WO2019043764A1 - Antenna, stadium antenna system, theater antenna system, exhibition hall antenna system, and vehicle guide antenna system - Google Patents

Antenna, stadium antenna system, theater antenna system, exhibition hall antenna system, and vehicle guide antenna system Download PDF

Info

Publication number
WO2019043764A1
WO2019043764A1 PCT/JP2017/030812 JP2017030812W WO2019043764A1 WO 2019043764 A1 WO2019043764 A1 WO 2019043764A1 JP 2017030812 W JP2017030812 W JP 2017030812W WO 2019043764 A1 WO2019043764 A1 WO 2019043764A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
film
optical waveguide
area
optical
Prior art date
Application number
PCT/JP2017/030812
Other languages
French (fr)
Japanese (ja)
Inventor
純 小関
真清 北川
めぐみ 川田
央 丸山
弘樹 萩原
智之 曽我
Original Assignee
日本電業工作株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電業工作株式会社 filed Critical 日本電業工作株式会社
Priority to PCT/JP2017/030812 priority Critical patent/WO2019043764A1/en
Priority to JP2019538770A priority patent/JP6777344B2/en
Publication of WO2019043764A1 publication Critical patent/WO2019043764A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/08Arrays of individually energised antenna units similarly polarised and spaced apart the units being spaced along or adjacent to a rectilinear path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present invention relates to an antenna, a stadium antenna system, a theater antenna system, an exhibition site antenna system, and a vehicle induction antenna system.
  • an antenna element formed by pasting a conductor foil or applying a conductive paint, a feed line connected to the antenna element, a power generation unit connected to the feed line, and the antenna device
  • a sheet-like antenna device provided with an adhesion part which adheres removably to a fixed side which attaches a sheet
  • a crossing moving body detection system for detecting a moving body crossing a passable passage of a vehicle, a plurality of belts laid substantially parallel on a road surface of the pass at intervals.
  • a pedestrian crossing marked by the symbol, a mobile tag attachable to a moving object crossing the pedestrian crossing and capable of non-contact data communication and capable of storing identification information, and the mobile tag A plurality of antenna elements that can communicate with each other in a non-contact manner and are integrally formed with each of the plurality of band members, and the plurality of antenna elements are respectively electrically connected and stored in the moving tag
  • a traversing vehicle detection system comprising a plurality of stationary readers for reading identification information (see Patent Document 2).
  • JP 2012-090223 A JP, 2005-050161, A
  • a sector antenna is provided on the roof of a building, a steel tower or the like, and a communication area for communicating with the mobile has been constructed.
  • the present invention provides, for example, an antenna with low power as compared to the case of using an antenna that covers a wide communication area.
  • the invention according to claim 1 comprises a plurality of antenna elements each transmitting and receiving radio waves, an optical waveguide for propagating a signal for transmitting and receiving radio waves of the plurality of antenna elements, a plurality of the antenna elements and the light guide It is an antenna provided with a flexible 1st film and a flexible 2nd film which sandwiches and holds a waveguide.
  • the invention according to claim 2 is the antenna according to claim 1, wherein adjacent antenna elements in the plurality of antenna elements transmit and receive radio waves of different frequencies.
  • a plurality of the antenna elements are arrayed in a predetermined direction, and frequencies are cyclically set so that the frequencies of radio waves are different between adjacent antenna elements along the array.
  • the antenna according to claim 1 characterized in that:
  • the invention according to claim 4 is the antenna according to claim 2 or 3, wherein a cell in which communication is performed for each of the antenna elements is configured by radio waves transmitted and received by a plurality of the antenna elements.
  • the invention according to claim 5 is the antenna according to claim 1, further comprising an interface circuit for converting an optical signal and an electrical signal between the optical waveguide and the antenna element.
  • the invention according to claim 6 is the antenna according to claim 5, characterized in that power is supplied to the interface circuit via the optical waveguide.
  • the first film and the second film are both long members, and can be wound in the long direction in a state in which the antenna element and the optical waveguide are sandwiched.
  • the optical waveguide is provided along the longitudinal direction of the first film and the second film. is there.
  • the optical waveguide is provided with a connection portion for input / output of a signal on the end side of the first film and the second film in the longitudinal direction.
  • the optical waveguide is provided with connection portions for signal input and output on both end sides in the longitudinal direction of the first film and the second film. It is an antenna of Claim 8 characterized by the above-mentioned.
  • the antenna according to any one of claims 1 to 10 is provided in at least a part of a competition area in which a competition is performed and a spectator area for accommodating a spectator of the competition. It is a stadium antenna system characterized by things.
  • the invention according to claim 12 is any one of claims 1 to 10 in at least a part of the stage on which the performance, performance or lecture is performed and the audience area for accommodating the performance, performance or lecture audience.
  • the present invention is a theater antenna system characterized in that an antenna of The antenna according to any one of claims 1 to 10 has an antenna according to any one of claims 1 to 10 in at least a part of a display area for displaying an exhibit and a spectator area through which a spectator who views the display passes. It is an exhibition hall antenna system characterized by being provided.
  • the invention according to claim 14 is a vehicle induction antenna system in which the antenna according to any one of claims 1 to 10 is provided along a road surface through which a vehicle passes.
  • power can be reduced compared to the case of using an antenna that covers a wide communication area.
  • interference between adjacent antenna elements is suppressed as compared to the case where different frequencies are not used.
  • the frequency can be made common as compared with the case where the frequency is not set cyclically.
  • the power consumption is further reduced as compared to the case where the cell is not set for each antenna element.
  • the power consumption is further reduced as compared with the case where the interface circuit for converting the optical signal and the electric signal is not provided.
  • the construction is easier than in the case where it can not be taken up.
  • the propagation of a long distance signal is facilitated as compared with the case where it is not provided along the long direction.
  • transmission and reception of signals can be performed in a concentrated manner as compared with the case where they are not provided on the end side in the longitudinal direction.
  • the reliability is improved as compared with the case where it is not provided on both end sides in the longitudinal direction.
  • power can be reduced compared to the case of using an antenna which covers a wide communication area.
  • a mobile body is a device that is movable as well as having a function of communicating wirelessly.
  • These include an information communication terminal equipped with a function (information processing function) for processing information in addition to the communication function, such as a mobile phone, a smartphone, a watch, a camera, etc., a sensing function in addition to the communication function and the information processing function
  • Portable sensors wearable sensors
  • aircrafts having a communication function and an information processing function, trains, cars, etc. are included.
  • an antenna In mobile communication, an antenna is installed on the roof of a building or on a steel tower, and a range where radio waves reach from the antenna has been set as a communication area (cell).
  • a communication area cell
  • the frequency of radio waves used to improve the transmission speed (transmission capacity) increases from the current maximum of 3.5 GHz, for example, from 20 GHz to 60 GHz, the propagation loss increases.
  • the antenna is installed on the roof of a building, on a steel tower, etc., and a plurality of antenna elements are arranged in the vicinity (familiarity) of a mobile body instead of using a wide range as a communication area
  • a communication area cell
  • both the power for transmitting from the antenna element to the mobile body and the power for transmitting from the mobile body to the antenna element are reduced.
  • the plurality of antenna elements are disposed in the vicinity of the moving body, the arrival of radio waves is less likely to be impeded even in a place blocked by an obstacle such as a building shade.
  • an access point which is a master unit or a base station together with an antenna element
  • high-speed, always-on connection and low-delay communication can be performed between the AP and a mobile.
  • An apparatus having an access point function may be called an edge device.
  • FIG. 1 is a diagram showing an example of a stadium antenna system 1 to which the first embodiment is applied.
  • FIG. 1 is a view of the stadium 10 as viewed from above.
  • the stadium 10 includes a competition area 11 in which a ground on which a game is played is provided, and a spectator area 12 in which a spectator seat for accommodating a spectator who views the game is provided.
  • a spectator area 12 is provided to surround the competition area 11.
  • the spectator area 12 may be provided opposite to a part of the competition area 11.
  • the competition area 11 and the spectator area 12 are provided with a plurality of cells 13 for transmitting and receiving radio waves.
  • the cells 13 are represented by circles. As described later, the cell 13 includes an antenna element (an antenna element 111 in FIG.
  • the cells 13 are set so that interference of radio waves is unlikely to occur between adjacent cells 13. Then, in the competition area 11 and the spectator area 12, there are moving objects 14 possessed by a competitor (player) and a spectator. Although one mobile unit 14 is shown in FIG. 1, there may be many.
  • the cells 13 are provided along the track on which the track competition is conducted, and a plurality of cells 13 are two-dimensionally provided so as to cover the field on which soccer or the like is conducted.
  • player information such as player's biological data (such as heart rate) from the moving object 14 carried by the player, for example, a wearable sensor carried by the player, a camera attached to the player's face or glasses, etc.
  • an image of the player's eyes is transmitted toward the antenna element of the cell 13.
  • one mobile unit 15 is shown in FIG. 1, there may be a large number.
  • a plurality of cells 13 are provided so as to cover the seats of the spectators (audience seats). By doing this, the spectator in the spectator seat or the coach of the player can grasp the player information from the moving object 14 possessed by the player in real time by the moving object 15 possessed by the player, or To see
  • the cells 13 are schematically shown. Therefore, the cell 13 is not necessarily limited to the size shown in FIG.
  • cells 13 may be provided along lanes for each lane of the track, and a plurality of lanes may be set and cells 13 may be provided along a set of lanes for each set of lanes. May be Also, the cell 13 may be provided to span all the lanes. Note that providing the cell 13 along the track includes all the cases described above. Further, in the field in the competition area 11, the cell 13 may be provided to cover the field. In addition, the cell 13 may be provided not only in the field where the competition, for example, soccer is performed, but also around the pitch.
  • FIG. 2 is a diagram showing an example of the cell 13 provided in the spectator area 12. Here, one cell 13 is provided for two audience seats 16.
  • the cell 13 in the first embodiment is a very small (minimal) cell as compared to the conventional cell. That is, the cell 13 here is a cell smaller than so-called nanocell, picocell or the like, which is used to mean a small cell.
  • the pitch of the cells 13 may be every 1 m, every 10 m, or the like.
  • the height is an area of 2 to 3 m and may cover an individual.
  • the size of the cell 13 may be set in consideration of the frequency of the radio wave, the power necessary for transmission and reception of the radio wave, and the like.
  • FIG. 3 is a diagram for explaining an example of the stadium antenna system 2 to which the first embodiment is not applied.
  • the stadium antenna system 2 shown in FIG. 3 is a stadium antenna system currently used.
  • the competition area 11 of the stadium 10, the spectator area 12 and the moving bodies 14 and 15 are the same as in the first embodiment. Therefore, the same reference numerals are given and the description is omitted.
  • the players and spectators in the stadium 10 communicate with radio waves leaked from the cells 21 of the existing base station antenna 20 provided around the stadium 10 or temporarily or permanently in the stadium 10 Communication will be performed with the provided base station antenna 30.
  • the frequency of radio waves used for communication is as low as 3.5 GHz at the maximum, the transmission speed (transmission capacity) is small.
  • FIG. 4 is a diagram for explaining an example of the stadium antenna system 3 to which the first embodiment is not applied.
  • the stadium antenna system 3 shown in FIG. 4 is a stadium antenna system using a super multi-element antenna 40 considered as the fifth generation mobile communication system (5G).
  • the competition area 11 of the stadium 10, the spectator area 12 and the moving bodies 14 and 15 are the same as in the first embodiment. Therefore, the same reference numerals are given and the description is omitted.
  • the super multi-element antenna 40 is a base station antenna used for Massive MIMO, which is a communication technology for performing communication using a plurality of antennas.
  • the super multi-element antenna 40 uses several tens or 100 or more antenna elements to reduce interference between base station antennas and increase transmission speed (transmission capacity) using high frequency radio waves with large propagation loss. It is said that.
  • transmission capacity transmission capacity
  • FIG. 4 only by providing a plurality of super multi-element antennas 40 in the spectator area 12 of the stadium 10, the power for transmitting from the antenna to the moving body, and from the moving body to the antenna The power to be transmitted must be increased. That is, it is difficult to set the cell 41 having a large communication area by using the super multi-element antenna 40.
  • FIG. 5 is a diagram for explaining an example of the antenna 100. As shown in FIG. 5 (a) is a plan view, and FIG. 5 (b) is a cross-sectional view taken along the line VB-VB of FIG. 5 (a).
  • the antenna 100 is provided with a plurality of antenna units 110 each including an antenna element 111, an optical waveguide 120 for propagating a signal, and the optical waveguide 120 of the antenna 100 and devices provided outside the antenna 100. And a connector 130 provided at the end of the optical waveguide 120 to connect the two.
  • the connector 130 is an example of a connection unit.
  • antenna units 110 are arranged in a predetermined direction.
  • the arrangement direction of the antenna units 110 is the x direction, and the directions orthogonal to this are the y direction and the z direction. More antenna units 110 may be arranged in the x direction.
  • arranging in a predetermined direction means that some of the antenna units 110 are deviated from the direction perpendicular to the straight line, in addition to the case where the antenna units 110 are arranged on a straight line in a predetermined direction.
  • the case where some antenna units 110 are arranged with respect to a straight line so as to be different in inclination from other antenna units 110 is included.
  • the antenna 100 is provided with a first film 140 and a second film 150 which sandwich and hold the antenna unit 110 and the optical waveguide 120.
  • the 1st film 140 and the 2nd film 150 are constituted by the material which has flexibility (flexibility).
  • the first film 140 and the second film 150 are pasted with an adhesive so as to sandwich and hold the antenna unit 110 and the optical waveguide 120.
  • the antenna 100 as a whole is a film (sheet) having flexibility.
  • the first film 140 and the second film 150 are made of a material that easily transmits radio waves, and have flexibility (flexibility) when processed into a film (sheet) shape or a plate shape. Good.
  • a vinyl-based resin such as polyvinyl chloride, a polystyrene-based, a polyethylene-based, a polypropylene-based, an acrylic-based, a polyamide nylon-based, or an ABS can be applied.
  • the film thickness of the first film 140 and the second film 150 may be set appropriately, and the second film 150 may function as a protective film. Also, the first film 140 and the second film 150 may be transparent or opaque.
  • the antenna 100 can be installed simply by peeling off the release paper.
  • display of characters, figures, signs, and the like may be provided on the surface of the second film 150 in the antenna 100.
  • the display may be, for example, a seat number, an evacuation route, a transmission / reception method, or the like.
  • the antenna 100 serves as a display medium.
  • the 1st film 140 and the 2nd film 150 are long in the x direction in which the antenna unit 110 is arranged.
  • the antenna 100 can be wound in the longitudinal direction (x direction) due to the flexibility of the first film 140 and the second film 150.
  • the optical waveguide 120 includes six main optical waveguides (referred to as optical waveguides 120-1 to 120-6 in the case of distinction) and a plurality of optical waveguides as branches (in the case of distinction). And optical waveguides 120-11, 120-21, etc.). That is, the optical waveguides (optical waveguides 120-1 to 120-6) serving as the trunk and the optical waveguides (optical waveguides 120-11, 120-21, etc.) serving as the branches are collectively referred to as an optical waveguide 120.
  • the optical waveguides 120-1 to 120-6 serving as the trunk the optical waveguides 120-1, 120-3, and 120-5 whose indices (numbers after-) are odd number are the antenna elements 111 of the antenna unit 110. Is an optical waveguide that propagates the received signal (received signal).
  • the optical waveguides 120-2, 120-4, and 120-6 whose subscripts (numbers after-) are even numbers are optical waveguides that propagate signals (transmission signals) to be transmitted to the antenna element 111 of the antenna unit 110. It is.
  • the optical waveguides 120-1 to 120-6 are provided along the longitudinal direction (x direction) of the first film 140 and the second film 150.
  • the optical waveguides 120-11 and 120-21 as branches are optical waveguides through which light branched from the optical waveguides 120-1 to 120-6 as trunks propagates.
  • 10 digits are connected with the suffixes of the optical waveguides 120-1 to 120-6 as the trunk (number after-) and 1 digit is connected.
  • the antenna unit 110 the antenna units 110-1 to 110-6 in FIG. 15.
  • the optical waveguides 120-11 and 120-21 as branches are provided to straddle the optical waveguides 120-1 to 120-6 as trunks.
  • the optical waveguides 120-11, 120-21 and the like to be branches will be described in detail in the description of the antenna unit 110.
  • the configuration of the optical waveguide 120 is an example, and any other configuration may be used as long as signals can be transmitted to and received from the antenna units 110.
  • the main optical waveguides 120-1 to 120-6 transmit and receive three sets of the transmission signal and the reception signal.
  • this prevents the occurrence of interference even when the cells 13 overlap between the adjacent antenna units 110.
  • the frequencies may be made different between two antenna units 110 adjacent to each other in the x direction.
  • the frequencies are set to be different among the three antenna units 110 here.
  • the centers of adjacent cells 13 are arranged to form an equilateral triangle. Further, by setting the frequency cyclically in units of three antenna units 110, the frequency is made common. And, like the optical waveguides 120-1 to 120-6, the number of optical waveguides for transmitting and receiving signals can be reduced.
  • two connectors 130 (in the case of distinction, it describes with connectors 130a and 130b.) are provided in the both ends of the lengthwise direction (x direction) of optical waveguides 120-1-120-6 used as a trunk. It is done.
  • the connector 130 is an optical connector for connecting an optical signal. It is good to be able to desorb easily. By doing this, transmission and reception of signals can be concentrated (collectively) at both ends. Also, it is possible to transmit signals simultaneously from the connectors 130a and 130b at both ends.
  • propagation of the signal is not possible in one of the connectors 130a and 130b, if propagation of the signal is possible in the other, propagation of the signal is continued using the other. This improves the reliability against failure.
  • the connectors 130 are provided on both ends of the antenna 100 on the ⁇ x direction side of the first film 140 and the second film 150.
  • the connector 130 may be provided on both end sides (near the both ends) of the antenna 100 on the ⁇ y direction side of the first film 140 and the second film 150.
  • the optical waveguide 120 may be configured to be bent in the ⁇ y direction on both end sides of the antenna 100.
  • the connector 130 may be provided on one end of the antenna 100 (near the end).
  • the optical waveguide 120 may be configured using an optical fiber, and may be configured on the first film 140 using a light transmitting dielectric material.
  • the propagating light may be in a multimode or a single mode. In particular, if single mode is used, long distance propagation of several kilometers is also possible. Thus, the longitudinal direction of the antenna 100 can be made longer.
  • the antenna units 110 are arranged in a line in the x direction, but may be arranged in a plurality of lines in the x direction. Also, the antenna unit 110 may be provided not along a straight line but along a curve. Furthermore, the antenna unit 110 may be provided along a circle or arc. In the case where the antenna unit 110 is annularly provided along a circle, the optical waveguide 120 may be drawn out from one annular portion and the connector 130 may be provided. Also in this case, one portion of the ring is expressed as an end.
  • each antenna unit 110 constitutes the cell 13. By doing this, the cell 13 of each antenna unit 110 is set smaller. Therefore, less power is required.
  • one cell 13 may be configured by a plurality of antenna units 110. At this time, the plurality of antenna units 110 may have directivity with respect to the cells 13 by giving a phase difference to the signals given to the respective antenna units 110 constituting one cell 13.
  • the antenna unit 110 includes an antenna element 111 that transmits and receives radio waves, a wireless device 112 that functions as an AP, a photoelectric conversion device 113 that supplies power to the wireless device 112 from an optical signal for power, and an optical signal for transmitting radio waves.
  • a Tx optical transceiver 114 for converting into signals and an Rx optical transceiver 115 for converting electric signals obtained by receiving radio waves into optical signals are provided.
  • the Tx optical transceiver 114 and the Rx optical transceiver 115 are an example of an interface circuit that converts an optical signal and an electrical signal.
  • the reference numerals of the antenna element 111, the wireless device 112, the photoelectric conversion device 113, the Tx optical transceiver 114, and the Rx optical transceiver 115 are described only for the antenna unit 110-2, and the other antenna units 110-1 and 110-3 and so on Description to 110-6 is omitted.
  • the antenna unit 110 may be used synonymously with the antenna element 111.
  • the antenna element 111 is selected according to the frequency of the radio wave, directivity, and the like.
  • a dipole antenna, a patch antenna, or the like can be used as the antenna element 111.
  • the flexibility as the antenna 100 is not impaired if it is formed of a thin metal plate, a metal foil, a metal film provided on a flexible insulating substrate, or the like.
  • a flexible patch antenna is configured by configuring a ground plate on one surface of a flexible insulating substrate and configuring a patch on the other surface. . Further, even if an insulating substrate having no flexibility is used, the flexibility of the entire antenna 100 is not impaired if the area is small.
  • the wireless device 112 is a circuit for causing the antenna unit 110 to function as an AP.
  • the wireless device 112 is configured as a CPU, a memory, and the like as one integrated circuit.
  • the photoelectric conversion device 113 includes an optical input unit to which an optical signal for power is input, a conversion unit to convert the optical signal into electric power, and a power output unit to supply electric power.
  • the conversion unit is configured of a photoelectric device that converts light into electricity.
  • an optoelectronic device a photodiode using a semiconductor such as silicon, germanium, indium gallium arsenic or the like can be used.
  • the material may be selected according to the wavelength.
  • the wavelength (frequency) of the optical signal for communication and the wavelength (frequency) of the optical signal for power are transmitted to one optical waveguide 120 with different wavelengths.
  • the wavelength of the optical signal for communication is 1310 nm
  • the wavelength of the optical signal for power is 1480 nm.
  • the photoelectric conversion device 113 is configured as an integrated circuit.
  • the optical waveguide 120 may be used as an optical waveguide for transmitting an optical signal for communication, and an optical waveguide for transmitting an optical signal for power may be separately provided. In this way, it is not necessary to set the optical signal for communication and the optical signal for power to different wavelengths (frequencies).
  • the Tx optical transceiver 114 includes a light receiving unit that converts an optical signal into an electric signal, an amplification unit that amplifies the converted electric signal, and an electric signal output unit that outputs an electric signal.
  • the light receiving unit is configured by a photodiode.
  • the amplification unit is a driver circuit configured by a CMOS or the like.
  • the electrical signal output unit is a terminal.
  • the Tx optical transceiver 114 is configured as an integrated circuit.
  • the Rx optical transceiver 115 includes a light source, a modulation unit that modulates the light from the light source with an electrical signal, and a light output unit that outputs an optical signal.
  • the light source is, for example, a light emitting diode (LED) or a semiconductor laser.
  • the modulation unit may directly modulate the intensity of light output from, for example, an LED or a semiconductor laser using an electrical signal.
  • the modulator may be one that performs indirect modulation using a crystal material having an electro-optical effect.
  • the crystalline material having an electro-optical effect may be used and LiNbO 3.
  • the light output unit is a light terminal (light pin).
  • the Rx optical transceiver 115 is configured as an integrated circuit.
  • the integrated circuits constituting the wireless device 112, the photoelectric conversion device 113, the Tx optical transceiver 114, and the Rx optical transceiver 115 have terminals soldered to the wiring provided on the flexible first film 140. It can be easily mounted by connecting using ball grid array (BGA) technology or the like. Then, if the size of the LSI is set to a sub-mm square to several tens of square, flexibility of the antenna 100 as a whole is not lost.
  • BGA ball grid array
  • two or more circuits may be configured as one integrated circuit.
  • the antenna unit 110-2 will be described with reference to FIGS. 5 (a) and 5 (b).
  • the antenna element 111 is electrically connected to the wireless device 112.
  • the wireless device 112 is electrically connected to the Tx optical transceiver 114 and the Rx optical transceiver 115.
  • the Tx optical transceiver 114 is optically connected to the optical waveguide 120-4 via the optical waveguide 120-42.
  • the Rx optical transceiver 115 is optically connected to the optical waveguide 120-3 via the optical waveguide 120-32. As shown in FIG.
  • the optical waveguide 120-32 is branched from the optical waveguide 120-3, and is connected to the Rx optical transceiver 115 across the optical waveguides 120-1 and 120-2 in a three-dimensional manner. It is done. The same applies to the optical waveguides 120-42.
  • the photoelectric conversion device 113 is electrically connected to the wireless device 112, the Tx optical transceiver 114, and the Rx optical transceiver 115. Further, the photoelectric conversion device 113 is connected by light to the optical waveguide 120-4 via the optical waveguide 120-42.
  • the Tx optical transceiver 114 is optically connected to the optical waveguide 120-2 via the optical waveguide 120-21, and the Rx optical transceiver 115 is an optical waveguide via the optical waveguide 120-11. It is connected by light to 120-1.
  • the Tx optical transceiver 114 is optically connected to the optical waveguide 120-6 via the optical waveguide 120-63, and the Rx optical transceiver 115 is connected to the optical waveguide 120- via the optical waveguide 120-53. Connected to 5 by light.
  • the Tx optical transceiver 114 is optically connected to the optical waveguide 120-2 via the optical waveguide 120-24, and the Rx optical transceiver 115 is connected to the optical waveguide 120- via the optical waveguide 120-14. Connected to 1 by light.
  • the Tx optical transceiver 114 is optically connected to the optical waveguide 120-4 via the optical waveguide 120-45, and the Rx optical transceiver 115 is connected to the optical waveguide 120- via the optical waveguide 120-35. Connected to 3 by light.
  • the Tx optical transceiver 114 is optically connected to the optical waveguide 120-6 via the optical waveguide 120-66, and the Rx optical transceiver 115 is an optical waveguide via the optical waveguide 120-56. It is connected by light to 120-5.
  • the antenna units 110-1 and 110-4 are connected to the optical waveguides 120-1 and 120-2, and the antenna units 110-2 and 110-5 are connected to the optical waveguides 120-3 and 120-4,
  • the antenna units 110-3 and 110-6 are connected to the optical waveguides 120-5 and 120-6.
  • the antenna units 110 are cyclically connected to the optical waveguide 120 in a unit of three as a repeating unit. If the frequencies of the adjacent antenna units 110 are different by making the frequencies of the signals of the optical waveguides 120-1 and 120-2, the optical waveguides 120-3 and 120-4, and the optical waveguides 120-5 and 120-6 different. You Here, the number of antenna units 110 is six, but in the case of more antennas, the antenna units 110 may be similarly connected every three.
  • the transmission signal propagating through the optical waveguide 120-2 is common to the plurality of antenna units 110 (here, the antenna units 110-1 and 110-4).
  • the transmission signal propagating through the optical waveguide 120-4 is common to the plurality of antenna units 110 (here, the antenna units 110-2 and 110-5).
  • the transmission signal propagating through the optical waveguide 120-6 is common to the plurality of antenna units 110 (here, the antenna units 110-3 and 110-6). Therefore, the wireless device 112 provided in each antenna unit 110 selects a transmission signal for each antenna unit 110 and controls the antenna element 111.
  • the Tx optical transceiver 114 converts the optical signal into an electrical signal and transmits the electrical signal to the wireless device 112. Output. Then, the wireless device 112 generates an electric signal (transmission signal) to be transmitted by the antenna element 111 based on the electric signal input from the Tx optical transceiver 114, and outputs the electric signal to the antenna element 111.
  • the antenna element 111 emits a radio wave by the transmission signal generated by the wireless device 112.
  • the antenna element 111 converts the received radio wave into an electric signal (reception signal) and outputs the electric signal to the wireless device 112.
  • the wireless device 112 generates an electrical signal (output signal) based on the reception signal input from the antenna element 111, and outputs the electrical signal to the Rx optical transceiver 115.
  • the Rx optical transceiver 115 converts the input output signal into an optical signal, and outputs the optical signal to the optical waveguide 120-3 via the optical waveguide 120-32.
  • the photoelectric conversion device 113 propagates the optical waveguide 120-4 and further converts the optical signal for power input via the optical waveguide 120-42 into electric power, and the wireless device 112, the Tx optical transceiver 114, and the Rx light
  • the signal is supplied to the transceiver 115.
  • the wireless device 112, the Tx optical transceiver 114, and the Rx optical transceiver 115 operate by the power supplied by the photoelectric conversion device 113.
  • the power supplied by the photoelectric conversion device 113 may be small. That is, by making the cell 13 smaller, the antenna unit 110 can be driven by light feeding. For this reason, it is not necessary to provide a path (electrical wiring) for supplying power. Further, even when power can not be supplied due to a disaster or the like, the antenna 100 can be operated when the optical signal can be supplied.
  • the stadium antenna system 1 shown in FIG. 1 is realized.
  • the antenna 100 since the antenna 100 has flexibility as a whole as mentioned above, it can be wound up in a long direction. Therefore, the antenna 100 can be easily taken up in the long direction at the time of manufacturing, transported to the stadium 10 in that state, and spread easily in the competition area 11 and the spectator area 12 of the stadium 10. That is, construction of the antenna 100 is facilitated.
  • the antenna 100 performs input and output of optical signals from one end (or both ends) of the long length, so that the length of the antenna 100 can be long as long as light can be transmitted by the optical waveguide 120.
  • the length of the direction can be several hundred meters to several kilometers. This makes the installation of the antenna 100 easier.
  • the antenna 100 since the antenna 100 has flexibility, the antenna 100 can be easily installed on a floor surface, a wall surface, a ceiling, or the like. Furthermore, it can be installed also on a portion having unevenness, a portion having a curved surface and a bent portion.
  • the antenna 100 can be installed not only on the surface such as a floor surface, a wall surface, and a ceiling, but also below the floor, inside the wall, and in the ceiling.
  • the cell 13 which comprises the antenna 100 is small and it can install easily, it can be limited and installed only to the place which wants to transmit / receive a electromagnetic wave. In other words, the design of the radio wave space can be made flexible as needed.
  • the antenna 100 can also be applied to outdoor facilities such as an amusement park and a park.
  • FIG. 6 is a diagram showing an example of a theater antenna system 4 to which the second embodiment is applied.
  • FIG. 6 is a view of the inside of the theater 50 as viewed from above.
  • the theater 50 includes a stage 51 on which performance, performance, lecture and the like are performed, and a spectator area 52 in which a spectator seat for accommodating a performance, performance, lecture and the like audience is provided.
  • the spectator area 52 faces one side of the square stage 51, but the spectator area 52 may be provided so as to face many sides of the stage 51.
  • a plurality of cells 53 for transmitting and receiving radio waves are provided in the stage 51 and the audience area 52.
  • the cells 53 are represented by circles.
  • the cell 53 is set in the radio wave transmission / reception range of the antenna element 111 of the antenna 100 similar to that described in the first embodiment.
  • the stage 51 there are moving objects 54 owned by a performer who performs performance, performance, lecture and the like, and in the spectator area 52, there are a plurality of moving objects 55 owned by the spectator.
  • the cells 53 are provided on one side.
  • the cells 53 are arranged such that the centers of the adjacent cells 53 constitute an equilateral triangle so as to fill up the stage 51.
  • the antenna element of the cell 53 is the image of the performer's eyes from the moving body 54 possessed by the performer who performs the performance, the performance, the lecture, etc., for example, the camera attached to the performer's face or glasses. (Antenna element 111 shown in FIG. 5) is transmitted.
  • the performer can receive an instruction from a producer or the like by a small display (wearable display) or the like that he / she holds.
  • a plurality of cells 53 are provided so as to cover the seats of the spectators (audience seats).
  • one cell 53 is provided in six audience seats.
  • the cell 53 is configured by the antenna 100 described in the first embodiment.
  • the cell 13 may be the cell 53. Therefore, the detailed description is omitted.
  • FIG. 7 is a diagram showing an example of the exhibition site antenna system 5 to which the third embodiment is applied.
  • FIG. 7 is a view of the inside of the exhibition hall 60 as viewed from above.
  • the exhibition hall 60 is an exhibition hall for industry such as a trade fair, and an art museum that displays paintings, crafts, and the like.
  • the exhibition hall 60 includes an exhibition area 61 where exhibitions and the like are displayed, and an audience area 62 where a spectator watching the exhibition passes.
  • a plurality of cells 63 for transmitting and receiving radio waves are provided in the exhibition area 61 and the audience area 62.
  • the cells 63 are represented by circles.
  • the cell 63 is set in the transmission / reception range of radio waves of the antenna element 111 of the antenna 100 similar to that described in the first embodiment.
  • the exhibit has a moving body 64 that transmits information for explaining the exhibit.
  • the spectator has a mobile unit 65 capable of receiving information.
  • a cell 63 is provided on one side so as to cover the exhibition area 61 and the spectator area 62. By doing this, the spectator can see the information by receiving the information transmitted from the moving object 64 provided in the exhibit by the moving object 65 possessed by the spectator.
  • the cell 63 is configured by the antenna 100 described in the first embodiment.
  • the cell 13 may be the cell 63. Therefore, the detailed description is omitted.
  • FIG. 8 is a view showing an example of a vehicle induction antenna system 6 to which the fourth embodiment is applied.
  • FIG. 8 is a perspective view of a road surface 70 on which a vehicle passes.
  • the road surface 70 may be a freeway or a general road.
  • the road surface 70 includes a vehicle passing area 71 through which the vehicle passes and an antenna area 72 in which the antenna 100 is disposed.
  • a vehicle functioning as a moving body 74 (hereinafter referred to as a vehicle 74) passes.
  • the antenna area 72 is an area outside the vehicle passing area 71 provided along the vehicle passing area 71, that is, a so-called roadside zone.
  • the antenna 100 described in the first embodiment is provided in a band shape.
  • a cell 73 is configured from the antenna area 72 (the antenna unit 110 of the antenna 100 shown in FIG. 5) toward the vehicle passing area 71.
  • the antenna area 72 may be provided on a wall such as a sound insulation wall. Also, the antenna area 72 may be provided in the vehicle passing area 71. That is, the vehicle 74 may travel on the antenna area 72.
  • the vehicle 74 can be guided along the road surface. That is, by advancing while communicating with the cell 73 provided along the vehicle passing area 71, the vehicle 74 can be guided while acquiring information in the direction in which the vehicle 74 travels. That is, automatic operation becomes possible.
  • the vehicle itself recognizes the white line of the vehicle ahead or the road surface by the image, and while acquiring the information in the direction in which the vehicle 74 travels, as compared with the automatic driving that guides the own vehicle. By doing this, the vehicle 74 is more reliably guided.
  • the wireless device 112 having the function of an access point (AP), which is a master unit or a base station, together with the antenna element 111, between the wireless device 112 and the vehicle 74 which are considered essential for automatic driving of the vehicle 74. Enables high-speed, always-on connection and low-delay communication.
  • AP access point
  • the cell 73 is configured by the antenna 100 described in the first embodiment.
  • the cell 13 may be the cell 73. Therefore, the detailed description is omitted.

Abstract

This antenna 100 is provided with: a plurality of antenna units 110 (antenna elements 111) each of which tranceives radio waves; an optical waveguide 120 for propagating signals to allow the plurality of antenna elements 111 to transceive radio waves; and a first flexible film 140 and a second flexible film 150 between which the plurality of antenna elements 111 and the optical waveguide 120 are sandwiched and held.

Description

アンテナ、スタジアムアンテナシステム、劇場アンテナシステム、展示場アンテナシステム、及び、車両誘導アンテナシステムAntenna, stadium antenna system, theater antenna system, exhibition site antenna system, and vehicle induction antenna system
 本発明は、アンテナ、スタジアムアンテナシステム、劇場アンテナシステム、展示場アンテナシステム、及び、車両誘導アンテナシステムに関する。 The present invention relates to an antenna, a stadium antenna system, a theater antenna system, an exhibition site antenna system, and a vehicle induction antenna system.
 公報記載の従来技術として、導体箔の貼付又は導電体塗料の塗布によって形成されるアンテナ素子と、該アンテナ素子と接続される給電線と、該給電線と接続される発電部と、該アンテナ装置を取り付ける被固定面に対して着脱自在に接着される接着部を備える、シート状アンテナ装置が存在する(特許文献1参照)。 As prior art described in the publication, an antenna element formed by pasting a conductor foil or applying a conductive paint, a feed line connected to the antenna element, a power generation unit connected to the feed line, and the antenna device There exists a sheet-like antenna device provided with an adhesion part which adheres removably to a fixed side which attaches a sheet (refer to patent documents 1).
 公報記載の従来技術として、車両の通行可能な通行路を横断する移動体を検知する横断移動体検知システムにおいて、通行路の路面上に間隔を隔てて略平行に敷設される複数の帯線体により標示される横断歩道と、その横断歩道を横断する移動体に取り付け可能に形成され且つ非接触方式によるデータ通信が可能で識別情報を記憶可能に形成された移動タグと、その移動タグとの間で非接触方式により通信可能であって前記複数の帯線体の個々と一体に形成される複数のアンテナ素子と、その複数のアンテナ素子にそれぞれ電気的に接続され前記移動タグに記憶される識別情報を読み取る複数の定置リーダとを備える横断移動体検知システムが存在する(特許文献2参照)。 As a prior art described in the official gazette, in a crossing moving body detection system for detecting a moving body crossing a passable passage of a vehicle, a plurality of belts laid substantially parallel on a road surface of the pass at intervals. A pedestrian crossing marked by the symbol, a mobile tag attachable to a moving object crossing the pedestrian crossing and capable of non-contact data communication and capable of storing identification information, and the mobile tag A plurality of antenna elements that can communicate with each other in a non-contact manner and are integrally formed with each of the plurality of band members, and the plurality of antenna elements are respectively electrically connected and stored in the moving tag There is a traversing vehicle detection system comprising a plurality of stationary readers for reading identification information (see Patent Document 2).
特開2012-090223号公報JP 2012-090223 A 特開2005-050161号公報JP, 2005-050161, A
 ところで、移動体との通信である移動通信においては、ビルの屋上や鉄塔などにセクタアンテナが設けられ、移動体と通信する通信エリアが構築されてきた。このような方法において、今後、通信に使用される電波の周波数が高くなると、伝搬ロスが大きくなって、送信及び受信のいずれにおいても、電力が増大する。
 本発明は、広い通信エリアをカバーするアンテナを用いる場合に比べ、小電力となるアンテナなどを提供する。
By the way, in the mobile communication which is communication with a mobile, a sector antenna is provided on the roof of a building, a steel tower or the like, and a communication area for communicating with the mobile has been constructed. In such a method, as the frequency of radio waves used for communication in the future increases, the propagation loss increases, and the power increases in both transmission and reception.
The present invention provides, for example, an antenna with low power as compared to the case of using an antenna that covers a wide communication area.
 請求項1に記載の発明は、それぞれが電波を送受信する複数のアンテナ素子と、複数の前記アンテナ素子の電波の送受信のために、信号を伝搬する光導波路と、複数の前記アンテナ素子及び前記光導波路を挟み込んで保持する、可撓性の第1のフィルム及び可撓性の第2のフィルムと、を備えるアンテナである。
 請求項2に記載の発明は、複数の前記アンテナ素子における隣接するアンテナ素子は、異なる周波数の電波を送受信することを特徴とする請求項1に記載のアンテナである。
 請求項3に記載の発明は、複数の前記アンテナ素子は予め定められた方向に配列され、配列に沿って、隣接するアンテナ素子間で電波の周波数が異なるように、循環的に周波数が設定されることを特徴とする請求項1に記載のアンテナである。
 請求項4に記載の発明は、複数の前記アンテナ素子が送受信する電波によって、当該アンテナ素子毎に通信が行われるセルが構成されることを特徴とする請求項2又は3に記載のアンテナである。
 請求項5に記載の発明は、前記光導波路と、前記アンテナ素子との間に、光信号と電気信号とを変換するインターフェイス回路を備えることを特徴とする請求項1に記載のアンテナである。
 請求項6に記載の発明は、前記インターフェイス回路には、前記光導波路を経由して電力が供給されることを特徴とする請求項5に記載のアンテナである。
 請求項7に記載の発明は、前記第1のフィルム及び前記第2のフィルムは共に長尺の部材であって、前記アンテナ素子及び前記光導波路を挟み込んだ状態において、長尺方向に巻き取り可能であることを特徴とする請求項1に記載のアンテナである。
 請求項8に記載の発明は、前記光導波路は、前記第1のフィルム及び前記第2のフィルムの前記長尺方向に沿って設けられていることを特徴とする請求項7に記載のアンテナである。
 請求項9に記載の発明は、前記光導波路は、前記第1のフィルム及び前記第2のフィルムの前記長尺方向の端部側に、信号の入出力のための接続部が設けられていることを特徴とする請求項8に記載のアンテナである。
 請求項10に記載の発明は、前記光導波路は、前記第1のフィルム及び前記第2のフィルムの前記長尺方向の両端部側に、信号の入出力のための接続部が設けられていることを特徴とする請求項8に記載のアンテナである。
 請求項11に記載の発明は、競技が行われる競技エリア及び当該競技の観客を収容する観客エリアの少なくとも一部に、請求項1乃至10のいずれか1項に記載のアンテナが設けられていることを特徴とするスタジアムアンテナシステムである。
 請求項12に記載の発明は、演技、演奏又は講演が行われる舞台及び当該演技、演奏又は講演の観客を収容する観客エリアの少なくとも一部に、請求項1乃至10のいずれか1項に記載のアンテナが設けられていることを特徴とする劇場アンテナシステムである。
 請求項13に記載の発明は、展示物を展示する展示エリア及び当該展示物を観覧する観客が通行する観客エリアの少なくとも一部に、請求項1乃至10のいずれか1項に記載のアンテナが設けられていることを特徴とする展示場アンテナシステムである。
 請求項14に記載の発明は、車両が通行する路面に沿って、請求項1乃至10のいずれか1項に記載のアンテナが設けられていることを特徴とする車両誘導アンテナシステムである。
The invention according to claim 1 comprises a plurality of antenna elements each transmitting and receiving radio waves, an optical waveguide for propagating a signal for transmitting and receiving radio waves of the plurality of antenna elements, a plurality of the antenna elements and the light guide It is an antenna provided with a flexible 1st film and a flexible 2nd film which sandwiches and holds a waveguide.
The invention according to claim 2 is the antenna according to claim 1, wherein adjacent antenna elements in the plurality of antenna elements transmit and receive radio waves of different frequencies.
In the invention according to claim 3, a plurality of the antenna elements are arrayed in a predetermined direction, and frequencies are cyclically set so that the frequencies of radio waves are different between adjacent antenna elements along the array. The antenna according to claim 1, characterized in that:
The invention according to claim 4 is the antenna according to claim 2 or 3, wherein a cell in which communication is performed for each of the antenna elements is configured by radio waves transmitted and received by a plurality of the antenna elements. .
The invention according to claim 5 is the antenna according to claim 1, further comprising an interface circuit for converting an optical signal and an electrical signal between the optical waveguide and the antenna element.
The invention according to claim 6 is the antenna according to claim 5, characterized in that power is supplied to the interface circuit via the optical waveguide.
In the invention according to claim 7, the first film and the second film are both long members, and can be wound in the long direction in a state in which the antenna element and the optical waveguide are sandwiched. The antenna according to claim 1, characterized in that:
According to an eighth aspect of the present invention, in the antenna according to the seventh aspect, the optical waveguide is provided along the longitudinal direction of the first film and the second film. is there.
In the invention according to claim 9, the optical waveguide is provided with a connection portion for input / output of a signal on the end side of the first film and the second film in the longitudinal direction. It is an antenna of Claim 8 characterized by the above-mentioned.
In the invention according to claim 10, the optical waveguide is provided with connection portions for signal input and output on both end sides in the longitudinal direction of the first film and the second film. It is an antenna of Claim 8 characterized by the above-mentioned.
In the invention according to claim 11, the antenna according to any one of claims 1 to 10 is provided in at least a part of a competition area in which a competition is performed and a spectator area for accommodating a spectator of the competition. It is a stadium antenna system characterized by things.
The invention according to claim 12 is any one of claims 1 to 10 in at least a part of the stage on which the performance, performance or lecture is performed and the audience area for accommodating the performance, performance or lecture audience. The present invention is a theater antenna system characterized in that an antenna of
The antenna according to any one of claims 1 to 10 has an antenna according to any one of claims 1 to 10 in at least a part of a display area for displaying an exhibit and a spectator area through which a spectator who views the display passes. It is an exhibition hall antenna system characterized by being provided.
The invention according to claim 14 is a vehicle induction antenna system in which the antenna according to any one of claims 1 to 10 is provided along a road surface through which a vehicle passes.
 請求項1の発明によれば、広い通信エリアをカバーするアンテナを用いる場合に比べ、小電力にできる。
 請求項2の発明によれば、異なる周波数としない場合に比べ、隣接するアンテナ素子間での干渉が抑制される。
 請求項3の発明によれば、循環的に周波数を設定しない場合に比べ、周波数を共通化できる。
 請求項4の発明によれば、アンテナ素子毎にセルを設定しない場合に比べて、より小電力になる。
 請求項5の発明によれば、光信号と電気信号とを変換するインターフェイス回路を備えない場合に比べて、さらに小電力になる。
 請求項6の発明によれば、光導波路を経由しないで電力を供給する場合に比べて、電力を供給する経路を設けることを要しない。
 請求項7の発明によれば、巻き取り可能でない場合に比べて、施工がより容易になる。
 請求項8の発明によれば、長尺方向に沿って設けられていない場合に比べて、長距離の信号の伝搬が容易になる。
 請求項9の発明によれば、長尺方向の端部側に設けられていない場合に比べて、信号の送受信を集中して行える。
 請求項10の発明によれば、長尺方向の両端部側に設けられていない場合に比べて、信頼性が向上する。
 請求項11、12、13、14の発明によれば、広い通信エリアをカバーするアンテナを用いる場合に比べ、小電力にできる。
According to the invention of claim 1, power can be reduced compared to the case of using an antenna that covers a wide communication area.
According to the second aspect of the present invention, interference between adjacent antenna elements is suppressed as compared to the case where different frequencies are not used.
According to the invention of claim 3, the frequency can be made common as compared with the case where the frequency is not set cyclically.
According to the invention of claim 4, the power consumption is further reduced as compared to the case where the cell is not set for each antenna element.
According to the invention of claim 5, the power consumption is further reduced as compared with the case where the interface circuit for converting the optical signal and the electric signal is not provided.
According to the invention of claim 6, it is not necessary to provide a path for supplying power, as compared to the case of supplying power without passing through the optical waveguide.
According to the seventh aspect of the present invention, the construction is easier than in the case where it can not be taken up.
According to the eighth aspect of the present invention, the propagation of a long distance signal is facilitated as compared with the case where it is not provided along the long direction.
According to the invention of claim 9, transmission and reception of signals can be performed in a concentrated manner as compared with the case where they are not provided on the end side in the longitudinal direction.
According to the invention of claim 10, the reliability is improved as compared with the case where it is not provided on both end sides in the longitudinal direction.
According to the inventions of claims 11, 12, 13 and 14, power can be reduced compared to the case of using an antenna which covers a wide communication area.
第1の実施の形態が適用されるスタジアムアンテナシステムの一例を示す図である。It is a figure which shows an example of the stadium antenna system to which 1st Embodiment is applied. 観客エリアに設けられたセルの一例を示す図である。It is a figure which shows an example of the cell provided in the audience area. 第1の実施の形態が適用されないスタジアムアンテナシステムの一例を説明する図である。It is a figure explaining an example of the stadium antenna system to which a 1st embodiment is not applied. 第1の実施の形態が適用されないスタジアムアンテナシステムの一例を説明する図である。It is a figure explaining an example of the stadium antenna system to which a 1st embodiment is not applied. アンテナの一例を説明する図である。(a)は、平面図、(b)は、(a)のVB-VB線での断面図である。It is a figure explaining an example of an antenna. (A) is a plan view, (b) is a cross-sectional view taken along the line VB-VB in (a). 第2の実施の形態が適用される劇場アンテナシステムの一例を示す図である。It is a figure which shows an example of the theater antenna system to which 2nd Embodiment is applied. 第3の実施の形態が適用される展示場アンテナシステムの一例を示す図である。It is a figure which shows an example of the exhibition place antenna system to which 3rd Embodiment is applied. 第4の実施の形態が適用される車両誘導アンテナシステムの一例を示す図である。It is a figure which shows an example of the vehicle guidance antenna system to which 4th Embodiment is applied.
 近年、アンテナと移動体との間で行われる移動通信の進展がすさまじい。ここで、移動体とは、無線により通信する機能を備えるとともに、移動可能な機器である。これらには、携帯電話、スマートフォン、時計、カメラなど、通信機能に加えて情報を処理する機能(情報処理機能)を備えた情報通信端末、通信機能及び情報処理機能に加えてセンシング機能を備える可搬型のセンサ(ウェアラブルセンサ)、いわゆるIoT(Internet of Things)で使用される通信機能を備えた物、通信機能及び情報処理機能を備えた航空機、列車、車などが含まれる。 In recent years, the development of mobile communication between an antenna and a mobile unit has been tremendous. Here, a mobile body is a device that is movable as well as having a function of communicating wirelessly. These include an information communication terminal equipped with a function (information processing function) for processing information in addition to the communication function, such as a mobile phone, a smartphone, a watch, a camera, etc., a sensing function in addition to the communication function and the information processing function Portable sensors (wearable sensors), objects having a communication function used in the so-called IoT (Internet of Things), aircrafts having a communication function and an information processing function, trains, cars, etc. are included.
 移動通信において、ビルの屋上や鉄塔上にアンテナが設置されて、そのアンテナから電波の到達する範囲が通信エリア(セル)として設定されてきた。今後、伝送速度(伝送容量)の向上を狙って用いる電波の周波数が、現行の最高3.5GHzから、例えば20GHzから60GHzなどに高くなると、伝搬ロスが大きくなる。よって、ビルの屋上や鉄塔上などにアンテナを設置する方式では、アンテナから移動体に向かって送信するための電力、及び、移動体からアンテナに向かって送信する電力を共に大きくせざるを得なくなってしまう。また、電波の周波数をより高くすると、直進性が高くなるため、ビル陰などの障害物に遮られた場所に電波が到達しづらくなってしまう。 In mobile communication, an antenna is installed on the roof of a building or on a steel tower, and a range where radio waves reach from the antenna has been set as a communication area (cell). In the future, when the frequency of radio waves used to improve the transmission speed (transmission capacity) increases from the current maximum of 3.5 GHz, for example, from 20 GHz to 60 GHz, the propagation loss increases. Therefore, in the method of installing an antenna on the roof of a building or on a steel tower, it is necessary to increase both the power for transmitting from the antenna to the moving body and the power for transmitting from the moving body to the antenna It will In addition, if the frequency of the radio wave is further increased, the rectilinearity becomes high, and it becomes difficult for the radio wave to reach a place blocked by an obstacle such as a building shadow.
 そこで、本実施の形態では、アンテナをビルの屋上や鉄塔上などに設置して、広い範囲を通信エリアとするのではなく、複数のアンテナ素子を移動体の近傍(身近)に配置するとともに、各アンテナ素子の通信エリア(セル)を小さくすることで、アンテナ素子から移動体に向かって送信するための電力、及び、移動体からアンテナ素子に向かって送信する電力をともに小さくしている。また、移動体の近傍に複数のアンテナ素子を配置することから、ビル陰などの障害物によって遮られた場所でも電波の到達が妨げられにくくなる。さらに、親機や基地局であるアクセスポイント(AP)の機能をアンテナ素子とともに設けることで、APと移動体との間において高速、常時接続且つ低遅延な通信が可能になる。なお、アクセスポイントの機能を有する機器は、エッジデバイスと呼ばれることがある。
 以下、添付図面を参照して、本発明の実施の形態について詳細に説明する。
Therefore, in the present embodiment, the antenna is installed on the roof of a building, on a steel tower, etc., and a plurality of antenna elements are arranged in the vicinity (familiarity) of a mobile body instead of using a wide range as a communication area By reducing the communication area (cell) of each antenna element, both the power for transmitting from the antenna element to the mobile body and the power for transmitting from the mobile body to the antenna element are reduced. In addition, since the plurality of antenna elements are disposed in the vicinity of the moving body, the arrival of radio waves is less likely to be impeded even in a place blocked by an obstacle such as a building shade. Furthermore, by providing the function of an access point (AP) which is a master unit or a base station together with an antenna element, high-speed, always-on connection and low-delay communication can be performed between the AP and a mobile. An apparatus having an access point function may be called an edge device.
Hereinafter, embodiments of the present invention will be described in detail with reference to the attached drawings.
[第1の実施の形態]
 図1は、第1の実施の形態が適用されるスタジアムアンテナシステム1の一例を示す図である。図1は、スタジアム10を上空から見た図である。スタジアム10は、競技が行われるグランドが設けられる競技エリア11及び競技を観覧する観客を収容する観客席が設けられる観客エリア12を備える。図1では、観客エリア12は、競技エリア11を取り囲むように設けられている。なお、観客エリア12は、競技エリア11の一部に対向して設けられていてもよい。そして、競技エリア11及び観客エリア12には、電波が送受信されるセル13が複数設けられている。なお、セル13は、円で表されている。セル13は、後述するように、アンテナ素子(後述する図5のアンテナ素子111)を含み、そのアンテナ素子から電波を受信し、そのアンテナ素子に電波が送信される範囲である。そして、隣接するセル13間において電波の干渉が生じにくいように、セル13が設定されている。そして、競技エリア11及び観客エリア12には、競技者(選手)や観客が所持する移動体14がある。図1では、1個の移動体14を示すが、多数あってよい。
First Embodiment
FIG. 1 is a diagram showing an example of a stadium antenna system 1 to which the first embodiment is applied. FIG. 1 is a view of the stadium 10 as viewed from above. The stadium 10 includes a competition area 11 in which a ground on which a game is played is provided, and a spectator area 12 in which a spectator seat for accommodating a spectator who views the game is provided. In FIG. 1, a spectator area 12 is provided to surround the competition area 11. The spectator area 12 may be provided opposite to a part of the competition area 11. The competition area 11 and the spectator area 12 are provided with a plurality of cells 13 for transmitting and receiving radio waves. The cells 13 are represented by circles. As described later, the cell 13 includes an antenna element (an antenna element 111 in FIG. 5 described later), which is a range in which radio waves are received from the antenna element and the radio waves are transmitted to the antenna element. The cells 13 are set so that interference of radio waves is unlikely to occur between adjacent cells 13. Then, in the competition area 11 and the spectator area 12, there are moving objects 14 possessed by a competitor (player) and a spectator. Although one mobile unit 14 is shown in FIG. 1, there may be many.
 ここでは、競技エリア11において、セル13は、トラック競技が行われるトラックに沿って設けられるとともに、サッカーなどが行われるフィールドを覆うように複数のセル13が二次元的に設けられている。このようにすることで、選手の所持する移動体14、例えば、選手の所持するウェアラブルセンサや選手の顔面又は眼鏡に取り付けられたカメラなどから、選手の生体データ(心拍数など)などの選手情報や、選手の目線での画像がセル13のアンテナ素子に向かって送信される。図1では、1個の移動体15を示すが、多数あってよい。 Here, in the competition area 11, the cells 13 are provided along the track on which the track competition is conducted, and a plurality of cells 13 are two-dimensionally provided so as to cover the field on which soccer or the like is conducted. By doing this, player information such as player's biological data (such as heart rate) from the moving object 14 carried by the player, for example, a wearable sensor carried by the player, a camera attached to the player's face or glasses, etc. Or, an image of the player's eyes is transmitted toward the antenna element of the cell 13. Although one mobile unit 15 is shown in FIG. 1, there may be a large number.
 また、観客エリア12において、観客の席(観客席)を覆うように、複数のセル13が設けられている。このようにすることで、観客席にいる観客又は選手のコーチなどは、所持する移動体15によって、選手の所持する移動体14からの選手情報をリアルタイムに把握したり、選手の目線での画像を見たりする。 Further, in the spectator area 12, a plurality of cells 13 are provided so as to cover the seats of the spectators (audience seats). By doing this, the spectator in the spectator seat or the coach of the player can grasp the player information from the moving object 14 possessed by the player in real time by the moving object 15 possessed by the player, or To see
 なお、図1では、セル13は、模式的に示されている。よって、セル13は、必ずしも図1に示す大きさに限定されない。例えば、競技エリア11におけるトラックでは、トラックのレーン毎にレーンに沿ってセル13が設けられてもよく、複数のレーンを組にしてレーンの組毎にレーンの組に沿ってセル13が設けられてもよい。また、セル13が全レーンを跨ぐように設けられてもよい。なお、トラックに沿ってセル13を設けるとは、上記のすべての場合を含む。また、競技エリア11におけるフィールドでは、フィールドを覆うようにセル13を設ければよい。また、フィールドにおいて競技、例えばサッカーが行われるピッチ内に限らず、ピッチの周辺にもセル13を設けてもよい。 In FIG. 1, the cells 13 are schematically shown. Therefore, the cell 13 is not necessarily limited to the size shown in FIG. For example, in a track in the competition area 11, cells 13 may be provided along lanes for each lane of the track, and a plurality of lanes may be set and cells 13 may be provided along a set of lanes for each set of lanes. May be Also, the cell 13 may be provided to span all the lanes. Note that providing the cell 13 along the track includes all the cases described above. Further, in the field in the competition area 11, the cell 13 may be provided to cover the field. In addition, the cell 13 may be provided not only in the field where the competition, for example, soccer is performed, but also around the pitch.
 また、観客エリア12においては、複数の観客席をブロックとして、ブロック毎にセル13を設けてもよく、観客席毎にセル13を設けてもよい。
 図2は、観客エリア12に設けられたセル13の一例を示す図である。ここでは、2つの観客席16に対して一つのセル13が設けられている。
In the spectator area 12, a plurality of spectator seats may be set as a block, and the cell 13 may be provided for each block, or the cell 13 may be provided for each spectator seat.
FIG. 2 is a diagram showing an example of the cell 13 provided in the spectator area 12. Here, one cell 13 is provided for two audience seats 16.
 以上説明したように、第1の実施の形態におけるセル13は、従来のセルに比べて、極めて小さい(極小の)セルである。つまり、ここでのセル13は、小さいセルを意味するために用いられている、いわゆるナノセルやピコセルなどより、さらに小さいセルである。例えば、セル13のピッチは、1mおき、10mおきなどであってよい。高さは、2~3mの領域であって、人ひとりを覆うものであってよい。
 なお、セル13の大きさは、電波の周波数、電波の送受信に必要な電力などを考慮して、設定すればよい。
As described above, the cell 13 in the first embodiment is a very small (minimal) cell as compared to the conventional cell. That is, the cell 13 here is a cell smaller than so-called nanocell, picocell or the like, which is used to mean a small cell. For example, the pitch of the cells 13 may be every 1 m, every 10 m, or the like. The height is an area of 2 to 3 m and may cover an individual.
The size of the cell 13 may be set in consideration of the frequency of the radio wave, the power necessary for transmission and reception of the radio wave, and the like.
 図3は、第1の実施の形態が適用されないスタジアムアンテナシステム2の一例を説明する図である。図3に示すスタジアムアンテナシステム2は、現在用いられているスタジアムアンテナシステムである。スタジアム10の競技エリア11、観客エリア12及び移動体14、15は、第1の実施の形態と同様である。よって、同じ符号を付して説明を省略する。 FIG. 3 is a diagram for explaining an example of the stadium antenna system 2 to which the first embodiment is not applied. The stadium antenna system 2 shown in FIG. 3 is a stadium antenna system currently used. The competition area 11 of the stadium 10, the spectator area 12 and the moving bodies 14 and 15 are the same as in the first embodiment. Therefore, the same reference numerals are given and the description is omitted.
 ここでは、スタジアム10内の選手及び観客は、スタジアム10の周辺に設けられた既存の基地局アンテナ20の構成するセル21から漏れた電波により通信を行うか、スタジアム10内に臨時又は固定的に設けられた基地局アンテナ30と通信を行うことになる。ここでは、通信に使用される電波の周波数は、最高でも3.5GHzと低いため、伝送速度(伝送容量)が小さい。 Here, the players and spectators in the stadium 10 communicate with radio waves leaked from the cells 21 of the existing base station antenna 20 provided around the stadium 10 or temporarily or permanently in the stadium 10 Communication will be performed with the provided base station antenna 30. Here, since the frequency of radio waves used for communication is as low as 3.5 GHz at the maximum, the transmission speed (transmission capacity) is small.
 図4は、第1の実施の形態が適用されないスタジアムアンテナシステム3の一例を説明する図である。図4に示すスタジアムアンテナシステム3は、第5世代の移動通信方式(5G)として考えられている超多素子アンテナ40を用いたスタジアムアンテナシステムである。スタジアム10の競技エリア11、観客エリア12及び移動体14、15は、第1の実施の形態と同様である。よって、同じ符号を付して説明を省略する。 FIG. 4 is a diagram for explaining an example of the stadium antenna system 3 to which the first embodiment is not applied. The stadium antenna system 3 shown in FIG. 4 is a stadium antenna system using a super multi-element antenna 40 considered as the fifth generation mobile communication system (5G). The competition area 11 of the stadium 10, the spectator area 12 and the moving bodies 14 and 15 are the same as in the first embodiment. Therefore, the same reference numerals are given and the description is omitted.
 超多素子アンテナ40とは、複数のアンテナを用いて通信を行う通信技術であるマッシブ マイモ(Massive MIMO)に使用される基地局アンテナである。超多素子アンテナ40は、数十又は100以上のアンテナ素子を用いることで、基地局アンテナ間の干渉を減らしつつ、伝搬ロスが大きい高い周波数の電波を用いて伝送速度(伝送容量)を大きくしようとするものである。しかし、図4に示すように、スタジアム10の観客エリア12に複数の超多素子アンテナ40を設けただけでは、アンテナから移動体に向かって送信するための電力、及び、移動体からアンテナに向かって送信する電力を共に大きくせざるを得なくなる。つまり、超多素子アンテナ40を用いて、通信エリアが大きいセル41を設定することは難しい。 The super multi-element antenna 40 is a base station antenna used for Massive MIMO, which is a communication technology for performing communication using a plurality of antennas. The super multi-element antenna 40 uses several tens or 100 or more antenna elements to reduce interference between base station antennas and increase transmission speed (transmission capacity) using high frequency radio waves with large propagation loss. It is said that. However, as shown in FIG. 4, only by providing a plurality of super multi-element antennas 40 in the spectator area 12 of the stadium 10, the power for transmitting from the antenna to the moving body, and from the moving body to the antenna The power to be transmitted must be increased. That is, it is difficult to set the cell 41 having a large communication area by using the super multi-element antenna 40.
 以上説明したように、伝搬ロスの大きい高い周波数の電波を用いる場合、図1の第1の実施の形態で示すように、セル13の通信エリアを小さくすることがよい。また、セル13に設けられるアンテナ素子とともに、APとしての機能を設けることで、伝送速度(伝送容量)が大きくなる。 As described above, when radio waves of high frequency with large propagation loss are used, it is preferable to reduce the communication area of the cell 13 as shown in the first embodiment of FIG. Further, by providing the function as an AP together with the antenna element provided in the cell 13, the transmission speed (transmission capacity) is increased.
(アンテナ100)
 セル13を構成するために用いられるアンテナ100を説明する。
 図5は、アンテナ100の一例を説明する図である。図5(a)は、平面図、図5(b)は、図5(a)のVB-VB線での断面図である。
(Antenna 100)
The antenna 100 used to construct the cell 13 will be described.
FIG. 5 is a diagram for explaining an example of the antenna 100. As shown in FIG. 5 (a) is a plan view, and FIG. 5 (b) is a cross-sectional view taken along the line VB-VB of FIG. 5 (a).
 図5(a)に示すように、アンテナ100は、アンテナ素子111をそれぞれ備える複数のアンテナユニット110、信号を伝搬する光導波路120、アンテナ100の光導波路120とアンテナ100の外部に設けられた機器とを接続するために光導波路120の端部に設けられたコネクタ130を備える。ここでは、アンテナユニット110毎にセル13が構成されるとする。コネクタ130は、接続部の一例である。 As shown in FIG. 5A, the antenna 100 is provided with a plurality of antenna units 110 each including an antenna element 111, an optical waveguide 120 for propagating a signal, and the optical waveguide 120 of the antenna 100 and devices provided outside the antenna 100. And a connector 130 provided at the end of the optical waveguide 120 to connect the two. Here, it is assumed that the cell 13 is configured for each antenna unit 110. The connector 130 is an example of a connection unit.
 図5(a)には、6個のアンテナユニット110(区別する場合には、アンテナユニット110-1~110-6と表記する。)が予め定められた方向に配列されている。アンテナユニット110の配列方向をx方向、これと直交する方向をy方向及びz方向とする。アンテナユニット110は、さらに多数がx方向に配列されていてもよい。なお、予め定められた方向に配列されているとは、アンテナユニット110が予め定められた方向の直線上に配列されている場合の他、一部のアンテナユニット110が直線に垂直な方向からずれて配列されている場合、一部のアンテナユニット110が直線に対して、他の一部のアンテナユニット110と傾きが異なるように配列されている場合を含む。 In FIG. 5A, six antenna units 110 (in the case of distinction, referred to as antenna units 110-1 to 110-6) are arranged in a predetermined direction. The arrangement direction of the antenna units 110 is the x direction, and the directions orthogonal to this are the y direction and the z direction. More antenna units 110 may be arranged in the x direction. Note that arranging in a predetermined direction means that some of the antenna units 110 are deviated from the direction perpendicular to the straight line, in addition to the case where the antenna units 110 are arranged on a straight line in a predetermined direction. When arranged in a straight line, the case where some antenna units 110 are arranged with respect to a straight line so as to be different in inclination from other antenna units 110 is included.
 また、図5(b)に示すように、アンテナ100は、アンテナユニット110と光導波路120とを挟み込んで保持する第1のフィルム140及び第2のフィルム150を備える。そして、第1のフィルム140及び第2のフィルム150は、可撓性(フレキシブル性)を有する素材で構成されている。そして、アンテナユニット110及び光導波路120を挟み込んで保持するように、第1のフィルム140と第2のフィルム150とが接着剤にて貼り付けられている。これにより、アンテナ100が全体として、可撓性(フレキシブル性)を有するフィルム(シート)となっている。 Further, as shown in FIG. 5B, the antenna 100 is provided with a first film 140 and a second film 150 which sandwich and hold the antenna unit 110 and the optical waveguide 120. And the 1st film 140 and the 2nd film 150 are constituted by the material which has flexibility (flexibility). Then, the first film 140 and the second film 150 are pasted with an adhesive so as to sandwich and hold the antenna unit 110 and the optical waveguide 120. Thus, the antenna 100 as a whole is a film (sheet) having flexibility.
 第1のフィルム140及び第2のフィルム150は、電波が透過しやすい材料から構成され、フィルム(シート)状又は板状に加工した際に、可撓性(フレキシブル性)を有するものであればよい。第1のフィルム140及び第2のフィルム150には、例えば、ポリ塩化ビニルなどのビニル系、ポリスチレン系、ポリエチレン系、ポリプロピレン、アクリル系、ポリアミドナイロン系、ABSなどの樹脂が適用されうる。なお、第1のフィルム140及び第2のフィルム150の膜厚は、適宜設定すればよく、第2のフィルム150は、保護膜として機能するものであってもよい。また、第1のフィルム140及び第2のフィルム150は、透明でもよく、不透明でもよい。 The first film 140 and the second film 150 are made of a material that easily transmits radio waves, and have flexibility (flexibility) when processed into a film (sheet) shape or a plate shape. Good. For the first film 140 and the second film 150, for example, a vinyl-based resin such as polyvinyl chloride, a polystyrene-based, a polyethylene-based, a polypropylene-based, an acrylic-based, a polyamide nylon-based, or an ABS can be applied. The film thickness of the first film 140 and the second film 150 may be set appropriately, and the second film 150 may function as a protective film. Also, the first film 140 and the second film 150 may be transparent or opaque.
 そして、アンテナ100における第1のフィルム140の裏面に剥離紙などで覆った接着材を設ければ、剥離紙を剥がすだけで、アンテナ100が設置可能となる。また、アンテナ100における第2のフィルム150の表面に、文字、図形、標識などの表示を設けてもよい。表示としては、例えば、席の番号、避難経路、送受信の方法などでよい。これにより、アンテナ100が、表示媒体を兼ねたアンテナとなる。 Then, if an adhesive material covered with release paper or the like is provided on the back surface of the first film 140 in the antenna 100, the antenna 100 can be installed simply by peeling off the release paper. In addition, on the surface of the second film 150 in the antenna 100, display of characters, figures, signs, and the like may be provided. The display may be, for example, a seat number, an evacuation route, a transmission / reception method, or the like. Thus, the antenna 100 serves as a display medium.
 なお、図5(a)に示すように、第1のフィルム140及び第2のフィルム150は、アンテナユニット110が配列されるx方向に長尺である。そして、アンテナ100は、第1のフィルム140及び第2のフィルム150の可撓性により、長尺方向(x方向)において巻き取り可能になっている。 In addition, as shown to Fig.5 (a), the 1st film 140 and the 2nd film 150 are long in the x direction in which the antenna unit 110 is arranged. The antenna 100 can be wound in the longitudinal direction (x direction) due to the flexibility of the first film 140 and the second film 150.
 次に、光導波路120を説明する。ここでは、光導波路120は、幹となる6本の光導波路(区別する場合は、光導波路120-1~120-6と表記する。)と、枝となる複数の光導波路(区別する場合は、光導波路120-11、120-21などと表記する。)とを備える。つまり、幹となる光導波路(光導波路120-1~120-6)と枝となる光導波路(光導波路120-11、120-21など)とを合わせて光導波路120と表記する。 Next, the optical waveguide 120 will be described. Here, the optical waveguide 120 includes six main optical waveguides (referred to as optical waveguides 120-1 to 120-6 in the case of distinction) and a plurality of optical waveguides as branches (in the case of distinction). And optical waveguides 120-11, 120-21, etc.). That is, the optical waveguides (optical waveguides 120-1 to 120-6) serving as the trunk and the optical waveguides (optical waveguides 120-11, 120-21, etc.) serving as the branches are collectively referred to as an optical waveguide 120.
 幹となる光導波路120-1~120-6の内、添え字(-の後の数字)が奇数である光導波路120-1、120-3、120-5は、アンテナユニット110のアンテナ素子111が受信した信号(受信信号)を伝搬する光導波路である。一方、添え字(-の後の数字)が偶数である光導波路120-2、120-4、120-6は、アンテナユニット110のアンテナ素子111へ送信する信号(送信信号)を伝搬する光導波路である。光導波路120-1~120-6は、第1のフィルム140及び第2のフィルム150の長尺方向(x方向)に沿って設けられている。 Of the optical waveguides 120-1 to 120-6 serving as the trunk, the optical waveguides 120-1, 120-3, and 120-5 whose indices (numbers after-) are odd number are the antenna elements 111 of the antenna unit 110. Is an optical waveguide that propagates the received signal (received signal). On the other hand, the optical waveguides 120-2, 120-4, and 120-6 whose subscripts (numbers after-) are even numbers are optical waveguides that propagate signals (transmission signals) to be transmitted to the antenna element 111 of the antenna unit 110. It is. The optical waveguides 120-1 to 120-6 are provided along the longitudinal direction (x direction) of the first film 140 and the second film 150.
 一方、枝となる光導波路120-11、120-21などは、幹となる光導波路120-1~120-6から分岐された光が伝搬する光導波路である。なお、添え字(-の後の2桁の数字)は、10の桁が、幹となる光導波路120-1~120-6の添え字(-の後の数字)、1の桁が接続されるアンテナユニット110(図15では、アンテナユニット110-1~110-6)の添え字(-の後の数字)である。ここでは、枝となる光導波路120-11、120-21などは、図5(b)に示すように、幹となる光導波路120-1~120-6を跨ぐように設けられている。枝となる光導波路120-11、120-21などについては、アンテナユニット110の説明において詳述する。なお、光導波路120の構成は一例であって、各アンテナユニット110と信号が送受信できれば、他の構成であってもよい。 On the other hand, the optical waveguides 120-11 and 120-21 as branches are optical waveguides through which light branched from the optical waveguides 120-1 to 120-6 as trunks propagates. In addition, as for the subscript (2-digit number after-), 10 digits are connected with the suffixes of the optical waveguides 120-1 to 120-6 as the trunk (number after-) and 1 digit is connected. Of the antenna unit 110 (the antenna units 110-1 to 110-6 in FIG. 15). Here, as shown in FIG. 5B, the optical waveguides 120-11 and 120-21 as branches are provided to straddle the optical waveguides 120-1 to 120-6 as trunks. The optical waveguides 120-11, 120-21 and the like to be branches will be described in detail in the description of the antenna unit 110. The configuration of the optical waveguide 120 is an example, and any other configuration may be used as long as signals can be transmitted to and received from the antenna units 110.
 上述したように、幹となる光導波路120-1~120-6は、送信信号と受信信号との組を3組送受信する。これは、x方向に隣接する3個のアンテナユニット110間で、異なる周波数とすることにより、隣接するアンテナユニット110間でセル13が重なっても、干渉が発生することが抑制される。なお、x方向のみを考慮すれば、x方向に隣接する2個のアンテナユニット110間で周波数を異ならせればよい。しかし、図1に示すスタジアム10の競技エリア11のように、二次元的にセル13を配置する場合、2個のアンテナユニット110間で周波数を異ならせただけでは、図1の横方向のセル13間では、周波数が異なるが、斜め方向のセル13間では、周波数が異なるようにならない。よって、ここでは、3個のアンテナユニット110間で周波数が異なるように設定している。つまり、隣接するセル13の中心が、正三角形を構成するように配置されている。また、3個のアンテナユニット110を単位として循環的(サイクリック)に周波数を設定することで、周波数が共通化される。そして、光導波路120-1~120-6のように、信号を送受信する光導波路の数が少なくてすむ。 As described above, the main optical waveguides 120-1 to 120-6 transmit and receive three sets of the transmission signal and the reception signal. By setting different frequencies among the three antenna units 110 adjacent in the x direction, this prevents the occurrence of interference even when the cells 13 overlap between the adjacent antenna units 110. If only the x direction is considered, the frequencies may be made different between two antenna units 110 adjacent to each other in the x direction. However, when the cells 13 are arranged two-dimensionally as in the competition area 11 of the stadium 10 shown in FIG. 1, the cells in the horizontal direction of FIG. Although the frequency is different between 13, the frequency does not become different between cells 13 in the diagonal direction. Therefore, the frequencies are set to be different among the three antenna units 110 here. That is, the centers of adjacent cells 13 are arranged to form an equilateral triangle. Further, by setting the frequency cyclically in units of three antenna units 110, the frequency is made common. And, like the optical waveguides 120-1 to 120-6, the number of optical waveguides for transmitting and receiving signals can be reduced.
 そして、幹となる光導波路120-1~120-6の長尺方向(x方向)の両端部に、2個のコネクタ130(区別する場合には、コネクタ130a、130bと表記する。)が設けられている。コネクタ130は、光信号を接続する光コネクタである。簡易に脱着できることがよい。このようにすることで、信号の送受信が両端部において集中して(まとめて)行える。また、両端部のコネクタ130a、130bから同時に信号を伝送することが可能である。また、コネクタ130a、130bの内、一方において信号の伝搬が不可になった場合、他方において信号の伝搬が可能であれば、他方を用いて信号の伝搬が継続される。これにより、故障に対する信頼性が向上する。
 なお、図5(a)では、コネクタ130は、アンテナ100の両端部に、第1のフィルム140と第2のフィルム150の±x方向側に設けられている。コネクタ130は、アンテナ100の両端部側(両端部の近傍)に、第1のフィルム140と第2のフィルム150の-y方向側に設けられていてもよい。この場合、光導波路120は、アンテナ100の両端部側において、-y方向に曲げて構成すればよい。コネクタ130は、アンテナ100の一方の端部側(端部の近傍)に設けてもよい。
And two connectors 130 (in the case of distinction, it describes with connectors 130a and 130b.) Are provided in the both ends of the lengthwise direction (x direction) of optical waveguides 120-1-120-6 used as a trunk. It is done. The connector 130 is an optical connector for connecting an optical signal. It is good to be able to desorb easily. By doing this, transmission and reception of signals can be concentrated (collectively) at both ends. Also, it is possible to transmit signals simultaneously from the connectors 130a and 130b at both ends. In addition, when propagation of the signal is not possible in one of the connectors 130a and 130b, if propagation of the signal is possible in the other, propagation of the signal is continued using the other. This improves the reliability against failure.
In FIG. 5A, the connectors 130 are provided on both ends of the antenna 100 on the ± x direction side of the first film 140 and the second film 150. The connector 130 may be provided on both end sides (near the both ends) of the antenna 100 on the −y direction side of the first film 140 and the second film 150. In this case, the optical waveguide 120 may be configured to be bent in the −y direction on both end sides of the antenna 100. The connector 130 may be provided on one end of the antenna 100 (near the end).
 光導波路120は、光ファイバを用いて構成してもよく、光透過性の誘電体材料を用いて第1のフィルム140上に構成してもよい。また、伝搬する光は、マルチモードであっても、シングルモードであってもよい。特に、シングルモードを用いれば、数kmもの長距離の伝搬も可能になる。よって、アンテナ100の長尺方向を長くできる。 The optical waveguide 120 may be configured using an optical fiber, and may be configured on the first film 140 using a light transmitting dielectric material. In addition, the propagating light may be in a multimode or a single mode. In particular, if single mode is used, long distance propagation of several kilometers is also possible. Thus, the longitudinal direction of the antenna 100 can be made longer.
 ここでは、アンテナユニット110は、x方向に一列に配列されているとしたが、x方向に複数列配列されていてもよい。また、アンテナユニット110は、直線状でなく、曲線に沿って設けられていてもよい。さらに、アンテナユニット110は、円又は円弧に沿って設けられてもよい。アンテナユニット110が円に沿って環状に設けられている場合、環状の一か所から光導波路120を引き出して、コネクタ130を設ければよい。この場合も、環状の一か所を端部と表現する。 Here, the antenna units 110 are arranged in a line in the x direction, but may be arranged in a plurality of lines in the x direction. Also, the antenna unit 110 may be provided not along a straight line but along a curve. Furthermore, the antenna unit 110 may be provided along a circle or arc. In the case where the antenna unit 110 is annularly provided along a circle, the optical waveguide 120 may be drawn out from one annular portion and the connector 130 may be provided. Also in this case, one portion of the ring is expressed as an end.
 また、各アンテナユニット110がセル13を構成するとした。このようにすることで、各アンテナユニット110のセル13が小さく設定される。よって、より小電力になる。しかし、複数のアンテナユニット110で一つのセル13を構成するようにしてもよい。このとき、一つのセル13を構成する各アンテナユニット110に与える信号に位相差を与えて、複数のアンテナユニット110がセル13に対して指向性を有するようにしてもよい。 Also, each antenna unit 110 constitutes the cell 13. By doing this, the cell 13 of each antenna unit 110 is set smaller. Therefore, less power is required. However, one cell 13 may be configured by a plurality of antenna units 110. At this time, the plurality of antenna units 110 may have directivity with respect to the cells 13 by giving a phase difference to the signals given to the respective antenna units 110 constituting one cell 13.
(アンテナユニット110)
 次に、アンテナユニット110の構成を説明する。ここでは、アンテナユニット110をアンテナユニット110-2で説明する。よって、図5(a)では、アンテナユニット110-2(110)と表記する。
 アンテナユニット110は、電波を送受信するアンテナ素子111、APとして機能する無線装置112、電力用の光信号から無線装置112に電力を供給する光電変換装置113、電波を送信するための光信号を電気信号に変換するTx光トランシーバ114及び電波を受信して得られた電気信号を光信号に変換するRx光トランシーバ115を備える。ここで、Tx光トランシーバ114及びRx光トランシーバ115は、光信号と電気信号とを変換するインターフェイス回路の一例である。
 なお、アンテナ素子111、無線装置112、光電変換装置113、Tx光トランシーバ114及びRx光トランシーバ115の符号は、アンテナユニット110-2にのみ記載し、他のアンテナユニット110-1、110-3~110-6への記載を省略する。
 ここでは、アンテナユニット110をアンテナ素子111と同義に用いることがある。
(Antenna unit 110)
Next, the configuration of the antenna unit 110 will be described. Here, the antenna unit 110 will be described using the antenna unit 110-2. Therefore, in FIG. 5A, the antenna unit 110-2 (110) is described.
The antenna unit 110 includes an antenna element 111 that transmits and receives radio waves, a wireless device 112 that functions as an AP, a photoelectric conversion device 113 that supplies power to the wireless device 112 from an optical signal for power, and an optical signal for transmitting radio waves. A Tx optical transceiver 114 for converting into signals and an Rx optical transceiver 115 for converting electric signals obtained by receiving radio waves into optical signals are provided. Here, the Tx optical transceiver 114 and the Rx optical transceiver 115 are an example of an interface circuit that converts an optical signal and an electrical signal.
The reference numerals of the antenna element 111, the wireless device 112, the photoelectric conversion device 113, the Tx optical transceiver 114, and the Rx optical transceiver 115 are described only for the antenna unit 110-2, and the other antenna units 110-1 and 110-3 and so on Description to 110-6 is omitted.
Here, the antenna unit 110 may be used synonymously with the antenna element 111.
 アンテナ素子111は、電波の周波数、指向性などによって選択される。アンテナ素子111には、例えばダイポールアンテナ、パッチアンテナなどを用いうる。アンテナ素子111がダイポールアンテナである場合、薄い金属板、金属箔、可撓性の絶縁性基板上に設けられた金属膜などで構成すれば、アンテナ100としての可撓性を損なわない。アンテナ素子111がパッチアンテナであっても、可撓性の絶縁性基板の一方の面に地板を構成し、他方の面にパッチを構成することで、可撓性を有するパッチアンテナが構成される。また、例え、可撓性を有しない絶縁基板を用いても、その面積が小さければ、アンテナ100全体としては可撓性を損なわない。 The antenna element 111 is selected according to the frequency of the radio wave, directivity, and the like. For example, a dipole antenna, a patch antenna, or the like can be used as the antenna element 111. When the antenna element 111 is a dipole antenna, the flexibility as the antenna 100 is not impaired if it is formed of a thin metal plate, a metal foil, a metal film provided on a flexible insulating substrate, or the like. Even if the antenna element 111 is a patch antenna, a flexible patch antenna is configured by configuring a ground plate on one surface of a flexible insulating substrate and configuring a patch on the other surface. . Further, even if an insulating substrate having no flexibility is used, the flexibility of the entire antenna 100 is not impaired if the area is small.
 無線装置112は、アンテナユニット110をAPとして機能させるための回路である。無線装置112は、CPU、メモリなどが一つの集積回路として構成されている。 The wireless device 112 is a circuit for causing the antenna unit 110 to function as an AP. The wireless device 112 is configured as a CPU, a memory, and the like as one integrated circuit.
 光電変換装置113は、電力用の光信号を入力させる光入力部、光信号を電力に変換する変換部、及び、電力を供給する電力出力部を備えている。変換部は、光を電気に変換する光電デバイスで構成されている。このような光電デバイスとしては、シリコン、ゲルマニウム、インジウム・ガリウム・ヒ素などの半導体を用いたフォトダイオードを用いうる。波長に応じて、材料を選択すればよい。ここでは、一つの光導波路120に、通信用の光信号の波長(周波数)と電力用の光信号の波長(周波数)とを異ならせて伝送する。例えば、通信用の光信号の波長を1310nm帯とし、電力用の光信号の波長を1480nm帯とする。このようにすることで、光導波路120の数が少なくなる。光電変換装置113は、集積回路として構成されている。
 なお、光導波路120を通信用の光信号を伝送する光導波路として用い、電力用の光信号を伝送する光導波路を別に設けてもよい。このようにすれば、通信用の光信号と電力用の光信号とを別の波長(周波数)に設定することを要しない。
The photoelectric conversion device 113 includes an optical input unit to which an optical signal for power is input, a conversion unit to convert the optical signal into electric power, and a power output unit to supply electric power. The conversion unit is configured of a photoelectric device that converts light into electricity. As such an optoelectronic device, a photodiode using a semiconductor such as silicon, germanium, indium gallium arsenic or the like can be used. The material may be selected according to the wavelength. Here, the wavelength (frequency) of the optical signal for communication and the wavelength (frequency) of the optical signal for power are transmitted to one optical waveguide 120 with different wavelengths. For example, the wavelength of the optical signal for communication is 1310 nm, and the wavelength of the optical signal for power is 1480 nm. By doing this, the number of optical waveguides 120 is reduced. The photoelectric conversion device 113 is configured as an integrated circuit.
The optical waveguide 120 may be used as an optical waveguide for transmitting an optical signal for communication, and an optical waveguide for transmitting an optical signal for power may be separately provided. In this way, it is not necessary to set the optical signal for communication and the optical signal for power to different wavelengths (frequencies).
 Tx光トランシーバ114は、光信号を電気信号に変換する受光部、変換された電気信号を増幅する増幅部、電気信号を出力する電気信号出力部を備えている。例えば、受光部は、光電変換装置113と同様に、フォトダイオードで構成されている。増幅部は、CMOSなどで構成されたドライバ回路である。電気信号出力部は、端子である。そして、Tx光トランシーバ114は、集積回路として構成されている。 The Tx optical transceiver 114 includes a light receiving unit that converts an optical signal into an electric signal, an amplification unit that amplifies the converted electric signal, and an electric signal output unit that outputs an electric signal. For example, similarly to the photoelectric conversion device 113, the light receiving unit is configured by a photodiode. The amplification unit is a driver circuit configured by a CMOS or the like. The electrical signal output unit is a terminal. The Tx optical transceiver 114 is configured as an integrated circuit.
 Rx光トランシーバ115は、光源、光源からの光を電気信号により変調する変調部、光信号を出力する光出力部を備えている。光源は、例えばLED(Light Emitting Diode)や半導体レーザである。変調部は、例えばLEDや半導体レーザから出力される光の強度を電気信号により直接変調するものであってもよい。また、変調部は、電気光学効果を有する結晶材料を用いて間接変調するものであってもよい。電気光学効果を有する結晶材料としては、LiNbOなどを用いうる。光出力部は、光端子(光ピン)である。そして、Rx光トランシーバ115は、集積回路として構成されている。 The Rx optical transceiver 115 includes a light source, a modulation unit that modulates the light from the light source with an electrical signal, and a light output unit that outputs an optical signal. The light source is, for example, a light emitting diode (LED) or a semiconductor laser. The modulation unit may directly modulate the intensity of light output from, for example, an LED or a semiconductor laser using an electrical signal. In addition, the modulator may be one that performs indirect modulation using a crystal material having an electro-optical effect. The crystalline material having an electro-optical effect, may be used and LiNbO 3. The light output unit is a light terminal (light pin). The Rx optical transceiver 115 is configured as an integrated circuit.
 無線装置112、光電変換装置113、Tx光トランシーバ114及びRx光トランシーバ115を構成する各集積回路は、可撓性のある第1のフィルム140上に設けられた配線に、端子をハンダ付したり、ボールグリッドアレイ(BGA)技術などで接続したりすることで容易に搭載しうる。そして、LSIの大きさをサブmm角から数10mm角とすれば、アンテナ100全体としては可撓性を損なわない。
 なお、無線装置112、光電変換装置113、Tx光トランシーバ114及びRx光トランシーバ115は、2以上の回路が一つの集積回路として構成されてもよい。
The integrated circuits constituting the wireless device 112, the photoelectric conversion device 113, the Tx optical transceiver 114, and the Rx optical transceiver 115 have terminals soldered to the wiring provided on the flexible first film 140. It can be easily mounted by connecting using ball grid array (BGA) technology or the like. Then, if the size of the LSI is set to a sub-mm square to several tens of square, flexibility of the antenna 100 as a whole is not lost.
In the wireless device 112, the photoelectric conversion device 113, the Tx optical transceiver 114, and the Rx optical transceiver 115, two or more circuits may be configured as one integrated circuit.
 アンテナユニット110における接続関係及び動作を説明する。以下では、図5(a)、(b)を参照しつつ、アンテナユニット110-2で説明する。
 アンテナユニット110-2において、アンテナ素子111は、無線装置112に電気的に接続されている。そして、無線装置112は、Tx光トランシーバ114及びRx光トランシーバ115に電気的に接続されている。Tx光トランシーバ114は、光導波路120-42を介して光導波路120-4に光で接続されている。また、Rx光トランシーバ115は、光導波路120-32を介して光導波路120-3に光で接続されている。なお、図5(b)に示すように、光導波路120-32は、光導波路120-3から分岐され、光導波路120-1、120-2を立体的に跨いで、Rx光トランシーバ115に接続されている。光導波路120-42も同様である。
The connection relation and operation in the antenna unit 110 will be described. Hereinafter, the antenna unit 110-2 will be described with reference to FIGS. 5 (a) and 5 (b).
In the antenna unit 110-2, the antenna element 111 is electrically connected to the wireless device 112. The wireless device 112 is electrically connected to the Tx optical transceiver 114 and the Rx optical transceiver 115. The Tx optical transceiver 114 is optically connected to the optical waveguide 120-4 via the optical waveguide 120-42. Also, the Rx optical transceiver 115 is optically connected to the optical waveguide 120-3 via the optical waveguide 120-32. As shown in FIG. 5B, the optical waveguide 120-32 is branched from the optical waveguide 120-3, and is connected to the Rx optical transceiver 115 across the optical waveguides 120-1 and 120-2 in a three-dimensional manner. It is done. The same applies to the optical waveguides 120-42.
 さらに、光電変換装置113は、無線装置112、Tx光トランシーバ114及びRx光トランシーバ115に電気的に接続されている。また、光電変換装置113は、光導波路120-42を介して光導波路120-4に光で接続されている。 Furthermore, the photoelectric conversion device 113 is electrically connected to the wireless device 112, the Tx optical transceiver 114, and the Rx optical transceiver 115. Further, the photoelectric conversion device 113 is connected by light to the optical waveguide 120-4 via the optical waveguide 120-42.
 なお、アンテナユニット110-1において、Tx光トランシーバ114は、光導波路120-21を介して光導波路120-2に光で接続され、Rx光トランシーバ115は、光導波路120-11を介して光導波路120-1に光で接続されている。アンテナユニット110-3において、Tx光トランシーバ114は、光導波路120-63を介して光導波路120-6に光で接続され、Rx光トランシーバ115は、光導波路120-53を介して光導波路120-5に光で接続されている。アンテナユニット110-4において、Tx光トランシーバ114は、光導波路120-24を介して光導波路120-2に光で接続され、Rx光トランシーバ115は、光導波路120-14を介して光導波路120-1に光で接続されている。アンテナユニット110-5において、Tx光トランシーバ114は、光導波路120-45を介して光導波路120-4に光で接続され、Rx光トランシーバ115は、光導波路120-35を介して光導波路120-3に光で接続されている。さらに、アンテナユニット110-6において、Tx光トランシーバ114は、光導波路120-66を介して光導波路120-6に光で接続され、Rx光トランシーバ115は、光導波路120-56を介して光導波路120-5に光で接続されている。 In the antenna unit 110-1, the Tx optical transceiver 114 is optically connected to the optical waveguide 120-2 via the optical waveguide 120-21, and the Rx optical transceiver 115 is an optical waveguide via the optical waveguide 120-11. It is connected by light to 120-1. In the antenna unit 110-3, the Tx optical transceiver 114 is optically connected to the optical waveguide 120-6 via the optical waveguide 120-63, and the Rx optical transceiver 115 is connected to the optical waveguide 120- via the optical waveguide 120-53. Connected to 5 by light. In the antenna unit 110-4, the Tx optical transceiver 114 is optically connected to the optical waveguide 120-2 via the optical waveguide 120-24, and the Rx optical transceiver 115 is connected to the optical waveguide 120- via the optical waveguide 120-14. Connected to 1 by light. In the antenna unit 110-5, the Tx optical transceiver 114 is optically connected to the optical waveguide 120-4 via the optical waveguide 120-45, and the Rx optical transceiver 115 is connected to the optical waveguide 120- via the optical waveguide 120-35. Connected to 3 by light. Furthermore, in the antenna unit 110-6, the Tx optical transceiver 114 is optically connected to the optical waveguide 120-6 via the optical waveguide 120-66, and the Rx optical transceiver 115 is an optical waveguide via the optical waveguide 120-56. It is connected by light to 120-5.
 つまり、アンテナユニット110-1、110-4は、光導波路120-1、120-2に接続され、アンテナユニット110-2、110-5は、光導波路120-3、120-4に接続され、アンテナユニット110-3、110-6は、光導波路120-5、120-6に接続されている。このように、アンテナユニット110は、3個を繰り返し単位として循環的(サイクリック)に光導波路120に接続されている。光導波路120-1、120-2、光導波路120-3、120-4及び光導波路120-5、120-6の信号の周波数を異ならせることで、隣接するアンテナユニット110間での周波数を異ならせられる。ここでは、アンテナユニット110の数を6個としているが、さらに多数の場合には、アンテナユニット110を3個毎に同様に接続すればよい。 That is, the antenna units 110-1 and 110-4 are connected to the optical waveguides 120-1 and 120-2, and the antenna units 110-2 and 110-5 are connected to the optical waveguides 120-3 and 120-4, The antenna units 110-3 and 110-6 are connected to the optical waveguides 120-5 and 120-6. Thus, the antenna units 110 are cyclically connected to the optical waveguide 120 in a unit of three as a repeating unit. If the frequencies of the adjacent antenna units 110 are different by making the frequencies of the signals of the optical waveguides 120-1 and 120-2, the optical waveguides 120-3 and 120-4, and the optical waveguides 120-5 and 120-6 different. You Here, the number of antenna units 110 is six, but in the case of more antennas, the antenna units 110 may be similarly connected every three.
 このようにすることで、光導波路120-2を伝搬する送信信号は、複数のアンテナユニット110(ここでは、アンテナユニット110-1、110-4)に共通である。光導波路120-4を伝搬する送信信号は、複数のアンテナユニット110(ここでは、アンテナユニット110-2、110-5)に共通である。光導波路120-6を伝搬する送信信号は、複数のアンテナユニット110(ここでは、アンテナユニット110-3、110-6)で共通である。よって、各アンテナユニット110に設けられた無線装置112が、各アンテナユニット110に対する送信信号を選択して、アンテナ素子111を制御する。 By doing this, the transmission signal propagating through the optical waveguide 120-2 is common to the plurality of antenna units 110 (here, the antenna units 110-1 and 110-4). The transmission signal propagating through the optical waveguide 120-4 is common to the plurality of antenna units 110 (here, the antenna units 110-2 and 110-5). The transmission signal propagating through the optical waveguide 120-6 is common to the plurality of antenna units 110 (here, the antenna units 110-3 and 110-6). Therefore, the wireless device 112 provided in each antenna unit 110 selects a transmission signal for each antenna unit 110 and controls the antenna element 111.
 アンテナユニット110-2において、Tx光トランシーバ114は、光導波路120-4を伝搬してきた光信号が光導波路120-42を経由して入力されると、電気信号に変換して、無線装置112に出力する。すると、無線装置112は、Tx光トランシーバ114から入力された電気信号に基づいて、アンテナ素子111が送信するための電気信号(送信信号)を生成し、アンテナ素子111に出力する。アンテナ素子111は、無線装置112によって生成された送信信号により電波を放射する。 In the antenna unit 110-2, when the optical signal propagated through the optical waveguide 120-4 is input via the optical waveguide 120-42, the Tx optical transceiver 114 converts the optical signal into an electrical signal and transmits the electrical signal to the wireless device 112. Output. Then, the wireless device 112 generates an electric signal (transmission signal) to be transmitted by the antenna element 111 based on the electric signal input from the Tx optical transceiver 114, and outputs the electric signal to the antenna element 111. The antenna element 111 emits a radio wave by the transmission signal generated by the wireless device 112.
 また、アンテナ素子111は、受信した電波を電気信号(受信信号)に変換して、無線装置112に出力する。無線装置112は、アンテナ素子111から入力された受信信号に基づいて、電気信号(出力信号)を生成し、Rx光トランシーバ115に出力する。Rx光トランシーバ115は、入力した出力信号を光信号に変換して、光導波路120-32を経由して光導波路120-3に出力する。 Further, the antenna element 111 converts the received radio wave into an electric signal (reception signal) and outputs the electric signal to the wireless device 112. The wireless device 112 generates an electrical signal (output signal) based on the reception signal input from the antenna element 111, and outputs the electrical signal to the Rx optical transceiver 115. The Rx optical transceiver 115 converts the input output signal into an optical signal, and outputs the optical signal to the optical waveguide 120-3 via the optical waveguide 120-32.
 光電変換装置113は、光導波路120-4を伝搬し、さらに光導波路120-42を経由して入力した電力用の光信号を電力に変換して、無線装置112、Tx光トランシーバ114及びRx光トランシーバ115に供給する。無線装置112、Tx光トランシーバ114及びRx光トランシーバ115は、光電変換装置113が供給する電力によって動作する。 The photoelectric conversion device 113 propagates the optical waveguide 120-4 and further converts the optical signal for power input via the optical waveguide 120-42 into electric power, and the wireless device 112, the Tx optical transceiver 114, and the Rx light The signal is supplied to the transceiver 115. The wireless device 112, the Tx optical transceiver 114, and the Rx optical transceiver 115 operate by the power supplied by the photoelectric conversion device 113.
 このとき、アンテナ素子111が送信する電波の電力が小さければ、光電変換装置113が供給する電力も小さくて済む。つまり、セル13を小さくすることにより、光給電によりアンテナユニット110が駆動できる。このため、電力を供給するための経路(電気配線)を設けることを要しない。また、災害などにより、電力を供給することができない場合であっても、光信号が供給できる場合には、アンテナ100を動作させることができる。 At this time, if the power of the radio wave transmitted by the antenna element 111 is small, the power supplied by the photoelectric conversion device 113 may be small. That is, by making the cell 13 smaller, the antenna unit 110 can be driven by light feeding. For this reason, it is not necessary to provide a path (electrical wiring) for supplying power. Further, even when power can not be supplied due to a disaster or the like, the antenna 100 can be operated when the optical signal can be supplied.
 また、アンテナ素子111の近傍に、Tx光トランシーバ114及びRx光トランシーバ115を設けることで、さらに小電力化が図れる。 In addition, by providing the Tx optical transceiver 114 and the Rx optical transceiver 115 in the vicinity of the antenna element 111, power can be further reduced.
 以上説明したアンテナ100を、スタジアム10の競技エリア11及び観客エリア12に設置することで、図1に示したスタジアムアンテナシステム1が実現される。なお、アンテナ100は、上述したように、全体として可撓性を有しているので、長尺方向に巻き取り可能である。よって、アンテナ100の製造時に長尺方向に巻き取った状態とし、その状態でスタジアム10に運搬し、スタジアム10の競技エリア11及び観客エリア12に敷き詰めることが容易に行える。つまり、アンテナ100の施工が容易になる。 By installing the antenna 100 described above in the competition area 11 and the spectator area 12 of the stadium 10, the stadium antenna system 1 shown in FIG. 1 is realized. In addition, since the antenna 100 has flexibility as a whole as mentioned above, it can be wound up in a long direction. Therefore, the antenna 100 can be easily taken up in the long direction at the time of manufacturing, transported to the stadium 10 in that state, and spread easily in the competition area 11 and the spectator area 12 of the stadium 10. That is, construction of the antenna 100 is facilitated.
 そして、アンテナ100は、長尺の一方の端部(又は両方の端部)から光信号の入出力を行うことで、光導波路120によって光が伝送可能な距離であれば、アンテナ100の長尺方向の長さを数100mから数kmとすることができる。これにより、アンテナ100の施工がさらに容易になる。 Then, the antenna 100 performs input and output of optical signals from one end (or both ends) of the long length, so that the length of the antenna 100 can be long as long as light can be transmitted by the optical waveguide 120. The length of the direction can be several hundred meters to several kilometers. This makes the installation of the antenna 100 easier.
 また、アンテナ100は可撓性を有するので、アンテナ100は、床面、壁面、天井などに容易に設置可能である。さらに、凹凸のある部分、曲面を有する部分及び折れ曲がった部分にも設置可能である。そして、アンテナ100は、床面、壁面、天井などの表面ばかりでなく、床下、壁の内側、天井裏などにも設置可能である。
 そして、アンテナ100は、構成するセル13が小さく、容易に設置可能であることから、電波を送受信したい場所に限定して設置できる。つまり、必要に応じた電波空間の設計が柔軟にできるようになる。
In addition, since the antenna 100 has flexibility, the antenna 100 can be easily installed on a floor surface, a wall surface, a ceiling, or the like. Furthermore, it can be installed also on a portion having unevenness, a portion having a curved surface and a bent portion. The antenna 100 can be installed not only on the surface such as a floor surface, a wall surface, and a ceiling, but also below the floor, inside the wall, and in the ceiling.
And since the cell 13 which comprises the antenna 100 is small and it can install easily, it can be limited and installed only to the place which wants to transmit / receive a electromagnetic wave. In other words, the design of the radio wave space can be made flexible as needed.
 以上説明したように、電波の周波数を高くする場合、セル13の面積(通信エリア)を小さくすることで、広い通信エリアをカバーするアンテナを用いる場合に比べて、小電力となる。
 ここでは、スタジアムアンテナシステム1を説明したが、アンテナ100は、遊園地、公園などの屋外施設にも適用できる。
As described above, when the frequency of the radio wave is increased, the area (communication area) of the cell 13 is reduced to reduce power compared to the case of using an antenna that covers a wide communication area.
Although the stadium antenna system 1 has been described here, the antenna 100 can also be applied to outdoor facilities such as an amusement park and a park.
[第2の実施の形態]
 図6は、第2の実施の形態が適用される劇場アンテナシステム4の一例を示す図である。図6は、劇場50の内部を上方から見た図である。劇場50は、演技、演奏、講演などが行わる舞台(ステージ)51と、演技、演奏、講演などの観客を収容する観客席が設けられる観客エリア52とを備える。図6では、観客エリア52は、四角形の舞台51の一辺に対向しているが、観客エリア52が舞台51の多数の辺に対向するように設けられてもよい。そして、舞台51及び観客エリア52には、電波が送受信されるセル53が複数設けられている。なお、セル53は、円で表されている。セル53は、第1の実施の形態で説明したものと同様のアンテナ100のアンテナ素子111の電波の送受信範囲で設定されている。そして、舞台51には、演技、演奏、講演などを行う演者が所有する移動体54があり、観客エリア52には、観客が所持する複数の移動体55がある。
Second Embodiment
FIG. 6 is a diagram showing an example of a theater antenna system 4 to which the second embodiment is applied. FIG. 6 is a view of the inside of the theater 50 as viewed from above. The theater 50 includes a stage 51 on which performance, performance, lecture and the like are performed, and a spectator area 52 in which a spectator seat for accommodating a performance, performance, lecture and the like audience is provided. In FIG. 6, the spectator area 52 faces one side of the square stage 51, but the spectator area 52 may be provided so as to face many sides of the stage 51. A plurality of cells 53 for transmitting and receiving radio waves are provided in the stage 51 and the audience area 52. The cells 53 are represented by circles. The cell 53 is set in the radio wave transmission / reception range of the antenna element 111 of the antenna 100 similar to that described in the first embodiment. In the stage 51, there are moving objects 54 owned by a performer who performs performance, performance, lecture and the like, and in the spectator area 52, there are a plurality of moving objects 55 owned by the spectator.
 ここでは、舞台51において、セル53は、一面に設けられている。ここでは、セル53は、舞台51を埋め尽くすように、隣接するセル53の中心が、正三角形を構成するように配置されている。このようにすることで、演技、演奏、講演などを行う演者が所持する移動体54、例えば、演者の顔面又は眼鏡に取り付けられたカメラなどから、演者の目線での画像がセル53のアンテナ素子(図5に示したアンテナ素子111)に向かって送信される。また、演者は、所持する小型のディスプレイ(ウェアラブルディスプレイ)などによりプロデューサなどからの指示が受けられる。 Here, in the stage 51, the cells 53 are provided on one side. Here, the cells 53 are arranged such that the centers of the adjacent cells 53 constitute an equilateral triangle so as to fill up the stage 51. By doing this, the antenna element of the cell 53 is the image of the performer's eyes from the moving body 54 possessed by the performer who performs the performance, the performance, the lecture, etc., for example, the camera attached to the performer's face or glasses. (Antenna element 111 shown in FIG. 5) is transmitted. Also, the performer can receive an instruction from a producer or the like by a small display (wearable display) or the like that he / she holds.
 また、観客エリア52において、観客の席(観客席)を覆うように、複数のセル53が設けられている。ここでは、一例として6個の観客席に一つのセル53が設けられている。このようにすることで、観客席にいる観客などは、所持する移動体55によって、演者の目線での画像が見られる。 Further, in the spectator area 52, a plurality of cells 53 are provided so as to cover the seats of the spectators (audience seats). Here, as an example, one cell 53 is provided in six audience seats. By doing this, the spectators in the spectator seat can see the image of the performer's eyes by the moving object 55 possessed by them.
 セル53は、第1の実施の形態で説明したアンテナ100により構成される。第1の実施の形態で説明したアンテナ100において、セル13をセル53とすればよい。よって、詳細な説明を省略する。 The cell 53 is configured by the antenna 100 described in the first embodiment. In the antenna 100 described in the first embodiment, the cell 13 may be the cell 53. Therefore, the detailed description is omitted.
 以上説明したように、電波の周波数を高くする場合、セル53の面積(通信エリア)を小さくすることで、広い通信エリアをカバーするアンテナを用いる場合に比べて、小電力となる。 As described above, when the frequency of the radio wave is increased, by reducing the area (communication area) of the cell 53, power consumption is reduced compared to the case of using an antenna that covers a wide communication area.
[第3の実施の形態]
 図7は、第3の実施の形態が適用される展示場アンテナシステム5の一例を示す図である。図7は、展示場60の内部を上方から見た図である。展示場60とは、見本市などの産業用の展示場、絵画、工芸などを展示する美術館などである。
Third Embodiment
FIG. 7 is a diagram showing an example of the exhibition site antenna system 5 to which the third embodiment is applied. FIG. 7 is a view of the inside of the exhibition hall 60 as viewed from above. The exhibition hall 60 is an exhibition hall for industry such as a trade fair, and an art museum that displays paintings, crafts, and the like.
 展示場60は、展示物などが展示される展示エリア61と、展示物を見る観客が通行する観客エリア62とを備える。図7では、展示エリア61及び観客エリア62には、電波が送受信されるセル63が複数設けられている。なお、セル63は、円で表されている。セル63は、第1の実施の形態で説明したものと同様のアンテナ100のアンテナ素子111の電波の送受信範囲で設定されている。そして、展示物は、展示物を説明するための情報を送信する移動体64を備えている。そして、観客は、情報を受信しうる移動体65を所持している。 The exhibition hall 60 includes an exhibition area 61 where exhibitions and the like are displayed, and an audience area 62 where a spectator watching the exhibition passes. In FIG. 7, a plurality of cells 63 for transmitting and receiving radio waves are provided in the exhibition area 61 and the audience area 62. The cells 63 are represented by circles. The cell 63 is set in the transmission / reception range of radio waves of the antenna element 111 of the antenna 100 similar to that described in the first embodiment. And, the exhibit has a moving body 64 that transmits information for explaining the exhibit. Then, the spectator has a mobile unit 65 capable of receiving information.
 ここでは、展示エリア61及び観客エリア62を覆うように、セル63が、一面に設けられている。このようにすることで、観客は、所持する移動体65により、展示物の備える移動体64から送信される情報を受信して、情報が見られる。 Here, a cell 63 is provided on one side so as to cover the exhibition area 61 and the spectator area 62. By doing this, the spectator can see the information by receiving the information transmitted from the moving object 64 provided in the exhibit by the moving object 65 possessed by the spectator.
 セル63は、第1の実施の形態で説明したアンテナ100により構成される。第1の実施の形態で説明したアンテナ100において、セル13をセル63とすればよい。よって、詳細な説明を省略する。 The cell 63 is configured by the antenna 100 described in the first embodiment. In the antenna 100 described in the first embodiment, the cell 13 may be the cell 63. Therefore, the detailed description is omitted.
 以上説明したように、電波の周波数を高くする場合、セル63の面積(通信エリア)を小さくすることで、広い通信エリアをカバーするアンテナを用いる場合に比べて、小電力となる。 As described above, when the frequency of the radio wave is increased, by reducing the area (communication area) of the cell 63, power consumption is reduced compared to the case of using an antenna that covers a wide communication area.
[第4の実施の形態]
 図8は、第4の実施の形態が適用される車両誘導アンテナシステム6の一例を示す図である。図8は、車両が通行する路面70を斜め上方から見た図である。路面70は、高速道路であってもよく、一般の道路であってもよい。
Fourth Embodiment
FIG. 8 is a view showing an example of a vehicle induction antenna system 6 to which the fourth embodiment is applied. FIG. 8 is a perspective view of a road surface 70 on which a vehicle passes. The road surface 70 may be a freeway or a general road.
 路面70は、車両が通行する車両通行エリア71とアンテナ100が配置されるアンテナエリア72とを備えている。車両通行エリア71は、移動体74として機能する車両(以下、車両74と表記する。)が通行する。アンテナエリア72は、車両通行エリア71に沿って設けられた車両通行エリア71外のエリア、いわゆる路側帯である。アンテナエリア72には、第1の実施の形態において説明したアンテナ100が帯状に設けられている。そして、アンテナエリア72(図5に示したアンテナ100のアンテナユニット110)から、車両通行エリア71に向けて、セル73が構成されている。なお、アンテナエリア72を、遮音壁などの壁上に設けてもよい。また、アンテナエリア72を車両通行エリア71に設けてもよい。つまり、アンテナエリア72上を車両74が走行するようにしてもよい。 The road surface 70 includes a vehicle passing area 71 through which the vehicle passes and an antenna area 72 in which the antenna 100 is disposed. In the vehicle passing area 71, a vehicle functioning as a moving body 74 (hereinafter referred to as a vehicle 74) passes. The antenna area 72 is an area outside the vehicle passing area 71 provided along the vehicle passing area 71, that is, a so-called roadside zone. In the antenna area 72, the antenna 100 described in the first embodiment is provided in a band shape. Then, a cell 73 is configured from the antenna area 72 (the antenna unit 110 of the antenna 100 shown in FIG. 5) toward the vehicle passing area 71. The antenna area 72 may be provided on a wall such as a sound insulation wall. Also, the antenna area 72 may be provided in the vehicle passing area 71. That is, the vehicle 74 may travel on the antenna area 72.
 セル73を車両通行エリア71に沿って設け、セル73と通信を行うことにより、車両74を路面に沿って誘導できる。つまり、車両通行エリア71に沿って設けられたセル73と通信を行いつつ進行することで、車両74が進む方向における情報を取得しつつ、車両74を誘導することができる。すなわち、自動運転が可能になる。 By providing the cells 73 along the vehicle passing area 71 and communicating with the cells 73, the vehicle 74 can be guided along the road surface. That is, by advancing while communicating with the cell 73 provided along the vehicle passing area 71, the vehicle 74 can be guided while acquiring information in the direction in which the vehicle 74 travels. That is, automatic operation becomes possible.
 第4の実施の形態によれば、車両自体が前方の車両や路面の白線を画像により認識して、自らの車両を誘導する自動運転に比べて、車両74が進む方向における情報を取得しつつ行うことで、より確実に車両74が誘導される。特に、親機や基地局であるアクセスポイント(AP)の機能を有する無線装置112をアンテナ素子111とともに設けることで、車両74の自動運転に不可欠とされる、無線装置112と車両74との間で高速、常時接続且つ低遅延な通信が可能になる。 According to the fourth embodiment, the vehicle itself recognizes the white line of the vehicle ahead or the road surface by the image, and while acquiring the information in the direction in which the vehicle 74 travels, as compared with the automatic driving that guides the own vehicle. By doing this, the vehicle 74 is more reliably guided. In particular, by providing the wireless device 112 having the function of an access point (AP), which is a master unit or a base station, together with the antenna element 111, between the wireless device 112 and the vehicle 74 which are considered essential for automatic driving of the vehicle 74. Enables high-speed, always-on connection and low-delay communication.
 セル73は、第1の実施の形態で説明したアンテナ100により構成される。第1の実施の形態で説明したアンテナ100において、セル13をセル73とすればよい。よって、詳細な説明を省略する。 The cell 73 is configured by the antenna 100 described in the first embodiment. In the antenna 100 described in the first embodiment, the cell 13 may be the cell 73. Therefore, the detailed description is omitted.
 以上説明したように、電波の周波数を高くする場合、セル73の面積(通信エリア)を小さくすることで、広い通信エリアをカバーするアンテナを用いる場合に比べて、小電力となる。 As described above, when the frequency of the radio wave is increased, by reducing the area (communication area) of the cell 73, power consumption is reduced compared to the case of using an antenna that covers a wide communication area.
 以上、第1の実施の形態から第4の実施の形態を説明したが、本発明の趣旨に反しない限りにおいて様々な変形を行っても構わない。 The first to fourth embodiments have been described above. However, various modifications may be made as long as the purpose of the present invention is not violated.
1、2、3…スタジアムアンテナシステム、4…劇場アンテナシステム、5…展示場アンテナシステム、6…車両誘導アンテナシステム、10…スタジアム、11…競技エリア、12、52、62…観客エリア、13、21、41、53、63、73…セル、14、15、54、55、64、65…移動体、16…観客席、20、30…基地局アンテナ、40…超多素子アンテナ、50…劇場、51…舞台(ステージ)、60…展示場、61…展示エリア、70…路面、71…車両通行エリア、72…アンテナエリア、74…移動体(車両)、100…アンテナ、110…アンテナユニット、111…アンテナ素子、112…無線装置、113…光電変換装置、114…Tx光トランシーバ、115…Rx光トランシーバ、120…光導波路、130…コネクタ、140…第1のフィルム、150…第2のフィルム 1, 2, 3 ... stadium antenna system, 4 ... theater antenna system, 5 ... exhibition antenna system, 6 ... vehicle induction antenna system, 10 ... stadium, 11 ... competition area, 12, 52, 62 ... audience area, 13, 21, 41, 53, 63, 73: cell, 14, 15, 54, 55, 64, 65: moving body, 16: audience seat, 20, 30: base station antenna, 40: super multi-element antenna, 50: theater , 51: stage (stage), 60: exhibition hall, 61: exhibition area, 70: road surface, 71: vehicle traffic area, 72: antenna area, 74: moving body (vehicle), 100: antenna, 110: antenna unit, DESCRIPTION OF SYMBOLS 111 ... Antenna element, 112 ... Wireless apparatus, 113 ... Photoelectric conversion apparatus, 114 ... Tx optical transceiver, 115 ... Rx optical transceiver, 120 ... Optical waveguide 130 ... connector 140 ... first film, 150 ... second film

Claims (14)

  1.  それぞれが電波を送受信する複数のアンテナ素子と、
     複数の前記アンテナ素子の電波の送受信のために、信号を伝搬する光導波路と、
     複数の前記アンテナ素子及び前記光導波路を挟み込んで保持する、可撓性の第1のフィルム及び可撓性の第2のフィルムと、
    を備えるアンテナ。
    Multiple antenna elements each transmitting and receiving radio waves;
    An optical waveguide for propagating a signal for transmitting and receiving radio waves of the plurality of antenna elements;
    A flexible first film and a flexible second film sandwiching and holding a plurality of the antenna elements and the optical waveguide;
    Antenna with
  2.  複数の前記アンテナ素子における隣接するアンテナ素子は、異なる周波数の電波を送受信することを特徴とする請求項1に記載のアンテナ。 The antenna according to claim 1, wherein adjacent antenna elements in the plurality of antenna elements transmit and receive radio waves of different frequencies.
  3.  複数の前記アンテナ素子は、予め定められた方向に配列され、配列に沿って、隣接するアンテナ素子間で電波の周波数が異なるように、循環的に周波数が設定されることを特徴とする請求項1に記載のアンテナ。 The plurality of antenna elements are arrayed in a predetermined direction, and frequencies are cyclically set so that the frequencies of radio waves are different between adjacent antenna elements along the array. The antenna according to 1.
  4.  複数の前記アンテナ素子が送受信する電波によって、当該アンテナ素子毎に通信が行われるセルが構成されることを特徴とする請求項2又は3に記載のアンテナ。 The antenna according to claim 2 or 3, wherein a cell in which communication is performed for each of the antenna elements is configured by radio waves transmitted and received by a plurality of the antenna elements.
  5.  前記光導波路と、前記アンテナ素子との間に、光信号と電気信号とを変換するインターフェイス回路を備えることを特徴とする請求項1に記載のアンテナ。 The antenna according to claim 1, further comprising an interface circuit for converting an optical signal and an electrical signal between the optical waveguide and the antenna element.
  6.  前記インターフェイス回路には、前記光導波路を経由して電力が供給されることを特徴とする請求項5に記載のアンテナ。 The antenna according to claim 5, wherein the interface circuit is supplied with power via the optical waveguide.
  7.  前記第1のフィルム及び前記第2のフィルムは共に長尺の部材であって、前記アンテナ素子及び前記光導波路を挟み込んだ状態において、長尺方向に巻き取り可能であることを特徴とする請求項1に記載のアンテナ。 The first film and the second film are both long members, and can be wound in the long direction in a state in which the antenna element and the optical waveguide are sandwiched. The antenna according to 1.
  8.  前記光導波路は、前記第1のフィルム及び前記第2のフィルムの前記長尺方向に沿って設けられていることを特徴とする請求項7に記載のアンテナ。 The antenna according to claim 7, wherein the light guide is provided along the longitudinal direction of the first film and the second film.
  9.  前記光導波路は、前記第1のフィルム及び前記第2のフィルムの前記長尺方向の端部側に、信号の入出力のための接続部が設けられていることを特徴とする請求項8に記載のアンテナ。 9. The optical waveguide according to claim 8, wherein a connecting portion for input and output of a signal is provided on an end side of the first film and the second film in the longitudinal direction. Antenna described.
  10.  前記光導波路は、前記第1のフィルム及び前記第2のフィルムの前記長尺方向の両端部側に、信号の入出力のための接続部が設けられていることを特徴とする請求項8に記載のアンテナ。 9. The optical waveguide according to claim 8, wherein connection portions for input and output of signals are provided on both end sides in the longitudinal direction of the first film and the second film. Antenna described.
  11.  競技が行われる競技エリア及び当該競技の観客を収容する観客エリアの少なくとも一部に、請求項1乃至10のいずれか1項に記載のアンテナが設けられていることを特徴とするスタジアムアンテナシステム。 A stadium antenna system characterized in that the antenna according to any one of claims 1 to 10 is provided in at least a part of a competition area in which a competition is performed and a spectator area for accommodating a spectator of the competition.
  12.  演技、演奏又は講演が行われる舞台及び当該演技、演奏又は講演の観客を収容する観客エリアの少なくとも一部に、請求項1乃至10のいずれか1項に記載のアンテナが設けられていることを特徴とする劇場アンテナシステム。 The antenna according to any one of claims 1 to 10 is provided on at least a part of a stage on which an act, a performance or a lecture is performed and a spectator area accommodating an audience of the performance, the performance or the lecture. A theater antenna system that features.
  13.  展示物を展示する展示エリア及び当該展示物を観覧する観客が通行する観客エリアの少なくとも一部に、請求項1乃至10のいずれか1項に記載のアンテナが設けられていることを特徴とする展示場アンテナシステム。 An antenna according to any one of claims 1 to 10 is provided in at least a part of an exhibition area for displaying an exhibit and an audience area through which an audience watching the exhibition passes. Exhibition site antenna system.
  14.  車両が通行する路面に沿って、請求項1乃至10のいずれか1項に記載のアンテナが設けられていることを特徴とする車両誘導アンテナシステム。 An antenna according to any one of claims 1 to 10 is provided along a road surface through which a vehicle passes.
PCT/JP2017/030812 2017-08-28 2017-08-28 Antenna, stadium antenna system, theater antenna system, exhibition hall antenna system, and vehicle guide antenna system WO2019043764A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2017/030812 WO2019043764A1 (en) 2017-08-28 2017-08-28 Antenna, stadium antenna system, theater antenna system, exhibition hall antenna system, and vehicle guide antenna system
JP2019538770A JP6777344B2 (en) 2017-08-28 2017-08-28 Antenna, stadium antenna system, theater antenna system, exhibition hall antenna system, and vehicle guidance antenna system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/030812 WO2019043764A1 (en) 2017-08-28 2017-08-28 Antenna, stadium antenna system, theater antenna system, exhibition hall antenna system, and vehicle guide antenna system

Publications (1)

Publication Number Publication Date
WO2019043764A1 true WO2019043764A1 (en) 2019-03-07

Family

ID=65525204

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/030812 WO2019043764A1 (en) 2017-08-28 2017-08-28 Antenna, stadium antenna system, theater antenna system, exhibition hall antenna system, and vehicle guide antenna system

Country Status (2)

Country Link
JP (1) JP6777344B2 (en)
WO (1) WO2019043764A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56147531A (en) * 1980-03-24 1981-11-16 Western Electric Co Communication method and device between base station and mobile unit in mobile radio wave communication system
WO2010086173A1 (en) * 2009-01-30 2010-08-05 Alcatel Lucent Beam forming antenna system on flexible plastic foil

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6362906B1 (en) * 1998-07-28 2002-03-26 Raytheon Company Flexible optical RF receiver
JP2003168922A (en) * 2001-11-30 2003-06-13 Hitachi Cable Ltd Antenna

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56147531A (en) * 1980-03-24 1981-11-16 Western Electric Co Communication method and device between base station and mobile unit in mobile radio wave communication system
WO2010086173A1 (en) * 2009-01-30 2010-08-05 Alcatel Lucent Beam forming antenna system on flexible plastic foil

Also Published As

Publication number Publication date
JPWO2019043764A1 (en) 2020-04-09
JP6777344B2 (en) 2020-10-28

Similar Documents

Publication Publication Date Title
US10070258B2 (en) Location tracking using fiber optic array cables and related systems and methods
US20210119338A1 (en) Electronic Devices with Dielectric Resonator Antennas
US7269311B2 (en) Remote antenna unit and wavelength division multiplexing radio-over-fiber network
WO2019066259A1 (en) Optical phased array antenna and lidar including same
US8654037B2 (en) Arrangement for optical representation and wireless communication
EP2296229B1 (en) Radio-on-fiber unit and radio-on-fiber system
US10608476B2 (en) System and method for wireless electricity distribution
CN102938673B (en) High-speed wireless optical communication system
EP1617511A1 (en) RF antenna array structure
US9397397B2 (en) Electronically-steered Ku-band phased array antenna comprising an integrated photonic beamformer
Ghassemlooy et al. An overview of optical wireless communications
CN114731200A (en) Method, system and apparatus for free space optical communication
JP6777344B2 (en) Antenna, stadium antenna system, theater antenna system, exhibition hall antenna system, and vehicle guidance antenna system
Kaur et al. Recent trends in wireless and optical fiber communication
Ashtiani et al. Single-chip nanophotonic near-field imager
JP2009004988A (en) Transmission system and transmitting antenna
US11567189B2 (en) Optically assisted ultra-wideband (UWB) imager
US10374720B2 (en) Light guide arrangement for a mobile communications device for optical data transmission, mobile communications device and method for optical data transmission
JP4938097B2 (en) Transmitting system and transmitting antenna
JP6739808B2 (en) Optical SSB modulator
KR102390680B1 (en) Bi-directional mimo antenna
JP4753160B2 (en) Communication system for road traffic support and communication system for road traffic support
US9491798B2 (en) Communications system
PL184543B1 (en) Communication system employing a narro-flux coherent beam
Jayamalini et al. A COMPARITIVE ANALYSIS ON LI-FI FRAMEWORK

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17922947

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019538770

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17922947

Country of ref document: EP

Kind code of ref document: A1