WO2019044014A1 - Power generator system, control method for power generator system, and control method for composite power generation system - Google Patents

Power generator system, control method for power generator system, and control method for composite power generation system Download PDF

Info

Publication number
WO2019044014A1
WO2019044014A1 PCT/JP2018/012372 JP2018012372W WO2019044014A1 WO 2019044014 A1 WO2019044014 A1 WO 2019044014A1 JP 2018012372 W JP2018012372 W JP 2018012372W WO 2019044014 A1 WO2019044014 A1 WO 2019044014A1
Authority
WO
WIPO (PCT)
Prior art keywords
generator
reciprocating engine
generator system
power
control method
Prior art date
Application number
PCT/JP2018/012372
Other languages
French (fr)
Japanese (ja)
Inventor
日野 徳昭
島田 敦史
守 木村
智行 畠山
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2019044014A1 publication Critical patent/WO2019044014A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • H02P9/04Control effected upon non-electric prime mover and dependent upon electric output value of the generator
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • H02P9/14Arrangements for controlling electric generators for the purpose of obtaining a desired output by variation of field

Definitions

  • the present invention relates to a generator system, and more particularly to a reciprocating engine generator used for the purpose of coordinating with a variable power source such as renewable energy and a control method thereof.
  • thermal power generation when thermal power generation is used for adjustment, the operation time is short, and part load operation increases. It is well known that thermal power generation is less efficient at part load operation. In addition, thermal power generation is also limited in power adjustment range. In the case of a steam machine, there are limitations such as thermal fatigue deterioration due to frequent temperature rise and fall, and in the case of an internal combustion engine, conditions that allow combustion, etc. The minimum output determines the adjustment range. Expanding this adjustment range is a necessary technology for expanding renewable energy. On the other hand, if the thermal power plant is made to bear the role of adjustment, the power generation cost will rise. On the other hand, it is a big subject how and how the system as a whole will secure high-cost adjustment power supply in the global power flow of the power transmission and separation.
  • a generator using an internal combustion engine of a reciprocating engine or a gas turbine which has a short start / stop time and a fast load change rate, is suitable.
  • generators using these heat engines have problems such as lower efficiency at partial load and lower limits of stable combustion output.
  • the heat engine is more efficient as the temperature difference in the heat cycle is larger, but if the output is throttled at the same rotational speed, the air-fuel ratio increases and the combustion temperature decreases.
  • Patent Document 1 regarding a reciprocating engine generator.
  • the conventional engine generator is capable of operating only at a rotational speed synchronized with the grid frequency in order to cooperate with the grid since the synchronous generator generates power conversion of the axis output of the prime mover.
  • the rotational speed of the engine is made variable.
  • a circuit in which a pulse width modulation (PWM) AC / DC converter and a PWM quadrature converter are connected in series by a DC link unit is used as an output terminal of the generator and electric power
  • PWM pulse width modulation
  • Patent Document 3 discloses an example using an AC excitation generator for variable speed control of a motor.
  • Patent Document 1 describes that the output of the engine and the optimal rotational speed are set by a function obtained in advance. However, how to obtain the function is not described, and the engine output range also needs to be determined in advance. Also, in actual operation, the combustion conditions change from moment to moment depending on the aging of the inside of the engine, the outside temperature and pressure of the inside of the engine, and the variation of heat quantity such as biofuel of unstable quality. The function and the actual optimum speed are different.
  • the decrease in combustion temperature in partial load operation causes problems such as sludge accumulation in the engine and increase of harmful gas such as NOx due to incomplete combustion as well as efficiency decrease, and the power adjustment range
  • Conventional internal combustion engine generators often can only reduce the output by about 50% of the rating.
  • the adjustment power source in order to increase the introduction rate of renewable energy in the future, the larger the power adjustment range is, the more desirable it is, so the reduction of the minimum load has also been a problem of the engine generator for adjustment.
  • the alternating current of a generator is temporarily passed through the frequency converter which carries out AC / DC conversion and orthogonal conversion, and the loss in this converter is large.
  • the efficiency of the engine generator is the product of the efficiency of the prime mover and the efficiency of the generator, which is a rotating electrical machine, but the loss of the frequency converter described above is added, resulting in a decrease in the overall efficiency.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a combined power generation system comprising a variable power source such as solar power generation and wind power generation and a reciprocating engine generator.
  • An object of the present invention is to provide a power generation system capable of efficiently widening the power adjustment range according to operating conditions such as environment and fuel conditions, and a control method thereof.
  • the present invention relates to a reciprocating engine, an AC excitation generator connected to an output shaft of the reciprocating engine, and a rotation shaft of the AC excitation generator via a slip ring, And a power converter for supplying AC power to a rotor of an AC excitation generator, wherein slip frequency control of the power converter is performed based on a temporal change waveform of pressure in a cylinder of the reciprocating engine. It is characterized by controlling rotation speed and torque.
  • the present invention is a control method of a generator system provided with an AC excitation generator that generates electric power by a reciprocating engine, wherein the reciprocating frequency control is performed based on a temporal change waveform of pressure in a cylinder of the reciprocating engine. It controls the rotational speed and torque of the engine.
  • the present invention is a control method of a combined power generation system including at least one of a wind power generator and a solar power generator and a reciprocating engine generator, wherein the reciprocating engine generator is the above generator system. It is characterized in that it is controlled by a control method.
  • the loss of the converter is small, and it is possible to make the reciprocating engine variable speed without reducing the overall efficiency. Further, since the quality of the combustion state can be judged in one cycle of the reciprocating engine, it is possible to immediately shift to the rotational speed of the engine which is the optimum combustion state immediately based on it.
  • the combustion state is improved, the sludge is less likely to be accumulated, so that the output can be reduced as compared with the conventional case, and the function as the adjustment power can be improved.
  • the amount of introduction of renewable energy can be increased by appropriately controlling an engine generator system having a wide power adjustment range.
  • Example 1 It is a figure which shows operation
  • FIG. 5 shows a fuel consumption curve of an engine and a method of operating a generator system according to an embodiment of the present invention. It is a figure which shows the control method of the generator system which concerns on one Embodiment of this invention. It is a figure which shows the pressure fluctuation (time waveform of pressure) in the cylinder at the time of the abnormal combustion of an engine. It is a figure which shows the structure of the grid which concerns on one Embodiment of this invention.
  • Example an example for carrying out the present invention (hereinafter referred to as “Example”) will be described with reference to the drawings.
  • Example an example for carrying out the present invention
  • the same reference numeral is attached to the same member in principle, and the overlapping description will be appropriately omitted.
  • FIG. 1 shows the overall configuration of a generator system 4 of the present embodiment.
  • the generator system 4 mainly includes a reciprocating engine 1, an AC excitation generator 3, and a power converter 2.
  • a controller an engine control unit 6 (hereinafter, ECU) and a power conditioner (PCS: converter controller) 7 are included.
  • ECU engine control unit 6
  • PCS power conditioner
  • the AC excitation generator 3 includes a rotor 31 and a stator 32.
  • the shaft of the rotor 31 is connected to the output shaft (crankshaft) 14 of the reciprocating engine 1. Further, an alternating current (electric power) is supplied to the rotor 31 from the power converter 2 through the slip ring 35. Further, the AC excitation generator 3 is connected to the power system 100 via the circuit breaker 52, and the power converter 2 and the output end of the AC excitation generator 3 are electrically connected, and the control of the power converter 2 is performed. Can make the output positive or negative.
  • the generator system 4 converts the shaft power of the reciprocating engine 1 into electric power by the AC excitation generator 3.
  • the ECU 6 controls the fuel adjusting valve 74 in response to the output command 77.
  • the ECU 6 performs feedback control by looking at the output of the power meter 50.
  • the power converter 2 converts AC power of the grid frequency of 50 Hz or 60 Hz on the power grid 100 side into a three-phase AC of frequency f rotor , and the rotor 31 is AC excited in response to this.
  • the AC excited rotor 31 generates a rotating magnetic field.
  • AC frequency f stator of an AC-fed generator 3 of the stator 32 is synchronized with the power system 100, the rotational speed of the rotor N (r / min), the pole logarithm as P / 2, the rotor Assuming that the direction of rotation of the magnetic field generated by 31 coincides with the direction of rotation of the shaft, the following equation 1 is obtained.
  • the operation is the same as that of the synchronous generator. Since the power converter 2 can provide an alternating current of any phase and frequency f rotor , the rotational speed N of the reciprocating engine 1 can be determined by the control of the power converter 2.
  • the power converter 2 is controlled by a converter controller 7.
  • the converter controller 7 gives a command of frequency and voltage to the power converter 2 based on the rotational speed N measured by the tachometer 56 and the output from the ECU 6.
  • the reciprocating engine 1 has an engine housing 11, and a piston 15 moves up and down in a cylinder 16 inside the housing to transmit power to the crankshaft 14.
  • a pressure gauge 13 is provided inside the cylinder 16, and a signal of the pressure gauge 13 is sent to the waveform analysis device 8.
  • the waveform analysis device 8 analyzes the combustion state of the engine (reciprocating engine 1) and judges its quality.
  • the angle of the crankshaft from the rotational position sensor 57 and the rotational speed N of the shaft from the rotational speed sensor 56 are input to the waveform analysis device 8.
  • the combustion state of the engine varies depending on the output (proportional to the fuel input amount) and the ignition timing, the operating speed of the piston 15, ie, the rotational speed. Therefore, the engine combustion state is judged by the above-mentioned waveform analysis device 8, and a command for correcting the rotational speed N is sent to the converter controller 7. Specifically, the speed changes if the frequency of the rotor described above is changed.
  • FIG. 2 shows one cycle of a four-stroke engine.
  • the crankshaft 14 makes one cycle with two revolutions.
  • FIG. 3 shows the pressure in the cylinder 16 corresponding to FIG.
  • the pressure in the cylinder is approximately zero since either the intake valve 20A or the exhaust valve 20B is open from a crank angle of -540 ° to -180 °.
  • the pressure rises from the compression step (4) in FIG. 2 and combustion starts near the position where the piston 15 is moved up to the top (Top Dead Center: TDC) (“combustion start” in FIG. 3) I do the work.
  • TDC Top Dead Center
  • FIG. 4 shows this.
  • combustion does not occur (compression only)
  • the pressure reaches a maximum at a crank angle of 0 °, that is, at TDC, and becomes a symmetrical pressure curve as indicated by an alternate long and short dash line.
  • it burns, it becomes like a solid line, and the shaded part of the difference becomes work.
  • the output is small, it is as shown in FIG.
  • FIGS. 6 and 7 Examples of cases where the combustion state is bad (during abnormal combustion) are shown in FIGS. 6 and 7.
  • the pressure waveform vibrates finely if knocking occurs due to uneven combustion or the like which occurs at the initial stage or when the particle size of the fuel is large or the like without combustion spreading uniformly. If such a vibration is analyzed by the waveform analysis device 8, the quality of the combustion can be known.
  • Such combustion determination can be performed in one cycle or several cycles of the average of the engine, so real-time determination can be made.
  • the difference in the combustion curve with the change of the rotational speed of the shaft (crankshaft) 14 is shown in FIG.
  • the order of (a), (b) and (c) is the order of low rotational speed.
  • the order of (A), (B), and (C) respectively corresponds, and the combustion center of gravity shifts backward as the rotational speed increases. This is because if the speed of combustion diffusion in the cylinder 16 is constant, the higher the rotation speed, the later the combustion appears to be delayed.
  • the present method is characterized in that the judgment of the combustion state is fast, and the operation can be shifted to the optimum operating state in real time. For example, in order to measure the efficiency, it is necessary to integrate and determine the efficient fuel consumption and the output, and it takes about 10 minutes to make an accurate determination. If such a conventional method takes time, it can not sufficiently cope with the output fluctuation of renewable energy.
  • the combustion gravity center can be measured, and the rotation speed can be changed so as to be the optimum gravity center.
  • FIG. 9 shows a fuel consumption map of a general reciprocating engine that can be said to be efficient, that is, the combustion state when fuel consumption is low.
  • the vertical axis represents the basic operating condition of the engine in BMEP (Brake Mean Effective Pressure) which is proportional to torque or torque per displacement. Since the engine output is “torque ⁇ rotational speed”, the equal output line is an inversely proportional curve.
  • the rotational speed of the engine is variable from NE min to NE max . Further, the variable speed range of the AC excitation generator 3 is set from NG min to NG max .
  • the shape of the iso fuel consumption line is general, and the conventional engine generator is operated at the point A since it is designed most efficiently at the time of rating. An ideal operation to raise and lower this output is as shown by a long broken line (1).
  • operation is performed between A and B since the speed is fixed when the output is reduced.
  • the point B or less is operated transiently at the time of start-up, etc., it is not usually operated for two reasons.
  • First because the efficiency is reduced, the fuel consumption will not decrease even if the output is reduced, and there is no merit as a power generation business.
  • the second is a well-known problem, especially for diesel engines, where low-load operation continues for long periods of time resulting in sludge buildup due to incomplete combustion inside the engine. This sludge degrades the performance, and in the worst case, it may be violent at startup.
  • the rotational speed can be reduced while the torque is kept constant from point A to point C. Furthermore, if the torque is lowered to the point D while the rotational speed is constant, the output is the same as the point B, and it can be seen that the fuel consumption is reduced from the equal fuel consumption line.
  • the engine generator by a present Example can increase the adjustment range of an output. If the combustion state inside the engine is the same on the equal fuel consumption line, the engine generator having the minimum output at point B can reduce the minimum output to point F. On the other hand, it is also possible to increase the output by raising the rotational speed of the engine to point E. Thus, the output adjustment range can be increased by changing the speed of the conventional engine generator according to this embodiment.
  • the rotational speed for the load is set in advance as shown by the broken line (1), the rotational speed can be converged to the optimum rotational speed in a short time.
  • FIG. 10 illustrates a method of variable speed operation to stabilize engine combustion.
  • Region (1) is the case of low speed and large torque where knocking easily occurs, and the in-cylinder pressure representing the combustion state of the engine is typically as shown in FIG. If knocking occurs at point A, the frequency of the rotor of the power converter 2 is changed to change the rotational speed to point B on the iso-output line.
  • the region (2) has a combustion instability region at high speed and low torque.
  • the in-cylinder pressure in this case is typically as shown in FIG. 11, the combustion waveform for each cycle is not stable, the maximum value P max of the in-cylinder pressure fluctuates, or the combustion gravity center differs each time. If, at point C, the fluctuation of P max exceeds a certain threshold, the number of rotations is changed to point D on the iso-output line. This is also controlled by changing the frequency on the rotor side of the power converter 2 as in the case of (1).
  • FIG. 12 shows a power system 100 using the generator system 4 of the present embodiment.
  • the electric power load 200 is connected to the electric power system 100, and the electric power of the electric power system 100 is generated by the variable speed engine generator system 4, the storage battery system 5, the solar power generator 9, the wind power generator 10, and the electric power of the present embodiment. It comprises a power generation system integrated controller 110 that controls the entire power supply excluding the load 200.
  • FIG. 13 shows the power demand of the power system 100 and the output breakdown of the power generation system responsible for it.
  • the rated output of photovoltaic power generation and wind power generation is the maximum value under favorable conditions, and depending on the weather conditions, the amount of power generation may fluctuate rapidly so that the start and stop of the generator can not be in time. In preparation for this, it is necessary to make the engine generator stand by in partial load operation and enable rapid power generation adjustment (the ENG output in FIG. 13). For example, assuming that two engine generators are held, the number of units to be started is determined to determine the maximum output of the engine generator for each time, and renewable energy is introduced only by the capacity between the minimum outputs specific to each engine generator. It is possible.
  • FIG. 13 shows the case where the minimum output is temporarily set to 50%.
  • a storage battery system 5 may be added. However, when the capacity of the storage battery system 5 is insufficient, the system can not be stably maintained without adjustment by the engine generator 4.
  • the power generation system integrated control device 110 can increase the introduction of the renewable energy by instructing the solar power generator 9 or the wind power generator 10 to arbitrarily reduce the output.
  • the power adjustment range of the engine is large, more electric power can be generated by renewable energy.
  • the adjustment range of the engine generator can be expanded by varying the rotational speed of the engine as described above.
  • the combustion state of the engine is determined in real time, and the rotation speed is changed based on that, so that the combustion state can be always maintained in the optimum state. As a result, the partial load efficiency can be improved.
  • the AC excitation generator 3 is used as a means for changing the speed of the engine generator, the loss in the power converter 2 can be reduced.
  • the output adjustment range of the engine generator (generator system 4) can be increased by setting the rotational speed lower than the synchronous speed when the load is low and increasing the rotational speed when the load is high.
  • the rotational speed and torque of the reciprocating engine 1 may be controlled while maintaining the output of the AC excitation generator 3 constant.
  • the output of the (variable speed engine) generator system 4 can be stabilized without being influenced by the temporary change of the combustion state of the reciprocating engine 1.
  • FIG. 14 shows the entire configuration of the generator system 4 of this embodiment.
  • the difference from the first embodiment (FIG. 1) is that the strain gauge 12 is attached to the engine housing 11 instead of the pressure gauge 13 that measures the pressure inside the cylinder 16.
  • the pressure waveform in the cylinder 16 is estimated by the combustion pressure waveform estimating device 8A.
  • the strain gauge a strain linked to the pressure in the cylinder 16 of the engine housing 11 appears, so that the pressure of the cylinder 16 can be estimated based on this waveform.
  • the same estimation can be made with an acceleration sensor attached to the engine housing 11.
  • the harmonic components of the signals of the strain gauge 12 and the acceleration sensor can be analyzed to detect knocking, or the combustion gravity center can be estimated, and based on that, the speed is changed to the optimum value as in the first embodiment.
  • the effects of the present embodiment are the same as those of the first embodiment.
  • FIG. 15 shows the entire configuration of the generator system 4 of this embodiment.
  • the difference from the first embodiment (FIG. 1) is that instead of measuring the pressure in the cylinder 16, the pressure in the cylinder 16 is measured by the combustion pressure waveform estimation device 8A based on the signal of the tachometer (rotational speed sensor) 56. Estimate the waveform.
  • FIG. 16 schematically shows the relationship between the pressure in the cylinder 16 and the rotational speed.
  • FIG. 16 shows the relationship between in-cylinder pressure and rotational speed of an eight-cylinder four-stroke engine.
  • Each cylinder is assumed to be in the same combustion state. The energy itself is generated only in the combustion stroke, but has the effect of being leveled to some extent because there is rotational inertia such as a generator or a flywheel connected to the engine shaft (crankshaft 14).
  • FIG. 16A shows the pressure in one cylinder of a certain cylinder, and a torque reflecting this waveform is generated on the crankshaft 14. In the case of an eight-cylinder engine, torques deviated by 90 degrees respectively are generated.
  • FIG. 16 (b) shows the rotational speed of an eight-cylinder engine, and since there are eight combustion strokes within one cycle of two rotations 720 degrees, there is an eighth-order component, and the rotational speed also has a waveform reflecting this. Become.
  • the harmonic component of this tachometer (rotational speed sensor) 56 can be analyzed to detect knocking or the combustion center of gravity can be estimated, and based on that, the speed is changed to an optimum value as in the first embodiment.
  • the effects of the present embodiment are the same as those of the first embodiment.
  • FIG. 17 shows the entire configuration of the generator system 4 of the present embodiment.
  • the difference from the first embodiment (FIG. 1) is that the pressure waveform in the cylinder 16 is estimated by the combustion pressure waveform estimation device 8A based on the signal of the power meter 50 as a method of estimating the pressure in the cylinder 16 is there.
  • the signal of the power meter 50 is taken into the combustion pressure waveform estimation device 8A, and the pressure waveform in the cylinder 16 is estimated by analyzing the waveform.
  • the current is measured as the measurement value of the power meter.
  • FIG. 18 schematically shows the relationship between the in-cylinder pressure and the three-phase current waveform of the eight-cylinder four-stroke engine. If knocking occurs in the combustion in the cylinder 16, the current waveform of each phase electrically output as a three-phase power source reflects the vibration of the rotational speed of the third embodiment, as shown in FIG. Harmonics will ride on top of the The pressure in the cylinder 16 produces a fine vibration as shown in FIG. 18 (a). Reflecting that, the vibration also occurs in the current waveform.
  • the harmonic components of the power meter 50 can be analyzed to detect knocking or the combustion center of gravity can be estimated, and based on that, the speed can be changed to the optimum value as in the first embodiment.
  • the effects of the present embodiment are the same as those of the first embodiment.
  • the present invention is not limited to the above-described embodiments, and includes various modifications.
  • the embodiments described above are described in detail in order to explain the present invention in an easy-to-understand manner, and are not necessarily limited to those having all the configurations described.
  • part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment.
  • the present invention also has the following features.
  • a generator system consisting of a reciprocating engine, an AC excitation type electric rotating machine connected to its shaft, and a frequency converter for energizing the rotor of the electric rotating machine with an alternating current, solar power, wind power generation etc Combined power generation system with both sources of renewable energy that can not A control method of a combined power generation system, wherein the rotational speed of the power generation system is made higher than the synchronous speed to increase the output when the output of the renewable energy decreases sharply.
  • a generator system consisting of a reciprocating engine, an AC excitation type electric rotating machine connected to its shaft, and a frequency converter for energizing the rotor of the electric rotating machine with an alternating current, solar power, wind power generation etc Combined power generation system with both sources of renewable energy that can not A control method of a combined power generation system, wherein the rotational speed of the power generation system is made lower than the synchronous speed to reduce the output when the output of renewable energy increases rapidly.
  • SYMBOLS 1 Reciprocating engine, 2 ... Power converter, 3 ... AC excitation generator, 4 ... (variable speed engine) generator system, 5 ... Battery system, 6 ... Engine control unit (ECU), 7 ... Power conditioner (PCS: Converter controller), 8 ... waveform analysis device, 8 A ... combustion pressure waveform estimation device, 9 ... solar power generator, 10 ... wind power generator, 11 ... engine housing, 12 ... strain gauge, 13 ... pressure gauge, 14 ... shaft (crankshaft), 15 ... piston, 16 ... cylinder, 17 ... connecting rod, 20A ... intake valve (valve), 20B ... exhaust valve (valve), 31 ... rotor, 32 ... stator, 35 ...
  • slip ring 50: Power meter, 52: Circuit breaker, 56: Rotational speed detector (rotational speed meter), 57: Rotational position detection (Rotational position sensor), 74 ... fuel adjusting valve, 77 ... output command, 100 ... electric power system, 110 ... power generation system integrated control unit, 200 ... power load (independent system load)

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Eletrric Generators (AREA)

Abstract

Provided are a power generation system and a control method therefor that can realize high efficiency and widen an output adjustment range in accordance with operating conditions such as load fluctuations, the atmospheric environment, and fuel conditions, in a composite power generation system constituted by a reciprocating engine power generator and a variable power source such as that of solar power generation or wind power generation. The present invention is characterized: by comprising a reciprocating engine, an alternating-current excitation power generator that is connected to an output shaft of the reciprocating engine, and a power converter that is connected to a rotation shaft of the alternating-current excitation power generator via a slip ring and supplies alternating-current power to a rotor of the alternating-current excitation generator; and in that the rotation speed and torque of the reciprocating engine are controlled via slip frequency control of the power converter.

Description

発電機システム、発電機システムの制御方法、複合型発電システムの制御方法Generator system, control method of generator system, control method of combined power generation system
 本発明は、発電機システムに係り、特に、再生可能エネルギーなどの変動電源と協調させる目的で用いられるレシプロエンジン発電機とその制御方法に関する。 The present invention relates to a generator system, and more particularly to a reciprocating engine generator used for the purpose of coordinating with a variable power source such as renewable energy and a control method thereof.
 持続可能な社会を実現するため、太陽光発電や風力発電などの再生可能エネルギーが急速に普及している。一方、再生可能エネルギーは電力需要に合わせて出力を制御できないため、需給バランスをとるために系統全体としては調整用の電源が不可欠である。大容量の二次電池は高価であり、揚水発電は設置可能な地域が限定される。そのため、調整用電源の大部分は火力発電が担う。 In order to realize a sustainable society, renewable energy such as solar power and wind power is rapidly spreading. On the other hand, since renewable energy can not control the output according to the power demand, a power supply for adjustment is indispensable as a whole system to balance supply and demand. Large-capacity secondary batteries are expensive, and pumped storage power is limited in the area where it can be installed. Therefore, most of the adjustment power source is thermal power generation.
 しかし、火力発電を調整用として用いると、稼働時間が短く、また、部分負荷運転が多くなる。火力発電は部分負荷運転で効率が低下することは良く知られている。また、火力発電は出力調整幅にも制約がある。汽力機であれば頻繁な温度の上下による熱疲労劣化、内燃機関であれば燃焼可能な条件等の制約があり、その最低出力が調整幅を決める。この調整幅を広げることは再生可能エネルギーの拡大に必要な技術である。一方、火力機に調整の役割を負担させると発電コストが上昇する。これらに対して発送電分離の世界的な潮流の中で、高コストの調整用電源を、系統全体として誰がどのように確保していくかは大きな課題である。 However, when thermal power generation is used for adjustment, the operation time is short, and part load operation increases. It is well known that thermal power generation is less efficient at part load operation. In addition, thermal power generation is also limited in power adjustment range. In the case of a steam machine, there are limitations such as thermal fatigue deterioration due to frequent temperature rise and fall, and in the case of an internal combustion engine, conditions that allow combustion, etc. The minimum output determines the adjustment range. Expanding this adjustment range is a necessary technology for expanding renewable energy. On the other hand, if the thermal power plant is made to bear the role of adjustment, the power generation cost will rise. On the other hand, it is a big subject how and how the system as a whole will secure high-cost adjustment power supply in the global power flow of the power transmission and separation.
 調整用電源としては、起動/停止時間が短く負荷変化率が早い、レシプロエンジンやガスタービンの内燃機関を利用した発電機が適している。しかし、これらの熱機関を利用した発電機は上述したように部分負荷時の効率低下と、燃焼安定な出力に下限があるという課題がある。一般に熱機関は熱サイクルの温度差が大きいほど効率が良いが、同じ回転速度で出力を絞ると空燃比が上がり、燃焼温度が下がる。 As a power supply for adjustment, a generator using an internal combustion engine of a reciprocating engine or a gas turbine, which has a short start / stop time and a fast load change rate, is suitable. However, as described above, generators using these heat engines have problems such as lower efficiency at partial load and lower limits of stable combustion output. In general, the heat engine is more efficient as the temperature difference in the heat cycle is larger, but if the output is throttled at the same rotational speed, the air-fuel ratio increases and the combustion temperature decreases.
 内燃機関の出力を絞るときには、定性的には空気量を絞れば、空燃比を維持でき燃焼状態の悪化を抑制することができる。このような例は、レシプロエンジン発電機に関しては、たとえば、特許文献1がある。 When the output of the internal combustion engine is reduced, the air-fuel ratio can be maintained and the deterioration of the combustion state can be suppressed by reducing the amount of air qualitatively. Such an example is, for example, Patent Document 1 regarding a reciprocating engine generator.
 従来のエンジン発電機は、同期発電機で原動機の軸出力を電力変換しているため、系統と連携するために系統周波数と同期した回転速度でしか運転ができなかった。これに対し、特許文献1ではエンジンの回転速度を可変にしている。エンジン発電機の負荷に従って、高効率な運転速度にするため、パルス幅変調式(PWM)交直変換器とPWM式直交変換器を直流リンク部で直列に接続した回路を発電機の出力端子と電力系統の間に介装して、発電機の出力を電力系統に供給するものであって、交直変換器により発電機を可変速制御する方法が開示されている。 The conventional engine generator is capable of operating only at a rotational speed synchronized with the grid frequency in order to cooperate with the grid since the synchronous generator generates power conversion of the axis output of the prime mover. On the other hand, in Patent Document 1, the rotational speed of the engine is made variable. In order to achieve a highly efficient operation speed according to the load of the engine generator, a circuit in which a pulse width modulation (PWM) AC / DC converter and a PWM quadrature converter are connected in series by a DC link unit is used as an output terminal of the generator and electric power There is disclosed a method of supplying an output of a generator to an electric power system via a grid and controlling the generator at variable speed by an AC / DC converter.
 また、特許文献2には、各電力発生源に付設した直流側変換装置の出力を並列接続して直流系統を形成し、この直流系統の直流電力をインバータなど1式の交流側変換装置で交流電力に変換して交流系統に送電するようにして、装置の小型化とコストダウンを図る例が開示されている。 Further, in Patent Document 2, outputs of DC side converters attached to respective power generation sources are connected in parallel to form a DC system, and DC power of this DC system is converted to AC by an AC side converter such as an inverter. An example is disclosed in which the size of the device is reduced and the cost is reduced by converting it into electric power and transmitting power to the AC system.
 また、特許文献3には、原動機の可変速制御のために交流励磁型発電機を用いる例が開示されている。 Patent Document 3 discloses an example using an AC excitation generator for variable speed control of a motor.
特許第4376089号公報Patent No. 4376089 特開2003-250222号公報JP 2003-250222 A 特開2004-153941号公報JP 2004-153941 A
 例えば上記特許文献1には、エンジンの出力と最適な回転速度について、予め求めた関数によって設定するとある。しかし、その関数の求め方は記載されておらず、またエンジンの出力範囲も予め決めておく必要がある。また、実際の運転においては、エンジン内部の経年変化や外気温・外気圧力、また不安定な品質のバイオ燃料などの熱量のばらつきに依って燃焼条件は刻一刻と変わっていくため、予め求めた関数と実際の最適速度は異なる。 For example, Patent Document 1 describes that the output of the engine and the optimal rotational speed are set by a function obtained in advance. However, how to obtain the function is not described, and the engine output range also needs to be determined in advance. Also, in actual operation, the combustion conditions change from moment to moment depending on the aging of the inside of the engine, the outside temperature and pressure of the inside of the engine, and the variation of heat quantity such as biofuel of unstable quality. The function and the actual optimum speed are different.
 これに対し、例えば運転中に効率を測定して最適速度を修正する方法などが考えられるが、実際には難しい。流量計による燃料量と電気出力の割合から効率を導出するには時間がかかるため、変動する電力負荷に対しての正確な測定は難しい。このように刻一刻と変化する運転条件に対して、常に最も適切な回転速度を選べない欠点があった。 On the other hand, for example, a method of measuring the efficiency during operation and correcting the optimum speed may be considered, but it is actually difficult. Because it takes time to derive efficiency from the ratio of fuel quantity and electrical output by the flow meter, accurate measurement for fluctuating power loads is difficult. There is a drawback that it is not always possible to select the most appropriate rotational speed for such changing operating conditions every moment.
 また、部分負荷運転における燃焼温度の低下は、効率の低下はもちろん、不完全燃焼のために、エンジン内のスラッジ蓄積、NOxなどの有害ガスの増加、などの問題も発生し、出力調整幅に実質的な制約がある。従来の内燃機関発電機は、定格の50%程度しか出力を絞れない場合が多い。調整用電源としては、今後、再生可能エネルギーの導入割合を増やすために、出力調整幅が大きいほど望ましいので、最低負荷の低減も調整用としてのエンジン発電機の課題であった。 In addition, the decrease in combustion temperature in partial load operation causes problems such as sludge accumulation in the engine and increase of harmful gas such as NOx due to incomplete combustion as well as efficiency decrease, and the power adjustment range There are substantial limitations. Conventional internal combustion engine generators often can only reduce the output by about 50% of the rating. As the adjustment power source, in order to increase the introduction rate of renewable energy in the future, the larger the power adjustment range is, the more desirable it is, so the reduction of the minimum load has also been a problem of the engine generator for adjustment.
 また、上記特許文献1では発電機の交流を一旦、交直変換、直交変換する周波数変換器を介しており、この変換器での損失が大きい。エンジン発電機の効率は、原動機の効率と、回転電機である発電機の効率との掛け算となるが、上記の周波数変換器の損失が加わるため、総合効率の低下を招く。 Moreover, in the said patent document 1, the alternating current of a generator is temporarily passed through the frequency converter which carries out AC / DC conversion and orthogonal conversion, and the loss in this converter is large. The efficiency of the engine generator is the product of the efficiency of the prime mover and the efficiency of the generator, which is a rotating electrical machine, but the loss of the frequency converter described above is added, resulting in a decrease in the overall efficiency.
 本発明は上記問題点に鑑みてなされたもので、その目的とするところは、太陽光発電や風力発電などの変動電源とレシプロエンジン発電機から構成される複合型発電システムにおいて、負荷変動、外気環境、燃料条件など運転条件に応じて、効率良く、かつ、出力調整幅を広くすることが可能な発電システムとその制御方法を提供することにある。 The present invention has been made in view of the above problems, and an object of the present invention is to provide a combined power generation system comprising a variable power source such as solar power generation and wind power generation and a reciprocating engine generator. An object of the present invention is to provide a power generation system capable of efficiently widening the power adjustment range according to operating conditions such as environment and fuel conditions, and a control method thereof.
 上記課題を解決するために、本発明は、レシプロエンジンと、前記レシプロエンジンの出力軸に連結される交流励磁発電機と、スリップリングを介して前記交流励磁発電機の回転軸に連結され、前記交流励磁発電機の回転子に交流電力を通電する電力変換器と、を備え、前記レシプロエンジンの気筒内の圧力の時間変化波形に基づき、前記電力変換器のすべり周波数制御により、前記レシプロエンジンの回転速度およびトルクを制御することを特徴とする。 In order to solve the above problems, the present invention relates to a reciprocating engine, an AC excitation generator connected to an output shaft of the reciprocating engine, and a rotation shaft of the AC excitation generator via a slip ring, And a power converter for supplying AC power to a rotor of an AC excitation generator, wherein slip frequency control of the power converter is performed based on a temporal change waveform of pressure in a cylinder of the reciprocating engine. It is characterized by controlling rotation speed and torque.
 また、本発明は、レシプロエンジンにより発電運転する交流励磁発電機を備える発電機システムの制御方法であって、前記レシプロエンジンの気筒内の圧力の時間変化波形に基づき、すべり周波数制御により、前記レシプロエンジンの回転速度およびトルクを制御することを特徴とする。 Further, the present invention is a control method of a generator system provided with an AC excitation generator that generates electric power by a reciprocating engine, wherein the reciprocating frequency control is performed based on a temporal change waveform of pressure in a cylinder of the reciprocating engine. It controls the rotational speed and torque of the engine.
 また、本発明は、風力発電器および太陽光発電機の少なくともいずれか一方とレシプロエンジン発電機とを含む複合型発電システムの制御方法であって、前記レシプロエンジン発電機は上記の発電機システムの制御方法により制御されることを特徴とする。 Further, the present invention is a control method of a combined power generation system including at least one of a wind power generator and a solar power generator and a reciprocating engine generator, wherein the reciprocating engine generator is the above generator system. It is characterized in that it is controlled by a control method.
 本発明によれば、交流励磁発電機を利用しているため、変換器の損失が少なく、総合効率を低下させることなく、レシプロエンジンを可変速にすることができる。また、レシプロエンジンの1サイクルで燃焼状態の良否を判断できるので、それを元に直ちに最適な燃焼状態となるエンジンの回転速度に移行することができる。 According to the present invention, since the AC excitation generator is used, the loss of the converter is small, and it is possible to make the reciprocating engine variable speed without reducing the overall efficiency. Further, since the quality of the combustion state can be judged in one cycle of the reciprocating engine, it is possible to immediately shift to the rotational speed of the engine which is the optimum combustion state immediately based on it.
 その結果、エンジン内部の経年による状態変化、外気温、外気圧力、燃料のばらつきなどにも対応した発電システムを構成することができる。 As a result, it is possible to configure a power generation system that copes with the state changes due to age of the engine, the outside air temperature, the outside air pressure, the variation of fuel, and the like.
 また、燃焼状態が改善するため、スラッジが蓄積しにくくなるため、出力を従来よりも下げることができ、調整電力としての機能を向上させることができる。 Further, since the combustion state is improved, the sludge is less likely to be accumulated, so that the output can be reduced as compared with the conventional case, and the function as the adjustment power can be improved.
 また、出力調整幅の広いエンジン発電機システムを適切に制御することにより、再生可能エネルギーの導入量を増やすことができる。 Moreover, the amount of introduction of renewable energy can be increased by appropriately controlling an engine generator system having a wide power adjustment range.
 上記した以外の課題、構成および効果は、以下の実施形態の説明によって明らかにされる。 Problems, configurations, and effects other than those described above will be clarified by the description of the embodiments below.
本発明の一実施形態に係る発電機システムの全体構成を示す図である。(実施例1)BRIEF DESCRIPTION OF THE DRAWINGS It is a figure which shows the whole structure of the generator system which concerns on one Embodiment of this invention. Example 1 4ストロークエンジンの動作を示す図である。It is a figure which shows operation | movement of 4 stroke engine. エンジンのシリンダ内の圧力変動(圧力の時間波形)を示す図である。It is a figure which shows the pressure fluctuation (time waveform of pressure) in the cylinder of an engine. エンジンのシリンダ内の圧力変動(圧力の時間波形)を示す図である。It is a figure which shows the pressure fluctuation (time waveform of pressure) in the cylinder of an engine. エンジンのシリンダ内の圧力変動(圧力の時間波形)を示す図である。It is a figure which shows the pressure fluctuation (time waveform of pressure) in the cylinder of an engine. エンジンの異常燃焼時のシリンダ内の圧力変動(圧力の時間波形)を示す図である。It is a figure which shows the pressure fluctuation (time waveform of pressure) in the cylinder at the time of the abnormal combustion of an engine. エンジンの異常燃焼時のシリンダ内の圧力変動(圧力の時間波形)を示す図である。It is a figure which shows the pressure fluctuation (time waveform of pressure) in the cylinder at the time of the abnormal combustion of an engine. エンジンの燃焼重心を示す図である。It is a figure which shows the combustion gravity center of an engine. エンジンの燃料消費曲線、及び本発明の一実施形態に係る発電機システムの運転方法を示す図である。FIG. 5 shows a fuel consumption curve of an engine and a method of operating a generator system according to an embodiment of the present invention. 本発明の一実施形態に係る発電機システムの制御方法を示す図である。It is a figure which shows the control method of the generator system which concerns on one Embodiment of this invention. エンジンの異常燃焼時のシリンダ内の圧力変動(圧力の時間波形)を示す図である。It is a figure which shows the pressure fluctuation (time waveform of pressure) in the cylinder at the time of the abnormal combustion of an engine. 本発明の一実施形態に係るグリッドの構成を示す図である。It is a figure which shows the structure of the grid which concerns on one Embodiment of this invention. 本発明の一実施形態に係るグリッドの電力需要と発電内訳を示す図である。It is a figure which shows the electric power demand and the power generation breakdown of the grid which concerns on one Embodiment of this invention. 本発明の一実施形態に係る発電機システムの全体構成を示す図である。(実施例2)BRIEF DESCRIPTION OF THE DRAWINGS It is a figure which shows the whole structure of the generator system which concerns on one Embodiment of this invention. (Example 2) 本発明の一実施形態に係る発電機システムの全体構成を示す図である。(実施例3)BRIEF DESCRIPTION OF THE DRAWINGS It is a figure which shows the whole structure of the generator system which concerns on one Embodiment of this invention. (Example 3) 本発明の一実施形態に係るシリンダ内の圧力と出力軸の回転速度の関係を示す図である。It is a figure which shows the relationship between the pressure in the cylinder which concerns on one Embodiment of this invention, and the rotational speed of an output shaft. 本発明の一実施形態に係る発電機システムの全体構成を示す図である。(実施例4)BRIEF DESCRIPTION OF THE DRAWINGS It is a figure which shows the whole structure of the generator system which concerns on one Embodiment of this invention. (Example 4) 本発明の一実施形態に係るシリンダ内の圧力と出力電流波形の関係を示す図である。It is a figure which shows the relationship between the pressure in the cylinder which concerns on one Embodiment of this invention, and an output current waveform.
 以下、本発明を実施するための例(以下においては「実施例」と表記する)を、図面を参照して説明する。なお、実施例を説明するための全図において、同一の部材には原則として同一の符号を付し、重複する説明は適宜省略する。 Hereinafter, an example for carrying out the present invention (hereinafter referred to as “Example”) will be described with reference to the drawings. In all the drawings for explaining the embodiments, the same reference numeral is attached to the same member in principle, and the overlapping description will be appropriately omitted.
 図1から図13を参照して、実施例1の発電機システムとその制御方法について説明する。 The generator system of the first embodiment and a control method thereof will be described with reference to FIGS. 1 to 13.
 図1は本実施例の発電機システム4の全体構成を示している。本実施例の発電機システム4は、図1に示すように、主要な構成として、レシプロエンジン1と、交流励磁発電機3、および電力変換器2を備えており、制御器として、エンジンコントロールユニット6(以下、ECU)とパワーコンディショナー(PCS:変換器制御器)7を有している。 FIG. 1 shows the overall configuration of a generator system 4 of the present embodiment. As shown in FIG. 1, the generator system 4 according to the present embodiment mainly includes a reciprocating engine 1, an AC excitation generator 3, and a power converter 2. As a controller, an engine control unit 6 (hereinafter, ECU) and a power conditioner (PCS: converter controller) 7 are included.
 交流励磁発電機3は、回転子31と固定子32からなり、回転子31の軸は、レシプロエンジン1の出力軸(クランクシャフト)14と繋がる。また、回転子31にはスリップリング35を通じて、電力変換器2から交流(電力)が通電される。また、交流励磁発電機3は、遮断器52を介して電力系統100に接続され、電力変換器2と交流励磁発電機3の出力端は電気的に繋がれており、電力変換器2の制御により出力を正負にすることができる。 The AC excitation generator 3 includes a rotor 31 and a stator 32. The shaft of the rotor 31 is connected to the output shaft (crankshaft) 14 of the reciprocating engine 1. Further, an alternating current (electric power) is supplied to the rotor 31 from the power converter 2 through the slip ring 35. Further, the AC excitation generator 3 is connected to the power system 100 via the circuit breaker 52, and the power converter 2 and the output end of the AC excitation generator 3 are electrically connected, and the control of the power converter 2 is performed. Can make the output positive or negative.
 発電機システム4は、レシプロエンジン1の軸動力を交流励磁発電機3により電力に変換する。レシプロエンジン1は、出力指令77を受けて、ECU6が燃料調整弁74を制御する。ECU6は、電力計50の出力をみてフィードバック制御をおこなう。 The generator system 4 converts the shaft power of the reciprocating engine 1 into electric power by the AC excitation generator 3. In the reciprocating engine 1, the ECU 6 controls the fuel adjusting valve 74 in response to the output command 77. The ECU 6 performs feedback control by looking at the output of the power meter 50.
 電力変換器2は、電力系統100側の系統周波数50Hz、あるいは60Hzの交流電力を、周波数frotorの3相交流に変換し、これを受けて回転子31は交流励磁される。交流励磁された回転子31は回転磁界を生成する。 The power converter 2 converts AC power of the grid frequency of 50 Hz or 60 Hz on the power grid 100 side into a three-phase AC of frequency f rotor , and the rotor 31 is AC excited in response to this. The AC excited rotor 31 generates a rotating magnetic field.
 このとき、交流励磁発電機3の固定子32の交流周波数fstatorは電力系統100と同期しており、回転子の回転速度N(r/min)、極対数をP/2として、その回転子31が生成する磁界の回転方向を軸の回転方向と一致すると仮定すると以下の式1になる。 In this case, AC frequency f stator of an AC-fed generator 3 of the stator 32 is synchronized with the power system 100, the rotational speed of the rotor N (r / min), the pole logarithm as P / 2, the rotor Assuming that the direction of rotation of the magnetic field generated by 31 coincides with the direction of rotation of the shaft, the following equation 1 is obtained.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 仮にfrotorをゼロ、すなわち直流を供給すると、同期発電機と同じ動作になる。電力変換器2は任意の位相と周波数frotorの交流を与えることができるので、このレシプロエンジン1の回転速度Nは、電力変換器2の制御で決めることができる。電力変換器2は変換器制御器7で制御する。変換器制御器7は、回転速度計56によって計測した回転速度N、ECU6からの出力を元に電力変換器2に周波数と電圧の指令を与える。 If f rotor is zero, ie, direct current is supplied, the operation is the same as that of the synchronous generator. Since the power converter 2 can provide an alternating current of any phase and frequency f rotor , the rotational speed N of the reciprocating engine 1 can be determined by the control of the power converter 2. The power converter 2 is controlled by a converter controller 7. The converter controller 7 gives a command of frequency and voltage to the power converter 2 based on the rotational speed N measured by the tachometer 56 and the output from the ECU 6.
 レシプロエンジン1は、エンジン筐体11があり、筐体内部のシリンダ16内をピストン15が上下し、クランクシャフト14に動力を伝える。シリンダ16内部に圧力計13を設け、この圧力計13の信号を波形解析装置8に送る。この波形解析装置8はエンジン(レシプロエンジン1)の燃焼状態を解析し、その良否判断をする。波形解析装置8には、回転位置センサ57からクランクシャフトの角度、および、回転速度センサ56から軸の回転速度Nを入力する。 The reciprocating engine 1 has an engine housing 11, and a piston 15 moves up and down in a cylinder 16 inside the housing to transmit power to the crankshaft 14. A pressure gauge 13 is provided inside the cylinder 16, and a signal of the pressure gauge 13 is sent to the waveform analysis device 8. The waveform analysis device 8 analyzes the combustion state of the engine (reciprocating engine 1) and judges its quality. The angle of the crankshaft from the rotational position sensor 57 and the rotational speed N of the shaft from the rotational speed sensor 56 are input to the waveform analysis device 8.
 エンジンの燃焼状態は、出力(燃料投入量と比例)と点火タイミング、ピストン15の動作速度、すなわち回転速度によって変わる。そこで、上記の波形解析装置8でエンジン燃焼状態を判断し、変換器制御器7に回転速度Nを補正する指令を送る。具体的には、上述のfrotorの周波数を変えれば速度が変わる。 The combustion state of the engine varies depending on the output (proportional to the fuel input amount) and the ignition timing, the operating speed of the piston 15, ie, the rotational speed. Therefore, the engine combustion state is judged by the above-mentioned waveform analysis device 8, and a command for correcting the rotational speed N is sent to the converter controller 7. Specifically, the speed changes if the frequency of the rotor described above is changed.
 次にエンジン内部の燃焼過程と状態を図2に示す。図2は4ストローク機関の1サイクルを示したものである。クランクシャフト14が2回転で1サイクルである。図2に対応するシリンダ16内の圧力を示したものが図3である。クランク角-540°から-180°までは、吸気弁20A、あるいは排気弁20Bのどちらかが空いているため、シリンダ内圧力は、ほぼ0である。図2の(4)の圧縮工程から圧力が上昇し、ピストン15が最上部まで上がった位置(Top Dead Center:TDC)の近傍で燃焼が始まり(図3の「燃焼開始」)、膨張過程で仕事をする。 Next, the combustion process and the state inside the engine are shown in FIG. FIG. 2 shows one cycle of a four-stroke engine. The crankshaft 14 makes one cycle with two revolutions. FIG. 3 shows the pressure in the cylinder 16 corresponding to FIG. The pressure in the cylinder is approximately zero since either the intake valve 20A or the exhaust valve 20B is open from a crank angle of -540 ° to -180 °. The pressure rises from the compression step (4) in FIG. 2 and combustion starts near the position where the piston 15 is moved up to the top (Top Dead Center: TDC) (“combustion start” in FIG. 3) I do the work.
 これを表したものが図4である。燃焼しない場合(圧縮のみの場合)には、圧力はクランク角0°、すなわちTDCで最大になり、一点鎖線のように左右対称の圧力カーブとなる。燃焼すると実線のようになり、その差分の斜線の部分が仕事となる。出力が小さいときには図5のようになる。これらは燃焼状態が良好な場合である。 FIG. 4 shows this. When combustion does not occur (compression only), the pressure reaches a maximum at a crank angle of 0 °, that is, at TDC, and becomes a symmetrical pressure curve as indicated by an alternate long and short dash line. When it burns, it becomes like a solid line, and the shaded part of the difference becomes work. When the output is small, it is as shown in FIG. These are the cases where the combustion state is good.
 燃焼状態が悪い場合(異常燃焼時)の例を図6と図7に示す。燃焼が均質に拡散せずに、初期に集中したり、燃料の粒径が大きい場合などに生じる燃焼ムラなどでノッキングが発生すると、圧力波形は細かく振動する。このような振動を波形解析装置8で分析すれば、燃焼の良否が分かる。このような燃焼判断は、エンジンの1サイクル、あるいは、数サイクルの平均で実施できるため、リアルタイムの判断ができる。 Examples of cases where the combustion state is bad (during abnormal combustion) are shown in FIGS. 6 and 7. The pressure waveform vibrates finely if knocking occurs due to uneven combustion or the like which occurs at the initial stage or when the particle size of the fuel is large or the like without combustion spreading uniformly. If such a vibration is analyzed by the waveform analysis device 8, the quality of the combustion can be known. Such combustion determination can be performed in one cycle or several cycles of the average of the engine, so real-time determination can be made.
 軸(クランクシャフト)14の回転速度の変化に伴う燃焼カーブの違いを図8に示す。回転速度が低い順に(a)(b)(c)の順となる。また、このときに燃焼重心の重心という考えを取入れると、それぞれに対応して、(A)(B)(C)の順となり、回転速度が速いほど燃焼重心は後ろにシフトする。これは、シリンダ16内の燃焼拡散のスピードが一定とすると、回転速度が速くなるほど燃焼が遅れて見えるためである。 The difference in the combustion curve with the change of the rotational speed of the shaft (crankshaft) 14 is shown in FIG. The order of (a), (b) and (c) is the order of low rotational speed. Also, at this time, taking into consideration the center of gravity of the combustion center of gravity, the order of (A), (B), and (C) respectively corresponds, and the combustion center of gravity shifts backward as the rotational speed increases. This is because if the speed of combustion diffusion in the cylinder 16 is constant, the higher the rotation speed, the later the combustion appears to be delayed.
 また、同出力で回転速度が異なる場合には、回転速度が速いと1サイクルあたりの仕事は少なくなるので、図4に示した有効面積(斜線部分の面積)は小さくなる。このように回転速度を変えることによって燃焼重心を移動させることができ、最も良い燃焼状態にすることが可能である。 In addition, when the rotational speed is different at the same output, if the rotational speed is high, the work per cycle decreases, so the effective area (area of the hatched portion) shown in FIG. 4 decreases. By changing the rotational speed in this way, the combustion gravity center can be moved, and it is possible to achieve the best combustion state.
 本方法は、燃焼状態の良否判断が高速であり、リアルタイムに最適な運転状態に移行することができる特長がある。例えば、効率を測定するには、効率燃料消費量と出力を積分して判断しなければならず、正確な判定には10分程度の時間を要する。このような従来の方法のように時間がかかると、再生可能エネルギーの出力変動に十分に対応することができない。 The present method is characterized in that the judgment of the combustion state is fast, and the operation can be shifted to the optimum operating state in real time. For example, in order to measure the efficiency, it is necessary to integrate and determine the efficient fuel consumption and the output, and it takes about 10 minutes to make an accurate determination. If such a conventional method takes time, it can not sufficiently cope with the output fluctuation of renewable energy.
 本実施例によれば、クランク角とシリンダ内圧力を計測しているため、燃焼重心を測定することができ、最適な重心になるように回転速度を変えることができる。 According to this embodiment, since the crank angle and the pressure in the cylinder are measured, the combustion gravity center can be measured, and the rotation speed can be changed so as to be the optimum gravity center.
 定性的には、効率が良い、つまり燃料消費が少ない場合の燃焼状態が良いといえる、一般的なレシプロエンジンの燃料消費マップを図9に示す。縦軸はトルク、あるいは排気量あたりのトルクに比例するBMEP(Brake Mean Effective Pressure)でエンジンの基本的な運転状態を示す。エンジン出力は「トルク×回転速度」なので、等出力線は反比例カーブとなる。エンジンの回転速度はNEminからNEmaxまで可変とする。また、交流励磁発電機3の可変速範囲をNGminからNGmaxとする。 Qualitatively, FIG. 9 shows a fuel consumption map of a general reciprocating engine that can be said to be efficient, that is, the combustion state when fuel consumption is low. The vertical axis represents the basic operating condition of the engine in BMEP (Brake Mean Effective Pressure) which is proportional to torque or torque per displacement. Since the engine output is “torque × rotational speed”, the equal output line is an inversely proportional curve. The rotational speed of the engine is variable from NE min to NE max . Further, the variable speed range of the AC excitation generator 3 is set from NG min to NG max .
 この等燃費線の形状は一般的なもので、従来のエンジン発電機は、定格時に最も効率を良く設計されているのでA点で運転される。この出力を上下させる理想的な運転は長破線(1)のようになる。しかし、電力系統100に直結する同期発電機を持つ従来のエンジン発電機では、出力を下げる場合に固定速なので、A-B間で運転する。 The shape of the iso fuel consumption line is general, and the conventional engine generator is operated at the point A since it is designed most efficiently at the time of rating. An ideal operation to raise and lower this output is as shown by a long broken line (1). However, in the conventional engine generator having a synchronous generator directly connected to power system 100, operation is performed between A and B since the speed is fixed when the output is reduced.
 B点以下は立上げ時など過渡的には運転されるが、通常、二つの理由で運転されない。一つは、効率が下がるため、出力を下げても燃料消費量が減らず発電事業としてメリットがない。二つめは、特にディーゼルエンジンで良く知られている問題で、低負荷運転を長時間続けると、エンジン内部の不完全燃焼によりスラッジが蓄積する。このスラッジにより性能が劣化し、最悪の場合には、起動時に暴発する可能性もある。 Although the point B or less is operated transiently at the time of start-up, etc., it is not usually operated for two reasons. First, because the efficiency is reduced, the fuel consumption will not decrease even if the output is reduced, and there is no merit as a power generation business. The second is a well-known problem, especially for diesel engines, where low-load operation continues for long periods of time resulting in sludge buildup due to incomplete combustion inside the engine. This sludge degrades the performance, and in the worst case, it may be violent at startup.
 本実施例では、出力を下げる方法として、例えばAからC点にトルクを一定のまま回転速度を下げることができる。さらに、回転速度一定のまま、D点までトルクを下げると、B点と同じ出力となり、等燃費線から燃料消費が少なくなることがわかる。 In the present embodiment, as a method of reducing the output, for example, the rotational speed can be reduced while the torque is kept constant from point A to point C. Furthermore, if the torque is lowered to the point D while the rotational speed is constant, the output is the same as the point B, and it can be seen that the fuel consumption is reduced from the equal fuel consumption line.
 また、本実施例によるエンジン発電機は、出力の調整幅を増やすことができる。等燃費線上はエンジン内部の燃焼状態が同じとすれば、最低出力がB点であるエンジン発電機は、最低出力をF点まで下げることができる。一方、エンジンの回転速度をE点まで上げることで出力を増やすことも可能である。このように、従来のエンジン発電機を本実施例により可変速にすることで出力調整幅を増やすことができる。 Moreover, the engine generator by a present Example can increase the adjustment range of an output. If the combustion state inside the engine is the same on the equal fuel consumption line, the engine generator having the minimum output at point B can reduce the minimum output to point F. On the other hand, it is also possible to increase the output by raising the rotational speed of the engine to point E. Thus, the output adjustment range can be increased by changing the speed of the conventional engine generator according to this embodiment.
 なお、破線(1)のように負荷に対する回転速度をあらかじめ設定しておくと、早い時間で最適な回転速度に収束させることができることは言うまでもない。 Needless to say, if the rotational speed for the load is set in advance as shown by the broken line (1), the rotational speed can be converged to the optimum rotational speed in a short time.
 図10はエンジンの燃焼を安定させるための可変速運転の方法を示す。領域(1)は、ノッキングが発生しやすい低速大トルクの場合であり、エンジンの燃焼状態を表す筒内圧力は典型的には図7のようになる。仮にA点でノッキングが発生した場合、等出力線上のB点に回転速度を変えるために、電力変換器2の回転子側の周波数を変える。次に領域(2)は、高速低トルクでの燃焼不安定領域がある。 FIG. 10 illustrates a method of variable speed operation to stabilize engine combustion. Region (1) is the case of low speed and large torque where knocking easily occurs, and the in-cylinder pressure representing the combustion state of the engine is typically as shown in FIG. If knocking occurs at point A, the frequency of the rotor of the power converter 2 is changed to change the rotational speed to point B on the iso-output line. Next, the region (2) has a combustion instability region at high speed and low torque.
 この場合の筒内圧力は典型的には図11のようになり、サイクル毎の燃焼波形が安定せず、筒内圧力の最大値Pmaxが変動、あるいは燃焼重心が毎回異なる。仮にC点でこのPmaxの変動が有る閾値を超えたら、等出力線上のD点に回転数を変える。これも(1)の場合と同様に、電力変換器2の回転子側の周波数を変えることで制御する。 The in-cylinder pressure in this case is typically as shown in FIG. 11, the combustion waveform for each cycle is not stable, the maximum value P max of the in-cylinder pressure fluctuates, or the combustion gravity center differs each time. If, at point C, the fluctuation of P max exceeds a certain threshold, the number of rotations is changed to point D on the iso-output line. This is also controlled by changing the frequency on the rotor side of the power converter 2 as in the case of (1).
 図12は、本実施例の発電機システム4を利用した電力系統100を示す。電力負荷200が電力系統100に繋がれており、電力系統100の電力は、本実施例の可変速エンジン発電機システム4、蓄電池システム5、太陽光発電器9、風力発電機10、および、電力負荷200を除く電源全体を制御する発電システム統合制御装置110からなる。 FIG. 12 shows a power system 100 using the generator system 4 of the present embodiment. The electric power load 200 is connected to the electric power system 100, and the electric power of the electric power system 100 is generated by the variable speed engine generator system 4, the storage battery system 5, the solar power generator 9, the wind power generator 10, and the electric power of the present embodiment. It comprises a power generation system integrated controller 110 that controls the entire power supply excluding the load 200.
 図13に、この電力系統100の電力需要とそれを担う発電システムの出力内訳を示す。太陽光発電や風力発電の定格出力は好条件時の最大値であり、気象条件によって発電機の起動・停止が間に合わないほど急に発電量が上下する場合がある。これに備え、エンジン発電機を部分負荷運転で待機させ、急激な発電調整を可能にしておく必要がある(図13のENG出力)。エンジン発電機を、たとえば2台保有していたとして、起動する台数を決めて各時間のエンジン発電機の最大出力が決まり、各エンジン発電機固有の最低出力の間の容量だけ再生可能エネルギーが導入可能である。 FIG. 13 shows the power demand of the power system 100 and the output breakdown of the power generation system responsible for it. The rated output of photovoltaic power generation and wind power generation is the maximum value under favorable conditions, and depending on the weather conditions, the amount of power generation may fluctuate rapidly so that the start and stop of the generator can not be in time. In preparation for this, it is necessary to make the engine generator stand by in partial load operation and enable rapid power generation adjustment (the ENG output in FIG. 13). For example, assuming that two engine generators are held, the number of units to be started is determined to determine the maximum output of the engine generator for each time, and renewable energy is introduced only by the capacity between the minimum outputs specific to each engine generator. It is possible.
 図13は最低出力を仮に50%とした場合を示している。太陽光発電器9と風力発電機10の発電量急変に対応するため、蓄電池システム5を追加しても良い。しかし、蓄電池システム5で容量が不足する場合には、エンジン発電機4で調整しなければ系統を安定に維持できない。 FIG. 13 shows the case where the minimum output is temporarily set to 50%. In order to cope with sudden changes in the amount of power generation of the solar power generator 9 and the wind power generator 10, a storage battery system 5 may be added. However, when the capacity of the storage battery system 5 is insufficient, the system can not be stably maintained without adjustment by the engine generator 4.
 仮に蓄電池システム5が無い場合、図13の条件ではこれ以上風力発電や太陽光発電の設備容量を増やすと、電力需要を上回る発電をする可能性があり、再生可能エネルギーの発電量を増やすことはできないため、系統運用者は導入設備容量を制限する必要がある。 If there is no storage battery system 5 and if the installed capacity of wind power generation and solar power generation is further increased under the condition of FIG. 13, there is a possibility that power generation can exceed the power demand, and it is possible to increase the power generation amount of renewable energy Because the system operator can not do this, it is necessary for the system operator to limit the installation capacity.
 本実施例では、発電システム統合制御装置110が太陽光発電器9、あるいは、風力発電機10の出力を任意に絞るよう指示することで、再生可能エネルギーの導入を増やすことができる。 In the present embodiment, the power generation system integrated control device 110 can increase the introduction of the renewable energy by instructing the solar power generator 9 or the wind power generator 10 to arbitrarily reduce the output.
 また、図13から明らかなように、エンジンの出力調整幅が大きければ、再生可能エネルギーでより多く発電することができる。このエンジン発電機の調整幅に関しては、上述のようにエンジンの回転速度を可変にすることで広げることができる。 Further, as is clear from FIG. 13, if the power adjustment range of the engine is large, more electric power can be generated by renewable energy. The adjustment range of the engine generator can be expanded by varying the rotational speed of the engine as described above.
 また、燃焼状態を監視しているため、その時のエンジンの状態、例えば外気温、外気圧力、経年、燃料条件に合った最大の出力、あるいは最低の出力を、回転速度を変えることで変化させることができる。 In addition, since the combustion state is monitored, changing the engine speed at that time, for example, the maximum output corresponding to the outside air temperature, the outside air pressure, the aging, the fuel condition, or the minimum output, by changing the rotation speed. Can.
 以上のように、本実施例によれば、エンジンの燃焼状態をリアルタイムに判断し、それに基づいて回転速度を変えるため、燃焼状態を常に最適状態に維持することができる。この結果、部分負荷効率の向上が可能である。 As described above, according to the present embodiment, the combustion state of the engine is determined in real time, and the rotation speed is changed based on that, so that the combustion state can be always maintained in the optimum state. As a result, the partial load efficiency can be improved.
 また、エンジン発電機の可変速化の手段として、交流励磁発電機3を用いているため、電力変換器2での損失を少なくすることができる。 Further, since the AC excitation generator 3 is used as a means for changing the speed of the engine generator, the loss in the power converter 2 can be reduced.
 さらに、低負荷時には回転速度を同期速度よりも低く、高負荷時には回転速度を高くすることにより、エンジン発電機(発電機システム4)の出力調整幅を増やすことができる。 Furthermore, the output adjustment range of the engine generator (generator system 4) can be increased by setting the rotational speed lower than the synchronous speed when the load is low and increasing the rotational speed when the load is high.
 また、調整幅を広げることが可能なこの(可変速エンジン)発電機システム4を用いて、電力系統100に対して太陽光発電器と風力発電機の設備を多く導入することができる。 Moreover, many installations of a solar power generator and a wind-powered generator can be introduce | transduced with respect to the electric power grid | system 100 using this (variable speed engine) generator system 4 which can expand adjustment range.
 さらに、出力に対する最適回転速度をあらかじめ設定しておくと、最適な運転状態に速く移行することができる。 Furthermore, if the optimum rotational speed for the output is set in advance, it is possible to quickly shift to the optimum operating condition.
 なお、本実施例において、交流励磁発電機3の出力を一定に維持しながら、レシプロエンジン1の回転速度およびトルクを制御してもよい。レシプロエンジン1の燃焼状態の一時的な変化に影響されずに、(可変速エンジン)発電機システム4の出力を安定化することができる。 In the present embodiment, the rotational speed and torque of the reciprocating engine 1 may be controlled while maintaining the output of the AC excitation generator 3 constant. The output of the (variable speed engine) generator system 4 can be stabilized without being influenced by the temporary change of the combustion state of the reciprocating engine 1.
 図14を参照して、実施例2の発電機システムとその制御方法について説明する。図14は本実施例の発電機システム4の全体構成を示している。実施例1(図1)との違いは、シリンダ16内部の圧力を計測する圧力計13の代わりに、エンジン筐体11にひずみゲージ12を取付けているところが異なる。 The generator system of the second embodiment and the control method thereof will be described with reference to FIG. FIG. 14 shows the entire configuration of the generator system 4 of this embodiment. The difference from the first embodiment (FIG. 1) is that the strain gauge 12 is attached to the engine housing 11 instead of the pressure gauge 13 that measures the pressure inside the cylinder 16.
 そして、このひずみゲージ12の信号を基に、燃焼圧力波形推定装置8Aで、シリンダ16内の圧力波形を推定する。ひずみゲージには、エンジン筐体11のシリンダ16内の圧力に連動した歪が現れるため、この波形を基にシリンダ16の圧力を推定することが可能である。あるいは、エンジン筐体11に取りつけた加速度センサでも同様の推定が可能である。 Then, based on the signal of the strain gauge 12, the pressure waveform in the cylinder 16 is estimated by the combustion pressure waveform estimating device 8A. In the strain gauge, a strain linked to the pressure in the cylinder 16 of the engine housing 11 appears, so that the pressure of the cylinder 16 can be estimated based on this waveform. Alternatively, the same estimation can be made with an acceleration sensor attached to the engine housing 11.
 これらのひずみゲージ12や加速度センサの信号の高調波成分を分析してノッキングを検出する、あるいは、燃焼重心を推定することができ、それに基づいて実施例1と同様に速度を最適値に変えることができる。本実施例による効果は実施例1と同様である。 The harmonic components of the signals of the strain gauge 12 and the acceleration sensor can be analyzed to detect knocking, or the combustion gravity center can be estimated, and based on that, the speed is changed to the optimum value as in the first embodiment. Can. The effects of the present embodiment are the same as those of the first embodiment.
 図15および図16を参照して、実施例3の発電機システムとその制御方法について説明する。図15は本実施例の発電機システム4の全体構成を示している。実施例1(図1)との違いは、シリンダ16内部の圧力を計測する代わりに、回転速度計(回転速度センサ)56の信号を基に燃焼圧力波形推定装置8Aで、シリンダ16内の圧力波形を推定する。 The generator system of the third embodiment and its control method will be described with reference to FIGS. 15 and 16. FIG. 15 shows the entire configuration of the generator system 4 of this embodiment. The difference from the first embodiment (FIG. 1) is that instead of measuring the pressure in the cylinder 16, the pressure in the cylinder 16 is measured by the combustion pressure waveform estimation device 8A based on the signal of the tachometer (rotational speed sensor) 56. Estimate the waveform.
 図16にシリンダ16内圧力と回転速度の関係を模式的に示す。図16では8気筒の4ストローク機関の筒内圧力と回転速度の関係を示す。各気筒は同じ燃焼状態と仮定している。エネルギー自体は燃焼行程のみで発生するが、エンジンシャフト(クランクシャフト14)に繋がれている発電機やフライホイールなどの回転慣性があるため、ある程度平準化される効果がある。 FIG. 16 schematically shows the relationship between the pressure in the cylinder 16 and the rotational speed. FIG. 16 shows the relationship between in-cylinder pressure and rotational speed of an eight-cylinder four-stroke engine. Each cylinder is assumed to be in the same combustion state. The energy itself is generated only in the combustion stroke, but has the effect of being leveled to some extent because there is rotational inertia such as a generator or a flywheel connected to the engine shaft (crankshaft 14).
 図16(a)はある一気筒分の筒内の圧力を示したもので、クランクシシャフト14にはこの波形を反映したトルクが発生する。8気筒エンジンであれば、各々90度ずれたトルクが発生することになる。図16(b)は8気筒エンジンの回転速度を表しており、1サイクル2回転720度内に8回の燃焼行程があるため、8次の成分があり、回転速度もこれを反映した波形となる。 FIG. 16A shows the pressure in one cylinder of a certain cylinder, and a torque reflecting this waveform is generated on the crankshaft 14. In the case of an eight-cylinder engine, torques deviated by 90 degrees respectively are generated. FIG. 16 (b) shows the rotational speed of an eight-cylinder engine, and since there are eight combustion strokes within one cycle of two rotations 720 degrees, there is an eighth-order component, and the rotational speed also has a waveform reflecting this. Become.
 この回転速度計(回転速度センサ)56の高調波成分を分析し、ノッキングを検出する、あるいは、燃焼重心を推定することができ、それに基づいて実施例1と同様に速度を最適値に変えることができる。本実施例による効果は実施例1と同様である。 The harmonic component of this tachometer (rotational speed sensor) 56 can be analyzed to detect knocking or the combustion center of gravity can be estimated, and based on that, the speed is changed to an optimum value as in the first embodiment. Can. The effects of the present embodiment are the same as those of the first embodiment.
 図17および図18を参照して、実施例4の発電機システムとその制御方法について説明する。図17は本実施例の発電機システム4の全体構成を示している。実施例1(図1)との違いは、シリンダ16内部の圧力を推定する方法として、電力計50の信号を基に燃焼圧力波形推定装置8Aで、シリンダ16内の圧力波形を推定するところにある。電力計50の信号を燃焼圧力波形推定装置8Aに取り込み、その波形を解析することで、シリンダ16内の圧力波形を推定する。電力計の計測値として、電流を計測する。 The generator system of the fourth embodiment and the control method thereof will be described with reference to FIGS. 17 and 18. FIG. 17 shows the entire configuration of the generator system 4 of the present embodiment. The difference from the first embodiment (FIG. 1) is that the pressure waveform in the cylinder 16 is estimated by the combustion pressure waveform estimation device 8A based on the signal of the power meter 50 as a method of estimating the pressure in the cylinder 16 is there. The signal of the power meter 50 is taken into the combustion pressure waveform estimation device 8A, and the pressure waveform in the cylinder 16 is estimated by analyzing the waveform. The current is measured as the measurement value of the power meter.
 図18では実施例3と同じように8気筒の4ストローク機関の筒内圧力と3相の電流波形の関係を模式的に示す。シリンダ16内の燃焼でノッキングがあれば、実施例3の回転速度の振動を反映して、3相電源として電気出力される各相の電流波形が図18(b)のように、正弦波波形の上に高調波が乗ることになる。シリンダ16内の圧力は図18(a)のように細かな振動が発生する。それを反映して、電流波形にも振動が発生することになる。 Similarly to the third embodiment, FIG. 18 schematically shows the relationship between the in-cylinder pressure and the three-phase current waveform of the eight-cylinder four-stroke engine. If knocking occurs in the combustion in the cylinder 16, the current waveform of each phase electrically output as a three-phase power source reflects the vibration of the rotational speed of the third embodiment, as shown in FIG. Harmonics will ride on top of the The pressure in the cylinder 16 produces a fine vibration as shown in FIG. 18 (a). Reflecting that, the vibration also occurs in the current waveform.
 この電力計50の高調波成分を分析し、ノッキングを検出する、あるいは、燃焼重心を推定することができ、それに基づいて実施例1と同様に速度を最適値に変えることができる。本実施例による効果は実施例1と同様である。 The harmonic components of the power meter 50 can be analyzed to detect knocking or the combustion center of gravity can be estimated, and based on that, the speed can be changed to the optimum value as in the first embodiment. The effects of the present embodiment are the same as those of the first embodiment.
 なお、図17では、電流は電力計50により計測しているが、電力変換器2のスリップリング側の電流でも可能であることは言うまでもない。 Although the current is measured by the power meter 50 in FIG. 17, it goes without saying that the current on the slip ring side of the power converter 2 is also possible.
 また、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。 Further, the present invention is not limited to the above-described embodiments, and includes various modifications. For example, the embodiments described above are described in detail in order to explain the present invention in an easy-to-understand manner, and are not necessarily limited to those having all the configurations described. Also, part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment. In addition, with respect to a part of the configuration of each embodiment, it is possible to add, delete, and replace other configurations.
 また、本発明は、以下の特徴も有している。 The present invention also has the following features.
 [付記1]
 レシプロエンジンと、その軸に繋がれた交流励磁型回転電機と、該回転電機の回転子に交流を通電する周波数変換器と、からなる発電機システムと、太陽光、風力発電など発電量を任意に調整できない再生可能エネルギーの両方の電源を持つ複合型発電システムにおいて、
 再生可能エネルギーの出力が急減した場合に、前記発電システムの回転速度を同期速度よりも上げて出力を増やすことを特徴とする複合型発電システムの制御方法。
[Supplementary Note 1]
A generator system consisting of a reciprocating engine, an AC excitation type electric rotating machine connected to its shaft, and a frequency converter for energizing the rotor of the electric rotating machine with an alternating current, solar power, wind power generation etc Combined power generation system with both sources of renewable energy that can not
A control method of a combined power generation system, wherein the rotational speed of the power generation system is made higher than the synchronous speed to increase the output when the output of the renewable energy decreases sharply.
 [付記2]
 レシプロエンジンと、その軸に繋がれた交流励磁型回転電機と、該回転電機の回転子に交流を通電する周波数変換器と、からなる発電機システムと、太陽光、風力発電など発電量を任意に調整できない再生可能エネルギーの両方の電源を持つ複合型発電システムにおいて、
 再生可能エネルギーの出力が急増した場合に、前記発電システムの回転速度を同期速度よりも下げて出力を減らすことを特徴とする複合型発電システムの制御方法。
[Supplementary Note 2]
A generator system consisting of a reciprocating engine, an AC excitation type electric rotating machine connected to its shaft, and a frequency converter for energizing the rotor of the electric rotating machine with an alternating current, solar power, wind power generation etc Combined power generation system with both sources of renewable energy that can not
A control method of a combined power generation system, wherein the rotational speed of the power generation system is made lower than the synchronous speed to reduce the output when the output of renewable energy increases rapidly.
 1…レシプロエンジン、 2…電力変換器、 3…交流励磁発電機、 4…(可変速エンジン)発電機システム、 5…蓄電池システム、 6…エンジンコントロールユニット(ECU)、 7…パワーコンディショナー(PCS:変換器制御器)、 8…波形解析装置、 8A…燃焼圧力波形推定装置、 9…太陽光発電器、 10…風力発電機、 11…エンジン筐体、 12…ひずみゲージ、 13…圧力計、 14…軸(クランクシャフト)、 15…ピストン、 16…シリンダ、 17…コンロッド、 20A…吸気バルブ(弁)、 20B…排気バルブ(弁)、 31…回転子、 32…固定子、 35…スリップリング、 50…電力計、 52…遮断器、 56…回転速度検出器(回転速度計)、 57…回転位置検出器(回転位置センサ)、 74…燃料調整弁、 77…出力指令、 100…電力系統、 110…発電システム統合制御装置、 200…電力負荷(独立系統負荷) DESCRIPTION OF SYMBOLS 1 ... Reciprocating engine, 2 ... Power converter, 3 ... AC excitation generator, 4 ... (variable speed engine) generator system, 5 ... Battery system, 6 ... Engine control unit (ECU), 7 ... Power conditioner (PCS: Converter controller), 8 ... waveform analysis device, 8 A ... combustion pressure waveform estimation device, 9 ... solar power generator, 10 ... wind power generator, 11 ... engine housing, 12 ... strain gauge, 13 ... pressure gauge, 14 ... shaft (crankshaft), 15 ... piston, 16 ... cylinder, 17 ... connecting rod, 20A ... intake valve (valve), 20B ... exhaust valve (valve), 31 ... rotor, 32 ... stator, 35 ... slip ring, 50: Power meter, 52: Circuit breaker, 56: Rotational speed detector (rotational speed meter), 57: Rotational position detection (Rotational position sensor), 74 ... fuel adjusting valve, 77 ... output command, 100 ... electric power system, 110 ... power generation system integrated control unit, 200 ... power load (independent system load)

Claims (15)

  1.  レシプロエンジンと、
     前記レシプロエンジンの出力軸に連結される交流励磁発電機と、
     スリップリングを介して前記交流励磁発電機の回転軸に連結され、前記交流励磁発電機の回転子に交流電力を通電する電力変換器と、を備え、
     前記レシプロエンジンの気筒内の圧力の時間変化波形に基づき、前記電力変換器のすべり周波数制御により、前記レシプロエンジンの回転速度およびトルクを制御することを特徴とする発電機システム。
    With the reciprocating engine,
    An AC excitation generator coupled to an output shaft of the reciprocating engine;
    And a power converter connected to the rotation shaft of the AC excitation generator via a slip ring, for energizing the rotor of the AC excitation generator with AC power.
    A generator system comprising: controlling a rotational speed and a torque of the reciprocating engine by controlling a sliding frequency of the power converter based on a time-varying waveform of pressure in a cylinder of the reciprocating engine.
  2.  請求項1に記載の発電機システムであって、
     前記レシプロエンジンの気筒内に設置した圧力センサにより当該気筒内の圧力を直接計測することを特徴とする発電機システム。
    The generator system according to claim 1, wherein
    A generator system characterized in that pressure in the cylinder is directly measured by a pressure sensor installed in the cylinder of the reciprocating engine.
  3.  請求項1に記載の発電機システムであって、
     燃焼圧力波形推定装置をさらに備え、
     前記レシプロエンジンの筐体に設置したひずみゲージまたは加速度センサの計測値から前記レシプロエンジンの気筒内の圧力の時間変化波形を推定することを特徴とする発電機システム。
    The generator system according to claim 1, wherein
    The apparatus further comprises a combustion pressure waveform estimation device,
    A generator system characterized by estimating a temporal change waveform of pressure in a cylinder of the reciprocating engine from measurement values of a strain gauge or an acceleration sensor installed in a casing of the reciprocating engine.
  4.  請求項1に記載の発電機システムであって、
     燃焼圧力波形推定装置をさらに備え、
     前記レシプロエンジンの出力軸または前記交流励磁発電機の回転軸に設置した回転速度センサの計測値から前記レシプロエンジンの気筒内の圧力の時間変化波形を推定することを特徴とする発電機システム。
    The generator system according to claim 1, wherein
    The apparatus further comprises a combustion pressure waveform estimation device,
    A generator system characterized by estimating a temporal change waveform of pressure in a cylinder of the reciprocating engine from a measurement value of a rotational speed sensor installed on an output shaft of the reciprocating engine or a rotating shaft of the AC excitation generator.
  5.  請求項1に記載の発電機システムであって、
     燃焼圧力波形推定装置をさらに備え、
     前記交流励磁発電機の出力電流波形から前記レシプロエンジンの気筒内の圧力の時間変化波形を推定することを特徴とする発電機システム。
    The generator system according to claim 1, wherein
    The apparatus further comprises a combustion pressure waveform estimation device,
    A generator system characterized by estimating a time change waveform of pressure in a cylinder of the reciprocating engine from an output current waveform of the AC excitation generator.
  6.  請求項1に記載の発電機システムであって、
     前記発電機システムが接続される電力系統の負荷に応じて予め決定した前記レシプロエンジンの回転速度に基づき、前記電力系統の出力が所定値よりも高い場合には同期速度よりも回転速度を高く制御し、前記電力系統の出力が所定値よりも低い場合には同期速度よりも回転速度を低く制御することを特徴とする発電機システム。
    The generator system according to claim 1, wherein
    The rotational speed is controlled to be higher than the synchronous speed when the output of the electric power system is higher than a predetermined value based on the rotational speed of the reciprocating engine previously determined according to the load of the electric power system to which the generator system is connected The generator system, wherein the rotational speed is controlled to be lower than the synchronous speed when the output of the power system is lower than a predetermined value.
  7.  請求項1から6のいずれか1項に記載の発電機システムであって、
     前記交流励磁発電機の出力を一定に維持しながら、前記レシプロエンジンの回転速度およびトルクを制御することを特徴とする発電機システム。
    The generator system according to any one of claims 1 to 6, wherein
    A generator system characterized in that the rotational speed and torque of the reciprocating engine are controlled while maintaining the output of the AC excitation generator constant.
  8.  レシプロエンジンにより発電運転する交流励磁発電機を備える発電機システムの制御方法であって、
     前記レシプロエンジンの気筒内の圧力の時間変化波形に基づき、すべり周波数制御により、前記レシプロエンジンの回転速度およびトルクを制御することを特徴とする発電機システムの制御方法。
    A control method of a generator system provided with an AC excitation generator that generates electric power by a reciprocating engine, comprising:
    A control method of a generator system, comprising controlling a rotational speed and a torque of the reciprocating engine by slip frequency control based on a temporal change waveform of pressure in a cylinder of the reciprocating engine.
  9.  請求項8に記載の発電機システムの制御方法であって、
     前記レシプロエンジンの気筒内に設置した圧力センサにより当該気筒内の圧力を直接計測することを特徴とする発電機システムの制御方法。
    A control method of a generator system according to claim 8, wherein
    A control method of a generator system, wherein the pressure in the cylinder is directly measured by a pressure sensor installed in the cylinder of the reciprocating engine.
  10.  請求項8に記載の発電機システムの制御方法であって、
     前記レシプロエンジンの筐体に設置したひずみゲージまたは加速度センサの計測値から前記レシプロエンジンの気筒内の圧力の時間変化波形を推定することを特徴とする発電機システムの制御方法。
    A control method of a generator system according to claim 8, wherein
    A control method of a generator system, comprising: estimating a time change waveform of pressure in a cylinder of the reciprocating engine from measurement values of a strain gauge or an acceleration sensor installed in a casing of the reciprocating engine.
  11.  請求項8に記載の発電機システムの制御方法であって、
     前記レシプロエンジンの出力軸または前記交流励磁発電機の回転軸に設置した回転速度センサの計測値から前記レシプロエンジンの気筒内の圧力の時間変化波形を推定することを特徴とする発電機システムの制御方法。
    A control method of a generator system according to claim 8, wherein
    Control of a generator system characterized by estimating a time-varying waveform of pressure in a cylinder of the reciprocating engine from a measurement value of a rotational speed sensor installed on an output shaft of the reciprocating engine or a rotating shaft of the AC excitation generator Method.
  12.  請求項8に記載の発電機システムの制御方法であって、
     前記交流励磁発電機の出力電流波形から前記レシプロエンジンの気筒内の圧力の時間変化波形を推定することを特徴とする発電機システムの制御方法。
    A control method of a generator system according to claim 8, wherein
    A control method of a generator system, comprising: estimating a time change waveform of pressure in a cylinder of the reciprocating engine from an output current waveform of the AC excitation generator.
  13.  請求項8に記載の発電機システムの制御方法であって、
     前記発電機システムが接続される電力系統の負荷に応じて予め決定した前記レシプロエンジンの回転速度に基づき、前記電力系統の出力が所定値よりも高い場合には同期速度よりも回転速度を高く制御し、前記電力系統の出力が所定値よりも低い場合には同期速度よりも回転速度を低く制御することを特徴とする発電機システムの制御方法。
    A control method of a generator system according to claim 8, wherein
    The rotational speed is controlled to be higher than the synchronous speed when the output of the electric power system is higher than a predetermined value based on the rotational speed of the reciprocating engine previously determined according to the load of the electric power system to which the generator system is connected And controlling the rotation speed to be lower than the synchronous speed when the output of the power system is lower than a predetermined value.
  14.  請求項8から13のいずれか1項に記載の発電機システムの制御方法であって、
     前記交流励磁発電機の出力を一定に維持しながら、前記レシプロエンジンの回転速度およびトルクを制御することを特徴とする発電機システムの制御方法。
    A control method of a generator system according to any one of claims 8 to 13, wherein
    A control method of a generator system, comprising controlling a rotational speed and a torque of the reciprocating engine while maintaining an output of the AC excitation generator constant.
  15.  風力発電器および太陽光発電機の少なくともいずれか一方とレシプロエンジン発電機とを含む複合型発電システムの制御方法であって、
     前記レシプロエンジン発電機は請求項8から14のいずれかにより制御されることを特徴とする複合型発電システムの制御方法。
    A control method of a combined power generation system including at least one of a wind power generator and a solar power generator and a reciprocating engine generator, comprising:
    A control method of a combined power generation system, wherein said reciprocating engine generator is controlled by any one of claims 8 to 14.
PCT/JP2018/012372 2017-08-28 2018-03-27 Power generator system, control method for power generator system, and control method for composite power generation system WO2019044014A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017163523A JP2019041535A (en) 2017-08-28 2017-08-28 Generator system, control method for generator system, control method for composite type power generation system
JP2017-163523 2017-08-28

Publications (1)

Publication Number Publication Date
WO2019044014A1 true WO2019044014A1 (en) 2019-03-07

Family

ID=65525222

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/012372 WO2019044014A1 (en) 2017-08-28 2018-03-27 Power generator system, control method for power generator system, and control method for composite power generation system

Country Status (2)

Country Link
JP (1) JP2019041535A (en)
WO (1) WO2019044014A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004187412A (en) * 2002-12-03 2004-07-02 Toyota Motor Corp Power output apparatus for hybrid vehicle, its control method, and hybrid vehicle
JP2006101633A (en) * 2004-09-29 2006-04-13 Tokyo Gas Co Ltd Engine generation device
JP2006176057A (en) * 2004-12-24 2006-07-06 Hitachi Ltd Driving device for railroad rolling stock
US20160009274A1 (en) * 2012-05-04 2016-01-14 Ford Global Technologies, Llc Methods and systems for a driveline disconnect clutch

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004187412A (en) * 2002-12-03 2004-07-02 Toyota Motor Corp Power output apparatus for hybrid vehicle, its control method, and hybrid vehicle
JP2006101633A (en) * 2004-09-29 2006-04-13 Tokyo Gas Co Ltd Engine generation device
JP2006176057A (en) * 2004-12-24 2006-07-06 Hitachi Ltd Driving device for railroad rolling stock
US20160009274A1 (en) * 2012-05-04 2016-01-14 Ford Global Technologies, Llc Methods and systems for a driveline disconnect clutch

Also Published As

Publication number Publication date
JP2019041535A (en) 2019-03-14

Similar Documents

Publication Publication Date Title
Pena et al. Wind–diesel generation using doubly fed induction machines
CA2831665C (en) Generator
US8022572B2 (en) Genset system with energy storage for transient response
JP6318256B2 (en) Gas turbine power generation system
CA2934842C (en) Method of operating a single-phase generator in parallel with an inverter
CN108054967B (en) Brushless double-fed motor-based diesel power generation system and control method thereof
KR101304402B1 (en) Variable speed wind turbine system
CN103441724B (en) Be applicable to the voltage adjusting method of frequency conversion alternating-current generator
WO2015100152A1 (en) Method of controlling multiple parallel-connected generators
JP2003314324A (en) Engine generator
CN104467023A (en) Control method of gas turbine power generation device used for energy storage of natural gas power station super capacitor and gas turbine power generation device
US20160024961A1 (en) Turbine of a turbocompound engine with variable load and a controller thereof
KR101399764B1 (en) Turbocharger electric generating device
WO2019044014A1 (en) Power generator system, control method for power generator system, and control method for composite power generation system
Boldea Control of electric generators: a review
Morandin et al. Active torque ripple damping in direct drive range extender applications: A comparison and an original proposal
WO2012103709A1 (en) Method, device and system for speed control of generator set
Bram et al. Variable speed genset with full rated power converter using readily available industrial products
Wu AC/DC power conversion interface for self-excited induction generator
CN101686034B (en) Method for automatically tracing maximal power based on switch magnetic resistance wind power generating system
Khitrov et al. Electrical subsystem of the low-power cogeneration plant with low-speed vehicle
Mobarra et al. Modeling and optimization of the energy production based on Eo-Synchro
Senani et al. Vector control and direct power control of wind energy conversion system based on a DFIG
JP2005117842A (en) Power generation system
RU158933U1 (en) AUTONOMOUS WIND-DIESEL-ELECTRIC INSTALLATION

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18849831

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18849831

Country of ref document: EP

Kind code of ref document: A1