WO2019043423A1 - Mécanismes d'entraînement d'administration commandée pour pompes d'administration de médicament - Google Patents

Mécanismes d'entraînement d'administration commandée pour pompes d'administration de médicament Download PDF

Info

Publication number
WO2019043423A1
WO2019043423A1 PCT/IB2017/001047 IB2017001047W WO2019043423A1 WO 2019043423 A1 WO2019043423 A1 WO 2019043423A1 IB 2017001047 W IB2017001047 W IB 2017001047W WO 2019043423 A1 WO2019043423 A1 WO 2019043423A1
Authority
WO
WIPO (PCT)
Prior art keywords
drug
drive mechanism
tether
piston
gear
Prior art date
Application number
PCT/IB2017/001047
Other languages
English (en)
Inventor
Ian B. Hanson
Paul F. BENTE IV
Mark A. Destefano
Original Assignee
Unitract Syringe Pty Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unitract Syringe Pty Ltd filed Critical Unitract Syringe Pty Ltd
Priority to CA3074354A priority Critical patent/CA3074354A1/fr
Priority to PCT/IB2017/001047 priority patent/WO2019043423A1/fr
Publication of WO2019043423A1 publication Critical patent/WO2019043423A1/fr

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/14Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
    • A61M5/142Pressure infusion, e.g. using pumps
    • A61M5/14244Pressure infusion, e.g. using pumps adapted to be carried by the patient, e.g. portable on the body
    • A61M5/14248Pressure infusion, e.g. using pumps adapted to be carried by the patient, e.g. portable on the body of the skin patch type
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/14Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
    • A61M5/142Pressure infusion, e.g. using pumps
    • A61M5/145Pressure infusion, e.g. using pumps using pressurised reservoirs, e.g. pressurised by means of pistons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/14Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
    • A61M5/142Pressure infusion, e.g. using pumps
    • A61M5/145Pressure infusion, e.g. using pumps using pressurised reservoirs, e.g. pressurised by means of pistons
    • A61M5/1452Pressure infusion, e.g. using pumps using pressurised reservoirs, e.g. pressurised by means of pistons pressurised by means of pistons
    • A61M5/1454Pressure infusion, e.g. using pumps using pressurised reservoirs, e.g. pressurised by means of pistons pressurised by means of pistons spring-actuated, e.g. by a clockwork
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/14Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
    • A61M5/142Pressure infusion, e.g. using pumps
    • A61M5/14244Pressure infusion, e.g. using pumps adapted to be carried by the patient, e.g. portable on the body
    • A61M5/14248Pressure infusion, e.g. using pumps adapted to be carried by the patient, e.g. portable on the body of the skin patch type
    • A61M2005/14252Pressure infusion, e.g. using pumps adapted to be carried by the patient, e.g. portable on the body of the skin patch type with needle insertion means
    • A61M2005/14256Pressure infusion, e.g. using pumps adapted to be carried by the patient, e.g. portable on the body of the skin patch type with needle insertion means with means for preventing access to the needle after use
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/14Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
    • A61M5/142Pressure infusion, e.g. using pumps
    • A61M5/145Pressure infusion, e.g. using pumps using pressurised reservoirs, e.g. pressurised by means of pistons
    • A61M2005/14506Pressure infusion, e.g. using pumps using pressurised reservoirs, e.g. pressurised by means of pistons mechanically driven, e.g. spring or clockwork
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/178Syringes
    • A61M5/31Details
    • A61M5/315Pistons; Piston-rods; Guiding, blocking or restricting the movement of the rod or piston; Appliances on the rod for facilitating dosing ; Dosing mechanisms
    • A61M5/31565Administration mechanisms, i.e. constructional features, modes of administering a dose
    • A61M5/31576Constructional features or modes of drive mechanisms for piston rods
    • A61M2005/31588Constructional features or modes of drive mechanisms for piston rods electrically driven

Definitions

  • pumps when used in conjunction with metabolic sensors or monitors, pumps may be automatically controlled to provide appropriate doses of a fluidic medium at appropriate times of need, based on sensed or monitored metabolic levels.
  • pump type delivery devices have become an important aspect of modern medical treatments of various types of medical conditions, such as diabetes, and the like.
  • the present invention provides a controlled delivery drive mechanism which includes a drive housing, a piston, and one or more biasing members, wherein the one or more biasing members are initially retained in an energized state and is configured to bear upon an interface surface of the piston.
  • the piston is configured to translate substantially axially within a drug container having a plunger seal and a barrel.
  • a tether is connected at one end to the piston and at another end to a winch drum of a regulating mechanism. The tether restrains the free expansion of the biasing member from its initial energized state, thereby also restraining the free axial translation of the piston upon which the biasing member bears upon.
  • the tether is configured to be released from a winch drum of the regulating mechanism, providing controlled expansion of the biasing member.
  • the drug container may contain a drug fluid within a drug chamber for delivery to a user.
  • a cover sleeve may be utilized between the biasing member and the interface surface of the piston to hide the interior components of the barrel (namely, the piston and the biasing member) from view during operation of the drive mechanism.
  • the regulating mechanism is an escapement regulating mechanism coupled to, or acting with, the winch drum.
  • the escapement regulating mechanism may further include a gear train having one or more gears, wherein the rotation of at least one gear of the gear train is coupled to the rotation of the winch drum.
  • the escapement regulating mechanism further includes a lever and an escape wheel configured to engage and meter the rotational movement of the gear train.
  • the lever has pins and a prong, wherein the prong movably engages a post and is configured to removably engage an impulse pin of a balance wheel, and wherein the balance wheel engages and is capable of oscillating around a post in combination with a hair spring.
  • An electromechanical actuator such as a motor or solenoid may additionally be used to control the oscillation and/or rotation of the balance wheel.
  • a DC or stepper motor may be used, or a linear or rotary solenoid may be used.
  • the escape wheel is a compound gear having escape teeth around the circumference of a large diameter escape gear and a small diameter gear configured to engage and meter the gear train. The metering of the gear train and/or winch drum by an escapement regulating mechanism controls the rate or profile of drug delivery to a user.
  • rotation of the escape wheel is coupled to rotation of the winch drum and can thereby control the release of the tether from the winch drum to meter the free expansion of the biasing member from its initial energized state and the free axial translation of the piston upon which the biasing member bears upon.
  • the metering of the tether by the regulating mechanism controls the rate or profile of drug delivery to a user.
  • the piston may be one or more parts and connects to a distal end of the tether.
  • the drive mechanism may include a status reader configured to read or recognize one or more corresponding status triggers.
  • the status triggers may be incrementally spaced on the tether, wherein, during operation of the drive mechanism, interaction between the status reader and the status triggers transmit a signal to a power and control system to provide feedback to a user.
  • the status reader may be an optical status reader and the corresponding status triggers are optical status triggers, an electromechanical status reader and the corresponding status triggers are electromechanical status triggers, or a mechanical status reader and the corresponding status triggers are mechanical status triggers.
  • the drug pump further includes a gear assembly.
  • the gear assembly may include a winch gear connected to a winch drum upon which the tether may be releasably wound, rotation of the winch drum releases the tether from the winch drum to meter the free expansion of the biasing member from its initial energized state and the free axial translation of the piston upon which the biasing member bears upon.
  • the metering of the tether controls the rate or profile of drug delivery to a user.
  • the piston may be one or more parts and connects to a distal end of the tether.
  • the winch drum is coupled to a regulating mechanism which controls rotation of the winch drum and hence metering of the translation of the piston.
  • the drug pump may utilize the regulating mechanism described above in the first embodiment, which configuration utilizes an escapement regulating mechanism to control the metering of the tether.
  • the escapement regulating mechanism may further include a gear train having one or more gears.
  • the escapement regulating mechanism further includes a lever and an escape wheel configured to engage and meter the rotational movement of the gear train.
  • the lever has pins and a prong, wherein the prong movably engages a post and is configured to removably engage an impulse pin of a balance wheel, and wherein the balance wheel engages and is capable of oscillating around a post in combination with a hair spring.
  • a motor such as a DC motor or stepper motor, or a linear or rotary solenoid may additionally be used to control the oscillation and/or rotation of the balance wheel.
  • the escape wheel is a compound gear having escape teeth around the circumference of a large diameter escape gear and a small diameter gear configured to engage and meter the gear train. The metering of the gear train by an escapement regulating mechanism controls the rate or profile of drug delivery to a user.
  • the piston is configured to contact and axially translate the plunger seal within the barrel.
  • the drug pump may include a status reader configured to read or recognize one or more corresponding status triggers.
  • the status triggers may be incrementally spaced on the tether, wherein, during operation of the drive mechanism, interaction between the status reader and the status triggers transmit a signal to a power and control system to provide feedback to a user.
  • the status reader may be an optical status reader and the corresponding status triggers are optical status triggers, an electromechanical status reader and the corresponding status triggers are electromechanical status triggers, or a mechanical status reader and the corresponding status triggers are mechanical status triggers.
  • the power and control system of the drug pump is configured to receive one or more inputs to meter the release of the tether by the winch drum and thereby permit axial translation of the piston by the biasing member to translate a plunger seal within a barrel.
  • the one or more inputs may be provided by the actuation of the activation mechanism, a control interface, and/or a remote control mechanism.
  • the power and control system may be configured to receive one or more inputs to adjust the restraint provided by the tether and winch drum on the free axial translation of the piston upon which the biasing member bears upon to meet a desired drug delivery rate or profile, to change the dose volume for delivery to the user, and/or to otherwise start, stop, or pause operation of the drive mechanism.
  • novel control delivery drive mechanisms are additionally capable of providing the incremental status of the drug delivery before, during, and after operation of the device.
  • “comprise,” “comprises,” and “comprising,” or related terms such as “includes” or “consists of,” are used inclusively rather than exclusively, so that a stated integer or group of integers may include one or more other non-stated integers of groups of integers.
  • the embodiments of the present invention may include one or more additional components which may be considered standard components in the industry of medical devices.
  • the embodiments may include one or more batteries utilized to power the motor, drive mechanisms, and drug pumps of the present invention.
  • the components, and the embodiments containing such components are within the contemplation of the present invention and are to be understood as falling within the breadth and scope of the present invention.
  • FIG. 1A shows an isometric view of a drug delivery pump having a controlled delivery drive mechanism, according to one embodiment of the present invention
  • FIG. 2A shows an exploded view, along an axis "A," of a drive mechanism and drug container, of one embodiment of the present invention
  • FIG. 2B shows an exploded view, along an axis "B," of one embodiment of the present invention (biasing member, cover sleeve, plunger seal, barrel, and cap are not shown for clarity);
  • FIG. 3 A shows an isometric view of a controlled delivery drive mechanism, according to at least one embodiment of the present invention
  • FIG. 3B shows an isometric view of a controlled delivery drive mechanism, according to at least one embodiment of the present invention (the piston is shown exploded to illustrate attachment of tether);
  • FIGS. 4A-4C shows an enlarged view of an escapement regulating mechanism of a drive mechanism, according to at least one embodiment of the present invention
  • FIGS . 4D-4H shows the progression of the escapement regulating mechanism, according to the embodiment shown in FIGS. 4A-4C, during operation;
  • FIG. 6A shows a cross-sectional view of the drive mechanism shown in FIG. 2 in an initial inactive state
  • FIG. 6B shows a cross-sectional view of the drive mechanism shown in FIG. 2 in an actuated state as the mechanism controls the rate or profile of drug delivery;
  • FIG. 6C shows a cross-sectional view of the drive mechanism shown in FIG. 2 as the mechanism completes drug delivery and, optionally, performs a compliance push to ensure completion of drug delivery.
  • FIG. 7 shows an isometric view of another configuration of interior components of a drug delivery pump.
  • the present invention provides drive mechanisms for the controlled delivery of drug substances and drug delivery pumps that incorporate such controlled delivery drive mechanisms.
  • the drive mechanisms of the present invention control the rate of drug delivery by metering, providing resistance, or otherwise preventing free axial translation of the plunger seal utilized to force a drug substance out of a drug container and, thus, are capable of delivering drug substances at variable rates and/or delivery profiles.
  • the drive mechanisms include a tether configured to restrain expansion of a biasing member, thereby providing for a more compact design than drive mechanisms requiring a lengthier piston.
  • the drive mechanisms of the present invention can provide for integrated status indication features, such as with status triggers located on a tether of the device, which can provide feedback to the user before, during, and after drug delivery.
  • the user may be provided an initial feedback to identify that the system is operational and ready for drug delivery.
  • the system may then provide one or more drug delivery status indications to the user.
  • the drive mechanism and drug pump may provide an end-of-dose indication.
  • glass should be understood to include other similarly rion-reactive materials suitable for use in a pharmaceutical grade application that would normally require glass, including but not limited to certain non-reactive polymers such as cyclic olefin copolymers (COC) and cyclic olefin polymers (COP).
  • non-reactive polymers such as cyclic olefin copolymers (COC) and cyclic olefin polymers (COP).
  • COC cyclic olefin copolymers
  • COP cyclic olefin polymers
  • the term "plastic” may include both thermoplastic and thermosetting polymers. Thermoplastic polymers can be re-softened to their original condition by heat; thermosetting polymers cannot.
  • plastic refers primarily to moldable thermoplastic polymers such as, for example, polyethylene and polypropylene, or an acrylic resin, that also typically contain other ingredients such as curatives, fillers, reinforcing agents, colorants, and/or plasticizers, etc., and that can be formed or molded under heat and pressure.
  • plastic is not meant to include glass, non-reactive polymers, or elastomers that are approved for use in applications where they are in direct contact with therapeutic liquids that can interact with plastic or that can be degraded by substituents that could otherwise enter the liquid from plastic.
  • elastomer "elastomeric" or
  • “elastomeric material” refers primarily to cross-linked thermosetting rubbery polymers that are more easily deformable than plastics but that are approved for use with pharmaceutical grade fluids and are not readily susceptible to leaching or gas migration under ambient temperature and pressure.
  • Fluid refers primarily to liquids, but can also include suspensions of solids dispersed in liquids, and gasses dissolved in or otherwise present together within liquids inside the fluid-containing portions of the drug pumps.
  • biasing member such as in the context of one or more biasing members for asserting force on a plunger seal. It will be appreciated that the biasing member may be any member that is capable of storing and releasing energy.
  • Non-limiting examples include a spring, such as for example a coiled spring, a compression or extension spring, a torsional spring, or a leaf spring, a resiliently compressible or elastic band, or any other member with similar functions.
  • the biasing member is a spring, preferably a compression spring.
  • drug pump 10 includes a pump housing 12 which includes an upper housing 12A and a lower housing 12B.
  • the drug pump may further include an activation mechanism 14, a status indicator 16, and a window 18.
  • Window 18 may be any translucent or transmissive surface through which the operation of the drug pump may be viewed.
  • drug pump 10 further includes assembly platform 20, drive mechanism 100 having drug container 50, insertion mechanism 200, and a fluid pathway connection 300.
  • An alternative configuration of a drug pump 10 is shown in FIG. 7, with the drug pump 10 further including a power and control system 400.
  • a sterile fluid conduit 30 located at the fluid pathway connection 300 and leading to insertion mechanism 200 is also visible in FIG. 7.
  • One or more of the components of such drug pumps may be modular in that they may be, for example, pre-assernbled as separate components and configured into position onto the assembly platform 20 of the drug pump 10 during manufacturing.
  • the pump housing 12 contains all of the device components and provides a means of removably attaching the device 10 to the skin of the user.
  • the pump housing 12 also provides protection to the interior components of the device 10 against environmental influences.
  • the pump housing 12 is ergonomically and aesthetically designed in size, shape, and related features to facilitate easy packaging, storage, handling, and use by users who may be untrained and/or physically impaired.
  • the drug pump 10 provides an activation mechanism 14 that is displaced by the user to trigger the start command to the power and control system.
  • the activation mechanism is a start button 14 that is located through the pump housing 12, such as through an aperture between upper housing 12A and lower housing 12B, and which contacts a control arm 40 of the power and control system.
  • the start button 14 may be a push button, and in other embodiments, may be an on/off switch, a toggle, or any similar activation feature known in the art.
  • the pump housing 12 also provides a status indicator 16 and a window 18.
  • Drug pump 10 is configured such that, upon activation by a user by depression of the activation mechanism, the drug pump is initiated to: insert a fluid pathway into the user; enable, connect, or open necessary connections between a drug container, a fluid pathway, and a sterile fluid conduit; and force drug fluid stored in the drug container through the fluid pathway and fluid conduit for delivery into a user.
  • One or more optional safety mechanisms may be utilized, for example, to prevent premature activation of the drug pump.
  • an optional on-body sensor 24 shown in FIG. 1 C
  • the on-body sensor 24 is located on the bottom of lower housing 12B where it may come in contact with the user's body. Upon displacement of the on-body sensor 24, depression of the activation mechanism is permitted. Accordingly, in at least one embodiment the on-body sensor 24 is a mechanical safety mechanism, such as for example a mechanical lock out, that prevents triggering of the drug pump 10 by the activation mechanism 14. In another embodiment, the on-body sensor may be an electro-mechanical sensor such as a mechanical lock out that sends a signal to the power and control system to permit activation. In still other embodiments, the on-body sensor can be electrically based such as, for example, a capacitive- or impedance-based sensor which must detect tissue before permitting activation of the power and control system.
  • a plunger seal 60 As will be described further below, as force to translate a plunger seal 60 is provided by at least one biasing member 122a, 122b (FIG. 2 A), power and control systems are optional in drug delivery pumps of the present invention.
  • the power and control system interfaces with the control arm 40 to identify when the on-body sensor 24 and/or the activation mechanism 14 have been activated.
  • the power and control system may also interface with the status indicator 16 of the pump housing 12, which may be a transmissive or translucent material which permits light transfer, to provide visual feedback to the user.
  • the power and control system interfaces with the drive mechanism 100 through one or more interconnects to relay status indication, such as activation, drug delivery, and end-of- dose, to the user.
  • status indication may be presented to the user via auditory tones, such as through the audible alarms, and/or via visual indicators, such as through the LEDs.
  • the power and control system is configured to provide a dispensing status signal via the status indicator 16.
  • the power and control system may provide an okay-to-remove status signal via the status indicator 16. This may be independently-verified by the user by viewing the drive mechanism and drug dose delivery through the window 18 of the pump housing 12. Additionally, the power and control system may be configured to provide one or more alert signals via the status indicator 16, such as for example alerts indicative of fault or operation failure situations.
  • the power and control system may additionally be configured to accept various inputs from the user to dynamically control the drive mechanisms 100 to meet a desired drug delivery rate or profile.
  • the power and control system may receive inputs, such as from partial or full activation, depression, and/or release of the activation mechanism 14, to set, initiate, stop, or otherwise adjust the control of the drive mechanism 100 via the power and control system to meet the desired drug delivery rate or profile.
  • the power and control system may be configured to receive such inputs to adjust the drug dose volume; to prime the drive mechanism, fluid pathway connection, and fluid conduit; and/or to start, stop, or pause operation of the drive mechanism 100.
  • Such inputs may be received by the user directly acting on the drug pump 10, such as by use of the activation mechanism 14 or a different control interface, or the system 400 may be configured to receive such inputs from a remote control device. Additionally or alternatively, such inputs may be pre-programmed.
  • activation delays may be utilized during drug delivery.
  • one such delay optionally included within the system configuration is a dwell time which ensures that substantially the entire drug dose has been delivered before signaling completion to the user.
  • activation of the device may require a delayed depression (i.e., pushing) of the activation mechanism 14 of the drug pump 10 prior to drug pump activation.
  • the system may include a feature which permits the user to respond to the end-of-dose signals and to deactivate or power-down the drug pump. Such a feature may similarly require a delayed depression of the activation mechanism, to prevent accidental deactivation of the device.
  • Such features provide desirable safety integration and ease-of-use parameters to the drug pumps.
  • An additional safety feature may be integrated into the activation mechanism to prevent partial depression and, therefore, partial activation of the drug pumps.
  • the activation mechanism and/or power and control system may be configured such that the device is either completely off or completely on, to prevent partial activation. Such features are described in further detail hereinafter with regard to other aspects of the novel drug pumps.
  • a suitable fluid pathway connection includes a sterile fluid conduit, a piercing member, and a sterile sleeve attached to a drug container or a sliding pierceable seal integrated within a drug container.
  • the fluid pathway connection may further include one or more flow restrictors.
  • the fluid pathway connection 300 is enabled to connect the sterile fluid conduit 30 to the drug container of the drive mechanism 100.
  • Such connection may be facilitated by a piercing member, such as a needle, penetrating a pierceable seal of the drug container of the drive mechanism 100.
  • the sterility of this connection may be maintained by performing the connection within a flexible sterile sleeve.
  • the fluid pathway between drug container and insertion mechanism is complete to permit drug delivery into the body of the user.
  • the piercing member of the fluid pathway connection is caused to penetrate the pierceable seal of the drug container of the drive mechanism by direct action of the user, such as by depression of the activation mechanism by the user.
  • the activation mechanism itself may bear on the fluid pathway connection such that displacement of the activation mechanism from its original position also causes displacement of the fluid pathway connection.
  • the fluid pathway connection may be substantially similar to that described in International Patent Application No. PCT/US2012/054861, which is included by reference herein in its entirety for all purposes.
  • the fluid pathway connection may be integrated into a drug container as described in International Patent Application No. PCT/US2013/030478, for example, which is included by reference herein in its entirety for all purposes.
  • a drug container may have a drug chamber within a barrel between a pierceable seal and a plunger seal.
  • a drug fluid is contained in the drug chamber.
  • a drive mechanism Upon activation of the device by the user, a drive mechanism asserts a force on a plunger seal contained in the drug container.
  • the plunger seal asserts a force on the drug fluid and any air/gas gap or bubble, a combination of pneumatic and hydraulic pressure builds by compression of the air/gas and drug fluid and the force is relayed to the sliding pierceable seal.
  • the sliding pierceable seal is caused to slide towards the cap, causing it to be pierced by the piercing member retained within the integrated sterile fluid pathway connection.
  • the integrated sterile fluid pathway connection is connected (i.e., the fluid pathway is opened) by the combination pneumatic/hydraulic force of the air/gas and drug fluid within the drug chamber created by activation of a drive mechanism.
  • drug fluid is permitted to flow from the drug container, through the integrated sterile fluid pathway connection, sterile fluid conduit, and insertion mechanism, and into the body of the user for drug delivery.
  • the fluid flows through only a manifold and a cannula and/or needle of the insertion mechanism, thereby maintaining the sterility of the fluid pathway before and during drug delivery.
  • the drug pump is capable of delivering a range of drugs with different viscosities and volumes.
  • the drug pump is capable of delivering a drug at a controlled flow rate (speed) and/or of a specified volume.
  • the drug delivery process is controlled by one or more flow restrictors within the fluid pathway connection and/or the sterile fluid conduit.
  • other flow rates may be provided by varying the geometry of the fluid flow path or delivery conduit, varying the speed at which a component of the drive mechanism advances into the drug container to dispense the drug therein, or combinations thereof. Still further details about the fluid pathway connection 300 and the sterile fluid conduit 30 are provided hereinafter in later sections in reference to other embodiments.
  • a number of insertion mechanisms may be utilized within the drug pumps of the present invention.
  • the pump-type delivery devices of the present invention may be connected in fluid flow communication to a patient or user, for example, through any suitable hollow tubing.
  • a solid bore needle may be used to pierce the skin of the patient and place a hollow cannula at the appropriate delivery position, with the solid bore needle being removed or retracted prior to drug' delivery to the patient.
  • the fluid can be introduced into the body through any number of means, including but not limited to: an automatically inserted needle, cannula, micro-needle array, or infusion set tubing.
  • a number of mechanisms may also be employed to activate the needle insertion into the patient.
  • needle is intended to refer to a variety of needles including but not limited to conventional hollow needles, such as a rigid hollow steel needles, and solid core needles more commonly referred to as “trocars.”
  • the needle is a 27 gauge solid core trocar and in other embodiments, the needle may be any size needle suitable to insert the cannula for the type of drug and drug
  • a sterile boot may be utilized within the needle insertion mechanism.
  • the sterile boot is a collapsible sterile membrane that is in fixed engagement at a proximal end with the manifold and at a distal end with the base.
  • the sterile boot is maintained in fixed engagement at a distal end between base and insertion mechanism housing.
  • Base includes a base opening through which the needle and cannula may pass- through during operation of the insertion mechanism, as will be described further below. Sterility of the cannula and needle are maintained by their initial positioning within the sterile portions of the insertion mechanism.
  • the insertion mechanism is initially locked into a ready-to-use stage by lockout pin(s) which are initially positioned within lockout windows of the insertion mechanism housing.
  • lockout pin(s) In this initial configuration, insertion biasing member and retraction biasing member are each retained in their compressed, energized states.
  • the lockout pin(s) 208 (FIG. 7)may be directly displaced by user depression of the activation mechanism 14. As the user disengages any safety mechanisms, such as an optional on-body sensor 24 (shown in FIG. 1C), the activation mechanism 14 may be depressed to initiate the drug pump.
  • Depression of the activation mechanism 14 may directly cause translation or displacement of control arm 40 and directly or indirectly cause displacement of lockout pin(s) 208 from their initial position within locking windows of the insertion mechanism housing. Displacement of the lockout pin(s) 208 permits insertion biasing member to decompress from its initial compressed, energized state. This decompression of the insertion biasing member drives the needle and the cannula into the body of the user. At the end of the insertion stage, the retraction biasing member is permitted to expand in the proximal direction from its initial energized state. This axial expansion in the proximal direction of the retraction biasing member retracts the needle, while maintaining the cannula in fluid communication with the body of the user. Accordingly, the insertion mechanism may be used to insert a needle and cannula into the user and, subsequently, retract the needle while retaining the cannula in position for drug delivery to the body of the user.
  • drive mechanism 100 includes a drive housing 130, and a drug container 50 having a cap 52, a pierceable seal (not visible), a barrel 58, and a plunger seal 60.
  • the seals described herein may be comprised of a number of materials but are, in a preferred embodiment, comprised of one or more elastomers or rubbers.
  • the drive mechanism may further include a connection mount 54 to guide the insertion of the piercing member of the fluid pathway connection into the barrel 58 of the drug container 50.
  • the drive mechanism 100 may further contain one or more drive biasing members, one or more release mechanisms, and one or more guides, as are described further herein.
  • the components of the drive mechanism function to force a fluid from the drug container out through the pierceable seal, or preferably through the piercing member of the fluid pathway connection, for delivery through the fluid pathway connection, sterile fluid conduit, and insertion mechanism into the body of the user.
  • the drive mechanism 100 employs one or more compression springs as the biasing member(s).
  • the power and control system may be actuated to directly or indirectly release the compression spring(s) from an energized state.
  • the compression spring(s) may bear against and act upon the plunger seal to force the fluid drug out of the drug container.
  • the compression spring may bear against and act upon a piston which, in turn, acts upon the plunger seal to force the fluid drug out of the drug container.
  • the fluid pathway connection may be connected through the pierceable seal prior to, concurrently with, or after activation of the drive mechanism to permit fluid flow from the drug container, through the fluid pathway connection, sterile fluid conduit, and insertion mechanism, and into the body of the user for drug delivery.
  • the fluid flows through only a manifold and a cannula of the insertion mechanism, thereby maintaining the sterility of the fluid pathway before and during drug delivery.
  • the drive mechanism 100 includes a drug container 50 having a cap 52, a pierceable seal (not visible), a barrel 58, and a plunger seal 60, and optionally a connection mount 54.
  • the drug container 50 is mounted to a distal end of a drive housing 130.
  • a cover sleeve 140 may be utilized between the drive biasing members 122 and the interface surface 1 IOC of the piston 1 10 to, for example, promote more even distribution of force from the drive biasing member 122 to the piston 1 10, prevent buckling of the drive biasing member 122, and/or hide biasing members 122 from user view.
  • Interface surface 1 IOC of piston 1 10 is caused to rest substantially adjacent to, or in contact with, a proximal end of seal 60.
  • the piston 1 10 may be comprised of two components
  • a tether, ribbon, string, or other retention strap (referred to herein as the "tether” 580) may be connected at one end to the piston 1 10A, HOB.
  • the tether 580 may be connected to the piston 1 1 OA, 110B by retention between the two components of the piston 1 10A, 1 10B when assembled.
  • the tether 580 is connected at another end to a winch drum 520 of a delivery control mechanism 500.
  • the regulating mechanism 500 functions to control, meter, provide resistance, or otherwise prevent free axial translation of the piston 110A, 1 10B and plunger seal 60 utilized to force a drug substance out of a drug container 50. Accordingly, the regulating mechanism 500 and the drive mechanism 100 (collectively referred to herein as the "controlled delivery drive mechanism") together function to control the rate or profile of drug delivery to the user.
  • the regulating mechanism 500 is an escapement regulating mechanism.
  • the escapement regulating mechanism retards or restrains the distribution of tether 580, only allowing it to advance at a regulated or desired rate. This restricts movement of piston 1 10 within barrel 58, hence controlling the movement of-plunger seal 60 and delivery of the drug contained in chamber 21.
  • the drug substance is dispensed through the sterile pathway connection 300, conduit 30, insertion mechanism 200, and into the body of the user for drug delivery.
  • the escape wheel 562 is a compound gear having escape teeth around the circumference of a large diameter escape gear 562 A and a small diameter gear 562B (not visible) configured to engage the gear train 510 and meter, restrain, or otherwise prevent free rotational movement thereof.
  • the escapement regulating element 500 further includes a lever 564.
  • the lever 564 has pins 564A,B and prong 564C.
  • Prong 564C movably engages a post 566 A and is configured to removably engage an impulse pin 566B of a balance wheel 566.
  • the balance wheel 566 engages and functions as an oscillator around a pivot point 564D in combination with a hair spring 568.
  • the function of the escape wheel 562, balance wheel 566, hair spring 568, and lever 564 components of the escapement regulating element 500 are explained with reference to FIG. 2B and FIGS. 4A-4H.
  • the escape wheel 562 and lever 564 may initially be in an activation position, as shown in FIG. 4A.
  • the escape wheel 562 and lever 564 generally function to perform two steps, termed the locking action and the impulse action. These two actions are illustrated in FIG. 4B and FIG. 4C, respectively, and in which the gear train 510 is applying a clockwise torque on the escape wheel 562.
  • the clockwise torque may come as a result of biasing members 122 applying a force to piston 1 10 which in turn applies a tension to tether 580.
  • a clockwise moment on the lever 564 exerts a counterclockwise moment on the balance wheel 566, adding to its kinetic energy.
  • the balance wheel 566 rotates until its kinetic energy is absorbed by the hair spring 568 or until it is caused to stop by electromechanical actuator 570. It stops, reverses, and reengages the impulse pin 566B with the lever 564.
  • a complete cycle is shown in the transition between FIGS. 4D-4H.
  • a motor e.g., a DC motor, AC motor, or stepper motor
  • a- solenoid e.g., linear solenoid, rotary solenoid
  • This electromechanical actuator may be used in addition to the hair spring or in place of the hair spring.
  • electromechanical actuator 570 is a rotary solenoid.
  • the core of the rotary solenoid may rotate. This rotation may be imparted to balancing wheel 566 by, for example, a keyed shaft.
  • the rotary solenoid may later, upon either removal of the input signal or the receipt of a second input signal, rotate the balancing wheel back in the opposite direction, or, alternatively, a hair spring may be used to return the balancing wheel in the opposite direction.
  • This action could similarly be performed by a linear solenoid using an appropriate linkage to convert the linear motion of the solenoid core to rotational motion of the balancing wheel.
  • a motor may also be configured to perform similarly.
  • the balance wheel 566 To unlock the escapement regulating mechanism 500, the balance wheel 566 must have enough kinetic energy to drag the lever pin 564A,B up the face of the tooth of the escape gear 562A of the escape wheel 562. If the impulse action adds less energy than is lost to friction, the balance wheel 566 will rotate less and less and finally stall, locking the escapement regulating mechanism 500. If the escapement stops in this way under load, it will not restart easily.
  • the hair spring 568 must align the lever 564 along the axis connecting the pivot of the escape wheel 562 and the pivot of the balance wheel 566, as shown in FIG. 4A. The lever pins 564A,B will be positioned so that a bevel tooth face can immediately start an impulse action upon application of a drive torque.
  • This alignment can occur only with the escapement regulating mechanism 500 in an unloaded state.
  • the tension on the tether provided by the force of the biasing member 122 on the piston 110 must be isolated from the escapement regulating mechanism 500 until the start of delivery. This may be done by, for example, providing a lock-out feature which, in a first configuration, prevents motion of piston 110. After transformation to a second configuration, the lock-out feature does not prevent motion of piston 1 10 and thereafter the tension on tether 580 acts to create a torque on winding drum 520.
  • escapement regulating mechanism 500 may be initiated by a user imparting a force on an activation mechanism and, directly or indirectly through a power and control system, applying a drive torque to start the initial impulse action.
  • the escapement regulating mechanism 500 can be effectively utilized to meter,. restrain, or otherwise prevent free rotational movement of the gear train 510, winding drum 520 and piston 1 10, and, thus, plunger seal 60.
  • the escape wheel 562 is a compound gear having escape teeth around the circumference of a large diameter escape gear 562A and a small diameter gear 562B (not visible).
  • the small diameter gear 562B of the escape wheel 562 engages the drive train 510, which engages with winding drum 520 through rotation shaft 518.
  • This novel configuration directly permits the escape wheel 562 to regulate the rotation of the drive train 510 and winding drum 520, which then efficiently regulates the tether 580 and the piston 1 10.
  • the regulating mechanisms 500 of the present invention do not drive the delivery of fluid substances from the drug chamber 21.
  • the delivery of fluid substances from the drug chamber 21 is caused by the expansion of the biasing member 122 from its initial energized state acting upon the piston 1 10A, HOB and plunger seal 60.
  • the regulating mechanisms 500 instead function to provide resistance to the free motion of the piston 1 10A, HOB and plunger seal 60 as they are pushed by the expansion of the biasing member 122 from its initial energized state.
  • the regulating mechanism 500 does not drive the delivery but only controls the delivery motion.
  • the tether limits or otherwise restrains the motion of the piston 1 10 and plunger seal 60, but does not apply the force for the delivery.
  • the controlled delivery drive mechanisms and drug pumps of the present invention include an escapement regulating mechanism indirectly or directly connected to a tether metering the axial translation of the piston 1 10A, HOB and plunger seal 60, which are being driven to axially translate by the biasing member 122.
  • the rate of drug delivery as controlled by the regulating mechanism may be determined by: selection of the gear ratio of gear train 510; selection of the spring rate of hair spring 568; selection of the diameter of winding drum 520; using electromechanical actuator 570 to control the rate of oscillation and/or rotation of balance wheel 566; or any other method known to one skilled in the art.
  • electromechanical actuator 570 to control the oscillation and/or rotation of balance wheel 566 it may be possible to configure a drug pump to provide a variable dose rate (i.e., the rate of drug delivery is varied during a treatment).
  • the power and control system of the drug pump is configured to receive one or more inputs to meter the release of the tether 580 by the winch drum 520 and thereby permit axial translation of the piston 1 10 by the biasing member 122 to translate a plunger seal 60 within a barrel 58.
  • the one or more inputs may be provided by the actuation of the activation " mechanism 14, a control interface, and/or a remote control mechanism.
  • the power and control system may be configured to receive one or more inputs to adjust the restraint provided by the tether 580 and winch drum 520 on the free axial translation of the piston 110 upon which the biasing member 122 bears upon to meet a desired drug delivery rate or profile, to change the dose volume for delivery to the user, and/or to otherwise start, stop, or pause operation of the drive mechanism.
  • the components of the drive mechanism 100 upon activation, may be used to drive axial translation in the distal direction of the plunger seal 60 of the drug container 50.
  • the drive mechanism 100 may include one or more compliance features which enable additional axial translation of the plunger seal 60 to, for example, ensure that substantially the entire drug dose has been delivered to the user.
  • the plunger seal 60 itself, may have some compressibility permitting a compliance push of drug fluid from the drug container.
  • the novel controlled delivery drive mechanisms of the present invention may optionally integrate status indication into the drug dose delivery.
  • the status of the drive mechanism before, during, and after operation can be relayed to the power and control system to provide feedback to the user.
  • Such feedback may be tactile, visual, and/or auditory, as described above, and may be redundant such that more than one signal or type of feedback is provided to the user during use of the device.
  • the user may be provided an initial feedback to identify that the system is operational and ready for drug delivery.
  • the system may then provide one or more drug delivery status indications to the user.
  • the drive mechanism and drug pump may provide an end-of-dose indication.
  • the tether 580 may have one or more status triggers, such as electrical contacts, optical markings, or electromechanical pins or recesses, which are capable of contacting or being recognized by a status reader.
  • an end-of-dose status indication may be provided to the user once the status reader contacts or recognizes the final status trigger positioned on the tether 580 that would contact the status reader at the end of axial travel of the piston 1 10A, 1 10B and plunger 60 within the barrel 58 of the drug container 50.
  • the status reader may be, for example, an electrical switch reader to contact the corresponding electrical contacts, an optical reader to recognize the corresponding optical markings, or a mechanical or
  • the status triggers may be positioned along the tether 580 to be read or recognized at positions which correspond with the beginning and end of drug delivery, as well as at desired increments during drug delivery.
  • the rate or profile of drug delivery to the user is controlled by the escapement regulating mechanism, gear assembly, and winch drum 520 releasing the tether 580 and permitting expansion of the biasing member 122 and axial translation of the piston 1 10A, HOB and plunger seal 60.
  • the status triggers of the tether 580 are contacted or recognized by the status reader and the status of the drive mechanism before, during, and after operation can be relayed to the power and control system to provide feedback to the user.
  • the frequency of the incremental status indication may be varied as desired. As described above, a range of status readers may be utilized depending on the status triggers utilized by the system.
  • the status reader may apply a tensioning force to the tether 580.
  • the tether 580 goes slack and the status reader 544 is permitted to rotate about a fulcrum. This rotation may operate an electrical or electromechanical switch, for example a switch, signaling slack in the tether 580 to the power and control system.
  • a gear of gear train 510 may act as an encoder along with a sensor. The sensor/encoder combination is used to provide feedback of gear train rotation, which in turn can be calibrated to the position of piston HO when there is no slack in the tether 580.
  • the status reader and sensor/encoder may provide positional feedback, end-of-dose signal, and error indication, such as an occlusion, by observing slack in the tether 580 prior to reaching the expected number of motor rotations as counted by the sensor/encoder.
  • this fluid connection may be facilitated by a piercing member of the fluid pathway connection which pierces the pierceable seal and completes the fluid pathway from the drug container, through the fluid pathway connection, the fluid conduit, the insertion mechanism, and the cannula for delivery of the drug fluid to the body of the user.
  • one or more locking mechanisms may retain the biasing member 122 in an initial energized position within piston 1 10A, HOB.
  • the locking mechanism may be removed to permit operation of the drive mechanism. Removal of the locking mechanism may permit the biasing member to impart a force to piston 1 10 and therefore to tether 580.
  • This force on tether 580 imparts a torque on winding drum 520 which causes the gear train and escapement regulating mechanism to begin motion.
  • the piston 1 10 and biasing member 122 are both initially in a compressed, energized state behind the plunger seal 60.
  • the biasing member 122 may be maintained in this state until activation of the device between internal features of drive housing 130 and interface surface 1 IOC of piston 110A, 1 10B.
  • biasing member 122 is permitted to expand (i.e., decompress) axially in the distal direction (i.e., in the direction of the hatched arrow).
  • Such expansion causes the biasing member 122 to act upon and distally translate interface surface 1 I OC and piston 1 10, thereby distally translating plunger seal 60 to push drug fluid out of the drug chamber 21 of barrel 58.
  • an end-of-dose status indication may be provided to the user once the status reader contacts or recognizes a status trigger positioned on the tether 580 to substantially correspond with the end of axial travel of the piston 1 10A, 1 10B and plunger seal 60 within the barrel 58 of the drug container 50.
  • the status triggers are positioned along the tether 580 at various increments, such as increments which correspond to certain volume measurement, to provide incremental status indication to the user.
  • the status reader is an optical status reader configured to recognize the corresponding optical status triggers on the tether.
  • tether 580 passes substantially axially through the drive mechanism housing 130, the biasing member 122, and connects to the piston 1 10 A, HOB to restrict the axial translation of the piston 1 10A, HOB and the plunger seal 60 that resides adjacent thereto.
  • a mechanical timing system such as the escapement regulating mechanism described herein, may be utilized to allow the piston 1 10 and plunger seal 60 to translate axially a controlled distance, or a controlled volume, and may be utilized to meet a desired delivery rate or profile.
  • the timing system can be controlled by quartz timing instead of mechanical timing, as would be appreciated by one having ordinary skill in the art.
  • quartz timing a battery provides power to a microchip and circuit. The quartz crystal oscillates at a precise frequency. Alternate electrical timing mechanisms such as, for example, RC timing mechanisms, may also be used, including clock functions commonly found in microprocessors.
  • the microchip drives a motor based on a number of quartz crystal oscillations or other timing signals. The motor releases motion of a drive train to control the axial translation of a plunger in a similar manner as described herein for the mechanical timing system.
  • the delivery control mechanisms 500 of the present invention do not drive the delivery of fluid substances from the drug chamber 21.
  • the delivery of fluid substances from the drug chamber 21 is caused by the expansion of the biasing member 122 from its initial energized state acting upon the piston 1 lOA, HOB and plunger seal 60.
  • the delivery control mechanisms 500 instead function to provide resistance to the free motion of the piston 11 OA, 110B and plunger seal 60 as they are pushed by the expansion of the biasing member 122 from its initial energized state.
  • the biasing. member 122 is permitted to continue its expansion from its energized state and drive the piston 1 1 OA, 110B and plunger . seal 60 until the plunger seal 60 has substantially contacted the pierceable seal 56.
  • a status trigger may be configured along the tether 580 to correspond with this position of the- piston 1 10A, HOB, such that, as the piston 1 10A, HOB reaches its end of axial travel, a status trigger is read or recognized by the status reader to provide true end-of-dose indication to the user.
  • the status triggers may be positioned along the tether 580 to be read or recognized at positions which correspond with the beginning and end of drug delivery, as well as at desired increments during drug delivery.
  • incremental status indication may be provided to the user by reading or recognizing the rotational movement of one or more gears of gear train 510.
  • a status reader may read or recognize one or more corresponding status triggers on one of the gears in the gear train to provide incremental status indication before, during, and after operation of the variable rate controlled delivery drive mechanism.
  • a number of status readers may be utilized within the embodiments of the present invention.
  • the drive mechanism may utilize a mechanical status reader which is physically contacted by gear teeth of one of the gears of the gear train.
  • the status reader As the status reader is contacted by the status trigger(s), which in this exemplary embodiment may be the gear teeth of one of the gears (or holes, pins, ridges, markings, electrical contacts, or the like, upon the gear), the status reader measures the rotational position of the gear and transmits a signal to the power and control system for status indication to the user.
  • the drive mechanism may utilize an optical status reader.
  • the optical status reader may be, for example, a light beam that is capable of recognizing a motion and transmitting a signal to the power and control system.
  • Assembly and/or manufacturing of controlled delivery drive mechanism 100, drug delivery pump 10, or any of the individual components may utilize a number of known materials and methodologies in the art.
  • a number of known cleaning fluids such as isopropyl alcohol and hexane may be used to clean the components and/or the devices.
  • a number of known adhesives or glues may similarly be employed in the manufacturing process.
  • known siliconization and/or lubrication fluids and processes may be employed during the manufacture of the novel components and devices.
  • known sterilization processes may be employed at one or more of the manufacturing or assembly stages to ensure the sterility of the final product.
  • the drive mechanism may be assembled in a number of methodologies.
  • the drug container 50 may first be assembled and filled with a fluid for delivery to the user.
  • the drug container 50 includes a cap 52, a pierceable seal 56, a barrel 58, and a plunger seal 60.
  • the pierceable seal 56 may be fixedly engaged between the cap 52 arid the barrel 58, at a distal end of the barrel 58.
  • the barrel 58 may be filled with a drug fluid through the open proximal end prior to insertion of the plunger seal 60 from the proximal end of the barrel 58.
  • An optional connection mount 54 may be mounted to a distal end of the pierceable seal 56.
  • the connection mount 54 may guide the insertion of the piercing member of the fluid pathway connection into the barrel 58 of the drug container 50.
  • the drug container 50 may then be mounted to a distal end of drive housing 130.
  • the piston 1 10A, 1 10B and drive biasing member 122, and optional cover sleeve 140 may be compressed into drive housing 130.
  • Such assembly positions the drive biasing member 122 in an initial compressed, energized state and preferably places a piston interface surface 1 IOC in contact with the proximal surface of the plunger seal 60 within the proximal end of barrel 58.
  • the piston, piston biasing member, contact sleeve, and optional components may be compressed and locked into the ready-to-actuate state within the drive housing 130 prior to attachment or mounting of the drug container 50.
  • the tether 580 is pre-connected to the proximal end of the piston 1 10A, 1 10B and passed through the axial aperture of the biasing member 122 and drive mechanism 130, and then wound through the interior of the drug pump with the other end of the tether 580 wrapped around the winch drum 520 of the regulating mechanism 500.
  • drive mechanism 100 or drug pump 10 may include one or more batteries utilized to power a motor or solenoid, drive mechanisms, and drug pumps of the present invention.
  • batteries utilized to power a motor or solenoid, drive mechanisms, and drug pumps of the present invention.
  • a range of batteries known in the art may be utilized for this purpose.
  • upper or lower housings may optionally contain one or more transparent or translucent windows 18, as shown in FIG. 1A, to enable the user to view the operation of the drug pump 10 or verify that drug dose has completed.
  • the drug pump 10 may contain an adhesive patch 26 and a patch liner 28 on the bottom surface of the housing 12.
  • the adhesive patch 26 may be utilized to adhere the drug pump 10 to the body of the user for delivery of the drug dose.
  • the adhesive patch 26 may have an adhesive surface for adhesion of the drug pump to the body of the user.
  • the adhesive surface of the adhesive patch 26 may initially be covered by a non-adhesive patch liner 28, which is removed from the adhesive patch 26 prior to placement of the drug pump 10 in contact with the body of the user. Removal of the patch liner 28 may further remove the sealing membrane 254 of the insertion mechanism 200, opening the insertion mechanism to the body of the user for drug delivery (as shown in FIG. 1C).
  • the upper housing and lower housing may be separate components affixed together by a glue or adhesive, a screw fit connection, an interference fit, fusion joining, welding, ultrasonic welding, and the like; or the upper housing and lower housing may be a single unified component.
  • the controlled delivery drive mechanisms and drug pumps disclosed herein provide an efficient and easily- operated system for automated drug delivery from a drug container.
  • the novel embodiments described herein provide drive mechanisms for the controlled delivery of drug substances and drug delivery pumps which incorporate such controlled delivery drive mechanisms.
  • the drive mechanisms of the present invention control the rate of drug delivery by metering, providing resistance, or otherwise preventing free axial translation of the plunger seal utilized to force a drug substance out of a drug container and, thus, are capable of delivering drug substances at variable rates and/or delivery profiles.
  • the drive mechanisms of the present invention may provide integrated status indication features which provide feedback to the user before, during, and after drug delivery. For example, the user may be provided an initial feedback to identify that the system is operational and ready for ⁇ drug delivery.
  • the system may then provide one or more drug delivery status indications to the user.
  • the drive mechanism and drug pump may provide an end- of-dose indication.
  • the novel controlled delivery drive mechanisms of the present invention may be directly or indirectly activated by the user. Furthermore, the novel configurations of the controlled delivery drive mechanism and drug pumps of the present invention maintain the sterility of the fluid pathway during storage,
  • the device Because the path that the drug fluid travels within the device is entirely maintained in a sterile condition, only these components need be sterilized during the manufacturing process.
  • Such components include the drug container of the drive mechanism, the fluid pathway connection, the sterile fluid conduit, and the insertion mechanism.
  • the power and control system, the assembly platform, the control arm, the activation mechanism, the housing, and other components of the drug pump do not need to be sterilized. This greatly improves the manufacturability of the device and reduces associated assembly costs. Accordingly, the devices of the present invention do not require terminal sterilization upon completion of assembly.
  • Manufacturing of a drug pump includes the step of attaching both the controlled delivery drive mechanism and drug container, either separately or as a combined component, to an assembly platform or housing of the drug pump.
  • the method of manufacturing further includes attachment of the fluid pathway connection, drug container, and insertion mechanism to the assembly platform or housing.
  • the additional components of the drug pump, as described above, including the power and control system, the activation mechanism, and the control arm may be attached, preformed, or pre-assembled to the assembly platform or housing.
  • An adhesive patch and patch liner may be attached to the housing surface of the drug pump that contacts the user during operation of the device.
  • a method of operating the drug pump includes the steps of: activating, by a user, the activation mechanism; displacing a control arm to actuate an insertion mechanism; and actuating a power and control system to activate a controlled delivery drive mechanism to drive fluid drug flow through the drug pump according to a controlled rate or drug delivery profile.
  • the method may further include the step of: engaging an optional on-body sensor prior to activating the activation mechanism.
  • the method similarly may include the step of: establishing a connection between a fluid pathway connection to a drug container.
  • the method of operation may include translating a plunger seal within the controlled delivery drive mechanism by the expansion of the biasing member acting upon a piston within a drug container to force fluid drug flow through the drug container, the fluid pathway connection, a sterile fluid conduit, and the insertion mechanism for delivery of the fluid drug to the body of a user, wherein a regulating mechanism acting to restrain the distribution of a tether is utilized to meter the free axial translation of the piston.
  • the method of operation of the insertion mechanism and the drug pump may be better appreciated with reference to FIGS. 5A- 5B and FIGS. 6A-6C, as described above.

Landscapes

  • Health & Medical Sciences (AREA)
  • Vascular Medicine (AREA)
  • Engineering & Computer Science (AREA)
  • Anesthesiology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Hematology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Dermatology (AREA)
  • Infusion, Injection, And Reservoir Apparatuses (AREA)

Abstract

L'invention concerne un mécanisme d'entraînement d'administration commandée qui comprend un boîtier d'entraînement (130); un ressort (122) initialement retenu dans un état pressé et portant sur un piston (110) configuré pour translater un joint d'étanchéité de piston plongeur (60) dans un cylindre (58) d'un récipient de médicament (50); et une attache (580) reliée entre le piston (110) et un tambour de treuil (520) pour limiter l'expansion libre du ressort (122). Le mécanisme d'entraînement (100) peut comprendre un ensemble engrenage et un mécanisme de régulation d'échappement (500) pour commander la rotation de l'ensemble engrenage pour libérer l'attache du tambour de treuil. Le mécanisme de régulation d'échappement (500) comprend un levier (564), une roue d'échappement (562) et un balancier (566) avec un ressort spiral (568) et un moteur ou un actionneur solénoïde (570). Le levier comporte des chevilles (564); et une broche (564C) venant en prise de façon mobile avec un montant (566A) et une cheville de plateau (566B) d'un balancier (566).
PCT/IB2017/001047 2017-08-30 2017-08-30 Mécanismes d'entraînement d'administration commandée pour pompes d'administration de médicament WO2019043423A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CA3074354A CA3074354A1 (fr) 2017-08-30 2017-08-30 Mecanismes d'entrainement d'administration commandee pour pompes d'administration de medicament
PCT/IB2017/001047 WO2019043423A1 (fr) 2017-08-30 2017-08-30 Mécanismes d'entraînement d'administration commandée pour pompes d'administration de médicament

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/IB2017/001047 WO2019043423A1 (fr) 2017-08-30 2017-08-30 Mécanismes d'entraînement d'administration commandée pour pompes d'administration de médicament

Publications (1)

Publication Number Publication Date
WO2019043423A1 true WO2019043423A1 (fr) 2019-03-07

Family

ID=65525039

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2017/001047 WO2019043423A1 (fr) 2017-08-30 2017-08-30 Mécanismes d'entraînement d'administration commandée pour pompes d'administration de médicament

Country Status (2)

Country Link
CA (1) CA3074354A1 (fr)
WO (1) WO2019043423A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10695487B2 (en) 2016-08-30 2020-06-30 Unl Holdings Llc Controlled delivery drive mechanisms for drug delivery pumps
US11135356B2 (en) 2012-08-29 2021-10-05 Unl Holdings Llc Controlled delivery drive mechanisms for drug delivery pumps

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022147053A1 (fr) * 2021-01-04 2022-07-07 Becton, Dickinson And Company Mécanisme de régulation de dose et de prévention de surdose

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050197625A1 (en) * 2002-08-30 2005-09-08 Ulrich Haueter Device for the dosed discharging of a liquid agent and infusion pump
US20120172804A1 (en) * 2009-03-31 2012-07-05 Sanofi-Aventis Deutschland Gmbh Medicament delivery devices
WO2014036308A2 (fr) * 2012-08-29 2014-03-06 Unitract Syringe Pty Ltd Mécanismes d'entraînement d'administration commandée pour pompes d'administration de médicament
WO2016049501A1 (fr) * 2014-09-26 2016-03-31 Unitract Syringe Pty Ltd Récipients de médicament à tube concentrique et pompes d'administration de médicament permettant le mélange et l'administration
WO2017177094A2 (fr) * 2016-04-08 2017-10-12 Amgen Inc. Dispositif d'administration de médicament, procédé de fabrication et procédé d'utilisation

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050197625A1 (en) * 2002-08-30 2005-09-08 Ulrich Haueter Device for the dosed discharging of a liquid agent and infusion pump
US20120172804A1 (en) * 2009-03-31 2012-07-05 Sanofi-Aventis Deutschland Gmbh Medicament delivery devices
WO2014036308A2 (fr) * 2012-08-29 2014-03-06 Unitract Syringe Pty Ltd Mécanismes d'entraînement d'administration commandée pour pompes d'administration de médicament
WO2014036239A2 (fr) * 2012-08-29 2014-03-06 Unitract Syringe Pty Ltd Mécanismes d'entraînement d'administration commandée pour pompes d'administration de médicament
WO2016049501A1 (fr) * 2014-09-26 2016-03-31 Unitract Syringe Pty Ltd Récipients de médicament à tube concentrique et pompes d'administration de médicament permettant le mélange et l'administration
WO2017177094A2 (fr) * 2016-04-08 2017-10-12 Amgen Inc. Dispositif d'administration de médicament, procédé de fabrication et procédé d'utilisation

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11135356B2 (en) 2012-08-29 2021-10-05 Unl Holdings Llc Controlled delivery drive mechanisms for drug delivery pumps
US10695487B2 (en) 2016-08-30 2020-06-30 Unl Holdings Llc Controlled delivery drive mechanisms for drug delivery pumps

Also Published As

Publication number Publication date
CA3074354A1 (fr) 2019-03-07

Similar Documents

Publication Publication Date Title
US11135356B2 (en) Controlled delivery drive mechanisms for drug delivery pumps
US20210128830A1 (en) Controlled delivery drive mechanisms for drug delivery pumps
US20180264193A1 (en) Drive Mechanism For Drug Delivery Pumps With Integrated Status Indication
WO2019043423A1 (fr) Mécanismes d'entraînement d'administration commandée pour pompes d'administration de médicament

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17923194

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3074354

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17923194

Country of ref document: EP

Kind code of ref document: A1