WO2019043777A1 - Dc power transmission system - Google Patents

Dc power transmission system Download PDF

Info

Publication number
WO2019043777A1
WO2019043777A1 PCT/JP2017/030896 JP2017030896W WO2019043777A1 WO 2019043777 A1 WO2019043777 A1 WO 2019043777A1 JP 2017030896 W JP2017030896 W JP 2017030896W WO 2019043777 A1 WO2019043777 A1 WO 2019043777A1
Authority
WO
WIPO (PCT)
Prior art keywords
converter
power
transmission system
output
state
Prior art date
Application number
PCT/JP2017/030896
Other languages
French (fr)
Japanese (ja)
Inventor
崇裕 石黒
卓郎 新井
Original Assignee
株式会社東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社東芝 filed Critical 株式会社東芝
Priority to PCT/JP2017/030896 priority Critical patent/WO2019043777A1/en
Publication of WO2019043777A1 publication Critical patent/WO2019043777A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/10Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers
    • H02H7/12Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers
    • H02H7/122Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers for inverters, i.e. dc/ac converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/36Arrangements for transfer of electric power between ac networks via a high-tension dc link
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/60Arrangements for transfer of electric power between AC networks or generators via a high voltage DC link [HVCD]

Definitions

  • the present invention relates to a direct current transmission system.
  • High-voltage direct current transmission (HVDC: High-Voltage Direct Current Transmission) is known as a system for supplying power thus generated to a power receiving facility of a consumer.
  • HVDC is put into practical use all over the world as a method suitable for large capacity and long distance transmission.
  • the conventional HVDC converts the transmitted DC power into AC power by the converter, and supplies the AC power to the power reception facility of the AC system.
  • the problem to be solved by the present invention is to provide a DC power transmission system that can maintain high reliability at lower cost.
  • the DC power transmission system of the embodiment has a first converter, a second converter, and a protection device.
  • the first converter converts input power into DC power of a predetermined voltage.
  • the second converter has a storage device, and converts DC power supplied from the first converter into AC power via a DC link connected to the DC side of the first converter. 2 converter, having a storage device.
  • the protection device is a protection device connected between the second converter and an alternating current system, which opens and closes a connection between the second converter and the alternating current system. And a load that consumes AC power from the second converter when the open / close unit is turned off.
  • FIG. 1 is a diagram illustrating an example to which the DC power transmission system 100 according to the first embodiment is applied.
  • the DC power transmission system 100 is applied to, for example, a power transmission system that transmits large-scale renewable energy such as offshore wind power generation, desert photovoltaic power generation, solar thermal power generation, etc. to a large city.
  • the power transmission system includes, for example, a power generation device 10, a transformer 20, an AC grid 30, and a DC power transmission system 100.
  • the DC power transmission system 100 includes an AC / DC converter 110, an AC / DC converter 120, a protection circuit 130, and a control unit 140.
  • the protection circuit 130 is an example of the “protection device”.
  • power generated by wind power, sunlight, or solar heat is an example of “renewable energy”.
  • the power generation device 10 is, for example, a generator such as a wind power generator.
  • the power generation device 10 generates, for example, AC power with a voltage of about several hundred kilovolts, and outputs the generated power to the DC power transmission system 100.
  • the AC power generated by the power generation device 10 is an example of “input power”.
  • An AC / DC converter 110 of the DC power transmission system 100 converts input power supplied from the power generation device 10 into DC power of a predetermined voltage.
  • the AC / DC converter 110 converts, for example, AC power of a voltage of about several hundred kilovolts supplied from the power generation device 10 into a DC voltage of about several hundred kilovolts.
  • the AC / DC converter 120 converts the DC voltage supplied from the AC / DC converter 110 into AC power.
  • the transmission path L between the AC / DC converter 120 and the AC / DC converter 110 is a DC side of the DC power transmission system 100 that handles DC power and an AC side that handles AC power. And functions as a connection unit. That is, the transmission line L is an example of the “DC link”.
  • the AC / DC converter 120 has a capacitor inside, and adjusts the voltage of AC power output from the AC / DC converter 120 by storing and discharging electric charge in the capacitor.
  • the configuration of AC / DC converter 120 will be described later.
  • the capacitor is an example of the "power storage device”.
  • Protection circuit 130 is connected between AC / DC converter 120 and AC system 30. Although the protection circuit 130 is connected to the AC system 30 via the transformer 20 in the example of FIG. 1, the transformer 20 may not be provided in the present embodiment. In this case, the protection circuit 130 and the AC system 30 are connected without the transformer 20.
  • the protection circuit 130 includes an open / close unit 132, an open / close unit control unit 134, and a resistor unit 136.
  • the resistance unit 136 is an example of the “load”.
  • the switching unit 132 is connected between the AC / DC converter 120 and the transformer 20, and connects or disconnects the AC / DC converter 120 and the transformer 20.
  • the switch 132 may be a mechanical circuit breaker, or may be a gas circuit breaker or a vacuum circuit breaker.
  • the switch part 132 may be comprised by one switch, and may be comprised by several switch.
  • the switching unit control unit 134 controls the switching unit 132 to cut off between the AC / DC converter 120 and the transformer 20.
  • the specific electrical condition means, for example, that a current (short circuit current) equal to or more than a predetermined threshold flows due to a system fault such as a ground fault in the AC system 30 or the like.
  • switching control section 134 controls switching section 132 by utilizing the magnetic force generated when a short circuit current flows in the conductor through which the internal load current flows, and between AC / DC converter 120 and transformer 20. Is shut off.
  • the switching unit control unit 134 monitors the voltage of the relevant part via the instrument transformer provided at the desired location in the AC system 30, and the switching part 132 is performed when a specific electrical condition is satisfied in the relevant part. Between the AC / DC converter 120 and the transformer 20 may be shut off. When the switching unit control unit 134 disconnects between the AC / DC converter 120 and the transformer 20, the switching unit control unit 134 notifies the control unit 140 to that effect.
  • switch control section 134 controls switch 132 so that there is no gap between AC / DC converter 120 and transformer 20. Even if not physically connected, if the voltage of the AC power output from the AC / DC converter 120 is high, an arc current may flow from the AC / DC converter 120 to the transformer 20. In this case, the electrical connection between the AC / DC converter 120 and the transformer 20 is not cut off even when the switching unit 132 is turned off. When an arc current flows from the AC / DC converter 120 to the transformer 20 after the switching part 132 is turned off, the AC current output from the AC / DC converter 120 needs to be stopped to stop the arc current. There is.
  • Resistor unit 136 is configured such that switching unit 132 shuts off between AC / DC converter 120 and transformer 20, and the AC current output from AC / DC converter 120 is stopped, thereby When the AC power is output again from AC / DC converter 120 after the electrical connection between DC converter 120 and transformer 20 is cut off, AC supplied from AC / DC converter 120 Consume power.
  • the resistance unit 136 is provided in parallel with the switching unit 132 in parallel with the AC / DC converter 120, but the resistance unit 136 is supplied from the AC / DC converter 120. It is sufficient if AC power can be consumed.
  • the resistance part 136 may be comprised by one resistor, and may be comprised by several resistors.
  • the configuration including the resistance portion 136 is illustrated, but in place of the resistance portion 136, it is possible to at least temporarily consume the AC power supplied from the AC / DC converter 120. It is sufficient to have an optional "load". Examples of the load may include both a resistor and an alternating current load, or may be an electric device, a charging device, or the like.
  • Transformer 20 converts the voltage of the AC power supplied from AC / DC converter 120 via protection circuit 130 into a predetermined voltage.
  • Transformer 20 regulates the potential difference between AC / DC converter 120 and AC system 30.
  • the protection circuit 130 and the AC system 30 can be electrically isolated.
  • the AC system 30 is hardware for exchanging commercial power by converting AC power and DC power mutually by the AC / DC converter 120.
  • the AC system 30 is, for example, an AC power supply that supplies AC power, an AC load that consumes AC power, a power transmission network for transmitting AC power to an AC load, or the like.
  • control unit 140 controls AC / DC converter 120 and protection circuit 130 so that the capacitor included in AC / DC converter 120 is not overcharged. Let's do it.
  • the control unit 140 is provided outside the AC / DC converter 120.
  • the distributed control unit 140 and the control unit (not shown) of the AC / DC converter 120 can be operated, so extension is easy. Cost and operating costs can be reduced.
  • control unit 140 may use AC / DC converter 120. It may be provided inside the
  • the control unit 140 monitors, for example, the AC power voltage and current at the predetermined place via an instrument transformer (not shown) provided at a predetermined place of the AC system 30. Then, for example, when a current equal to or greater than a predetermined threshold flows in the transmission line between transformer 20 and AC grid 30 due to a ground fault or the like, control unit 140 determines that a system fault such as a ground fault has occurred. judge. When it is determined that a system fault such as a ground fault has occurred, control unit 140 controls the alternating current output from alternating current / direct current converter 120 to be in the vicinity of 0 (zero). In the following description, making the alternating current output from the AC / DC converter 120 close to 0 (zero) is referred to as “stopping the AC / DC converter 120” or the like.
  • control unit 140 stops AC / DC converter 120.
  • the control unit 140 can suppress damage to the internal circuit of the AC / DC converter 120 by continuing the excessive current flow to the AC / DC converter 120.
  • the control unit 140 causes the voltage output from the AC / DC converter 120 to decrease to a value close to 0 (zero) by the excess current continuing to flow in the AC / DC converter 120, and the capacitor 140 It becomes possible to suppress falling into a state in which AC power can not be output from AC / DC converter 120 because control can not be performed so that charge is stored.
  • control section 140 stops AC current / DC converter 120 to stop the arc current that may be flowing to open / close section 132, thereby causing AC current / The electrical connection between DC converter 120 and transformer 20 is cut off.
  • the timing when the AC / DC converter 120 is stopped by the control unit 140 and the timing when the opening / closing unit 132 is turned off by the opening / closing unit control unit 134 may be earlier than either.
  • the switch unit 132 is put in the cut off state after the AC / DC converter 120 is stopped by the control unit 140, no arc current flows, and the AC / DC converter 120 and the switch unit 132 are put in the cut off state.
  • the electrical connection between the transformer 20 is also cut off.
  • the AC / DC converter 120 When the AC / DC converter 120 is stopped by the control unit 140, the AC / DC converter 120 does not output AC power, but DC power is supplied from the AC / DC converter 110. If this state continues, charges may continue to be accumulated in the capacitor of the AC / DC converter 120, and the voltage of the capacitor may be damaged beyond the withstand voltage. In order to avoid such damage to the capacitor, control unit 140 is notified that switching on / off unit 132 has been shut off from switching unit control unit 134 and that AC / DC converter 120 is stopped. After both conditions are satisfied, the controller 120 controls the state 120 to return to the state before the AC / DC converter 120 is stopped, that is, the state where the AC / DC converter 120 outputs AC power.
  • FIG. 2 is a diagram showing an example of the configuration of the AC / DC converter 120 according to the first embodiment.
  • FIG. 2A is a diagram showing an example of a modular multilevel converter 120A (MMC).
  • FIG. 2 (b) is a diagram showing an example of the chopper cell C provided in the modular multilevel converter 120 ⁇ / b> A.
  • the modular multilevel converter 120A includes, for example, terminals T (terminals T-1 and T-2) and arm units U (arm units U-1 to U-3), And a transformer 20A.
  • the terminals T-1 and T-2 are terminals connected to a DC system (for example, the power generation device 10 or the AC / DC converter 110).
  • Each of arm units U-1 to U-3 is connected in parallel with each other between terminals T-1 and T-2.
  • the arm unit U includes a positive side arm 121P, a positive side buffer reactor 122P, a negative side buffer reactor 122N, a negative side arm 121N, and terminals T (T-3 to T-5) for inputting and outputting alternating current power.
  • the arm unit U is connected in order of the positive side arm 121P, the positive side buffer reactor 122P, the negative side buffer reactor 122N, and the negative side arm 121N, as viewed from the terminal T-1. Further, in the arm unit U, the terminal T-3 on the connection line between the positive side buffer reactor 122P and the negative side buffer reactor 122N is connected to the transformer 20A.
  • Transformer 20A has the same function as transformer 20 described above. Transformer 20A is connected between arm unit U and an AC system (for example, AC system 30). Moreover, in the modular multi-level converter 120A, the transformer 20A may not be provided, and in this case, the modular multi-level converter 120A and the AC system are connected without the transformer 20A.
  • AC system for example, AC system 30
  • Each of the positive side arm 121P and the negative side arm 121N includes, for example, a plurality of chopper cells C.
  • the plurality of chopper cells C are connected in series between the side of the terminal T-1 in the positive side arm 121P and the side of the positive side buffer reactor 122P.
  • the chopper cell C includes a capacitor 123, a switching element 124 (switching elements 124U and 124X), a diode 125 (diodes 125U and 125X), and terminals T (T-3 and T-4).
  • the switching element 124 is, for example, an IGBT (Insulated Gate Bipolar Transistor) or a MOSFET (Metal-Oxide-Semiconductor Field-Effect Transistor).
  • Switching element 124 can be turned on / off from the outside (for example, a control unit (not shown) of modular multi-level converter 120A), and is a switching element having a self-extinguishing ability. That is, the modular multilevel converter 120A is a self-excited power converter.
  • switching elements 124U and 124X connected in series are connected in parallel with capacitor 123. Further, in the chopper cell C, diodes 125U and 125X are connected in anti-parallel to the switching elements 124U and 124X, respectively.
  • the terminal T-3 is connected to the terminal T-4 of the other chopper cell C.
  • the terminal T-3 is connected to the terminal T-1.
  • the terminal T-4 is connected to the terminal T-3 of the other chopper cell C.
  • the terminal T-4 is connected to the terminal T-2.
  • Chopper cell C sets the voltage at terminal T-3 by connecting or blocking switching elements 124U and 124X under control of the control unit (not shown) of modular multi-level converter 120A. Is a predetermined unit voltage (positive side), a zero voltage, or a predetermined unit voltage (negative side).
  • Each of the arm units U-1 to U-3 outputs a multilevel voltage waveform by adjusting the voltage of the terminal T-3 of each of the plurality of chopper cells C which each has.
  • the modular multi-level converter 120A which is an example of the AC / DC converter 120, includes a plurality of chopper cells C, and the chopper cell C includes a capacitor 123.
  • FIG. 3 is a diagram showing another example of the configuration of the AC / DC converter 120 according to the first embodiment.
  • FIG. 3 is a diagram showing an example of the two-level converter 120B.
  • the two-level converter 120B includes terminals T (terminals T-8 and T-9), a capacitor 126, units V (units V-1 to V-3), and an AC filter 129. , And a transformer 20B.
  • the terminals T-8 and T-9 are terminals connected to a DC system (for example, the power generation device 10 or the AC / DC converter 110).
  • a DC system for example, the power generation device 10 or the AC / DC converter 110.
  • Each of units V-1 to V-3 is connected in parallel with one another between terminals T-8 and T-9.
  • the unit V includes a switching element 127 (switching elements 127U and 127X), a diode 128 (diodes 128U and 128X), and terminals T (T-10 to T-12) that input and output AC power.
  • switching elements 127U and 127X are connected in series, and diodes 128U and 128X are connected in anti-parallel to switching elements 127U and 127X, respectively. Further, in each of units V-1 to V-3, a terminal T-10 on a connection line between switching element 127U and 127X is connected to transformer 20B via AC filter 129.
  • the unit V sets the voltage of the terminal T-3 to the connection state or the disconnection state of each of the switching elements 127U and 127X based on control from a control unit (not shown) of the two-level converter 120B. Or a predetermined unit voltage (positive side), a zero voltage, or a predetermined unit voltage (negative side).
  • the AC filter 129 smoothes the voltage at the terminal T of the unit V. As a result, the AC filter 129 outputs a voltage close to a sine wave, that is, a voltage of AC power.
  • Transformer 20B has the same function as transformer 20 described above. Transformer 20B is connected between AC filter 129 and an AC system (for example, AC system 30).
  • the capacitor 126 is included in the two-level converter 120 B which is an example of the AC / DC converter 120.
  • the accident in the DC power transmission system 100 here is, for example, a case where the power transmission line between the transformer 20 and the AC grid 30 is grounded due to lightning strike or the like.
  • FIG. 4 is a diagram showing a normal state where no accident has occurred in the power transmission system.
  • switching unit 132 brings AC / DC converter 120 and transformer 20 into a connected state. For this reason, the current D of the AC power output from the AC / DC converter 120 flows to the transformer 20 through the switching unit 132, and the current D does not flow to the resistance unit 136.
  • FIG. 5 is a diagram showing an initial state in which an accident has occurred in the power transmission system.
  • the current D flows from the accident point (the point where the ground fault occurs) between the transformer 20 and the AC system 30 to the ground or the like.
  • the effective voltage of the AC power output from AC / DC converter 120 to transformer 20 has a value of 0 (zero) or a value close to 0 (zero), which is smaller than the state before the accident occurs. It becomes a value. If the voltage is in the state of 0 (zero), the AC / DC converter 120 can not output AC power.
  • FIG. 6 is a diagram illustrating a medium-term state in which an accident has occurred in the power transmission system.
  • the control unit 140 controls the AC / DC converter 120 to stop.
  • the switching unit 132 is controlled by the switching unit control unit 134 so as to cut off the AC / DC converter 120 and the transformer 20.
  • the power generation device 10 and the AC / DC converter 110 may continue to operate regardless of whether or not an accident has occurred.
  • the power generation device 10 is a power generation using renewable energy such as wind power generation or solar power generation, it is difficult to immediately stop the power generation device 10. For this reason, the power generation device 10 may generate DC power, the AC / DC converter 110 may convert DC power into DC power of a predetermined voltage, and the converted power may continue to be supplied to the AC / DC converter 120. .
  • the AC / DC converter 120 receives the supply of the DC power regardless of the output stop, and the balance of the exchange of the power in the AC / DC converter 120 is I can not take it.
  • the balance of the exchange of electric power in the AC / DC converter 120 is lost, and as a result, charge is continuously accumulated in the capacitor of the AC / DC converter 120, resulting in damage to the storage function of the capacitor, causing AC / DC conversion.
  • Device 120 may become out of control. Therefore, in the embodiment, the output of AC power by AC / DC converter 120 is restarted as described below.
  • FIG. 7 is a diagram illustrating a late state in which an accident has occurred in the power transmission system.
  • the control unit 140 restarts the output of AC power by the AC / DC converter 120.
  • the current D of the AC power output from the AC / DC converter 120 is returned to the state before the occurrence of the accident by the control unit 140, the current D flows to the resistance unit 136, and the AC / DC converter 120
  • the output AC power is consumed by the resistor of the resistor unit 136.
  • overcharging of the capacitor of the AC / DC converter 120 can be suppressed, and the AC / DC converter 120 can be prevented from becoming uncontrollable.
  • FIG. 8 is a timing chart for explaining the operation of the DC power transmission system 100 according to the first embodiment.
  • FIG. 8A shows an example in the case where the open / close unit 132 is cut off before the AC / DC converter 120 is stopped when a ground fault occurs.
  • FIG. 8B shows an example in which the open / close unit 132 is cut off after the AC / DC converter 120 is stopped when a ground fault occurs.
  • each of FIGS. 8A and 8B shows the state of the AC / DC converter 120
  • the lower part shows the connection state between the AC / DC converter 120 and the converter.
  • the horizontal axes at the top and bottom of each of FIGS. 8A and 8B indicate time.
  • a state in which normal AC power is output from AC / DC converter 120 is shown as a “normal state”
  • AC power from AC / DC converter 120 is shown. Is indicated as "stopped” when it is stopped.
  • a state in which the AC / DC converter 120 and the transformer 20 are connected is shown as a “connected state”, and the case where it is cut off is Shown as "blocked state”.
  • a ground fault occurs at time T1, and first, the opening / closing unit 132 is put into the interruption state by the opening / closing unit control unit 134. Next, at time T2, the AC / DC converter 120 is stopped by the control unit 140. Then, at time T3, control unit 140 returns AC / DC converter 120 to the normal state. The arc current may continue to flow through the switching unit 132 at time T1, but the arc current is stopped at time T2. At time T3, the AC power of AC / DC converter 120 is consumed by resistance unit 136.
  • a ground fault occurs at time T11, and the AC / DC converter 120 is stopped by the control unit 140 first.
  • the open / close unit 132 is put in the shutoff state by the open / close unit control unit 134.
  • control unit 140 returns AC / DC converter 120 to the normal state. Since the current from the AC / DC converter 120 is stopped at time T11, no arc current flows in the switching part 132 at time T12. At time T3, the AC power of AC / DC converter 120 is consumed by resistance unit 136.
  • time during which AC / DC converter 120 is stopped (time from time T2 to T3 in the example of FIG. 8A, and time from time T1 to T3 in the example of FIG. 8B) is restricted. Although it is not, it is desirable to be as short as possible. This is because the longer the time from time T1 to time T3 is, the more charge is accumulated in the capacitor of the AC / DC converter 120 and the possibility of being overcharged increases.
  • the DC power transmission system 100 includes the AC / DC converter 110, the AC / DC converter 120, and the protection circuit 130.
  • the AC / DC converter 110 converts DC power generated by the power generation device 10 into DC power of a predetermined voltage.
  • the AC / DC converter 120 has a capacitor, and converts DC power supplied from the AC / DC converter 110 via the transmission path L into AC power.
  • Protection circuit 130 is connected between AC / DC converter 120 and AC system 30.
  • the protection circuit 130 further includes an open / close unit 132 and a resistor unit 136.
  • the switching unit 132 brings the connection between the AC / DC converter 120 and the AC system 30 into a connected state or a disconnected state. Resistor 136 consumes AC power from AC / DC converter 120 when switch 132 is turned off.
  • switching unit 132 disconnects the connection between AC / DC converter 120 and AC system 30, and output from AC / DC converter 120 A reduction in voltage can be suppressed, and the resistor unit 136 can suppress the overcharging of the capacitor of the AC / DC converter 120 by consuming the AC power output from the AC / DC converter 120, This is because the AC / DC converter 120 can be prevented from falling out of control.
  • a configuration is considered in which a protection circuit 130 is provided on the side of the DC system (for example, between the AC / DC converter 110 and the power generation device 10).
  • the resistor unit 136 of the protection circuit 130 consumes the DC power output from the power generation device 10.
  • the resistor unit 136 needs to be configured of, for example, a large number of resistors that can be switched by a semiconductor switch. In such a configuration, many effective semiconductors must be used, which increases the cost of the apparatus.
  • the protection circuit 130 is not necessary to use an expensive semiconductor switch for the protection circuit 130. Since the voltage value of the AC power output from the AC / DC converter 120 can be controlled by the AC / DC converter 120, for example, the protection circuit 130 is effective for the AC power output from the AC / DC converter 120. It suffices to have a resistor capable of consuming power.
  • the resistor unit 136 is provided in parallel to the switching unit 132 with respect to the AC / DC converter 120.
  • the transformer 20 can be supplied with power even when the switching unit 132 is in the shutoff state, in addition to the effects described above. It is possible to restore the DC transmission system 100 more smoothly if the accident recovers.
  • DC power input to the AC / DC converter 110 is renewable energy.
  • the DC power supplied to the AC / DC converter 120 can not be immediately stopped. Even in this case, alternating current power can be supplied from the alternating current / direct current converter 120 to the transformer 20 via the resistor portion 136.
  • the DC power transmission system 100 further includes a control unit 140 that causes the AC / DC converter 120 to stop outputting AC power when the switching unit 132 is turned off.
  • the controller 140 controls the AC / DC converter 120. By stopping the output of the circuit, it is possible to suppress a drop in voltage output from the AC / DC converter 120 and prevent the AC / DC converter 120 from becoming uncontrollable.
  • the control unit 140 notifies that the output of the AC power of the AC / DC converter 120 has been stopped and that the switching unit 132 has been shut off. After both conditions of receiving (from the switch control unit 134) are satisfied, the AC / DC converter 120 is made to restart the output of AC power. Thus, in the DC power transmission system 100 according to the first embodiment, the control unit 140 outputs the output of the AC / DC converter 120 even when the arc current is generated when the switching unit 132 is turned off.
  • the arc current can be stopped by stopping the Therefore, the output of the AC power from the AC / DC converter 120 can be consumed by the resistor unit 136 by resuming the output of the AC power while the control unit 140 does not generate the arc current. Therefore, overcharging of the capacitor of AC / DC converter 120 can be suppressed, and damage to AC / DC converter 120 can be prevented.
  • the second embodiment is different from the above-described first embodiment in that the control unit 140 controls the open / close unit 132.
  • the control unit 140 monitors the voltage and current of AC power at a predetermined place of the AC system 30, and when the current of the AC system 30 is in a predetermined state, such as when a current equal to or greater than a predetermined threshold flows in the area And instructs the control unit of the AC / DC converter 120 to stop the AC / DC converter 120, and instructs the switch control unit 134 to switch the switch 132 off.
  • the open / close controller 134 may be omitted.
  • the open / close unit control unit 134 is omitted, the open / close unit 132 is put in the closed state under the control of the control unit 140.
  • the control unit 140 is an example of the “control unit”.
  • control unit 140 instructs the control unit of AC / DC converter 120 to resume the output of AC power from AC / DC converter 120.
  • the control unit 140 performs AC / DC conversion when the state of the AC system 30 is a predetermined state, such as when a short circuit accident occurs in the AC system 30.
  • the switch control unit 134 or the control unit 140 shuts off the open / close unit 132 while stopping the switch 120, it is possible to prevent the voltage of the AC power from being lowered.
  • the control unit 140 both stops the output of the AC current of the AC / DC converter 120 and turns the switching unit 132 into the shutoff state. And causes the AC / DC converter 120 to resume output of AC power.
  • the AC power output from the AC / DC converter 120 can be consumed by the resistor unit 136, and the capacitor of the AC / DC converter 120 is excessive. It can be prevented from being charged.
  • FIG. 8 is a block diagram showing a configuration example of the DC power transmission system 100A of the third embodiment.
  • the third embodiment is different from the above-described embodiment in that a transformer 20 is provided between the AC / DC converter 120 and the protection circuit 130.
  • the third embodiment is different from the above-described embodiment in that the transformer 20 is not provided between the protection circuit 130 and the AC system 30.
  • the control unit 140 monitors, for example, the voltage at the relevant point via the instrument transformer provided at a desired location in the alternating current system 30, and for an unshown instrument provided between the protection circuit 130 and the alternating current system 30.
  • the voltage and current of AC power supplied to AC system 30 are monitored via a transformer.
  • control unit 140 stops AC / DC converter 120 in a stopped state.
  • the control unit 140 controls the opening / closing unit 132 to be in the disconnection state.
  • control unit 140 resumes the output of AC power of AC / DC converter 120 after the electrical connection between AC / DC converter 120 and AC system 30 is cut off.
  • the transmission connected to the DC side of the AC / DC converter 110 includes the AC / DC converter 110 for converting input power into DC power of a predetermined voltage, and a capacitor.
  • AC / DC converter 120 for converting DC power supplied from AC / DC converter 110 via path L into AC power, and protection connected between AC / DC converter 120 and AC system 30
  • the circuit 130 is a switching unit 132 for connecting or disconnecting the connection between the AC / DC converter 120 and the AC system 30, and the switching unit 132 using the AC / DC converter 120 and the AC system 30.
  • High reliability can be maintained at low cost by having a protection circuit 130 having a resistor portion 136 that consumes AC power from the AC / DC converter 120 when there is an interruption state. Rukoto can.
  • switching unit 132 disconnects the connection between AC / DC converter 120 and AC system 30, and output from AC / DC converter 120 A reduction in voltage can be suppressed, and the resistor unit 136 can suppress the overcharging of the capacitor of the AC / DC converter 120 by consuming the AC power output from the AC / DC converter 120, This is because the AC / DC converter 120 can be prevented from falling out of control.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Direct Current Feeding And Distribution (AREA)

Abstract

According to the present invention, a first converter converts input power into DC power of a prescribed voltage. A second converter has a power storage device, and converts, into AC power, the DC power supplied from the first converter via a DC link which is connected to the DC side of the first converter. A protection device, which is connected between the second converter and an AC system, has a switching unit that sets the connection between the second converter and the AC system to be in a connected state or in a disconnected state, and a load that consumes the AC power from the second converter when the switching unit achieves the disconnected state.

Description

直流送電システムDC power transmission system
 本発明は、直流送電システムに関する。 The present invention relates to a direct current transmission system.
 近年、発電に伴う環境への負荷を低減させたり、電源を多様化させたりする観点から、風力発電や太陽光発電など再生可能エネルギーを利用した発電方式が普及している。このように発電された電力を需要家の受電設備に供給するシステムとして、高圧直流送電(HVDC:High-Voltage Direct Current Transmission)がある。HVDCは、大容量で長距離の送電に適した方式として世界中で実用化されている。従来のHVDCは、送電した直流電力を、変換器により交流電力に変換し、交流系統の受電設備に供給する。交流系統において地絡が発生する等して受電設備に電力供給ができない場合、発電装置の側から変換器に供給される直流電力と変換器から出力する交流電力とのバランスが取れなくなってしまう場合があった。特に、HVDCが再生可能エネルギーを利用した発電方式による発電機に接続されている場合、発電を即座に停止することが難しい。この場合、変換器が有する蓄電デバイスに過電圧が印加されてしまい、変換器が停止してしまうおそれがあった。 BACKGROUND ART In recent years, power generation methods using renewable energy, such as wind power generation and solar power generation, are widely used from the viewpoint of reducing the load on the environment associated with power generation and diversifying power sources. High-voltage direct current transmission (HVDC: High-Voltage Direct Current Transmission) is known as a system for supplying power thus generated to a power receiving facility of a consumer. HVDC is put into practical use all over the world as a method suitable for large capacity and long distance transmission. The conventional HVDC converts the transmitted DC power into AC power by the converter, and supplies the AC power to the power reception facility of the AC system. When power can not be supplied to the power receiving facility due to a ground fault or the like in the AC system, the DC power supplied from the power generation apparatus to the converter and the AC power output from the converter can not be balanced. was there. In particular, when the HVDC is connected to a generator based on a power generation system using renewable energy, it is difficult to immediately stop power generation. In this case, an overvoltage may be applied to the power storage device of the converter, which may cause the converter to stop.
特表2015-515425号公報JP-A-2015-515425
 本発明が解決しようとする課題は、より低コストで高い信頼性を維持することができる直流送電システムを提供することである。 The problem to be solved by the present invention is to provide a DC power transmission system that can maintain high reliability at lower cost.
 実施形態の直流送電システムは、第1の変換器と、第2の変換器と、保護装置と、を持つ。第1の変換器は、入力電力を所定電圧の直流電力に変換する。第2の変換器は、蓄電デバイスを有し、前記第1の変換器の直流側に接続された直流リンクを介して前記第1の変換器から供給される直流電力を交流電力に変換する第2の変換器であって、蓄電デバイスを有する。保護装置は、前記第2の変換器と交流系統との間に接続される保護装置であって、前記第2の変換器と前記交流系統との間の接続を接続状態又は遮断状態にする開閉部と、前記開閉部が遮断状態とされた場合に前記第2の変換器からの交流電力を消費する負荷とを有する。 The DC power transmission system of the embodiment has a first converter, a second converter, and a protection device. The first converter converts input power into DC power of a predetermined voltage. The second converter has a storage device, and converts DC power supplied from the first converter into AC power via a DC link connected to the DC side of the first converter. 2 converter, having a storage device. The protection device is a protection device connected between the second converter and an alternating current system, which opens and closes a connection between the second converter and the alternating current system. And a load that consumes AC power from the second converter when the open / close unit is turned off.
第1の実施形態の直流送電システム100が適用される例を示す図。The figure which shows the example to which the DC power transmission system 100 of 1st Embodiment is applied. 第1の実施形態の交流/直流変換器120の構成の一例を示す図。The figure which shows an example of a structure of AC / DC converter 120 of 1st Embodiment. 第1の実施形態の交流/直流変換器120の構成の他の例を示す図。The figure which shows the other example of a structure of AC / DC converter 120 of 1st Embodiment. 送電システムにおいて事故が発生していない通常の状態を示す図。The figure which shows the normal state which the accident has not generate | occur | produced in the power transmission system. 送電システムにおいて事故が発生した初期の状態を示す図。The figure which shows the initial state which the accident generate | occur | produced in the power transmission system. 送電システムにおいて事故が発生した中期の状態を示す図。The figure which shows the state of the middle period where the accident generate | occur | produced in the power transmission system. 送電システムにおいて事故が発生した後期の状態を示す図。The figure which shows the state of the second half in which the accident generate | occur | produced in the power transmission system. 第1の実施形態の直流送電システム100の動作を説明するタイミングチャート。The timing chart explaining operation of direct-current power transmission system 100 of a 1st embodiment. 第3の実施形態の直流送電システム100Aが適用される例を示す図。The figure which shows the example to which DC power transmission system 100A of 3rd Embodiment is applied.
 以下、実施形態の直流送電システムを、図面を参照して説明する。 Hereinafter, a DC power transmission system according to an embodiment will be described with reference to the drawings.
(第1の実施形態)
 まず、第1の実施形態について説明する。図1は、第1の実施形態の直流送電システム100が適用される例を示す図である。直流送電システム100は、例えば、洋上の風力発電や砂漠地帯の太陽光発電、太陽熱発電など大規模な再生可能エネルギーを大都市まで送電する送電システムに適用される。送電システムは、例えば、発電装置10と、変圧器20と、交流系統30と、直流送電システム100とを備える。そして、直流送電システム100は、交流/直流変換器110と、交流/直流変換器120と、保護回路130と、制御部140と、を備える。
First Embodiment
First, the first embodiment will be described. FIG. 1 is a diagram illustrating an example to which the DC power transmission system 100 according to the first embodiment is applied. The DC power transmission system 100 is applied to, for example, a power transmission system that transmits large-scale renewable energy such as offshore wind power generation, desert photovoltaic power generation, solar thermal power generation, etc. to a large city. The power transmission system includes, for example, a power generation device 10, a transformer 20, an AC grid 30, and a DC power transmission system 100. The DC power transmission system 100 includes an AC / DC converter 110, an AC / DC converter 120, a protection circuit 130, and a control unit 140.
 ここで、保護回路130は、「保護装置」の一例である。また、風力、太陽光、または太陽熱によって生成された電力は、「再生可能エネルギー」の一例である。 Here, the protection circuit 130 is an example of the “protection device”. In addition, power generated by wind power, sunlight, or solar heat is an example of “renewable energy”.
 発電装置10は、例えば、風力発電機などの発電機である。発電装置10は、例えば、数百キロボルト程度の電圧の交流電力を発電し、発電した電力を直流送電システム100に出力する。発電装置10により発電された交流電力は、「入力電力」の一例である。 The power generation device 10 is, for example, a generator such as a wind power generator. The power generation device 10 generates, for example, AC power with a voltage of about several hundred kilovolts, and outputs the generated power to the DC power transmission system 100. The AC power generated by the power generation device 10 is an example of “input power”.
 直流送電システム100の交流/直流変換器110は、発電装置10から供給される入力電力を、所定電圧の直流電力に変換する。交流/直流変換器110は、例えば、発電装置10から供給される数百キロボルト程度の電圧の交流電力から数百キロボルト程度の直流電圧に変換する。 An AC / DC converter 110 of the DC power transmission system 100 converts input power supplied from the power generation device 10 into DC power of a predetermined voltage. The AC / DC converter 110 converts, for example, AC power of a voltage of about several hundred kilovolts supplied from the power generation device 10 into a DC voltage of about several hundred kilovolts.
 交流/直流変換器120は、交流/直流変換器110から供給される直流電圧を、交流電力に変換する。本実施形態において、交流/直流変換器120と交流/直流変換器110との間の伝送路Lは、直流送電システム100のうち直流電力を扱う直流側の部分と交流電力を扱う交流側の部分とを接続する接続部として機能する。つまり、伝送路Lは、「直流リンク」の一例である。 The AC / DC converter 120 converts the DC voltage supplied from the AC / DC converter 110 into AC power. In the present embodiment, the transmission path L between the AC / DC converter 120 and the AC / DC converter 110 is a DC side of the DC power transmission system 100 that handles DC power and an AC side that handles AC power. And functions as a connection unit. That is, the transmission line L is an example of the “DC link”.
 また、交流/直流変換器120は、内部にコンデンサを有し、コンデンサに電荷を蓄えたり放出したりすることで交流/直流変換器120から出力する交流電力の電圧を調整する。交流/直流変換器120の構成については、後述する。コンデンサは、「蓄電デバイス」の一例である。 Further, the AC / DC converter 120 has a capacitor inside, and adjusts the voltage of AC power output from the AC / DC converter 120 by storing and discharging electric charge in the capacitor. The configuration of AC / DC converter 120 will be described later. The capacitor is an example of the "power storage device".
 保護回路130は、交流/直流変換器120と交流系統30との間に接続される。図1の例では、保護回路130は、変圧器20を介して交流系統30と接続されているが、本実施形態においては、変圧器20を備えていなくともよい。この場合、保護回路130と交流系統30との間は、変圧器20を介さずに接続される。保護回路130は、開閉部132と、開閉部制御部134と、抵抗部136とを備える。抵抗部136は、「負荷」の一例である。 Protection circuit 130 is connected between AC / DC converter 120 and AC system 30. Although the protection circuit 130 is connected to the AC system 30 via the transformer 20 in the example of FIG. 1, the transformer 20 may not be provided in the present embodiment. In this case, the protection circuit 130 and the AC system 30 are connected without the transformer 20. The protection circuit 130 includes an open / close unit 132, an open / close unit control unit 134, and a resistor unit 136. The resistance unit 136 is an example of the “load”.
 開閉部132は、交流/直流変換器120と変圧器20との間に接続され、交流/直流変換器120と変圧器20との間を接続状態または遮断状態とする。開閉部132は、機械式の遮断器であってもよいし、ガス遮断器や真空遮断器であってもよい。また、開閉部132は、一つの開閉器により構成されてもよいし、複数の開閉器により構成されてもよい。 The switching unit 132 is connected between the AC / DC converter 120 and the transformer 20, and connects or disconnects the AC / DC converter 120 and the transformer 20. The switch 132 may be a mechanical circuit breaker, or may be a gas circuit breaker or a vacuum circuit breaker. Moreover, the switch part 132 may be comprised by one switch, and may be comprised by several switch.
 開閉部制御部134は、例えば、開閉部132において特定の電気条件が成立した場合に開閉部132を制御して交流/直流変換器120と変圧器20との間を遮断状態とする。ここで、特定の電気条件とは、例えば、交流系統30において地絡などの系統事故が生じた等により、所定の閾値以上の電流(短絡電流)が流れることをいう。例えば、開閉部制御部134は、内部の負荷電流が流れる導体に短絡電流が流れると発生する磁力を利用することにより、開閉部132を制御し交流/直流変換器120と変圧器20との間を遮断状態とする。 For example, when a specific electrical condition is satisfied in the switching unit 132, the switching unit control unit 134 controls the switching unit 132 to cut off between the AC / DC converter 120 and the transformer 20. Here, the specific electrical condition means, for example, that a current (short circuit current) equal to or more than a predetermined threshold flows due to a system fault such as a ground fault in the AC system 30 or the like. For example, switching control section 134 controls switching section 132 by utilizing the magnetic force generated when a short circuit current flows in the conductor through which the internal load current flows, and between AC / DC converter 120 and transformer 20. Is shut off.
 また、開閉部制御部134は、交流系統30における所望の箇所に設けられた計器用変圧器を介して当該箇所の電圧を監視し、当該箇所において特定の電気条件が成立した場合に開閉部132を制御して交流/直流変換器120と変圧器20との間を遮断状態とするようにしてもよい。
 開閉部制御部134は、交流/直流変換器120と変圧器20との間を遮断状態とした場合、その旨を制御部140に通知する。
In addition, the switching unit control unit 134 monitors the voltage of the relevant part via the instrument transformer provided at the desired location in the AC system 30, and the switching part 132 is performed when a specific electrical condition is satisfied in the relevant part. Between the AC / DC converter 120 and the transformer 20 may be shut off.
When the switching unit control unit 134 disconnects between the AC / DC converter 120 and the transformer 20, the switching unit control unit 134 notifies the control unit 140 to that effect.
 ところで、交流/直流変換器120から変圧器20に交流電力が出力されている状態で、開閉部制御部134が開閉部132を制御して交流/直流変換器120と変圧器20との間が物理的に接続されていなくても、交流/直流変換器120から出力される交流電力の電圧が高いと、交流/直流変換器120から変圧器20にアーク電流が流れる場合がある。この場合、開閉部132を遮断状態としても交流/直流変換器120と変圧器20との間の電気的な接続が遮断されない。開閉部132を遮断状態とした後に交流/直流変換器120から変圧器20にアーク電流が流れる場合、当該アーク電流を止めるには交流/直流変換器120から出力される交流電流が停止される必要がある。 By the way, in a state in which AC power is output from AC / DC converter 120 to transformer 20, switch control section 134 controls switch 132 so that there is no gap between AC / DC converter 120 and transformer 20. Even if not physically connected, if the voltage of the AC power output from the AC / DC converter 120 is high, an arc current may flow from the AC / DC converter 120 to the transformer 20. In this case, the electrical connection between the AC / DC converter 120 and the transformer 20 is not cut off even when the switching unit 132 is turned off. When an arc current flows from the AC / DC converter 120 to the transformer 20 after the switching part 132 is turned off, the AC current output from the AC / DC converter 120 needs to be stopped to stop the arc current. There is.
 抵抗部136は、開閉部132により交流/直流変換器120と変圧器20との間が遮断状態とされ、且つ交流/直流変換器120から出力される交流電流が停止されることで、交流/直流変換器120と変圧器20との間の電気的な接続が遮断された後に、再び交流/直流変換器120から交流電力が出力された場合に、交流/直流変換器120から供給される交流電力を消費する。図1の例では、抵抗部136は、交流/直流変換器120に対して開閉部132と電気的に並列に設けられているが、抵抗部136は、交流/直流変換器120から供給される交流電力を消費することができればよい。また、抵抗部136は、一つの抵抗器により構成されてもよいし、複数の抵抗器により構成されてもよい。なお、各実施形態において、抵抗部136を備える構成を例示しているが、抵抗部136に代えて、交流/直流変換器120から供給される交流電力を少なくとも一時的に消費することが可能な任意の「負荷」を備えればよい。負荷の例としては、抵抗器と交流負荷との双方を含むものであってもよいし、電動機器や充電装置などであってもよい。 Resistor unit 136 is configured such that switching unit 132 shuts off between AC / DC converter 120 and transformer 20, and the AC current output from AC / DC converter 120 is stopped, thereby When the AC power is output again from AC / DC converter 120 after the electrical connection between DC converter 120 and transformer 20 is cut off, AC supplied from AC / DC converter 120 Consume power. In the example of FIG. 1, the resistance unit 136 is provided in parallel with the switching unit 132 in parallel with the AC / DC converter 120, but the resistance unit 136 is supplied from the AC / DC converter 120. It is sufficient if AC power can be consumed. Moreover, the resistance part 136 may be comprised by one resistor, and may be comprised by several resistors. In each embodiment, the configuration including the resistance portion 136 is illustrated, but in place of the resistance portion 136, it is possible to at least temporarily consume the AC power supplied from the AC / DC converter 120. It is sufficient to have an optional "load". Examples of the load may include both a resistor and an alternating current load, or may be an electric device, a charging device, or the like.
 変圧器20は、保護回路130を介して交流/直流変換器120から供給される交流電力の電圧を所定の電圧に変換する。変圧器20は、交流/直流変換器120と交流系統30との間の電位差を調整する。例えば、変圧器20を絶縁型変圧器とすることにより、保護回路130と交流系統30との間を、電気的に絶縁することができる。 Transformer 20 converts the voltage of the AC power supplied from AC / DC converter 120 via protection circuit 130 into a predetermined voltage. Transformer 20 regulates the potential difference between AC / DC converter 120 and AC system 30. For example, when the transformer 20 is an insulating transformer, the protection circuit 130 and the AC system 30 can be electrically isolated.
 交流系統30は、交流/直流変換器120により交流電力と直流電力とが相互に変換されることにより、商用電源を融通し合うためのハードウェアである。交流系統30は、例えば、交流電力を供給する交流電源や、交流電力を消費する交流負荷、交流負荷まで交流電力を送電するための送電網等である。 The AC system 30 is hardware for exchanging commercial power by converting AC power and DC power mutually by the AC / DC converter 120. The AC system 30 is, for example, an AC power supply that supplies AC power, an AC load that consumes AC power, a power transmission network for transmitting AC power to an AC load, or the like.
 制御部140は、交流系統30において地絡などの系統事故が生じた場合に、交流/直流変換器120、および保護回路130を制御して、交流/直流変換器120が有するコンデンサが過充電されないようにする。図1の例では、制御部140は、交流/直流変換器120の外部に設けられている。この場合、実施形態の直流送電システム100においては、分散配置された制御部140と交流/直流変換器120の制御部(不図示)とをそれぞれ動作させることができるため、拡張が容易で、導入コストおよび運転コストを抑制することができる。なお、実施形態においては、制御部140が交流/直流変換器120の外部に設けられる場合を例に説明するが、これに限定されることはなく、制御部140は、交流/直流変換器120の内部に設けられていてもよい。 When a system fault such as a ground fault occurs in AC system 30, control unit 140 controls AC / DC converter 120 and protection circuit 130 so that the capacitor included in AC / DC converter 120 is not overcharged. Let's do it. In the example of FIG. 1, the control unit 140 is provided outside the AC / DC converter 120. In this case, in the DC power transmission system 100 according to the embodiment, the distributed control unit 140 and the control unit (not shown) of the AC / DC converter 120 can be operated, so extension is easy. Cost and operating costs can be reduced. In the embodiment, although the case where control unit 140 is provided outside AC / DC converter 120 will be described as an example, the present invention is not limited to this, and control unit 140 may use AC / DC converter 120. It may be provided inside the
 制御部140は、例えば、交流系統30の所定の箇所に設けられる図示しない計器用変圧器を介して、当該所定の箇所における交流電力電圧および電流を監視する。そして、制御部140は、例えば、地絡が発生した等により変圧器20と交流系統30との間の送電線に所定の閾値以上の電流が流れた場合、地絡などの系統事故が生じたと判定する。そして、地絡などの系統事故が生じたと判定した場合、制御部140は、交流/直流変換器120が出力する交流電流が0(ゼロ)の近傍となるように制御する。以下の説明においては、交流/直流変換器120が出力する交流電流を0(ゼロ)の近傍にすることを、「交流/直流変換器120を停止させる」などと称する。 The control unit 140 monitors, for example, the AC power voltage and current at the predetermined place via an instrument transformer (not shown) provided at a predetermined place of the AC system 30. Then, for example, when a current equal to or greater than a predetermined threshold flows in the transmission line between transformer 20 and AC grid 30 due to a ground fault or the like, control unit 140 determines that a system fault such as a ground fault has occurred. judge. When it is determined that a system fault such as a ground fault has occurred, control unit 140 controls the alternating current output from alternating current / direct current converter 120 to be in the vicinity of 0 (zero). In the following description, making the alternating current output from the AC / DC converter 120 close to 0 (zero) is referred to as “stopping the AC / DC converter 120” or the like.
 制御部140は、交流系統30に地絡が発生した場合に、交流/直流変換器120を停止させる。これによって、制御部140は、交流/直流変換器120に過剰な電流が流れ続けることで交流/直流変換器120の内部回路が損傷することを抑制することができる。
 また、制御部140は、交流/直流変換器120に過剰な電流が流れ続けることで、交流/直流変換器120から出力される電圧が0(ゼロ)に近い値まで低下し、コンデンサに所望の電荷が蓄えられるように制御することができなくなることで交流/直流変換器120から交流電力が出力できない状態に陥ることを抑制することができる。
 また、制御部140は、交流系統30に地絡が発生した場合に、交流/直流変換器120を停止させることにより、開閉部132に流れている可能性があるアーク電流を停止させ、交流/直流変換器120と変圧器20との間の電気的な接続を遮断する。
When a ground fault occurs in AC system 30, control unit 140 stops AC / DC converter 120. As a result, the control unit 140 can suppress damage to the internal circuit of the AC / DC converter 120 by continuing the excessive current flow to the AC / DC converter 120.
Further, the control unit 140 causes the voltage output from the AC / DC converter 120 to decrease to a value close to 0 (zero) by the excess current continuing to flow in the AC / DC converter 120, and the capacitor 140 It becomes possible to suppress falling into a state in which AC power can not be output from AC / DC converter 120 because control can not be performed so that charge is stored.
In addition, when a ground fault occurs in AC system 30, control section 140 stops AC current / DC converter 120 to stop the arc current that may be flowing to open / close section 132, thereby causing AC current / The electrical connection between DC converter 120 and transformer 20 is cut off.
 なお、制御部140により交流/直流変換器120が停止されるタイミングと、開閉部制御部134により開閉部132が遮断状態とされるタイミングとは、いずれのタイミングが先であってもよい。制御部140により交流/直流変換器120が停止された後に開閉部132が遮断状態とされた場合、アーク電流は流れず、開閉部132が遮断状態とされたタイミングで交流/直流変換器120と変圧器20との間の電気的な接続も遮断される。 The timing when the AC / DC converter 120 is stopped by the control unit 140 and the timing when the opening / closing unit 132 is turned off by the opening / closing unit control unit 134 may be earlier than either. When the switch unit 132 is put in the cut off state after the AC / DC converter 120 is stopped by the control unit 140, no arc current flows, and the AC / DC converter 120 and the switch unit 132 are put in the cut off state. The electrical connection between the transformer 20 is also cut off.
 制御部140により交流/直流変換器120が停止されると、交流/直流変換器120は、交流電力を出力しないが、交流/直流変換器110からは直流電力が供給される状態となる。この状態が継続されると、交流/直流変換器120が有するコンデンサに電荷が蓄積され続け、当該コンデンサの電圧が耐電圧を超過して損傷してしまうことがある。このようなコンデンサの損傷を避けるため、制御部140は、交流/直流変換器120を停止させたことと、開閉部制御部134から開閉部132を遮断状態とした旨の通知を受けたこととの双方の条件が成立した後、交流/直流変換器120が停止される前の状態、つまり交流/直流変換器120が交流電力を出力する状態に戻るように120を制御する。この状態において、交流/直流変換器120が出力する交流電力は開閉部132ではなく抵抗部136を流れるため、交流/直流変換器120から出力される電圧が0(ゼロ)に近い値まで低下するのを防止しつつ、交流/直流変換器120が有するコンデンサ過充電されることを防止することができる。 When the AC / DC converter 120 is stopped by the control unit 140, the AC / DC converter 120 does not output AC power, but DC power is supplied from the AC / DC converter 110. If this state continues, charges may continue to be accumulated in the capacitor of the AC / DC converter 120, and the voltage of the capacitor may be damaged beyond the withstand voltage. In order to avoid such damage to the capacitor, control unit 140 is notified that switching on / off unit 132 has been shut off from switching unit control unit 134 and that AC / DC converter 120 is stopped. After both conditions are satisfied, the controller 120 controls the state 120 to return to the state before the AC / DC converter 120 is stopped, that is, the state where the AC / DC converter 120 outputs AC power. In this state, since the AC power output from the AC / DC converter 120 flows not through the switching unit 132 but through the resistor unit 136, the voltage output from the AC / DC converter 120 decreases to a value close to 0 (zero). The capacitor overcharge of the AC / DC converter 120 can be prevented.
 ここで、交流/直流変換器120の例について、図2、図3を用いて説明する。図2は、第1の実施形態の交流/直流変換器120の構成の一例を示す図である。図2(a)は、モジュラーマルチレベル変換器120A(Modular Multilevel Converter、MMC)の例を示す図である。図2(b)は、モジュラーマルチレベル変換器120Aが備えるチョッパセルCの例を示す図である。 Here, an example of the AC / DC converter 120 will be described with reference to FIGS. 2 and 3. FIG. 2 is a diagram showing an example of the configuration of the AC / DC converter 120 according to the first embodiment. FIG. 2A is a diagram showing an example of a modular multilevel converter 120A (MMC). FIG. 2 (b) is a diagram showing an example of the chopper cell C provided in the modular multilevel converter 120 </ b> A.
 図2(a)に示すように、モジュラーマルチレベル変換器120Aは、例えば、端子T(端子T-1、T-2)と、アームユニットU(アームユニットU‐1~U‐3)と、変圧器20Aとを備える。端子T-1、T-2は、直流系統(例えば、発電装置10や交流/直流変換器110)と接続される端子である。アームユニットU‐1~U‐3のそれぞれは、端子T-1とT-2との間に互いに並列に接続される。 As shown in FIG. 2A, the modular multilevel converter 120A includes, for example, terminals T (terminals T-1 and T-2) and arm units U (arm units U-1 to U-3), And a transformer 20A. The terminals T-1 and T-2 are terminals connected to a DC system (for example, the power generation device 10 or the AC / DC converter 110). Each of arm units U-1 to U-3 is connected in parallel with each other between terminals T-1 and T-2.
 アームユニットUは、正側アーム121P、正側バッファリアクトル122P、負側バッファリアクトル122N、負側アーム121Nと、交流電力を入出力する端子T(T-3~T-5)を備える。アームユニットUは、端子T-1の側から見て、正側アーム121P、正側バッファリアクトル122P、負側バッファリアクトル122N、負側アーム121N、の順に接続される。また、アームユニットUにおいては、正側バッファリアクトル122Pと負側バッファリアクトル122Nとの間の接続線にある端子T-3が変圧器20Aと接続される。 The arm unit U includes a positive side arm 121P, a positive side buffer reactor 122P, a negative side buffer reactor 122N, a negative side arm 121N, and terminals T (T-3 to T-5) for inputting and outputting alternating current power. The arm unit U is connected in order of the positive side arm 121P, the positive side buffer reactor 122P, the negative side buffer reactor 122N, and the negative side arm 121N, as viewed from the terminal T-1. Further, in the arm unit U, the terminal T-3 on the connection line between the positive side buffer reactor 122P and the negative side buffer reactor 122N is connected to the transformer 20A.
 変圧器20Aは、上述した変圧器20と同様の機能を有する。変圧器20Aは、アームユニットUと交流系統(例えば交流系統30)との間に接続される。また、モジュラーマルチレベル変換器120Aにおいては、変圧器20Aを備えていなくともよく、この場合、モジュラーマルチレベル変換器120Aと交流系統との間は、変圧器20Aを介さずに接続される。 Transformer 20A has the same function as transformer 20 described above. Transformer 20A is connected between arm unit U and an AC system (for example, AC system 30). Moreover, in the modular multi-level converter 120A, the transformer 20A may not be provided, and in this case, the modular multi-level converter 120A and the AC system are connected without the transformer 20A.
 正側アーム121P、および負側アーム121Nのそれぞれは、例えば、複数のチョッパセルCを備える。複数のチョッパセルCは、例えば、正側アーム121Pにおける端子T-1の側と、正側バッファリアクトル122Pの側との間に直列に接続される。 Each of the positive side arm 121P and the negative side arm 121N includes, for example, a plurality of chopper cells C. For example, the plurality of chopper cells C are connected in series between the side of the terminal T-1 in the positive side arm 121P and the side of the positive side buffer reactor 122P.
 図2(b)に示すように、チョッパセルCは、コンデンサ123と、スイッチング素子124(スイッチング素子124U、124X)と、ダイオード125(ダイオード125U、125X)と端子T(T-3、T-4)とを備える。スイッチング素子124は、例えば、IGBT(Insulated Gate Bipolar Transistor)や、MOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor)である。スイッチング素子124は、外部(例えば、モジュラーマルチレベル変換器120Aの図示しない制御部)からオンオフ制御をすることができ、自己消弧能力をもつスイッチング素子である。つまり、モジュラーマルチレベル変換器120Aは、自励式の電力変換器である。 As shown in FIG. 2B, the chopper cell C includes a capacitor 123, a switching element 124 (switching elements 124U and 124X), a diode 125 ( diodes 125U and 125X), and terminals T (T-3 and T-4). And The switching element 124 is, for example, an IGBT (Insulated Gate Bipolar Transistor) or a MOSFET (Metal-Oxide-Semiconductor Field-Effect Transistor). Switching element 124 can be turned on / off from the outside (for example, a control unit (not shown) of modular multi-level converter 120A), and is a switching element having a self-extinguishing ability. That is, the modular multilevel converter 120A is a self-excited power converter.
 チョッパセルCにおいては、直列に接続されたスイッチング素子124Uと、124Xとが、コンデンサ123と並列に接続される。また、チョッパセルCにおいては、スイッチング素子124Uと、124Xとのそれぞれに、逆並列にダイオード125U、125Xがそれぞれ接続されている。 In chopper cell C, switching elements 124U and 124X connected in series are connected in parallel with capacitor 123. Further, in the chopper cell C, diodes 125U and 125X are connected in anti-parallel to the switching elements 124U and 124X, respectively.
 また、チョッパセルCにおいては、チョッパセルCの正側に他のチョッパセルCが接続される場合、端子T-3は、他のチョッパセルCの端子T-4と接続される。チョッパセルCの正側に他のチョッパセルCが接続されない場合、端子T-3は、端子T-1と接続される。また、チョッパセルCにおいては、チョッパセルCの負側に他のチョッパセルCが接続される場合、端子T-4は、他のチョッパセルCの端子T-3と接続される。チョッパセルCの負側に他のチョッパセルCが接続されない場合、端子T-4は、端子T-2と接続される。 In the chopper cell C, when another chopper cell C is connected to the positive side of the chopper cell C, the terminal T-3 is connected to the terminal T-4 of the other chopper cell C. When no other chopper cell C is connected to the positive side of the chopper cell C, the terminal T-3 is connected to the terminal T-1. In the chopper cell C, when another chopper cell C is connected to the negative side of the chopper cell C, the terminal T-4 is connected to the terminal T-3 of the other chopper cell C. When the other chopper cell C is not connected to the negative side of the chopper cell C, the terminal T-4 is connected to the terminal T-2.
 チョッパセルCは、モジュラーマルチレベル変換器120Aの制御部(不図示)からの制御に基づいて、スイッチング素子124Uと、124Xとのそれぞれを接続状態または遮断状態にすることで、端子T-3の電圧を、所定の単位電圧(正側)としたり、ゼロ電圧としたり、所定の単位電圧(負側)としたりする。 Chopper cell C sets the voltage at terminal T-3 by connecting or blocking switching elements 124U and 124X under control of the control unit (not shown) of modular multi-level converter 120A. Is a predetermined unit voltage (positive side), a zero voltage, or a predetermined unit voltage (negative side).
 アームユニットU‐1~U‐3のそれぞれは、各々が有する複数のチョッパセルCそれぞれの端子T-3の電圧を調整することにより、多値レベル(マルチレベル)の電圧波形を出力する。 Each of the arm units U-1 to U-3 outputs a multilevel voltage waveform by adjusting the voltage of the terminal T-3 of each of the plurality of chopper cells C which each has.
 このように、交流/直流変換器120の一例であるモジュラーマルチレベル変換器120Aには複数のチョッパセルCが含まれ、チョッパセルCには、コンデンサ123が含まれる。 Thus, the modular multi-level converter 120A, which is an example of the AC / DC converter 120, includes a plurality of chopper cells C, and the chopper cell C includes a capacitor 123.
 図3は、第1の実施形態の交流/直流変換器120の構成の他の例を示す図である。図3は、2レベル変換器120Bの例を示す図である。図3に示すように、2レベル変換器120Bは、端子T(端子T-8、T-9)と、コンデンサ126と、ユニットV(ユニットV-1~V-3)と、交流フィルタ129と、変圧器20Bと、を備える。 FIG. 3 is a diagram showing another example of the configuration of the AC / DC converter 120 according to the first embodiment. FIG. 3 is a diagram showing an example of the two-level converter 120B. As shown in FIG. 3, the two-level converter 120B includes terminals T (terminals T-8 and T-9), a capacitor 126, units V (units V-1 to V-3), and an AC filter 129. , And a transformer 20B.
 端子T-8、T-9は、直流系統(例えば、発電装置10や交流/直流変換器110)と接続される端子である。ユニットV‐1~V‐3のそれぞれは、端子T-8とT-9との間に互いに並列に接続される。ユニットVは、スイッチング素子127(スイッチング素子127U、127X)と、ダイオード128(ダイオード128U、128X)と、交流電力を入出力する端子T(T-10~T-12)を備える。 The terminals T-8 and T-9 are terminals connected to a DC system (for example, the power generation device 10 or the AC / DC converter 110). Each of units V-1 to V-3 is connected in parallel with one another between terminals T-8 and T-9. The unit V includes a switching element 127 (switching elements 127U and 127X), a diode 128 ( diodes 128U and 128X), and terminals T (T-10 to T-12) that input and output AC power.
 ユニットVにおいては、スイッチング素子127Uと、127Xとが直列に接続され、スイッチング素子127Uと、127Xとのそれぞれに、逆並列にダイオード128U、128Xがそれぞれ接続されている。また、ユニットV‐1~V‐3のそれぞれにおいては、スイッチング素子127Uと、127Xとの間の接続線にある端子T-10が交流フィルタ129を介して変圧器20Bと接続される。 In unit V, switching elements 127U and 127X are connected in series, and diodes 128U and 128X are connected in anti-parallel to switching elements 127U and 127X, respectively. Further, in each of units V-1 to V-3, a terminal T-10 on a connection line between switching element 127U and 127X is connected to transformer 20B via AC filter 129.
 ユニットVは、2レベル変換器120Bの制御部(不図示)からの制御に基づいて、スイッチング素子127Uと、127Xとのそれぞれを接続状態または遮断状態にすることで、端子T-3の電圧を、所定の単位電圧(正側)としたり、ゼロ電圧としたり、所定の単位電圧(負側)としたりする。交流フィルタ129は、ユニットVの端子Tの電圧を平滑化する。これにより、交流フィルタ129から、正弦波に近い電圧、つまり交流電力の電圧が出力される。変圧器20Bは、上述した変圧器20と同様の機能を有する。変圧器20Bは、交流フィルタ129と交流系統(例えば交流系統30)との間に接続される。 The unit V sets the voltage of the terminal T-3 to the connection state or the disconnection state of each of the switching elements 127U and 127X based on control from a control unit (not shown) of the two-level converter 120B. Or a predetermined unit voltage (positive side), a zero voltage, or a predetermined unit voltage (negative side). The AC filter 129 smoothes the voltage at the terminal T of the unit V. As a result, the AC filter 129 outputs a voltage close to a sine wave, that is, a voltage of AC power. Transformer 20B has the same function as transformer 20 described above. Transformer 20B is connected between AC filter 129 and an AC system (for example, AC system 30).
 このように、交流/直流変換器120の一例である2レベル変換器120Bにはコンデンサ126が含まれる。 Thus, the capacitor 126 is included in the two-level converter 120 B which is an example of the AC / DC converter 120.
 次に、直流送電システム100における事故が発生した場合の動作について、図4~図8を用いて説明する。ここでの直流送電システム100における事故とは、例えば、落雷などにより、変圧器20と交流系統30との間の送電線が地絡した場合である。 Next, the operation of the DC power transmission system 100 when an accident occurs will be described with reference to FIGS. 4 to 8. The accident in the DC power transmission system 100 here is, for example, a case where the power transmission line between the transformer 20 and the AC grid 30 is grounded due to lightning strike or the like.
 図4は、送電システムにおいて事故が発生していない通常の状態を示す図である。通常の状態において、開閉部132は、交流/直流変換器120と変圧器20との間を接続状態とする。このため、交流/直流変換器120から出力される交流電力の電流Dは、開閉部132を介して変圧器20に流れ、抵抗部136には電流Dが流れない状態となる。 FIG. 4 is a diagram showing a normal state where no accident has occurred in the power transmission system. In the normal state, switching unit 132 brings AC / DC converter 120 and transformer 20 into a connected state. For this reason, the current D of the AC power output from the AC / DC converter 120 flows to the transformer 20 through the switching unit 132, and the current D does not flow to the resistance unit 136.
 図5は、送電システムにおいて事故が発生した初期の状態を示す図である。事故が発生した初期の状態において、電流Dは、変圧器20と交流系統30との間の事故点(地絡が生じた地点)から地面等へ流れてしまう。このとき、交流/直流変換器120から変圧器20に出力される交流電力の有効電圧は、0(ゼロ)又は0(ゼロ)に近い値となり、事故が発生する前の状態と比較して小さな値となる。電圧が0(ゼロ)の状態となれば、交流/直流変換器120から交流電力が出力できない状態となってしまう。 FIG. 5 is a diagram showing an initial state in which an accident has occurred in the power transmission system. In the initial state where an accident occurs, the current D flows from the accident point (the point where the ground fault occurs) between the transformer 20 and the AC system 30 to the ground or the like. At this time, the effective voltage of the AC power output from AC / DC converter 120 to transformer 20 has a value of 0 (zero) or a value close to 0 (zero), which is smaller than the state before the accident occurs. It becomes a value. If the voltage is in the state of 0 (zero), the AC / DC converter 120 can not output AC power.
 図6は、送電システムにおいて事故が発生した中期の状態を示す図である。事故が発生した中期の状態においては、制御部140により、交流/直流変換器120が停止するように制御される。また、開閉部132は、開閉部制御部134により、交流/直流変換器120と変圧器20との間を遮断状態とするように制御される。 FIG. 6 is a diagram illustrating a medium-term state in which an accident has occurred in the power transmission system. In the middle state where an accident has occurred, the control unit 140 controls the AC / DC converter 120 to stop. In addition, the switching unit 132 is controlled by the switching unit control unit 134 so as to cut off the AC / DC converter 120 and the transformer 20.
 ここで、発電装置10、および交流/直流変換器110は、事故が発生したか否かに関わらず動作を継続する場合がある。特に、発電装置10が風力発電や太陽光発電など再生可能エネルギーを利用した発電である場合、発電装置10を直ちに停止させることは困難である。このため、発電装置10が直流電力を発電し、交流/直流変換器110が直流電力を所定の電圧の直流電力に変換し、変換した電力が交流/直流変換器120に供給され続ける場合がある。 Here, the power generation device 10 and the AC / DC converter 110 may continue to operate regardless of whether or not an accident has occurred. In particular, when the power generation device 10 is a power generation using renewable energy such as wind power generation or solar power generation, it is difficult to immediately stop the power generation device 10. For this reason, the power generation device 10 may generate DC power, the AC / DC converter 110 may convert DC power into DC power of a predetermined voltage, and the converted power may continue to be supplied to the AC / DC converter 120. .
 従って、図7に示すような制御を行わなければ、交流/直流変換器120において出力停止中にも関わらず直流電力の供給を受ける状態となり、交流/直流変換器120における電力の授受のバランスが取れなくなってしまう。交流/直流変換器120における電力の授受のバランスが取れなくなることで、交流/直流変換器120が有するコンデンサに電荷が蓄積され続けた結果、コンデンサの持つ蓄電機能に損傷が生じ、交流/直流変換器120が制御不能となる恐れがある。そこで、実施形態においては、以下に説明するように交流/直流変換器120による交流電力の出力を再開する。 Therefore, if the control as shown in FIG. 7 is not performed, the AC / DC converter 120 receives the supply of the DC power regardless of the output stop, and the balance of the exchange of the power in the AC / DC converter 120 is I can not take it. The balance of the exchange of electric power in the AC / DC converter 120 is lost, and as a result, charge is continuously accumulated in the capacitor of the AC / DC converter 120, resulting in damage to the storage function of the capacitor, causing AC / DC conversion. Device 120 may become out of control. Therefore, in the embodiment, the output of AC power by AC / DC converter 120 is restarted as described below.
 図7は、送電システムにおいて事故が発生した後期の状態を示す図である。事故が発生した後期の状態においては、制御部140により、交流/直流変換器120による交流電力の出力が再開される。制御部140により、交流/直流変換器120から出力される交流電力の電流Dが、事故が発生する前の状態に戻されると、電流Dは抵抗部136に流れ、交流/直流変換器120から出力された交流電力が抵抗部136の抵抗器により消費される。これにより、交流/直流変換器120が有するコンデンサの過充電を抑制し、交流/直流変換器120が制御不能となることを防止することができる。また、交流/直流変換器120から出力された交流電力が抵抗部136の抵抗器により消費されることにより、交流/直流変換器120の出力電圧が低下して電圧が0(ゼロ)の状態となってしまうことを防止することができる。
 なお、事故が回復した後には、予め定めた所定の手順に従い、直流送電システム100全体の復旧が行われる。
FIG. 7 is a diagram illustrating a late state in which an accident has occurred in the power transmission system. In the late state where an accident occurred, the control unit 140 restarts the output of AC power by the AC / DC converter 120. When the current D of the AC power output from the AC / DC converter 120 is returned to the state before the occurrence of the accident by the control unit 140, the current D flows to the resistance unit 136, and the AC / DC converter 120 The output AC power is consumed by the resistor of the resistor unit 136. Thereby, overcharging of the capacitor of the AC / DC converter 120 can be suppressed, and the AC / DC converter 120 can be prevented from becoming uncontrollable. Further, since the AC power output from AC / DC converter 120 is consumed by the resistor of resistor unit 136, the output voltage of AC / DC converter 120 is reduced and the voltage is 0 (zero). Can be prevented.
After the accident is recovered, restoration of the entire DC power transmission system 100 is performed in accordance with a predetermined procedure determined in advance.
 図8は、第1の実施形態の直流送電システム100の動作を説明するタイミングチャートである。図8(a)は、地絡が発生した場合に、交流/直流変換器120が停止される前に開閉部132が遮断状態となる場合の例を示す。図8(b)は、地絡が発生した場合に、交流/直流変換器120が停止された後に開閉部132が遮断状態となる場合の例を示す。 FIG. 8 is a timing chart for explaining the operation of the DC power transmission system 100 according to the first embodiment. FIG. 8A shows an example in the case where the open / close unit 132 is cut off before the AC / DC converter 120 is stopped when a ground fault occurs. FIG. 8B shows an example in which the open / close unit 132 is cut off after the AC / DC converter 120 is stopped when a ground fault occurs.
 図8(a)、(b)それぞれの上段は交流/直流変換器120の状態、下段は交流/直流変換器120と変換器との間の接続状態をそれぞれ示す。また、図8(a)、(b)それぞれの上段および下段の横軸はともに時間を示す。また、図8(a)、(b)それぞれの上段では、交流/直流変換器120から通常の交流電力が出力されている状態を「通常状態」として示し、交流/直流変換器120から交流電力が停止されている場合を「停止状態」として示す。また、図8(a)、(b)それぞれの下段では、交流/直流変換器120と変圧器20との間が接続されている状態を「接続状態」として示し、遮断されている場合を「遮断状態」として示す。 The upper part of each of FIGS. 8A and 8B shows the state of the AC / DC converter 120, and the lower part shows the connection state between the AC / DC converter 120 and the converter. The horizontal axes at the top and bottom of each of FIGS. 8A and 8B indicate time. In the upper part of each of FIGS. 8A and 8B, a state in which normal AC power is output from AC / DC converter 120 is shown as a “normal state”, and AC power from AC / DC converter 120 is shown. Is indicated as "stopped" when it is stopped. Further, in the lower part of each of FIGS. 8A and 8B, a state in which the AC / DC converter 120 and the transformer 20 are connected is shown as a “connected state”, and the case where it is cut off is Shown as "blocked state".
 図8(a)の例では、時刻T1で地絡が発生し、まず、開閉部制御部134により開閉部132が遮断状態とされる。次に、時刻T2において制御部140により交流/直流変換器120が停止される。そして、時刻T3において、制御部140により交流/直流変換器120が通常状態に戻される。時刻T1の時点では開閉部132にアーク電流が流れ続けている場合があるが、時刻T2の時点でアーク電流は停止される。そして時刻T3の時点で、交流/直流変換器120の交流電力が抵抗部136により消費される。 In the example of FIG. 8A, a ground fault occurs at time T1, and first, the opening / closing unit 132 is put into the interruption state by the opening / closing unit control unit 134. Next, at time T2, the AC / DC converter 120 is stopped by the control unit 140. Then, at time T3, control unit 140 returns AC / DC converter 120 to the normal state. The arc current may continue to flow through the switching unit 132 at time T1, but the arc current is stopped at time T2. At time T3, the AC power of AC / DC converter 120 is consumed by resistance unit 136.
 図8(b)の例では、時刻T11で地絡が発生し、まず、制御部140により交流/直流変換器120が停止される。次に、時刻T12において開閉部制御部134により開閉部132が遮断状態とされる。そして、時刻T13において、制御部140により交流/直流変換器120が通常状態に戻される。時刻T11の時点で交流/直流変換器120からの電流が停止されるため、時刻T12の時点で開閉部132にアーク電流は流れない。そして時刻T3の時点で、交流/直流変換器120の交流電力が抵抗部136により消費される。 In the example of FIG. 8B, a ground fault occurs at time T11, and the AC / DC converter 120 is stopped by the control unit 140 first. Next, at time T12, the open / close unit 132 is put in the shutoff state by the open / close unit control unit 134. Then, at time T13, control unit 140 returns AC / DC converter 120 to the normal state. Since the current from the AC / DC converter 120 is stopped at time T11, no arc current flows in the switching part 132 at time T12. At time T3, the AC power of AC / DC converter 120 is consumed by resistance unit 136.
 なお、交流/直流変換器120が停止される時間、(図8(a)の例における時刻T2からT3までの時間、および図8(b)の例における時刻T1からT3までの時間)に制約はないが、なるべく短時間であることが望ましい。時刻T1からT3までの時間が長引くほど、交流/直流変換器120が有するコンデンサに電荷が溜り、過充電となる可能性が高まるためである。 Note that the time during which AC / DC converter 120 is stopped, (time from time T2 to T3 in the example of FIG. 8A, and time from time T1 to T3 in the example of FIG. 8B) is restricted. Although it is not, it is desirable to be as short as possible. This is because the longer the time from time T1 to time T3 is, the more charge is accumulated in the capacitor of the AC / DC converter 120 and the possibility of being overcharged increases.
 以上、説明したように第1の実施形態の直流送電システム100においては、交流/直流変換器110と、交流/直流変換器120と、保護回路130とを備える。交流/直流変換器110は、発電装置10により発電された直流電力を所定電圧の直流電力に変換する。交流/直流変換器120は、コンデンサを有し、伝送路Lを介して交流/直流変換器110から供給される直流電力を交流電力に変換する。保護回路130は、交流/直流変換器120と交流系統30との間に接続される。また、保護回路130は、開閉部132と、抵抗部136とを有する。開閉部132は、交流/直流変換器120と交流系統30との間の接続を接続状態又は遮断状態にする。抵抗部136は、開閉部132が遮断状態とされた場合に交流/直流変換器120からの交流電力を消費する。 As described above, the DC power transmission system 100 according to the first embodiment includes the AC / DC converter 110, the AC / DC converter 120, and the protection circuit 130. The AC / DC converter 110 converts DC power generated by the power generation device 10 into DC power of a predetermined voltage. The AC / DC converter 120 has a capacitor, and converts DC power supplied from the AC / DC converter 110 via the transmission path L into AC power. Protection circuit 130 is connected between AC / DC converter 120 and AC system 30. The protection circuit 130 further includes an open / close unit 132 and a resistor unit 136. The switching unit 132 brings the connection between the AC / DC converter 120 and the AC system 30 into a connected state or a disconnected state. Resistor 136 consumes AC power from AC / DC converter 120 when switch 132 is turned off.
 これにより、第1の実施形態の直流送電システム100においては、より低コストで高い信頼性を維持することができる。交流系統30に地絡等が生じた場合であっても、開閉部132が交流/直流変換器120と交流系統30との間の接続を遮断することで交流/直流変換器120から出力される電圧の低下を抑制することができ、抵抗部136が交流/直流変換器120から出力される交流電力を消費することで交流/直流変換器120が有するコンデンサの過充電を抑制することができ、交流/直流変換器120が制御不能に陥ることを防止することができるためである。 Thereby, in the DC power transmission system 100 of the first embodiment, high reliability can be maintained at lower cost. Even when a ground fault or the like occurs in AC system 30, switching unit 132 disconnects the connection between AC / DC converter 120 and AC system 30, and output from AC / DC converter 120 A reduction in voltage can be suppressed, and the resistor unit 136 can suppress the overcharging of the capacitor of the AC / DC converter 120 by consuming the AC power output from the AC / DC converter 120, This is because the AC / DC converter 120 can be prevented from falling out of control.
 比較例として、直流系統の側(例えば、交流/直流変換器110と発電装置10との間)に、保護回路130を設ける構成を考える。この構成の場合、保護回路130の抵抗部136は、発電装置10から出力される直流電力を消費する。しかし、発電装置10が風力発電機である場合には、発電装置10から出力される直流電力の電力量は、風量に応じて変化してしまう。変化する電力を消費するためには、抵抗部136は、例えば半導体スイッチで切り替え可能な多数の抵抗器で構成する必要がある。このような構成では、効果な半導体を多数使用しなければならず、装置コストがかかってしまう。 As a comparative example, a configuration is considered in which a protection circuit 130 is provided on the side of the DC system (for example, between the AC / DC converter 110 and the power generation device 10). In this configuration, the resistor unit 136 of the protection circuit 130 consumes the DC power output from the power generation device 10. However, when the power generation device 10 is a wind power generator, the amount of DC power output from the power generation device 10 changes in accordance with the air volume. In order to consume changing power, the resistor unit 136 needs to be configured of, for example, a large number of resistors that can be switched by a semiconductor switch. In such a configuration, many effective semiconductors must be used, which increases the cost of the apparatus.
 一方、本実施形態の直流送電システム100においては、保護回路130に高価な半導体スイッチを使用する必要はない。交流/直流変換器120から出力させる交流電力の電圧値は、交流/直流変換器120により制御することができるため、保護回路130は、例えば、交流/直流変換器120から出力させる交流電力の有効電力を消費することができる抵抗器を備えていればよい。 On the other hand, in the DC power transmission system 100 of the present embodiment, it is not necessary to use an expensive semiconductor switch for the protection circuit 130. Since the voltage value of the AC power output from the AC / DC converter 120 can be controlled by the AC / DC converter 120, for example, the protection circuit 130 is effective for the AC power output from the AC / DC converter 120. It suffices to have a resistor capable of consuming power.
 また、第1の実施形態の直流送電システム100においては、抵抗部136は、交流/直流変換器120に対して開閉部132と並列に設けられている。これにより、1の実施形態の直流送電システム100においては、上述した効果を奏する他、開閉部132が遮断状態となった場合であっても、変圧器20に電力を供給することができるため、事故が回復した場合によりスムーズに直流送電システム100を復旧させることが可能となる。 Further, in the DC power transmission system 100 according to the first embodiment, the resistor unit 136 is provided in parallel to the switching unit 132 with respect to the AC / DC converter 120. As a result, in the DC power transmission system 100 according to one embodiment, the transformer 20 can be supplied with power even when the switching unit 132 is in the shutoff state, in addition to the effects described above. It is possible to restore the DC transmission system 100 more smoothly if the accident recovers.
 また、第1の実施形態の直流送電システム100においては、交流/直流変換器110に入力される直流電力は、再生可能エネルギーである。これにより、1の実施形態の直流送電システム100においては、交流系統30の側に事故が生じた場合に、直ちに交流/直流変換器120に供給する直流電力を停止することができないが、この場合であっても、交流/直流変換器120から抵抗部136を介して変圧器20に交流電力を供給することができる。 Further, in the DC power transmission system 100 according to the first embodiment, DC power input to the AC / DC converter 110 is renewable energy. Thus, in the DC power transmission system 100 according to one embodiment, when an accident occurs on the side of the AC system 30, the DC power supplied to the AC / DC converter 120 can not be immediately stopped. Even in this case, alternating current power can be supplied from the alternating current / direct current converter 120 to the transformer 20 via the resistor portion 136.
 また、第1の実施形態の直流送電システム100においては、開閉部132が遮断状態になったときに、交流/直流変換器120に交流電力の出力を停止させる制御部140を更に備える。これにより、1の実施形態の直流送電システム100においては、交流系統30に地絡等が生じる等して、開閉部132が遮断状態になったときに、制御部140が交流/直流変換器120の出力を停止させることで、交流/直流変換器120から出力される電圧の低下を抑制することができ、交流/直流変換器120が制御不能に陥ることを防止することができる。 Further, the DC power transmission system 100 according to the first embodiment further includes a control unit 140 that causes the AC / DC converter 120 to stop outputting AC power when the switching unit 132 is turned off. Thus, in the DC power transmission system 100 according to one embodiment, when the switching unit 132 is cut off due to a ground fault or the like in the AC system 30, the controller 140 controls the AC / DC converter 120. By stopping the output of the circuit, it is possible to suppress a drop in voltage output from the AC / DC converter 120 and prevent the AC / DC converter 120 from becoming uncontrollable.
 また、第1の実施形態の直流送電システム100においては、制御部140は、交流/直流変換器120の交流電力の出力を停止させたことと、開閉部132を遮断状態とした旨の通知を(開閉部制御部134から)受けたこととの双方の条件が成立した後、交流/直流変換器120に交流電力の出力を再開させる。これにより、第1の実施形態の直流送電システム100においては、開閉部132が遮断状態になったときにアーク電流が発生した場合であっても、制御部140が交流/直流変換器120の出力を停止させることで、アーク電流を停止させることができる。このため、制御部140がアーク電流が発生していない状態で交流電力の出力を再開させることで交流/直流変換器120からの交流電力の出力を抵抗部136に消費させることができる。このため、交流/直流変換器120が有するコンデンサが過充電されることを抑制することができ、交流/直流変換器120の損傷を防止することができる。 Further, in the DC power transmission system 100 according to the first embodiment, the control unit 140 notifies that the output of the AC power of the AC / DC converter 120 has been stopped and that the switching unit 132 has been shut off. After both conditions of receiving (from the switch control unit 134) are satisfied, the AC / DC converter 120 is made to restart the output of AC power. Thus, in the DC power transmission system 100 according to the first embodiment, the control unit 140 outputs the output of the AC / DC converter 120 even when the arc current is generated when the switching unit 132 is turned off. The arc current can be stopped by stopping the Therefore, the output of the AC power from the AC / DC converter 120 can be consumed by the resistor unit 136 by resuming the output of the AC power while the control unit 140 does not generate the arc current. Therefore, overcharging of the capacitor of AC / DC converter 120 can be suppressed, and damage to AC / DC converter 120 can be prevented.
(第2の実施形態)
 次に、第2の実施形態について、説明する。第2の実施形態においては、制御部140が開閉部132を制御する点において、上述した第1の実施形態と相違する。
Second Embodiment
Next, a second embodiment will be described. The second embodiment is different from the above-described first embodiment in that the control unit 140 controls the open / close unit 132.
 制御部140は、交流系統30の所定の箇所における交流電力の電圧および電流を監視し、当該箇所に所定の閾値以上の電流が流れた場合等、交流系統30の状態が所定の状態である場合に、交流/直流変換器120の制御部に交流/直流変換器120を停止させる旨を指示すると共に、開閉部制御部134に指示し、開閉部132を遮断状態にさせる。 The control unit 140 monitors the voltage and current of AC power at a predetermined place of the AC system 30, and when the current of the AC system 30 is in a predetermined state, such as when a current equal to or greater than a predetermined threshold flows in the area And instructs the control unit of the AC / DC converter 120 to stop the AC / DC converter 120, and instructs the switch control unit 134 to switch the switch 132 off.
 なお、第2の実施形態においては、開閉部制御部134が省略されていてもよい。開閉部制御部134が省略される場合、制御部140からの制御により開閉部132を遮断状態とする。この場合、制御部140が、「制御部」の一例となる。 In the second embodiment, the open / close controller 134 may be omitted. When the open / close unit control unit 134 is omitted, the open / close unit 132 is put in the closed state under the control of the control unit 140. In this case, the control unit 140 is an example of the “control unit”.
 また、制御部140は、開閉部132が遮断状態となった後、交流/直流変換器120の制御部に交流/直流変換器120からの交流電力の出力を再開させる旨を指示する。 In addition, after switch unit 132 is turned off, control unit 140 instructs the control unit of AC / DC converter 120 to resume the output of AC power from AC / DC converter 120.
 以上説明したように、第2の実施形態の直流送電システム100においては、交流/直流変換器120により変換された交流電力の電流の出力を停止させるとともに、交流/直流変換器120と交流系統30との間の接続を遮断状態にさせる制御部140を更に備える。これにより、第2の実施形態の直流送電システム100においては、交流系統30に短絡事故が生じた場合等、交流系統30の状態が所定の状態である場合に、制御部140が交流/直流変換器120を停止させるとともに、開閉部制御部134(または制御部140)が開閉部132を遮断状態とすることにより、交流電力の電圧が低下してしまうことを防止することができる。 As described above, in the DC power transmission system 100 of the second embodiment, the output of the current of the AC power converted by the AC / DC converter 120 is stopped, and the AC / DC converter 120 and the AC system 30 And a control unit 140 for making the connection between Thus, in the DC power transmission system 100 according to the second embodiment, the control unit 140 performs AC / DC conversion when the state of the AC system 30 is a predetermined state, such as when a short circuit accident occurs in the AC system 30. When the switch control unit 134 (or the control unit 140) shuts off the open / close unit 132 while stopping the switch 120, it is possible to prevent the voltage of the AC power from being lowered.
 また、第2の実施形態の直流送電システム100においては、制御部140は、交流/直流変換器120の交流電流の出力を停止させたことと、開閉部132を遮断状態としたこととの双方が成立した場合に、交流/直流変換器120に交流電力の出力を再開させる。これにより、第2の実施形態の直流送電システム100においては、交流/直流変換器120から出力される交流電力を抵抗部136で消費させることができ、交流/直流変換器120が有するコンデンサが過充電されることを防止することができる。 Further, in the DC power transmission system 100 according to the second embodiment, the control unit 140 both stops the output of the AC current of the AC / DC converter 120 and turns the switching unit 132 into the shutoff state. And causes the AC / DC converter 120 to resume output of AC power. Thus, in the DC power transmission system 100 of the second embodiment, the AC power output from the AC / DC converter 120 can be consumed by the resistor unit 136, and the capacitor of the AC / DC converter 120 is excessive. It can be prevented from being charged.
(第3の実施形態)
 次に、第3の実施形態について、図8を用いて説明する。図8は、第3の実施形態の直流送電システム100Aの構成例を示すブロック図である。第3の実施形態においては、交流/直流変換器120と保護回路130との間に変圧器20が設置される点において、上述した実施形態と相違する。また、第3の実施形態においては、保護回路130と交流系統30との間に変圧器20を有しない点において上述した実施形態と相違する。
Third Embodiment
Next, a third embodiment will be described using FIG. FIG. 8 is a block diagram showing a configuration example of the DC power transmission system 100A of the third embodiment. The third embodiment is different from the above-described embodiment in that a transformer 20 is provided between the AC / DC converter 120 and the protection circuit 130. The third embodiment is different from the above-described embodiment in that the transformer 20 is not provided between the protection circuit 130 and the AC system 30.
 制御部140は、例えば、交流系統30における所望の箇所に設けられた計器用変圧器を介して当該箇所の電圧を監視し、保護回路130と交流系統30との間に設けられる図示しない計器用変圧器を介して、交流系統30に供給される交流電力の電圧および電流を監視する。そして、制御部140は、地絡が発生した等により変圧器20と交流系統30との間の送電線に所定の閾値以上の電流が流れた場合、交流/直流変換器120が停止した状態となるように制御する。また、このとき、制御部140は、開閉部132が遮断状態となるように制御する。そして、制御部140は、交流/直流変換器120と交流系統30との間の電気的な接続を遮断状態とした後に、交流/直流変換器120の交流電力の出力を再開させる。 The control unit 140 monitors, for example, the voltage at the relevant point via the instrument transformer provided at a desired location in the alternating current system 30, and for an unshown instrument provided between the protection circuit 130 and the alternating current system 30. The voltage and current of AC power supplied to AC system 30 are monitored via a transformer. Then, when a current equal to or greater than a predetermined threshold flows in the transmission line between transformer 20 and AC grid 30 due to a ground fault or the like, control unit 140 stops AC / DC converter 120 in a stopped state. Control to be Further, at this time, the control unit 140 controls the opening / closing unit 132 to be in the disconnection state. Then, control unit 140 resumes the output of AC power of AC / DC converter 120 after the electrical connection between AC / DC converter 120 and AC system 30 is cut off.
 以上説明した少なくともひとつの実施形態によれば、入力電力を所定電圧の直流電力に変換する交流/直流変換器110と、コンデンサを有し、交流/直流変換器110の直流側に接続された伝送路Lを介して交流/直流変換器110から供給される直流電力を、交流電力に変換する交流/直流変換器120と、交流/直流変換器120と交流系統30との間に接続される保護回路130であって、交流/直流変換器120と交流系統30との間の接続を接続状態又は遮断状態にする開閉部132と、開閉部132により交流/直流変換器120と交流系統30との間が遮断状態とされた場合に交流/直流変換器120からの交流電力を消費する抵抗部136とを有する保護回路130と、を持つことにより、低コストで高い信頼性を維持することができる。交流系統30に地絡等が生じた場合であっても、開閉部132が交流/直流変換器120と交流系統30との間の接続を遮断することで交流/直流変換器120から出力される電圧の低下を抑制することができ、抵抗部136が交流/直流変換器120から出力される交流電力を消費することで交流/直流変換器120が有するコンデンサの過充電を抑制することができ、交流/直流変換器120が制御不能に陥ることを防止することができるためである。 According to at least one embodiment described above, the transmission connected to the DC side of the AC / DC converter 110 includes the AC / DC converter 110 for converting input power into DC power of a predetermined voltage, and a capacitor. AC / DC converter 120 for converting DC power supplied from AC / DC converter 110 via path L into AC power, and protection connected between AC / DC converter 120 and AC system 30 The circuit 130 is a switching unit 132 for connecting or disconnecting the connection between the AC / DC converter 120 and the AC system 30, and the switching unit 132 using the AC / DC converter 120 and the AC system 30. High reliability can be maintained at low cost by having a protection circuit 130 having a resistor portion 136 that consumes AC power from the AC / DC converter 120 when there is an interruption state. Rukoto can. Even when a ground fault or the like occurs in AC system 30, switching unit 132 disconnects the connection between AC / DC converter 120 and AC system 30, and output from AC / DC converter 120 A reduction in voltage can be suppressed, and the resistor unit 136 can suppress the overcharging of the capacitor of the AC / DC converter 120 by consuming the AC power output from the AC / DC converter 120, This is because the AC / DC converter 120 can be prevented from falling out of control.
 本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。 While certain embodiments of the present invention have been described, these embodiments have been presented by way of example only, and are not intended to limit the scope of the invention. These embodiments can be implemented in other various forms, and various omissions, replacements, and modifications can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the invention described in the claims and the equivalents thereof as well as included in the scope and the gist of the invention.
 系統事故が発生した場合に、交流/直流変換器120の損傷を抑制することができ、HVDCにおける伝送システムに適用できる。 In the case of a system accident, damage to AC / DC converter 120 can be suppressed, and can be applied to a transmission system in HVDC.
10…発電装置、20…変圧器、30…交流系統、100…直流送電システム、110…交流/直流変換器、120…交流/直流変換器、130…保護回路、132…開閉部、134…開閉部制御部、136…抵抗部、140…制御部 DESCRIPTION OF SYMBOLS 10 Power generation apparatus 20 Transformer 30 AC system 100 DC power transmission system 110 AC / DC converter 120 AC / DC converter 130 protection circuit 132 switching unit 134 switching Control unit, 136 ... resistance unit, 140 ... control unit

Claims (7)

  1.  入力電力を所定電圧の直流電力に変換する第1の変換器と、
     蓄電デバイスを有し、前記第1の変換器の直流側に接続された直流リンクを介して前記第1の変換器から供給される直流電力を、交流電力に変換する第2の変換器と、
     前記第2の変換器と交流系統との間に接続される保護装置であって、前記第2の変換器と前記交流系統との間の接続を接続状態又は遮断状態にする開閉部と、前記開閉部が遮断状態とされた場合に前記第2の変換器からの交流電力を消費する負荷とを有する保護装置と、
     を備える直流送電システム。
    A first converter for converting input power into DC power of a predetermined voltage;
    A second converter for converting DC power supplied from the first converter into AC power via a DC link connected to a DC side of the first converter, the storage device having an electric storage device;
    A protection device connected between the second converter and an alternating current system, wherein the switching unit brings the connection between the second converter and the alternating current system into a connected state or a disconnected state; A protection device having a load that consumes AC power from the second converter when the switching unit is in the shutoff state;
    DC power transmission system provided with
  2.  前記負荷は、前記第2の変換器に対して前記開閉部と並列に設けられている抵抗器を含む
     請求項1に記載の直流送電システム。
    The DC power transmission system according to claim 1, wherein the load includes a resistor provided in parallel to the switching unit with respect to the second converter.
  3.  前記第1の変換器に入力される電力は、再生可能エネルギーである
     請求項1又は請求項2に記載の直流送電システム。
    The DC power transmission system according to claim 1, wherein the power input to the first converter is renewable energy.
  4.  前記開閉部が遮断状態になったときに、前記第2の変換器に交流電力の出力を停止させる制御部を更に備える、
     請求項1から請求項3のうちいずれか一項に記載の直流送電システム。
    The control device further includes a control unit that causes the second converter to stop the output of alternating current power when the opening / closing unit is in the disconnection state.
    The direct current transmission system according to any one of claims 1 to 3.
  5.  前記制御部は、前記第2の変換器の交流電力の出力を停止させたことと、前記開閉部を遮断状態とした旨の通知を受けたこととの双方の条件が成立した後、前記第2の変換器に交流電力の出力を再開させる
     請求項4に記載の直流送電システム。
    The control unit is configured to stop the output of the alternating current power of the second converter and to receive the notification that the switching unit has been switched off. The DC power transmission system according to claim 4, wherein the converter (2) restarts the output of AC power.
  6.  前記交流系統の状態が所定の状態である場合に、前記開閉部を遮断状態にすると共に、前記第2の変換器に交流電力の出力を停止させる制御部を更に備える、
     請求項1から請求項3のうちいずれか一項に記載の直流送電システム。
    The controller further includes a control unit that causes the second converter to stop the output of AC power while the switching unit is in a shutoff state when the state of the AC system is a predetermined state.
    The direct current transmission system according to any one of claims 1 to 3.
  7.  前記制御部は、前記第2の変換器の交流電力の出力を停止させたことと、前記開閉部を遮断状態としたこととの双方が成立した場合に、前記第2の変換器に交流電力の出力を再開させる
     請求項6に記載の直流送電システム。
    The control unit controls the second converter to output alternating current power when both of stopping the output of the alternating current power of the second converter and setting the switching unit in the cutoff state are satisfied. The direct current transmission system according to claim 6, wherein the output of is resumed.
PCT/JP2017/030896 2017-08-29 2017-08-29 Dc power transmission system WO2019043777A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/030896 WO2019043777A1 (en) 2017-08-29 2017-08-29 Dc power transmission system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/030896 WO2019043777A1 (en) 2017-08-29 2017-08-29 Dc power transmission system

Publications (1)

Publication Number Publication Date
WO2019043777A1 true WO2019043777A1 (en) 2019-03-07

Family

ID=65525077

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/030896 WO2019043777A1 (en) 2017-08-29 2017-08-29 Dc power transmission system

Country Status (1)

Country Link
WO (1) WO2019043777A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130200859A1 (en) * 2010-07-30 2013-08-08 Abb Technology Ag Capacitor discharge in a cell based voltage source converter
WO2014132396A1 (en) * 2013-02-28 2014-09-04 三菱電機株式会社 Power conversion device
WO2016125376A1 (en) * 2015-02-03 2016-08-11 三菱重工業株式会社 Electric power generation control device, electric power converter control device, electric power generation control method and program
WO2016194649A1 (en) * 2015-05-29 2016-12-08 株式会社 東芝 Direct current power transmission system, central server of same, and method for restoring direct current power transmission pathway after failure

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130200859A1 (en) * 2010-07-30 2013-08-08 Abb Technology Ag Capacitor discharge in a cell based voltage source converter
WO2014132396A1 (en) * 2013-02-28 2014-09-04 三菱電機株式会社 Power conversion device
WO2016125376A1 (en) * 2015-02-03 2016-08-11 三菱重工業株式会社 Electric power generation control device, electric power converter control device, electric power generation control method and program
WO2016194649A1 (en) * 2015-05-29 2016-12-08 株式会社 東芝 Direct current power transmission system, central server of same, and method for restoring direct current power transmission pathway after failure

Similar Documents

Publication Publication Date Title
US8867244B2 (en) HVDC converter including fullbridge cells for handling a DC side short circuit
KR101738032B1 (en) Converter with active fault current limitation
US9525287B2 (en) Inverter system and method for operation of a photovoltaic installation for feeding electrical power into a medium-voltage power supply grid
KR101147206B1 (en) Grid connected power storage system and integration controller thereof
US9917443B2 (en) Photovoltaic system and method for operating a photovoltaic system for feeding electrical power into a medium-voltage network
US10298006B2 (en) Energy storage system and method of driving the same
US20140362618A1 (en) Power electronic converter
US9419428B2 (en) Protection device for DC collection systems
WO2012041380A1 (en) Modular converter with reduced protection requirements that prevents damage to components by extinguishing fault currents.
US10097002B2 (en) Power transmission arrangement and method for operating a power transmission arrangement
CN103825363A (en) Wind-solar low voltage storage micro-grid group protection coordinating controller
Hu et al. Intelligent DC-DC converter based substations enable breakerless MVDC grids
WO2019043777A1 (en) Dc power transmission system
CN110870154A (en) Power conditioner, power system, and reactive power suppression method for power system
Shrivastava et al. Overview strategy of wind farm in VSC-HVDC power transmission
CN108899911B (en) Direct current power transformation system
Xu et al. Feasibility study of DC circuit breaker‐less MTDC systems
Wang et al. Interlinked solid-state MVDC circuit breaker with current regulation capability
KR20190104657A (en) Energy storage system for dc micorogrid system
CN111201688A (en) Method for controlling a high-voltage direct-current network in the event of a fault
US20240195166A1 (en) Circuit Breakers and Circuit Breaker Operational Methods
CN116388282B (en) DC energy consumption device and switch submodule
KR102303326B1 (en) An energy storage system
JP7304619B2 (en) DC transmission system
Reddy et al. Feasibility Study of Adding a Third VSC based HVDC Terminal on an Existing Point-Point LCC based HVDC Transmission System

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17923100

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17923100

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP