WO2019042407A1 - 试验设备 - Google Patents

试验设备 Download PDF

Info

Publication number
WO2019042407A1
WO2019042407A1 PCT/CN2018/103520 CN2018103520W WO2019042407A1 WO 2019042407 A1 WO2019042407 A1 WO 2019042407A1 CN 2018103520 W CN2018103520 W CN 2018103520W WO 2019042407 A1 WO2019042407 A1 WO 2019042407A1
Authority
WO
WIPO (PCT)
Prior art keywords
test
sample
loading
loading system
pressure
Prior art date
Application number
PCT/CN2018/103520
Other languages
English (en)
French (fr)
Inventor
王美兰
辛国臣
樊宇璇
贺杰梅
辛国政
Original Assignee
王美兰
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 王美兰 filed Critical 王美兰
Publication of WO2019042407A1 publication Critical patent/WO2019042407A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/08Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces
    • G01N3/10Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces generated by pneumatic or hydraulic pressure
    • G01N3/12Pressure testing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/286Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q involving mechanical work, e.g. chopping, disintegrating, compacting, homogenising
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/003Generation of the force
    • G01N2203/0042Pneumatic or hydraulic means
    • G01N2203/0048Hydraulic means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/025Geometry of the test
    • G01N2203/0256Triaxial, i.e. the forces being applied along three normal axes of the specimen

Definitions

  • the invention relates to the field of geotechnical testing, and in particular to a testing device.
  • the inventors have found that the existing test equipment can not perform the test of a plurality of different working conditions well, and the test can be performed in a single test, and a plurality of samples are required to be prepared for each different test.
  • the utilization rate of the sample is not high.
  • an embodiment of the present invention provides a testing device, including a testing room and a loading system, wherein:
  • the test chamber is composed of a bottom surface and a side surface, and a marking line is drawn on a bottom surface of the testing chamber, the marking line dividing the testing chamber into a first area located at a center position of the bottom surface and located at the first a second area surrounding the first area of the area, wherein the test room comprises a common test room with a bottom surface impervious to water and a water permeable test room with a bottom surface permeable;
  • the loading system includes a pressure pad, a ram, and a loading device, wherein the ram acts on the pressure pad to transfer pressure generated by the loading device to the pressure pad, the pressure pad will load the device pressure Uniformly acting on the corresponding sample, the pressure pad comprising a first pressure pad matching the shape and size of the first region and a second pressure pad matching the shape and size of the second region board.
  • one or more loading systems or a set of loading systems can be configured to configure one or more loading devices to apply loads to different areas, and to customize the corresponding pressure pads for each zone, through the surrounding loading system.
  • the second region material provides lateral restraint to the first region material, and can be tested in various working conditions in the laboratory.
  • the first region of the laboratory may not be completely at the center of the laboratory, and the first region may not be completely wrapped by the second region.
  • the test chamber is a water permeable test chamber
  • the apparatus further includes a water separator, the water separator may be one or more, and the water separator has a cross-sectional area not greater than that of the test chamber.
  • the area of the first region, the water catcher being detachably connectable to a range outside the bottom surface of the permeation test chamber corresponding to the first region.
  • the penetration test can be greatly reduced by the influence of the side walls, so that more accurate penetration test data can be obtained.
  • the bottom surface and the side surface forming the second region of the common laboratory are comprised of a plurality of detachable portions.
  • bottom surface and the side surface detachable part of the bottom surface or side surface can be removed at any time during the test, so that a plurality of working conditions can be tested by one sample to improve the test efficiency.
  • the detachable portions are each surrounded by a partial bottom surface and a partial side surface, the detachable plurality of portions being identical in shape and size.
  • the number of loading systems or devices is not less than two to act on the first region and the second region at least simultaneously.
  • each region can be loaded at the same time.
  • the testing apparatus further includes a bracket including an "H"-shaped bracket for supporting the loading system and provided with a slidable region to be capable of stretching and contracting in a vertical direction , thereby lifting and lowering the loading system.
  • the stability is better, and by arranging the slidable area, the vertical lifting of the bracket can be realized in the sliding process, and the height adjustment of each component mounted on the bracket is facilitated.
  • loading systems and measuring systems for example, loading systems and measuring systems.
  • the testing apparatus further includes a rotating beam, one end of the rotating beam is fixed to the vertical rod of the "H" type bracket and is rotatable about the vertical rod, and the loading system is fixed at The other end of the rotating beam.
  • the loading system By fixing the loading system to one end of the rotating beam and rotating the rotating beam around the vertical rod of the support, the loading system can be moved out of the test chamber to facilitate the operation of the test chamber, such as adding a sample or removing a part of the sample.
  • the testing device further includes a measurement system, an information processing system, and a power system,
  • the measuring system comprises a loading measuring device, a deformation measuring device, a pore pressure measuring device and an infiltration measuring device;
  • the information processing system is respectively connected to the power system and the measurement system to process data fed back by the measurement system, generate a control instruction according to the processing result, and send the control instruction to the power system.
  • the power system is coupled to the loading system to control loading of the loading system in accordance with control instructions of the information processing system.
  • a measuring device may be separately disposed in the first region and the second region, so that materials of the first region and the second region may be separately measured.
  • the information processing system includes a receiving unit, a processing unit, and a control unit.
  • the receiving unit is configured to receive parameter information measured by the measurement system and send the parameter information to the processing unit;
  • the processing unit processes the measured parameter information according to a preset control parameter indicator and generates a control instruction
  • the control unit controls the power system to drive the loading system to operate according to the preset control parameter index and/or control the power system to drive the loading system to work in response to a control instruction of the processing unit.
  • the power system and the loading system can be automatically controlled based on preset control parameter indexes, thereby realizing precise test condition control, and the test result is more accurate.
  • the geotechnical test apparatus further includes a vibration system that is detachably attachable to a bottom surface of the test chamber to provide a vibration input to the test chamber.
  • a vibration system that is detachably attachable to a bottom surface of the test chamber to provide a vibration input to the test chamber.
  • the vibration system can also be provided separately on a separate platform, and the application is not limited in this respect.
  • the geotechnical testing apparatus further includes a temperature control system capable of providing a cold source or a heat source to the test chamber by being detachably fixed to a bottom surface and/or a side of the test chamber. Control the temperature of the laboratory.
  • the test room can be used for testing various working conditions, and the test equipment can be improved to some extent. Utilization rate.
  • FIG. 1 is a schematic structural diagram of a test apparatus according to an embodiment of the present invention.
  • FIGS. 2a, 2b and 2c are schematic structural views of a laboratory provided by an embodiment of the present invention.
  • FIG. 3 is a flow chart of a geotechnical test method according to an embodiment of the present invention.
  • 4a and 4b are schematic structural views of two different forms of a geotechnical test instrument according to an embodiment of the present invention.
  • FIG. 5 is a schematic structural view of still another geotechnical test instrument according to an embodiment of the present invention.
  • FIG. 6 is a schematic structural view of still another geotechnical test instrument according to an embodiment of the present invention.
  • 1-test box 2-test platform, 3-indenter, 4-loading equipment, 5-measuring system, 6-height adjuster, 7-lower base, 8-upper top, 9-beam, 10 - Rotating beam, 11 - upper vertical beam, 12 - lower vertical beam, 13 - information processing system, 14 - power system.
  • test data referred to in the following embodiments are the data obtained by the method described below in the test apparatus of the present invention, and the test data obtained under the existing test apparatus are directed to Objects may vary. It is convenient to distinguish the parameters obtained by the technical principle of the test equipment from the parameters tested by other equipments.
  • the test parameters measured under the principle of the test equipment start with 'Xin (Guochen)-He (Jiemei)'; for example, determination
  • the consolidation coefficient is determined by 'Xin-He consolidation coefficient', the cohesive force measured is 'Xin-He cohesion', the measured permeation flow velocity distribution is 'Xin-He penetration velocity distribution', and the maximum permeation flow rate is 'Xin - He penetration flow rate ', the measured deformation modulus is 'Xin-He compression modulus', the compression coefficient is 'Xin-He compression coefficient', and the measured dynamic cohesion is named after 'Xin-Happo cohesion' , other related parameters and so on.
  • FIG. 1 shows a schematic structural view of a test apparatus.
  • the test equipment of this embodiment can be applied not only to geotechnical tests, but also to related tests of other test materials (such as non-metallic materials and metal materials such as rock and concrete).
  • other test materials such as non-metallic materials and metal materials such as rock and concrete.
  • the test equipment comprises a test box 1, a test platform 2, a pressure head 3, a loading device 4, a measuring system 5, a height adjuster 6, a lower base 7, an upper top seat 8, a cross beam 9, a rotating beam 10
  • the test box 1 is used to hold part of the test equipment or counterweight, such as information processing system, power system, etc. can be placed in the test box.
  • the lower base 7 and the upper top seat 8 can support the bottom and the upper part of the equipment support.
  • the upper part of the equipment support can be in close contact with the roof of the test building, and the test equipment is passed through the roof and the ground of the test building. It can be fixed in the vertical direction; of course, the bottom of the equipment bracket can be directly anchored to the bottom of the test building by means of anchor bolts, or the test equipment can be placed directly on the floor of the room, or the installation pulley can be placed at the bottom of the test equipment.
  • a device that facilitates the movement of equipment such as a device that controls the movement of the pulley.
  • a device that controls the movement of the pulley is also possible to provide a space for making a test specimen by replacing the beam 9 with the rise and fall of the test platform 2. Therefore, the upper top seat 8, the cross member 9 and the height adjuster 6 are not essential.
  • the loading system is composed of a pressure pad (not shown), a pressing head, and a loading device (such as a jack), etc., and the measuring system can be located inside the loading system, for example, between the indenter and the loading device. Of course, it can also be set separately from the loading system, and the application is not limited in this respect. Some measuring devices such as a shape measuring device and a pressure measuring device may be disposed inside the loading system, and some measuring devices such as a pore pressure measuring device and a permeometric measuring device need to be separately set, and determined according to specific experimental scenarios. .
  • a test chamber (not shown) can be placed on the test platform 2 for related tests. The specific structure of the laboratory is shown in Figure 2a, 2b or 2c.
  • the test chamber (only the bottom of the test chamber is shown) is divided by the marking line 103 into a first area 101 and a second area 102.
  • the first pressure pad (not shown) has the same shape and size as the first region
  • the second pressure pad (not shown) has the same shape and size as the second region. Therefore, when the sample is contained in the test chamber, the loading system can uniformly pressurize the sample of the first region through the first pressure pad and uniformly test the second region through the second pressure pad. Sample pressure. Since the laboratory is divided into two zones, the specimens located in both zones can be individually pressurized. Therefore, the test equipment can be used to simulate a variety of different test scenarios and improve the utilization of samples and equipment.
  • the second region of the test chamber can be composed of a plurality of detachable portions 1021, 1022, 1023 and 1024.
  • the side of the test chamber is also detachable.
  • the second area is formed by four detachable parts of different sizes, wherein after the removal of 1022 or 1023, the sample of the first area There is no lateral pressure on one side.
  • the sample in one zone provides lateral pressure, and the application is not limited in this respect.
  • the detachable portions may also be of other optional quantities, or that the portions may vary in size, and the application is not limited in this respect.
  • the bottom surface of the test chamber is circular and detachable.
  • the laboratory may also be of other shapes, such as a rectangle, a triangle, etc., and the application is not limited in this respect.
  • the side of the test chamber may also be composed of the same number of portions so as to form a detachable space together with the respective bottom portions.
  • the second pressure pad corresponding to the shape and size of the second area may also be composed of a plurality of detachable parts to correspond to the detachable bottom surfaces, and can be better adapted to various test scenarios. There are no restrictions on the application in this regard.
  • the measurement system may include a shape measuring device, a pressure measuring device, an infiltration measuring device, and a pore pressure measuring device, etc., and the application is not limited in this respect.
  • the height adjuster is placed in the middle of the bracket and can be used to adjust the height of the bracket so that the loading system can move in the vertical direction.
  • the rotating beam can be placed on the beam of the bracket so that the loading system can be rotated about the vertical rod of the bracket.
  • the loading system can be rotated to the top of the test platform.
  • the loading system can be rotated out of the test platform, thereby facilitating the test box and the test box on the test platform.
  • the sample is operated.
  • There may also be tracks on the rotating beam, and the loading system may have rollers to enable the loading system to move on the rotating beam.
  • the test chamber is a permeable test chamber
  • the apparatus further includes a water separator having a cross-sectional area no greater than an area of the first region of the test chamber, the water separator being detachably connectable to The outer side of the bottom surface of the penetration test chamber is within a range corresponding to the first region.
  • the number of water separators may be one or more, and the invention is not limited in this respect. It is also possible to provide a large water receiver for receiving water that has permeated throughout the laboratory during the infiltration or compression test.
  • the type of the sample to be tested and the working condition of the test can be analyzed first;
  • the simulated environmental material of the sample to be tested is prepared;
  • the geotechnical test sample is placed in the first region defined by the simulated environmental material, so that the simulated environmental material constitutes a peripheral wall bordering the geotechnical test sample; of course, the sample may be first placed in the first region. Then simulate the environmental material in the second area; or prepare the samples in the first and second areas at the same time;
  • the geotechnical test is carried out on the geotechnical test samples in the peripheral wall.
  • the geotechnical tests include triaxial test, compression test, consolidation test and penetration test, and other related geotechnical tests based on the test equipment (such as compaction). Test, bearing ratio test, rebound modulus test, loess collapsibility test, expansive soil test, frozen soil test, etc.).
  • the type of the geotechnical test sample and the working condition of the test may be simply analyzed, and the test material is selected according to the analysis result.
  • a set of prepared simulated environmental materials can be placed around the inner side wall of the empty laboratory to provide a more realistic peripheral environment for the geotechnical samples to be tested.
  • the geotechnical sample to be tested is placed in the area defined by the simulated environmental material, and the geotechnical sample to be tested is connected with the simulated environmental material to simulate the environmental material to become the peripheral wall of the geotechnical sample to be tested and can be the geotechnical work to be tested.
  • the specimen provides lateral pressure that is closer to the real situation.
  • the geotechnical test is carried out on the geotechnical test specimens defined in the peripheral wall formed by the simulated environmental materials.
  • the geotechnical tests include triaxial test, compression test, consolidation test, compression test and penetration test, and based on the test equipment.
  • Other related geotechnical tests such as compaction test, load ratio test, rebound modulus test, loess collapsibility test, expansive soil test, frozen soil test, etc.).
  • the geotechnical test method of the present embodiment can better simulate the real environment and reduce the error caused by the laboratory by preparing the simulated environmental material for the geotechnical sample and performing the relevant geotechnical test under the simulating environmental material.
  • the geotechnical test is a penetration test
  • the geotechnical test of the geotechnical test sample in the peripheral wall includes measuring the amount of penetration of at least a portion of the geotechnical test sample in the peripheral wall. At least part of it may be all the geotechnical samples to be tested in the peripheral wall, or may be part of the geotechnical test sample. By measuring only the amount of penetration of at least part of the geotechnical test sample in the peripheral wall, the influence of the container wall (the inner side wall of the test chamber) on the penetration test can be reduced.
  • the geotechnical test may be a triaxial test, a compression test or a consolidation test
  • the geotechnical test of the geotechnical test sample in the peripheral wall includes: testing the geotechnical work in the peripheral wall at a preset loading rate The sample and/or the peripheral wall are subjected to an axial preset pressure; the actual loading rate corresponding to the preset loading rate and the deformation of the geotechnical sample to be tested are measured.
  • the consolidation test when performing the geotechnical test, pressure can be separately applied to the simulated environmental materials of the geotechnical test sample and the peripheral wall to simulate various possible scenarios, for example, The geotechnical test sample and the simulated environmental material are subjected to the same size of pressure, or the geotechnical test sample is subjected to greater pressure than the simulated environmental material. These tests are required because the actual geotechnical test sample may exist. Different environmental pressures may be subject to different pressures. For example, when the geotechnical specimen to be tested is in a lower position than the environmental material in the actual environment, the lateral pressure caused by the environmental material to be tested is necessarily the same as the lateral pressure. different.
  • the method further includes: when the actual loading rate is not equal to the preset loading rate; increasing or decreasing the preset The loading rate is such that the actual loading rate is equal to the preset loading rate; when the actual loading rate is equal to the preset loading rate, the shape variable of the geotechnical test sample is measured.
  • the controllable amount such as loading rate, pressure, etc.
  • the loading speed of 0.5 kPa/s can be further increased to continuously approach the value to be measured, thereby making the measurement The end result is more accurate.
  • applying an axial preset pressure to the geotechnical test sample and/or the peripheral wall in the peripheral wall at a preset loading rate further includes: testing the geotechnical at different preset loading rates The sample and the peripheral wall are subjected to different axial preset pressures for compression and tensile testing of the geotechnical test sample and the peripheral wall.
  • the test chamber may be a non-closed test chamber, and the test chamber may be composed of a plurality of detachable parts.
  • the geotechnical test method may further include: removing the geotechnical test sample. Constraint of the test chamber and/or the peripheral wall on one or several sides; continue to apply pressure to the geotechnical test sample, and measure the deformation of the test sample; judge the end of the pressure according to the shape variable or deformation rate of the geotechnical test sample Load.
  • the geotechnical test method further includes: applying a vibration to the geotechnical test to perform a vibration related test.
  • a vibration related test For example, earthquake scenarios can be simulated to test seismic capacity and the like.
  • the geotechnical test in the present application may include a triaxial test, a compression test, a consolidation test, a compression test and a penetration test, and other related geotechnical tests performed on the basis of the test equipment (such as a compaction test, Bearing ratio test, rebound modulus test, loess collapsibility test, test of expansive soil, test of frozen soil and other special soil tests, etc.).
  • the consolidation test, the triaxial test, and the penetration test are exemplified, so that those skilled in the art can better understand the present invention. It should be noted that although the following description is directed to the consolidation test, the triaxial test, and the penetration test, those skilled in the art can also apply the method to be protected by the present invention to other geotechnical tests or other materials according to the following description. In the case of, for example, a compression test or a metal material test, the present application is not limited in this respect.
  • the consolidation test can be performed on the consolidation tester shown in FIG. 3, the triaxial test can be performed on the triaxial tester shown in FIGS. 4a and 4b, and the penetration test can be shown in FIG.
  • the penetration tester was carried out and the compression test was carried out on the compression tester shown in FIG. It should be noted that the above tester is merely exemplary and does not represent the final product.
  • This equipment mainly provides all or part of the lateral surrounding pressure to the specimen through the geotechnical materials or other materials around the specimen (which can be the same material as the test specimen or different materials), and can avoid the specimen.
  • the main structure of the compression test instrument from the test room, loading system, surrounding loading system, guard ring, ring cutter, sink, strain gauge, permeable plate and pressure pad, pore pressure measuring device, drainage and exhaust system ( The figure is drawn but not marked with text), the test platform and so on.
  • the test needs, it is possible to appropriately increase or decrease the corresponding auxiliary facilities (for example, when it is necessary to determine the horizontal consolidation-related parameters of the sample, the water-permeable hole can be added on the side of the test chamber; the test sample needs to respond under vibration)
  • the vibration input system can be added, the vibrating input system can be used to provide vibration input to the sample; when it is not necessary to understand the change of the pore pressure, the pore pressure measuring device can be removed, but the equipment and the ring cutter are not affected. And the contact interface of the retaining ring on the test results and the surrounding environment and test conditions of the sample.
  • the test chamber is used to hold the test sample and provide the test space.
  • the loading system provides the load to the sample.
  • the surrounding loading system provides the load to the material around the sample.
  • the water tank is used to hold the liquid.
  • the variable measuring device is used to measure the deformation of the sample.
  • the permeable plate and the pressure cover plate provide a permeation channel for the sample and make the sample force uniform.
  • the hole pressure measuring device is used for measuring the pore pressure of the sample in the test chamber and/or the material surrounding the sample, and the drainage row
  • the gas system is used to discharge the sample and the fluid in the material surrounding the sample.
  • the test platform mainly provides a fixing and mounting platform for the test equipment, and the vibration input system is used to provide vibration input for the vibration-related test.
  • the loading system can load the test sample, the surrounding loading system can load the material around the sample, the pore pressure measuring device can measure the pore pressure change in the sample during the test, and the variable measuring device can measure the test process. Deformation of the sample.
  • the sample is loaded with 100 kPa through the loading system and the surrounding loading system, and the 100 kPa is measured by the strain measuring device.
  • the deformation process of the lower sample until the deformation is stable.
  • the dissipation process of the pore pressure can be measured by the pore pressure measuring device; after the deformation of the sample under the action of 100 kPa is stabilized, the pressure of the surrounding loading system is kept unchanged.
  • the loading system continues to increase the pressure of the sample by 20 kPa, and the deformation process of the sample is measured by the strain gauge measuring device, and the dissipation process of the pore pressure is measured by the pore pressure measuring device until the deformation of the sample is stable. It can be measured under the confining pressure provided by the pressure of the surrounding loading system of 100 kPa, the sample is in the range of 100-120 kPa, the porosity ratio of the sample changes, the compression coefficient, the compressive modulus, the volume compression coefficient, the compression index, and the rebound index (test From the rebound phase), consolidation coefficient, time factor, consolidation degree and other sample parameters related to consolidation.
  • This equipment can also measure the deformation of the sample and the change of pore pressure under vibration.
  • the sample is loaded with 100 kPa through the loading system and the surrounding loading system, and the 100 kPa is measured by the strain measuring device.
  • the dissipation process of the pore pressure can be measured by the pore pressure measuring device; after the deformation of the sample under the action of 100 kPa is stabilized, the pressure of the surrounding loading system and the loading system is maintained.
  • the vibration is applied to the sample by the vibration input system, and the deformation and the pore pressure change of the sample are measured by the strain measuring device and the pore pressure measuring device under the action of the vibration.
  • This equipment mainly provides all or part of the lateral wall pressure to the sample through the geotechnical material or other materials around the sample (which can be the same material as the test sample, which can be different materials). Corresponding tests were carried out to test the test parameters under different working conditions. In addition to the tests that can be performed by a conventional triaxial tester, the device can also perform other related tests such as compressibility, load carrying capacity and the like.
  • the main structure of the triaxial test instrument consists of a loading system, a surrounding loading system (which can be a loading unit or several independent loading units), a test chamber, a strain measuring device, a pore pressure measuring device, and a drainage exhaust.
  • the system (pictured but not marked with text), test platform, permeable stone and pad.
  • the loading system mainly provides axial pressure to the sample; the surrounding loading system mainly supplies pressure to the surrounding material of the sample under the loading system; the laboratory is mainly used to hold the sample and the surrounding material of the sample, and provide the test with Test space; strain measurement system, mainly used to measure the deformation of the sample during the test sample; pore pressure measurement device, mainly used to measure the pore pressure of the sample or the material in the test chamber during the test; drainage and exhaust system, Mainly discharges the water and gas in the sample and the material around the sample; the test platform mainly provides the fixing and installation platform for the test equipment; the permeable stone is mainly used as the drainage and exhaust passage of the material in the test room, and can force the material in the test chamber Uniform; the pad can balance the pressure and make the sample under the pad evenly stressed.
  • the corresponding equipment can be appropriately increased or decreased. For example, it is necessary to measure the corresponding sample under vibration.
  • a vibration input system can be added, and the vibration input system can be used to input vibration to the test, and the vibration-related test can be used.
  • the laboratory can choose the appropriate shape and form, which can be round, square or other shapes; the laboratory can be closed around (such as closed ring), it can be closed (such as 3/4 ring) , lack of a square of the side, etc.); the laboratory can be a whole, or it can be composed of several parts of the detachable combination.
  • the cross-sectional area of the test chamber is greater than (or not less than) the contact area of the loading system (or the permeable stone and the backing plate under the loading system) with the sample.
  • the auxiliary equipment can be added or deleted to the test equipment according to actual needs, such as removing the pore pressure measuring device, the vibration input system, and increasing the test bench.
  • the sample when performing a triaxial test, the sample is prepared and placed in the test chamber, and the sample is pressurized to the required vertical pressure by the surrounding loading system and loading system (or directly applied to the sample by the surrounding loading system and loading system).
  • Vertical consolidation pressure so that the sample reaches the state required for the test), and then, maintain the pressure of the surrounding loading system, continue to apply pressure to the sample through the loading system, increase the vertical force of the sample under the loading system, and
  • the vertical deformation of the test sample is measured by the strain measuring device in real time, and the termination load of the loading system is judged according to the deformation amount or the deformation rate of the sample;
  • the sample when performing a triaxial test, the sample is prepared and placed in the test chamber, and the sample is loaded into the required vertical load by the surrounding loading system and loading system (or directly applied to the sample by the surrounding loading system and loading system).
  • Vertical consolidation pressure so that the sample reaches the state required for the test)
  • to maintain the load of the loading system continue to load the sample through the surrounding loading system, increase the surrounding pressure of the sample, and measure the amount through the strain measuring device Deformation of the test sample, and determining the termination load of the loading system according to the deformation amount or deformation rate of the sample;
  • the working state of the surrounding loading system and the loading system can be adjusted according to actual needs. It is not limited to the above test steps.
  • the load and the working state of the drainage and exhaust system can be adjusted as needed to complete different tests on the sample. . For example, after the surrounding loading system and the loading system reach the load required by the test, the surrounding loading system on one side is removed, and then the sample is continuously pressurized by the loading system, and the like.
  • the loading system and the sample under the loading system may not be in the middle of the test chamber, and the relative positional relationship between the loading system and the surrounding loading system may be any combination, and the loading system may be in the loading system and the surrounding loading system.
  • the middle of the combined plane may also be in other positions.
  • the three-axis test is a non-closed (or detachable assembled closed) four-axis test:
  • the sample is prepared and placed in the test chamber, and the sample is loaded into the required vertical load by the surrounding loading system and loading system (or the vertical consolidation pressure applied directly to the sample through the surrounding loading system and loading system, The sample is brought to the state required by the sample. Then, the constraint on one or several sides of the sample is removed, and the load is applied to the sample through the loading system to increase the vertical force of the sample and pass the strain measurement.
  • the device deforms the test sample in real time, and judges the termination load of the loading system according to the deformation amount or deformation rate of the sample.
  • the working state of the surrounding loading system and the loading system can be adjusted according to actual needs, and is not limited to the above test steps.
  • the load and the working state of the drainage and exhaust system can be adjusted as needed to complete the sample. Different tests.
  • the test conditions can be adjusted according to the actual needs, and the parameters of the test specimens under different working conditions can be determined.
  • the surrounding loading system can provide uniform pressure to the test, and can also provide different pressures to different parts; the loading system and the surrounding loading system can adjust their respective positions according to the relative position of the sample in the test chamber.
  • the surrounding loading system can be a separate loading unit, or it can be composed of multiple independent loading units.
  • the surrounding loading system can be sampled. Different pressures are applied to different parts of the surrounding material to achieve different test conditions.
  • the vibration input system can be started according to the test requirements, and various types of reactions of the sample under vibration (for example, the excess pore water pressure of the sample and the deformation under vibration) can be measured. Etc.) and related parameters (for example, dynamic cohesion of the sample, internal friction angle, etc.).
  • the sample can be used without limitation to the soil material, and can also be used for testing related materials (such as concrete, rock, etc.); the test can be used without limitation to one material, and can also be used for a variety of materials. Synthetic composites (eg, composite foundations, reinforced concrete, etc.) are tested for relevant tests.
  • the tests that can be performed on this instrument are not limited to the several tests mentioned in the text, and other tests can be performed on the instrument; or, some auxiliary facilities are added to the principle and platform of the device design to realize some other Related tests.
  • the penetration test has two types: constant head test and variable head test.
  • the main equipment consists of test tube (ie test room), water supply device (constant head, variable head), outlet pipe, loading system, overflow facility, surrounding loading system, strain measuring device, and permeametric measuring system (measuring the amount of liquid permeating, Including water receiver, permeation measuring device, etc., pressure measuring hole and pore pressure measuring device, wherein the cross-sectional area (or inner diameter) of the water separator in the measuring system is not greater than the cross-sectional area (or inner diameter) of the test tube .
  • the test instrument can measure the parameters of a part of the sample in the test tube through the cross-sectional area of the water separator in the osmometry system not greater than the cross-sectional area of the test tube, and avoid the influence of the contact interface between the sample and the test tube on the test result.
  • the penetration test under different working conditions can be realized; at the same time, the test can be pressed, and the deformation of the test sample can be measured to determine different parameters of the same sample under different pressures or densities.
  • some structures may be added or removed, for example, removing the loading system and the surrounding loading system, removing the pressure measuring hole and the pore pressure measuring device, etc., increasing the temperature measuring device of the sample or the permeating liquid, and measuring A flow rate measuring device and a measuring device for measuring the permeation amount of the material other than the cross section of the water receiving device are added to the device, but the instrument is not obstructed: the influence of the contact cross section between the sample and the test tube on the test result is avoided, and different pressures are realized.
  • the test results of the lower sample and other effects are examples of the test results of the lower sample and other effects.
  • the test tube provides the sample containing equipment
  • the water supply device provides the osmotic liquid and the water head for the test
  • the osmometry system measures the penetration of the liquid during the test
  • the loading system and the surrounding loading system can apply pressure to the sample in the test tube
  • the overflow facility The head of the constant head can be kept constant, and the strain measuring system measures the deformation of the sample in the sample tube.
  • the pressure measuring hole and the pore pressure measuring device can measure the head of different parts in the test tube, and the permeation measuring system can be connected through the water pipe.
  • the permeate of the sample in the cross section of the water collector is collected into a measurement system and the amount of permeation of the liquid is measured.
  • the structural form of each part may not be limited to the figure.
  • the water supply device in the water head test may have the same structure from the top to the bottom, or may have a structure of a variable cross section.
  • the normal head test the sample is made well, after the instrument is installed, the length of the sample is L, the head is h, and the cross-sectional area of the water collector is measured by the measurement system after measuring the seepage flow through the osmometry system.
  • the amount of permeation q, and the deformation amount s of the sample due to the seepage can be measured by the strain measuring system; the pressure p is applied to the sample in the sample cylinder by the loading system and the surrounding loading system, and the test is performed by the strain measuring system.
  • the deformation amount S of the sample in the sample tube, and the permeation amount Q of the cross-sectional area A of the outlet pipe of the permeate measurement system is measured by the permeation measurement system after the percolation is stabilized.
  • the amount of permeation through the cross section of the outlet pipe is t in the time t; after the pressure p is applied, the permeation amount of the cross section of the outlet through the permeation measuring system is Q in the T time.
  • the water head test the sample is made well, and after the instrument is installed, the length of the sample is L, and the permeation amount q of the cross-sectional area A of the outlet pipe of the outlet pipe is measured by the measuring system at time t, and The deformation amount s of the sample due to the seepage is measured by the strain measuring system; the pressure p is applied to the sample in the sample cylinder by the loading system and the surrounding loading system, and the deformation amount of the sample in the sample cylinder is measured by the strain measuring system.
  • the device can also measure the relationship between the amount of permeation and time under various working conditions; the relationship between the permeation amount of any cross-section sample and time, and the permeation amount after the seepage is stable (multiple sets of measuring devices can be set, by setting different The water separator of the section and the corresponding permeation measuring device measure the penetration of different sections).
  • This equipment mainly provides all or part of the lateral pressure to the specimen through the geotechnical materials or other materials around the specimen (which can be the same material as the test specimen or different materials), under different conditions (for example, the test of the sample under different lateral pressures, the relevant test parameters of the sample are measured.
  • the main structure of the compression test instrument consists of a loading system, a surrounding loading system, a test box, a strain measuring device, a vibration input system, a backing plate, and a test platform.
  • the test box mainly supplies the sample and provides space for the test of the sample.
  • the loading system mainly provides pressure to the sample.
  • the surrounding loading system mainly supplies pressure to the material around the sample, and the main measuring system of the strain measuring system is in the process of testing.
  • the sample in the test box and the deformation of the material around the sample, the pad can make the material under the loading system and the surrounding loading system more uniform, the test platform can provide the fixing and mounting platform for the test equipment, and the vibration input system can be determined.
  • the response of the sample under vibration provides a vibration input.
  • the auxiliary device can be added or deleted according to the actual needs (for example, when the test sample needs to respond to vibration, the vibration input system can be added, and the vibration input system can be supplied to the sample through the vibration input system; When the pore pressure of the sample changes, the pore pressure measuring device can be increased; the test bench can be added as needed, but the equipment is not affected, and all or part of the lateral direction is provided to the sample by the material around the sample. Pressure to test the sample under different conditions.
  • the test box selects the appropriate cross-sectional shape, which can be round (whether it is more suitable for the ring), square or the like; it can be closed around (such as closed ring), it can be closed (such as 3/ 4 rings, missing a square of the sides; the test box can be a whole or a part of a detachable combination of components (eg); the cross-sectional area of the test box is greater than (or not less than) the loading system (or the pad of the loading system) the area of contact with the sample.
  • the surrounding loading system can be a separate loading unit, or it can be composed of multiple independent loading units.
  • the surrounding loading system can be sampled. Different pressures are applied to different parts of the surrounding material to achieve different test conditions.
  • the surrounding pressure composed of a plurality of independent loading units can apply the same pressure or different pressures under each independent loading unit.
  • the sample is pressurized to the required pressure by the loading system and the surrounding loading system.
  • P1 then continue to apply load p2 to the sample through the loading system and the surrounding loading system, and measure the deformation s of the sample in real time through the strain gauge.
  • the measured data such as stress and strain (the pressure is increased from p1 to p2 and the deformation of the sample is s), the parameters of the sample under the working condition are determined.
  • the sample is pressurized to the required pressure p1 by the loading system and the surrounding loading system. Then, the surrounding loading system is kept unchanged, and the sample is continuously pressurized by the loading system, and the deformation s of the sample is measured in real time by the strain measuring device. According to the measured relationship between stress and strain (pressure increases from p1 to p2, sample deformation is s), the parameters of the sample under this condition are determined.
  • test room is a non-closed (detachable combination) type of test:
  • the sample is pressurized to the required pressure p1 by the loading system and the surrounding loading system. Then, part of the test box is removed, and part of the side of the sample is unconstrained.
  • the sample is continuously pressurized by the loading system and the surrounding loading system, and the deformation s of the sample is measured in real time by the strain gauge. According to the measured relationship between stress and strain (pressure increases from p1 to p2, sample deformation is s), the parameters of the sample under this condition are determined.
  • the sample is pressurized to the required pressure p1 by the loading system and the surrounding loading system. Then, part of the test box is removed, and part or all of the side of the sample is unconstrained, and the deformation s of the sample is measured by the deformation measuring device to determine the parameters of the corresponding sample.
  • the sample is pressurized to the required pressure by the loading system and the surrounding loading system. 100kPa, then remove part of the test box, make part or all of the side of the sample unconstrained, maintain the pressure of the surrounding loading system, continue to increase the pressure of the sample by 20 kPa through the loading system, and measure the deformation of the sample through the deformation measuring device . According to the measured relationship between stress and strain, the corresponding sample parameters are determined.
  • the sample is in the range of 100-120 kPa, the porosity ratio of the sample changes, the compression coefficient, the compressive modulus, the volume compression coefficient, the compression index, and the rebound index (test Parameters related to sample compressibility from the rebound phase).
  • This test can also measure the various responses of the sample under vibration. For example, after the sample is prepared (or by applying pressure to the sample through the surrounding loading system and loading system to bring the sample to the desired state), the sample is pressurized to a pressure of 100 kPa by the loading system and the surrounding loading system. Then remove a part of the test box, make part or all of the side of the sample unconstrained, maintain the pressure of the surrounding loading system and loading system 100kPa, apply a vibration to the sample through the vibration input system, and measure the strain through the strain The measuring device measures the deformation of the sample and the like. According to the measured relationship between stress and strain and vibration input, the parameters related to deformation under the vibration of the sample under the vertical pressure of 100 kPa are determined.
  • the loading system can be in the middle of the upper surface of the entire specimen, or on one side of the upper surface of the entire specimen, or any other location.
  • the working state of the surrounding loading system and the loading system can be adjusted according to actual needs, and is not limited to the above test steps.
  • the working state of the surrounding loading system and the loading system can be adjusted as needed to complete different tests on the sample.
  • the above-mentioned test steps are not limited, and the side limit conditions can be adjusted according to actual needs to complete the parameter determination of the sample under different working conditions.
  • the tester can not only perform various compression tests on the sample, but also perform various kinds of indoor tests on the sample, such as rebound test, compaction test, compression test, rebound and compression test, and the expansive soil. Expansibility-related tests, collapsibility-related tests for collapsible loess, and related tests on frozen soils, and other related tests for geotechnical materials and other materials.
  • the vibration input system of the tester can be activated, and the corresponding sample parameters are determined under the corresponding vibration state.
  • the vibration input system can be started according to the test requirements, and the various reactions and related parameters of the sample under vibration are measured (for example, the sample is In a certain stress state, the vibration causes the deformation of the sample, etc.), when the pore pressure measuring device is added to the test equipment, the liquefaction of the soil material under the vibration, the excess pore water pressure, and the like can also be measured.
  • the vibration input system may not be provided.
  • the sample can be used without limitation to the soil material, and can also be used for testing related materials (such as concrete, rock, organic synthetic materials, metal materials, etc.); the test can be used without limitation to one material, or Relevant test tests are carried out on composite materials (for example, composite foundation, reinforced concrete, etc.) composed of various materials.
  • related materials such as concrete, rock, organic synthetic materials, metal materials, etc.
  • the test can be used without limitation to one material, or Relevant test tests are carried out on composite materials (for example, composite foundation, reinforced concrete, etc.) composed of various materials.
  • the tests that can be performed on this instrument are not limited to the several tests mentioned in the text, and other tests can be performed on the instrument; or, some auxiliary facilities are added to the principle and platform of the device design to realize some other Related tests.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

一种试验设备,其中试验室由底面和侧面构成,在试验室的底面绘制有标记线,标记线将试验室划分为位于底面的中心位置的第一区域和位于第一区域外围的包裹第一区域的第二区域,其中,试验室包括底面不透水的普通试验室和底面透水的透水试验室;加载系统包括加压垫板、压头(3)和加载设备(4),其中,压头(3)作用于加压垫板以将加载设备(4)产生的压力均匀作用于加压垫板,加压垫板包括与第一区域的形状和大小匹配的第一加压垫板和与第二区域的形状和大小匹配的第二加压垫板。通过对试验室进行分区,并为各区定制相应的加压垫板,可以使试验室能用于进行各种不同工况的试验,可以在一定程度上提高试验设备的利用率。

Description

试验设备 技术领域
本发明涉及土工试验领域,尤其涉及一种试验设备。
背景技术
目前的室内土工试验一般会在一定的试验仪器内进行相关的试验。一般都会人为的制造一个约束条件,以模拟现场的实际工况,通常情况下,这些约束条件都是与工程实际工况不完全相符的,例如,三轴压缩试验中,将试样用橡胶等材料包裹后,施加一定的围压,通过不固结不排水剪试验、固结不排水剪试验、固结排水剪试验三种类型的试验模拟所有的工况,而实际工程中,材料是不会被橡胶等材料进行侧向约束的,并且材料和其周围的压力可能会不同,或者还有可能根本没有侧向压力。例如,渗透试验,将试样放入试验圆筒中进行渗透测试,增加了边界对试验结果的影响;侧限压缩试验,将试样放入刚性试验室中对试样进行压缩测试。
发明人在实现本发明的过程中发现:现有的试验设备无法很好地进行多种不同工况的试验,所能进行的试验单一,每次做不同的试验还需制备多种试样,对试样的利用率不高。
发明内容
为了解决现有技术中的上述至少一个技术问题,本发明实施例提供一种试验设备,包括试验室和加载系统,其中:
所述试验室由底面和侧面构成,在所述试验室的底面绘制有标记线,所述标记线将所述试验室划分为位于所述底面的中心位置的第一区域和位于所述第一区域外围的包裹所述第一区域的第二区域,其中,所述试验室包括底面不透水的普通试验室和底面透水的透水试验室;
所述加载系统包括加压垫板、压头和加载设备,其中,所述压头作用于加压垫板以将加载设备产生的压力传递至加压垫板,加压垫板将加载设备压力均匀作用于对应试样,所述加压垫板包括与所述第一区域的形状和 大小匹配的第一加压垫板和与所述第二区域的形状和大小匹配的第二加压垫板。
通过对试验室进行分区,可设置一个或多个加载系统或一套加载系统配置一个或多个加载设备给不同的区域分别施加荷载,并对各区定制相应的加压垫板,通过周围加载系统及第二区域材料给第一区域材料提供侧向约束,可在试验室能进行各种不同工况的试验。
对于试验室的第一区域可不完全处于试验室的中心,第一区域亦可不是完全被第二区域所包裹。
在一些实施方式中,所述试验室为透水试验室,所述设备还包括接水器,接水器可为一个或多个,所述接水器的横截面积不大于所述试验室的第一区域的面积,所述接水器能够可拆卸地连接至所述渗透试验室的底面外侧与所述第一区域对应的范围内。
通过将接水器的横截面积设置为小于第一区域的面积,可以使渗透试验受侧壁的影响极大地降低,从而能够得到更加精确的渗透试验数据。
在一些实施方式中,形成所述普通试验室的第二区域的所述底面和所述侧面由可拆卸的多个部分组成。
通过将底面和侧面做成可拆卸的,可以在试验的过程中随时拆卸掉部分底面或侧面,从而可以通过一份试样就能进行多种工况试验,提高试验效率。
在一些实施方式中,所述可拆卸的多个部分均由部分底面和部分侧面围成,所述可拆卸的多个部分形状、大小均相同。
通过将可拆卸的多个部分做成一样的,从而可以得到一些渐变的试验数据,更好地进行各种工况试验,更快地找到某些试验的临界点。
在一些实施方式中,所述加载系统或设备的数量不少于两个以至少同时作用于所述第一区域和所述第二区域。
通过将加载系统或加载设备的数量设置成不少于两个,可以同时对各个区域进行加载。
在一些实施方式中,所述试验设备还包括支架,所述支架包括“H”型支架,所述支架用于支撑所述加载系统并设置有可滑动区域以能够在竖直方向拉伸和收缩,从而对所述加载系统进行升降。
通过采用“H”型支架,稳定性更好,通过设置可滑动的区域,从而在滑动过程中就能实现支架在竖直方向的升降,方便对安装在支架上的各个组件进行高度的调节,例如加载系统和量测系统。
在一些实施方式中,所述试验设备还包括旋转横梁,所述旋转横梁的一端固定在所述“H”型支架的竖杆上并能够绕着所述竖杆旋转,所述加载系统固定在所述旋转横梁的另一端上。
通过将加载系统固定在旋转横梁的一端,使旋转横梁绕着支架的竖杆转动时,加载系统能够移出试验室的上空,便于对试验室进行操作,例如加入试样或者移出部分试样等。
在一些实施方式中,所述试验设备还包括量测系统、信息处理系统和动力系统,
所述量测系统包括加载量测装置、变形量测装置、孔压量测装置和渗透量测装置;
所述信息处理系统分别与所述动力系统和所述量测系统连接,以对所述量测系统反馈的数据进行处理,根据处理结果生成控制指令并向所述动力系统发送所述控制指令,
所述动力系统与所述加载系统连接以根据所述信息处理系统的控制指令控制所述加载系统加荷。
通过将量测系统、动力系统与信息处理系统连接,可以通过信息处理系统实现试验过程中的自动控制,从而实现更加精准的控制,使试验获得的数据更加精确。可在第一区域和第二区域分别设置量测装置,从而可以对第一区域和第二区域的材料进行分别量测。
在一些实施方式中,所述信息处理系统包括接收单元、处理单元和控制单元,
所述接收单元用于接收所述量测系统量测的参数信息并发送至所述处理单元;
所述处理单元根据预设的控制参数指标对所述量测的参数信息进行处理并生成控制指令;
所述控制单元根据所述预设的控制参数指标控制所述动力系统带动所述加载系统工作和/或响应于所述处理单元的控制指令控制所述动力系 统带动所述加载系统工作。
通过接收单元、处理单元和控制单元,从而可以实现基于预设的控制参数指标自动地控制动力系统和加载系统,从而实现精准的试验条件控制,使得试验结果更加精准。
在一些实施方式中,所述土工试验设备还包括振动系统,所述振动系统能够通过可拆卸的方式固定在所述试验室的底面以为所述试验室提供振动输入。当然,振动系统也可以单独设置在独立的平台上,本申请在此方面没有限制。
在一些实施方式中,所述土工试验设备还包括温度控制系统,所述温度控制系统能够通过可拆卸的方式固定在所述试验室底面和/或侧面为所述试验室提供冷源或热源,控制试验室的温度。
在本发明实施例中,通过对试验室进行分区,并为各区定制相应的加压垫板,可以使试验室能用于进行各种不同工况的试验,可以在一定程度上提高试验设备的利用率。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明一实施例提供的一种试验设备的结构示意图。
图2a、图2b和图2c是本发明实施例提供的试验室的结构示意图。
图3是本发明一实施例提供的一种土工试验方法的流程图;
图4a、图4b是本发明一实施例提供的另一种土工试验仪器的两种不同形态的结构示意图;
图5是本发明一实施例提供的又一种土工试验仪器的结构示意图;
图6是本发明一实施例提供的再一种土工试验仪器的结构示意图。
其中,1-试验箱,2-试验平台,3-压头,4-加载设备,5-量测系统,6-高度调节器,7-下底座,8-上顶座,9-横梁,10-旋转横梁,11-上竖梁,12-下竖梁,13-信息处理系统,14-动力系统。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。需要说明的是,以下实施例中涉及到的试验数据均是在本发明的试验装置中按照以下所描述的方法得出的数据,与在现有的试验装置下得出的试验数据所针对的对象可能会有所不同。便于区分本试验设备的技术原理下所测试获得的参数与其他设备测试的参数,本试验设备原理下所测定的试验参数均以‘辛(国臣)-贺(杰梅)’开头;例如,测定的固结系数以‘辛-贺固结系数’,测定的粘聚力以‘辛-贺粘聚力’,测定的渗透流速分布以‘辛-贺渗透流速分布’、最大渗透流速以‘辛-贺渗透流速’,测定的变形模量以‘辛-贺压缩模量’,压缩系数以‘辛-贺压缩系数’,测定的动粘聚力以‘辛-贺动粘聚力’命名等,其他相关的参数以此类推。
请参考图1,其示出了一种试验设备的结构示意图。本实施例的试验设备不仅可以适用于土工试验,还可用于其他测试材料(如岩石、混凝土等非金属材料及金属材料)的相关试验中。需要说明的是,虽然在图1中仅示例性的示出了一个加载系统和量测系统,但这并不用于限定只能有一个加载系统和量测系统,实际应用中可能会用到多个量测系统和加载系统。
如图1所示,试验设备包括试验箱1,试验平台2,压头3,加载设备4,量测系统5,高度调节器6,下底座7,上顶座8,横梁9,旋转横梁10,上立柱11,下立柱12,信息处理系统13,动力系统14。
其中,试验箱1用于盛装部分试验设备或配重,如信息处理系统、动力系统等可以放置在试验箱里。下底座7,上顶座8可以使设备支架底部和上部均有支持,如通过调节后,可以使设备支架的上部与试验厂房的房顶紧密接触,通过试验厂房的房顶和地面将试验设备在竖直向固定;当然,也可以采用地脚螺栓的方式将设备支架的底部直接锚固在试验厂房的底部,也可直接将试验设备放置在房间地板上,或在试验设备的底部设置安装滑轮(附带可控制滑轮移动的装置)等便于设备移动的装置。当然,也可以通过试验平台2的升 降,代替横梁9,提供制作试验试样的空间。因此,上顶座8,横梁9与高度调节器6并不是必须的。
加载系统由加压垫板(图中未示出)、压头以及加载设备(如千斤顶等)等构成,量测系统可以位于加载系统的内部,例如图中位于压头和加载设备之间,当然也可以独立于加载系统,单独设置,本申请在此方面没有限制。有些量测装置例如形变量测装置和压力量测装置可以设置在加载系统内部,而有些量测装置如孔压量测装置和渗透量测装置则需要单独设置,根据具体的不同的试验场景确定。试验室(图中未示出)可以放置在试验平台2上以进行相关试验。试验室的具体结构如图2a,2b或2c所示。
如图2a所示,试验室(仅示出试验室的底部)被标记线103划分为第一区域101和第二区域102。第一加压垫板(图中未示出)具有和第一区域相同的形状和大小,第二加压垫板(图中未示出)具有和第二区域相同的形状和大小。从而当所述试验室中盛装试样时,加载系统能通过第一加压垫板均匀地对第一区域的试样加压,并通过第二加压垫板均匀地对第二区域的试样加压。由于试验室被划分为两个区域,位于两个区域内的试样都能被单独加压,因此,该试验设备能够用于模拟多种不同的试验场景,提高试样和设备的利用率。
如图2b所示,其示例性地示出了试验室的第二区域能够由多个可拆卸的部分1021、1022、1023和1024组成。需要说明的是,试验室的侧面也是可拆卸的,例如图中示出第二区域由4个大小不一的可拆卸的部分构成,其中,当拆除1022或者1023之后,第一区域的试样的一侧没有了任何侧向压力,此时,可以进行一侧没有侧向约束的相关试验,也可以一侧拆除后将试验盒侧面移动到拆除的部分中靠近试样的位置以重新为第一区域的试样提供侧向压力,本申请在此方面没有限制。本领域的技术人员可以理解,可拆除的多个部分还可以是其他可选的数量,或者各部分大小不同,本申请在此方面没有限制。
如图2c所示,其示例性地示出了试验室的底面为圆形,并为可拆卸的。需要说明的是,试验室还可以是其他形状的,例如矩形、三角形等,本申请在此方面没有限制。另外,当第二区域由多个部分组成时,试验室侧面也可以由相同数量的多个部分组成,从而能与各个底面部分共同形成一个可拆卸的空间。进一步的,与第二区域形状大小对应的第二加压垫板也可以由可拆 卸的多个部分组成,以与可拆卸的各个底面对应,并能更好地适应于各种试验场景,本申请在此方面没有限制。
量测系统可以包括形变量测装置,压力量测装置,渗透量测装置以及孔压量测装置等,本申请在此方面没有限制。
高度调节器设置在支架的中部,可以用于调节支架的高度,从而使加载系统可以在竖直方向运动。当然,也可以对试验平台进行升降,从而使试验平台上的试验室(或试验盒)充分接近加载系统,之后再对加载系统的高度进行微调以进行相关试验。
旋转横梁可以设置在支架的横梁上,从而可以使加载系统能够绕着支架的竖杆旋转。需要使用加载系统时,可以将加载系统旋转至试验平台的上空,当不需要使用加载系统时,可以将加载系统旋转出试验平台的上空,从而方便对试验平台上的试验盒及试验盒内的试样进行操作。旋转横梁上还可以有轨道,加载系统上可以有滚轮以使加载系统能够在旋转横梁上移动。
在一些可选的实施例中,试验室为透水试验室,设备还包括接水器,接水器的横截面积不大于试验室的第一区域的面积,接水器能够可拆卸地连接至渗透试验室的底面外侧与第一区域对应的范围内。其中,接水器的数量可以有一个或者多个,本发明在此方面没有限制。还可以设置一个大的接水器,用于接收整个试验室在渗透或者压缩试验中渗透出来的水。
以下,结合利用本发明给出的试验设备试验的过程以更好地说明本发明的试验设备的功能。
在试验开始之前,可以先分析土工待测试样的类型及试验的工况;
之后,根据土工待测试样的类型及试验的工况,制备待测试样的模拟环境材料;
之后,围着空的试验室的内侧壁在试验室的第二区域放置一圈制备的土工待测试样的模拟环境材料;
之后,在模拟环境材料限定的第一区域内放置土工待测试样,使得模拟环境材料构成了与土工待测试样接界的外围墙;当然,也可以先在第一区域放试样,然后再在第二区域放模拟环境材料;也可以在第一、第二区域同时制样;
最后,对外围墙内的土工待测试样进行土工试验,土工试验包括三轴试验、压缩试验、固结试验和渗透试验以及在此试验设备的基础上进行的其他相关的土工试验(如击实试验、承载比试验、回弹模量试验、黄土湿陷性试验、膨胀土的试验、冻土的试验等等)等。
在本实施例中,拿到土工待测试样后,可以先简单分析该土工待测试样的类型及试验的工况,根据分析结果,选择试验材料。之后,可以先围着空的试验室的内侧壁放置一圈制备的模拟环境材料以为待测土工试样提供更加真实的外围环境。之后,将待测土工试样放置在模拟环境材料限定的区域内,并使得待测土工试样与模拟环境材料接界从而模拟环境材料成为待测土工试样的外围墙并能为待测土工试样提供更加接近真实情况的侧向压力。最后,对模拟环境材料所形成的外围墙内限定的土工待测试样进行土工试验,土工试验包括三轴试验、压缩试验、固结试验、压缩试验和渗透试验以及在此试验设备的基础上进行的其他相关的土工试验(如击实试验、承载比试验、回弹模量试验、黄土湿陷性试验、膨胀土的试验、冻土的试验等等)等。
本实施例的土工试验方法通过为土工试样制备模拟环境材料,并在模拟环境材料的包围下进行相关的土工试验,可以更好地模拟真实环境,减少因试验室带来的误差。
在一些可选的实施例中,土工试验为渗透试验,对外围墙内的土工待测试样进行土工试验包括:量测外围墙内的至少部分土工待测试样的渗透量。其中,至少部分可以是外围墙内所有的土工待测试样,也可以是土工待测试样的一部分。通过只量测外围墙内的至少部分土工待测试样的渗透量,可以减少容器壁(试验室的内侧壁)对渗透试验造成的影响。
在一些可选的实施例中,土工试验可以为三轴试验、压缩试验或固结试验,对外围墙内的土工待测试样进行土工试验包括:以预设加载速率对外围墙内的土工待测试样和/或外围墙施加轴向的预设压力;量测与预设加载速率对应的实际加载速率以及土工待测试样的形变量。在本实施例中,对于三轴试验、固结试验或者压缩试验,进行土工试验时,还可以对土工待测试样和外围墙的模拟环境材料分别施加压力以模拟各种可能的场景,例如土工待测试样与模拟环境材料都承受相同大小的压力,或者土工待测试样比模拟环境材料承受更大的压力等,需要做这些试验是因为实际应用时可能会存在待测 土工试样与其环境材料可能会承受不同的压力,例如当待测土工试样在实际环境中所处的地势低于其环境材料时,其环境材料对待测土工试样造成的侧向压力必然与地势相同时不同。
进一步可选的,在量测与预设加载速率对应的实际加载速率以及土工待测试样的形变量之后,方法还包括:当实际加载速率不等于预设加载速率时;增加或减少预设加载速率以使实际加载速率等于预设加载速率;在实际加载速率等于预设加载速率时,量测土工待测试样的形变量。为了尽可能精确地模拟想要模拟的场景,需要不断地调整可控的量,如加载速率、压力等,以使试验结果更加精确。例如当施加的预设加载速率为2kPa/s,测得实际加载速率仅为1.5kPa/s时,则可以再增加0.5kPa/s的加载速度以不断接近想要测量的值,从而使测量的最终结果更加准确。
在一些可选的实施例中,以预设加载速率对外围墙内的土工待测试样和/或外围墙施加轴向的预设压力还包括:以不同的预设加载速率对土工待测试样和外围墙施加轴向的不同的预设压力以对土工待测试样和外围墙进行压缩和拉伸试验。通过对外围墙和土工待测试样施加不同的控制条件从而可以进行不同工况的试验,使土工试验能够为实际应用提供更多种实验数据,从而更好地知道实际施工。
在另一些可选的实施例中,上述试验室可以为非闭合式试验室,该试验室可以由可拆卸的多个部分组成,该土工试验方法还可以包括:撤掉土工待测试样的一侧或几侧的试验室和/或外围墙的约束;继续给土工待测试样施加压力,并量测试样的变形;根据土工待测试样的形变量或者变形速率判断施压的终止荷载。通过撤掉部分或全部外围墙或试验室的场景,可以为实际生产中可能出现的场景提供试验数据,并能模拟可能发生的危险以更好地预警。
在另一些可选的实施例中,上述土工试验方法还包括:为土工试验施加振动作用以进行振动相关试验。例如,可以模拟地震场景以试验抗震能力等。
需要说明的是,本申请中的土工试验可以包括三轴试验、压缩试验、固结试验、压缩试验和渗透试验以及在此试验设备的基础上进行的其他相关的土工试验(如击实试验、承载比试验、回弹模量试验、黄土湿陷性试验、膨胀土的试验、冻土的试验以及其他特殊性土的试验等等)等。
以下,以固结试验、三轴试验和渗透试验为例,以使本领域的技术人员更好地理解本发明。需要说明的是,虽然以下描述针对的是固结试验、三轴试验和渗透试验,本领域的技术人员根据以下描述,同样可以将本发明要保护的方法应用到其他土工试验或者其他材料的试验中,例如压缩试验或者是金属材料试验等,本申请在此方面没有限制。
其中,固结试验可以在图3中示出的固结试验仪上进行,三轴试验可以在图4a和图4b中示出的三轴试验仪上进行,渗透试验可以在图5中示出的渗透试验仪上进行,压缩试验可以在图6中示出的压缩试验仪上进行。需要说明的是,上述试验仪只是示例性的,并不代表最终产品。
1、固结试验仪(参见图3)
本设备主要通过试样周围的岩土体材料或其他材料(可以与试验的试样同种材料,也可以是不同材料)给试样提供全部或部分的侧向围压力,并能避免试样与试验器材(透水板及垫板除外)的接触界面对试验结果的影响,实现不同工况下的测试试验,测得试样的相关试验参数。
压缩试验仪器的主要结构,由试验室,加载系统,周围加载系统,护环,环刀,水槽,应变量测装置,透水板及加压垫板,孔压量测装置,排水排气系统(图中有画出但未以文字标示出),试验平台等组成。根据试验需要,可以是适当增减相应的辅助设施(例如,需要测定试样的水平向的固结相关的参数时,可以在试验室侧面增加透水孔;需要测试试样在振动作用下的响应时,可以增加振动输入系统,通过振动输入系统给试样提供振动输入;不需要了解孔压的变化情况时,可以去掉孔压量测装置),但都不用影响本设备避免试样与环刀及护环的接触界面对试验结果的影响及试样的周围环境与试验工况。试验室用来盛装试验试样并提供试验空间,加载系统给试样提供荷载,周围加载系统给试样周围的材料提供荷载,水槽用来盛装液体,应变量测装置用来测量试样的变形,透水板及加压盖板给试样提供渗透通道及使试样受力均匀,孔压量测装置用来量测试验室内的试样和(或)试样周围材料的孔压,排水排气系统用来排出试样及试样周围材料中的流体,试验平台主要给试验设备提供固定及安装平台,振动输入系统用来给与振动相关的试验提供振动输入。
加载系统可以对测试试样进行加载,周围加载系统可以对试样周围材料进行加载,孔压量测装置可以量测试验过程中试样中的孔压变化,应变量测装置可以量测试验过程中试样的变形。
例如,试验设备安装完毕、试样(假定试样与试样周围材料是相同材料)制作好后,通过加载系统、周围加载系统给试样进行加载100kPa,并通过应变量测装置量测100kPa作用下试样的变形过程,直至变形稳定,在此过程中,可以通过孔压量测装置测量孔压的消散过程;100kPa作用下的试样变形稳定后,保持周围加载系统的压力不变,通过加载系统继续给试样增加20kPa的压力,通过应变量测装置测量试样的变形过程,通过孔压量测装置测定孔压的消散过程,直至试样变形稳定。可以测得100kPa的周围加载系统压力提供的围压下,试样在100~120kPa范围内,试样的孔隙比变化,压缩系数,压缩模量,体积压缩系数,压缩指数,回弹指数(试验由回弹阶段时),固结系数,时间因数,固结度等与固结相关的试样参数。
本设备也可以测定振动作用下,试样的变形与孔压变化等情况。例如,试验设备安装完毕、试样(假定试样与试样周围材料是相同材料)制作好后,通过加载系统、周围加载系统给试样进行加载100kPa,并通过应变量测装置量测100kPa作用下试样的变形过程,直至变形稳定,在此过程中,可以通过孔压量测装置测量孔压的消散过程;100kPa作用下的试样变形稳定后,保持周围加载系统和加载系统的压力不变,通过振动输入系统给试样施加一个振动,并测定在该振动作用下,通过应变量测装置及孔压量测装置测量试样的变形及孔压变化。
2、三轴试验(参考图4a自下而上施加压力和图4b自下而上施加压力)
本设备主要通过试样周围的岩土体材料或其他材料(可以与试验的试样同种材料,可以是不同的材料)给试样提供全部或部分的侧向围压力,通过对试样进行相应的试验,测得不同工况下的试验参数。该设备除可以实现常规三轴试验仪所能完成的试验外,还可以进行其他相关的试验,例如压缩性、承载能力等等。
三轴试验仪器的主体结构由加载系统,周围加载系统(可以是一个加载单元,也可以是几个独立的加载单元组成),试验室,应变量测装置,孔压量测装置,排水排气系统(图中有画出但未以文字标示出),试验平台,透 水石与垫板等组成。加载系统,主要给试样提供轴向压力;周围加载系统,主要给加载系统下的试样的周围材料提供压力;试验室,主要用来盛装试样及试样的周围材料,并给试验提供试验空间;应变量测系统,主要用来量测试样过程中试样的变形;孔压量测装置,主要用来量测试验过程中试样或者试验室内材料的孔压;排水排气系统,主要排出试样及试样周围材料中的水和气;试验平台,主要给试验设备提供固定及安装平台;透水石,主要用作试验室内材料的排水排气通道,并可以使试验室内材料受力均匀;垫板,可以平衡压力使垫板下试样受力均匀。根据试验需要可以适当增减相应的设备,例如需要测定振动作用下试样的相应,可以增设振动输入系统,通过振动输入系统,给试验输入振动作用,进行与振动相关的试验使用。
根据试验需要,试验室选择合适的形状和形式,可以圆形,可以方形或者其他形状;试验室可以是四周闭合式的(如闭合圆环),可以是不闭合的(如3/4圆环,缺少一个边的方形等);试验室可以是一个整体的,也可以是由几部分可拆卸组合的构件构成的。试验室的横截面面积大于(或者不小于)加载系统(或者加载系统下的透水石与垫板)与试样的接触面积。可根据实际需要给试验设备添加或删除相应的辅助装置,如,去除孔压量测装置、振动输入系统,增加试验台架等。
对于试验室为四周闭合式的三轴试验:
例如,进行三轴试验时,试样制作好,放入试验室内,通过周围加载系统和加载系统将试样加压到需要的竖向压力(或者直接通过周围加载系统和加载系统向试样施加的竖向固结压力,使试样达到试验需要的状态),然后,维持周围加载系统的压力,通过加载系统继续给试样施加压力,增加加载系统下的试样的竖向受力,并通过应变量测装置实时量测试样的竖向变形,根据试样的变形量或者变形速率判断加载系统施压的终止荷载;
例如,进行三轴试验时,试样制作好,放入试验室内,通过周围加载系统和加载系统将试样加载到需要的竖向荷载(或者直接通过周围加载系统和加载系统向试样施加的竖向固结压力,使试样达到试验需要的状态),然后,维持加载系统的载荷,通过周围加载系统继续给试样施加荷载,增加试样的周围压力,并通过应变量测装置实时量测试样的变形,根据试样的变形量或者变形速率判断加载系统施压的终止荷载;
试验时,周围加载系统与加载系统的工作状态可以根据实际需要进行调整,并不拘泥于上述的试验步骤,可以根据需要调整各荷载以及排水排气系统的工作状态,完成对试样的不同测试。例如,周围加载系统与加载系统达到试验要求的荷载后,撤掉某一侧的周围加载系统,然后在继续通过加载系统对试样进行加压等等。
试验时,加载系统及加载系统下的试样可以并不处于试验室的中间位置,加载系统与周围加载系统之间的相对位置关系可以是任意组合的,加载系统可以处于加载系统与周围加载系统所组合的平面的正中间,也可以是处于其他位置。
针对试验室为四周为非闭合式(或可以拆卸组装的闭合式)的三轴试验:
例如,试样制作好,放入试验室内,通过周围加载系统和加载系统将试样加载到需要的竖向载荷(或者直接通过周围加载系统和加载系统向试样施加的竖向固结压力,使试样达到试样需要的状态),然后,撤掉试样的一侧或几侧的约束,继续通过加载系统给试样施加荷载,增加试样的竖向受力,并通过应变量测装置实时量测试样的变形,根据试样的变形量或者变形速率判断加载系统施压的终止荷载。
例如,试验时,周围加载系统与加载系统的工作状态可以根据实际需要进行调整,并不拘泥于上述的试验步骤,可以根据需要调整各荷载以及排水排气系统的工作状态,完成对试样的不同测试。对于,非闭合及拆卸组合式试验室的试验,不拘泥于上述的试验步骤,可以根据实际需要,对侧限条件进行调整,完成试样在不同工况下的参数测定
试验时,周围加载系统可以给试验提供均匀大小的压力,也可以给不同部位提供不同的压力;加载系统与周围加载系统可以根据试样在试验室内所处的相对位置,调整各自的位置。
对于加载系统、周围加载系统可以是独立的一个加载单元,也可以是有多个独立的加载单位构成,例如,当周围加载系统为多个独立的加载单元时,可以对加载系统下试样的周围材的不同部位施加不同的压力,实现不同的试验工况。
需要测定振动状态下试样的各类参数时,可以根据试验需求启动振动输入系统,测定振动作用下,试样的各类反应(例如,试样的超静孔隙水压力、 振动作用下的变形等等)及相关参数(例如,试样的动粘聚力、动内摩擦角等等)。
试样可以不局限与土体材料,也可以用于对其他材料(例如,混凝土、岩石等等的材料)进行相关测试试验;试验可以不局限与一种材料,也可以用于对多种材料组合成的复合材料(例如,复合地基、钢筋混凝土等)进行相关测试试验。
本仪器所能进行的测试也不仅限于文中所提到的几种测试,还可以在本仪器上进行一下其他的测试;或者,在本设备设计的原理和平台上添加部分辅助设施,实现一些其他相关的测试。
3、渗透试验(参考图5仅示出常水头相关的仪器)
根据试验过程中水头是否恒定,渗透试验有常水头试验和变水头试验两种。主要设备由试验筒(即试验室),供水装置(常水头、变水头),出水管,加载系统,溢水设施、周围加载系统,应变量测装置,渗透量测系统(测量渗透的液体量,包括接水器、渗透量测装置等),测压孔及孔压量测装置,其中,量测系统中的接水器的截面积(或内径)不大于试验筒的截面积(或内径)。本试验仪器可以通过渗透量测系统中的接水器截面积不大于试验筒的截面积,实现测定试验筒中一部分试样的参数,避免试样与试验筒的接触界面对试验结果的影响并可实现不同工况下的渗透测试;同时,可以对试验进行施压,并量测试样的变形,测定不同压力或者密度下同一试样的不同参数。根据试验的实际需要,可增添或去除部分结构,例如,去除加载系统和周围加载系统、去除测压孔及孔压量测装置等,增加试样或渗透液体的温度量测装置、在量测装置中增添流速测量装置、量测接水器截面以外材料的渗透量的量测装置,但都不妨碍本仪器实现:避免试样与试验筒的接触截面对试验结果的影响,以及实现不同压力下试样的试验结果等效果。
试验筒提供试样的盛装设备,供水装置给试验提供渗透液体及水头,渗透量测系统测量试验过程中液体的渗透量,加载系统和周围加载系统可以给试验筒中的试样施加压力,溢水设施可以使常水头渗透中的水头保持恒定,应变量测系统测量试样筒中试样的变形,测压孔及孔压量测装置可以测量试验筒中不同部位的水头,渗透量测系统通过接水管可以将接水器截面内试样的渗透液体收集到量测系统并测量液体的渗透量。各部分的结构型式可不拘 泥于图中所示,例如,在变水头试验中的供水装置可以是自上而下的截面相同的结构,也可以是变截面的结构。
例如,常水头试验,试样制作好,仪器安装完毕后,试样的长度为L,水头为h,通过渗透量测系统测量渗流稳定后t时间内,通过量测系统接水器截面面积A的渗透量q,并可以通过应变量测系统测量由于渗流导致的试样的变形量s;通过加载系统和周围加载系统给试样筒中的试样施加压力p,通过应变量测系统测得试样筒中试样的变形量S,并通过渗透量测系统测量渗流稳定后T时间内,通过渗透量测系统出水管截面面积A的渗透量Q。则,在水头h下,施加压力p之前,t时间内的通过出水管截面的渗透量为q;施加压力p后,T时间内,通过渗透量测系统出水截面的渗透量为Q。同时,还可以量测各工况下,渗透量与时间的关系;试验室内任意截面试样的渗透量与时间的关系。
例如,变水头试验,试样制作好,仪器安装完毕后,试样的长度为L,通过量测系统测量在时间t内,通过渗透量测系统出水管截面面积A的渗透量q,并可以通过应变量测系统测量由于渗流导致的试样的变形量s;通过加载系统和周围加载系统给试样筒中的试样施加压力p,通过应变量测系统测得试样筒中试样的变形量S,在水头h1作用下渗流稳定后,继续进行变水头渗透试验,并通过渗透量测系统测量水头h1作用下渗流稳定后、在变水头作用下,T时间内,通过渗透量测系统出水管截面面积A的渗透量Q。则,施加压力p之前,在变水头作用下,t时间内的通过出水管截面的渗透量为q;施加压力p后,T时间内,在变水头作用下,通过渗透量测系统出水截面的渗透量为Q。
同时,本装置还可以量测各工况下,渗透量与时间的关系;任意截面试样的渗透量与时间的关系,渗流稳定后的渗透量(可设置多套量测装置,通过设置不同截面的接水器及相应的渗透量测装置,量测不同截面的渗透情况)等。
4、压缩试验(参考图6压缩试验仪)
本设备主要通过试样周围的岩土体材料或其他材料(可以与试验的试样同种材料,也可以是不同材料)给试样提供全部或部分的侧向压力,实现不同工况下(例如,试样在不同侧向压力下)的测试试验,测得试样的相关试验参数。
压缩试验仪器的主要结构,由加载系统,周围加载系统,试验盒,应变量测装置,振动输入系统,垫板、试验平台等组成。其中,试验盒主要给盛装试样并给试样的试验提供空间,加载系统主要给试样提供压力,周围加载系统主要给试样周围的材料提供压力,应变量测系统主要量测试验过程中试验盒内试样及试样周围材料的变形,垫板可以使加载系统和周围加载系统下的材料受力更均匀,试验平台可以给试验设备提供固定及安装平台,振动输入系统可以给需要测定振动作用下试样的响应提供振动输入。可根据实际需要给试验设备添加或删除相应的辅助装置(例如,需要测试试样在振动作用下的响应时,可以增加振动输入系统,通过振动输入系统给试样提供振动输入;需要测定试验中试样的孔压变化时,可以增加孔压量测装置;可以根据需要增加试验台架等),但是,均不会影响设备实现由试样周围的材料给试样提供全部或部分的侧向压力以实现对试样进行不同工况下的测试。
根据试验需要,试验盒选择合适的截面形状,可以圆形(是否用圆环更合适),可以方形等;可以是四周闭合式的(如闭合圆环),可以是不闭合的(如3/4圆环,缺少一个边的方形);试验盒可以是一个整体的,也可以是由几部分可拆卸组合的构件构成的(如);试验盒的横截面面积大于(或者不小于)加载系统(或者加载系统的垫板)与试样的接触面积。
对于加载系统、周围加载系统可以是独立的一个加载单元,也可以是有多个独立的加载单位组成的,例如,当周围加载系统为多个独立的加载单元时,可以对加载系统下试样的周围材的不同部位施加不同的压力,实现不同的试验工况由,多个独立加载单元构成的周围压力可以在每个独立加载单元下施加相同的压力也可以是不同的压力。
针对试验室是闭合型式的试验:
侧限压缩或部分侧限压缩:
例如,试样制好后(或者,通过周围加载系统和加载系统给试样施加压力,使试样达到试验所需要的状态),通过加载系统和周围加载系统将试样加压到需要的压力p1,然后继续通过加载系统和周围加载系统向试样施加荷载p2,并通过应变量测装置实时测量试样的变形s。根据测得的应力、应变等数据(压力由p1增大到p2,试样的变形为s),确定该工况下试样的参数。
有周围加载系统提供围压的压缩:
试样制好后(或者,通过周围加载系统和加载系统给试样施加压力,使试样达到试验所需要的状态),通过加载系统和周围加载系统将试样加压到需要的压力p1,然后保持周围加载系统不变,继续通过加载系统对试样进行加压p2,并通过应变量测装置实时测量试样的变形s。根据测得的应力与应变的关系(压力由p1增大到p2,试样的变形为s),确定该工况下的试样的参数。
针对试验室为非闭合型(可拆卸组合)式的试验:
侧限压缩或部分侧限压缩:
试样制好后(或者,通过周围加载系统和加载系统给试样施加压力,使试样达到试验所需要的状态),通过加载系统和周围加载系统将试样加压到需要的压力p1,然后去掉试验盒的一部分,使试样的一部分侧面失去约束,继续通过加载系统和周围加载系统对试样进行加压p2,并通过应变量测装置实时测量试样的变形s。根据测得的应力与应变的关系(压力由p1增大到p2,试样的变形为s),确定该工况下试样的参数。
有周围加载系统提供围压的压缩:
试样制好后(或者,通过周围加载系统和加载系统给试样施加压力,使试样达到试验所需要的状态),通过加载系统和周围加载系统将试样加压到需要的压力p1,然后去掉试验盒的一部分,使试样的一部分或全部侧面失去约束,并通过变形量测装置测量试样的变形s,确定相应的试样的参数。
例如,试样制好后(或者,通过周围加载系统和加载系统给试样施加压力,使试样达到试验所需要的状态),通过加载系统和周围加载系统将试样加压到需要的压力100kPa,然后去掉试验盒的一部分,使试样的一部分或全部侧面失去约束,保持周围加载系统的压力,通过加载系统继续给试样增加20kPa的压力,并通过变形量测装置测量试样的变形。根据测得的应力与应变的关系,确定相应的试样参数。可以测得100kPa的周围加载系统压力提供的围压下,试样在100~120kPa范围内,试样的孔隙比变化,压缩系数,压缩模量,体积压缩系数,压缩指数,回弹指数(试验由回弹阶段时)等等与试样压缩性相关的参数。
本试验也可以测定振动作用下,试样的各种响应。例如,试样制好后(或者,通过周围加载系统和加载系统给试样施加压力,使试样达到试验所需要的状态),通过加载系统和周围加载系统将试样加压到100kPa压力,然后去 掉试验盒的一部分,使试样的一部分或全部侧面失去约束,保持周围加载系统和加载系统100kPa压力,通过振动输入系统给试样施加一个振动,并测定在该振动作用下,通过应变量测装置测量试样的变形等情况。根据测得的应力与应变的关系及振动输入,确定试样在100kpa的竖向压力下,该振动作用下,试样与变形相关的参数。
根据试验需要,加载系统与周围加载系统的位置关系是可以调节的,加载系统可以处于整个试样上表面的中部,也可以是整个试样上表面的一侧,或者任何其他位置。
试验时,周围加载系统与加载系统的工作状态可以根据实际需要进行调整,并不拘泥于上述的试验步骤,可以根据需要调整周围加载系统及加载系统的工作状态,完成对试样的不同测试。对于,非闭合及拆卸组合式试验盒的试验,不拘泥于上述的试验步骤,可以根据实际需要,对侧限条件进行调整,完成试样在不同工况下的参数测定。
本试验仪不仅可以对试样进行各类压缩试验,还可以对试样进行回弹试验、击实试验、抗压试验、回弹再压缩试验等等各类室内试验,以及对膨胀土进行与膨胀性相关的试验、对湿陷性黄土等进行湿陷性相关的试验、对冻土进行相关的试验等等各类岩土体材料及其他材料的相关试验。同时,可以启用试验仪的振动输入系统,测试在相应振动状态下,确定相应的试样参数。
需要特别说明的是,当试验需要测定振动作用下试样的各类参数时,可以根据试验需求启动振动输入系统,测定振动作用下,试样的各类反应及相关参数(例如,试样在一定的应力状态下,振动作用使试样的变形等等),在本试验设备上增设孔压量测装置时,还可以测定振动作用下土体材料的液化、超静孔隙水压力等等。当仪器不需要测定振动作用下的试样的相关参数时,可不设置振动输入系统。
试样可以不局限与土体材料,也可以用于对其他材料(例如,混凝土、岩石、有机合成材料、金属材料等等)进行相关测试试验;试验可以不局限与一种材料,也可以用于对多种材料组合成的复合材料(例如,复合地基、钢筋混凝土等)进行相关测试试验。
本仪器所能进行的测试也不仅限于文中所提到的几种测试,还可以在本仪器上进行一下其他的测试;或者,在本设备设计的原理和平台上添加部分辅助设施,实现一些其他相关的测试。
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换,或在本设备的基础上进行其他相关的试验;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (10)

  1. 一种土工试验设备,包括试验室和加载系统,其中:
    所述试验室由底面和侧面构成,在所述试验室的底面绘制有标记线,所述标记线将所述试验室划分为位于所述底面的中心位置的第一区域和位于所述第一区域外围的包裹所述第一区域的第二区域,其中,所述试验室包括底面不透水的普通试验室和底面透水的透水试验室;
    所述加载系统包括加压垫板、压头和加载设备,其中,所述压头作用于所述加压垫板以将所述加载设备产生的压力均匀作用于所述加压垫板,所述加压垫板包括与所述第一区域的形状和大小匹配的第一加压垫板和与所述第二区域的形状和大小匹配的第二加压垫板。
  2. 根据权利要求1所述的试验设备,其中,当所述试验室为透水试验室时,所述设备还包括接水器,所述接水器的横截面积不大于所述试验室的第一区域的面积,所述接水器能够可拆卸地连接至所述透水试验室的底面外侧与所述第一区域对应的范围内。
  3. 根据权利要求1所述的试验设备,其中,形成所述普通试验室的第二区域的所述底面和所述侧面由可拆卸的多个部分组成。
  4. 根据权利要求3所述的试验设备,其中,所述可拆卸的多个部分均由部分底面和部分侧面围成,所述可拆卸的多个部分形状、大小均相同。
  5. 根据权利要求1所述的试验设备,其中,所述加载系统的数量不少于两个以至少同时作用于所述第一区域和所述第二区域。
  6. 根据权利要求1所述的试验设备,其中,所述试验设备还包括支架,所述支架包括“H”型支架,所述支架用于支撑所述加载系统并能够在竖直方向拉伸和收缩以对所述加载系统进行升降。
  7. 根据权利要求6所述的试验设备,其中,所述试验设备还包括旋转横梁,所述旋转横梁的一端固定在所述“H”型支架的竖杆上并能够绕着所述竖杆旋转,所述加载系统固定在所述旋转横梁的另一端上。
  8. 根据权利要求1所述的试验设备,其中,所述试验设备还包括量测系统、信息处理系统和动力系统,
    所述量测系统包括加载量测装置、变形量测装置、孔压量测装置和渗透量测装置;
    所述信息处理系统分别与所述动力系统和所述量测系统连接,以对所述量测装置反馈的数据进行处理,根据处理结果生成控制指令并向所述动力系统发送所述控制指令,
    所述动力系统与所述加载系统连接以根据所述信息处理系统的控制指令控制所述加载系统加载。
  9. 根据权利要求8所述的试验设备,其中,所述信息处理系统包括接收单元、处理单元和控制单元,
    所述接收单元用于接收所述量测系统量测的参数信息并发送至所述处理单元;
    所述处理单元根据预设的控制参数指标对所述量测的参数信息进行处理并生成控制指令;
    所述控制单元根据所述预设的控制参数指标控制所述动力系统带动所述加载系统工作和/或响应于所述处理单元的控制指令控制所述动力系统带动所述加载系统工作。
  10. 根据权利要求1-9中任一项所述的试验设备,其中,所述试验设备还包括振动系统,所述振动系统能够通过可拆卸的方式固定在所述试验室的底面以为所述试验室提供振动输入;所述试验设备还包括温度控制系统,所述温度控制系统能够通过可拆卸的方式固定在所述试验室的底面和/或侧面以为所述试验室提供冷源或热源,控制试验室温度。
PCT/CN2018/103520 2017-09-01 2018-08-31 试验设备 WO2019042407A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710780357.X 2017-09-01
CN201710780357.XA CN107389466B (zh) 2017-09-01 2017-09-01 试验设备

Publications (1)

Publication Number Publication Date
WO2019042407A1 true WO2019042407A1 (zh) 2019-03-07

Family

ID=60348529

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/103520 WO2019042407A1 (zh) 2017-09-01 2018-08-31 试验设备

Country Status (2)

Country Link
CN (1) CN107389466B (zh)
WO (1) WO2019042407A1 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110455713A (zh) * 2019-09-09 2019-11-15 南京林业大学 一种加压的单界面微距旋切测试装置和测试方法
CN110487717A (zh) * 2019-09-09 2019-11-22 南京林业大学 一种约束体变的界面附近黏附力分层旋切测试装置和测试方法
CN111024590A (zh) * 2020-01-13 2020-04-17 昆明理工大学 一种可固定土体的现场测量散体材料渗透试验装置
CN113607558A (zh) * 2021-07-08 2021-11-05 安徽省路桥试验检测有限公司 一种水泥试块抗压、抗折强度检测自动采集设备
CN113804381A (zh) * 2021-11-18 2021-12-17 天津航天瑞莱科技有限公司 一种低氧、高温和振动综合环境试验系统
CN114323982A (zh) * 2022-02-21 2022-04-12 中国电建集团西北勘测设计研究院有限公司 一种大主应力提供侧限的载荷试验装置及方法
CN115711783A (zh) * 2022-11-15 2023-02-24 清华大学 结构化胶结堆石料三轴试样制备装置及其制备方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107389466B (zh) * 2017-09-01 2023-12-05 王美兰 试验设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1484013A (zh) * 2003-07-22 2004-03-24 河海大学岩土工程科学研究所 土工织物渗透和淤堵特性测试仪
CN202033252U (zh) * 2011-04-15 2011-11-09 河南理工大学 煤变质演化裂隙系统发育模拟测试系统
CN102419284A (zh) * 2011-12-12 2012-04-18 四川大学 组装式变尺寸试样盒套件
US8474325B1 (en) * 2010-08-23 2013-07-02 Hawkeye Concrete Products Co. Apparatus and method for destructive load testing
CN104713779A (zh) * 2014-12-29 2015-06-17 神华集团有限责任公司 一种矿用模拟试验装置
CN107389466A (zh) * 2017-09-01 2017-11-24 王美兰 试验设备

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101907547A (zh) * 2010-07-05 2010-12-08 清华大学 双轴压缩试验设备
CN102297929B (zh) * 2011-07-06 2014-03-05 河南理工大学 构造煤卸压突出模拟实验装置
CN104897539B (zh) * 2015-04-30 2017-05-31 四川大学 适用于土体水平接触面剪切变形的水平渗透仪
CN105486623B (zh) * 2016-01-18 2019-04-16 北京工业大学 二维岩石试样渗流试验装置
CN106483267B (zh) * 2016-10-17 2019-05-28 中国矿业大学 一种逼真型煤与瓦斯突出模拟试验装置及方法
CN207730574U (zh) * 2017-09-01 2018-08-14 王美兰 试验设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1484013A (zh) * 2003-07-22 2004-03-24 河海大学岩土工程科学研究所 土工织物渗透和淤堵特性测试仪
US8474325B1 (en) * 2010-08-23 2013-07-02 Hawkeye Concrete Products Co. Apparatus and method for destructive load testing
CN202033252U (zh) * 2011-04-15 2011-11-09 河南理工大学 煤变质演化裂隙系统发育模拟测试系统
CN102419284A (zh) * 2011-12-12 2012-04-18 四川大学 组装式变尺寸试样盒套件
CN104713779A (zh) * 2014-12-29 2015-06-17 神华集团有限责任公司 一种矿用模拟试验装置
CN107389466A (zh) * 2017-09-01 2017-11-24 王美兰 试验设备

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110455713A (zh) * 2019-09-09 2019-11-15 南京林业大学 一种加压的单界面微距旋切测试装置和测试方法
CN110487717A (zh) * 2019-09-09 2019-11-22 南京林业大学 一种约束体变的界面附近黏附力分层旋切测试装置和测试方法
CN110455713B (zh) * 2019-09-09 2024-03-22 南京林业大学 一种加压的单界面微距旋切测试装置和测试方法
CN110487717B (zh) * 2019-09-09 2024-03-26 南京林业大学 一种约束体变的界面附近黏附力分层旋切测试装置和测试方法
CN111024590A (zh) * 2020-01-13 2020-04-17 昆明理工大学 一种可固定土体的现场测量散体材料渗透试验装置
CN111024590B (zh) * 2020-01-13 2024-04-26 昆明理工大学 一种可固定土体的现场测量散体材料渗透试验装置
CN113607558A (zh) * 2021-07-08 2021-11-05 安徽省路桥试验检测有限公司 一种水泥试块抗压、抗折强度检测自动采集设备
CN113607558B (zh) * 2021-07-08 2024-02-02 安徽省路桥试验检测有限公司 一种水泥试块抗压、抗折强度检测自动采集设备
CN113804381A (zh) * 2021-11-18 2021-12-17 天津航天瑞莱科技有限公司 一种低氧、高温和振动综合环境试验系统
CN114323982A (zh) * 2022-02-21 2022-04-12 中国电建集团西北勘测设计研究院有限公司 一种大主应力提供侧限的载荷试验装置及方法
CN115711783A (zh) * 2022-11-15 2023-02-24 清华大学 结构化胶结堆石料三轴试样制备装置及其制备方法
CN115711783B (zh) * 2022-11-15 2024-05-28 清华大学 结构化胶结堆石料三轴试样制备装置及其制备方法

Also Published As

Publication number Publication date
CN107389466B (zh) 2023-12-05
CN107389466A (zh) 2017-11-24

Similar Documents

Publication Publication Date Title
WO2019042407A1 (zh) 试验设备
CA3055926C (en) Expandable jacket for triaxial, unconfined and uniaxial compression tests and test device for three-dimensional consolidation and settlement tests
Ke et al. Triaxial erosion test for evaluation of mechanical consequences of internal erosion
EP2592411B1 (en) Ring shear apparatus considering wall-slip effect
Wulfsohn et al. Triaxial testing of unsaturated agricultural soils
CN104807706A (zh) 便携式软弱层带原位直剪试验仪及其测试方法
CN104614497A (zh) 真三轴流压致裂、割缝、渗流、瓦斯驱赶一体化实验系统
KR101243514B1 (ko) 삼축압축 시험장치 및 삼축압축시험장치의 삼축실
CN108444841B (zh) 一种桩土接触面剪切力学特性试验方法
KR101670023B1 (ko) 콘크리트 크리프 시험방법
KR20080054566A (ko) 대형 오이도미터 시험기
CN208239220U (zh) 原位孔内剪切测试仪
CN108801807A (zh) 一种桩土接触面剪切力学特性试验装置
JPH10325788A (ja) 原位置岩盤剪断強度試験装置及び方法
CN110108576A (zh) 螺杆模型桩与岩土接触面剪切强度指标测定装置
RU92958U1 (ru) Прибор для компрессионных испытаний грунтов
CN108535113A (zh) 一种水平成层岩体变形参数综合确定方法
Tan Pressuremeter and cone penetrometer testing in a calibration chamber with unsaturated Minco silt
Gravel et al. In situ shear testing of simulated dam concrete-rock interfaces
CN105424485B (zh) 钢管混凝土拱架灌注试验系统及试验方法
CN109440843B (zh) 一种模型桩室内试验组合荷载施加装置及方法
CN207730574U (zh) 试验设备
CN108827784B (zh) 管桩中土塞承载特性研究试验装置及方法
CN209280488U (zh) 组合式室内固结剪切仪
Handoko et al. Suction controlled triaxial apparatus for saturated-unsaturated soil test

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18850613

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18850613

Country of ref document: EP

Kind code of ref document: A1