WO2019044200A1 - Method for producing door for air conditioner and method for producing air conditioner for vehicle - Google Patents

Method for producing door for air conditioner and method for producing air conditioner for vehicle Download PDF

Info

Publication number
WO2019044200A1
WO2019044200A1 PCT/JP2018/026266 JP2018026266W WO2019044200A1 WO 2019044200 A1 WO2019044200 A1 WO 2019044200A1 JP 2018026266 W JP2018026266 W JP 2018026266W WO 2019044200 A1 WO2019044200 A1 WO 2019044200A1
Authority
WO
WIPO (PCT)
Prior art keywords
door
mold
rod
air
inner mold
Prior art date
Application number
PCT/JP2018/026266
Other languages
French (fr)
Japanese (ja)
Inventor
洋至 浜崎
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2019044200A1 publication Critical patent/WO2019044200A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/26Moulds
    • B29C45/37Mould cavity walls, i.e. the inner surface forming the mould cavity, e.g. linings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/02Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant
    • B60H1/04Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant from cooling liquid of the plant
    • B60H1/08Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant from cooling liquid of the plant from other radiator than main radiator
    • B60H1/10Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant from cooling liquid of the plant from other radiator than main radiator the other radiator being situated in a duct capable of being connected to atmosphere outside vehicle
    • B60H1/12Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant from cooling liquid of the plant from other radiator than main radiator the other radiator being situated in a duct capable of being connected to atmosphere outside vehicle using an air blower
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/08Air-flow control members, e.g. louvres, grilles, flaps or guide plates
    • F24F13/10Air-flow control members, e.g. louvres, grilles, flaps or guide plates movable, e.g. dampers

Definitions

  • the disclosure in this specification relates to a method of manufacturing a door for an air conditioner and a method of manufacturing an air conditioner for a vehicle.
  • Patent Document 1 discloses a door drive mechanism of a vehicle air conditioner having a cylindrical rotation shaft portion.
  • a method of forming a rod-like slide mold outside the rotary shaft in order to mold a hollow portion inside the cylindrical rotary shaft In the case of injection molding a cylindrical rotary shaft, there is known a method of forming a rod-like slide mold outside the rotary shaft in order to mold a hollow portion inside the cylindrical rotary shaft.
  • the rod-like mold is deformed by being pushed by the resin member injected at the time of injection molding, and the coaxiality of the cylindrical rotation shaft may be deteriorated. That is, the injection molded product may be deformed, for example, when the cylindrical rotary shaft portion is formed in a warped shape.
  • the rod-like rotary shaft inserted into the cylindrical rotary shaft and the cylindrical rotary shaft rub against each other, etc. There was a case that occurred.
  • One object disclosed is to provide a method of manufacturing an air conditioner door in which the coaxiality of the tubular portion is improved.
  • Another object disclosed is to provide a method of manufacturing a vehicular air-conditioning system in which the occurrence of malfunction due to rubbing of two rotating shafts or the like is suppressed.
  • the method of manufacturing a door for an air conditioner disclosed herein includes a rod-like inner mold forming the inner side of the cylindrical part, and a convex part projecting toward the inner mold so that the outer side of the cylindrical part is formed.
  • a mold clamping process in which molds are combined by arranging an outer mold to be formed at a predetermined position, and injecting the resin member into a cavity formed between the clamped inner mold and the outer mold And a process.
  • the inner mold and the convex part of the outer mold are placed in contact with each other.
  • the inner mold receives an injection pressure that is pushed by the injection of the resin member, and receives a pressing force that pushes back the inner mold from the convex portion so as to resist the injection pressure.
  • the inner mold receives a pressing force that pushes back the inner mold from the convex portion so as to resist the injection pressure. That is, deformation such as bending of the inner mold is suppressed by the pressing force of the convex portion being applied in the direction to resist the injection pressure of the resin. For this reason, in injection molding, it can suppress that the door for air conditioners is shape
  • the vehicle air conditioner disclosed herein includes an air conditioning case through which the air supplied into the vehicle compartment passes, a partition plate that divides the inside of the air conditioning case into a first air passage and a second air passage, and a first air passage. , A second door for opening and closing the second air passage, a first rotary shaft portion for rotating the first door, and a through hole provided on the side surface for rotating the second door. And a second rotation shaft portion.
  • the second door is an air conditioner door manufactured by the above manufacturing method.
  • the method of manufacturing the vehicle air conditioner includes the step of axially arranging the first door and the second door and attaching the first door and the second door to the air conditioning case in a state where the first rotating shaft portion is inserted into the second rotating shaft portion.
  • the first rotation shaft portion is inserted into the second rotation shaft portion having high coaxiality. That is, it can suppress that the 1st rotating shaft part which rotates the inside of the 2nd rotating shaft part rubs inside the 2nd rotating shaft part. For this reason, generation
  • FIG. 1 It is sectional drawing seen from the top which shows the structure of the vehicle air conditioner of 1st Embodiment. It is the side view seen from the side which shows the structure of a vehicle air conditioner. It is a front view which shows a 2nd door. It is a bottom view showing the 2nd door. It is a block diagram which shows the structure in the attachment state of a 1st door and a 2nd door. It is a fragmentary sectional view showing the composition in the attachment state of the 1st door and the 2nd door. It is a schematic sectional view according to process of a mold for explaining a molding cycle. It is process-based schematic sectional drawing of the metal mold
  • FIG. 9 is a schematic cross-sectional view showing a cross section taken along line IX-IX of FIG. 8; It is process-based schematic sectional drawing of the metal mold
  • a vehicle air conditioner 1 includes a fan unit 10 and an air conditioning unit 20 that adjusts the temperature of the air blown from the fan unit 10.
  • the vehicle air conditioner 1 adjusts the temperature of the air blown by the blower unit 10 by the air conditioning unit 20, and supplies the air into the passenger compartment.
  • Blower unit 10 is disposed on the left side of the vehicle near the front passenger seat side from the central portion of the lower part of the dashboard in the vehicle compartment.
  • the air conditioning unit 20 is disposed at a substantially central portion in the left-right direction of the vehicle in the lower part of the dashboard in the vehicle compartment.
  • the blower unit 10 has a blower fan 11 which is a centrifugal multi-blade fan.
  • the blower fan 11 is, for example, a sirocco fan.
  • the blower fan 11 is disposed in the spiral scroll casing 12.
  • the blower fan 11 is rotationally driven by an electric motor.
  • the blowing air of the blowing fan 11 is sent along the spiral shape of the scroll casing 12 in the direction indicated by the arrow A1.
  • the suction port of the blower fan 11 is provided on the upper side of the vehicle.
  • the suction port is provided with two suction ports, an inside air suction port and an outside air suction port.
  • An inside / outside air switching door is provided between the blower fan 11 and the suction port. The inside / outside air switching door switches which one of the inside air intake and the outside air intake from which air is drawn.
  • the air conditioning unit 20 incorporates the evaporator 22 and the heater core 23 in the air conditioning case 21.
  • the air conditioning case 21 is a resin molded article having a certain degree of elasticity and excellent in strength.
  • a material of the air conditioning case 21 polypropylene or the like can be used.
  • the air conditioning case 21 is composed of a plurality of divided cases having divided surfaces in the vertical direction. The plurality of divided cases are integrally joined by fastening means such as a metal spring clip and a screw after housing devices such as the evaporator 22 and the heater core 23 to constitute the air conditioning case 21.
  • an air inlet 24 is disposed at the most forward side of the air conditioning case 21.
  • the air inlet 24 is an opening through which air blown from the fan unit 10 flows.
  • the air inlet 24 is connected to the air outlet of the scroll casing 12 of the fan unit 10. That is, the air inlet 24 is opened on the side of the air conditioning case 21 on the passenger seat side.
  • an evaporator 22 is disposed immediately after the air inlet 24.
  • the evaporator 22 is disposed to cross the inside of the air conditioning case 21 in a thin form in the longitudinal direction of the vehicle.
  • the evaporator 22 cools the air by absorbing the latent heat of evaporation of the refrigerant of the refrigeration cycle from the surrounding air.
  • the evaporator 22 is a so-called laminated type evaporator, in which a flat tube made by bonding two metal thin plates such as aluminum is laminated and intervened by interposing a corrugate fin. It is.
  • a heater core 23 is disposed on the downstream side of the air flow of the evaporator 22 so as to be inclined rearward of the vehicle.
  • the heater core 23 is a heat exchanger that heats the cold air that has passed through the evaporator 22.
  • the heater core 23 has engine cooling water, which is high-temperature hot water, flowing therein, and heats air using the hot water as a heat source.
  • the heater core 23 is obtained by integrally laminating a flat tube formed by joining a thin metal plate such as aluminum in a flat shape by welding or the like with a corrugated fin interposed therebetween in a stacked manner.
  • the air passage inside the air conditioning case 21 is provided to extend in the longitudinal direction of the vehicle.
  • An air passage inside the air conditioning case 21 is partitioned by a partition plate 27 in the left-right direction of the vehicle.
  • the air passage is divided into a first air passage 25 located on the vehicle left side of the partition plate 27 and a second air passage 26 located on the vehicle right side of the partition plate 27. That is, the first air passage 25 is a passenger side air passage.
  • the first air passage 25 is an air passage closer to the blower unit 10 than the second air passage 26.
  • the second air passage 26 is a driver's seat side air passage.
  • the second air passage 26 is an air passage farther from the blower unit 10 than the first air passage 25.
  • the partition plate 27 is continuously provided in the vehicle longitudinal direction from the downstream end of the evaporator 22 to the downstream wall surface of the air conditioning case 21.
  • the partition plate 27 divides the first air passage 25 and the second air passage 26.
  • the partition plate 27 has a cutout shape in order to avoid direct contact with the heater core 23 at the location where the heater core 23 is disposed.
  • the partition plate 27 is made of resin such as polypropylene.
  • the partition plate 27 may be formed integrally with the air conditioning case 21 instead of being provided as a separate part.
  • the heater core 23 is disposed to cross the first air passage 25 and the second air passage 26.
  • the inside of the heater core 23 is partitioned at the same position as the partition plate 27 by the flat surface of the flat tube or the fin surface of the corrugated fin. That is, air can not pass between the first air passage 25 and the second air passage 26 by passing through the inside of the heater core 23.
  • a first door 110 is provided between the evaporator 22 and the heater core 23.
  • the first door 110 is a flat door that rotates about an axis to adjust the opening degree.
  • the first door 110 is provided without gaps so as to cross the first air passage 25.
  • a second door 120 is provided between the evaporator 22 and the heater core 23.
  • the second door 120 is a flat door that rotates about an axis to adjust the opening degree.
  • the second door 120 is provided without a gap so as to cross the second air passage 26.
  • the first door 110 includes a first rotation shaft portion 111.
  • the second door 120 includes a second rotation shaft portion 121.
  • the first rotation shaft portion 111 and the second rotation shaft portion 121 are aligned on the same straight line.
  • the first rotation shaft portion 111 and the second rotation shaft portion 121 are coaxial rotation shafts.
  • the first door 110 and the second door 120 are coaxial doors whose rotation axes are aligned on the same straight line.
  • the first rotation shaft portion 111 is rotatably supported by an intermediate bearing portion 28 provided on the partition plate 27.
  • the intermediate bearing portion 28 is located between the first door 110 and the second door 120.
  • the first rotation shaft portion 111 and the second rotation shaft portion 121 are coupled to the actuator mechanism 320.
  • the actuator mechanism 320 has two drive sources, such as a servomotor, and drives each of the first rotation shaft portion 111 and the second rotation shaft portion 121 independently.
  • the power may be transmitted between the rotary shaft portions 111 and 121 and the actuator mechanism 320 via a link mechanism.
  • a first cold air bypass passage 29 in which the air flows while bypassing the heater core 23 is formed in the upper area of the heater core 23 in the first air passage 25 in the air conditioning case 21 .
  • a second cold air bypass passage 30 in which air flows by bypassing the heater core 23 is formed in the upper region of the heater core 23 in the second air passage 26 .
  • the air passing through the cold air bypass passages 29 and 30 is not heated by the heater core 23 and thus is in the state of cold air heat-exchanged with the evaporator 22.
  • a wall surface 33 facing the heater core 23 and extending in the vertical direction at a predetermined interval is formed.
  • the wall surface 33 is integrally formed with the air conditioning case 21.
  • the wall surface 33 forms, in the first air passage 25, a first hot air passage 34 directed upward from immediately after the heater core 23.
  • a second hot air passage 35 directed upward from immediately after the heater core 23 is formed by the wall surface 33.
  • a first cold / warm air mixing space 36 which merges with the first cold air bypass passage 29 in the upper part of the heater core 23 is formed.
  • a second cold / warm air mixing space 37 which merges with the second cold air bypass passage 30 in the upper part of the heater core 23 is formed.
  • the first door 110 and the second door 120 are rotatable in the vertical direction of the vehicle.
  • the first cold air bypass passage 29 is in the open state, and the air is not sent to the heater core 23.
  • the first door 110 is fully open, the first cold air bypass passage 29 is closed, and the wind is sent to the heater core 23.
  • the first door 110 is in the open state between the closed state and the fully open state, a part of the wind passes through the first cold air bypass passage 29 and the remaining wind is sent to the heater core 23.
  • the second door 120 changes and controls the ratio of the path through which the wind is sent according to the opening degree.
  • first door 110 and the second door 120 are temperature adjusting means for adjusting the temperature of the blowing air by adjusting the amount of air passing through the cold air bypass passages 29 and 30.
  • first door 110 and the second door 120 are air mix doors that adjust the mixing ratio of cold air and warm air.
  • a first defroster opening 38 is formed on the upper surface of the air conditioning case 21 corresponding to the first air passage 25.
  • the temperature-controlled air from the first cold / warm air mixing space 36 flows into the first defroster opening 38.
  • the conditioned air flowing into the first defroster opening 38 is blown out from the defroster outlet toward the window glass on the front of the vehicle through the defroster duct.
  • a second defroster opening 39 is formed on the upper surface of the air conditioning case 21 corresponding to the second air passage 26.
  • the temperature-controlled conditioned air from the second cold / warm air mixing space 37 flows into the second defroster opening 39.
  • the conditioned air flowing into the second defroster opening 39 is blown out from the defroster outlet toward the window glass on the front of the vehicle through the defroster duct.
  • a first defroster door 130 a is provided upstream of the first defroster opening 38 for opening and closing the first defroster opening 38.
  • the first defroster door 130a includes a cylindrical first rotary shaft portion 131a.
  • a second defroster door 130 b is provided upstream of the second defroster opening 39 for opening and closing the second defroster opening 39.
  • the second defroster door 130 b includes a cylindrical second rotary shaft portion 131 b.
  • the defroster doors 130a and 130b are flat doors that rotate about an axis to adjust the opening degree.
  • the rotating shaft portions 131a and 131b of the defroster doors 130a and 130b are arranged to be aligned on the same straight line in the left-right direction of the vehicle. In other words, the defroster doors 130a, 130b are coaxial doors.
  • left and right face opening portions 43 to 52 are provided in a portion on the vehicle rear side of the upper surface portion of the air conditioning case 21.
  • face openings 43, 44, 49, 50 are provided at the center side.
  • the left and right rear face openings 49, 50 are located closer to the center closer to the partition plate 27 than the center face openings 43, 44.
  • side face openings 45 to 48 are provided on both sides of the center.
  • auxiliary rear face openings 51 and 52 are provided behind the rear face openings 49 and 50.
  • the face openings 43 to 52 are openings that lead to a face duct that blows conditioned air to the upper body including the face of the occupant.
  • the air conditioning case 21 is provided with left and right foot openings 55, 56 at the rear side of the cold and warm air mixing spaces 36, 37.
  • the foot openings 55, 56 are openings connected to a foot duct that blows conditioned air to the feet of the occupant.
  • foot face switching doors 140a, 140b are provided upstream of the face openings 43 to 52 and the foot openings 55, 56.
  • the foot face switching doors 140a and 140b are doors that switch which of the flow paths flowing to the face openings 43 to 52 and the flow paths flowing to the foot openings 55 and 56 flow the conditioned air.
  • the foot face switching doors 140a and 140b are flat-shaped doors that rotate about an axis to adjust the opening degree.
  • the foot face switching doors 140a and 140b are respectively provided with rotary shaft portions 141a and 141b serving as axes for rotational driving.
  • the rotating shaft portion 141a is a cylindrical rotating shaft.
  • the rotating shaft portion 141 b is a cylindrical rotating shaft.
  • the cylindrical rotary shaft portion 141a is mounted on the vehicle air conditioner 1 in a state where the shaft is inserted into the cylindrical rotary shaft portion 141b.
  • the rotating shaft portion 141a and the rotating shaft portion 141b are arranged in line in the same straight line along the vehicle left-right direction. That is, the foot face switching doors 140a and 140b are coaxial doors.
  • the second door 120 includes a second rotation shaft portion 121, a second flat plate portion 122, and a seal portion 123.
  • the second rotation shaft portion 121 is cylindrical. That is, the inside of the second rotation shaft portion 121 is hollow.
  • the second rotary shaft portion 121 has an uneven shape formed on a cylindrical outer peripheral surface. In other words, the second rotation shaft portion 121 has a shape that varies in thickness depending on the portion.
  • the second rotation shaft portion 121 corresponds to a cylindrical portion.
  • the second flat plate portion 122 is a substantially rectangular plate-like member.
  • the second flat plate portion 122 is provided on the outer periphery of the second rotation shaft portion 121.
  • the second flat plate portion 122 is provided in a region from one end of the second rotation shaft portion 121 to a position beyond the center of the second rotation shaft portion 121 in the longitudinal direction.
  • the second rotation shaft portion 121 and the second flat plate portion 122 are an integral integral component.
  • the seal portion 123 is a thin plate member made of rubber.
  • the seal portion 123 is a fin-like packing that covers a gap generated between the second rotation shaft portion 121 and another member such as the air conditioning case 21.
  • the seal portion 123 maintains contact with the contact surface by being flexibly deformed.
  • the seal portion 123 is provided at a position opposite to the second flat plate portion 122 with the second rotation shaft portion 121 interposed therebetween.
  • the second rotation shaft portion 121 and the seal portion 123 are separate parts.
  • the second rotation shaft portion 121 is provided with a flange portion 124.
  • the flange portion 124 protrudes outward in the radial direction of the central axis of the second rotation shaft portion 121.
  • the flange portion 124 has a disk shape.
  • the flange portion 124 is provided in the second rotation shaft portion 121 so that the end surface of the second flat plate portion 122 and the end surface of the flange portion 124 are aligned on the same plane.
  • the second rotation shaft portion 121 is provided with a through hole 125 on the side surface.
  • the through hole 125 penetrates the inside and the outside of the second rotation shaft portion 121.
  • the through hole 125 is provided near the flange portion 124.
  • the through holes 125 are square openings.
  • the second door 120 is provided with two through holes 125.
  • the two through holes 125 are provided side by side in the circumferential direction of the central axis of the second rotation shaft portion 121. That is, the two through holes 125 are provided at the same distance from the flange portion 124.
  • the two through holes 125 are provided on the opposite side to the second flat plate portion 122 with the second rotation shaft portion 121 interposed therebetween.
  • the number of through holes 125 is not limited to two. That is, three or more through holes 125 may be provided. Alternatively, one through hole 125 extending in the circumferential direction may be provided. The plurality of through holes 125 may not be provided at positions aligned in the circumferential direction, but may be provided at positions displaced in the longitudinal direction of the second rotation shaft portion 121.
  • the first door 110 and the second door 120 are provided side by side in the axial direction with the partition plate 27 interposed therebetween.
  • the cylindrical first rotary shaft portion 111 is in a state of being inserted into the cylindrical second rotary shaft portion 121. That is, the 1st door 110 and the 2nd door 120 are coaxial doors which exist in the position where the central axis of rotation drive is equal.
  • the first door 110 includes a first rotating shaft portion 111 and a first flat plate portion 112.
  • the first rotation shaft portion 111 is cylindrical.
  • the first flat plate portion 112 is a substantially rectangular plate-like member.
  • the first flat plate portion 112 is provided on the outer periphery of the first rotation shaft portion 111.
  • the first door 110 is attached to the air conditioning case 21 by being held by the first bearing 118 and the intermediate bearing 28. That is, the first bearing portion 118 is held in contact with the first rotation shaft portion 111 in a state of partially covering the outer periphery of the first rotation shaft portion 111.
  • the second door 120 is held by the second bearing portion 128 and attached to the air conditioning case 21. That is, the second bearing portion 128 is held in contact with the second rotation shaft portion 121 in a state of partially covering the outer periphery of the second rotation shaft portion 121.
  • the first bearing portion 118 and the second bearing portion 128 are integrally provided in the air conditioning case 21.
  • the second bearing portion 128 corresponds to a bearing portion.
  • the flange portion 124 and the second bearing portion 128 are in contact with each other. That is, the movement of the second rotary shaft portion 121 in the axial direction is restricted by the contact between the flange portion 124 and the second bearing portion 128. In other words, the contact between the flange portion 124 and the second bearing portion 128 prevents the second door 120 from being displaced in the axial direction.
  • the first rotation shaft portion 111 is inserted into the second rotation shaft portion 121.
  • the second rotation shaft portion 121 is located radially outward of the first rotation shaft portion 111.
  • the second rotation shaft portion 121 has a cylindrical shape with high coaxiality. That is, in the circular shape of the two end portions of the second rotation shaft portion 121, the central axes thereof substantially coincide with each other. In other words, the central axes of the two ends are not offset, and they have a straight cylindrical shape with no distortion inside.
  • the through hole 125 is surrounded by the second bearing 128. That is, the fluid such as air is unlikely to enter the through hole 125 from the outside. Furthermore, the second bearing portion 128 covers the through hole 125 continuously for one round in the circumferential direction of the second bearing portion 128. That is, even when the second door 120 is pivoted for opening and closing, the second bearing portion 128 always maintains the state in which the through hole 125 is covered from the outside.
  • the second door 120 is manufactured by injection molding using four molds of a first outer mold 71, a second outer mold 72, an inner mold 73, and a holding mold 74.
  • the first outer mold 71 and the second outer mold 72 correspond to an outer mold.
  • the first outer mold 71 and the second outer mold 72 are in a positional relationship facing each other.
  • the outer molds 71 and 72 are molds that form the cylindrical outer side of the second rotary shaft portion 121.
  • the first outer mold 71 is a cavity mold that does not move during injection molding.
  • the first outer mold 71 is provided with a first recess 75 a on the surface facing the second outer mold 72.
  • the first outer mold 71 includes a sprue 77 serving as a resin injection path and a gate 78 serving as a resin injection port.
  • the second outer mold 72 is a core mold that moves during injection molding.
  • the second outer mold 72 is provided with a second recess 75 b on the surface facing the first outer mold 71.
  • the first recess 75a and the second recess 75b are provided at positions facing each other.
  • the first recess 75 a and the second recess 75 b have a mold shape for forming the flange portion 124 of the second rotation shaft portion 121.
  • the second outer mold 72 is provided with a second convex portion 172.
  • the second convex portion 172 is provided so as to project on the surface of the second outer mold 72 facing the first outer mold 71.
  • the second convex portion 172 has a mold shape for forming the through hole 125 in the second rotation shaft portion 121.
  • the inner mold 73 and the holding mold 74 are in a positional relationship facing each other in the axial direction of the rod portion 173.
  • the inner mold 73 is a mold that forms the cylindrical inner side of the second rotation shaft portion 121.
  • the inner mold 73 and the holding mold 74 are core molds that move during injection molding.
  • the inner mold 73 is provided with a rod-like portion 173.
  • the rod-like portion 173 is cylindrical.
  • the rod-like portion 173 is provided so as to vertically project from the surface of the inner mold 73 opposed to the holding mold 74.
  • the holding mold 74 is provided with a holding recess 174.
  • the rod-like portion 173 and the holding recess 174 face each other.
  • the movable core molds 72 to 74 are moved closer to the first outer mold 71, which is a cavity mold fixed in position. More specifically, the second outer mold 72 is vertically moved upward to approach the first outer mold 71. The inner mold 73 is translated rightward to approach the first outer mold 71. The holding mold 74 is translated leftward to approach the first outer mold 71.
  • the moving direction of the molds 72 to 74 is not limited to the vertical direction or the horizontal direction, and may be moved in a free direction such as an oblique direction to approach the first outer mold 71. Also, the molds 72 to 74 may be connected by pins and interlocked, and may not be moved simultaneously but moved separately. That is, after the second outer mold 72 is brought close to the first outer mold 71, the inner mold 73 may be moved.
  • the process shown in FIG. 8 is a mold clamping process.
  • the mold clamping process the four molds of the first outer mold 71, the second outer mold 72, the inner mold 73, and the holding mold 74 are held in contact and combined.
  • a cavity 76 is formed between the molds.
  • the cavity 76 is a cavity corresponding to the shape of the second door 120.
  • pressure is applied from the outside so that the molds come into contact without any gap other than the hollow portion 76 being generated.
  • the tip end of the rod-like portion 173 is in a state of being inserted into the holding recess 174.
  • the rod portion 173 is held by the holding recess 174 and positioned.
  • the rod-like portion 173 is in contact with the second convex portion 172.
  • the second convex portion 172 is provided on the side opposite to the side where the gate 78 is disposed with the rod portion 173 interposed therebetween.
  • the rod-like portion 173 has a straight cylindrical shape with no distortion in a state where the tip end is inserted into the holding recess 174 and the side surface is in contact with the second convex portion 172. In other words, the rod-like portion 173 is not bent or bent.
  • a cavity 76 for forming the second door 120 is formed between the dies.
  • the hollow portion 76 is a continuous hollow portion formed by integrally forming the second flat plate portion 122 and the second rotation shaft portion 121 of the second door 120.
  • the first outer mold 71 is formed with a sprue 77 serving as a path for filling a resin.
  • the cavity 76 and the sprue 77 are connected via the gate 78.
  • the gate 78 is provided at a portion where the second flat plate portion 122 of the second door 120 is formed. The mold is in a state where the inside into which the resin flows is heated to a predetermined temperature.
  • the first convex portion 171 has a projecting shape which protrudes from a portion which is recessed to form the hollow portion 76 in the first outer mold 71.
  • the first convex portion 171 is in contact with the rod-like portion 173 in a clamped state to support the rod-like portion 173.
  • the contact surface between the first convex portion 171 and the rod-like portion 173 has a curved surface shape along the outer peripheral surface of the cylindrical rod-like portion 173. That is, the first convex portion 171 and the rod-like portion 173 are in contact not at a point but at a surface.
  • the first convex portion 171 is provided not obliquely below the rod portion 173 but obliquely below.
  • the first convex portion 171 is provided at a position farther from the gate 78 than the rod-like portion 173. That is, the first convex portion 171 suppresses the rod portion 173 from causing a positional deviation in the downward direction, which is the gravity direction. In other words, the bar-like portion 173 is prevented from being deformed in the direction away from the gate 78, such as displacement or bending. Furthermore, the first convex portion 171 suppresses the rod-like portion 173 from approaching the first outer mold 71 in the injection process as compared to the state of the mold clamping process.
  • the second convex portion 172 has a protruding shape which protrudes from a portion which is recessed to form the hollow portion 76 in the second outer mold 72.
  • the second convex portion 172 is in contact with the rod-like portion 173 in a clamped state and supports the rod-like portion 173.
  • the contact surface of the second convex portion 172 with the rod-like portion 173 has a curved shape along the outer circumferential surface of the cylindrical rod-like portion 173. That is, the second convex portion 172 and the rod-like portion 173 are in contact not at a point but at a surface.
  • the second convex portion 172 is provided not obliquely below the rod portion 173 but obliquely below.
  • the second convex portion 172 is provided at a position farther from the gate 78 than the rod-like portion 173. That is, the second convex portion 172 suppresses that the rod-like portion 173 causes positional deviation in the downward direction, which is the gravity direction. In other words, the bar-like portion 173 is prevented from being deformed in the direction away from the gate 78, such as displacement or warpage. Furthermore, the second convex portion 172 suppresses the rod-like portion 173 from approaching the second outer mold 72 in the injection process as compared to the state of the mold clamping process.
  • the first convex portion 171 and the second convex portion 172 are provided such that the contact portions between the convex portions 171 and 172 and the rod-like portion 173 are arranged in the circumferential direction of the rod-like portion 173.
  • the contact portion between the convex portions 171 and 172 and the rod-like portion 173 is located not on the upper surface of the rod-like portion 173 which is a surface close to the gate 78 but on the lower surface of the rod-like portion 173 which is a surface far from the gate 78.
  • the convex portions 171 and 172 are in contact with the surface of the rod portion 173 opposite to the gate 78 and support the rod portion 173.
  • the first convex portion 171 and the second convex portion 172 suppress the positional deviation of the rod portion 173 downward. In other words, the rod-like portion 173 is prevented from being displaced or deformed in the direction away from the gate 78.
  • the first convex portion 171 and the second convex portion 172 suppress the positional deviation in the direction in which the rod-like portions 173 approach the outer molds 71 and 72, respectively. That is, the first convex portion 171 and the second convex portion 172 suppress the positional deviation of the rod portion 173 in the horizontal direction.
  • the first convex portion 171 and the second convex portion 172 correspond to a convex portion.
  • the convex part provided in the outer side molds 71 and 72 is not limited to the case where it is provided in two places of the 1st convex part 171 and the 2nd convex part 172. FIG. That is, three or more convex portions may be provided. Alternatively, one protrusion extending in the circumferential direction of the rod-shaped portion 173 may be provided to suppress positional deviation of the rod-shaped portion 173 in the horizontal direction and the lower direction.
  • the process shown in FIG. 10 is an injection process.
  • the resin heated to a high temperature and melted is injected and filled toward the cavity 76. That is, high temperature molten resin is injected from the sprue 77 and filled in the cavity 76 through the gate 78.
  • the molten resin is injected and pushed out into the cavity 76 one after another from a position close to the gate 78 to move in the cavity 76. In other words, the molten resin gradually moves to a position away from the gate 78 by being injected. Since the inside of the mold is heated to a predetermined temperature, the molten resin can easily move in the cavity 76 while maintaining the low viscosity state.
  • the molten resin proceeds in the direction indicated by arrow B1 in the process of being injected and filled. That is, the molten resin applies an injection pressure to the rod portion 173 in a direction away from the gate 78. In other words, the rod portion 173 is applied with a force that is pushed downward from above by the injection pressure of the molten resin. Therefore, due to the injection pressure received from the molten resin, the rod-like portion 173 tends to be deformed in a downwardly curved shape.
  • a pressing force is applied to the rod-like portion 173 from the projections 171 and 172 so as to resist the injection pressure.
  • the pressing force of the convex portions 171 and 172 provided on the side opposite to the gate 78 applies a force that pushes the rod portion 173 back from the lower side to the upper side.
  • a pressing force is applied to the rod-like portion 173 in the direction indicated by the arrow C1 from the first protrusion 171, and a pressing force is applied from the second protrusion 172 in the direction indicated by the arrow C2.
  • the direction indicated by the arrow C1 and the direction indicated by the arrow C2 are directions toward the central axis of the rod-like portion 173, respectively.
  • the rod-shaped portion 173 is pushed back by the convex portions 171 and 172, and the bending and bending of the rod-shaped portion 173 are suppressed. That is, the rod-like portion 173 tends to maintain a straight cylindrical shape without deformation in the injection process.
  • the filling of the molten resin is stopped and the mold is cooled.
  • the resin is cooled and solidified to a temperature below the melting point. Thereby, the resin is solidified and the second door 120 is formed inside the mold.
  • the process shown in FIG. 11 is a mold opening process.
  • the mold is opened and the second door 120 which is a resin molded product is taken out. That is, while releasing the contact between the inner mold 73 and the holding mold 74 and removing the rod-like portion 173 from the cylindrical second rotary shaft portion 121, the mold is moved by moving the second outer mold 72. Separate from each other. Thereby, the injection-molded second door 120 is removed from the mold and taken out.
  • the inner mold 73 having the rod-like portion 173 pushes the pressing force for pushing back the inner mold 73 against the injection pressure pushed by the injection of the resin member.
  • the rod-like portion 173 receives the pressing force from the convex portions 171 and 172, so that the position and the shape of the rod-like portion 173 are prevented from being changed in the injection process as compared with the state of the mold clamping process. Therefore, the deformation of the inner mold 73 can be suppressed, and the second door 120 with high coaxiality can be stably manufactured. Therefore, air conditioning can be performed using a door for an air conditioner having a high degree of coaxiality. In other words, in the door for an air conditioner, the generation of abnormal noise due to the friction caused by the rotation of the door, the excessive operation force due to the abnormal load, and the poor opening adjustment are unlikely to occur.
  • the protrusions 171 and 172 are in contact with the surface of the rod portion 173 opposite to the gate 78. In other words, therefore, the pressing force can be applied to the rod-like portion 173 so as to resist the injection pressure applied in the direction away from the gate 78. In other words, pressing force can be applied in a direction approaching the gate 78. Therefore, bending in a direction away from the gate 78 can be accurately suppressed.
  • the convex parts 171 and 172 support the rod-like part 173 from the bottom. Therefore, a pressing force can be applied to the rod portion 173 so as to resist gravity. That is, it is possible to suppress the rod portion 173 from being deformed so as to bend downward in the gravity direction.
  • the inner mold 73 having the rod-like portion 173 receives a pressing force from the plurality of second convex portions 172. For this reason, the inner mold 73 disperses from the plurality of second convex portions 172 and receives a pressing force. Therefore, it is possible to prevent the pressing force from being concentrated on one place of the inner mold 73. That is, the deformation of the inner mold 73 can be suppressed more effectively.
  • the second convex portion 172 is provided side by side in the circumferential direction with respect to the inner mold 73 having the rod-like portion 173. Therefore, even if the direction in which the injection pressure is received changes in the middle, the inner mold 73 can be easily pushed back in a plurality of directions against the injection pressure. Therefore, the coaxiality of the 2nd rotating shaft part 121 can be raised stably.
  • the through hole 125 is surrounded by the second bearing portion 128. For this reason, it can suppress that a wind leaks through the through hole 125 in the state by which the 2nd door 120 was assembled
  • the highly coaxial second door 120 is disposed between the evaporator 22 and the heater core 23. That is, the second door 120 is disposed at a position where a large temperature difference occurs between cooling and heating. For this reason, even if the inner diameter of the second rotary shaft portion 121 changes due to temperature change, such as reduction of the inner diameter due to thermal contraction of the resin material due to temperature decrease or expansion of the inner diameter due to thermal expansion of the resin material due to temperature increase. , Easy to maintain high coaxiality. Therefore, it is hard to produce generation
  • the air conditioner door manufactured using the manufacturing method described above is not limited to the second door 120. That is, the doors such as the defroster door 130, the foot face switching door 140, and the inside / outside air switching door may be manufactured using the above-described manufacturing method.
  • the manufacturing method of the door for air conditioners mentioned above is widely applicable to the coaxial door which has a cylindrical axis.
  • the present invention can be widely applied to air conditioners not installed in vehicles such as home air conditioners and commercial air conditioners.
  • Second Embodiment This embodiment is a modification based on the preceding embodiment.
  • the through hole 225 is provided at the center of the second rotation shaft portion 221.
  • the second rotation shaft portion 221 has a cylindrical shape having a length twice or more that of the second flat plate portion 122.
  • the second rotation shaft portion 221 is provided with a through hole 225 on the side surface.
  • the through hole 225 is provided at the middle in the longitudinal direction of the second rotation shaft portion 221. In other words, the distance from the through hole 225 to the longitudinal center of the second rotation shaft 221 is smaller than the distance from the through hole 225 to the end of the second rotation shaft 221.
  • the second door 220 is held by the second bearing portion 128. That is, the second bearing portion 128 is in contact with the second rotation shaft portion 221 in a state where the outer periphery of the second rotation shaft portion 221 is covered over the entire circumference at the center in the longitudinal direction of the second rotation shaft portion 221. In other words, the second bearing portion 128 covers the through hole 225 from the outside.
  • the mold is in a clamped state.
  • the first outer mold 71 is provided with a first recess 275 a on the surface facing the second outer mold 72.
  • the second outer mold 72 is provided with a second recess 275 b on the surface facing the first outer mold 71.
  • the first recess 275 a and the second recess 275 b are provided at mutually opposing positions.
  • the second outer mold 72 is provided with a second convex portion 272.
  • the second convex portion 272 is provided so as to protrude on the surface of the second outer mold 72 opposed to the first outer mold 71.
  • the rod-like portion 173 is in a state of being held and positioned by the holding recess 174.
  • the rod-like portion 173 is in contact with the second convex portion 272. That is, the rod-like portion 173 is supported by the second outer mold 72 and the holding mold 74 at two points of the middle portion 273 and the tip portion.
  • the rod-like portion 173 has a straight cylindrical shape with no distortion when the tip end is inserted into the holding recess 174 and the side surface is in contact with the second protrusion 272. That is, the rod-like portion 173 is not bent or bent.
  • the second convex portion 272 is provided so as to abut on an intermediate portion 273 positioned in the middle when one fixed end to the other fixed end of the rod-like portion 173 is divided into three equal parts. That is, the fixed end of the inner mold 73 which is in contact with the holding die 74 of the distance Wa from the fixed end of the rod portion 173 to the intermediate portion 273, the width Wb of the intermediate portion 273, and the intermediate portion 273 to the rod portion 173. The distances Wc up to are equal in size.
  • the second convex portion 272 is in contact with the middle portion 273 particularly at a position near the center.
  • the second convex portion 272 corresponds to a convex portion.
  • the middle of the middle portion 273 is the middle portion, and the middle portion is a position where the distances from the fixed ends on both sides of the rod portion 173 are equal.
  • the rod-like portion 173 receives an injection pressure from the molten resin. As a result, the rod-like portion 173 is deformed into a warped shape by being pressed by the injection pressure. At this time, since the tip end portion of the rod-like portion 173 is held by the holding concave portion 174, the center of the rod-like portion 173 is the most susceptible to deformation and the amount of deformation being likely to be large. However, a pressing force is applied to the middle portion 273 including the center of the rod-like portion 173 from the second convex portion 272 so as to resist the injection pressure.
  • the rod-like portion 173 is pushed back from the second convex portion 272 in the vicinity of the center of the rod-like portion 173 where the amount of deformation is most likely to be large, and bending or bending of the rod-like portion 173 is suppressed. . Therefore, the rod-like portion 173 can easily maintain a straight cylindrical shape without deformation in the injection process.
  • the second convex portion 272 is in contact with the middle portion 273 of the rod-like portion 173 of the inner mold 73 having the rod-like portion 173 in the mold clamping process and the injection process. Therefore, large deformation of the rod portion 173 can be effectively suppressed as compared with the case where the second convex portion 272 is in contact with a position apart from the center of the rod portion 173 which is not the middle portion 273.
  • the second convex portion 272 is in contact with the central portion of the middle portion 273 of the rod portion 173. For this reason, it is possible to suppress the deformation at the pinpoint at the portion that is most susceptible to deformation. Therefore, large deformation of the rod-like portion 173 can be effectively suppressed as compared with the case where the second convex portion 272 is abutted to a position other than the central portion of the rod-like portion 173.
  • This embodiment is a modification based on the preceding embodiment.
  • a plurality of convex portions 372 in contact with and supported by the rod-like portion 173 are provided in the axial direction of the rod-like portion 173.
  • the mold is in a clamped state.
  • the second outer mold 72 includes a plurality of convex portions 372.
  • the convex portion 372 is provided at a position in contact with an intermediate portion between the tip end portion and the central portion of the rod-like portion 173.
  • the convex portion 372 is provided at a position in contact with an intermediate portion between the central portion of the rod-like portion 173 and the rising portion from the surface of the inner die 73 of the rod-like portion 173 facing the holding die 74.
  • the rod-like portion 173 is in contact with and supported by the plurality of convex portions 372 provided on the second outer mold 72 along the longitudinal direction of the rod-like portion 173.
  • the second convex portion 272 and the convex portion 372 are provided on a straight line at substantially equal intervals.
  • the convex portions 372 that abut on and support the rod-shaped portion 173 are provided side by side at intervals in the axial direction of the rod-shaped portion 173. Therefore, in the injection process, the rod-like portion 173 receives the force against the injection pressure from the plurality of convex portions 372 in a dispersed manner. Therefore, the deformation of the rod-like portion 173 can be more effectively suppressed as compared with the case where the pressing force is concentrated in one place. In other words, it is possible to prevent the rod portion 173 from being broken or bent due to the effects of the injection pressure and the pressing force.
  • the length of the rod-like portion 173 becomes longer, it becomes more difficult to maintain a straight cylindrical shape in the injection step, and it becomes more likely to be warped or deformed.
  • the diameter of the rod-like portion 173 becomes smaller, it becomes more difficult to maintain a straight cylindrical shape in the injection step, and it becomes easier to warp or bend and deform. Therefore, providing a plurality of convex portions 372 to suppress the deformation of the rod-like portion 173 in the injection process is particularly effective when the rod-like portion 173 is thin and long.
  • This embodiment is a modification based on the preceding embodiment.
  • a second convex portion 172 and a convex portion 472 for supporting the rod-like portion 173 are provided side by side in the circumferential direction of the rod-like portion 173.
  • the convex portion 472 has a protruding shape which protrudes from a portion which is recessed to form the cavity portion 76 in the second outer mold 72.
  • the convex portion 472 is in contact with the rod portion 173 in a clamped state and supports the rod portion 173.
  • the contact surface of the convex portion 472 with the rod-like portion 173 has a curved shape along the outer circumferential surface of the cylindrical rod-like portion 173. That is, the convex portion 472 and the rod-like portion 173 are in contact not at a point but at a surface.
  • the convex portion 472 is provided not diagonally below the bar portion 173 but obliquely above.
  • the convex portion 472 is provided at a position facing the first convex portion 171. That is, the convex portion 472 prevents the rod-like portion 173 from being displaced upward. In other words, the rod-like portion 173 is sandwiched and held by the first convex portion 171 and the convex portion 472. In other words, occurrence of positional deviation or deformation in the direction in which the rod-like portion 173 approaches the gate 78 is suppressed. Further, the convex portion 472 suppresses the rod-like portion 173 from approaching the second outer mold 72 in the injection step as compared to the state of the mold clamping step.
  • the first convex portion 171, the second convex portion 172, and the convex portion 472 are provided in such a manner that the contact portions between the convex portions 171, 172, 472 and the rod portion 173 are aligned in the circumferential direction of the rod portion 173. There is.
  • the first convex portion 171 and the second convex portion 172 suppress the positional deviation of the rod-like portion 173 in the direction away from the gate 78 in the injection step.
  • the convex portion 472 suppresses the occurrence of positional deviation in the direction in which the rod-like portion 173 approaches the gate 78 in the injection process.
  • the first convex portion 171 suppresses the rod-like portion 173 from approaching the first outer mold 71 in the injection process as compared to the state of the mold clamping process.
  • the second convex portion 172 and the convex portion 472 suppress the rod-like portion 173 from approaching the second outer mold 72 in the injection step as compared with the state of the mold clamping step. That is, the first convex portion 171, the second convex portion 172, and the convex portion 472 suppress the change in the position and the shape of the rod-like portion 173 in the injection step as compared with the state of the mold clamping step.
  • the molten resin may be filled in the cavity 76 to apply an injection pressure in a direction to separate the inner mold 73 from the outer molds 71 and 72.
  • the rod-like portion 173 tends to be deformed into a warped shape by the injection pressure received from the molten resin.
  • a pressing force is applied to the rod-like portion 173 from the convex portion 472 so as to resist the injection pressure.
  • the pressing force of the convex portion 472 applies a pressing force to the rod portion 173 so as to maintain the position and the shape of the state of the mold clamping process.
  • the pressing force of the convex portion 472 is applied to the rod-like portion 173 in the direction toward the central axis of the rod-like portion 173. For this reason, the rod-like portion 173 is pushed back by the convex portion 472, and the bending and bending of the rod-like portion 173 are suppressed. That is, the rod-like portion 173 tends to maintain a straight cylindrical shape without deformation in the injection process.
  • the disclosure in this specification is not limited to the illustrated embodiments.
  • the disclosure includes the illustrated embodiments and variations based on them by those skilled in the art.
  • the disclosure is not limited to the combination of parts and / or elements shown in the embodiments.
  • the disclosure can be implemented in various combinations.
  • the disclosure can have additional parts that can be added to the embodiments.
  • the disclosure includes those in which parts and / or elements of the embodiments have been omitted.
  • the disclosure includes replacements or combinations of parts and / or elements between one embodiment and another embodiment.
  • the disclosed technical scope is not limited to the description of the embodiments.

Abstract

This method for producing a door for an air conditioner includes a mold clamping step in which a rod-shaped inner mold (73) that forms the inside of a tubular portion (121) and outer molds (71, 72) that have convex portions (171, 172) projecting toward the inner mold and that form the outside of the tubular portion are disposed at prescribed locations and the molds are joined, and an injection step in which a resin member is injected into a hollow portion (76) formed between the clamped inner mold and outer molds. In the mold clamping step, the inner mold and the convex portions of the outer molds are disposed in contact with each other. In the injection step, the inner mold receives the injection pressure exerted by injection of the resin member and receives from the convex portions a pressing force for pressing back the inner mold to counteract the injection pressure.

Description

空調装置用ドアの製造方法および車両用空調装置の製造方法Method of manufacturing door for air conditioner and method of manufacturing air conditioner for vehicle 関連出願の相互参照Cross-reference to related applications
 本出願は、2017年8月29日に出願された日本特許出願2017-164684号に基づくもので、ここにその記載内容を援用する。 This application is based on Japanese Patent Application No. 2017-164684 filed on Aug. 29, 2017, the contents of which are incorporated herein by reference.
 この明細書における開示は空調装置用ドアの製造方法および車両用空調装置の製造方法に関する。 The disclosure in this specification relates to a method of manufacturing a door for an air conditioner and a method of manufacturing an air conditioner for a vehicle.
 特許文献1は、筒状の回転軸部を有する車両用空調装置のドア駆動機構を開示する。筒状の回転軸部を射出成形する場合、筒状の回転軸部の内側の中空部を成形するために回転軸部の外側で棒状のスライド型を型合わせする方法が知られている。 Patent Document 1 discloses a door drive mechanism of a vehicle air conditioner having a cylindrical rotation shaft portion. In the case of injection molding a cylindrical rotary shaft, there is known a method of forming a rod-like slide mold outside the rotary shaft in order to mold a hollow portion inside the cylindrical rotary shaft.
特開2013-35379号公報JP, 2013-35379, A
 従来技術の構成では、射出成形時に射出された樹脂部材に押されて棒状の金型が変形してしまい、筒状の回転軸部の同軸度が悪くなる場合がある。すなわち、筒状の回転軸部が反った形状で成形されるなど射出成形品が変形してしまう場合がある。空調装置に変形した筒状の空調装置用ドアを使用した場合、筒状の回転軸部の内部に挿入される棒状の回転軸部と筒状の回転軸部とが擦れるなどして異音が発生する場合があった。上述の観点において、または言及されていない他の観点において、空調装置用ドアの製造方法および車両用空調装置の製造方法にはさらなる改良が求められている。 In the configuration of the prior art, the rod-like mold is deformed by being pushed by the resin member injected at the time of injection molding, and the coaxiality of the cylindrical rotation shaft may be deteriorated. That is, the injection molded product may be deformed, for example, when the cylindrical rotary shaft portion is formed in a warped shape. When a cylindrical air conditioner door deformed into an air conditioner is used, the rod-like rotary shaft inserted into the cylindrical rotary shaft and the cylindrical rotary shaft rub against each other, etc. There was a case that occurred. In the above aspects, or in other aspects not mentioned, there is a need for further improvements in the method of manufacturing the door for the air conditioner and the method of manufacturing the air conditioner for the vehicle.
 開示される1つの目的は、筒状部の同軸度を向上させた空調装置用ドアの製造方法を提供することにある。 One object disclosed is to provide a method of manufacturing an air conditioner door in which the coaxiality of the tubular portion is improved.
 開示される他の1つの目的は、2つの回転軸部が擦れるなどして動作不良が引き起こされることを抑制した車両用空調装置の製造方法を提供することにある。 Another object disclosed is to provide a method of manufacturing a vehicular air-conditioning system in which the occurrence of malfunction due to rubbing of two rotating shafts or the like is suppressed.
 ここに開示された空調装置用ドアの製造方法は、筒状部の内側を形成する棒状の内側金型と、内側金型に向かって突出している凸部を有して筒状部の外側を形成する外側金型とを所定の位置に配置して金型を組み合わせる型締め工程と、型締めされた内側金型と外側金型との間に形成された空洞部に樹脂部材を射出する射出工程とを含む。型締め工程では、内側金型と外側金型の凸部とを接触させた状態で配置する。射出工程では、内側金型は、樹脂部材の射出により押される射出圧を受けるとともに、射出圧に対して抗するように内側金型を押し返す押圧力を凸部から受ける。 The method of manufacturing a door for an air conditioner disclosed herein includes a rod-like inner mold forming the inner side of the cylindrical part, and a convex part projecting toward the inner mold so that the outer side of the cylindrical part is formed. A mold clamping process in which molds are combined by arranging an outer mold to be formed at a predetermined position, and injecting the resin member into a cavity formed between the clamped inner mold and the outer mold And a process. In the mold clamping process, the inner mold and the convex part of the outer mold are placed in contact with each other. In the injection process, the inner mold receives an injection pressure that is pushed by the injection of the resin member, and receives a pressing force that pushes back the inner mold from the convex portion so as to resist the injection pressure.
 開示された空調装置用ドアの製造方法によると、射出工程において内側金型は、射出圧に抗するように内側金型を押し返す押圧力を凸部から受ける。すなわち、樹脂による射出圧に抗する方向に凸部による押圧力が加えられることで内側金型の撓みなどの変形を抑制する。このため、射出成形において、射出圧によって内側金型が変形した状態で空調装置用ドアが成形されてしまうことを抑制できる。 According to the disclosed method of manufacturing a door for an air conditioner, in the injection process, the inner mold receives a pressing force that pushes back the inner mold from the convex portion so as to resist the injection pressure. That is, deformation such as bending of the inner mold is suppressed by the pressing force of the convex portion being applied in the direction to resist the injection pressure of the resin. For this reason, in injection molding, it can suppress that the door for air conditioners is shape | molded in the state which the inner side metal mold was deformed by injection pressure.
 ここに開示された車両用空調装置は、車室内に供給する空気が内部を通過する空調ケースと、空調ケース内を第1空気通路と第2空気通路とに仕切る仕切り板と、第1空気通路を開閉する第1ドアと、第2空気通路を開閉する第2ドアと、第1ドアを回転させる第1回転軸部と、側面に貫通穴が設けられ、第2ドアを回転させる筒状の第2回転軸部とを備える。第2ドアは、上記の製造方法により製造された空調装置用ドアである。車両用空調装置の製造方法は、第1回転軸部を第2回転軸部に挿入した状態で、第1ドアと第2ドアとを軸方向に並べて空調ケースに取り付ける工程を含む。 The vehicle air conditioner disclosed herein includes an air conditioning case through which the air supplied into the vehicle compartment passes, a partition plate that divides the inside of the air conditioning case into a first air passage and a second air passage, and a first air passage. , A second door for opening and closing the second air passage, a first rotary shaft portion for rotating the first door, and a through hole provided on the side surface for rotating the second door. And a second rotation shaft portion. The second door is an air conditioner door manufactured by the above manufacturing method. The method of manufacturing the vehicle air conditioner includes the step of axially arranging the first door and the second door and attaching the first door and the second door to the air conditioning case in a state where the first rotating shaft portion is inserted into the second rotating shaft portion.
 開示された車両用空調装置の製造方法によると、同軸度の高い第2回転軸部に第1回転軸部を挿入している。すなわち、第2回転軸部の内部を回転する第1回転軸部が第2回転軸部の内側と擦れることを抑制できる。このため、第1回転軸部と第2回転軸部との擦れによる異音の発生や、作動力の過大などの動作不良を低減することができる。 According to the disclosed method of manufacturing a vehicle air conditioner, the first rotation shaft portion is inserted into the second rotation shaft portion having high coaxiality. That is, it can suppress that the 1st rotating shaft part which rotates the inside of the 2nd rotating shaft part rubs inside the 2nd rotating shaft part. For this reason, generation | occurrence | production of the noise by the friction with a 1st rotating shaft part and a 2nd rotating shaft part, and operation defects, such as excess of operation force, can be reduced.
 この明細書における開示された複数の態様は、それぞれの目的を達成するために、互いに異なる技術的手段を採用する。請求の範囲に記載した括弧内の符号は、後述する実施形態の部分との対応関係を例示的に示すものであって、技術的範囲を限定することを意図するものではない。この明細書に開示される目的、特徴、および効果は、後続の詳細な説明、および添付の図面を参照することによってより明確になる。 The disclosed aspects in this specification employ different technical means in order to achieve their respective goals. The reference numerals in the parentheses described in the claims exemplify the correspondence with parts of the embodiments described later, and are not intended to limit the technical scope. The objects, features and advantages disclosed in the present specification will become more apparent by reference to the following detailed description and the accompanying drawings.
第1実施形態の車両用空調装置の構成を示す上から見た断面図である。It is sectional drawing seen from the top which shows the structure of the vehicle air conditioner of 1st Embodiment. 車両用空調装置の構成を示す横から見た側面図である。It is the side view seen from the side which shows the structure of a vehicle air conditioner. 第2ドアを示す正面図である。It is a front view which shows a 2nd door. 第2ドアを示す底面図である。It is a bottom view showing the 2nd door. 第1ドアおよび第2ドアの取り付け状態における構成を示す構成図である。It is a block diagram which shows the structure in the attachment state of a 1st door and a 2nd door. 第1ドアおよび第2ドアの取り付け状態における構成を示す部分断面図である。It is a fragmentary sectional view showing the composition in the attachment state of the 1st door and the 2nd door. 成形サイクルを説明するための金型の工程別概略断面図である。It is a schematic sectional view according to process of a mold for explaining a molding cycle. 成形サイクルを説明するための金型の工程別概略断面図である。It is process-based schematic sectional drawing of the metal mold | die for demonstrating a molding cycle. 図8のIX-IX線における断面を示す概略断面図である。FIG. 9 is a schematic cross-sectional view showing a cross section taken along line IX-IX of FIG. 8; 成形サイクルを説明するための金型の工程別概略断面図である。It is process-based schematic sectional drawing of the metal mold | die for demonstrating a molding cycle. 成形サイクルを説明するための金型の工程別概略断面図である。It is process-based schematic sectional drawing of the metal mold | die for demonstrating a molding cycle. 第2実施形態の第2ドアを示す正面図である。It is a front view which shows the 2nd door of 2nd Embodiment. 第2実施形態の第1ドアおよび第2ドアの取り付け状態における構成を示す構成図である。It is a block diagram which shows the structure in the attachment state of the 1st door of 2nd Embodiment, and a 2nd door. 第2実施形態の成形サイクルを説明するための金型の工程別概略断面図である。It is process-based schematic sectional drawing of the metal mold | die for demonstrating the molding cycle of 2nd Embodiment. 第3実施形態の成形サイクルを説明するための金型の工程別概略断面図である。It is process-based schematic sectional drawing of the metal mold | die for demonstrating the molding cycle of 3rd Embodiment. 第4実施形態の成形サイクルを説明するための金型の工程別概略断面図である。It is process-based schematic sectional drawing of the metal mold | die for demonstrating the molding cycle of 4th Embodiment.
 図面を参照しながら、複数の実施形態を説明する。複数の実施形態において、機能的におよび/または構造的に対応する部分および/または関連付けられる部分には同一の参照符号、または百以上の位が異なる参照符号が付される場合がある。対応する部分および/または関連付けられる部分については、他の実施形態の説明を参照することができる。 Several embodiments will be described with reference to the drawings. In embodiments, functionally and / or structurally corresponding portions and / or associated portions may be provided with the same reference symbols, or reference symbols with different places of one hundred or more places. The description of the other embodiments can be referred to for the corresponding parts and / or parts to be associated.
 第1実施形態
 図1において、車両用空調装置1は、送風機ユニット10と、この送風機ユニット10から送風された送風空気の温度調節を行う空調ユニット20とを備えている。車両用空調装置1は、送風機ユニット10によって送風された空気を空調ユニット20によって温度調整して、車室内に供給する。送風機ユニット10は、車室内の計器盤下方部のうち、中央部から助手席側に近い車両左側に配置されている。これに対し、空調ユニット20は、車室内の計器盤下方部のうち、車両左右方向の略中央部に配置されている。
First Embodiment In FIG. 1, a vehicle air conditioner 1 includes a fan unit 10 and an air conditioning unit 20 that adjusts the temperature of the air blown from the fan unit 10. The vehicle air conditioner 1 adjusts the temperature of the air blown by the blower unit 10 by the air conditioning unit 20, and supplies the air into the passenger compartment. Blower unit 10 is disposed on the left side of the vehicle near the front passenger seat side from the central portion of the lower part of the dashboard in the vehicle compartment. On the other hand, the air conditioning unit 20 is disposed at a substantially central portion in the left-right direction of the vehicle in the lower part of the dashboard in the vehicle compartment.
 送風機ユニット10は、遠心多翼ファンである送風ファン11を有している。送風ファン11は、例えばシロッコファンである。送風ファン11は、渦巻き状のスクロールケーシング12内に配置されている。送風ファン11は、電動モータにより回転駆動される。送風ファン11の送風空気は、スクロールケーシング12の渦巻き形状に沿って矢印A1に示す方向に送られる。 The blower unit 10 has a blower fan 11 which is a centrifugal multi-blade fan. The blower fan 11 is, for example, a sirocco fan. The blower fan 11 is disposed in the spiral scroll casing 12. The blower fan 11 is rotationally driven by an electric motor. The blowing air of the blowing fan 11 is sent along the spiral shape of the scroll casing 12 in the direction indicated by the arrow A1.
 送風ファン11の吸入口は、車両上方側に設けられている。吸入口は、内気吸入口と外気吸入口との2つの吸入口を備えている。送風ファン11と吸入口との間には内外気切替ドアが設けられている。内外気切替ドアは、内気吸入口と外気吸入口とのどちらの吸入口から空気を吸入するかを切り替える。 The suction port of the blower fan 11 is provided on the upper side of the vehicle. The suction port is provided with two suction ports, an inside air suction port and an outside air suction port. An inside / outside air switching door is provided between the blower fan 11 and the suction port. The inside / outside air switching door switches which one of the inside air intake and the outside air intake from which air is drawn.
 空調ユニット20は、空調ケース21内に蒸発器22とヒータコア23とを内蔵している。空調ケース21は、ある程度の弾性を有し、強度的にも優れた樹脂製の成形品である。空調ケース21の材料としては、ポリプロピレンなどが使用可能である。空調ケース21は、上下方向に分割面を有する複数の分割ケースからなる。この複数の分割ケースは、蒸発器22やヒータコア23などの機器を収納した後に、金属バネクリップ、ネジ等の締結手段により一体に結合されて空調ケース21を構成している。 The air conditioning unit 20 incorporates the evaporator 22 and the heater core 23 in the air conditioning case 21. The air conditioning case 21 is a resin molded article having a certain degree of elasticity and excellent in strength. As a material of the air conditioning case 21, polypropylene or the like can be used. The air conditioning case 21 is composed of a plurality of divided cases having divided surfaces in the vertical direction. The plurality of divided cases are integrally joined by fastening means such as a metal spring clip and a screw after housing devices such as the evaporator 22 and the heater core 23 to constitute the air conditioning case 21.
 図2において、空調ケース21の最も車両前方側の位置には、空気入口24が配設されている。この空気入口24は、送風機ユニット10から送風される送風空気が流入される開口である。この空気入口24は、送風機ユニット10のスクロールケーシング12の空気出口部に接続されている。すなわち、空気入口24は、空調ケース21のうち、助手席側の側面に開口している。 In FIG. 2, an air inlet 24 is disposed at the most forward side of the air conditioning case 21. The air inlet 24 is an opening through which air blown from the fan unit 10 flows. The air inlet 24 is connected to the air outlet of the scroll casing 12 of the fan unit 10. That is, the air inlet 24 is opened on the side of the air conditioning case 21 on the passenger seat side.
 空調ケース21内において、空気入口24の直後の部位には蒸発器22が配置されている。蒸発器22は、車両前後方向には薄型の形態で空調ケース21内を横断するように配置されている。蒸発器22は、冷凍サイクルの冷媒の蒸発潜熱を周りの空気から吸熱して、空気を冷却する。蒸発器22は、いわゆる積層型の蒸発器であって、アルミニウム等の金属薄板を2枚貼り合わせて構成した扁平チューブを、コルゲートフィンを介在させて多数積層配置して、一体にろう付けしたものである。 In the air conditioning case 21, an evaporator 22 is disposed immediately after the air inlet 24. The evaporator 22 is disposed to cross the inside of the air conditioning case 21 in a thin form in the longitudinal direction of the vehicle. The evaporator 22 cools the air by absorbing the latent heat of evaporation of the refrigerant of the refrigeration cycle from the surrounding air. The evaporator 22 is a so-called laminated type evaporator, in which a flat tube made by bonding two metal thin plates such as aluminum is laminated and intervened by interposing a corrugate fin. It is.
 蒸発器22の空気流れの下流側に、ヒータコア23が車両後方側に傾斜して配置されている。ヒータコア23は、蒸発器22を通過した冷風を加熱する熱交換器である。ヒータコア23は、内部に高温の温水であるエンジン冷却水が流れ、この温水を熱源として空気を加熱する。ヒータコア23は、アルミニウム等の金属薄板を溶接等により断面扁平状に接合してなる扁平チューブを、コルゲートフィンを介在させて多数積層配置して、一体にろう付けしたものである。 A heater core 23 is disposed on the downstream side of the air flow of the evaporator 22 so as to be inclined rearward of the vehicle. The heater core 23 is a heat exchanger that heats the cold air that has passed through the evaporator 22. The heater core 23 has engine cooling water, which is high-temperature hot water, flowing therein, and heats air using the hot water as a heat source. The heater core 23 is obtained by integrally laminating a flat tube formed by joining a thin metal plate such as aluminum in a flat shape by welding or the like with a corrugated fin interposed therebetween in a stacked manner.
 図1において、空調ケース21内部の空気通路は、車両前後方向に延びるように設けられている。空調ケース21内部の空気通路は、仕切り板27により、車両左右方向に仕切られている。言い換えると、空気通路は、仕切り板27よりも車両左側に位置する第1空気通路25と、仕切り板27よりも車両右側に位置する第2空気通路26とに仕切られている。すなわち、第1空気通路25は、助手席側空気通路である。第1空気通路25は、第2空気通路26に比べて送風機ユニット10に近い空気通路である。第2空気通路26は、運転席側空気通路である。第2空気通路26は、第1空気通路25に比べて送風機ユニット10から遠い空気通路である。 In FIG. 1, the air passage inside the air conditioning case 21 is provided to extend in the longitudinal direction of the vehicle. An air passage inside the air conditioning case 21 is partitioned by a partition plate 27 in the left-right direction of the vehicle. In other words, the air passage is divided into a first air passage 25 located on the vehicle left side of the partition plate 27 and a second air passage 26 located on the vehicle right side of the partition plate 27. That is, the first air passage 25 is a passenger side air passage. The first air passage 25 is an air passage closer to the blower unit 10 than the second air passage 26. The second air passage 26 is a driver's seat side air passage. The second air passage 26 is an air passage farther from the blower unit 10 than the first air passage 25.
 仕切り板27は、蒸発器22の下流側の端部から空調ケース21の下流側の壁面に至るまで、車両前後方向に連続して設けられている。仕切り板27は、第1空気通路25と第2空気通路26とを仕切っている。仕切り板27は、ヒータコア23の配置部位ではヒータコア23との直接の接触を回避するために、切り欠かれた形状である。仕切り板27は、ポリプロピレンなどの樹脂製である。仕切り板27は、別部品として設けるのではなく、空調ケース21と一体に成形してもよい。 The partition plate 27 is continuously provided in the vehicle longitudinal direction from the downstream end of the evaporator 22 to the downstream wall surface of the air conditioning case 21. The partition plate 27 divides the first air passage 25 and the second air passage 26. The partition plate 27 has a cutout shape in order to avoid direct contact with the heater core 23 at the location where the heater core 23 is disposed. The partition plate 27 is made of resin such as polypropylene. The partition plate 27 may be formed integrally with the air conditioning case 21 instead of being provided as a separate part.
 ヒータコア23は、第1空気通路25と第2空気通路26とを横断するように配置されている。ヒータコア23の内部は、扁平チューブの扁平面またはコルゲートフィンのフィン面により、仕切り板27と同一の位置で仕切られている。すなわち、ヒータコア23の内部を通過して第1空気通路25と第2空気通路26との間で空気が行き来することができない状態である。 The heater core 23 is disposed to cross the first air passage 25 and the second air passage 26. The inside of the heater core 23 is partitioned at the same position as the partition plate 27 by the flat surface of the flat tube or the fin surface of the corrugated fin. That is, air can not pass between the first air passage 25 and the second air passage 26 by passing through the inside of the heater core 23.
 第1空気通路25において、蒸発器22とヒータコア23との間には、第1ドア110が設けられている。第1ドア110は、軸を中心に回動して開度を調整する平板状のドアである。第1ドア110は、第1空気通路25を横断するように隙間なく設けられている。第2空気通路26においても第1空気通路25と同様に、蒸発器22とヒータコア23との間には、第2ドア120が設けられている。第2ドア120は、軸を中心に回動して開度を調整する平板状のドアである。第2ドア120は、第2空気通路26を横断するように隙間なく設けられている。 In the first air passage 25, a first door 110 is provided between the evaporator 22 and the heater core 23. The first door 110 is a flat door that rotates about an axis to adjust the opening degree. The first door 110 is provided without gaps so as to cross the first air passage 25. Similarly to the first air passage 25 in the second air passage 26, a second door 120 is provided between the evaporator 22 and the heater core 23. The second door 120 is a flat door that rotates about an axis to adjust the opening degree. The second door 120 is provided without a gap so as to cross the second air passage 26.
 第1ドア110は、第1回転軸部111を備えている。第2ドア120は、第2回転軸部121を備えている。第1回転軸部111と第2回転軸部121とは、同一直線上に並んでいる。言い換えると、第1回転軸部111と第2回転軸部121とは、同軸の回転軸である。言い換えると、第1ドア110と第2ドア120とは、回転軸が同一直線上に並んでいる同軸ドアである。第1回転軸部111は、仕切り板27に設けられた中間軸受け部28によって回動可能に支持されている。中間軸受け部28は、第1ドア110と第2ドア120との中間に位置している。 The first door 110 includes a first rotation shaft portion 111. The second door 120 includes a second rotation shaft portion 121. The first rotation shaft portion 111 and the second rotation shaft portion 121 are aligned on the same straight line. In other words, the first rotation shaft portion 111 and the second rotation shaft portion 121 are coaxial rotation shafts. In other words, the first door 110 and the second door 120 are coaxial doors whose rotation axes are aligned on the same straight line. The first rotation shaft portion 111 is rotatably supported by an intermediate bearing portion 28 provided on the partition plate 27. The intermediate bearing portion 28 is located between the first door 110 and the second door 120.
 第1回転軸部111と第2回転軸部121とは、アクチュエータ機構320に連結されている。アクチュエータ機構320は、サーボモータ等の駆動源を2つ有し、第1回転軸部111と第2回転軸部121とのそれぞれを独立して駆動する。回転軸部111、121とアクチュエータ機構320との間にリンク機構を介して動力を伝達するようにしてもよい。 The first rotation shaft portion 111 and the second rotation shaft portion 121 are coupled to the actuator mechanism 320. The actuator mechanism 320 has two drive sources, such as a servomotor, and drives each of the first rotation shaft portion 111 and the second rotation shaft portion 121 independently. The power may be transmitted between the rotary shaft portions 111 and 121 and the actuator mechanism 320 via a link mechanism.
 図2において、空調ケース21内の第1空気通路25におけるヒータコア23の上方領域には、ヒータコア23をバイパスして空気が流れる第1冷風バイパス通路29が形成されている。第2空気通路26におけるヒータコア23の上方領域にも同様に、ヒータコア23をバイパスして空気が流れる第2冷風バイパス通路30が形成されている。冷風バイパス通路29、30を通過する風は、ヒータコア23により加熱されないため、蒸発器22と熱交換した冷風の状態である。 In FIG. 2, in the upper area of the heater core 23 in the first air passage 25 in the air conditioning case 21, a first cold air bypass passage 29 in which the air flows while bypassing the heater core 23 is formed. Similarly, in the upper region of the heater core 23 in the second air passage 26, a second cold air bypass passage 30 in which air flows by bypassing the heater core 23 is formed. The air passing through the cold air bypass passages 29 and 30 is not heated by the heater core 23 and thus is in the state of cold air heat-exchanged with the evaporator 22.
 空調ケース21内において、ヒータコア23の空気下流側には、ヒータコア23に対向して所定間隔を隔てて上下方向に延びる壁面33が形成されている。壁面33は、空調ケース21に一体成形されている。壁面33によって、第1空気通路25において、ヒータコア23の直後から上方に向かう第1温風通路34が形成されている。さらに、壁面33によって、第2空気通路26において、ヒータコア23の直後から上方に向かう第2温風通路35が形成されている。 In the air conditioning case 21, on the air downstream side of the heater core 23, a wall surface 33 facing the heater core 23 and extending in the vertical direction at a predetermined interval is formed. The wall surface 33 is integrally formed with the air conditioning case 21. The wall surface 33 forms, in the first air passage 25, a first hot air passage 34 directed upward from immediately after the heater core 23. Furthermore, in the second air passage 26, a second hot air passage 35 directed upward from immediately after the heater core 23 is formed by the wall surface 33.
 第1温風通路34の下流側には、ヒータコア23の上方部において第1冷風バイパス通路29と合流する第1冷温風混合空間36が形成されている。第2温風通路35の下流側には、ヒータコア23の上方部において第2冷風バイパス通路30と合流する第2冷温風混合空間37が形成されている。 On the downstream side of the first hot air passage 34, a first cold / warm air mixing space 36 which merges with the first cold air bypass passage 29 in the upper part of the heater core 23 is formed. On the downstream side of the second hot air passage 35, a second cold / warm air mixing space 37 which merges with the second cold air bypass passage 30 in the upper part of the heater core 23 is formed.
 第1ドア110と第2ドア120とは、車両上下方向に回動可能である。第1ドア110が閉状態の時には、第1冷風バイパス通路29が開いた状態となり、ヒータコア23には風が送られない状態となる。一方、第1ドア110が全開状態の時には、第1冷風バイパス通路29が閉じた状態となり、風はヒータコア23に送られる状態となる。第1ドア110が、閉状態と全開状態との間の開状態の時には、一部の風は第1冷風バイパス通路29を通過し、残りの風はヒータコア23に送られる状態となる。第2ドア120も第1ドア110と同様に、その開度に応じて風が送られる経路の割合を変更制御する。すなわち、第1ドア110と第2ドア120とは、冷風バイパス通路29、30を通過する風量を調整することで、送風空気の温度を調整する温度調整手段である。言い換えると、第1ドア110と第2ドア120とは、冷風と温風を混ぜ合わせる割合を調整するエアミックスドアである。 The first door 110 and the second door 120 are rotatable in the vertical direction of the vehicle. When the first door 110 is in the closed state, the first cold air bypass passage 29 is in the open state, and the air is not sent to the heater core 23. On the other hand, when the first door 110 is fully open, the first cold air bypass passage 29 is closed, and the wind is sent to the heater core 23. When the first door 110 is in the open state between the closed state and the fully open state, a part of the wind passes through the first cold air bypass passage 29 and the remaining wind is sent to the heater core 23. Similarly to the first door 110, the second door 120 changes and controls the ratio of the path through which the wind is sent according to the opening degree. That is, the first door 110 and the second door 120 are temperature adjusting means for adjusting the temperature of the blowing air by adjusting the amount of air passing through the cold air bypass passages 29 and 30. In other words, the first door 110 and the second door 120 are air mix doors that adjust the mixing ratio of cold air and warm air.
 空調ケース21の上面には、第1空気通路25に対応して、第1デフロスタ開口部38が形成されている。第1デフロスタ開口部38は、第1冷温風混合空間36から温度制御された空調空気が流入する。第1デフロスタ開口部38に流入した空調空気は、デフロスタダクトを介してデフロスタ吹き出し口から車両前面の窓ガラスに向けて吹き出される。空調ケース21の上面には、第2空気通路26に対応して、第2デフロスタ開口部39が形成されている。第2デフロスタ開口部39は、第2冷温風混合空間37から温度制御された空調空気が流入する。第2デフロスタ開口部39に流入した空調空気は、デフロスタダクトを介してデフロスタ吹き出し口から車両前面の窓ガラスに向けて吹き出される。 A first defroster opening 38 is formed on the upper surface of the air conditioning case 21 corresponding to the first air passage 25. The temperature-controlled air from the first cold / warm air mixing space 36 flows into the first defroster opening 38. The conditioned air flowing into the first defroster opening 38 is blown out from the defroster outlet toward the window glass on the front of the vehicle through the defroster duct. A second defroster opening 39 is formed on the upper surface of the air conditioning case 21 corresponding to the second air passage 26. The temperature-controlled conditioned air from the second cold / warm air mixing space 37 flows into the second defroster opening 39. The conditioned air flowing into the second defroster opening 39 is blown out from the defroster outlet toward the window glass on the front of the vehicle through the defroster duct.
 第1デフロスタ開口部38の上流には、第1デフロスタ開口部38を開閉する第1デフロスタドア130aが設けられている。第1デフロスタドア130aは、円柱状の第1回転軸部131aを備えている。第2デフロスタ開口部39の上流には、第2デフロスタ開口部39を開閉する第2デフロスタドア130bが設けられている。第2デフロスタドア130bは、円筒状の第2回転軸部131bを備えている。 A first defroster door 130 a is provided upstream of the first defroster opening 38 for opening and closing the first defroster opening 38. The first defroster door 130a includes a cylindrical first rotary shaft portion 131a. A second defroster door 130 b is provided upstream of the second defroster opening 39 for opening and closing the second defroster opening 39. The second defroster door 130 b includes a cylindrical second rotary shaft portion 131 b.
 デフロスタドア130a、130bは、軸を中心に回動して開度を調整する平板状のドアである。デフロスタドア130a、130bの回転軸部131a、131bは、車両左右方向に沿って、同一直線上に並ぶように配置されている。言い換えると、デフロスタドア130a、130bは同軸ドアである。 The defroster doors 130a and 130b are flat doors that rotate about an axis to adjust the opening degree. The rotating shaft portions 131a and 131b of the defroster doors 130a and 130b are arranged to be aligned on the same straight line in the left-right direction of the vehicle. In other words, the defroster doors 130a, 130b are coaxial doors.
 図1において、空調ケース21の上面部のうち車両後方側の部位には、左右のフェイス開口部43~52が設けられている。空調ケース21において、中央側にはフェイス開口部43、44、49、50が設けられている。左右のリヤフェイス開口部49、50は、センタフェイス開口部43、44よりも仕切り板27に近い中央寄りに位置している。空調ケース21において、中央を挟んで両側にはサイドフェイス開口部45~48が設けられている。空調ケース21において、リヤフェイス開口部49、50よりも後方には補助リヤフェイス開口部51、52が設けられている。フェイス開口部43~52は、乗員の顔を含む上半身にめがけて空調風を吹き出すフェイスダクトにつながる開口部である。 In FIG. 1, left and right face opening portions 43 to 52 are provided in a portion on the vehicle rear side of the upper surface portion of the air conditioning case 21. In the air conditioning case 21, face openings 43, 44, 49, 50 are provided at the center side. The left and right rear face openings 49, 50 are located closer to the center closer to the partition plate 27 than the center face openings 43, 44. In the air conditioning case 21, side face openings 45 to 48 are provided on both sides of the center. In the air conditioning case 21, auxiliary rear face openings 51 and 52 are provided behind the rear face openings 49 and 50. The face openings 43 to 52 are openings that lead to a face duct that blows conditioned air to the upper body including the face of the occupant.
 図2において、空調ケース21には、冷温風混合空間36、37より車両後方側の部位に、左右のフット開口部55、56が設けられている。フット開口部55、56は、乗員の足元に空調風を吹き出させるフットダクトにつながる開口部である。 In FIG. 2, the air conditioning case 21 is provided with left and right foot openings 55, 56 at the rear side of the cold and warm air mixing spaces 36, 37. The foot openings 55, 56 are openings connected to a foot duct that blows conditioned air to the feet of the occupant.
 フェイス開口部43~52およびフット開口部55、56の上流には、各空気通路25、26に対応してフットフェイス切替用ドア140a、140bが設けられている。フットフェイス切替用ドア140a、140bは、フェイス開口部43~52に流れる流路とフット開口部55、56に流れる流路とのどちらの流路に空調風を流すかを切り替えるドアである。 Upstream of the face openings 43 to 52 and the foot openings 55, 56, foot face switching doors 140a, 140b are provided corresponding to the air passages 25, 26, respectively. The foot face switching doors 140a and 140b are doors that switch which of the flow paths flowing to the face openings 43 to 52 and the flow paths flowing to the foot openings 55 and 56 flow the conditioned air.
 フットフェイス切替用ドア140a、140bは、軸を中心に回動して開度を調整する平板状のドアである。フットフェイス切替用ドア140a、140bは、回転駆動する際の軸となる回転軸部141a、141bをそれぞれ備えている。回転軸部141aは、円柱状の回転軸である。回転軸部141bは、円筒状の回転軸である。円柱状の回転軸部141aは、円筒状の回転軸部141bに軸が挿入された状態で車両用空調装置1に装着されている。回転軸部141aと回転軸部141bとは、車両左右方向に沿って、同一直線上に並ぶように配置されている。すなわち、フットフェイス切替用ドア140a、140bは、同軸ドアである。 The foot face switching doors 140a and 140b are flat-shaped doors that rotate about an axis to adjust the opening degree. The foot face switching doors 140a and 140b are respectively provided with rotary shaft portions 141a and 141b serving as axes for rotational driving. The rotating shaft portion 141a is a cylindrical rotating shaft. The rotating shaft portion 141 b is a cylindrical rotating shaft. The cylindrical rotary shaft portion 141a is mounted on the vehicle air conditioner 1 in a state where the shaft is inserted into the cylindrical rotary shaft portion 141b. The rotating shaft portion 141a and the rotating shaft portion 141b are arranged in line in the same straight line along the vehicle left-right direction. That is, the foot face switching doors 140a and 140b are coaxial doors.
 図3において、第2ドア120は、第2回転軸部121と第2平板部122とシール部123とを備えている。第2回転軸部121は、円筒状である。すなわち、第2回転軸部121の内部は、中空である。第2回転軸部121は、筒状の外周面に凹凸形状が形成されている。言い換えると、第2回転軸部121は、部位によって肉厚が異なる形状である。第2回転軸部121は、筒状部に相当する。 In FIG. 3, the second door 120 includes a second rotation shaft portion 121, a second flat plate portion 122, and a seal portion 123. The second rotation shaft portion 121 is cylindrical. That is, the inside of the second rotation shaft portion 121 is hollow. The second rotary shaft portion 121 has an uneven shape formed on a cylindrical outer peripheral surface. In other words, the second rotation shaft portion 121 has a shape that varies in thickness depending on the portion. The second rotation shaft portion 121 corresponds to a cylindrical portion.
 第2平板部122は、略長方形状の板状部材である。第2平板部122は、第2回転軸部121の外周に設けられている。第2平板部122は、第2回転軸部121の一方の端部から第2回転軸部121の長手方向の中央を超える位置までの領域に設けられている。第2回転軸部121と第2平板部122とは連続する一体の部品である。 The second flat plate portion 122 is a substantially rectangular plate-like member. The second flat plate portion 122 is provided on the outer periphery of the second rotation shaft portion 121. The second flat plate portion 122 is provided in a region from one end of the second rotation shaft portion 121 to a position beyond the center of the second rotation shaft portion 121 in the longitudinal direction. The second rotation shaft portion 121 and the second flat plate portion 122 are an integral integral component.
 シール部123は、ゴム製の薄板状部材である。言い換えると、シール部123は、第2回転軸部121と空調ケース21などの別の部材との間に発生する隙間を覆うヒレ状のパッキンである。シール部123は、柔軟に変形することで、当接面に対して接触した状態を維持する。シール部123は、第2回転軸部121を挟んで第2平板部122の反対の位置に設けられている。第2回転軸部121とシール部123とは、別体の部品である。 The seal portion 123 is a thin plate member made of rubber. In other words, the seal portion 123 is a fin-like packing that covers a gap generated between the second rotation shaft portion 121 and another member such as the air conditioning case 21. The seal portion 123 maintains contact with the contact surface by being flexibly deformed. The seal portion 123 is provided at a position opposite to the second flat plate portion 122 with the second rotation shaft portion 121 interposed therebetween. The second rotation shaft portion 121 and the seal portion 123 are separate parts.
 第2回転軸部121は、フランジ部124を備えている。フランジ部124は、第2回転軸部121の中心軸の径方向外側に突出して設けられている。フランジ部124は、円盤状である。フランジ部124は、第2回転軸部121において、第2平板部122の端面とフランジ部124の端面とが同一面上に並ぶように設けられている。 The second rotation shaft portion 121 is provided with a flange portion 124. The flange portion 124 protrudes outward in the radial direction of the central axis of the second rotation shaft portion 121. The flange portion 124 has a disk shape. The flange portion 124 is provided in the second rotation shaft portion 121 so that the end surface of the second flat plate portion 122 and the end surface of the flange portion 124 are aligned on the same plane.
 第2回転軸部121は、側面に貫通穴125を備えている。貫通穴125は、第2回転軸部121の内側と外側とを貫通している。貫通穴125は、フランジ部124の近くに設けられている。貫通穴125は、正方形状の開口である。 The second rotation shaft portion 121 is provided with a through hole 125 on the side surface. The through hole 125 penetrates the inside and the outside of the second rotation shaft portion 121. The through hole 125 is provided near the flange portion 124. The through holes 125 are square openings.
 図4において、第2ドア120は、貫通穴125を2つ備えている。2つの貫通穴125は、第2回転軸部121の中心軸の周方向に並んで設けられている。すなわち、2つの貫通穴125は、フランジ部124から同じ距離に設けられている。2つの貫通穴125は、第2回転軸部121を挟んで第2平板部122とは反対側に設けられている。 In FIG. 4, the second door 120 is provided with two through holes 125. The two through holes 125 are provided side by side in the circumferential direction of the central axis of the second rotation shaft portion 121. That is, the two through holes 125 are provided at the same distance from the flange portion 124. The two through holes 125 are provided on the opposite side to the second flat plate portion 122 with the second rotation shaft portion 121 interposed therebetween.
 貫通穴125の数は、2つに限られない。すなわち、3つ以上の貫通穴125を設けるようにしてもよい。あるいは、周方向に延びる1つの貫通穴125を設けるようにしてもよい。複数の貫通穴125を周方向に並んだ位置に設けるのではなく、第2回転軸部121の長手方向にずれた位置に設けるようにしてもよい。 The number of through holes 125 is not limited to two. That is, three or more through holes 125 may be provided. Alternatively, one through hole 125 extending in the circumferential direction may be provided. The plurality of through holes 125 may not be provided at positions aligned in the circumferential direction, but may be provided at positions displaced in the longitudinal direction of the second rotation shaft portion 121.
 図5において、第1ドア110と第2ドア120とは、仕切り板27を間に挟んだ状態で軸方向に並んで設けられている。円柱状の第1回転軸部111は、円筒状の第2回転軸部121に挿入された状態である。すなわち、第1ドア110と第2ドア120とは、回転駆動の中心軸が等しい位置に存在する同軸ドアである。 In FIG. 5, the first door 110 and the second door 120 are provided side by side in the axial direction with the partition plate 27 interposed therebetween. The cylindrical first rotary shaft portion 111 is in a state of being inserted into the cylindrical second rotary shaft portion 121. That is, the 1st door 110 and the 2nd door 120 are coaxial doors which exist in the position where the central axis of rotation drive is equal.
 第1ドア110は、第1回転軸部111と第1平板部112とを備えている。第1回転軸部111は、円柱状である。第1平板部112は、略長方形状の板状部材である。第1平板部112は、第1回転軸部111の外周に設けられている。 The first door 110 includes a first rotating shaft portion 111 and a first flat plate portion 112. The first rotation shaft portion 111 is cylindrical. The first flat plate portion 112 is a substantially rectangular plate-like member. The first flat plate portion 112 is provided on the outer periphery of the first rotation shaft portion 111.
 第1ドア110は、第1軸受け部118と中間軸受け部28とによって保持されて空調ケース21に取り付けられている。すなわち、第1軸受け部118は、第1回転軸部111の外周を部分的に覆った状態で第1回転軸部111と当接して保持している。第2ドア120は、第2軸受け部128によって保持されて空調ケース21に取り付けられている。すなわち、第2軸受け部128は、第2回転軸部121の外周を部分的に覆った状態で第2回転軸部121と当接して保持している。第1軸受け部118と第2軸受け部128とは、空調ケース21に一体に設けられている。第2軸受け部128は、軸受け部に相当する。 The first door 110 is attached to the air conditioning case 21 by being held by the first bearing 118 and the intermediate bearing 28. That is, the first bearing portion 118 is held in contact with the first rotation shaft portion 111 in a state of partially covering the outer periphery of the first rotation shaft portion 111. The second door 120 is held by the second bearing portion 128 and attached to the air conditioning case 21. That is, the second bearing portion 128 is held in contact with the second rotation shaft portion 121 in a state of partially covering the outer periphery of the second rotation shaft portion 121. The first bearing portion 118 and the second bearing portion 128 are integrally provided in the air conditioning case 21. The second bearing portion 128 corresponds to a bearing portion.
 フランジ部124と第2軸受け部128とは当接した状態である。すなわち、フランジ部124と第2軸受け部128とが接触することで、第2回転軸部121の軸方向への移動が規制されている。言い換えると、フランジ部124と第2軸受け部128との当接により、第2ドア120が軸方向に位置ズレを起こすことを防いでいる。 The flange portion 124 and the second bearing portion 128 are in contact with each other. That is, the movement of the second rotary shaft portion 121 in the axial direction is restricted by the contact between the flange portion 124 and the second bearing portion 128. In other words, the contact between the flange portion 124 and the second bearing portion 128 prevents the second door 120 from being displaced in the axial direction.
 図6において、第2回転軸部121の内部には、第1回転軸部111が挿入された状態である。言い換えると、第1回転軸部111の径方向外側に第2回転軸部121が位置している。第2回転軸部121は、同軸度が高い筒状である。すなわち、第2回転軸部121の2つ端部の円形状において、それぞれの中心軸が略一致している。言い換えると、2つの端部の中心軸がずれておらず、内側に歪みのない真っすぐな円筒形状である。 In FIG. 6, the first rotation shaft portion 111 is inserted into the second rotation shaft portion 121. In other words, the second rotation shaft portion 121 is located radially outward of the first rotation shaft portion 111. The second rotation shaft portion 121 has a cylindrical shape with high coaxiality. That is, in the circular shape of the two end portions of the second rotation shaft portion 121, the central axes thereof substantially coincide with each other. In other words, the central axes of the two ends are not offset, and they have a straight cylindrical shape with no distortion inside.
 貫通穴125は、第2軸受け部128によって、周囲が覆われている。すなわち、貫通穴125に対して空気などの流体が外から入り込みにくい状態である。さらに、第2軸受け部128は、第2軸受け部128の周方向に一周連続して貫通穴125を覆っている。すなわち、第2軸受け部128は、第2ドア120が開閉のために回動した場合であっても、常に貫通穴125を外側から覆った状態を維持している。 The through hole 125 is surrounded by the second bearing 128. That is, the fluid such as air is unlikely to enter the through hole 125 from the outside. Furthermore, the second bearing portion 128 covers the through hole 125 continuously for one round in the circumferential direction of the second bearing portion 128. That is, even when the second door 120 is pivoted for opening and closing, the second bearing portion 128 always maintains the state in which the through hole 125 is covered from the outside.
 以下に、射出成形による第2ドア120の製造方法について説明する。図7において、第2ドア120は、第1外側金型71、第2外側金型72、内側金型73、保持金型74の4つの金型を用いて射出成形により製造される。第1外側金型71と第2外側金型72とは、外側金型に相当する。 Hereinafter, a method of manufacturing the second door 120 by injection molding will be described. In FIG. 7, the second door 120 is manufactured by injection molding using four molds of a first outer mold 71, a second outer mold 72, an inner mold 73, and a holding mold 74. The first outer mold 71 and the second outer mold 72 correspond to an outer mold.
 第1外側金型71と第2外側金型72とは、互いに対向した位置関係にある。外側金型71、72は、第2回転軸部121の円筒形状の外側を形成する金型である。第1外側金型71は、射出成形時に移動しないキャビティ金型である。第1外側金型71は、第2外側金型72との対向面に第1凹部75aを備えている。第1外側金型71は、樹脂の注入経路となるスプルー77と樹脂の注入口となるゲート78とを備えている。第2外側金型72は、射出成形時に移動するコア金型である。第2外側金型72は、第1外側金型71との対向面に第2凹部75bを備えている。第1凹部75aと第2凹部75bとは互いに対向した位置に設けられている。第1凹部75aと第2凹部75bとは、第2回転軸部121におけるフランジ部124を形成するための金型形状である。第2外側金型72は、第2凸部172を備えている。第2凸部172は、第2外側金型72の第1外側金型71と対向する面において、突出して設けられている。第2凸部172は、第2回転軸部121における貫通穴125を形成する金型形状である。 The first outer mold 71 and the second outer mold 72 are in a positional relationship facing each other. The outer molds 71 and 72 are molds that form the cylindrical outer side of the second rotary shaft portion 121. The first outer mold 71 is a cavity mold that does not move during injection molding. The first outer mold 71 is provided with a first recess 75 a on the surface facing the second outer mold 72. The first outer mold 71 includes a sprue 77 serving as a resin injection path and a gate 78 serving as a resin injection port. The second outer mold 72 is a core mold that moves during injection molding. The second outer mold 72 is provided with a second recess 75 b on the surface facing the first outer mold 71. The first recess 75a and the second recess 75b are provided at positions facing each other. The first recess 75 a and the second recess 75 b have a mold shape for forming the flange portion 124 of the second rotation shaft portion 121. The second outer mold 72 is provided with a second convex portion 172. The second convex portion 172 is provided so as to project on the surface of the second outer mold 72 facing the first outer mold 71. The second convex portion 172 has a mold shape for forming the through hole 125 in the second rotation shaft portion 121.
 内側金型73と保持金型74とは、互いに棒状部173の軸方向に対向した位置関係にある。内側金型73は、第2回転軸部121の円筒形状の内側を形成する金型である。内側金型73と保持金型74とは、射出成形時に移動するコア金型である。内側金型73は、棒状部173を備えている。棒状部173は、円柱状である。棒状部173は、内側金型73の保持金型74と対向する面から垂直に突出して設けられている。保持金型74は、保持凹部174を備えている。棒状部173と保持凹部174とは対向している。 The inner mold 73 and the holding mold 74 are in a positional relationship facing each other in the axial direction of the rod portion 173. The inner mold 73 is a mold that forms the cylindrical inner side of the second rotation shaft portion 121. The inner mold 73 and the holding mold 74 are core molds that move during injection molding. The inner mold 73 is provided with a rod-like portion 173. The rod-like portion 173 is cylindrical. The rod-like portion 173 is provided so as to vertically project from the surface of the inner mold 73 opposed to the holding mold 74. The holding mold 74 is provided with a holding recess 174. The rod-like portion 173 and the holding recess 174 face each other.
 位置が固定されているキャビティ金型である第1外側金型71に対して接近するように移動可能なコア金型72~74を移動させる。より具体的には、第2外側金型72を上方向に垂直移動させて第1外側金型71に接近させる。内側金型73を右方向に平行移動させて第1外側金型71に接近させる。保持金型74を左方向に平行移動させて第1外側金型71に接近させる。移動可能な金型72~74であるコア金型同士をピンで接続することで、コア金型のスライド移動を同時に行い、キャビティ金型に対してコア金型を同時に接近させる。 The movable core molds 72 to 74 are moved closer to the first outer mold 71, which is a cavity mold fixed in position. More specifically, the second outer mold 72 is vertically moved upward to approach the first outer mold 71. The inner mold 73 is translated rightward to approach the first outer mold 71. The holding mold 74 is translated leftward to approach the first outer mold 71. By connecting the core molds which are movable molds 72 to 74 with pins, sliding movement of the core molds is simultaneously performed, and the core molds are simultaneously brought close to the cavity molds.
 金型72~74の移動方向は垂直方向や水平方向に限られず、斜め方向などの自由な方向に移動して第1外側金型71に接近するようにしてもよい。また、金型72~74をピンで接続して連動させ、移動を同時に行うのではなく、別々に移動させてもよい。すなわち、第1外側金型71に対して第2外側金型72を接近させた後に、内側金型73を移動させるなどしてもよい。 The moving direction of the molds 72 to 74 is not limited to the vertical direction or the horizontal direction, and may be moved in a free direction such as an oblique direction to approach the first outer mold 71. Also, the molds 72 to 74 may be connected by pins and interlocked, and may not be moved simultaneously but moved separately. That is, after the second outer mold 72 is brought close to the first outer mold 71, the inner mold 73 may be moved.
 図8に示す工程は、型締め工程である。型締め工程では、第1外側金型71、第2外側金型72、内側金型73、保持金型74の4つの金型が接触して組み合わされた状態で保持されている。型締めされた状態の金型において、金型同士の間に空洞部76が形成されている。空洞部76は、第2ドア120の形状に相当する空洞である。型締め工程では、金型同士が空洞部76以外の隙間が発生することなく接触するように外から圧力を加えている。 The process shown in FIG. 8 is a mold clamping process. In the mold clamping process, the four molds of the first outer mold 71, the second outer mold 72, the inner mold 73, and the holding mold 74 are held in contact and combined. In the mold in a clamped state, a cavity 76 is formed between the molds. The cavity 76 is a cavity corresponding to the shape of the second door 120. In the mold clamping process, pressure is applied from the outside so that the molds come into contact without any gap other than the hollow portion 76 being generated.
 棒状部173の先端は、保持凹部174に挿入された状態である。言い換えると、棒状部173が保持凹部174によって保持されて位置決めされた状態である。棒状部173は、第2凸部172と接触している。第2凸部172は、棒状部173を挟んでゲート78が配されている側とは反対側に設けられている。棒状部173は、先端が保持凹部174に挿入されて側面が第2凸部172と接触した状態において、歪みのない真っすぐな円柱形状である。言い換えると、棒状部173が反ったり撓んだりしていない状態である。 The tip end of the rod-like portion 173 is in a state of being inserted into the holding recess 174. In other words, the rod portion 173 is held by the holding recess 174 and positioned. The rod-like portion 173 is in contact with the second convex portion 172. The second convex portion 172 is provided on the side opposite to the side where the gate 78 is disposed with the rod portion 173 interposed therebetween. The rod-like portion 173 has a straight cylindrical shape with no distortion in a state where the tip end is inserted into the holding recess 174 and the side surface is in contact with the second convex portion 172. In other words, the rod-like portion 173 is not bent or bent.
 図9において、金型同士の間には、第2ドア120を形成するための空洞部76が形成されている。空洞部76は、第2ドア120の第2平板部122や第2回転軸部121などの一体成形によって形成される部分を連続した空洞としている。第1外側金型71には、樹脂を充填する経路となるスプルー77が形成されている。空洞部76とスプルー77とは、ゲート78を介して接続されている。ゲート78は、第2ドア120の第2平板部122が形成される部分に設けられている。金型は、樹脂が流れ込む内側が所定温度に加熱された状態である。 In FIG. 9, a cavity 76 for forming the second door 120 is formed between the dies. The hollow portion 76 is a continuous hollow portion formed by integrally forming the second flat plate portion 122 and the second rotation shaft portion 121 of the second door 120. The first outer mold 71 is formed with a sprue 77 serving as a path for filling a resin. The cavity 76 and the sprue 77 are connected via the gate 78. The gate 78 is provided at a portion where the second flat plate portion 122 of the second door 120 is formed. The mold is in a state where the inside into which the resin flows is heated to a predetermined temperature.
 第1凸部171は、第1外側金型71において、空洞部76を形成するために凹んでいる部分から突出した出っ張り形状である。第1凸部171は、型締めされた状態で棒状部173と接触して棒状部173を支持している。第1凸部171と棒状部173との接触面は、円柱状の棒状部173の外周面に沿った曲面形状である。すなわち、第1凸部171と棒状部173とは、点ではなく面で接触している。第1凸部171は、棒状部173の真下ではなく斜め下の位置に設けられている。言い換えると、第1凸部171は、棒状部173よりもゲート78から離れた位置に設けられている。すなわち、第1凸部171は、棒状部173が重力方向である下方向への位置ズレを起こすことを抑制している。言い換えると、棒状部173がゲート78から離れる方向に位置ズレや撓みなどの変形を起こすことを抑制している。さらに、第1凸部171は、射出工程において型締め工程の状態に比べて棒状部173が第1外側金型71に近づくことを抑制している。 The first convex portion 171 has a projecting shape which protrudes from a portion which is recessed to form the hollow portion 76 in the first outer mold 71. The first convex portion 171 is in contact with the rod-like portion 173 in a clamped state to support the rod-like portion 173. The contact surface between the first convex portion 171 and the rod-like portion 173 has a curved surface shape along the outer peripheral surface of the cylindrical rod-like portion 173. That is, the first convex portion 171 and the rod-like portion 173 are in contact not at a point but at a surface. The first convex portion 171 is provided not obliquely below the rod portion 173 but obliquely below. In other words, the first convex portion 171 is provided at a position farther from the gate 78 than the rod-like portion 173. That is, the first convex portion 171 suppresses the rod portion 173 from causing a positional deviation in the downward direction, which is the gravity direction. In other words, the bar-like portion 173 is prevented from being deformed in the direction away from the gate 78, such as displacement or bending. Furthermore, the first convex portion 171 suppresses the rod-like portion 173 from approaching the first outer mold 71 in the injection process as compared to the state of the mold clamping process.
 第2凸部172は、第2外側金型72において、空洞部76を形成するために凹んでいる部分から突出した出っ張り形状である。第2凸部172は、型締めされた状態で棒状部173と接触して棒状部173を支持している。第2凸部172における棒状部173との接触面は、円柱状の棒状部173の外周面に沿った曲面形状である。すなわち、第2凸部172と棒状部173とは、点ではなく面で接触している。第2凸部172は、棒状部173の真下ではなく斜め下の位置に設けられている。言い換えると、第2凸部172は、棒状部173よりもゲート78から離れた位置に設けられている。すなわち、第2凸部172は、棒状部173が重力方向である下方向への位置ズレを起こすことを抑制している。言い換えると、棒状部173がゲート78から離れる方向に位置ズレや反りなどの変形を起こすことを抑制している。さらに、第2凸部172は、射出工程において型締め工程の状態に比べて棒状部173が第2外側金型72に近づくことを抑制している。 The second convex portion 172 has a protruding shape which protrudes from a portion which is recessed to form the hollow portion 76 in the second outer mold 72. The second convex portion 172 is in contact with the rod-like portion 173 in a clamped state and supports the rod-like portion 173. The contact surface of the second convex portion 172 with the rod-like portion 173 has a curved shape along the outer circumferential surface of the cylindrical rod-like portion 173. That is, the second convex portion 172 and the rod-like portion 173 are in contact not at a point but at a surface. The second convex portion 172 is provided not obliquely below the rod portion 173 but obliquely below. In other words, the second convex portion 172 is provided at a position farther from the gate 78 than the rod-like portion 173. That is, the second convex portion 172 suppresses that the rod-like portion 173 causes positional deviation in the downward direction, which is the gravity direction. In other words, the bar-like portion 173 is prevented from being deformed in the direction away from the gate 78, such as displacement or warpage. Furthermore, the second convex portion 172 suppresses the rod-like portion 173 from approaching the second outer mold 72 in the injection process as compared to the state of the mold clamping process.
 第1凸部171と第2凸部172とは、それぞれの凸部171、172と棒状部173との接触部分が、棒状部173の周方向に並ぶように設けられている。凸部171、172と棒状部173との接触部分は、ゲート78に近い面である棒状部173の上面ではなく、ゲート78から遠い面である棒状部173の下面に位置している。言い換えると、凸部171、172は、棒状部173の表面において、ゲート78とは反対側の面に接触して棒状部173を支持している。第1凸部171と第2凸部172とは、棒状部173が下方向に位置ズレを起こすことを抑制している。言い換えると、棒状部173がゲート78から離れる方向に位置ズレや変形を起こすことを抑制している。第1凸部171と第2凸部172とは、棒状部173が互いの外側金型71、72に近づく方向に位置ズレを起こすことを抑制している。すなわち、第1凸部171と第2凸部172とは、棒状部173が水平方向に位置ズレを起こすことを抑制している。第1凸部171と第2凸部172とは、凸部に相当する。 The first convex portion 171 and the second convex portion 172 are provided such that the contact portions between the convex portions 171 and 172 and the rod-like portion 173 are arranged in the circumferential direction of the rod-like portion 173. The contact portion between the convex portions 171 and 172 and the rod-like portion 173 is located not on the upper surface of the rod-like portion 173 which is a surface close to the gate 78 but on the lower surface of the rod-like portion 173 which is a surface far from the gate 78. In other words, the convex portions 171 and 172 are in contact with the surface of the rod portion 173 opposite to the gate 78 and support the rod portion 173. The first convex portion 171 and the second convex portion 172 suppress the positional deviation of the rod portion 173 downward. In other words, the rod-like portion 173 is prevented from being displaced or deformed in the direction away from the gate 78. The first convex portion 171 and the second convex portion 172 suppress the positional deviation in the direction in which the rod-like portions 173 approach the outer molds 71 and 72, respectively. That is, the first convex portion 171 and the second convex portion 172 suppress the positional deviation of the rod portion 173 in the horizontal direction. The first convex portion 171 and the second convex portion 172 correspond to a convex portion.
 外側金型71、72に設けられる凸部は、第1凸部171と第2凸部172との2か所に設けられている場合に限られない。すなわち、3つ以上の凸部を設けるようにしてもよい。あるいは、棒状部173の周方向に延びる1つの凸部を設けて棒状部173の水平方向と下方向への位置ズレを抑制してもよい。 The convex part provided in the outer side molds 71 and 72 is not limited to the case where it is provided in two places of the 1st convex part 171 and the 2nd convex part 172. FIG. That is, three or more convex portions may be provided. Alternatively, one protrusion extending in the circumferential direction of the rod-shaped portion 173 may be provided to suppress positional deviation of the rod-shaped portion 173 in the horizontal direction and the lower direction.
 図10に示す工程は、射出工程である。射出工程では、高温に熱して溶融した樹脂を空洞部76に向けて射出充填する。すなわち、スプルー77から高温の溶融樹脂を注入してゲート78を介して空洞部76に充填する。溶融樹脂は、射出されることでゲート78に近い位置から次々に空洞部76内に押し出されて空洞部76内を移動する。言い換えると、溶融樹脂は、射出されることで徐々にゲート78から離れた位置まで移動する。金型の内側が所定温度に加熱されているため、溶融樹脂が低粘度の状態を維持して空洞部76を移動しやすい。 The process shown in FIG. 10 is an injection process. In the injection process, the resin heated to a high temperature and melted is injected and filled toward the cavity 76. That is, high temperature molten resin is injected from the sprue 77 and filled in the cavity 76 through the gate 78. The molten resin is injected and pushed out into the cavity 76 one after another from a position close to the gate 78 to move in the cavity 76. In other words, the molten resin gradually moves to a position away from the gate 78 by being injected. Since the inside of the mold is heated to a predetermined temperature, the molten resin can easily move in the cavity 76 while maintaining the low viscosity state.
 溶融樹脂は、射出されて充填されていく過程で、矢印B1に示す方向に進む。すなわち、溶融樹脂は、棒状部173に対してゲート78から離れる方向に射出圧を加えることとなる。言い換えると、棒状部173は、溶融樹脂の射出圧により上から下に押される力が加えられる。このため、溶融樹脂から受ける射出圧によって棒状部173が下向きに反った形状に変形しようとする。 The molten resin proceeds in the direction indicated by arrow B1 in the process of being injected and filled. That is, the molten resin applies an injection pressure to the rod portion 173 in a direction away from the gate 78. In other words, the rod portion 173 is applied with a force that is pushed downward from above by the injection pressure of the molten resin. Therefore, due to the injection pressure received from the molten resin, the rod-like portion 173 tends to be deformed in a downwardly curved shape.
 しかしながら、棒状部173には、凸部171、172から射出圧に抗するように押圧力が加えられる。言い換えると、棒状部173には、ゲート78とは反対側に設けられた凸部171、172の押圧力により下から上に押し返す力が加えられる。言い換えると、棒状部173は、第1凸部171から矢印C1に示す方向に押圧力が加えられ、第2凸部172から矢印C2に示す方向に押圧力が加えられる。矢印C1に示す方向と矢印C2に示す方向とは、それぞれ棒状部173の中心軸に向かう方向である。このため、凸部171、172によって棒状部173が押し返されることになり、棒状部173が反ったり撓んだりすることが抑制される。すなわち、棒状部173は、射出工程において変形のない真っすぐな円柱形状が維持されやすい。 However, a pressing force is applied to the rod-like portion 173 from the projections 171 and 172 so as to resist the injection pressure. In other words, the pressing force of the convex portions 171 and 172 provided on the side opposite to the gate 78 applies a force that pushes the rod portion 173 back from the lower side to the upper side. In other words, a pressing force is applied to the rod-like portion 173 in the direction indicated by the arrow C1 from the first protrusion 171, and a pressing force is applied from the second protrusion 172 in the direction indicated by the arrow C2. The direction indicated by the arrow C1 and the direction indicated by the arrow C2 are directions toward the central axis of the rod-like portion 173, respectively. For this reason, the rod-shaped portion 173 is pushed back by the convex portions 171 and 172, and the bending and bending of the rod-shaped portion 173 are suppressed. That is, the rod-like portion 173 tends to maintain a straight cylindrical shape without deformation in the injection process.
 射出工程により、溶融樹脂が空洞部76に充填された後、溶融樹脂の充填を停止し、金型を冷却する。金型を冷却することで樹脂を融点以下の温度まで冷やして固める。これにより、樹脂が固化して金型の内部で第2ドア120が形成される。 After the molten resin is filled into the cavity 76 by the injection process, the filling of the molten resin is stopped and the mold is cooled. By cooling the mold, the resin is cooled and solidified to a temperature below the melting point. Thereby, the resin is solidified and the second door 120 is formed inside the mold.
 図11に示す工程は、型開き工程である。型開き工程では、金型を開いて樹脂成形品である第2ドア120を取り出す。すなわち、内側金型73と保持金型74との当接状態を解除して棒状部173を筒状の第2回転軸部121から抜くとともに、第2外側金型72を移動させることで金型同士を引き離す。これにより、射出成形された第2ドア120を金型から外して取り出す。 The process shown in FIG. 11 is a mold opening process. In the mold opening process, the mold is opened and the second door 120 which is a resin molded product is taken out. That is, while releasing the contact between the inner mold 73 and the holding mold 74 and removing the rod-like portion 173 from the cylindrical second rotary shaft portion 121, the mold is moved by moving the second outer mold 72. Separate from each other. Thereby, the injection-molded second door 120 is removed from the mold and taken out.
 上述した実施形態によると、射出工程において、棒状部173を有する内側金型73は、樹脂部材の射出により押される射出圧に抗するように内側金型73を押し返す押圧力を凸部171、172から受ける。言い換えると、棒状部173は、凸部171、172から押圧力を受けて、射出工程において型締め工程の状態に比べて棒状部173の位置や形状が変化することが抑制される。このため、内側金型73の変形を抑制し、同軸度の高い第2ドア120を安定して製造することができる。したがって、同軸度の高い空調装置用のドアを用いて空調を行うことができる。言い換えると、空調装置用のドアにおいて、ドアの回動にともなう擦れによる異音の発生や異常負荷による作動力の過大や開度調整不良を引き起こしにくい。 According to the above-described embodiment, in the injection step, the inner mold 73 having the rod-like portion 173 pushes the pressing force for pushing back the inner mold 73 against the injection pressure pushed by the injection of the resin member. Receive from In other words, the rod-like portion 173 receives the pressing force from the convex portions 171 and 172, so that the position and the shape of the rod-like portion 173 are prevented from being changed in the injection process as compared with the state of the mold clamping process. Therefore, the deformation of the inner mold 73 can be suppressed, and the second door 120 with high coaxiality can be stably manufactured. Therefore, air conditioning can be performed using a door for an air conditioner having a high degree of coaxiality. In other words, in the door for an air conditioner, the generation of abnormal noise due to the friction caused by the rotation of the door, the excessive operation force due to the abnormal load, and the poor opening adjustment are unlikely to occur.
 凸部171、172は、棒状部173の表面において、ゲート78とは反対側の面に接触している。言い換えると、このため、棒状部173に対してゲート78から遠ざかる方向に加えられる射出圧に対して抗するように押圧力を加えることができる。言い換えると、ゲート78に向かって近づく方向に押圧力を加えることができる。このため、ゲート78から遠ざかる方向に撓んでしまうことを精度よく抑制することができる。また、凸部171、172は、棒状部173を下から支持している。このため、棒状部173について、重力に対しても抗するように押圧力を加えることができる。すなわち、棒状部173が重力方向の下向きに撓むように変形することを抑制することができる。 The protrusions 171 and 172 are in contact with the surface of the rod portion 173 opposite to the gate 78. In other words, therefore, the pressing force can be applied to the rod-like portion 173 so as to resist the injection pressure applied in the direction away from the gate 78. In other words, pressing force can be applied in a direction approaching the gate 78. Therefore, bending in a direction away from the gate 78 can be accurately suppressed. Moreover, the convex parts 171 and 172 support the rod-like part 173 from the bottom. Therefore, a pressing force can be applied to the rod portion 173 so as to resist gravity. That is, it is possible to suppress the rod portion 173 from being deformed so as to bend downward in the gravity direction.
 射出工程において、棒状部173を有する内側金型73が複数の第2凸部172から押圧力を受ける。このため、内側金型73が複数の第2凸部172から分散して押圧力を受けることとなる。したがって、内側金型73の1か所に押圧力が集中してしまうことを防ぐことができる。すなわち、内側金型73の変形をより効果的に抑制することができる。 In the injection step, the inner mold 73 having the rod-like portion 173 receives a pressing force from the plurality of second convex portions 172. For this reason, the inner mold 73 disperses from the plurality of second convex portions 172 and receives a pressing force. Therefore, it is possible to prevent the pressing force from being concentrated on one place of the inner mold 73. That is, the deformation of the inner mold 73 can be suppressed more effectively.
 第2凸部172は、棒状部173を有する内側金型73に対して周方向に並んで設けられている。このため、射出圧を受ける方向が途中で変わった場合などであっても、射出圧に抗する複数の方向に内側金型73を押し返しやすい。したがって、第2回転軸部121の同軸度を安定して高めることができる。 The second convex portion 172 is provided side by side in the circumferential direction with respect to the inner mold 73 having the rod-like portion 173. Therefore, even if the direction in which the injection pressure is received changes in the middle, the inner mold 73 can be easily pushed back in a plurality of directions against the injection pressure. Therefore, the coaxiality of the 2nd rotating shaft part 121 can be raised stably.
 貫通穴125は、第2軸受け部128によって周囲が覆われている。このため、第2ドア120が空調ケース21に組み付けられた状態で貫通穴125を通過して風が漏れ出してしまうことを抑制できる。したがって、風漏れによる風量の低下や風漏れによる空調風の温度低下などの問題の発生を抑制し、車両用空調装置1として適切な空調を実現できる。 The through hole 125 is surrounded by the second bearing portion 128. For this reason, it can suppress that a wind leaks through the through hole 125 in the state by which the 2nd door 120 was assembled | attached to the air-conditioning case 21. FIG. Therefore, it is possible to suppress the occurrence of problems such as a decrease in air volume due to a wind leak and a temperature decrease in air conditioning wind due to a wind leak, and to realize appropriate air conditioning as the vehicle air conditioner 1.
 同軸度の高い第2ドア120は、蒸発器22とヒータコア23との間に配置されている。すなわち、第2ドア120は、冷房時と暖房時とで大きな温度差が生じる位置に配置されている。このため、温度低下による樹脂材料の熱収縮による内径の縮小や、温度上昇による樹脂材料の熱膨張による内径の拡大など、温度変化によって第2回転軸部121の内径が変化した場合であっても、高い同軸度を維持しやすい。したがって、第1ドア110と第2ドア120との擦れによる異音の発生や、開度調整の不良を起こしにくい。 The highly coaxial second door 120 is disposed between the evaporator 22 and the heater core 23. That is, the second door 120 is disposed at a position where a large temperature difference occurs between cooling and heating. For this reason, even if the inner diameter of the second rotary shaft portion 121 changes due to temperature change, such as reduction of the inner diameter due to thermal contraction of the resin material due to temperature decrease or expansion of the inner diameter due to thermal expansion of the resin material due to temperature increase. , Easy to maintain high coaxiality. Therefore, it is hard to produce generation | occurrence | production of the noise by rubbing with the 1st door 110 and the 2nd door 120, and the defect of opening adjustment.
 上述した製造方法を用いて製造する空調装置用ドアは、第2ドア120に限られない。すなわち、デフロスタドア130やフットフェイス切替ドア140や内外気切替ドアなどのドアを上述の製造方法を用いて製造してもよい。言い換えると、上述した空調装置用ドアの製造方法は、筒状の軸を有する同軸ドアに対して広く適用可能である。また、このドアを用いる空調装置としては車両用に限られない。すなわち家庭用の空調装置や業務用の空調装置などの乗り物に搭載されない空調装置に対しても広く適用可能である。 The air conditioner door manufactured using the manufacturing method described above is not limited to the second door 120. That is, the doors such as the defroster door 130, the foot face switching door 140, and the inside / outside air switching door may be manufactured using the above-described manufacturing method. In other words, the manufacturing method of the door for air conditioners mentioned above is widely applicable to the coaxial door which has a cylindrical axis. Moreover, as an air conditioner using this door, it is not restricted to vehicles. That is, the present invention can be widely applied to air conditioners not installed in vehicles such as home air conditioners and commercial air conditioners.
 第2実施形態
 この実施形態は、先行する実施形態を基礎的形態とする変形例である。この実施形態では、貫通穴225が第2回転軸部221の中央に設けられている。
Second Embodiment This embodiment is a modification based on the preceding embodiment. In this embodiment, the through hole 225 is provided at the center of the second rotation shaft portion 221.
 図12において、第2回転軸部221は、第2平板部122の倍以上の長さを持つ円筒状である。第2回転軸部221は、側面に貫通穴225を備えている。貫通穴225は、第2回転軸部221の長手方向における中間に設けられている。言い換えると、貫通穴225から第2回転軸部221の長手方向の中央までの距離は、貫通穴225から第2回転軸部221の端部までの距離よりも小さい。 In FIG. 12, the second rotation shaft portion 221 has a cylindrical shape having a length twice or more that of the second flat plate portion 122. The second rotation shaft portion 221 is provided with a through hole 225 on the side surface. The through hole 225 is provided at the middle in the longitudinal direction of the second rotation shaft portion 221. In other words, the distance from the through hole 225 to the longitudinal center of the second rotation shaft 221 is smaller than the distance from the through hole 225 to the end of the second rotation shaft 221.
 図13において、第2ドア220は、第2軸受け部128によって保持されている。すなわち、第2軸受け部128は、第2回転軸部221の長手方向の中央において、第2回転軸部221の外周を一周にわたって覆った状態で第2回転軸部221と当接している。言い換えると、第2軸受け部128は、貫通穴225を外側から覆っている。 In FIG. 13, the second door 220 is held by the second bearing portion 128. That is, the second bearing portion 128 is in contact with the second rotation shaft portion 221 in a state where the outer periphery of the second rotation shaft portion 221 is covered over the entire circumference at the center in the longitudinal direction of the second rotation shaft portion 221. In other words, the second bearing portion 128 covers the through hole 225 from the outside.
 図14において、金型は型締めされた状態である。第1外側金型71は、第2外側金型72との対向面に第1凹部275aを備えている。第2外側金型72は、第1外側金型71との対向面に第2凹部275bを備えている。第1凹部275aと第2凹部275bとは互いに対向した位置に設けられている。第2外側金型72は、第2凸部272を備えている。第2凸部272は、第2外側金型72の第1外側金型71と対向する面において、突出して設けられている。 In FIG. 14, the mold is in a clamped state. The first outer mold 71 is provided with a first recess 275 a on the surface facing the second outer mold 72. The second outer mold 72 is provided with a second recess 275 b on the surface facing the first outer mold 71. The first recess 275 a and the second recess 275 b are provided at mutually opposing positions. The second outer mold 72 is provided with a second convex portion 272. The second convex portion 272 is provided so as to protrude on the surface of the second outer mold 72 opposed to the first outer mold 71.
 棒状部173は、保持凹部174によって保持されて位置決めされた状態である。棒状部173は、第2凸部272と接触している。すなわち、棒状部173は、中間部273と先端部分との2か所において、第2外側金型72と保持金型74とのそれぞれの金型によって支持されている。棒状部173は、先端が保持凹部174に挿入されて、側面が第2凸部272と接触した状態において歪みのない真っすぐな円柱形状である。すなわち、棒状部173が反ったり撓んだりしていない状態である。 The rod-like portion 173 is in a state of being held and positioned by the holding recess 174. The rod-like portion 173 is in contact with the second convex portion 272. That is, the rod-like portion 173 is supported by the second outer mold 72 and the holding mold 74 at two points of the middle portion 273 and the tip portion. The rod-like portion 173 has a straight cylindrical shape with no distortion when the tip end is inserted into the holding recess 174 and the side surface is in contact with the second protrusion 272. That is, the rod-like portion 173 is not bent or bent.
 第2凸部272は、棒状部173における一方の固定端から他方の固定端までを三等分した場合の真ん中に位置する中間部273に当接するように設けられている。すなわち、内側金型73における棒状部173の固定端から中間部273までの距離Waと、中間部273の幅Wbと、中間部273から棒状部173における保持金型74と当接している固定端までの距離Wcは等しい大きさである。第2凸部272は、中間部273の中でも特に中央に近い位置に当接している。第2凸部272は、凸部に相当する。中間部273の真ん中が中央部分であり、中央部分は棒状部173の両側の固定端からの距離が等しくなる位置である。 The second convex portion 272 is provided so as to abut on an intermediate portion 273 positioned in the middle when one fixed end to the other fixed end of the rod-like portion 173 is divided into three equal parts. That is, the fixed end of the inner mold 73 which is in contact with the holding die 74 of the distance Wa from the fixed end of the rod portion 173 to the intermediate portion 273, the width Wb of the intermediate portion 273, and the intermediate portion 273 to the rod portion 173. The distances Wc up to are equal in size. The second convex portion 272 is in contact with the middle portion 273 particularly at a position near the center. The second convex portion 272 corresponds to a convex portion. The middle of the middle portion 273 is the middle portion, and the middle portion is a position where the distances from the fixed ends on both sides of the rod portion 173 are equal.
 射出工程では、棒状部173が溶融樹脂から射出圧を受けることとなる。これにより、棒状部173が射出圧に押されることで反った形状に変形しようとする。この時、棒状部173の先端部分は保持凹部174によって保持されているため、最も変形が起きやすく変形量も大きくなりやすいのは、棒状部173の中央である。しかしながら、棒状部173の中央を含む中間部273には、第2凸部272から射出圧に抗するように押圧力が加えられる。このため、最も変形量が大きくなりやすい棒状部173の中央付近において、棒状部173は、第2凸部272から押し返されることとなり、棒状部173が反ったり撓んだりすることが抑制される。よって、棒状部173は、射出工程において変形のない真っすぐな円柱形状が維持されやすい。 In the injection process, the rod-like portion 173 receives an injection pressure from the molten resin. As a result, the rod-like portion 173 is deformed into a warped shape by being pressed by the injection pressure. At this time, since the tip end portion of the rod-like portion 173 is held by the holding concave portion 174, the center of the rod-like portion 173 is the most susceptible to deformation and the amount of deformation being likely to be large. However, a pressing force is applied to the middle portion 273 including the center of the rod-like portion 173 from the second convex portion 272 so as to resist the injection pressure. Therefore, the rod-like portion 173 is pushed back from the second convex portion 272 in the vicinity of the center of the rod-like portion 173 where the amount of deformation is most likely to be large, and bending or bending of the rod-like portion 173 is suppressed. . Therefore, the rod-like portion 173 can easily maintain a straight cylindrical shape without deformation in the injection process.
 上述した実施形態によると、型締め工程および射出工程において、第2凸部272が棒状部173を有する内側金型73の棒状部173の中間部273と接触している。このため、第2凸部272を棒状部173の中間部273ではない中央から離れた位置に当接させる場合に比べて、棒状部173が大きく変形することを効果的に抑制できる。 According to the embodiment described above, the second convex portion 272 is in contact with the middle portion 273 of the rod-like portion 173 of the inner mold 73 having the rod-like portion 173 in the mold clamping process and the injection process. Therefore, large deformation of the rod portion 173 can be effectively suppressed as compared with the case where the second convex portion 272 is in contact with a position apart from the center of the rod portion 173 which is not the middle portion 273.
 型締め工程および射出工程において、第2凸部272が棒状部173における中間部273の真ん中である中央部分と接触している。このため、最も大きく変形しやすい部分においてピンポイントで変形を抑制することができる。したがって、第2凸部272を棒状部173の中央部分ではない位置に当接させる場合に比べて、棒状部173が大きく変形することを効果的に抑制できる。 In the mold clamping process and the injection process, the second convex portion 272 is in contact with the central portion of the middle portion 273 of the rod portion 173. For this reason, it is possible to suppress the deformation at the pinpoint at the portion that is most susceptible to deformation. Therefore, large deformation of the rod-like portion 173 can be effectively suppressed as compared with the case where the second convex portion 272 is abutted to a position other than the central portion of the rod-like portion 173.
 第3実施形態
 この実施形態は、先行する実施形態を基礎的形態とする変形例である。この実施形態では、棒状部173と当接して支持する凸部372が棒状部173の軸方向に複数設けられている。
Third Embodiment This embodiment is a modification based on the preceding embodiment. In this embodiment, a plurality of convex portions 372 in contact with and supported by the rod-like portion 173 are provided in the axial direction of the rod-like portion 173.
 図15において、金型は型締めされた状態である。第2外側金型72は、複数の凸部372を備えている。凸部372は、棒状部173の先端部と中央部との中間の部分に当接する位置に設けられている。凸部372は、棒状部173の中央部と棒状部173の内側金型73の保持金型74との対向面からの立ち上がり部との中間の部分に当接する位置に設けられている。言い換えると、型締めされた状態において、棒状部173は、棒状部173の長手方向に沿って第2外側金型72に設けられた複数の凸部372と当接して支持されている。第2凸部272と凸部372は、略等間隔で直線上に並んで設けられている。 In FIG. 15, the mold is in a clamped state. The second outer mold 72 includes a plurality of convex portions 372. The convex portion 372 is provided at a position in contact with an intermediate portion between the tip end portion and the central portion of the rod-like portion 173. The convex portion 372 is provided at a position in contact with an intermediate portion between the central portion of the rod-like portion 173 and the rising portion from the surface of the inner die 73 of the rod-like portion 173 facing the holding die 74. In other words, in the clamped state, the rod-like portion 173 is in contact with and supported by the plurality of convex portions 372 provided on the second outer mold 72 along the longitudinal direction of the rod-like portion 173. The second convex portion 272 and the convex portion 372 are provided on a straight line at substantially equal intervals.
 上述した実施形態によると、棒状部173と当接して支持する凸部372が棒状部173の軸方向に間隔をあけて並んで設けられている。このため、射出工程において、棒状部173が、射出圧に抗する力を複数の凸部372から分散して受けることとなる。したがって、1か所に押圧力が集中してしまう場合に比べて、棒状部173の変形をより効果的に抑制することができる。言い換えると、棒状部173が射出圧と押圧力の影響により、折れたり曲がったりすることを抑制することができる。 According to the embodiment described above, the convex portions 372 that abut on and support the rod-shaped portion 173 are provided side by side at intervals in the axial direction of the rod-shaped portion 173. Therefore, in the injection process, the rod-like portion 173 receives the force against the injection pressure from the plurality of convex portions 372 in a dispersed manner. Therefore, the deformation of the rod-like portion 173 can be more effectively suppressed as compared with the case where the pressing force is concentrated in one place. In other words, it is possible to prevent the rod portion 173 from being broken or bent due to the effects of the injection pressure and the pressing force.
 棒状部173の長さが長くなるほど、射出工程において真っすぐな円柱形状を維持しにくく、反ったり撓んだりして変形しやすくなる。あるいは、棒状部173の直径が小さくなるほど、射出工程において真っすぐな円柱形状を維持しにくく、反ったり撓んだりして変形しやすくなる。このため、凸部372を複数設けて射出工程における棒状部173の変形を抑制することは、棒状部173が細くて長い場合に特に有効である。 As the length of the rod-like portion 173 becomes longer, it becomes more difficult to maintain a straight cylindrical shape in the injection step, and it becomes more likely to be warped or deformed. Alternatively, as the diameter of the rod-like portion 173 becomes smaller, it becomes more difficult to maintain a straight cylindrical shape in the injection step, and it becomes easier to warp or bend and deform. Therefore, providing a plurality of convex portions 372 to suppress the deformation of the rod-like portion 173 in the injection process is particularly effective when the rod-like portion 173 is thin and long.
 第4実施形態
 この実施形態は、先行する実施形態を基礎的形態とする変形例である。この実施形態では、第2外側金型72において、棒状部173を支持する第2凸部172と凸部472が棒状部173の周方向に並んで設けられている。
Fourth Embodiment This embodiment is a modification based on the preceding embodiment. In this embodiment, in the second outer mold 72, a second convex portion 172 and a convex portion 472 for supporting the rod-like portion 173 are provided side by side in the circumferential direction of the rod-like portion 173.
 図16において、凸部472は、第2外側金型72において、空洞部76を形成するために凹んでいる部分から突出した出っ張り形状である。凸部472は、型締めされた状態で棒状部173と接触して棒状部173を支持している。凸部472における棒状部173との接触面は、円柱状の棒状部173の外周面に沿った曲面形状である。すなわち、凸部472と棒状部173とは、点ではなく面で接触している。凸部472は、棒状部173の真下ではなく斜め上の位置に設けられている。言い換えると、凸部472は、第1凸部171と対向する位置に設けられている。すなわち、凸部472は、棒状部173が上方向への位置ズレを起こすことを抑制している。言い換えると、第1凸部171と凸部472とで棒状部173を挟んで保持している。言い換えると、棒状部173がゲート78に近づく方向に位置ズレや変形を起こすことを抑制している。さらに、凸部472は、射出工程において型締め工程の状態に比べて棒状部173が第2外側金型72に近づくことを抑制している。 In FIG. 16, the convex portion 472 has a protruding shape which protrudes from a portion which is recessed to form the cavity portion 76 in the second outer mold 72. The convex portion 472 is in contact with the rod portion 173 in a clamped state and supports the rod portion 173. The contact surface of the convex portion 472 with the rod-like portion 173 has a curved shape along the outer circumferential surface of the cylindrical rod-like portion 173. That is, the convex portion 472 and the rod-like portion 173 are in contact not at a point but at a surface. The convex portion 472 is provided not diagonally below the bar portion 173 but obliquely above. In other words, the convex portion 472 is provided at a position facing the first convex portion 171. That is, the convex portion 472 prevents the rod-like portion 173 from being displaced upward. In other words, the rod-like portion 173 is sandwiched and held by the first convex portion 171 and the convex portion 472. In other words, occurrence of positional deviation or deformation in the direction in which the rod-like portion 173 approaches the gate 78 is suppressed. Further, the convex portion 472 suppresses the rod-like portion 173 from approaching the second outer mold 72 in the injection step as compared to the state of the mold clamping step.
 第1凸部171と第2凸部172と凸部472とは、それぞれの凸部171、172、472と棒状部173との接触部分が、棒状部173の周方向に並ぶように設けられている。第1凸部171と第2凸部172とは、射出工程において、棒状部173がゲート78から離れる方向に位置ズレを起こすことを抑制している。凸部472は、射出工程において、棒状部173がゲート78に近づく方向に位置ズレを起こすことを抑制している。第1凸部171は、射出工程において型締め工程の状態に比べて棒状部173が第1外側金型71に近づくことを抑制している。第2凸部172と凸部472とは、射出工程において型締め工程の状態に比べて棒状部173が第2外側金型72に近づくことを抑制している。すなわち、第1凸部171と第2凸部172と凸部472とは、射出工程において型締め工程の状態に比べて棒状部173の位置や形状が変化することを抑制している。 The first convex portion 171, the second convex portion 172, and the convex portion 472 are provided in such a manner that the contact portions between the convex portions 171, 172, 472 and the rod portion 173 are aligned in the circumferential direction of the rod portion 173. There is. The first convex portion 171 and the second convex portion 172 suppress the positional deviation of the rod-like portion 173 in the direction away from the gate 78 in the injection step. The convex portion 472 suppresses the occurrence of positional deviation in the direction in which the rod-like portion 173 approaches the gate 78 in the injection process. The first convex portion 171 suppresses the rod-like portion 173 from approaching the first outer mold 71 in the injection process as compared to the state of the mold clamping process. The second convex portion 172 and the convex portion 472 suppress the rod-like portion 173 from approaching the second outer mold 72 in the injection step as compared with the state of the mold clamping step. That is, the first convex portion 171, the second convex portion 172, and the convex portion 472 suppress the change in the position and the shape of the rod-like portion 173 in the injection step as compared with the state of the mold clamping step.
 樹脂が射出充填されていく過程で、溶融樹脂は空洞部76に充填されて外側金型71、72から内側金型73を引き離す方向に射出圧を加える場合がある。このとき、溶融樹脂から受ける射出圧によって棒状部173が反った形状に変形しようとする。しかしながら、棒状部173には、凸部472から射出圧に抗するように押圧力が加えられる。言い換えると、棒状部173には、凸部472の押圧力により型締め工程の状態の位置および形状を維持するように押される力が加えられる。言い換えると、棒状部173には、凸部472の押圧力が棒状部173の中心軸に向かう方向に加えられる。このため、凸部472によって棒状部173が押し返されることになり、棒状部173が反ったり撓んだりすることを抑制される。すなわち、棒状部173は、射出工程において変形のない真っすぐな円柱形状が維持されやすい。 In the process of injection and filling of the resin, the molten resin may be filled in the cavity 76 to apply an injection pressure in a direction to separate the inner mold 73 from the outer molds 71 and 72. At this time, the rod-like portion 173 tends to be deformed into a warped shape by the injection pressure received from the molten resin. However, a pressing force is applied to the rod-like portion 173 from the convex portion 472 so as to resist the injection pressure. In other words, the pressing force of the convex portion 472 applies a pressing force to the rod portion 173 so as to maintain the position and the shape of the state of the mold clamping process. In other words, the pressing force of the convex portion 472 is applied to the rod-like portion 173 in the direction toward the central axis of the rod-like portion 173. For this reason, the rod-like portion 173 is pushed back by the convex portion 472, and the bending and bending of the rod-like portion 173 are suppressed. That is, the rod-like portion 173 tends to maintain a straight cylindrical shape without deformation in the injection process.
 他の実施形態
 この明細書における開示は、例示された実施形態に制限されない。開示は、例示された実施形態と、それらに基づく当業者による変形態様を包含する。例えば、開示は、実施形態において示された部品および/または要素の組み合わせに限定されない。開示は、多様な組み合わせによって実施可能である。開示は、実施形態に追加可能な追加的な部分をもつことができる。開示は、実施形態の部品および/または要素が省略されたものを包含する。開示は、1つの実施形態と他の実施形態との間における部品および/または要素の置き換え、または組み合わせを包含する。開示される技術的範囲は、実施形態の記載に限定されない。開示されるいくつかの技術的範囲は、請求の範囲の記載によって示され、さらに請求の範囲の記載と均等の意味および範囲内での全ての変更を含むものと解されるべきである。

 
Other Embodiments The disclosure in this specification is not limited to the illustrated embodiments. The disclosure includes the illustrated embodiments and variations based on them by those skilled in the art. For example, the disclosure is not limited to the combination of parts and / or elements shown in the embodiments. The disclosure can be implemented in various combinations. The disclosure can have additional parts that can be added to the embodiments. The disclosure includes those in which parts and / or elements of the embodiments have been omitted. The disclosure includes replacements or combinations of parts and / or elements between one embodiment and another embodiment. The disclosed technical scope is not limited to the description of the embodiments. Some technical scopes disclosed are indicated by the recitation of the claims, and should be understood to include all modifications within the meaning and scope equivalent to the recitation of the claims.

Claims (8)

  1.  筒状部(121)を有する空調装置用ドアの製造方法において、
     前記筒状部の内側を形成する棒状の内側金型(73)と、前記内側金型に向かって突出している凸部(171、172、272、372、472)を有して前記筒状部の外側を形成する外側金型(71、72)とを所定の位置に配置して金型を組み合わせる型締め工程と、
     型締めされた前記内側金型と前記外側金型との間に形成された空洞部(76)に樹脂部材を射出する射出工程とを含み、
     前記型締め工程では、前記内側金型と前記外側金型の前記凸部とを接触させた状態で配置し、
     前記射出工程では、前記内側金型は、前記樹脂部材の射出により押される射出圧を受けるとともに、前記射出圧に対して抗するように前記内側金型を押し返す押圧力を前記凸部から受ける空調装置用ドアの製造方法。
    In a method of manufacturing an air conditioner door having a cylindrical portion (121),
    The cylindrical portion has a rod-like inner mold (73) forming the inside of the cylindrical portion, and a convex portion (171, 172, 272, 372, 472) projecting toward the inner mold. And an outer mold (71, 72) that forms the outside of the mold is placed at a predetermined position, and a mold clamping step of combining the molds;
    Injecting a resin member into a cavity (76) formed between the clamped inner mold and the outer mold;
    In the mold clamping step, the inner mold and the convex portion of the outer mold are disposed in contact with each other,
    In the injection step, the inner mold receives an injection pressure that is pushed by the injection of the resin member, and an air conditioning that receives a pressing force that pushes back the inner mold so as to resist the injection pressure. Method of manufacturing device door.
  2.  前記外側金型は、前記射出工程で前記空洞部に前記樹脂部材を注入する注入口であるゲート(78)を備え、
     前記型締め工程では、前記凸部は、前記内側金型の表面において、前記ゲートとは反対側の面に接触している請求項1に記載の空調装置用ドアの製造方法。
    The outer mold includes a gate (78) which is an injection port for injecting the resin member into the hollow portion in the injection step;
    2. The method according to claim 1, wherein, in the mold clamping step, the convex portion is in contact with a surface of the inner mold opposite to the gate. 3.
  3.  前記型締め工程では、前記内側金型の長手方向の先端は、前記外側金型と当接して保持され、
     前記凸部(272)は、前記内側金型の長手方向の中間部(273)と接触している請求項1または請求項2に記載の空調装置用ドアの製造方法。
    In the clamping step, the longitudinal tip of the inner mold is held in contact with the outer mold,
    The method according to claim 1 or claim 2, wherein the convex portion (272) is in contact with an intermediate portion (273) in a longitudinal direction of the inner mold.
  4.  前記型締め工程では、前記内側金型の長手方向の先端は、前記外側金型と当接して保持され、
     前記凸部(272)は、前記内側金型の長手方向の中央部分と接触している請求項3に記載の空調装置用ドアの製造方法。
    In the clamping step, the longitudinal tip of the inner mold is held in contact with the outer mold,
    The method according to claim 3, wherein the convex portion (272) is in contact with a longitudinal central portion of the inner mold.
  5.  前記凸部(171、172、272、372、472)は、前記外側金型に複数設けられ、
     前記射出工程では、前記内側金型が複数の前記凸部から前記押圧力を受ける請求項1から請求項4のいずれかに記載の空調装置用ドアの製造方法。
    A plurality of the convex portions (171, 172, 272, 372, 472) are provided on the outer mold;
    The method for manufacturing a door for an air conditioner according to any one of claims 1 to 4, wherein in the injection step, the inner mold receives the pressing force from a plurality of the convex portions.
  6.  前記凸部(171、172、472)は、棒状の前記内側金型に対して周方向に並んで設けられている請求項5に記載の空調装置用ドアの製造方法。 The method according to claim 5, wherein the convex portion (171, 172, 472) is provided circumferentially with respect to the rod-like inner mold.
  7.  車室内に供給する空気が内部を通過する空調ケース(21)と、
     前記空調ケース内を第1空気通路と第2空気通路とに仕切る仕切り板(27)と、
     前記第1空気通路を開閉する第1ドア(110)と、
     前記第2空気通路を開閉する第2ドア(120)と、
     前記第1ドアを回転させる第1回転軸部(111)と、
     側面に貫通穴(125、225)が設けられ、前記第2ドアを回転させる筒状の第2回転軸部(121、221)とを備え、
     前記第2ドアは、請求項1から請求項5のいずれかに記載の製造方法により製造された空調装置用ドアである車両用空調装置の製造方法であって、
     前記第1回転軸部を前記第2回転軸部に挿入した状態で、前記第1ドアと前記第2ドアとを軸方向に並べて前記空調ケースに取り付ける車両用空調装置の製造方法。
    An air conditioning case (21) through which the air supplied into the passenger compartment passes inside;
    A partition plate (27) for dividing the inside of the air conditioning case into a first air passage and a second air passage;
    A first door (110) for opening and closing the first air passage;
    A second door (120) for opening and closing the second air passage;
    A first rotation shaft (111) for rotating the first door;
    A through hole (125, 225) is provided on the side, and a cylindrical second rotary shaft (121, 221) for rotating the second door;
    A method of manufacturing a vehicle air conditioner, wherein the second door is a door for an air conditioner manufactured by the method according to any one of claims 1 to 5,
    A method of manufacturing a vehicle air conditioner, wherein the first door and the second door are axially aligned and attached to the air conditioning case with the first rotation shaft portion inserted in the second rotation shaft portion.
  8.  前記空調ケースは、前記第2回転軸部を保持する軸受け部(128)を備え、
     前記軸受け部が前記貫通穴の周囲を覆うように前記第2ドアを前記空調ケースに取り付ける請求項7に記載の車両用空調装置の製造方法。

     
    The air conditioning case includes a bearing (128) for holding the second rotating shaft.
    The method according to claim 7, wherein the second door is attached to the air conditioning case such that the bearing portion covers the periphery of the through hole.

PCT/JP2018/026266 2017-08-29 2018-07-12 Method for producing door for air conditioner and method for producing air conditioner for vehicle WO2019044200A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017164684A JP6848768B2 (en) 2017-08-29 2017-08-29 Manufacturing method of air conditioner for vehicles
JP2017-164684 2017-08-29

Publications (1)

Publication Number Publication Date
WO2019044200A1 true WO2019044200A1 (en) 2019-03-07

Family

ID=65527490

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/026266 WO2019044200A1 (en) 2017-08-29 2018-07-12 Method for producing door for air conditioner and method for producing air conditioner for vehicle

Country Status (2)

Country Link
JP (1) JP6848768B2 (en)
WO (1) WO2019044200A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63113614U (en) * 1987-01-19 1988-07-21
JPH1148290A (en) * 1997-08-04 1999-02-23 Mitsubishi Eng Plast Kk Molding, method for molding it, and mold assembly
JP2000301573A (en) * 1999-04-22 2000-10-31 Honda Motor Co Ltd Structure of injection molding die for bent resin tube
JP2002036303A (en) * 2000-07-27 2002-02-05 Japan Aviation Electronics Industry Ltd Injection molding die for optical connector ferrule
JP2003136561A (en) * 2001-10-31 2003-05-14 Canon Chemicals Inc Injection mold for annular molded product and method for molding annular molded product
JP2013035379A (en) * 2011-08-07 2013-02-21 Denso Corp Vehicle air conditioning apparatus

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60159616U (en) * 1984-04-02 1985-10-23 トヨタ自動車株式会社 mold
JPH0585615U (en) * 1991-10-24 1993-11-19 株式会社愛洋産業 Injection mold
JP2593796B2 (en) * 1994-04-27 1997-03-26 勝三 長谷川 Manufacturing method of cylindrical plastic products
JPH09155933A (en) * 1995-12-12 1997-06-17 Masahiro Furusawa Resin flexible nozzle and injection molding method of hollow material in continuous form
JP2001179771A (en) * 1999-12-27 2001-07-03 Fuji Photo Film Co Ltd Method for producing roller
JP5881319B2 (en) * 2010-06-18 2016-03-09 日東電工株式会社 Method for manufacturing perforated hollow tube and mold for manufacturing perforated hollow tube

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63113614U (en) * 1987-01-19 1988-07-21
JPH1148290A (en) * 1997-08-04 1999-02-23 Mitsubishi Eng Plast Kk Molding, method for molding it, and mold assembly
JP2000301573A (en) * 1999-04-22 2000-10-31 Honda Motor Co Ltd Structure of injection molding die for bent resin tube
JP2002036303A (en) * 2000-07-27 2002-02-05 Japan Aviation Electronics Industry Ltd Injection molding die for optical connector ferrule
JP2003136561A (en) * 2001-10-31 2003-05-14 Canon Chemicals Inc Injection mold for annular molded product and method for molding annular molded product
JP2013035379A (en) * 2011-08-07 2013-02-21 Denso Corp Vehicle air conditioning apparatus

Also Published As

Publication number Publication date
JP2019042929A (en) 2019-03-22
JP6848768B2 (en) 2021-03-24

Similar Documents

Publication Publication Date Title
WO2015059885A1 (en) Air conditioning unit for vehicle
KR100429482B1 (en) Vehicle air conditioner
JP6101065B2 (en) Air conditioner for vehicles
WO2012026369A1 (en) Vehicular air conditioning unit
JP5859234B2 (en) Air conditioner for vehicles
JP3596078B2 (en) Automotive air conditioners
JP3985637B2 (en) Air conditioner for vehicles
JPWO2017022652A1 (en) Air conditioner for vehicles
JP2008037364A (en) Link connection member structure for air conditioner
WO2019044200A1 (en) Method for producing door for air conditioner and method for producing air conditioner for vehicle
WO2011155414A1 (en) Air regulating device for vehicle
JP4618193B2 (en) Air passage opening and closing device
JP4277644B2 (en) Air conditioner for vehicles
JP4123628B2 (en) Air conditioner for vehicles
JP7195173B2 (en) vehicle air conditioner
KR20080040492A (en) Air conditioner for vehicles
WO2018084259A1 (en) Air-conditioning unit for vehicular air-conditioning device, and method for manufacturing first air-conditioning unit and second air-conditioning unit
JP6324664B2 (en) Damper structure of vehicle air conditioner
JP5314460B2 (en) Link structure of vehicle air conditioner
CN107215170B (en) Air conditioner for vehicle
WO2016088338A1 (en) Vehicular air-conditioning unit
JP3596081B2 (en) Automotive air conditioners
WO2015075950A1 (en) Vehicle air conditioner
JP5903248B2 (en) Air conditioner for vehicles
JP2020179736A (en) Vehicle air conditioner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18852054

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18852054

Country of ref document: EP

Kind code of ref document: A1