgel or an airgel and an inorganic fiber.
  • the porous body is used by wrapping it in a fire resistant film.
  • the fire resistant film include metal foils, cloths of ceramic fibers and glass fibers, and non-woven fabrics. If necessary, the adiabatic sound absorbing material of the present invention is pinned and installed.
  • Examples 1 to 4 A micro glass fiber with an average fiber diameter of 0.22 ⁇ m (melting point of 400 ° C. or higher) was dispersed in ammonia water of pH 10 so as to have a concentration of 0.5% by weight to adjust the zeta potential of the fiber surface to -55 mV. .
  • a cationic surfactant (lauryl trimethyl ammonium chloride (trade name; Cortamine 24P, manufactured by Kao Corporation)) is added to 100 parts by weight of the fiber in terms of solids of the surfactant.
  • the mixture was stirred and mixed. At this time, air was taken in and bubbled using a nozzle. The bulk density of the foam was changed by changing the amount of foam leaving the nozzle.
  • the obtained wet foam was dried and treated at 450 ° C. for 1 hour using an electric furnace to remove the surfactant attached to the foam.
  • a coupling agent was applied.
  • the coupling agent is methyltriethoxysilane (trade name: KBE-13, manufactured by Shin-Etsu Chemical Co., Ltd.), and the silane coupling agent is placed in a closed container and heated to about 160 ° C. to generate a vapor of the silane coupling agent And the foam was treated for 4 hours.
  • 8 g of water was added to the closed vessel, steam was generated, and the foam was treated for 2 hours.
  • a coupling agent in a closed container, about 10 g of a coupling agent was directly applied per 1 g of foam weight, and heated at 105 ° C. for 4 hours. Thereafter, in the same manner as above, water equivalent to half the weight of the coupling agent was placed in a container and treated at 105 ° C. for 2 hours.
  • the foam had a cell structure. The average cell diameter was about 170 to about 240 ⁇ m.
  • the method of measuring the properties of the inorganic fiber and the foam is as follows. Average fiber diameter The fiber diameter was measured for 400 fibers randomly selected, and the average value was determined.
  • Comparative Example 1 In place of the foam, a glass fiber mat commercially available for aircraft (product name: Microlite (registered trademark) AA Premium NR Blankets, manufactured by Johns Manville (US)) was used and evaluated in the same manner as in the example. The results are shown in Table 1.
  • Microlite registered trademark
  • AA Premium NR Blankets manufactured by Johns Manville (US)
  • Example 5 A foam (bulk density: 9.0 kg / m 3 ) was produced in the same manner as in Example 1 except that fibers with an average fiber diameter of 0.4 ⁇ m were used. With respect to a sample of 10.3 mm thickness of this foam, the sound absorption coefficient was measured using a sound absorption coefficient measurement system (a measurement system of Brüel & Kj ⁇ r company) according to JIS A 1405-2 (perpendicular incident sound absorption coefficient, without back air layer) It was measured. As a comparison, the sound absorption coefficient was similarly measured about the sample of thickness 10.6 mm of the glass mat (bulk density 9.8 kg / m ⁇ 3 >) of JohnsManville company similar to the comparative example 1. FIG. The sample of Example 5 exhibited a sound absorption coefficient of 80% or more at a 1/3 octave frequency of 3000 to 5000 Hz, and was 3 to 19% higher than the sample of Comparative Example 1.
  • a sound absorption coefficient measurement system a measurement system of Brüel &
  • the adiabatic sound absorbing material for transportation equipment of the present invention can be used for transportation equipment such as an aircraft, a vehicle, a ship, etc., and in particular, can be installed and used between the outer plate and the inner plate of the fuselage.

Abstract

A heat-insulating sound-absorbing material for transportation equipment, the material having a porous body comprising inorganic fibers.

Description

輸送機器用断熱吸音材Insulating sound absorber for transportation equipment
 本発明は、航空機等の輸送機器の胴体の壁等に使用される輸送機器用断熱吸音材に関する。 BACKGROUND OF THE INVENTION Field of the Invention The present invention relates to a heat insulating and sound absorbing material for transport equipment used for a wall of a fuselage of transport equipment such as aircraft.
 航空機の壁面等には、火災に備え断熱性が求められ、さらに、機体内外の音を吸収し機内の快適性を保つために吸音性も求められる。従って、航空機の胴体の壁は、外板と内板で二重になっていてその間には、断熱吸音材が設置されている。このような断熱吸音材として、ポリイミド樹脂、メラミン樹脂等の有機スポンジ材料が使用されている(特許文献1等)。有機スポンジ材料は、断熱吸音材料として優れるが、耐熱性が低く火災時に燃え、火災発生時における乗客の避難のための時間を確保しづらい等の問題が生じやすい。 The wall of an aircraft is required to have thermal insulation in case of fire, and sound absorption is also required in order to absorb the sound from inside and outside the aircraft and to maintain the comfort inside the aircraft. Therefore, the wall of the fuselage of the aircraft is doubled by the outer plate and the inner plate, and the adiabatic sound absorbing material is installed between them. As such a heat insulating and sound absorbing material, an organic sponge material such as polyimide resin and melamine resin is used (Patent Document 1 and the like). Organic sponge materials are excellent as adiabatic sound absorbing materials, but they are low in heat resistance and easily burn when a fire occurs, making it difficult to secure time for evacuation of passengers when a fire occurs.
 また、断熱吸音材として、ガラス繊維が使用されている(特許文献2等)。ガラス繊維は有機系材料に比較して耐熱性が高い。通常、ガラス繊維マットをフィルムに詰めた断熱材を、ピンで壁面に固定して使用している。胴体両側の壁面に設置するときは、壁面に沿ってほぼ垂直に設置される。しかし、ガラス繊維マットは、圧縮応力が低く、離発着、飛行中の振動によりフィルム内で自重のためずり落ちる等の問題があった。そのため性能が低下し、メンテナンスにより入れ替えが必要であった。 Moreover, glass fiber is used as a heat insulation sound absorption material (patent document 2 grade | etc.,). Glass fibers have higher heat resistance than organic materials. Usually, a heat insulating material in which a glass fiber mat is packed in a film is used by being fixed to a wall surface with a pin. When installed on the wall on both sides of the fuselage, it is installed almost vertically along the wall. However, glass fiber mats have problems such as low compressive stress, detachment and adhesion, and drop-off due to their own weight in the film due to vibrations during flight. As a result, the performance is degraded, and replacement by maintenance is required.
 特許文献3には、表面を荷電させた無機繊維を、逆符号の親水基を有する界面活性剤を用いて発泡させて発泡体を得ることが示されている。 Patent Document 3 discloses that a foam is obtained by foaming an inorganic fiber having a charged surface, using a surfactant having a hydrophilic group of the opposite sign.
特許4639226号公報Patent 4639226 gazette 特許5021316号公報Patent No. 5021316 国際公開公報第2016/121400号International Publication No. 2016/121400
 本発明の課題は、不燃性であり、かつ、自重でずり落ち難い輸送機器用断熱吸音材を提供することである。 An object of the present invention is to provide a heat insulating and sound absorbing material for transport equipment which is noncombustible and difficult to slip off under its own weight.
 本発明者らは、鋭意研究の結果、無機繊維質からなる多孔体が、圧縮応力と復元率に優れ、2つの部材の間に介在させて垂直に設置しても自重でずり落ち難いことを見い出した。さらに、この多孔体は吸音性、断熱性、耐火性に優れ、軽量である。 As a result of earnest research, the inventors of the present invention have found that porous bodies made of inorganic fibers are excellent in compressive stress and recovery rate, and are difficult to slip off due to their own weight even if they are vertically interposed between two members. I found it. Furthermore, this porous body is excellent in sound absorption, heat insulation, fire resistance and is lightweight.
 本発明によれば、以下の輸送機器用断熱吸音材が提供される。
1.無機繊維からなる多孔体を有する輸送機器用断熱吸音材。
2.前記多孔体が、気孔であるセルと、前記セルを囲む無機繊維からなるセル壁とを含み、前記セルと前記セル壁が多数連なっている1記載の輸送機器用断熱吸音材。
3.前記多孔体の嵩密度が、2kg/m~18kg/mである1又は2記載の輸送機器用断熱吸音材。
4.前記多孔体が耐火性フィルムに包装されている1~3のいずれか記載の輸送機器用断熱吸音材。
5.輸送機器の胴体の外板と内板の間に設置されるための1~4のいずれか記載の輸送機器用断熱吸音材。
6.1~4のいずれか記載の輸送機器用断熱吸音材を、胴体の外板と内板の間に設置した輸送機器。
According to the present invention, the following heat insulating and absorbing material for transport equipment is provided.
1. Adiabatic sound absorbing material for transportation equipment having a porous body made of inorganic fiber.
2. The heat insulating and sound absorbing material for transportation equipment according to 1, wherein the porous body includes a cell which is a pore and a cell wall made of inorganic fiber surrounding the cell, and the cell and the cell wall are connected in a large number.
3. The heat insulating and sound absorbing material for transportation equipment according to 1 or 2, wherein a bulk density of the porous body is 2 kg / m 3 to 18 kg / m 3 .
4. 3. The heat insulating and sound absorbing material for transport equipment according to any one of 1 to 3, wherein the porous body is packaged in a fire resistant film.
5. The heat insulating and sound absorbing material for transportation equipment according to any one of 1 to 4, which is installed between the outer plate and the inner plate of the fuselage of the transportation equipment.
A transportation device in which the heat insulating and sound absorbing material for transportation device according to any one of 6.1 to 4 is installed between an outer plate and an inner plate of a fuselage.
 本発明によれば、不燃性であり、かつ、自重でずり落ち難い輸送機器用断熱吸音材が提供できる。 According to the present invention, it is possible to provide a heat insulating and sound absorbing material for transport equipment which is noncombustible and difficult to slip off under its own weight.
セル構造の断面の一例を示す断面図である。It is a sectional view showing an example of a section of cell structure.
 本発明の輸送機器用断熱吸音材は、無機繊維から構成される多孔体からなる。多孔体として、セル構造を有する多孔体(スポンジ)を用いることができる。図1にセル構造を示す。セル構造は、気孔(セル)とそれを囲むセル壁が多数連なった構造である。セル壁は無機繊維から構成される。平均セル径は通常100~1500μmであり、例えば130~1000μm又は150~800μmである。 The heat insulating and sound absorbing material for transport equipment of the present invention comprises a porous body composed of inorganic fibers. A porous body (sponge) having a cell structure can be used as the porous body. The cell structure is shown in FIG. The cell structure is a structure in which a large number of pores (cells) and cell walls surrounding them are connected. The cell wall is composed of inorganic fibers. The average cell diameter is usually 100 to 1500 μm, for example 130 to 1000 μm or 150 to 800 μm.
 セル径を大きくすると嵩密度が減る傾向にある。セル構造の多孔体の嵩密度は、セル壁の厚さに影響を受ける。
 一般に嵩密度を大きくすると、圧縮応力は高くなる。一方、輸送機器に使用する部材は軽量であることが求められる。多孔体の嵩密度は、好ましくは2~18kg/mであり、より好ましくは3~17kg/mである。さらに好ましくは4~16kg/mである。
When the cell diameter is increased, the bulk density tends to decrease. The bulk density of the porous body of the cell structure is influenced by the thickness of the cell wall.
Generally, the higher the bulk density, the higher the compressive stress. On the other hand, members used for transportation equipment are required to be lightweight. The bulk density of the porous body is preferably 2 to 18 kg / m 3 , more preferably 3 to 17 kg / m 3 . More preferably, it is 4 to 16 kg / m 3 .
 多孔体に用いる無機繊維の平均繊維径は、好ましくは0.1~2.5μmであり、例えば0.15~1.0μmである。 The average fiber diameter of the inorganic fibers used for the porous body is preferably 0.1 to 2.5 μm, for example, 0.15 to 1.0 μm.
 圧縮率30%で圧縮した際の、圧縮応力は好ましくは100N/m以上であり、より好ましくは150N/m以上である。上限は通常2000N/m以下である。
 さらに、圧縮率30%で圧縮した後の復元率は好ましくは90%以上であり、より好ましくは95%以上である。
 圧縮応力と復元率が高い程、挟持されて設置される場所において位置がずれない。
The compression stress at the time of compression at a compression ratio of 30% is preferably 100 N / m 2 or more, more preferably 150 N / m 2 or more. The upper limit is usually 2000 N / m 2 or less.
Furthermore, the recovery ratio after compression at a compression ratio of 30% is preferably 90% or more, more preferably 95% or more.
The higher the compressive stress and the recovery rate, the more the position does not shift at the place where it is clamped and installed.
 嵩密度、圧縮応力、復元率及び平均セル径は、実施例に記載の方法で測定できる。なお、嵩密度は、例えば、後述する発泡体の製造方法において、無機繊維に対する界面活性処理方法、無機繊維の濃度(含有割合)、発泡倍率、気泡量、気泡径等により調整(制御)できる。 Bulk density, compressive stress, recovery rate and average cell diameter can be measured by the methods described in the examples. The bulk density can be adjusted (controlled) by, for example, the method of surface activation treatment to inorganic fibers, the concentration (content ratio) of inorganic fibers, the expansion ratio, the amount of cells, the cell diameter, etc. in the method for producing foam described later.
 本発明で用いる無機繊維は、例えばセラミック繊維、生体溶解性繊維(アルカリアースシリケート繊維、ロックウール等)及びガラス繊維から選択される1以上を用いることができる。石綿繊維は用いないことが望まれる。 As the inorganic fiber used in the present invention, one or more selected from, for example, ceramic fiber, bio-soluble fiber (alkali earth silicate fiber, rock wool, etc.) and glass fiber can be used. It is desirable not to use asbestos fibers.
 生体溶解性無機繊維は、例えば、40℃における生理食塩水溶解率が1%以上の無機繊維である。
 生理食塩水溶解率は、例えば、次のようにして測定される。すなわち、先ず、無機繊維を200メッシュ以下に粉砕して調製された試料1g及び生理食塩水150mLを三角フラスコ(容積300mL)に入れ、40℃のインキュベーターに設置する。次に、三角フラスコに、毎分120回転の水平振動を50時間継続して加える。その後、ろ過により得られた濾液に含有されている各元素(主要元素でよい)の濃度(mg/L)をICP発光分析装置により測定する。そして、測定された各元素の濃度と、溶解前の無機繊維における各元素の含有量(質量%)と、に基づいて、生理食塩水溶解率(%)を算出する。すなわち、例えば、測定元素が、ケイ素(Si)、マグネシウム(Mg)、カルシウム(Ca)及びアルミニウム(Al)である場合には、次の式により、生理食塩水溶解率C(%)を算出する;C(%)=[ろ液量(L)×(a1+a2+a3+a4)×100]/[溶解前の無機繊維の質量(mg)×(b1+b2+b3+b4)/100]。この式において、a1、a2、a3及びa4は、それぞれ測定されたケイ素、マグネシウム、カルシウム及びアルミニウムの濃度(mg/L)であり、b1、b2、b3及びb4は、それぞれ溶解前の無機繊維におけるケイ素、マグネシウム、カルシウム及びアルミニウムの含有量(質量%)である。
The biosoluble inorganic fiber is, for example, an inorganic fiber having a physiological saline dissolution rate of 1% or more at 40 ° C.
The physiological saline dissolution rate is measured, for example, as follows. That is, first, 1 g of a sample prepared by crushing inorganic fibers to 200 mesh or less and 150 mL of physiological saline are put in an Erlenmeyer flask (volume 300 mL) and placed in an incubator at 40 ° C. Next, a horizontal vibration of 120 revolutions per minute is continuously applied to the Erlenmeyer flask for 50 hours. Thereafter, the concentration (mg / L) of each element (may be a main element) contained in the filtrate obtained by filtration is measured by an ICP emission analyzer. Then, based on the measured concentration of each element and the content (% by mass) of each element in the inorganic fiber before dissolution, the physiological saline dissolution rate (%) is calculated. That is, for example, when the measurement element is silicon (Si), magnesium (Mg), calcium (Ca) and aluminum (Al), the physiological saline dissolution rate C (%) is calculated by the following equation C (%) = [filtrate amount (L) × (a1 + a2 + a3 + a4) × 100] / [mass of inorganic fiber before dissolution (mg) × (b1 + b2 + b3 + b4) / 100]. In this formula, a1, a2, a3 and a4 are the measured concentrations of silicon, magnesium, calcium and aluminum (mg / L) respectively, and b1, b2, b3 and b4 are each in the inorganic fiber before dissolution Content (mass%) of silicon, magnesium, calcium and aluminum.
 生体溶解性繊維は例えば以下の組成を有する。
 SiOとZrOとAlとTiOの合計 50重量%~82重量%
 アルカリ金属酸化物とアルカリ土類金属酸化物との合計 18重量%~50重量%
The biosoluble fiber has, for example, the following composition.
A total of 50% by weight to 82% by weight of SiO 2 , ZrO 2 , Al 2 O 3 and TiO 2
Total of 18 wt% to 50 wt% of alkali metal oxide and alkaline earth metal oxide
 また、生体溶解性繊維は例えば以下の組成を有して構成されることも可能である。
 SiO 50~82重量%
 CaOとMgOとの合計 10~43重量%
The biosoluble fiber can also be configured, for example, with the following composition.
SiO 2 50 to 82% by weight
10 to 43% by weight of total of CaO and MgO
 また、本発明で用いる多孔体(発泡体等)は、無機成分の他、カップリング剤等の有機成分を含むことができる。 Moreover, the porous body (foam etc.) used by this invention can contain organic components, such as a coupling agent, besides an inorganic component.
 本発明で用いる多孔体は以下の方法で製造できる。本製造方法は、無機繊維質発泡体の製造を含み、発泡体の製法は、無機繊維分散液を作成する作成工程と、無機繊維分散液を発泡させる発泡工程と、発泡体を乾燥する脱水工程(分散媒の除去工程)と、結合剤を付与する結合剤付与工程とを含んで構成される。界面活性剤が残留していると結合剤の反応が悪くなる場合は、結合剤の付着を促すために、発泡体を所定温度で焼成を行う焼成工程を、結合剤付与工程の前に追加してもよい。尚、結合剤は、発泡用の分散液に事前に入れておき、発泡体作成後に熱処理してもよい。 The porous body used in the present invention can be produced by the following method. The production method includes the production of an inorganic fibrous foam, and the foam production method includes a production step of producing an inorganic fiber dispersion, a foaming step of foaming an inorganic fiber dispersion, and a dehydration step of drying the foam. (Dispersion medium removal step) and a binder application step for applying a binder. If the reaction of the binder becomes worse if the surfactant remains, in order to promote the adhesion of the binder, add a calcining step of calcining the foam at a predetermined temperature before the binder applying step. May be The binder may be previously added to the dispersion for foaming and heat treated after foam formation.
 前記作成工程の一態様は、無機繊維の表面をアルカリ性又は酸性の処理液に接触させることにより、負又は正に荷電させる荷電ステップと、荷電した無機繊維に界面活性剤を添加させて分散液を作成する界面活性剤添加ステップとを含む。無機繊維の表面を負に荷電させたときは、カチオン性界面活性剤を、又は、無機繊維の表面を正に荷電させたときは、アニオン性界面活性剤を添加することが好ましい。 In one embodiment of the preparation step, the surface of the inorganic fiber is brought into contact with an alkaline or acidic treatment liquid to charge the dispersion step by charging negatively or positively and adding a surfactant to the charged inorganic fiber. And a surfactant addition step to be created. When the surface of the inorganic fiber is negatively charged, it is preferable to add a cationic surfactant, or when the surface of the inorganic fiber is positively charged, an anionic surfactant is added.
 前記荷電ステップでは、アルカリ性又は酸性の処理液を用いてpH調整することにより、無機繊維の表面のゼータ電位を制御する。具体的には、無機繊維の表面のゼータ電位をマイナス又はプラスとする。 In the charging step, the zeta potential of the surface of the inorganic fiber is controlled by pH adjustment using an alkaline or acidic treatment liquid. Specifically, the zeta potential of the surface of the inorganic fiber is made negative or positive.
 界面活性剤添加ステップでは、好ましくは、前記荷電した無機繊維に対し、逆符号の親水基を有する界面活性剤を添加し、界面活性剤の親水基側を無機繊維の表面に吸着させて疎水基側を無機繊維の表面と反対側に配置させることで無機繊維(最外面)を疎水化する。このように界面活性剤を無機繊維の表面に吸着させて無機繊維表面を疎水化した状態において、後述の発泡工程によって空気を導入して発泡させると、無機繊維表面の疎水基側に泡の形成が助長されて良好に発泡した発泡体を得ることができる。換言すれば、無機繊維表面のゼータ電位を制御することで、無機繊維に界面活性剤を相互作用させて繊維を疎水化させ、無機繊維の周りに泡を係止(付着)し易くして発泡させた発泡体(スポンジ構造)を形成する。 In the surfactant addition step, preferably, a surfactant having a hydrophilic group of the opposite sign is added to the charged inorganic fiber, and the hydrophilic group side of the surfactant is adsorbed on the surface of the inorganic fiber to form a hydrophobic group. By arranging the side opposite to the surface of the inorganic fiber, the inorganic fiber (the outermost surface) is hydrophobized. Thus, in the state where the surfactant is adsorbed on the surface of the inorganic fiber and the surface of the inorganic fiber is hydrophobized, air is introduced and foamed by the below-mentioned foaming step, and the foam is formed on the hydrophobic group side of the inorganic fiber surface. Can be promoted to obtain a well-foamed foam. In other words, by controlling the zeta potential of the surface of the inorganic fiber, the surfactant is made to interact with the inorganic fiber to make the fiber hydrophobic, and the bubbles are easily locked (adhered) around the inorganic fiber, which results in foaming. Form a foam (sponge structure).
 なお、前記無機繊維にはセラミック繊維、生体溶解性繊維(アルカリアースシリケート繊維、ロックウール等)、ガラス繊維等を用いることができる。また、前記処理液には、水に溶解してpHを変化させることができるものであればよく、無機化合物の酸又は塩基、有機化合物の酸又は塩基を用いることができる。無機繊維の表面のゼータ電位は、0でない値を示すこと、例えば-5mV~-70mV、-7mV~-60mV、-10mV~-45mV、+5mV~+65mV、+7mV~+60mV又は、+10mV~+45mVとする。繊維の種類により、所定のゼータ電位にするためのpHは異なるため、pHを一義的に特定することはできないが、例えば、ゼータ電位が0となるpHが7である繊維を用いる場合(等電点pHが7)、pH7より高いpHで負に荷電し、pH7より低いpHで正に荷電させることができる。また、例えば、ゼータ電位が0となるpHが2である繊維を用いる場合(等電点pHが2)、pH2より高いpHで負に荷電し、pH2より低いpHで正に荷電させることができる。尚、ゼータ電位は、所定のpHに調整した水系の分散媒中に繊維を分散させ、繊維の汎用ゼータ電位計(例えばModelFPA、AFG Analytik社製)を用いて測定することで得られる。 As the inorganic fibers, ceramic fibers, bio-soluble fibers (alkali earth silicate fibers, rock wool, etc.), glass fibers, etc. can be used. The treatment liquid may be any solution that can be dissolved in water to change the pH, and an acid or a base of an inorganic compound or an acid or a base of an organic compound can be used. The zeta potential of the surface of the inorganic fiber is not zero, for example, −5 mV to −70 mV, −7 mV to −60 mV, −10 mV to −45 mV, +5 mV to +65 mV, +7 mV to +60 mV, or +10 mV to +45 mV. Since the pH for achieving a predetermined zeta potential differs depending on the type of fiber, the pH can not be uniquely determined. For example, when using a fiber having a pH of 7 at which the zeta potential is 0 (isoelectricity The point pH is 7), which can be negatively charged at pH above pH 7 and positively charged at pH below pH 7. Also, for example, when using a fiber having a pH of 2 at which the zeta potential is 0 (isoelectric point pH is 2), it can be negatively charged at pH higher than pH 2 and positively charged at pH lower than pH 2 . The zeta potential is obtained by dispersing the fiber in an aqueous dispersion medium adjusted to a predetermined pH and measuring the fiber using a general-purpose zeta potentiometer (for example, Model FPA, manufactured by AFG Analytik).
 また、前記作成工程における荷電ステップと界面活性剤添加ステップとは経時的又は同時に実施し得る。荷電ステップと界面活性剤添加ステップとを同時に実施する場合、処理液、無機繊維及び界面活性剤を一緒に混ぜることができる。一方、荷電ステップと界面活性剤添加ステップとを経時的に実施する場合、無機繊維を、予め処理液で開繊、分散して荷電し、その後、界面活性剤と混ぜることができる。また、前記作成工程の他の態様としては、界面活性剤を用いることなく、両親媒性物質、疎水性の官能基を有するシランカップリング剤、疎水性の官能基を有するチタンカップリング剤等による表面処理によって少なくとも表面を疎水化した無機繊維を分散液(分散媒)に入れて作成することも可能である。尚、この工程のカップリング剤は発泡体を形成するために疎水化の状態にするためのものである。後の結合剤付与工程で用いるカップリング剤は発泡体の形態が水に濡れることにより崩壊することを防止するためのものである。 Also, the charging step and the surfactant addition step in the preparation step may be performed sequentially or simultaneously. If the charging step and the surfactant addition step are performed simultaneously, the processing solution, inorganic fibers and surfactant can be mixed together. On the other hand, when the charging step and the surfactant addition step are performed over time, the inorganic fibers can be previously opened, dispersed and charged with the treatment liquid, and then mixed with the surfactant. In another embodiment of the preparation step, an amphiphilic substance, a silane coupling agent having a hydrophobic functional group, a titanium coupling agent having a hydrophobic functional group or the like may be used without using a surfactant. It is also possible to make the dispersion liquid (dispersion medium) and prepare the inorganic fiber which hydrophobized at least the surface by surface treatment. The coupling agent in this step is to render it hydrophobic to form a foam. The coupling agent used in the subsequent binder application step is for preventing the foam form from collapsing when it gets wet with water.
 分散液における界面活性剤の量は無機繊維より適宜調整できるが、例えば、ガラス繊維100重量部に対し、界面活性剤を0.01~1.0重量部としてよい。前記界面活性剤は、好ましくは0.1~0.8重量部、より好ましくは0.2~0.7重量部とすることが可能である。尚、界面活性剤の添加量は、少なすぎると無機繊維の表面を十分に疎水化できず発泡性が低下する恐れがあり、一方で界面活性剤の量が多すぎると界面活性剤同士が付着し無機繊維の表面を十分に疎水化できない恐れがある点に鑑みて調整され得る。 The amount of surfactant in the dispersion can be adjusted more appropriately than the inorganic fiber, but for example, the surfactant may be 0.01 to 1.0 part by weight with respect to 100 parts by weight of glass fiber. The surfactant may be preferably 0.1 to 0.8 parts by weight, more preferably 0.2 to 0.7 parts by weight. If the amount of surfactant added is too small, the surface of the inorganic fibers may not be sufficiently hydrophobized and the foamability may be reduced. If the amount of surfactant is too large, the surfactants may adhere to each other. It can be adjusted in view of the possibility that the surface of the inorganic fiber may not be sufficiently hydrophobized.
 また、分散液は、有機結合剤(樹脂エマルジョン、ゴム(エラストマー)成分(アラビアゴム等)又はマグネシウム酸化物若しくは水酸化物を含まないで構成され得る。 The dispersion may also be composed free of organic binders (resin emulsions, rubber (elastomer) components (such as gum arabic) or magnesium oxides or hydroxides.
 前記発泡工程では、例えば、処理液と無機繊維と界面活性剤とが混合されてなる無機繊維分散液に気泡供給装置から空気(気泡)を供給して発泡させる。なお、気泡供給装置を用いることなく、攪拌によって無機繊維分散液に空気(気泡)を供給して発泡させてもよい。かかる気泡供給装置によって、気泡径又は気泡量を調整することにより、セル径や嵩密度を調整できる。 In the foaming step, for example, air (bubbles) is supplied from an air bubble supply device to the inorganic fiber dispersion liquid obtained by mixing the treatment liquid, the inorganic fibers and the surfactant, and the air is bubbled. In addition, air (bubbles) may be supplied to the inorganic fiber dispersion liquid by stirring without using a bubble supply device to cause foaming. The cell diameter and the bulk density can be adjusted by adjusting the bubble diameter or the bubble amount by the bubble supply device.
 前記脱水工程では、発泡体を所定時間(例えば4時間)、常温又は常温外の所定温度下で分散液に含まれていた分散媒を乾燥(自然乾燥を含む)することによって脱水する。 In the dewatering step, the foam is dewatered by drying (including natural drying) the dispersion medium contained in the dispersion for a predetermined time (for example, 4 hours) at a normal temperature or a predetermined temperature outside the normal temperature.
 前記焼成工程では、発泡体を高温度(例えば450℃)で焼成し、界面活性剤を除去する。なお、焼成工程は、前記脱水工程と同時に実施することが可能である。 In the firing step, the foam is fired at a high temperature (eg, 450 ° C.) to remove the surfactant. In addition, it is possible to implement a baking process simultaneously with the said dehydration process.
 前記結合剤付与工程に用いる結合剤として、繊維同士を結合する結合剤を用いることができ、例えば、カップリング剤、無機結合剤等である。カップリング剤を用いるとき、発泡体と、カップリング剤と水蒸気を反応させて付与することが好ましい。具体的には、カップリング剤を加熱して発生した蒸気を発泡体に付着させて、水蒸気と反応させる。水蒸気で処理することにより、カップリング剤が加水分解、脱水縮合されて、発泡体に付着する。例えば、閉鎖容器(外から容器内に気体は混入しないが、内部の加熱による圧力の上昇が可能な程度の密閉容器)内で発泡体とカップリング剤蒸気を接触させる。接触後、閉鎖容器に水を入れて水蒸気を発生させてカップリング剤と反応させる。尚、カップリング剤を多く付与させるときは、前記の処理に代えて又は前記の処理に加えて、発泡体にカップリング剤を直接含浸させて加熱してもよい。その後水蒸気と接触させる。 As a binder used at the said binder provision process, the binder which couple | bonds fibers can be used, for example, a coupling agent, an inorganic binder, etc. When a coupling agent is used, it is preferable to react the foam, the coupling agent, and the water vapor to be applied. Specifically, the coupling agent is heated to cause the generated vapor to adhere to the foam and react with the water vapor. By treating with steam, the coupling agent is hydrolyzed, dehydrated and condensed to adhere to the foam. For example, the foam and the coupling agent vapor are brought into contact in a closed container (a closed container which does not mix gas into the container from the outside but the pressure can be increased by internal heating). After contact, water is placed in a closed vessel to generate water vapor and react with the coupling agent. When a large amount of coupling agent is to be applied, the foam may be directly impregnated with the coupling agent and heated instead of or in addition to the above-mentioned treatment. It is then contacted with steam.
 無機結合剤の例として、SiO系(SiO粒子、水ガラス(ケイ酸ナトリウム)、Al系(Al粒子、ポリ塩化アルミニウム等の塩基性酸アルミニウム等)、リン酸塩、粘土鉱物(合成、天然)等が挙げられる。
 カップリング剤の例として、シランカップリング剤、チタンカップリング剤等が挙げられる。シランカップリング剤としてメチルトリエトキシシラン等が挙げられる。
SiO 2 series (SiO 2 particles, water glass (sodium silicate), Al 2 O 3 series (Al 2 O 3 particles, basic acid aluminum such as polyaluminum chloride, etc.), phosphate as an inorganic binder And clay minerals (synthetic and natural).
Examples of coupling agents include silane coupling agents, titanium coupling agents and the like. As a silane coupling agent, methyl triethoxysilane etc. are mentioned.
 結合剤の量は無機繊維により適宜調整でき限定されないが、例えば、1~10重量%程度である。 The amount of the binder is not particularly limited and may be limited depending on the inorganic fiber, and is about 1 to 10% by weight, for example.
 多孔体は、無機繊維、界面活性剤及び結合剤、又は無機繊維及び結合剤から本質的になってもよく、これらのみからなってもよい。ここで本質的になるとは95重量%以上、98重量%以上又は99重量%以上がこれらからなることをいう。尚、本発明の多孔体は、エアロゲル又はエアロゲルと無機繊維の複合材料を除くことができる。 The porous body may consist essentially of, or consist of, inorganic fibers, surfactants and binders, or inorganic fibers and binders. Here, "essentially" means that 95% by weight or more, 98% by weight or more or 99% by weight or more consists of these. In addition, the porous material of this invention can remove the composite material of an airgel or an airgel and an inorganic fiber.
 好ましくは、多孔体は、耐火性フィルムで包装して使用する。耐火性フィルムとして、金属箔、セラミックス繊維やガラス繊維のクロスや不織布等が挙げられる。必要に応して、本発明の断熱吸音材はピンで留めて設置する。 Preferably, the porous body is used by wrapping it in a fire resistant film. Examples of the fire resistant film include metal foils, cloths of ceramic fibers and glass fibers, and non-woven fabrics. If necessary, the adiabatic sound absorbing material of the present invention is pinned and installed.
 以下、具体的な実施例を示すが、本発明はこれら実施例に限定されるものではない。 Specific examples will be shown below, but the present invention is not limited to these examples.
実施例1~4
 平均繊維径0.22μmのマイクロガラス繊維(融点400℃以上)を、pH10のアンモニア水に濃度0.5重量%となるように分散させて繊維表面のゼータ電位を-55mVに調整して処理した。次に、カチオン性界面活性剤(ラウリルトリメチルアンモニウムクロリド(商品名;コータミン24P、花王株式会社製))を、繊維100重量部に対して、界面活性剤の固形物換算で0.5重量部添加して、撹拌混合した。このときノズルを用いて空気を取り込み発泡させた。ノズルから出る泡の量を変えることにより発泡体の嵩密度を変えた。得られた湿潤発泡体を乾燥させ、電気炉を用いて450℃にて1時間処理し、発泡体に付着している界面活性剤を除去した。次に、カップリング剤を付与した。カップリング剤はメチルトリエトキシシラン(商品名;KBE-13、信越化学工業製)を用い、密閉容器内にシランカップリング剤を入れ、160℃程度に加熱し、シランカップリング剤の蒸気を発生させ、発泡体を4時間処理した。次に、カップリング剤の反応を進行させるため、閉鎖容器内へ水を8g添加し、水蒸気を発生させ、発泡体を2時間処理した。さらに閉鎖容器内にて、発泡体重量1gあたり10g程度のカップリング剤を直接塗布し、105℃にて4時間加熱した。その後、上記と同様にカップリング剤の半分の質量に相当する水を容器にいれ、105℃にて2時間処理した。発泡体はセル構造を有していた。平均セル径は約170~約240μmであった。
Examples 1 to 4
A micro glass fiber with an average fiber diameter of 0.22 μm (melting point of 400 ° C. or higher) was dispersed in ammonia water of pH 10 so as to have a concentration of 0.5% by weight to adjust the zeta potential of the fiber surface to -55 mV. . Next, 0.5 parts by weight of a cationic surfactant (lauryl trimethyl ammonium chloride (trade name; Cortamine 24P, manufactured by Kao Corporation)) is added to 100 parts by weight of the fiber in terms of solids of the surfactant. The mixture was stirred and mixed. At this time, air was taken in and bubbled using a nozzle. The bulk density of the foam was changed by changing the amount of foam leaving the nozzle. The obtained wet foam was dried and treated at 450 ° C. for 1 hour using an electric furnace to remove the surfactant attached to the foam. Next, a coupling agent was applied. The coupling agent is methyltriethoxysilane (trade name: KBE-13, manufactured by Shin-Etsu Chemical Co., Ltd.), and the silane coupling agent is placed in a closed container and heated to about 160 ° C. to generate a vapor of the silane coupling agent And the foam was treated for 4 hours. Next, in order to advance the reaction of the coupling agent, 8 g of water was added to the closed vessel, steam was generated, and the foam was treated for 2 hours. Further, in a closed container, about 10 g of a coupling agent was directly applied per 1 g of foam weight, and heated at 105 ° C. for 4 hours. Thereafter, in the same manner as above, water equivalent to half the weight of the coupling agent was placed in a container and treated at 105 ° C. for 2 hours. The foam had a cell structure. The average cell diameter was about 170 to about 240 μm.
 無機繊維と発泡体の特性の測定方法は以下の通りである。
・平均繊維径
 ランダムに選択した繊維400本について繊維径を測定し、平均値を求めた。
The method of measuring the properties of the inorganic fiber and the foam is as follows.
Average fiber diameter The fiber diameter was measured for 400 fibers randomly selected, and the average value was determined.
・嵩密度
 発泡体のサンプルを圧縮しない状態で嵩密度を測定した。寸法計測装置(例えばノギス)を用いて、サンプルの縦、横、高さの寸法を計測した。次に、サンプルの重量を計測し、以下の式により嵩密度を算出した。結果を表1に示す。
 嵩密度=重量÷縦寸法÷横寸法÷高さ
Bulk density The bulk density was measured without compressing the foam sample. The dimensions of the sample in the longitudinal, lateral, and height directions were measured using a dimension measurement device (for example, a caliper). Next, the weight of the sample was measured, and the bulk density was calculated by the following equation. The results are shown in Table 1.
Bulk density = weight ÷ vertical dimension ÷ horizontal dimension ÷ height
・平均セル径(平均円相当径)
 発泡体からサンプルを切断し、X線マイクロCTスキャナ(BRUKER社製SkyScan1272)を用いて、解像度5μm/pixelにて線透過像を撮影した。得られたX線透過像から、付属のソフト(NRrecon及びDATAVIEWER)を用いて3次元像を合成し、サンプル内部の断面像を作成した。得られた断面像の全細孔の面積を計測し同一面積の円相当径の平均を算出した。
・ Average cell diameter (average equivalent circle diameter)
The sample was cut from the foam, and a ray transmission image was taken at a resolution of 5 μm / pixel using an X-ray micro CT scanner (SkyScan 1272 manufactured by BRUKER). From the obtained X-ray transmission image, a three-dimensional image was synthesized using attached software (NRrecon and DATAVIEWER) to create a cross-sectional image of the inside of the sample. The area of all pores in the obtained cross-sectional image was measured to calculate the average of the equivalent circle diameters of the same area.
・圧縮応力
 以下の式に示すように、サンプル圧縮時の荷重値を、サンプル寸法計測により求めた面積(縦寸法と横寸法)で除算して算出した。圧縮率は、圧縮前のサンプルの厚さを100%としたとき70%の厚さとなる30%とした。圧縮時の荷重は、材料試験機(オートグラフ、島津製作所)を用いて圧縮率30%まで圧縮(2mm/min)した際の荷重値とした。結果を表1に示す。
 圧縮応力N/m=荷重(N)÷サンプル面積(m
-Compressive stress As shown in the following formula, it calculated by dividing the load value at the time of sample compression by the area (longitudinal dimension and horizontal dimension) obtained by sample dimension measurement. The compression rate was 30%, which is 70% thickness when the thickness of the sample before compression is 100%. The load at the time of compression was taken as the load value at the time of compression (2 mm / min) to a compression ratio of 30% using a material tester (Autograph, Shimadzu Corporation). The results are shown in Table 1.
Compressive stress N / m 2 = Load (N) / Sample area (m 2 )
・復元率
 圧縮応力の測定と同様に、サンプルを圧縮率30%の厚さまで圧縮した後解放した。圧縮解放後のサンプルの厚さを計測し、以下の式から復元率を算出した。結果を表1に示す。
 復元率(%)=圧縮解放後の厚さ÷圧縮前の厚さ×100
• Recovery rate Similar to the measurement of compressive stress, the sample was released after being compressed to a thickness of 30%. The thickness of the sample after compression release was measured, and the recovery rate was calculated from the following equation. The results are shown in Table 1.
Recovery rate (%) = thickness after compression release / thickness before compression x 100
比較例1
 発泡体の代わりに、航空機用に市販されているガラス繊維マット(製品名:Microlite(登録商標) AA Premium NR Blankets、JohnsManville社(US)製)を用いて、実施例と同様に評価した。結果を表1に示す。
Comparative Example 1
In place of the foam, a glass fiber mat commercially available for aircraft (product name: Microlite (registered trademark) AA Premium NR Blankets, manufactured by Johns Manville (US)) was used and evaluated in the same manner as in the example. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
実施例5
 平均繊維径0.4μmの繊維を用いた他は、実施例1と同様にして、発泡体(嵩密度9.0kg/m)を作製した。
 この発泡体の厚さ10.3mmのサンプルについて、JIS A 1405-2(垂直入射吸音率、背面空気層無し)に準じて吸音率測定システム(ブリュエル・ケアー社測定システム)を用いて吸音率を測定した。比較として、比較例1と同様のJohnsManville社のガラスマット(嵩密度9.8kg/m)の厚さ10.6mmのサンプルについて、同様に吸音率を測定した。実施例5のサンプルは、1/3オクターブ周波数3000~5000Hzにおいて80%以上の吸音率が示され、比較例1のサンプルより3~19%高かった。
Example 5
A foam (bulk density: 9.0 kg / m 3 ) was produced in the same manner as in Example 1 except that fibers with an average fiber diameter of 0.4 μm were used.
With respect to a sample of 10.3 mm thickness of this foam, the sound absorption coefficient was measured using a sound absorption coefficient measurement system (a measurement system of Brüel & Kj ー r company) according to JIS A 1405-2 (perpendicular incident sound absorption coefficient, without back air layer) It was measured. As a comparison, the sound absorption coefficient was similarly measured about the sample of thickness 10.6 mm of the glass mat (bulk density 9.8 kg / m < 3 >) of JohnsManville company similar to the comparative example 1. FIG. The sample of Example 5 exhibited a sound absorption coefficient of 80% or more at a 1/3 octave frequency of 3000 to 5000 Hz, and was 3 to 19% higher than the sample of Comparative Example 1.
 本発明の輸送機器用断熱吸音材は、航空機、車両、船舶等の輸送機器に使用でき、特に胴体の外板と内板の間に設置して使用できる。 The adiabatic sound absorbing material for transportation equipment of the present invention can be used for transportation equipment such as an aircraft, a vehicle, a ship, etc., and in particular, can be installed and used between the outer plate and the inner plate of the fuselage.
 上記に本発明の実施形態及び/又は実施例を幾つか詳細に説明したが、当業者は、本発明の新規な教示及び効果から実質的に離れることなく、これら例示である実施形態及び/又は実施例に多くの変更を加えることが容易である。従って、これらの多くの変更は本発明の範囲に含まれる。
 この明細書に記載の文献、及び本願のパリ条約による優先権の基礎となる出願の内容を全て援用する。
While several embodiments and / or examples of the present invention have been described above in detail, those skilled in the art will appreciate that the exemplary embodiments and / or examples are substantially without departing from the novel teachings and advantages of the present invention. It is easy to make many modifications to the embodiment. Accordingly, many of these variations are included within the scope of the present invention.
The documents described in this specification and the contents of the application on which the Paris Convention priority of the present application is based are all incorporated.

Claims (5)

  1.  無機繊維からなる多孔体を有する輸送機器用断熱吸音材。 Adiabatic sound absorbing material for transportation equipment having a porous body made of inorganic fiber.
  2.  前記多孔体が、気孔であるセルと、前記セルを囲む無機繊維からなるセル壁とを含み、前記セルと前記セル壁が多数連なっている請求項1記載の輸送機器用断熱吸音材。 The adiabatic sound absorbing material for transportation equipment according to claim 1, wherein the porous body includes a cell which is a pore and a cell wall made of inorganic fiber surrounding the cell, and the cell and the cell wall are connected in a large number.
  3.  前記多孔体の嵩密度が、2kg/m~18kg/mである請求項1又は2記載の輸送機器用断熱吸音材。 The heat insulating and sound absorbing material for transportation equipment according to claim 1 or 2, wherein a bulk density of the porous body is 2 kg / m 3 to 18 kg / m 3 .
  4.  前記多孔体が耐火性フィルムに包装されている請求項1~3のいずれか記載の輸送機器用断熱吸音材。 The heat insulating and sound absorbing material for transportation equipment according to any one of claims 1 to 3, wherein the porous body is packaged in a fire resistant film.
  5.  輸送機器の胴体の外板と内板の間に設置されるための請求項1~4のいずれか記載の輸送機器用断熱吸音材。 The heat insulating and sound absorbing material for transportation equipment according to any one of claims 1 to 4, which is installed between an outer plate and an inner plate of a fuselage of a transportation equipment.
PCT/JP2018/030053 2017-08-28 2018-08-10 Heat-insulating sound-absorbing material for transportation equipment WO2019044460A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-163699 2017-08-28
JP2017163699A JP6688265B2 (en) 2017-08-28 2017-08-28 Heat-insulating sound absorbing material for transportation equipment

Publications (1)

Publication Number Publication Date
WO2019044460A1 true WO2019044460A1 (en) 2019-03-07

Family

ID=65525574

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/030053 WO2019044460A1 (en) 2017-08-28 2018-08-10 Heat-insulating sound-absorbing material for transportation equipment

Country Status (2)

Country Link
JP (1) JP6688265B2 (en)
WO (1) WO2019044460A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04305048A (en) * 1991-03-30 1992-10-28 Nippon Concrete Ind Co Ltd Inorganic soundproof material and production thereof
JPH11324707A (en) * 1998-05-08 1999-11-26 Nippon Packing Kogyo Kk Sound insulating cover material
JP2004210558A (en) * 2002-12-27 2004-07-29 Minato Sangyo Kk Inorganic fiber mat and production method therefor
WO2009081760A1 (en) * 2007-12-25 2009-07-02 Fuji Corporation Heat-insulating sound-absorbing material for vehicle
JP2012521924A (en) * 2009-03-30 2012-09-20 エアバス オペレーションズ ゲーエムベーハー Aircraft having an insulation system for thermal insulation and sound insulation

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6510565B2 (en) * 2015-01-28 2019-05-08 ニチアス株式会社 Foam

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04305048A (en) * 1991-03-30 1992-10-28 Nippon Concrete Ind Co Ltd Inorganic soundproof material and production thereof
JPH11324707A (en) * 1998-05-08 1999-11-26 Nippon Packing Kogyo Kk Sound insulating cover material
JP2004210558A (en) * 2002-12-27 2004-07-29 Minato Sangyo Kk Inorganic fiber mat and production method therefor
WO2009081760A1 (en) * 2007-12-25 2009-07-02 Fuji Corporation Heat-insulating sound-absorbing material for vehicle
JP2012521924A (en) * 2009-03-30 2012-09-20 エアバス オペレーションズ ゲーエムベーハー Aircraft having an insulation system for thermal insulation and sound insulation

Also Published As

Publication number Publication date
JP2019038478A (en) 2019-03-14
JP6688265B2 (en) 2020-04-28

Similar Documents

Publication Publication Date Title
JP6866523B2 (en) Foam
JP6510565B2 (en) Foam
CN102271781B (en) High strength biosoluble inorganic fiber insulation mat
US6080475A (en) Composite material containing aerogel, process for manufacturing the same and the use thereof
JP2015528071A (en) Flexible insulating structure and method for making and using the same
RU2169131C2 (en) Combined aerogel-containing material and method of preparing thereof
TWI247731B (en) Gypsum compositions and related methods
US20140057083A1 (en) Heat insulating composition, heat insulator using same, and method for manufacturing heat insulator
WO2021181932A1 (en) Thermal insulation material and method for producing same
DK155186B (en) PRILLS OF A STRONG, INORGANIC SUBSTANCE, PROCEDURE FOR THE PREPARATION OF SUCH PRILLES, AND THEREFORE, MADE OF RIG, INORGANIC FOOD BODIES
JP2003055888A (en) Inorganic sheet material, inorganic composite material, and inorganic structural material
US20220018485A1 (en) Composite type heat insulator and method for producing the same
Yang et al. Fibrous porous mullite ceramics modified by mullite whiskers for thermal insulation and sound absorption
WO2019044460A1 (en) Heat-insulating sound-absorbing material for transportation equipment
JP2019039554A (en) Heat insulation material
WO2019044028A1 (en) Heat insulation material
KR101672490B1 (en) Inorganic flame retardant fireproof complex for fire control and method of manufacturing the same
CN113564917A (en) Preparation method and application of hydrophobic aerogel heat insulation material
JP2020045284A (en) Sealing material
JP2020186148A (en) Coated inorganic fiber porous body
Medri et al. Alkali inorganic binders for the production of fibre based foams
JP2019038966A (en) Sealing material
CN114206801B (en) Porous body
WO2023230251A1 (en) Aerogel composition for thermal insulation
Bogdanov et al. The use of nanosized additives in the modification of brick loam

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18851960

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18851960

Country of ref document: EP

Kind code of ref document: A1