WO2019042213A1 - 一种sdn管理网络接入设备的方法及装置 - Google Patents
一种sdn管理网络接入设备的方法及装置 Download PDFInfo
- Publication number
- WO2019042213A1 WO2019042213A1 PCT/CN2018/101923 CN2018101923W WO2019042213A1 WO 2019042213 A1 WO2019042213 A1 WO 2019042213A1 CN 2018101923 W CN2018101923 W CN 2018101923W WO 2019042213 A1 WO2019042213 A1 WO 2019042213A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- client device
- information
- configuration server
- automatic configuration
- network
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L41/00—Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
- H04L41/08—Configuration management of networks or network elements
- H04L41/085—Retrieval of network configuration; Tracking network configuration history
- H04L41/0853—Retrieval of network configuration; Tracking network configuration history by actively collecting configuration information or by backing up configuration information
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L41/00—Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
- H04L41/20—Network management software packages
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L41/00—Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L41/00—Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
- H04L41/08—Configuration management of networks or network elements
- H04L41/0889—Techniques to speed-up the configuration process
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L41/00—Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
- H04L41/08—Configuration management of networks or network elements
- H04L41/0895—Configuration of virtualised networks or elements, e.g. virtualised network function or OpenFlow elements
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L41/00—Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
- H04L41/08—Configuration management of networks or network elements
- H04L41/0896—Bandwidth or capacity management, i.e. automatically increasing or decreasing capacities
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L41/00—Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
- H04L41/12—Discovery or management of network topologies
- H04L41/122—Discovery or management of network topologies of virtualised topologies, e.g. software-defined networks [SDN] or network function virtualisation [NFV]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L41/00—Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
- H04L41/40—Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks using virtualisation of network functions or resources, e.g. SDN or NFV entities
Definitions
- the present disclosure relates to, but is not limited to, the field of Software Defined Network (SDN), and specifically relates to a method and an apparatus for SDN management network access equipment.
- SDN Software Defined Network
- the network management scheme uses the Simple Network Management Protocol (SNMP), which is developed by the Internet Activity Committee (IAB) and is used by the Internet organization to manage the Transmission Control Protocol/Internet Protocol (Transmission Control Protocol/Internet). Protocol, TCP/IP) Network management protocol for Internet and Ethernet.
- SNMP was originally developed as a temporary method that provides minimal network management capabilities.
- the Management Information Structure (SMI) and Management Information Base (MIB) used by SNMP provides a minimal but powerful set of tools for monitoring network elements. The structure of the tool is very simple and can be implemented simply and quickly. Therefore, SNMP has been widely accepted in the field of network management and has become a de facto international standard. However, the characteristics of the SNMP protocol are not suitable for large-scale management of numerous access devices.
- each terminal vendor will customize some private MIBs.
- the U2000 needs to reload the MIB table.
- the NMS needs to be updated synchronously.
- the SNMP protocol is originally designed for the local area network, so the filtering of external SNMP packets requires the network management to distinguish configurations.
- SNMPv1 and SNMPv2 authentication lacks certain security.
- SNMPv3 enhances security, devices using v3 are more expensive.
- NMS Network Management System
- CPE Customer Premise Equipment
- An embodiment of the present disclosure provides a method and apparatus for an SDN management network access device.
- a method for an SDN management network access device including: an SDN controller acquires information of a client device reported by an automatic configuration server; and the SDN controller reports the server according to the automatic configuration server.
- the information of the client device establishing a mapping relationship between the automatic configuration server and the client device; and the SDN controller according to the mapping relationship between the automatic configuration server and the client device, The client device is managed.
- an apparatus for an SDN management network access device including: an information acquisition module configured to acquire information of a client device reported by an automatic configuration server; and a mapping module configured to The information about the client device reported by the automatic configuration server is established, and the mapping relationship between the automatic configuration server and the client device is established; and the processing module is configured to be configured according to the automatic configuration server and the client device Mapping the relationship and managing the client device.
- Figure 1 is a diagram showing the relationship between an ACS and a CPE in a TR-069 scenario
- FIG. 3 is a flow chart of a method for an SDN management network access device
- FIG. 4 is a block diagram of an apparatus for an SDN management network access device
- FIG. 5 is a networking diagram of components of an SDN Controller applied to a broadband network
- FIG. 6 is a topological diagram of a tunnel failure caused by a Multi-Protocol Label Switching (MPLS) TE in the absence of sufficient bandwidth;
- MPLS Multi-Protocol Label Switching
- FIG. 7 is a topology diagram in which an SDN Controller adjusts an original tunnel after calculating a path through a Path Computation Element (PCE) to ensure successful tunnel establishment;
- PCE Path Computation Element
- FIG. 8 is a topological diagram of simulating two tunnel paths and increasing the bandwidth of one of the tunnels, resulting in traffic congestion
- Figure 9 is a topological diagram simulating two tunnel paths with sufficient bandwidth
- Figure 10 is a typical flow chart of interaction between ACS and CPE
- FIG. 11 is a flow chart of interaction between a terminal device and a gateway and an ACS in a gateway scenario
- Figure 12 is a flow chart of the interaction between Service Configuration Manager and SDN Controller and ACS.
- TR069 defines a new network management architecture, including "management model”, “interactive interface”, “management parameters”, which greatly reduces the cost of network products.
- TR069 is a terminal-oriented network management protocol developed by the Digital Subscriber Line (DSL) Forum (renamed Broadband Forum), called "User Terminal Equipment Wide Area Network Management Protocol (CWMP)".
- DSL Forum Digital Subscriber Line
- CWMP User Terminal Equipment Wide Area Network Management Protocol
- TR-069 is designed with full consideration of the above status of SNMP and defines a standard set of business data models. In this way, the problem of incompatibility between the private models of the vendors avoided from the root cause is that TR-069 utilizes the hypertext transfer protocol (HTTP) protocol widely used in WEB services as a communication carrier, and automatically configures the server. (Auto-Configuration Server, ACS) and CPE can initiate a two-way interaction by establishing a link.
- HTTP hypertext transfer protocol
- FIG. 1 is a diagram showing the relationship between ACS and CPE in the TR-069 scenario.
- the ACS is responsible for managing the CPE.
- the interface between the ACS and the CPE is the ACS Southbound Interface.
- the interface between the ACS and the management system is the ACS Northbound Interface.
- the TR069 protocol mainly defines the southbound interface.
- remote procedure call RPC is very convenient for upgrading, configuring, monitoring, and diagnosing user equipment, which greatly reduces maintenance costs.
- FIG. 2 is a diagram of the components of the CWMP protocol stack.
- the TR069 protocol is based on the TCP layer.
- the message transmission between the ACS and the CPE uses HTTP1.1, the ACS is the server, and the CPE is the client.
- the specific content of the message uses the Simple Object Access Protocol (SOAP).
- SOAP Simple Object Access Protocol
- the package is encapsulated.
- the SOAP package is an Extensible Markup Language (XML) document consisting of a SOAP Head (SOAP Header) and a SOAP Body (SOAP Body).
- the management method of the ACS is to make a remote call to the CPE, so the method and parameters to be called need to be transmitted to the CPE, and the contents are included in the SOAP body.
- TR-069 also supports the Secure Socket Layer (SSL/TLS) protocol.
- SSL/TLS Secure Socket Layer
- the ACS exchanges messages with the CPE through HTTPS encryption, which enhances the security of the two communications.
- TR-069 solves the problem of large-scale deployment, supervision, and maintenance of network equipment. If a node on the bearer network fails, or a network is congested on a certain path, the NMS needs to know the network status through alarms and manually intervene in a node or path instead of TR-069.
- Traffic control is generally implemented by protocols such as Quality of Service/Traffic Engineering (QoS/TE).
- QoS/TE Quality of Service/Traffic Engineering
- the traditional flow control method mainly uses static bandwidth processing, and specifies corresponding rules according to service requirements. Therefore, the general strategy is static configuration, and dynamic allocation of bandwidth cannot be implemented according to network conditions. It is difficult to deal with the situation that the bandwidth utilization of the leased line is low and the burst traffic response strategy is insufficient. For key services and applications, delays and interruptions are bound to occur. This is obviously for users with higher network quality requirements. unacceptable. This objectively requires a solution that can visualize global bandwidth and customize the forwarding strategy of the device to solve such problems.
- FIG. 3 is a flow chart of a method of an SDN management network access device. As shown in FIG. 3, the method includes the following steps:
- Step S1 The SDN controller obtains the information of the CPE reported by the ACS.
- the SDN controller After the CPE registers with the ACS, the SDN controller acquires information about the registered CPE reported by the ACS from the Service Configuration Manager.
- the CPE includes a gateway and a terminal device.
- the SDN controller may further obtain information about the server that the ACS depends on from the Service Configuration Manager, and the server may be a server used in case of version management or the like.
- Step S2 The SDN controller establishes a mapping relationship between the ACS and the CPE according to the CPE information reported by the ACS.
- Step S3 The SDN controller manages the CPE according to the mapping relationship between the ACS and the CPE.
- the SDN controller sends, by using the Service Configuration Manager, information for managing the CPE to the corresponding ACS according to the mapping relationship between the ACS and the CPE, where the ACS sends the information Send to the CPE.
- the information for managing the CPE is path configuration information, where the path configuration information is obtained by: determining, by the SDN controller, a path from the ACS to the CPE to be built or to be updated. Determining the location of the ACS and the CPE in the network topology; according to the location of the ACS and the CPE in the network topology, finding a path related to the path from the ACS to the CPE to be built or to be updated Network topology and network bandwidth information; performing routing processing according to the related network topology and network bandwidth information, and generating path configuration information according to the processing result.
- the associated network topology refers to a link associated with a path to be built or to be updated, including a path that needs to be adjusted.
- the network bandwidth information includes reserved bandwidth information and used bandwidth information of a link related to a path to be built or to be updated.
- the SDN controller obtains the network topology and the reserved bandwidth information from the area border router after establishing a mapping relationship between the automatic configuration server and the client device, from the PCE Obtaining the used bandwidth information.
- the SDN controller determines a path from the ACS to the CPE to be built or to be updated according to a notification sent by the Service Configuration Manager. If a new path is to be built, the notification includes the bandwidth of the path. If the existing path needs to be updated, the notification includes the updated bandwidth of the existing path.
- the present disclosure may further provide a storage medium having a computer program stored thereon, the program being executed by the processor to at least implement the following steps: acquiring information of the client device reported by the automatic configuration server; The information about the client device is reported, and the mapping relationship between the automatic configuration server and the client device is established; and the client device is managed according to the mapping relationship between the automatic configuration server and the client device.
- the storage medium may include a ROM/RAM, a magnetic disk, an optical disk, and a USB flash drive.
- FIG. 4 is a block diagram of an apparatus for an SDN management network access device. As shown in Figure 4, it includes:
- the information acquiring module is configured to obtain information about the CPE reported by the ACS;
- mapping module configured to establish a mapping relationship between the ACS and the CPE according to the information about the CPE reported by the ACS;
- the processing module is configured to manage the CPE according to the mapping relationship between the ACS and the CPE.
- the working process of the device includes: after the CPE registers with the ACS, the information obtaining module acquires information about the registered CPE reported by the ACS from the service configuration manager, and the mapping module establishes the ACS and the Transmitting, by the service configuration manager, information for managing the CPE to the corresponding ACS, where the ACS is to be used by the ACS according to the mapping relationship between the ACS and the CPE.
- the information is sent to the CPE.
- the information used to manage the CPE is path configuration information.
- the processing module determines the location of the ACS and the CPE in the network topology according to the path to be built or to be updated, according to the ACS and Positioning the CPE in the network topology, finding network topology and network bandwidth information related to the path to be updated or to be updated from the ACS to the CPE, and according to the related network topology and network bandwidth
- the information is subjected to routing processing, and path configuration information is generated based on the processing result.
- the network bandwidth information includes reserved bandwidth information and used bandwidth information
- the SDN controller obtains the network from an area border router after establishing a mapping relationship between the ACS and the CPE.
- the topology and the reserved bandwidth information are obtained from the PCE.
- the device can be placed on an SDN controller.
- the embodiments of the present disclosure propose to use the SDN method to manage the existing network by combining the TR-069 network management protocol, and combine the advantages of each protocol to solve the problem of the existing network.
- FIG. 5 is a networking diagram of components of an SDN Controller applied to a broadband network. The relationship between the components is shown in Figure 5.
- the network access device is deployed on the CWMP.
- the ACS and the CPE are connected to each other to form a Broadband Network.
- the Service Configuration Manager interacts with the ACS through the Northbound Interface (NBI) and is configured to manage the CPE device and provide configuration to the ACS or update the CPE information from the ACS in real time.
- NBI Northbound Interface
- the SDN Controller is located on the Service Configuration Manager side and is configured to manage network devices, gateways, switches, and routers in the Broadband Network for PCE calculation, bandwidth adjustment, and network congestion control.
- the CPE establishes a link with the ACS through the pre-configuration of the device, and reports its attributes in the form of Inform, such as vendor attributes, hardware version number, software version number, device status, startup time, and WAN connection attributes.
- the CPE can be either a gateway device or a terminal device.
- the Service Configuration Manager informs the ACS of the service information through the Northbound interface, and uses TR-069 to complete the configuration on the CPE side.
- the service information can be configuration information such as account number and password, version management information, and other information. .
- the gateway side continues to complete the initialization of the Subscriber side.
- the gateway notifies the address of the ACS to the internal device through the Dynamic Host Configuration Protocol (DHCP).
- DHCP Dynamic Host Configuration Protocol
- the internal device establishes a port mapping with the ACS (that is, a mapping relationship between the ACS port assigned by the gateway to the internal device and the address of the internal device) on the gateway through the STUN (UDP UDP Simple Traversal).
- STUN UDP UDP Simple Traversal
- the ACS reports the Inform information to the Service Configuration Manager, establishes the mapping relationship between the ACS and the CPE gateway device and the terminal device, and searches the network topology according to the port addresses of the ACS and CPE gateway devices to establish an ACS and CPE gateway device and the tunnel. Mapping relationship.
- the BGP-LS is used to run the BGP-LS protocol between the SDN controller and the current network router.
- the router collects the network topology and bandwidth through the internal gateway protocol (IGP) and reports it to the SDN Controller through the BGP-LS.
- IGP internal gateway protocol
- Only one or two routers in each domain can establish a neighbor relationship with the SDN Controller as an area border router (ABR), which solves the pressure of system expansion.
- ABR area border router
- the SDN Controller determines the head and tail nodes according to the port addresses of the ACS and the CPE, and performs routing according to the information transmitted by the ABR and the PCE, and passes the path calculation unit protocol.
- the Computation Element Protocol (PCEP) is delivered to the router for execution. In this way, centralized path computation avoids the unreasonable use of bandwidth under distributed.
- the SDN Controller centralizes the calculation, it notifies the Service Configuration Manager to adjust the result.
- the Service Configuration Manager notifies the ACS to deliver the configuration to the CPE through the Northbound Interface.
- FIG. 6 is a topological diagram of MPLS TE failing to create a tunnel in the absence of sufficient bandwidth.
- R1 ⁇ R5 needs to create a new tunnel due to the increase of CPE access services. If the traditional MPLS TE mode is adopted, the tunnel creation of R1 ⁇ R5 fails due to lack of sufficient bandwidth.
- the reserved bandwidth of the link between R3 and R5 is 10G
- the bandwidth of the tunnel used is 2G+2G, so the available bandwidth is 6G, which is less than
- the bandwidth required for the tunnel to be built is 8G, which causes the tunnel creation of R1 ⁇ R5 to fail.
- Figure 7 is a topology diagram of the SDN Controller adjusting the original tunnel after calculating the path through the PCE to ensure successful tunnel establishment.
- other tunnel paths can be adjusted to create conditions for the services of R1 ⁇ R5.
- the tunnel path R2 ⁇ R3 ⁇ R5 is adjusted to R2 ⁇ R4 ⁇ R5.
- the available bandwidth between R3 and R5 is 8G, which satisfies the creation condition, and the tunnel of R1 ⁇ R5 is successfully created.
- Figure 8 is a topological diagram of simulating two tunnel paths with one of the tunnels increasing in bandwidth, resulting in traffic congestion.
- the reserved bandwidth of R3 ⁇ R5 and R5 ⁇ R4 is 5G
- the bandwidth utilization ratio of R3 ⁇ R5 and R5 ⁇ R4 is 80% (ie (2G+2G)/5G).
- the data volume of R1 ⁇ R3 ⁇ R5 ⁇ R4 is increased to 5G.
- the MPLS TE mode cannot automatically adjust the LSP when the traffic increases, which will cause traffic congestion of R3 ⁇ R5 and R5 ⁇ R4.
- the bandwidth utilization ratio of R3 ⁇ R5 and R5 ⁇ R4 will reach 140% (ie (5G+2G)/5G).
- FIG 9 is a topological diagram simulating two tunnel paths with sufficient bandwidth.
- the SDN Controller can obtain the bandwidth utilization information of the entire network (that is, the bandwidth utilization information is determined by using the reserved bandwidth information and the used bandwidth information), and the LSP of the newly added bandwidth tunnel can be adjusted globally in real time.
- the adjusted LSP is adjusted to R1 ⁇ R3 ⁇ R5 ⁇ R4 to R1 ⁇ R3 ⁇ R4.
- the bandwidth utilization ratio of R1 ⁇ R3 and R3 ⁇ R4 is 50% (ie, 5G/10G), and the bandwidth utilization ratio of R3 ⁇ R5 and R5 ⁇ R4 is 40% (ie, 2G/5G).
- FIG. 10 is a typical flow chart of interaction between an ACS and a CPE
- FIG. 11 is a flow chart of interaction between a terminal device and a gateway and an ACS in a gateway scenario.
- FIG. 10 and FIG. 11 show an interaction process between the CPE and the ACS when the CPE is a gateway and a terminal device, respectively. The process specifically includes the following steps:
- Step S101 Accessing the Broadband Network, the CPE (that is, the gateway) connects to the ACS according to the preset URL, and reports device information such as the vendor attribute, the hardware version number, the software version number, the device status, the startup time, and the WAN connection attribute in the Inform format. Register with the device;
- the CPE that is, the gateway
- Step S102 The ACS obtains the information of the device, responds to the Inform Response packet, and obtains the configuration information of the device from the northbound interface, and sends an RPC such as SetParameterValues to configure the gateway.
- RPC such as SetParameterValues
- Step S103 The terminal device is connected to the gateway, and the terminal device interacts with the gateway through the DHCP DISCOVER. After obtaining the gateway identifier, the device information is reported to the ACS through the Inform.
- step S101 The subsequent process is the same as step S101.
- the gateway interacts with the ACS to implement gateway registration.
- the ACS configures the gateway.
- the terminal device interacts with the ACS through the gateway to implement terminal device registration.
- the ACS configures the terminal device to implement large-scale network access. Management of equipment.
- Figure 12 is a flow diagram of the interaction of Service Configuration Manager with SDN Controller and ACS. As shown in FIG. 12, the process specifically includes the following steps:
- Step S201 The ACS sends an Inform message to the Service Configuration Manager side, and reports information about the newly added gateway and the terminal device.
- Step S202 The Service Configuration Manager adds the information of the ACS, the gateway, and the terminal device to the SDN Controller through the RESTful interface, where the Service Configuration Manager can also add the information of the server that the ACS depends to to the SDN Controller through the RESTful interface, and the server can be used for saving.
- the latest version of the server
- Step S203 The SDN controller manages the mapping relationship between the server, the gateway, and the terminal device that the ACS and the ACS depend on, and prepares for subsequent path planning and adjustment.
- Step S204 The network topology and bandwidth of the ABR router are reported to the SDN controller through the BGP-LS.
- Step S205 The SDN controller searches for the network topology according to the mapping relationship maintained in step S203, and determines the location in the network topology corresponding to the ACS and the CPE device.
- Step S206 When the ACS needs to upgrade a certain bandwidth to manage the CPE, the Service Configuration Manager first invokes the RESTful interface to notify the SDN Controller to adjust the bandwidth of the ACS to the CPE path.
- Step S207 After the SDN Controller calls the PCE module to calculate the way, the SDN Controller sends the calculation result to the Path Computation Client (PCC) module of the ABR router, and the PCC triggers the establishment of the LSP;
- PCC Path Computation Client
- Step S208 The SDN Controller reports the road result to the Service Configuration Manager in the form of a notification.
- Step S209 The Service Configuration Manager sends the ACS through the Northbound interface, and the ACS notifies the TR-069 to complete the management of the CPE.
- the embodiments of the present disclosure combine SDN and TR-069 to implement remote management, scheduling, and configuration of network access devices such as home gateways, set-top boxes, and routers.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Data Exchanges In Wide-Area Networks (AREA)
Abstract
本公开提供了一种SDN管理网络接入设备的方法及装置。所述方法包括:SDN控制器获取自动配置服务器上报的客户端设备的信息;所述SDN控制器根据所述自动配置服务器上报的所述客户端设备的信息,建立所述自动配置服务器和所述客户端设备的映射关系;所述SDN控制器根据所述自动配置服务器和所述客户端设备的映射关系,对所述客户端设备进行管理。
Description
本公开涉及但不限于软件定义网络(Software Defined Network,SDN)领域,具体涉及一种SDN管理网络接入设备的方法及装置。
目前,家庭环境接入网络的设备日趋增加,物联网的发展也日趋迅速。网络设备的增长对现网设备的管理、网络规模的承受能力以及带宽压力也逐步展现。设备的广泛性也是需要关注的问题。传统的网络设备包括路由器、交换机等,新兴的可穿戴设备、智能家居、云存储等均需要不间断的管理和支持,网络接入的复杂性亟待需要一种能够集中管理网络设备,更易扩展和灵活组织的技术。
通常,网络管理方案使用简单网络管理协议(Simple Network Management Protocol,SNMP),由因特网活动委员会(IAB)制定,是因特网(Internet)组织用来管理传输控制协议/因特网互联协议(Transmission Control Protocol/Internet Protocol,TCP/IP)互联网和以太网的网络管理协议。SNMP最初是作为一种可提供最小的网络管理功能的临时方法开发的。SNMP使用的管理信息结构(SMI)和管理信息库(MIB)提供了一组监控网络元素的最小但功能强大的工具。该工具的结构十分简单,能够简单快速地实现,因而SNMP在网络管理领域得到了广泛的接受,已经成为事实上的国际标准。但是SNMP协议的特性并不适用于大规模管理众多的接入设备。
例如,每个终端厂商会自定义一些私有MIB。当新接入一种设备时网管侧需要重新加载该MIB表,且MIB表更新时,网管侧需要同步更新。
又例如,SNMP协议最初是为局域网设计的,所以外部的SNMP报文的过滤需要网管区分配置。另外,SNMPv1和SNMPv2的身份验证缺乏一定的安全性。SNMPv3虽然增强了安全性,但是使用v3的设备成本较高。
再例如,网管(Network Management System,NMS)和客户端设备(Customer Premise Equipment,CPE)间需要多次交互以获取实时状态。CPE通过发送TRAP报文上报告警,NMS使用GET或GET-NEXT报文持续获取信息。当CPE过多时会耗费大量带宽。
发明内容
本公开的实施例提供的一种SDN管理网络接入设备的方法及装置。
根据本公开的一个实施例,提供了一种SDN管理网络接入设备的方法,包括:SDN控制器获取自动配置服务器上报的客户端设备的信息;所述SDN控制器根据所述自动配置服务器上报的所述客户端设备的信息,建立所述自动配置服务器和所述客户端设备的映射关系;以及所述SDN控制器根据所述自动配置服务器和所述客户端设备的映射关系,对所述客户端设备进行管理。
根据本公开的一个实施例,提供了一种SDN管理网络接入设备的装置,包括:信息获取模块,被配置为获取自动配置服务器上报的客户端设备的信息;映射模块,被配置为根据所述自动配置服务器上报的所述客户端设备的信息,建立所述自动配置服务器和所述客户端设备的映射关系;以及处理模块,被配置为根据所述自动配置服务器和所述客户端设备的映射关系,对所述客户端设备进行管理。
图1是TR-069场景中ACS和CPE间的关系图;
图2是CWMP协议栈的组成部分图;
图3是SDN管理网络接入设备的方法的流程图;
图4是SDN管理网络接入设备的装置的框图;
图5是SDN Controller应用在宽带网(Broadband network)下各组件的组网场景图;
图6是在缺乏足够带宽时多协议标签交换(Multi-Protocol Label Switching,MPLS)TE创建隧道失败的拓扑图;
图7是SDN Controller通过路径计算单元(Path Computation Element,PCE)算路后调整原有隧道以确保隧道建立成功的拓扑图;
图8是模拟两条隧道路径且其中一条隧道带宽增加,导致流量拥塞的拓扑图;
图9是模拟两条隧道路径且带宽足够的拓扑图;
图10是ACS和CPE典型的交互流程图;
图11为网关场景下终端设备与网关和ACS的交互流程图;
图12为Service Configuration Manager与SDN Controller和ACS的交互流程图。
以下结合附图对本公开的优选实施例进行详细说明,应当理解,以下所说明的优选实施例仅用于说明和解释本公开,并不用于限定本公开。
随着由IP网络传送话音的技术服务(Voice over Internet Protocol,VoIP)、交互式网络电视(Internet Protocol Television,IPTV)等越来越多IP终端设备的普及,尤其家庭网络的普及,大量设备的配置和维护变得越来越困难,大大提高了网络产品运营商的成本。传统的基于SNMP的网管系统面对众多的终端设备时显得力不从心,限制了宽带接入市场的发展速度和规模。TR069定义了一套全新的网管体系结构,包括“管理模型”,“交互接口”,“管理参数”,在很大程度上减少了网络产品的运为成本。
TR069是数字用户线(DSL)论坛(已改名为Broadband Forum)制定的一个面向终端设备的网管协议,称为“用户终端设备广域网管理协议(CWMP)”,DSL论坛的文档编号为TR069。TR-069在设计时充分考虑了SNMP的上述现状,定义了一套标准的业务数据模型。这样,从根源上避免的各厂商的私有模型不兼容的问题,此外,TR-069利用了WEB服务中广泛使用的超文本传输协议(HyperText Transfer Protocol,HTTP)协议作为通信载体,通过自动配置服务器(Auto-Configuration Server,ACS)和CPE均可发起建链的方式建立 双向交互。
图1是TR-069场景中ACS和CPE间的关系图。如图1所示,ACS负责对CPE进行管理。ACS与CPE间的接口为南向接口(ACS Southbound Interface),ACS与管理系统间的接口为北向接口(ACS Northbound Interface)。TR069协议主要定义了南向接口。同时采用远程过程调用(Remote Procedure Call,RPC)方式非常方便的对用户设备进行升级、配置、监控、诊断等,极大的减少了维护成本。
图2是CWMP协议栈的组成部分图。如图2所示,TR069协议基于TCP层,ACS与CPE间的消息传输使用HTTP1.1,ACS为服务端,CPE为客户端;消息的具体内容使用简单对象访问协议(Simple Object Access Protocol,SOAP)包进行封装,SOAP包是一个包含SOAP Head(SOAP头)和SOAP Body(SOAP体)组成的可扩展标记语言(Extensible Markup Language,XML)文档。ACS的管理方法就是对CPE进行远程调用,因此需要向CPE传输要调用的方法及参数,这些内容包含在SOAP体中。
同时,TR-069也支持安全套接层/安全传输层(Secure Socket Layer,SSL/TLS)协议,ACS通过HTTPS加密的方式与CPE间进行消息交互,增强了两者通讯的安全性。
TR-069解决了大规模部署、监管和维护网络设备的问题。如果承载网络某节点出现故障,或者某条路径出现网络拥塞,一般需要网管系统通过告警了解网络情况,然后手工干预某节点或路径,而非TR-069所能解决的了。
对于传统网络部署,大部分采用典型的分布式架构,设备和设备之间以逐跳的方式交互本地信息,然后建立数据库信息,再根据选路算法进行最优路径选择。但随着网络流量不断膨胀,使得底层网络的体积也不断膨胀,路径的变化也会导致收敛越长。
而流量控制一般采用服务质量/流量工程(Quality of Service/Traffic Engineering,QoS/TE)等协议来实现的,但传统的流控方式主要采用静态的带宽处理,根据业务需求,指定对应的规则,所以一般策略是静态配置好的,无法根据网络情况实现带宽动态分配等。 对于专线带宽利用率低、突发流量应对策略不足等情况难以应对,对于关键业务和应用程序势必出现延时、断流等情况,这对于对网络质量要求越来越高的用户来说显然是无法接受的。这就客观上需要一种能够全局带宽可视化,能够自定义设备的转发策略的方案来解决这类问题。
图3是SDN管理网络接入设备的方法的流程图。如图3所示,所述方法包括以下步骤:
步骤S1:SDN控制器(SDN Controller)获取ACS上报的CPE的信息。
在所述CPE向所述ACS注册后,所述SDN控制器从Service Configuration Manager获取所述ACS上报的已注册的所述CPE的信息。所述CPE包括网关和终端设备。
进一步的,所述SDN控制器还可以从Service Configuration Manager获取所述ACS依赖的服务器的信息,该服务器可以是在版本管理等情况下使用的服务器。
步骤S2:SDN控制器根据所述ACS上报的所述CPE的信息,建立所述ACS和所述CPE的映射关系。
步骤S3:SDN控制器根据所述ACS和所述CPE的映射关系,对所述CPE进行管理。
所述SDN控制器根据所述ACS和所述CPE的映射关系,经由所述Service Configuration Manager将用于管理所述CPE的信息发送至对应的所述ACS,以供所述ACS将所述信息下发至所述CPE。
所述用于管理所述CPE的信息是路径配置信息,所述路径配置信息通过以下步骤获得:所述SDN控制器根据待建或待更新的从所述ACS到所述CPE的路径,确定所述ACS和所述CPE在网络拓扑中的位置;根据所述ACS和所述CPE在网络拓扑中的位置,找到与所述待建或待更新的从所述ACS到所述CPE的路径相关的网络拓扑和网络带宽信息;根据所述相关的网络拓扑和网络带宽信息,进行选路处理,并根据处理结果,生成路径配置信息。
在一个示例性实施例中,所述相关的网络拓扑指与待建或待更新 路径相关的链路,包括需要调整的路径。
在一个示例性实施例中,所述网络带宽信息包括与待建或待更新路径相关的链路的预留带宽信息和已用带宽信息。
在一个示例性实施例中,所述SDN控制器在建立所述自动配置服务器和所述客户端设备的映射关系之后,从区域边界路由器获得所述网络拓扑和所述预留带宽信息,从PCE获得所述已用带宽信息。
在一个示例性实施例中,所述SDN控制器根据Service Configuration Manager发送的通知,确定待建或待更新的从所述ACS到所述CPE的路径。如果待建新路径,则通知中包含该路径的带宽,如果需要更新已有路径,则通知中包含该已有路径更新后的带宽。
本领域普通技术人员可以理解,实现上述实施例方法中的全部或部分步骤是可以通过程序来指令相关的硬件来完成,所述的程序可以存储于计算机可读取存储介质中,该程序包括执行步骤S1至步骤S3。进一步说,本公开还可以提供一种存储介质,其上存储有计算机程序,该程序被处理器执行时至少实现以下步骤:获取自动配置服务器上报的客户端设备的信息;根据所述自动配置服务器上报的所述客户端设备的信息,建立所述自动配置服务器和所述客户端设备的映射关系;根据所述自动配置服务器和所述客户端设备的映射关系,对所述客户端设备进行管理。所述的存储介质可以包括ROM/RAM、磁碟、光盘、U盘。
图4是SDN管理网络接入设备的装置的框图。如图4所示,包括:
信息获取模块,被配置为获取ACS上报的CPE的信息;
映射模块,被配置为根据所述ACS上报的所述CPE的信息,建立所述ACS和所述CPE的映射关系;以及
处理模块,被配置为根据所述ACS和所述CPE的映射关系,对所述CPE进行管理。
所述装置的工作过程包括:在CPE向ACS注册后,所述信息获取模块从所述业务配置管理器获取所述ACS上报的已注册的所述CPE的信息,映射模块建立所述ACS和所述CPE的映射关系,处理模块根据所述ACS和所述CPE的映射关系,经由所述业务配置管理器将用于 管理所述CPE的信息发送至对应的所述ACS,以供所述ACS将所述信息下发至所述CPE。
其中,所述用于管理所述CPE的信息是路径配置信息。
当需要创建或更新从所述ACS到所述CPE的路径时,所述处理模块根据待建或待更新的路径,确定所述ACS和所述CPE在网络拓扑中的位置,根据所述ACS和所述CPE在网络拓扑中的位置,找到与所述待建或待更新的从所述ACS到所述CPE的路径相关的网络拓扑和网络带宽信息,并根据所述相关的网络拓扑和网络带宽信息,进行选路处理,并根据处理结果,生成路径配置信息。
在一个示例性实施例中,所述网络带宽信息包括预留带宽信息和已用带宽信息,所述SDN控制器在建立所述ACS和所述CPE的映射关系之后从区域边界路由器获得所述网络拓扑和所述预留带宽信息,从PCE获得所述已用带宽信息。
进一步地,所述装置可以设置在SDN控制器上。
本公开实施例针对现状以及未来的增长趋势,提出以SDN的方式结合TR-069网管协议来管理现有网络,结合各协议的长处,解决现有网络的问题。
图5是SDN Controller应用在宽带网(Broadband network)下各组件的组网场景图。在图5中显示了各组件间的关系,
如图5所示,用CWMP部署网络接入设备,ACS和CPE侧相互连通,构成Broadband Network。
业务配置管理器(Service Configuration Manager)侧通过北向接口(Northbound Interface,NBI)与ACS交互,被配置为管理CPE设备,并提供配置给ACS,或从ACS实时更新CPE信息等。
SDN Controller位于Service Configuration Manager侧,被配置为管理Broadband Network中的网络设备,网关,交换机,路由器等,用于PCE算路、带宽调整、网路拥塞控制等。
CPE通过设备内部的预配置与ACS建立链接,以Inform的形式上报其各个属性,例如厂商属性、硬件版本号、软件版本号、设备状态、启动时间,WAN连接属性等。CPE可以是网关设备,也可以是终 端设备。
Service Configuration Manager通过Northbound interface将业务信息告知给ACS,并使用TR-069完成对CPE侧的配置,其中,业务信息可以是账号、密码等配置信息,也可以是版本管理信息,还可以是其它信息。
网关侧继续完成Subscriber侧的初始化。网关通过动态主机配置协议(Dynamic Host Configuration Protocol,DHCP)将ACS的地址通知到内部设备。内部设备通过STUN(NAT的UDP简单穿越)的方式在网关上建立与ACS的端口映射(即网关分配给内部设备的ACS端口和内部设备的地址之间的映射关系)。ACS通过映射后的地址管理内部设备。
ACS上报Inform信息到Service Configuration Manager,在SDN Controller建立ACS和CPE网关设备与终端设备间的映射关系,并根据ACS和CPE网关设备的端口地址查找网络拓扑,以建立ACS和CPE网关设备与隧道间的映射关系。
SDN Controller与现网路由器间运行BGP-LS协议,路由器通过内部网关协议(Interior Gateway Protocol,IGP)搜集网络拓扑和带宽情况通过BGP-LS上报给SDN Controller。每个域只需1~2台路由器作为区域边界路由器(Area Border Router,ABR)与SDN Controller建立邻居关系即可,解决了系统扩张的压力。
当Broadband Network中ACS到CPE的业务处理涉及某条路径需要调整时,SDN Controller根据ACS和CPE的端口地址确定头尾节点,根据ABR和PCE传递的信息进行选路,通过路径计算单元协议(Path Computation Element Protocol,PCEP)下发至路由器执行。这样,集中式的路径计算避免了分布式下带宽利用不合理的情况。
SDN Controller集中算路结束后,通知Service Configuration Manager调整结果,由Service Configuration Manager通过Northbound Interface通知ACS下发配置到CPE。
图6是在缺乏足够带宽时MPLS TE创建隧道失败的拓扑图。如图6所示,由于CPE接入业务的增加,R1→R5需要新建一条隧道。若采 用传统的MPLS TE方式,由于缺乏足够的带宽,R1→R5的隧道创建失败。例如,在R1至R5待建一条经过R3的带宽为8G的隧道的情况下,由于R3和R5间链路预留带宽为10G,在用隧道带宽为2G+2G,因此可用带宽为6G,小于待建隧道需要的带宽8G,从而导致R1→R5的隧道创建失败。
图7是SDN Controller通过PCE算路后调整原有隧道,确保隧道建立成功的拓扑图。如图7所示,由于SDN Controller的集中式路径计算,拥有全网信息,可以调整其他在用隧道路径,为R1→R5的业务创造条件。例如,将在用隧道路径R2→R3→R5调整为R2→R4→R5,此时R3和R5间可用带宽为8G,满足创建条件,R1→R5的隧道创建成功。
图8是模拟两条隧道路径且其中一条隧道带宽增加,导致流量拥塞的拓扑图。如图8所示,各LSP优先级均相同存在两条数据链路,R1→R3→R5→R4(2G)和R2→R3→R5→R4(2G)。R3→R5以及R5→R4的预留带宽为5G,则R3→R5以及R5→R4的带宽利用率均为80%(即(2G+2G)/5G)。假设R1→R3→R5→R4的数据量增大至5G,MPLS TE方式在流量增加时无法自动调整LSP,将导致R3→R5以及R5→R4的流量发生拥塞。此时,R3→R5以及R5→R4的带宽利用率将达到140%(即(5G+2G)/5G)。
图9是模拟两条隧道路径且带宽足够的拓扑图。如图9所示,SDN Controller能够获取全网的带宽利用信息(即利用预留带宽信息和已用带宽信息确定带宽利用信息),可以全局实时调整新增带宽隧道的LSP。调整后的LSP,即将R1→R3→R5→R4调整为R1→R3→R4。此时R1→R3和R3→R4的带宽利用率为50%(即5G/10G),R3→R5以及R5→R4的带宽利用率为40%(即2G/5G)。
图10是ACS和CPE典型的交互流程图,图11为网关场景下终端设备与网关和ACS的交互流程图。图10和图11示出了在CPE分别为网关和终端设备时,CPE与ACS之间建立通讯的交互流程。该流程具体以下步骤:
步骤S101:接入Broadband Network,CPE(即网关)根据预设的 URL连接ACS,通过Inform形式上报本厂商属性、硬件版本号、软件版本号、设备状态、启动时间,WAN连接属性等设备信息,以对设备注册;
步骤S102:ACS获取到设备的信息,回应Inform Response报文,并从北向接口获取该设备的配置信息,下发SetParameterValues等RPC,以对网关进行配置以及
步骤S103:将终端设备接入网关,终端设备通过DHCP DISCOVER与网关交互,在获取到网关标识后,通过Inform的形式向ACS上报设备信息。
后续流程与步骤S101相同。
也就是说,网关与ACS交互,实现网关注册。在注册完成后,ACS对网关进行配置,网关配置完成后,终端设备通过网关与ACS交互,实现终端设备注册,并在注册完成后,ACS对终端设备进行配置,从而实现对大规模网络接入设备的管理。
图12为Service Configuration Manager与SDN Controller和ACS的交互的流程图。如图12所示,该过程具体包括如下步骤:
步骤S201:ACS发送Inform报文到Service Configuration Manager侧,上报新增网关、终端设备的信息;
步骤S202:Service Configuration Manager通过RESTful接口添加ACS、网关、终端设备的信息到SDN Controller,其中,Service Configuration Manager通过RESTful接口还可以添加ACS依赖的服务器的信息到SDN Controller,该服务器可以是用于保存最新版本的服务器;
步骤S203:SDN Controller管理ACS、ACS依赖的服务器、网关、终端设备之间映射关系,为后续路径规划和调整做准备;
步骤S204:ABR路由器通过IGP搜集的网络拓扑和带宽情况通过BGP-LS上报给SDN controller;
步骤S205:SDN controller根据步骤S203维护的映射关系,查找网络拓扑,确定ACS和CPE设备对应网络拓扑中的位置;
步骤S206:当ACS需要提升一定的带宽,以管理CPE时,Service Configuration Manager首先调用RESTful接口通知SDN Controller调整ACS到CPE路径的带宽;
步骤S207:SDN Controller根据头尾节点调用PCE模块算路后,将算路结果下发至ABR路由器的路径计算客户端(Path Computation Client,PCC)模块,由PCC触发建立LSP;
步骤S208:SDN Controller以notification的形式上报算路结果到Service Configuration Manager以及
步骤S209:Service Configuration Manager通过Northbound interface下发ACS,ACS通知TR-069完成对CPE的管理。
综上所述,本公开的实施例具有以下技术效果:
本公开实施例将SDN和TR-069结合,实现对家庭网关、机顶盒、路由器等网络接入设备的远程管理、调度、配置。
尽管上文对本公开进行了详细说明,但是本公开不限于此,本技术领域技术人员可以根据本公开的原理进行各种修改。因此,凡按照本公开原理所作的修改,都应当理解为落入本公开的保护范围。
Claims (10)
- 一种SDN管理网络接入设备的方法,包括:软件定义网络SDN控制器获取自动配置服务器上报的客户端设备的信息;所述SDN控制器根据所述自动配置服务器上报的所述客户端设备的信息,建立所述自动配置服务器和所述客户端设备的映射关系;以及所述SDN控制器根据所述自动配置服务器和所述客户端设备的映射关系,对所述客户端设备进行管理。
- 根据权利要求1所述的方法,其中,所述SDN控制器获取自动配置服务器上报的客户端设备的信息的步骤包括:在所述客户端设备向所述自动配置服务器注册后,所述SDN控制器从业务配置管理器获取所述自动配置服务器上报的已注册的所述客户端设备的信息。
- 根据权利要求2所述的方法,其中,所述SDN控制器根据所述自动配置服务器和所述客户端设备的映射关系,对所述客户端设备进行管理的步骤包括:所述SDN控制器根据所述自动配置服务器和所述客户端设备的映射关系,经由所述业务配置管理器将用于管理所述客户端设备的信息发送至对应的所述自动配置服务器,以供所述自动配置服务器将所述信息下发至所述客户端设备。
- 根据权利要求3所述的方法,其中,所述用于管理所述客户端设备的信息是路径配置信息,所述路径配置信息通过以下步骤获得:所述SDN控制器根据待建或待更新的从所述自动配置服务器到所述客户端设备的路径,确定所述自动配置服务器和所述客户端设备 在网络拓扑中的位置;根据所述自动配置服务器和所述客户端设备在网络拓扑中的位置,找到与所述待建或待更新的从所述自动配置服务器到所述客户端设备的路径相关的网络拓扑和网络带宽信息;以及根据所述相关的网络拓扑和网络带宽信息,进行选路处理,并根据处理结果,生成路径配置信息。
- 根据权利要求4所述的方法,其中,所述网络带宽信息包括预留带宽信息和已用带宽信息,并且所述SDN控制器在建立所述自动配置服务器和所述客户端设备的映射关系之后从区域边界路由器获得所述网络拓扑和所述预留带宽信息,从路径计算单元获得所述已用带宽信息。
- 一种SDN管理网络接入设备的装置,包括:信息获取模块,被配置为获取自动配置服务器上报的客户端设备的信息;映射模块,被配置为根据所述自动配置服务器上报的所述客户端设备的信息,建立所述自动配置服务器和所述客户端设备的映射关系;以及处理模块,被配置为根据所述自动配置服务器和所述客户端设备的映射关系,对所述客户端设备进行管理。
- 根据权利要求6所述的装置,其中,所述客户端设备向所述自动配置服务器注册后,所述信息获取模块从业务配置管理器获取所述自动配置服务器上报的已注册的所述客户端设备的信息。
- 根据权利要求7所述的装置,其中,所述处理模块根据所述自动配置服务器和所述客户端设备的映射关系,经由所述业务配置管理器将用于管理所述客户端设备的信息发送至对应的所述自动配置服务器,以供所述自动配置服务器将所述信息下发至所述客户端设备。
- 根据权利要求8所述的装置,其中,所述用于管理所述客户端设备的信息是路径配置信息,并且所述处理模块根据待建或待更新的从所述自动配置服务器到所述客户端设备的路径,确定所述自动配置服务器和所述客户端设备在网络拓扑中的位置,根据所述自动配置服务器和所述客户端设备在网络拓扑中的位置,找到与所述待建或待更新的从所述自动配置服务器到所述客户端设备的路径相关的网络拓扑和网络带宽信息,并根据所述相关的网络拓扑和网络带宽信息,进行选路处理,并根据处理结果,生成路径配置信息。
- 根据权利要求9所述的装置,其中,所述网络带宽信息包括预留带宽信息和已用带宽信息,并且在建立所述自动配置服务器和所述客户端设备的映射关系之后,所述信息获取模块还被配置为从区域边界路由器获得所述网络拓扑和所述预留带宽信息,从路径计算单元获得所述已用带宽信息。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710756932.2 | 2017-08-29 | ||
CN201710756932.2A CN109428751A (zh) | 2017-08-29 | 2017-08-29 | 一种sdn管理网络接入设备的方法及装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019042213A1 true WO2019042213A1 (zh) | 2019-03-07 |
Family
ID=65503561
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2018/101923 WO2019042213A1 (zh) | 2017-08-29 | 2018-08-23 | 一种sdn管理网络接入设备的方法及装置 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN109428751A (zh) |
WO (1) | WO2019042213A1 (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114073121A (zh) * | 2019-06-28 | 2022-02-18 | 瑞典爱立信有限公司 | 用于流控制的方法和装置 |
CN114679416A (zh) * | 2022-02-10 | 2022-06-28 | 达闼机器人股份有限公司 | 一种机器人通信方法、系统、设备及存储介质 |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110213340A (zh) * | 2019-05-10 | 2019-09-06 | 北京星网锐捷网络技术有限公司 | 箱式交换机的云管理方法、交换机、服务器及平台 |
CN111314107B (zh) * | 2019-12-26 | 2023-09-26 | 贵阳朗玛信息技术股份有限公司 | 基于互联网业务的自动组网系统及自动组网方法 |
CN113381879B (zh) * | 2021-05-17 | 2023-02-28 | 浪潮思科网络科技有限公司 | 一种基于sdn的网络部署方法及设备 |
CN114125827B (zh) * | 2021-11-24 | 2023-11-10 | 北京天融信网络安全技术有限公司 | 一种终端管理方法、装置及集中化管理系统 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106572401A (zh) * | 2016-10-11 | 2017-04-19 | 烽火通信科技股份有限公司 | 一种基于软件定义的光接入网系统及其实现方法 |
CN106603659A (zh) * | 2016-12-13 | 2017-04-26 | 南京邮电大学 | 一种智能制造专网数据采集调度系统 |
US20170118127A1 (en) * | 2015-10-22 | 2017-04-27 | Cox Communications, Inc. | Systems and Methods of Virtualized Services |
WO2017089913A1 (en) * | 2015-11-23 | 2017-06-01 | Telefonaktiebolaget Lm Ericsson (Publ) | Method, device and storage medium for an internet of things (iot) device access in a software-defined networking (sdn) system |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9166807B2 (en) * | 2005-07-28 | 2015-10-20 | Juniper Networks, Inc. | Transmission of layer two (L2) multicast traffic over multi-protocol label switching networks |
CN103346899A (zh) * | 2007-04-05 | 2013-10-09 | 华为技术有限公司 | 一种管理网络终端设备的方法、设备及系统 |
CN101702718A (zh) * | 2009-11-18 | 2010-05-05 | 中兴通讯股份有限公司 | 用户终端设备的管理方法及装置 |
CN104734893B (zh) * | 2015-04-02 | 2018-02-27 | 重庆邮电大学 | 一种面向wia‑pa网络的tr069协议管理方法 |
CN106533883B (zh) * | 2016-11-16 | 2019-05-28 | 中国联合网络通信集团有限公司 | 一种网络专线的建立方法、装置及系统 |
-
2017
- 2017-08-29 CN CN201710756932.2A patent/CN109428751A/zh not_active Withdrawn
-
2018
- 2018-08-23 WO PCT/CN2018/101923 patent/WO2019042213A1/zh active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20170118127A1 (en) * | 2015-10-22 | 2017-04-27 | Cox Communications, Inc. | Systems and Methods of Virtualized Services |
WO2017089913A1 (en) * | 2015-11-23 | 2017-06-01 | Telefonaktiebolaget Lm Ericsson (Publ) | Method, device and storage medium for an internet of things (iot) device access in a software-defined networking (sdn) system |
CN106572401A (zh) * | 2016-10-11 | 2017-04-19 | 烽火通信科技股份有限公司 | 一种基于软件定义的光接入网系统及其实现方法 |
CN106603659A (zh) * | 2016-12-13 | 2017-04-26 | 南京邮电大学 | 一种智能制造专网数据采集调度系统 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114073121A (zh) * | 2019-06-28 | 2022-02-18 | 瑞典爱立信有限公司 | 用于流控制的方法和装置 |
CN114073121B (zh) * | 2019-06-28 | 2023-11-07 | 瑞典爱立信有限公司 | 用于流控制的方法和装置 |
US11889355B2 (en) | 2019-06-28 | 2024-01-30 | Telefonaktiebolaget Lm Ericsson (Publ) | Method and apparatus for flow control |
CN114679416A (zh) * | 2022-02-10 | 2022-06-28 | 达闼机器人股份有限公司 | 一种机器人通信方法、系统、设备及存储介质 |
Also Published As
Publication number | Publication date |
---|---|
CN109428751A (zh) | 2019-03-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019042213A1 (zh) | 一种sdn管理网络接入设备的方法及装置 | |
US11528190B2 (en) | Configuration data migration for distributed micro service-based network applications | |
WO2016177030A1 (zh) | Sdn网络设备建链方法、设备和系统 | |
US8000345B2 (en) | Proxy agent for providing remote management of equipment in a communication network | |
CN111492627B (zh) | 为不同应用建立不同隧道的基于控制器的服务策略映射 | |
KR101188037B1 (ko) | 원격 관리 방법, 관련 자동 설정 서버, 관련 추가 자동설정 서버, 관련 라우팅 게이트웨이, 및 관련 디바이스 | |
US11936520B2 (en) | Edge controller with network performance parameter support | |
CN115296993B (zh) | 用于互连多域网络分片控制和管理的系统、功能和接口 | |
WO2019184752A1 (zh) | 网络设备的管理方法、装置及系统 | |
TWI639325B (zh) | 自動配置的交換機、自動配置交換機的方法、交換機自動部署的軟體定義網路系統及其方法 | |
WO2012071825A1 (zh) | 一种gpon系统中家庭网关相关参数的管理方法及系统 | |
Devlic et al. | A use-case based analysis of network management functions in the ONF SDN model | |
CN111491330B (zh) | Sdn网络与无线网络的融合组网方法 | |
US11805011B2 (en) | Bulk discovery of devices behind a network address translation device | |
EP4080850A1 (en) | Onboarding virtualized network devices to cloud-based network assurance system | |
WO2017000858A1 (zh) | 网元设备及数据通信网络开通的方法 | |
WO2015070611A1 (zh) | 一种控制网元设备加入网络的方法及网元设备 | |
US20240022537A1 (en) | Edge device for source identification using source identifier | |
US20140136714A1 (en) | Method for exchanging information about network resources | |
Delphinanto et al. | Remote discovery and management of end-user devices in heterogeneous private networks | |
Devlic et al. | Carrier-grade network management extensions to the SDN framework | |
Baroncelli et al. | Extending next generation network (NGN) architecture for connection-oriented transport | |
Baroncelli et al. | A distributed signaling for the provisioning of on-demand VPN services in transport networks | |
EP2890053B1 (en) | Ds domain generating method and system | |
EP4456506A2 (en) | Edge device for source identification using source identifier |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18852009 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 10/09/2020) |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18852009 Country of ref document: EP Kind code of ref document: A1 |