WO2019042177A1 - 数据传输方法和装置 - Google Patents

数据传输方法和装置 Download PDF

Info

Publication number
WO2019042177A1
WO2019042177A1 PCT/CN2018/101305 CN2018101305W WO2019042177A1 WO 2019042177 A1 WO2019042177 A1 WO 2019042177A1 CN 2018101305 W CN2018101305 W CN 2018101305W WO 2019042177 A1 WO2019042177 A1 WO 2019042177A1
Authority
WO
WIPO (PCT)
Prior art keywords
channel
ports
terminal device
rank
mode
Prior art date
Application number
PCT/CN2018/101305
Other languages
English (en)
French (fr)
Inventor
金黄平
毕晓艳
张闽
韩玮
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP18850588.7A priority Critical patent/EP3667958B1/en
Publication of WO2019042177A1 publication Critical patent/WO2019042177A1/zh
Priority to US16/805,271 priority patent/US11165480B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0626Channel coefficients, e.g. channel state information [CSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/063Parameters other than those covered in groups H04B7/0623 - H04B7/0634, e.g. channel matrix rank or transmit mode selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0417Feedback systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • H04B7/0486Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting taking channel rank into account
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0634Antenna weights or vector/matrix coefficients
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0636Feedback format
    • H04B7/0645Variable feedback
    • H04B7/065Variable contents, e.g. long-term or short-short
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network

Definitions

  • the present application relates to the field of communications, and in particular, to a data transmission method and apparatus in the field of communications.
  • MIMO technology refers to the use of multiple transmit and receive antennas in network equipment and terminal equipment to make signals pass through network equipment. Multiple antennas are transmitted and received between terminal devices, so that a transmission mode using multiple layers of parallel transmission provides a higher data transmission rate and improves communication quality.
  • Channel state information is used to indicate the channel attribute of the communication link. The accuracy of the CSI acquired by the network device largely determines the performance of the MIMO system.
  • the network device may send a Channel State Information Reference Signal (CSI-RS) for the terminal device to measure the downlink channel.
  • CSI-RS Channel State Information Reference Signal
  • the terminal device can feed back the measured CSI to the network device, so that the network device knows the channel state of the downlink channel.
  • the terminal device feeds back the CSI to the network device and needs to occupy the time-frequency resource of the uplink transmission.
  • the accuracy of the CSI feedback accuracy of the wireless communication system increases, more and more uplink time-frequency resources are used for feedback CSI, which leads to an increase in feedback overhead, which is not conducive to the improvement of system throughput.
  • the M antennas of the network device can serve as both a transmitting antenna and a receiving antenna, and the receiving channel of each antenna and The transmission channel is calibrated for reciprocity.
  • the N antennas of the terminal device can be used as both the transmitting antenna and the receiving antenna, and the reciprocity calibration of each of the receiving and transmitting channels of the antenna is also performed.
  • the network device can determine the downlink channel according to the uplink channel.
  • the CSI can be obtained by a simpler method, that is, the terminal device sends a Sounding Reference Signal (SRS), and the network device receives the SRS to obtain an uplink channel.
  • SRS Sounding Reference Signal
  • the network device can obtain the downlink channel.
  • the cost of the transmission channel limited by the antenna is relatively high, and the number of transmission channels of many terminal devices is smaller than the number of reception channels.
  • the terminal device has four antennas (antennas 1-4), and each antenna is configured with a receiving channel, but the terminal device has only two transmitting channels. Therefore, the terminal device transmits only the SRS as a transmission channel at each time. It is assumed that the terminal device uses the antennas No. 1 and No. 2 to transmit the SRS, and the uplink channel acquired by the network device is the uplink antenna matrix of the two antennas of the terminal device to itself. According to the channel reciprocity, the network device can only obtain the downlink channel of its own M antennas to the antennas No. 1 and No.
  • the network device to send the CSI-RS to the terminal device to obtain the downlink channels of the antennas No. 3 and No. 4.
  • the present application provides a data transmission method and apparatus, which can improve the flexibility of a terminal device to feedback CSI.
  • the first aspect provides a data transmission method, where a terminal device receives a first reference signal sent by a network device, and the terminal device performs measurement on a downlink channel according to the first reference signal to obtain a channel state of the downlink channel. And determining, by the terminal device, a target mode from multiple modes according to a channel state of the downlink channel, where the terminal device sends different information for feeding back channel state information CSI in different modes of the multiple modes. The terminal device sends indication information to the network device, the indication information being used to indicate the target mode.
  • the network device may first send the first reference signal to the terminal device, where the terminal device receives the first reference signal, and measures the downlink channel to obtain a channel of the downlink channel.
  • the state that is, the CSI
  • the network device can then determine a reasonable mode according to the channel state of the downlink channel and the n sending ports of the terminal device, and send corresponding information to the network device, so that the network device can obtain the CSI.
  • multiple modes may respectively correspond to different content, and the multiple modes may be pre-configured by the network device to the terminal device by using signaling, or may be agreed by a protocol. Not limited.
  • the terminal device first obtains the channel state of the downlink channel according to the first reference signal sent by the network device, and then selects, according to the channel state, the target mode used for feeding back the current CSI from multiple modes, and passes the
  • the indication information informs the network device that the flexibility of the terminal device to feedback CSI can be improved.
  • the multiple modes include a first mode, a second mode, and a third mode, in which the terminal device feeds back the CSI All the information, in the second mode, the terminal device feeds back the partial information of the CSI, and sends a second reference signal, in the third mode, the terminal device sends the second reference signal
  • the all information is used to indicate channel states of all channels in the downlink channel
  • the partial information is used to indicate channel states of some channels in the downlink channel.
  • the terminal device in the first mode, after receiving the first reference signal sent by the network device, the terminal device obtains the CSI, and feeds back all the information of the CSI to the network device.
  • This mode is the CSI feedback mode in the FDD system, and does not utilize the reciprocity of the channel.
  • the terminal device In the second mode, after receiving the first reference signal sent by the network device, the terminal device obtains the CSI, and feeds back the CSI part information to the network device, and the terminal device sends the second reference signal to the network device, where the terminal device sends the second reference signal to the network device.
  • the second reference signal is used by the network device to estimate an uplink channel, thereby obtaining a corresponding downlink channel. This mode effectively utilizes the reciprocity of the channel.
  • the terminal device obtains the CSI after receiving the first reference signal sent by the network device, but the terminal device sends the second reference signal to the network device. Since some downlink channels may be strongly correlated in all the downlink channels, in this manner, the terminal device has already learned the channel state of the downlink channel, and determines that the network device can obtain all the downlink channels only through the second reference signal. The channel state does not need to be fed back to CSI, which can greatly reduce the feedback overhead of CSI.
  • the foregoing terminal device includes m receiving ports and n sending ports, where the m receiving ports include the n sending ports, and m and n are both positive integers.
  • the n sending ports of the terminal device may be fixed or unfixed, which is not limited in this embodiment of the present application.
  • the terminal device uses port 1 and port 2 each time the second reference signal is sent; if the terminal device has 2 ports If the sending port is not fixed, the terminal device can select two ports from the four ports as the sending port according to the channel state of the downlink channel, that is, according to the correlation between the downlink channels corresponding to all the ports.
  • the terminal device includes m receiving ports and n sending ports, and the m receiving ports include the n sending ports, where m and n are both a positive integer, where the n transmit ports are fixed, the terminal device determines, according to the channel state of the downlink channel, a target mode used for feeding back the channel state information CSI from the multiple modes, including: Determining, by the terminal device, a rank of a channel matrix of the downlink channel and a rank of a correlation matrix of the n sending ports according to a channel state of the downlink channel; and determining, by the terminal device, a correlation matrix of the n sending ports The rank is compared with the rank of the channel matrix of the downlink channel; if the rank of the correlation matrix of the n transmit ports is equal to the rank of the channel matrix of the downlink channel, the terminal device determines the third mode as The target mode.
  • the method further includes: if a rank of a correlation matrix of the n transmit ports is smaller than a rank of a channel matrix of the downlink channel, the terminal device is configured according to a channel state of the downlink channel, determining a rank of a correlation matrix of the remaining ports of the m receiving ports except the n sending ports; the terminal device ranking a correlation matrix of the remaining ports Comparing the ranks of the channel matrices of the downlink channel; if the rank of the correlation matrix of the remaining ports is equal to the rank of the channel matrix of the downlink channel, the terminal device determines the first mode as the target mode; The rank of the correlation matrix of the remaining ports is smaller than the rank of the channel matrix of the downlink channel, and the terminal device determines the second mode as the target mode.
  • the terminal device may first determine the rank of the channel matrix of the downlink channel and the rank of the correlation matrix of the n sending ports according to the channel state of the downlink channel. And compare the size of the two. If the rank of the correlation matrix of the n transmit ports is equal to the rank of the channel matrix of the downlink channel, it indicates that the terminal device transmits the second reference signal through the n transmit ports, which is sufficient to reflect the channel state of all the downlink channels.
  • the terminal device can select the third mode, that is, only send the second reference signal to the network device.
  • the terminal device If the rank of the correlation matrix of the n transmit ports is smaller than the rank of the channel matrix of the downlink channel, it indicates that the terminal device transmits the second reference signal through the n transmit ports, and only reflects the channel state of a part of the downlink channel. In this case, the terminal device needs to determine the rank of the correlation matrix of the remaining mn ports of the m receiving ports except the n transmitting ports according to the measured channel state of the downlink channel, and compare the remaining mn ports. The rank of the correlation matrix and the magnitude of the rank of the channel matrix of the downlink channel.
  • the terminal device If the rank of the correlation matrix of the remaining mn ports is equal to the rank of the channel matrix of the downlink channel, it indicates that the terminal device sends the second reference signal through the n transmitting ports and does not play any role in reducing the feedback overhead of the CSI. It is still necessary to feed back the channel state of all the downlink channels. In this case, the terminal device does not need to send the second reference signal through the n transmitting ports, and the first mode is used to feed back all the information of the CSI.
  • the terminal device can send the second reference signal through the n transmit ports to feed back the channel state of a part of the channel, and then pass back the partial information of the CSI.
  • the terminal device can adopt the second mode.
  • the terminal device includes m receiving ports and n sending ports, and the m receiving ports include the n sending ports, where m and n are both a positive integer, in a case where the n transmission ports are not fixed, the terminal device determines, according to a channel state of the downlink channel, a target mode used for feeding back channel state information CSI from among multiple modes, including Determining, by the terminal device, a rank of a channel matrix of the downlink channel according to a channel state of the downlink channel; the terminal device comparing a rank of a channel matrix of the downlink channel with a number n of the sending port If the rank of the channel matrix of the downlink channel is less than or equal to n, the terminal device determines the third mode as the target mode; and the terminal device selects n first from the m receiving ports.
  • a target port is used as the n sending ports, and a rank of a correlation matrix of the n first target ports is equal to a rank of
  • the method further includes: if the rank of the channel matrix of the downlink channel is greater than n, the terminal device according to the channel state of the downlink channel The n second destination ports are selected as the n transmission ports, and the correlation matrix of the n second target ports is full rank; the terminal device determines, according to the measurement result of the downlink channel, a rank of a correlation matrix of the remaining ports of the m receiving ports except the n second target ports; the terminal device, a rank of a correlation matrix of the remaining ports and a rank of a channel matrix of the downlink channel Comparing; if the rank of the correlation matrix of the remaining ports is equal to the rank of the channel matrix of the downlink channel, the terminal device determines the first mode as the target mode; if the correlation matrix of the remaining ports The rank is smaller than the rank of the channel matrix of the downlink channel, and the terminal device determines the second mode as the target mode.
  • the terminal device may select n ports as the sending port to send the second reference signal according to actual conditions.
  • the terminal device may first determine a rank of a channel matrix of the downlink channel according to a channel state of the downlink channel, and compare a rank of a channel matrix of the downlink channel with a number n of the sending port. If the rank of the channel matrix of the downlink channel is less than or equal to n, it indicates that the terminal device can send the second reference signal through the n sending ports to reflect the channel state of all the downlink channels. In this case, the terminal device can With the third mode, there is no need to feedback CSI. At this time, the terminal device needs to select n first target ports from the m receiving ports as the n sending ports, and the rank of the correlation matrix of the selected n first target ports is equal to the channel matrix of the downlink channel. rank.
  • the terminal device may first select n second target ports from the m receiving ports as the sending port, and the correlation matrix of the selected n second target ports is full rank. Then, the terminal device compares the rank of the correlation matrix of the n second target ports with the rank of the channel matrix of the downlink channel to determine a mode for feeding back CSI.
  • the specific determination method is the same as the method for fixing the above port, and details are not described herein again.
  • the terminal device can flexibly select according to the channel state of the downlink channel, and send the second reference signal to the channel that feeds more channels through the n sending ports as much as possible.
  • the state in this way, the CSI fed back by the terminal device can be correspondingly reduced, which is beneficial to reducing the CSI feedback overhead of the terminal device.
  • the terminal device includes m receiving ports and n sending ports, and the m receiving ports include the n sending ports, where m and n are both a positive integer, where the target mode is the second mode, the method further includes: the terminal device according to the remaining ports of the m receiving ports except the n sending ports And determining, by the terminal device, the partial channel that needs to be fed back; the terminal device sends the partial information to the network device, where the partial information is used to represent a correlation matrix of the partial channel; The n sending ports send the second reference signal to the network device.
  • the terminal device may determine a partial channel that needs to be fed back according to the rank of the correlation matrix of the remaining m-n channels before the feedback.
  • the terminal device sends channel information of the part of the channel to the network device, and sends a second reference signal to the network device by using the n sending ports.
  • the network device receives the second reference signal, performs channel estimation to obtain channel states of the downlink channels corresponding to the n sending ports, and receives part of the information, obtains channel states of the downlink channels of the remaining mn ports, and synthesizes the two.
  • the channel state of all downlink channels is obtained.
  • the terminal device sends the partial information to the network device, including: the terminal device sends a correlation matrix of the partial channel to the network device a feature vector and a feature value; or the terminal device sends the feature vector, the feature value, and an identifier of a normalization coefficient to the network device, the normalization coefficient being used to correlate the partial channel
  • the matrix is normalized.
  • the terminal device may only feed back the feature vector of the correlation matrix of the partial channel to the network device, and may also feed back the feature vector and the feature value of the correlation matrix of the partial channel to the network device, and may also The eigenvectors, the eigenvalues, and the identifiers of the normalization coefficients of the correlation matrix of the device feedback partial channel are not limited in this embodiment of the present application.
  • the feedback feature value can improve the accuracy of the CSI, and the network device can match the SRS estimated channel and the CSI feedback part of the channel power according to the feature value, so that the channel synthesized by the network device is more accurate, and the channel synthesis error is reduced.
  • the eigenvalue quantization of the channel requires a range, normalizing the channel matrix and reporting the normalization coefficient can ensure that the range of the eigenvalue is fixed, so that the terminal device performs quantitative feedback on the eigenvalue.
  • the first reference signal is a channel state information reference signal CSI-RS; and/or the second reference signal is a sounding reference signal SRS.
  • the second aspect provides another data transmission method, where the network device sends a first reference signal to the terminal device, where the network device receives the indication information sent by the terminal device according to the first reference signal, where the indication information is used by And indicating a target mode used by the terminal device to feed back channel state information CSI.
  • the terminal device first obtains the channel state of the downlink channel according to the first reference signal sent by the network device, and then selects, according to the channel state, the mode used for feeding back the current CSI from multiple modes, and By informing the network device by the indication information, the flexibility of the terminal device to feedback CSI can be improved.
  • the target mode is a first mode, a second mode, or a third mode, in which the terminal device feeds back the CSI All the information, in the second mode, the terminal device feeds back the partial information of the CSI, and sends a second reference signal, in the third mode, the terminal device sends the second reference signal;
  • the information is used to indicate channel states of all channels in the downlink channel
  • the partial information is used to indicate channel states of some channels in the downlink channel.
  • the target mode is a second mode
  • the method further includes: the network device receiving a second reference signal sent by the terminal device; and the network device receiving the partial information that is sent by the terminal device according to the first reference signal.
  • the receiving, by the network device, the part information that is sent by the terminal device according to the first reference signal includes: the network device receiving the terminal device Transmitting a feature vector and a feature value of the correlation matrix of the partial channel; or receiving, by the network device, the feature vector, the feature value, and the identifier of the normalization coefficient sent by the terminal device, the normalization The coefficients are used to normalize the correlation matrix of the partial channels.
  • the method further includes: the network device performing channel estimation according to the second reference signal, obtaining a correlation matrix of an uplink channel; a feature vector and the feature value, synthesizing a correlation matrix of the partial channel; the network device superimposing a correlation matrix of the uplink channel and a correlation matrix of the partial channel to obtain all channels in the downlink channel a correlation matrix; the network device obtains a downlink precoding matrix according to a correlation matrix of all channels.
  • the first reference signal is a channel state information reference signal CSI-RS; and/or the second reference signal is a sounding reference signal SRS.
  • a data transmission apparatus for performing the method of the first aspect or any possible implementation of the first aspect.
  • the apparatus comprises means for performing the method of any of the above-described first aspect or any of the possible implementations of the first aspect.
  • the apparatus comprises means for performing the method of any of the possible implementations of the second aspect or the second aspect described above.
  • another data transmission apparatus comprising: a transceiver, a memory, and a processor.
  • the transceiver, the memory and the processor are in communication with each other via an internal connection path for storing instructions for executing instructions stored in the memory to control the receiver to receive signals and to control the transmitter to transmit signals
  • the processor executes the instructions stored by the memory, the executing causes the processor to perform the method of the first aspect or any of the possible implementations of the first aspect.
  • another data transmission apparatus comprising: a transceiver, a memory, and a processor.
  • the transceiver, the memory and the processor are in communication with each other via an internal connection path for storing instructions for executing instructions stored in the memory to control the receiver to receive signals and to control the transmitter to transmit signals
  • the processor executes the instructions stored by the memory, the executing causes the processor to perform the method of any of the possible implementations of the second aspect or the second aspect.
  • a data transmission system comprising the apparatus in any one of the possible implementations of the third aspect or the third aspect, and the possible implementation in any one of the fourth aspect or the fourth aspect Device; or
  • the system comprises the apparatus of any of the possible implementations of the fifth or fifth aspect, and the apparatus of any of the sixth or sixth aspect of the possible implementation.
  • a computer program product comprising: computer program code, when the computer program code is executed by a computer, causing the computer to perform any of the first aspect or the first aspect described above Possible methods in the implementation.
  • a computer program product comprising: computer program code, when the computer program code is executed by a computer, causing the computer to perform any of the second aspect or the second aspect Possible methods in the implementation.
  • a computer readable medium for storing a computer program comprising instructions for performing the method of the first aspect or any of the possible implementations of the first aspect.
  • a computer readable medium for storing a computer program comprising instructions for performing the method of any of the second aspect or any of the possible implementations of the second aspect.
  • FIG. 1 shows a schematic diagram of a communication system of an embodiment of the present application.
  • FIG. 2 shows a schematic flow chart of a data transmission method according to an embodiment of the present application.
  • FIG. 3 shows a schematic block diagram for a data transmission device in accordance with an embodiment of the present application.
  • FIG. 4 shows a schematic block diagram of another data transmission device in accordance with an embodiment of the present application.
  • FIG. 5 shows a schematic block diagram of another data transmission device in accordance with an embodiment of the present application.
  • FIG. 6 shows a schematic block diagram of another data transmission device in accordance with an embodiment of the present application.
  • GSM global system of mobile communication
  • CDMA code division multiple access
  • WCDMA Wideband code division multiple access
  • GPRS general packet radio service
  • LTE long term evolution
  • FDD LTE frequency division duplex
  • TDD LTE time division duplex
  • UMTS universal mobile telecommunication system
  • WiMAX worldwide interoperability for microwave access
  • SCMA sparse code multiple access
  • SCMA sparse code multiple access
  • OFDM Orthogonal frequency division multiplexing
  • FBMC filter bank multi-carrier
  • GFDM generalized frequency division multiplexing
  • filtered-OFDM, F-OFDM filtered-OFDM, F-OFDM
  • the terminal device may communicate with one or more core networks via a radio access network (RAN), and the terminal device may be referred to as an access terminal and a user equipment (userequipment).
  • RAN radio access network
  • UE subscriber unit, subscriber station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent or user device.
  • the access terminal may be a cellular phone, a cordless phone, a session initiation protocol (SIP) phone, a wireless local loop (WLL) station, a personal digital assistant (PDA), with wireless communication.
  • PLMN public land mobile network
  • the network device may be used to communicate with the terminal device, where the network device may be a base transceiver station (BTS) in a GSM system or a CDMA system, or may be a base station in a WCDMA system ( Node B, NB), may also be an evolved base station (evolutional node B, eNB or eNode B) in the LTE system, or the network device may be a relay station, an access point, an in-vehicle device, a wearable device, or a future 5G network.
  • BTS base transceiver station
  • Node B, NB Node B
  • eNB evolved base station
  • the network device may be a relay station, an access point, an in-vehicle device, a wearable device, or a future 5G network.
  • Network side device or network device in a future evolved PLMN network may be used to communicate with the terminal device, where the network device may be a base transceiver station (BTS) in a GSM system
  • the embodiments of the present application can be applied to an LTE system and a subsequent evolved system, such as 5G, or other wireless communication systems using various radio access technologies, such as using code division multiple access, frequency division multiple access, time division multiple access, and orthogonal.
  • a system of access frequency division multiple access, single carrier frequency division multiple access, etc. is particularly suitable for scenarios requiring channel information feedback and/or applying secondary precoding techniques, such as a wireless network using Massive MIMO technology, and a distributed antenna for application.
  • MIMO multiple-input multiple-output
  • Antenna transmission and reception improve communication quality. It can make full use of space resources and achieve multiple transmission and reception through multiple antennas. It can multiply the system channel capacity without increasing spectrum resources and antenna transmission power.
  • MIMO can be divided into single-user MIMO (SU-MIMO) and multi-user MIMO (MU-MIMO).
  • SU-MIMO single-user MIMO
  • MU-MIMO multi-user MIMO
  • Massive MIMO arranges hundreds of antennas at the transmitting end, modulates the respective beams for dozens of target receivers, and transmits dozens of signals simultaneously on the same frequency resource through spatial signal isolation. Therefore, Massive MIMO technology can make full use of the spatial freedom brought by large-scale antenna configuration to improve spectrum efficiency.
  • the communication system 100 includes a network device 102, which may include multiple antenna groups.
  • Each antenna group may include one or more antennas, for example, one antenna group may include antennas 104 and 106, another antenna group may include antennas 108 and 110, and an additional group may include antennas 112 and 114.
  • Two antennas are shown in Figure 1 for each antenna group, although more or fewer antennas may be used for each group.
  • Network device 102 may additionally include a transmitter chain and a receiver chain, as will be understood by those of ordinary skill in the art, which may include various components related to signal transmission and reception, such as processors, modulators, multiplexers, solutions. Tuner, demultiplexer or antenna.
  • Network device 102 can communicate with a plurality of terminal devices, for example, network device 102 can communicate with terminal device 116 and terminal device 122. However, it will be appreciated that network device 102 can communicate with any number of terminal devices similar to terminal device 116 or 122.
  • Terminal devices 116 and 122 may be, for example, cellular telephones, smart phones, portable computers, handheld communication devices, handheld computing devices, satellite radios, global positioning systems, PDAs, and/or any other suitable for communicating over wireless communication system 100. device.
  • terminal device 116 is in communication with antennas 112 and 114, wherein antennas 112 and 114 transmit information to terminal device 116 over forward link 118 and receive information from terminal device 116 over reverse link 120.
  • terminal device 122 is in communication with antennas 104 and 106, wherein antennas 104 and 106 transmit information to terminal device 122 over forward link 124 and receive information from terminal device 122 over reverse link 126.
  • forward link 118 may utilize a different frequency band than reverse link 120
  • forward link 124 may utilize a different frequency band than reverse link 126.
  • the forward link 118 and the reverse link 120 can use a common frequency band, and the forward link 124 and the reverse link 126 can be used in common. frequency band.
  • Each set of antennas and/or regions designed for communication is referred to as a sector of network device 102.
  • the antenna group can be designed to communicate with terminal devices in sectors of the network device 102 coverage area.
  • the transmit antenna of network device 102 may utilize beamforming to improve the signal to noise ratio of forward links 118 and 124.
  • the network device 102 uses beamforming to transmit signals to the randomly dispersed terminal devices 116 and 122 in the relevant coverage area, the network device 102 uses a single antenna to transmit signals to all of its terminal devices. Mobile devices are subject to less interference.
  • network device 102, terminal device 116, or terminal device 122 may be a wireless communication transmitting device and/or a wireless communication receiving device.
  • the wireless communication transmitting device can encode the data for transmission.
  • the wireless communication transmitting device may acquire a certain number of data bits to be transmitted to the wireless communication receiving device through a channel, for example, the wireless communication transmitting device may generate, receive from another communication device, or save in a memory, etc., to be transmitted through a channel.
  • a certain number of data bits to the wireless communication receiving device may be included in a transport block or a plurality of transport blocks of data, and the transport blocks may be segmented to produce a plurality of code blocks.
  • the communication system 100 may be a public land mobile network PLMN network or a device to device (D2D) network or a machine to machine (M2M) network or other network, and FIG. 1 is merely an example for convenience of understanding.
  • PLMN public land mobile network
  • D2D device to device
  • M2M machine to machine
  • FIG. 1 is merely an example for convenience of understanding.
  • a simplified schematic diagram of the network may also include other network devices, which are not shown in FIG.
  • FIG. 2 shows a schematic flowchart of a data transmission method 200 in the embodiment of the present application.
  • the method 200 can be applied to the communication system 100 shown in FIG. 1, but the embodiment of the present application is not limited thereto.
  • the network device sends a first reference signal to the terminal device.
  • the terminal device receives the first reference signal sent by the network device
  • the terminal device performs measurement on a downlink channel according to the first reference signal, to obtain a channel state of the downlink channel.
  • the terminal device determines, according to a channel state of the downlink channel, a target mode, where the terminal device sends information for feeding back channel state information CSI in different modes of the multiple modes. different;
  • the terminal device sends indication information to the network device, where the indication information is used to indicate the target mode.
  • the network device receives the indication information sent by the terminal device, and further determines, according to the indication information, a target mode adopted by the terminal device.
  • multiple modes may respectively correspond to different content, and the multiple modes may be pre-configured by the network device to the terminal device by using signaling, or may be agreed by a protocol. Not limited.
  • the terminal device first obtains the channel state of the downlink channel according to the first reference signal sent by the network device, and then selects, according to the channel state, the target mode used for feeding back the current CSI from multiple modes, and passes the
  • the indication information informs the network device that the flexibility of the terminal device to feedback CSI can be improved.
  • the terminal device may further determine the target mode according to the correlation of its own sending port, and assume that the terminal device has n sending ports, and the correlation of the n sending ports represents n sending ports.
  • the degree of the correlation of the corresponding transmission channel may be the rank of the correlation matrix of the n transmission ports, but the embodiment of the present application does not limit this.
  • the first reference signal is a channel state information reference signal CSI-RS; and/or the second reference signal is a sounding reference signal SRS.
  • the network device can acquire the channel state of the downlink channel in multiple manners. For example, in the TDD system, the network device can obtain the channel state of the uplink channel by receiving the SRS sent by the terminal device, and obtain the channel state of the corresponding downlink channel, and can also obtain the terminal device according to the CSI-RS by sending the CSI-RS.
  • the feedback CSI can also synthesize the information obtained by the SRS estimation and the partial CSI fed back by the terminal device to obtain the channel state of all the downlink channels, thereby reducing the CSI feedback overhead of the terminal device.
  • the multiple modes include a first mode, a second mode, and a third mode, where the terminal device feeds back all information of the CSI, where In the second mode, the terminal device feeds back the partial information of the CSI, and sends a second reference signal. In the third mode, the terminal device sends the second reference signal, where all the information is used. And indicating a channel state of all channels in the downlink channel, where the partial information is used to indicate a channel state of a part of the channels in the downlink channel.
  • the terminal device includes m receiving ports and n sending ports, and the m sending ports include the n receiving ports, and m and n are positive integers.
  • the terminal device has m receiving ports and n sending ports, and the m receiving ports include the n sending ports, m>n. Therefore, according to the reciprocity of the channel, the network device is based on the terminal.
  • the second reference signal sent by the device can only obtain the channel status of the n ports, and the channel status of the mn ports may still require the network device to send the first reference signal to the terminal device, depending on the downlink channel corresponding to the mn ports. Relevance. Therefore, when the network device needs to obtain the channel state of the downlink channel, the network device may first send the first reference signal to the terminal device, the terminal device receives the first reference signal, and measures the downlink channel to obtain the channel state of the downlink channel.
  • the terminal device can determine a reasonable mode for feeding back CSI according to the channel state of the downlink channel and the correlation degree of the n transmission ports of the terminal device. Specifically, the terminal device may select one of the following three modes for feedback CSI, thereby making the feedback of the CSI more flexible.
  • the terminal device After receiving the first reference signal sent by the network device, the terminal device obtains the CSI, and feeds back all the information of the CSI to the network device.
  • This mode is the CSI feedback mode in the FDD system, and does not utilize the reciprocity of the channel.
  • the terminal device After receiving the first reference signal sent by the network device, the terminal device obtains the CSI, and feeds back the partial information of the CSI to the network device, and the terminal device sends a second reference signal to the network device, where the second reference signal is used for the
  • the network device estimates the uplink channel to obtain the corresponding downlink channel. This mode effectively utilizes the reciprocity of the channel.
  • the terminal device After receiving the first reference signal sent by the network device, the terminal device obtains CSI, and the terminal device sends a second reference signal to the network device. Since some downlink channels may be strongly correlated in all downlink channels, in this manner, the terminal device has learned the channel state of the downlink channel, and determines that the network device can obtain the channels of all downlink channels by using the second reference signal. Status, no need to feedback CSI again, which can greatly reduce the feedback overhead of CSI.
  • the terminal device first obtains the channel state of the downlink channel according to the first reference signal sent by the network device, and then determines the target mode used for feeding back the CSI by combining the channel state with its own sending port, and By informing the network device by the indication information, the flexibility of the terminal device to feedback CSI can be improved.
  • n sending ports of the terminal device may be fixed or unfixed, which is not limited in this embodiment of the present application.
  • the terminal device uses port 1 and port 2 each time the second reference signal is sent; if the terminal device has 2 ports If the sending port is not fixed, the terminal device can select two ports from the four ports as the sending port according to the channel state of the downlink channel, that is, according to the correlation between the downlink channels corresponding to all the ports.
  • the rank of the channel matrix or the rank of the correlation matrix is generally determined according to some determination criterion in practice, for example, eigenvalues less than a certain threshold are ignored, thereby obtaining the rank of the channel matrix or the rank of the correlation matrix.
  • this embodiment of the present application does not limit this.
  • the terminal device includes m receiving ports and n sending ports, and the m receiving ports include the n sending ports, where m and n are positive integers, where the n
  • the terminal device determines, according to the channel state of the downlink channel, the target mode used for feeding back the channel state information CSI from the multiple modes, including:
  • the terminal device compares a rank of a correlation matrix of the n transmission ports with a rank of a channel matrix of the downlink channel;
  • the terminal device determines the third mode as the target mode.
  • the method further includes:
  • the terminal device determines, according to the channel state of the downlink channel, the n transmit ports.
  • the terminal device compares a rank of a correlation matrix of the remaining ports with a rank of a channel matrix of the downlink channel;
  • the terminal device determines the first mode as the target mode
  • the terminal device determines the second mode as the target mode.
  • the terminal device may first determine the rank of the channel matrix of the downlink channel and the rank of the correlation matrix of the n sending ports according to the channel state of the downlink channel. And compare the size of the two. If the rank of the correlation matrix of the n transmit ports is equal to the rank of the channel matrix of the downlink channel, it indicates that the terminal device transmits the second reference signal through the n transmit ports, which is sufficient to reflect the channel state of all the downlink channels.
  • the terminal device can select the third mode, that is, only send the second reference signal to the network device.
  • the terminal device If the rank of the correlation matrix of the n transmit ports is smaller than the rank of the channel matrix of the downlink channel, it indicates that the terminal device transmits the second reference signal through the n transmit ports, and only reflects the channel state of a part of the downlink channel. In this case, the terminal device needs to determine the rank of the correlation matrix of the remaining mn ports of the m receiving ports except the n transmitting ports according to the measured channel state of the downlink channel, and compare the remaining mn ports. The rank of the correlation matrix and the magnitude of the rank of the channel matrix of the downlink channel.
  • the terminal device If the rank of the correlation matrix of the remaining mn ports is equal to the rank of the channel matrix of the downlink channel, it indicates that the terminal device sends the second reference signal through the n transmitting ports and does not play any role in reducing the feedback overhead of the CSI. It is still necessary to feed back the channel state of all the downlink channels. In this case, the terminal device does not need to send the second reference signal through the n transmitting ports, and the first mode is used to feed back all the information of the CSI.
  • the terminal device can send the second reference signal through the n transmit ports to feed back the channel state of a part of the channel, and then pass back the partial information of the CSI.
  • the terminal device can adopt the second mode.
  • the correlation matrix of the n transmission ports reflects the channel state of the partial channel, and therefore, there are no n transmission ports.
  • the case where the rank of the correlation matrix is larger than the rank of the channel matrix of the downlink channel.
  • the rank of the correlation matrix of the remaining m-n ports is larger than the rank of the channel matrix of the downlink channel.
  • the terminal device can determine the rank RI2 of the correlation matrix of port 1 and port 2 according to the above measurement. According to the value of RI2, There are several cases as follows:
  • the terminal device can directly adopt the third mode
  • the terminal device can determine the rank RI3 of the correlation matrix of port 3 and port 4 according to the result of the above measurement;
  • the terminal device can adopt the first mode
  • the terminal device can adopt the second mode.
  • the terminal device includes m receiving ports and n sending ports, and the m receiving ports include the n sending ports, where m and n are positive integers, where the n If the sending port is not fixed, the terminal device determines, according to the channel state of the downlink channel, the target mode used for feeding back the channel state information CSI from the multiple modes, including:
  • the terminal device compares a rank of a channel matrix of the downlink channel with a number n of the sending ports;
  • the terminal device determines the third mode as the target mode
  • the terminal device selects n first target ports from the m receiving ports as the n sending ports, and a rank of a correlation matrix of the n first target ports is equal to a rank of a channel matrix of the downlink channel. .
  • the method further includes:
  • the terminal device selects n second target ports from the m receiving ports as the n sending ports according to the channel state of the downlink channel.
  • the correlation matrix of the n second target ports is full rank
  • the terminal device compares a rank of a correlation matrix of the remaining ports with a rank of a channel matrix of the downlink channel;
  • the terminal device determines the first mode as the target mode
  • the terminal device determines the second mode as the target mode.
  • the terminal device may select n ports as the sending port to send the second reference signal according to actual conditions.
  • the terminal device may first determine a rank of a channel matrix of the downlink channel according to a channel state of the downlink channel, and compare a rank of a channel matrix of the downlink channel with a number n of the sending port. If the rank of the channel matrix of the downlink channel is less than or equal to n, it indicates that the terminal device can send the second reference signal through the n sending ports to reflect the channel state of all the downlink channels. In this case, the terminal device can With the third mode, there is no need to feedback CSI. At this time, the terminal device needs to select n first target ports from the m receiving ports as the n sending ports, and the rank of the correlation matrix of the selected n first target ports is equal to the channel matrix of the downlink channel. rank.
  • the terminal device may first select n second target ports from the m receiving ports as the sending port, and the correlation matrix of the selected n second target ports is full rank. Then, the terminal device compares the rank of the correlation matrix of the n second target ports with the rank of the channel matrix of the downlink channel to determine a mode for feeding back CSI.
  • the specific determination method is the same as the method for fixing the above port, and details are not described herein again.
  • the terminal device can flexibly select according to the channel state of the downlink channel, and send the second reference signal to the channel that feeds more channels through the n sending ports as much as possible.
  • the state in this way, the CSI fed back by the terminal device can be correspondingly reduced, which is beneficial to reducing the CSI feedback overhead of the terminal device.
  • the port is such that the rank of the correlation matrix of the two transmission ports is 2.
  • the terminal device includes m receiving ports and n sending ports, and the m receiving ports include the n sending ports, where m and n are positive integers, at the target
  • the method further includes:
  • the network device receives the second reference signal and the partial information sent by the terminal device.
  • the terminal device may determine a partial channel that needs to be fed back according to the rank of the correlation matrix of the remaining m-n channels before the feedback.
  • the terminal device sends channel information of the part of the channel to the network device, and sends a second reference signal to the network device by using the n sending ports.
  • the network device receives the second reference signal, performs channel estimation to obtain channel states of the downlink channels corresponding to the n sending ports, and receives part of the information, obtains channel states of the downlink channels of the remaining mn ports, and synthesizes the two.
  • the channel state of all downlink channels is obtained.
  • the first reference signal is a CSI-RS
  • the second reference signal is an SRS.
  • the terminal device uses two ports to transmit the SRS, the corresponding all channels are Since the number of the sending ports of the terminal device is 1, the network device can only obtain the channel state of one downlink channel at a time by transmitting the SRS by the terminal device. It is assumed that the network device can perform channel estimation through the SRS to obtain H 1 .
  • the network device can send the CSI-RS to the terminal device because the channel state of all the downlink channels is not obtained, and the terminal device can obtain all the downlink channels through the CSI-RS.
  • the above two channel matrices H SRS and G CSI-RS include factors such as power gain of the terminal device and the network device. Therefore, the terminal device can normalize the two channel matrices to obtain the following matrix:
  • the network device can transmit the CSI-RS to the terminal device, according to the feedback of the terminal device.
  • G' 2 obtains H' 2 and receives the SRS transmitted by the terminal device, performs channel estimation according to the SRS to obtain H' 1 , and finally, the network device synthesizes H' 1 and G' 2 to obtain Correlation matrix:
  • the terminal device sends the partial information to the network device, including:
  • the network device receives a feature vector and a feature value of a correlation matrix of the partial channel sent by the terminal device;
  • the terminal device sends, to the network device, the feature vector, the feature value, and an identifier of a normalization coefficient, where the normalization coefficient is used to normalize a correlation matrix of the partial channel.
  • the network device receives the feature vector, the feature value, and the identifier of the normalization coefficient sent by the terminal device.
  • the terminal device may only feed back the feature vector of the correlation matrix of the partial channel to the network device, and may also feed back the feature vector and the feature value of the correlation matrix of the partial channel to the network device, and may also
  • the eigenvectors, the eigenvalues, and the identifiable coefficients of the correlation matrix of the device feedback part of the channel are not limited in this embodiment of the present application.
  • the feedback feature value can improve the accuracy of the CSI, and the network device can match the SRS estimated channel and the CSI feedback part of the channel power according to the feature value, so that the channel synthesized by the network device is more accurate, and the channel synthesis error is reduced.
  • the eigenvalue quantization of the channel requires a range, normalizing the channel matrix and reporting the normalization coefficient can ensure that the range of the eigenvalue is fixed, so that the terminal device performs quantitative feedback on the eigenvalue.
  • the terminal equipment feedback U are the eigenvectors and eigenvalues
  • network devices can recover the G' 2 * G '2 . Therefore, in order to eliminate the problem of power gain of the terminal device and the network device, after normalizing according to a specific element, the channel H 1 ' estimated by the network device through the SRS and the channel G′ obtained by the terminal device through the CSI-RS estimation are obtained.
  • the signal power of 2 can be aligned to ensure the accuracy of the synthesized channel. That is, only G' 2 * G' 2 accurate feedback, the accuracy of the synthesized channel can be guaranteed.
  • G' 2 * G' 2 can be fed back in the following three ways:
  • the feature value can be defaulted to 1, and the elements whose power alignment is performed by H' 1 and G' 2 are elements of a predetermined position, such that G' 2 * The relative size of the elements in G' 2 is not reflected.
  • the network device When the network device synthesizes G' 2 * G' 2 , the feature value fed back by the terminal device can be used, and the accuracy is relatively high. However, there may be a loss in the quantized eigenvalues, because in actual quantization, the quantized range and the number of quantization bits are quantified, and there may be quantization errors, for example, the actual eigenvalue is larger than the quantization range.
  • the elements for power alignment of H' 1 and G' 2 are selected by the terminal device according to the G' 2 element value, and it is ensured that the absolute value of each element in G' 2 is less than or equal to 1, so that G' 2 * G' 2
  • the range of characteristic values is controllable, avoiding the situation beyond the quantization range, and the number of quantization bits can be reasonably designed to minimize the quantization error.
  • the normalization coefficient may be a normalization coefficient label, or other information that may identify the normalization coefficient, which is not limited by the embodiment of the present application.
  • FIG. 3 shows a data transmission device 300 provided by an embodiment of the present application.
  • the device 300 includes:
  • the receiving unit 310 is configured to receive a first reference signal sent by the network device.
  • the measuring unit 320 is configured to measure, according to the first reference signal, a downlink channel, to obtain a channel state of the downlink channel;
  • a determining unit 330 configured to determine, according to a channel state of the downlink channel, a target mode from multiple modes, where the device sends different information for feeding back channel state information CSI in different modes of the multiple modes ;
  • the sending unit 340 is configured to send, to the network device, indication information, where the indication information is used to indicate the target mode.
  • the terminal device first obtains the channel state of the downlink channel according to the first reference signal sent by the network device, and then determines the target mode used for feeding back the CSI by combining the channel state, and notifies the indication by using the indication information.
  • Network equipment can improve the flexibility of terminal equipment to feedback CSI.
  • the multiple modes include a first mode, a second mode, and a third mode, where the device feeds back all information of the CSI, and in the second mode, The device feeds back part of the information of the CSI, and sends a second reference signal, in the third mode, the device sends the second reference signal; wherein the all information is used to represent the downlink channel
  • the channel state of all channels, the partial information is used to indicate the channel state of some channels in the downlink channel.
  • the device includes m receiving ports and n sending ports, and the m receiving ports include the n sending ports, where m and n are positive integers, and are fixed at the n sending ports.
  • the determining unit 330 is specifically configured to: determine, according to a channel state of the downlink channel, a rank of a channel matrix of the downlink channel and a rank of a correlation matrix of the n sending ports; send the n Comparing the rank of the correlation matrix of the port with the rank of the channel matrix of the downlink channel; if the rank of the correlation matrix of the n transmission ports is equal to the rank of the channel matrix of the downlink channel, determining the third mode as The target mode.
  • the determining unit 330 is further configured to: if the rank of the correlation matrix of the n sending ports is smaller than the rank of the channel matrix of the downlink channel, determine the m according to a channel state of the downlink channel. a rank of a correlation matrix of the remaining ports of the receiving port except the n transmitting ports; comparing a rank of a correlation matrix of the remaining ports with a rank of a channel matrix of the downlink channel; if the remaining ports are The rank of the correlation matrix is equal to the rank of the channel matrix of the downlink channel, and the first mode is determined to be the target mode; if the rank of the correlation matrix of the remaining port is smaller than the rank of the channel matrix of the downlink channel, The second mode is determined to be the target mode.
  • the terminal device includes m receiving ports and n sending ports, and the m receiving ports include the n sending ports, where m and n are positive integers, and the n sending ports are not
  • the determining unit 330 is specifically configured to: determine a rank of a channel matrix of the downlink channel according to a channel state of the downlink channel; and rank a channel matrix of the downlink channel with the sending port Comparing the number n; if the rank of the channel matrix of the downlink channel is less than or equal to n, determining the third mode as the target mode; selecting n first target ports from the m receiving ports as The n transmit ports, the rank of the correlation matrix of the n first target ports is equal to the rank of the channel matrix of the downlink channel.
  • the determining unit 330 is further configured to: if the rank of the channel matrix of the downlink channel is greater than n, select n second target ports from the m receiving ports according to the channel state of the downlink channel. As the n sending ports, the correlation matrix of the n second target ports is full rank; determining, in addition to the n second target ports, of the m receiving ports according to the measurement result of the downlink channel The rank of the correlation matrix of the remaining ports; comparing the rank of the correlation matrix of the remaining ports with the rank of the channel matrix of the downlink channel; if the rank of the correlation matrix of the remaining ports is equal to the channel matrix of the downlink channel a rank that determines the first mode as the target mode; if the rank of the correlation matrix of the remaining ports is less than a rank of a channel matrix of the downlink channel, determining the second mode as the target mode.
  • the terminal device includes m receiving ports and n sending ports, and the m receiving ports include the n sending ports, where m and n are positive integers, and the target mode is the
  • the determining unit 330 is further configured to: determine, according to a rank of a correlation matrix of the remaining ports of the m receiving ports except the n sending ports, the partial channel that needs to be fed back
  • the sending unit 340 is further configured to: send the partial information to the network device, where the partial information is used to indicate a correlation matrix of the partial channel; and send, by using the n sending ports, the network device The second reference signal is described.
  • the sending unit 340 is specifically configured to: send a feature vector and a feature value of a correlation matrix of the partial channel to the network device; or send the feature vector, the feature value, and the network device to the network device.
  • An identifier of a normalization coefficient, the normalization coefficient being used to normalize a correlation matrix of the partial channel.
  • the first reference signal is a channel state information reference signal CSI-RS; and/or the second reference signal is a sounding reference signal SRS.
  • the apparatus 300 herein is embodied in the form of a functional unit.
  • the term "unit” as used herein may refer to an application specific integrated circuit (ASIC), an electronic circuit, a processor (eg, a shared processor, a proprietary processor, or a group) for executing one or more software or firmware programs. Processors, etc.) and memory, merge logic, and/or other suitable components that support the described functionality.
  • ASIC application specific integrated circuit
  • processor eg, a shared processor, a proprietary processor, or a group
  • memory merge logic, and/or other suitable components that support the described functionality.
  • the device 300 may be specifically the terminal device in the foregoing embodiment, and the device 300 may be used to perform various processes and/or steps corresponding to the terminal device in the foregoing method embodiment. To avoid repetition, we will not repeat them here.
  • FIG. 4 shows another data transmission device 400 provided by an embodiment of the present application.
  • the device 400 includes:
  • the sending unit 410 is configured to send a first reference signal to the terminal device.
  • the receiving unit 420 is configured to receive indication information that is sent by the terminal device according to the first reference signal, where the indication information is used to indicate a target mode used by the terminal device to feed back channel state information CSI.
  • the terminal device first obtains the channel state of the downlink channel according to the first reference signal sent by the network device, and then determines the target mode used for feeding back the CSI by using the channel state of the downlink channel, and The information is informed to the network device, which can improve the flexibility of the terminal device to feedback CSI.
  • the target mode is a first mode, a second mode, or a third mode, where the terminal device feeds back all information about the CSI, and in the second mode, The terminal device feeds back the partial information of the CSI, and sends a second reference signal, where the terminal device sends the second reference signal, where the all information is used to indicate the downlink Channel state of all channels in the channel, the partial information is used to indicate the channel state of some channels in the downlink channel.
  • the target mode is the second mode
  • the receiving unit 420 is further configured to: after receiving the indication information sent by the terminal device according to the first reference signal, receive the sending by the terminal device a second reference signal; receiving the partial information that is sent by the terminal device according to the first reference signal.
  • the receiving unit 420 is specifically configured to: receive a feature vector and a feature value of a correlation matrix of the partial channel sent by the terminal device; or receive the feature vector, the feature sent by the terminal device And a value of the normalization coefficient, wherein the normalization coefficient is used to normalize the correlation matrix of the partial channel.
  • the device further includes: a processing unit, configured to perform channel estimation according to the second reference signal, obtain a correlation matrix of an uplink channel; and synthesize the partial channel according to the feature vector and the feature value a correlation matrix; superimposing a correlation matrix of the uplink channel and a correlation matrix of the partial channel to obtain a correlation matrix of all channels in the downlink channel; and obtaining a downlink precoding matrix according to a correlation matrix of all channels.
  • a processing unit configured to perform channel estimation according to the second reference signal, obtain a correlation matrix of an uplink channel; and synthesize the partial channel according to the feature vector and the feature value a correlation matrix; superimposing a correlation matrix of the uplink channel and a correlation matrix of the partial channel to obtain a correlation matrix of all channels in the downlink channel; and obtaining a downlink precoding matrix according to a correlation matrix of all channels.
  • the first reference signal is a channel state information reference signal CSI-RS; and/or the second reference signal is a sounding reference signal SRS.
  • the apparatus 400 herein is embodied in the form of a functional unit.
  • the term "unit” as used herein may refer to an application specific integrated circuit (ASIC), an electronic circuit, a processor (eg, a shared processor, a proprietary processor, or a group) for executing one or more software or firmware programs. Processors, etc.) and memory, merge logic, and/or other suitable components that support the described functionality.
  • ASIC application specific integrated circuit
  • processor eg, a shared processor, a proprietary processor, or a group
  • memory merge logic, and/or other suitable components that support the described functionality.
  • the device 400 may be specifically the network device in the foregoing embodiment, and the device 400 may be used to perform various processes and/or steps corresponding to the network device in the foregoing method embodiments. To avoid repetition, we will not repeat them here.
  • FIG. 5 shows another data transmission device 500 provided by an embodiment of the present application.
  • the apparatus 500 includes a processor 510, a transceiver 520, and a memory 530.
  • the processor 510, the transceiver 520, and the memory 530 communicate with each other through an internal connection path.
  • the memory 530 is configured to store instructions, and the processor 510 is configured to execute instructions stored in the memory 530 to control the transceiver 520 to send signals and / or receive signals.
  • the transceiver 520 is configured to receive a first reference signal sent by the network device, where the processor 510 is configured to perform measurement on the downlink channel according to the first reference signal, to obtain a channel state of the downlink channel, according to the a channel state of the downlink channel, the target mode is determined from the plurality of modes, and the device transmits different information for feeding back channel state information CSI in different ones of the plurality of modes; the transceiver 520 is further configured to The network device sends indication information, where the indication information is used to indicate the target mode.
  • the device 500 may be specifically the terminal device in the foregoing embodiment, and may be used to perform various steps and/or processes corresponding to the terminal device in the foregoing method embodiments.
  • the memory 530 can include read only memory and random access memory and provides instructions and data to the processor. A portion of the memory may also include a non-volatile random access memory.
  • the memory can also store information of the device type.
  • the processor 510 can be configured to execute instructions stored in a memory, and when the processor 510 executes instructions stored in the memory, the processor 510 is configured to perform the various steps of the method embodiment corresponding to the terminal device described above and/or Or process.
  • FIG. 6 shows another data transmission device 600 provided by an embodiment of the present application.
  • the apparatus 600 includes a processor 610, a transceiver 620, and a memory 630.
  • the processor 610, the transceiver 620, and the memory 630 are in communication with each other through an internal connection path.
  • the memory 630 is configured to store instructions, and the processor 610 is configured to execute instructions stored in the memory 630 to control the transceiver 620 to send signals and / or receive signals.
  • the transceiver 620 is configured to: send a first reference signal to the terminal device; receive indication information that is sent by the terminal device according to the first reference signal, where the indication information is used to indicate that the terminal device is used for a feedback channel.
  • Status information The target mode used by the CSI.
  • the device 600 may be specifically the network device in the foregoing embodiment, and may be used to perform various steps and/or processes corresponding to the network device in the foregoing method embodiment.
  • the memory 630 can include read only memory and random access memory and provides instructions and data to the processor. A portion of the memory may also include a non-volatile random access memory.
  • the memory can also store information of the device type.
  • the processor 610 can be configured to execute instructions stored in a memory, and when the processor 610 executes instructions stored in the memory, the processor 610 is configured to perform the various steps of the method embodiments corresponding to the network device described above and/or Or process.
  • the processor of the foregoing apparatus may be a central processing unit (CPU), and the processor may also be other general-purpose processors, digital signal processors (DSPs), and application specific integrated circuits. (ASIC), Field Programmable Gate Array (FPGA) or other programmable logic device, discrete gate or transistor logic device, discrete hardware components, etc.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • each step of the above method may be completed by an integrated logic circuit of hardware in a processor or an instruction in a form of software.
  • the steps of the method disclosed in the embodiments of the present application may be directly implemented as a hardware processor, or may be performed by a combination of hardware and software units in the processor.
  • the software unit can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in a memory, and the processor executes instructions in the memory, in combination with hardware to perform the steps of the above method. To avoid repetition, it will not be described in detail here.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, or an electrical, mechanical or other form of connection.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the embodiments of the present application.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, may be stored in a computer readable storage medium.
  • the technical solution of the present application may be in essence or part of the contribution to the prior art, or all or part of the technical solution may be embodied in the form of a software product stored in a storage medium.
  • a number of instructions are included to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present application.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like, which can store program code. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Electromagnetism (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种数据传输方法和装置,该方法包括:终端设备接收网络设备发送的第一参考信号;所述终端设备根据所述第一参考信号,对下行信道进行测量,获得所述下行信道的信道状态;所述终端设备根据所述下行信道的信道状态,从多个模式中确定目标模式,所述终端设备在所述多个模式中的不同模式下发送的用于反馈信道状态信息CSI的信息不同;所述终端设备向所述网络设备发送指示信息,所述指示信息用于指示所述目标模式。本申请实施例的数据传输方法和装置,有利于提高CSI反馈的灵活性。

Description

数据传输方法和装置
本申请要求于2017年9月1日提交中国专利局、申请号为201710779976.7、申请名称为“数据传输方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,特别涉及通信领域中的数据传输方法和装置。
背景技术
通信系统广泛采用了多输入多输出(multiple-user multiple-input multiple-output,MIMO)技术,MIMO技术是指在网络设备和终端设备分别使用多根发射天线和接收天线,使信号通过网络设备与终端设备之间的多根天线传送和接收,从而采用多层并行传输的传输模式提供较高的数据传输速率,改善通信质量。信道状态信息(channel state information,CSI)用于表示通信链路的信道属性,网络设备获取的CSI的准确性在很大程度上决定了MIMO系统的性能。在下行传输中,网络设备可以发送信道状态信息参考信号(Channel State Information Reference Signal,CSI-RS),用于终端设备对下行信道进行测量。一般来说,终端设备可以将测量到的CSI反馈给网络设备,从而使网络设备获知下行信道的信道状态。终端设备反馈CSI给网络设备需要占用上行传输的时频资源。随着无线通信系统对CSI反馈精度要求的提高,反馈CSI占用的上行时频资源越来越多,导致反馈开销增大,不利于系统吞吐量的提升。
在时分复用(Time Division Duplex,TDD)系统中,由于下行传输和上行传输使用相同的频率,网络设备的M个天线既可以作为发送天线又可以作为接收天线,并且每根天线的收通道和发通道都进行了互易性校准,同时,终端设备的N根天线既可以作为发送天线又可以作为接收天线,并且每根天线的收通道和发通道也都进行了互易性校准。在网络设备和终端设备都进行了互易性校准的条件下,网络设备可以根据上行信道确定下行信道。因此,在具有信道互易性的系统(例如TDD系统)中,CSI的获取可以采用更加简单的方法,即终端设备发送探测参考信号(Sounding Reference Signal,SRS),网络设备接收SRS获得上行信道,通过信道互易性,网络设备即可获得下行信道。
然而,受限于天线的发通道成本较高,很多终端设备的发通道数小于收通道数。例如,终端设备具有4根天线(1-4号天线),并且每根天线都配置了收通道,但该终端设备只有2个发通道。因此,该终端设备在每个时刻只有2根天线可以作为发通道发送SRS。假设该终端设备使用1号和2号天线发送SRS,网络设备获取的上行信道是终端设备的2根天线到自身的上行信道矩阵。根据信道互易性,网络设备只能得到自身的M根天线到终端设备的1号和2号天线的下行信道,而无法获得到3号和4号天线的下行信道。即网络设备获得的下行信道不完整。这就需要网络设备再向终端设备发送CSI-RS来获取3号和 4号天线的下行信道。
在网络设备和终端设备都进行了互易性校准的情况下,如何提高终端设备反馈CSI的灵活性,成为一项亟待解决的问题。
发明内容
本申请提供一种数据传输方法和装置,能够提高终端设备反馈CSI的灵活性。
第一方面,提供了一种数据传输方法,终端设备接收网络设备发送的第一参考信号;所述终端设备根据所述第一参考信号,对下行信道进行测量,获得所述下行信道的信道状态;所述终端设备根据所述下行信道的信道状态,从多个模式中确定目标模式,所述终端设备在所述多个模式中的不同模式下发送的用于反馈信道状态信息CSI的信息不同;所述终端设备向所述网络设备发送指示信息,所述指示信息用于指示所述目标模式。
具体地,在网络设备需要获取下行信道的信道状态时,该网络设备可以先向终端设备发送第一参考信号,该终端设备接收该第一参考信号,并对下行信道进行测量获得下行信道的信道状态,即CSI,然后,该终端设备可以根据下行信道的信道状态以及终端设备的n个发送端口,确定合理的模式,向网络设备发送对应的信息,以便于网络设备获取CSI。
应理解,上述多个模式中不同的模式可以分别对应不同的内容,且该多个模式可以是网络设备通过信令预先配置给终端设备的,也可以是协议约定的,本申请实施例对此不作限定。
在本申请实施例中,通过终端设备先根据网络设备发送的第一参考信号获得下行信道的信道状态,再结合信道状态从多种模式中选择用于反馈当前CSI所采用的目标模式,并通过指示信息告知该网络设备,能够提高终端设备反馈CSI的灵活性。
结合第一方面,在第一方面的某些实现方式中,所述多个模式包括第一模式、第二模式和第三模式,在所述第一模式下,所述终端设备反馈所述CSI的全部信息,在所述第二模式下,所述终端设备反馈所述CSI的部分信息,并发送第二参考信号,在所述第三模式下,所述终端设备发送所述第二参考信号;其中,所述全部信息用于表示所述下行信道中全部信道的信道状态,所述部分信息用于表示所述下行信道中部分信道的信道状态。
具体地,在第一模式下,终端设备在接收网络设备发送的第一参考信号之后,获得CSI,并向网络设备反馈该CSI的全部信息。该模式为FDD系统中的CSI反馈方式,并没有利用到信道的互易性。在第二模式下,终端设备在接收网络设备发送的第一参考信号之后,获得CSI,向网络设备反馈该CSI的部分信息,同时,该终端设备向该网络设备发送第二参考信号,该第二参考信号用于该网络设备估计上行信道,从而获得对应的下行信道。该模式有效利用了信道的互易性。在第三模式下,终端设备在接收网络设备发送的第一参考信号之后,获得CSI,但是,该终端设备向网络设备发送第二参考信号。由于全部下行信道中可能存在部分下行信道是强相关的,因此,在这种方式下,终端设备已经获知了下行信道的信道状态,确定网络设备仅通过第二参考信号就可以获得全部下行信道的信道状态,无需再反馈CSI了,这样能够大大降低CSI的反馈开销。
可选地,上述终端设备包括m个接收端口和n个发送端口,该m个接收端口包括该n个发送端口,m和n均为正整数。应理解,终端设备的n个发送端口可以是固定的,也可以是不固定的,本申请实施例对此不作限定。例如,m=4,n=2,该终端设备具有4个 端口(1-4号端口),并且每个端口都配置为接收端口,但该终端设备只有2个发送端口。因此,该终端设备在每个时刻只有2个端口可以作为发送端口。若该终端设备的2个发送端口固定,为1号端口和2号端口,那么该终端设备每次发送第二参考信号均采用的是1号端口和2号端口;若该终端设备的2个发送端口不固定,那么该终端设备可以根据下行信道的信道状态,即根据所有端口对应的下行信道之间的相关性,从4个端口中选择2个端口作为发送端口。
结合第一方面,在第一方面的某些实现方式中,所述终端设备包括m个接收端口和n个发送端口,且所述m个接收端口包括所述n个发送端口,m和n均为正整数,在所述n个发送端口固定的情况下,所述终端设备根据所述下行信道的信道状态,从多个模式中确定用于反馈信道状态信息CSI所采用的目标模式,包括:所述终端设备根据所述下行信道的信道状态,确定所述下行信道的信道矩阵的秩以及所述n个发送端口的相关矩阵的秩;所述终端设备将所述n个发送端口的相关矩阵的秩与所述下行信道的信道矩阵的秩进行比较;若所述n个发送端口的相关矩阵的秩等于所述下行信道的信道矩阵的秩,所述终端设备将所述第三模式确定为所述目标模式。
结合第一方面,在第一方面的某些实现方式中,所述方法还包括:若所述n个发送端口的相关矩阵的秩小于所述下行信道的信道矩阵的秩,所述终端设备根据所述下行信道的信道状态,确定所述m个接收端口中除所述n个发送端口之外的剩余端口的相关矩阵的秩;所述终端设备将所述剩余端口的相关矩阵的秩与所述下行信道的信道矩阵的秩进行比较;若所述剩余端口的相关矩阵的秩等于所述下行信道的信道矩阵的秩,所述终端设备将所述第一模式确定为所述目标模式;若所述剩余端口的相关矩阵的秩小于所述下行信道的信道矩阵的秩,所述终端设备将所述第二模式确定为所述目标模式。
具体地,在该终端设备的n个发送端口固定的情况下,该终端设备可以先根据下行信道的信道状态,确定下行信道的信道矩阵的秩,以及该n个发送端口的相关矩阵的秩,并比较二者的大小。如果该n个发送端口的相关矩阵的秩等于该下行信道的信道矩阵的秩,那么说明该终端设备通过n个发送端口发送第二参考信号已经足以反映全部下行信道的信道状态,在这种情况下,该终端设备可以选择第三模式,即只向网络设备发送第二参考信号即可。
如果该n个发送端口的相关矩阵的秩小于该下行信道的信道矩阵的秩,那么说明该终端设备通过n个发送端口发送第二参考信号只能反映出一部分下行信道的信道状态,在这种情况下,该终端设备需要再根据测量得到的下行信道的信道状态,确定m个接收端口中除该n个发送端口之外的剩余m-n个端口的相关矩阵的秩,并比较剩余m-n个端口的相关矩阵的秩与下行信道的信道矩阵的秩的大小。如果剩余m-n个端口的相关矩阵的秩等于下行信道的信道矩阵的秩,那么说明该终端设备通过n个发送端口发送第二参考信号并没有对降低CSI的反馈开销起到任何作用,该终端设备仍旧需要反馈所有下行信道的信道状态,在这种情况下,该终端设备就无需通过n个发送端口发送第二参考信号了,采用第一模式反馈CSI的全部信息即可。
如果剩余m-n个端口的相关矩阵的秩小于下行信道的信道矩阵的秩,那么说明该终端设备可以通过n个发送端口发送第二参考信号来反馈一部分信道的信道状态,再通过反馈CSI的部分信息来反馈另一部分信道的信道状态,从而达到降低CSI的反馈开销的目的, 因此,在这种情况下,终端设备可以采用第二模式。
结合第一方面,在第一方面的某些实现方式中,所述终端设备包括m个接收端口和n个发送端口,且所述m个接收端口包括所述n个发送端口,m和n均为正整数,在所述n个发送端口不固定的情况下,所述终端设备根据所述下行信道的信道状态,从多个模式中确定用于反馈信道状态信息CSI所采用的目标模式,包括:所述终端设备根据所述下行信道的信道状态,确定所述下行信道的信道矩阵的秩;所述终端设备将所述下行信道的信道矩阵的秩与所述发送端口的个数n进行比较;若所述下行信道的信道矩阵的秩小于或等于n,所述终端设备将所述第三模式确定为所述目标模式;所述终端设备从所述m个接收端口中选择n个第一目标端口作为所述n个发送端口,所述n个第一目标端口的相关矩阵的秩等于所述下行信道的信道矩阵的秩。
结合第一方面,在第一方面的某些实现方式中,所述方法还包括:若所述下行信道的信道矩阵的秩大于n,所述终端设备根据所述下行信道的信道状态,从所述m个接收端口中选择n个第二目标端口作为所述n个发送端口,所述n个第二目标端口的相关矩阵满秩;所述终端设备根据所述下行信道的测量结果,确定所述m个接收端口中除所述n个第二目标端口之外的剩余端口的相关矩阵的秩;所述终端设备将所述剩余端口的相关矩阵的秩与所述下行信道的信道矩阵的秩进行比较;若所述剩余端口的相关矩阵的秩等于所述下行信道的信道矩阵的秩,所述终端设备将所述第一模式确定为所述目标模式;若所述剩余端口的相关矩阵的秩小于所述下行信道的信道矩阵的秩,所述终端设备将所述第二模式确定为所述目标模式。
具体地,在该终端设备的n个发送端口不固定的情况下,该终端设备可以根据实际情况选择n个端口作为发送端口发送第二参考信号。该终端设备可以先根据所述下行信道的信道状态,确定所述下行信道的信道矩阵的秩,并将所述下行信道的信道矩阵的秩与所述发送端口的个数n进行比较。如果下行信道的信道矩阵的秩小于或等于n,那么说明该终端设备能够通过n个发送端口发送第二参考信号,来反映出全部下行信道的信道状态,在这种情况下,该终端设备可以采用第三模式,无需再反馈CSI。此时,该终端设备需要从m个接收端口中选择n个第一目标端口作为所述n个发送端口,且所选择的n个第一目标端口的相关矩阵的秩等于下行信道的信道矩阵的秩。
如果下行信道的信道矩阵的秩大于n,那么说明该终端设备无法仅通过发送第二参考信号反馈全部下行信道的信道状态,在这种情况下,该终端设备还需要反馈CSI。该终端设备可以先从m个接收端口中选择n个第二目标端口作为发送端口,且所选择的n个第二目标端口的相关矩阵是满秩的。然后,该终端设备再将n个第二目标端口的相关矩阵的秩与下行信道的信道矩阵的秩进行比较,确定用于反馈CSI的模式。具体确定方法与上述端口固定的方法相同,此处不再赘述。
在本申请实施例中,由于终端设备的n个发送端口不固定,终端设备可以根据下行信道的信道状态灵活选择,尽可能使得通过该n个发送端口发送第二参考信号反馈较多信道的信道状态,这样,终端设备反馈的CSI就可以相应地减少,有利于降低终端设备的CSI反馈开销。
结合第一方面,在第一方面的某些实现方式中,所述终端设备包括m个接收端口和n个发送端口,且所述m个接收端口包括所述n个发送端口,m和n均为正整数,在所述 目标模式为所述第二模式的情况下,所述方法还包括:所述终端设备根据所述m个接收端口中除所述n个发送端口之外的剩余端口的相关矩阵的秩,确定需要反馈的所述部分信道;所述终端设备向所述网络设备发送所述部分信息,所述部分信息用于表示所述部分信道的相关矩阵;所述终端设备通过所述n个发送端口向所述网络设备发送所述第二参考信号。
具体地,若终端设备采用第二模式反馈CSI,该终端设备可以在反馈之前,根据剩余m-n个信道的相关矩阵的秩,确定需要反馈的部分信道。该终端设备向网络设备发送该部分信道的信道信息,并通过上述n个发送端口向网络设备发送第二参考信号。该网络设备接收第二参考信号,进行信道估计获得n个发送端口对应的下行信道的信道状态,并接收部分信息,获得剩余m-n个端口的下行信道的信道状态,将二者进行合成,即可得到全部下行信道的信道状态。
结合第一方面,在第一方面的某些实现方式中,所述终端设备向所述网络设备发送所述部分信息,包括:所述终端设备向所述网络设备发送所述部分信道的相关矩阵的特征向量和特征值;或所述终端设备向所述网络设备发送所述特征向量、所述特征值以及归一化系数的标识,所述归一化系数用于对所述部分信道的相关矩阵进行归一化处理。
应理解,在反馈CSI的部分信息时,终端设备可以仅向网络设备反馈部分信道的相关矩阵的特征向量,也可以向网络设备反馈部分信道的相关矩阵的特征向量和特征值,还可以向网络设备反馈部分信道的相关矩阵的特征向量、特征值以及归一化系数的标识,本申请实施例对此不作限定。反馈特征值能够提高CSI的精度,网络设备能够根据特征值匹配SRS估计的信道和CSI反馈的部分信道的功率,从而使得网络设备合成的信道更加准确,减小信道合成的误差。但由于信道的特征值量化需要范围,对信道矩阵进行归一化处理并上报归一化系数,能够保证特征值的范围固定,使得终端设备对特征值进行量化反馈。
结合第一方面,在第一方面的某些实现方式中,所述第一参考信号为信道状态信息参考信号CSI-RS;和/或所述第二参考信号为探测参考信号SRS。
第二方面,提供了另一种数据传输方法,网络设备向终端设备发送第一参考信号;所述网络设备接收所述终端设备根据所述第一参考信号发送的指示信息,所述指示信息用于指示所述终端设备用于反馈信道状态信息CSI所采用的目标模式。
本申请实施例的数据传输方法,通过终端设备先根据网络设备发送的第一参考信号获得下行信道的信道状态,再结合信道状态从多种模式中选择用于反馈当前CSI所采用的模式,并通过指示信息告知该网络设备,能够提高终端设备反馈CSI的灵活性。
结合第二方面,在第二方面的某些实现方式中,所述目标模式为第一模式、第二模式或第三模式,在所述第一模式下,所述终端设备反馈所述CSI的全部信息,在所述第二模式下,所述终端设备反馈所述CSI的部分信息,并发送第二参考信号,在所述第三模式下,所述终端设备发送所述第二参考信号;其中,所述全部信息用于表示所述下行信道中全部信道的信道状态,所述部分信息用于表示所述下行信道中部分信道的信道状态。
结合第二方面,在第二方面的某些实现方式中,所述目标模式为第二模式,在所述网络设备接收所述终端设备根据所述第一参考信号发送的指示信息之后,所述方法还包括:所述网络设备接收所述终端设备发送的第二参考信号;所述网络设备接收所述终端设备根据所述第一参考信号发送的所述部分信息。
结合第二方面,在第二方面的某些实现方式中,所述网络设备接收所述终端设备根据所述第一参考信号发送的所述部分信息,包括:所述网络设备接收所述终端设备发送的所述部分信道的相关矩阵的特征向量和特征值;或所述网络设备接收所述终端设备发送的所述特征向量、所述特征值以及归一化系数的标识,所述归一化系数用于对所述部分信道的相关矩阵进行归一化处理。
结合第二方面,在第二方面的某些实现方式中,所述方法还包括:所述网络设备根据所述第二参考信号进行信道估计,获得上行信道的相关矩阵;所述网络设备根据所述特征向量和所述特征值,合成所述部分信道的相关矩阵;所述网络设备将所述上行信道的相关矩阵与所述部分信道的相关矩阵进行叠加,获得所述下行信道中全部信道的相关矩阵;所述网络设备根据所述全部信道的相关矩阵,获得下行预编码矩阵。
结合第二方面,在第二方面的某些实现方式中,所述第一参考信号为信道状态信息参考信号CSI-RS;和/或所述第二参考信号为探测参考信号SRS。
第三方面,提供了一种数据传输装置,用于执行第一方面或第一方面任意可能的实现方式中的方法。具体地,该装置包括用于执行上述第一方面或第一方面的任一种可能的实现方式中的方法的单元。
第四方面,提供了另一种数据传输装置,用于执行第二方面或第二方面任意可能的实现方式中的方法。具体地,该装置包括用于执行上述第二方面或第二方面的任一种可能的实现方式中的方法的单元。
第五方面,提供了另一种数据传输装置,该装置包括:收发器、存储器和处理器。其中,该收发器、该存储器和该处理器通过内部连接通路互相通信,该存储器用于存储指令,该处理器用于执行该存储器存储的指令,以控制接收器接收信号,并控制发送器发送信号,并且当该处理器执行该存储器存储的指令时,该执行使得该处理器执行第一方面或第一方面的任一种可能的实现方式中的方法。
第六方面,提供了另一种数据传输装置,该装置包括:收发器、存储器和处理器。其中,该收发器、该存储器和该处理器通过内部连接通路互相通信,该存储器用于存储指令,该处理器用于执行该存储器存储的指令,以控制接收器接收信号,并控制发送器发送信号,并且当该处理器执行该存储器存储的指令时,该执行使得该处理器执行第二方面或第二方面的任一种可能的实现方式中的方法。
第七方面,提供了一种数据传输系统,该系统包括上述第三方面或第三方面的任一种可能实现方式中的装置以及第四方面或第四方面中的任一种可能实现方式中的装置;或者
该系统包括上述第五方面或第五方面的任一种可能实现方式中的装置以及第六方面或第六方面中的任一种可能实现方式中的装置。
第八方面,提供了一种计算机程序产品,所述计算机程序产品包括:计算机程序代码,当所述计算机程序代码被计算机运行时,使得所述计算机执行上述第一方面或第一方面任一种可能实现方式中的方法。
第九方面,提供了一种计算机程序产品,所述计算机程序产品包括:计算机程序代码,当所述计算机程序代码被计算机运行时,使得所述计算机执行上述第二方面或第二方面任一种可能实现方式中的方法。
第十方面,提供了一种计算机可读介质,用于存储计算机程序,该计算机程序包括用 于执行第一方面或第一方面的任意可能的实现方式中的方法的指令。
第十一方面,提供了一种计算机可读介质,用于存储计算机程序,该计算机程序包括用于执行第二方面或第二方面的任意可能的实现方式中的方法的指令。
附图说明
图1示出了本申请实施例的通信系统的示意图。
图2示出了根据本申请实施例的数据传输方法的示意性流程图。
图3示出了根据本申请实施例的用于数据传输装置的示意性框图。
图4示出了根据本申请实施例的另一数据传输装置的示意性框图。
图5示出了根据本申请实施例的另一数据传输装置的示意性框图。
图6示出了根据本申请实施例的另一数据传输装置的示意性框图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
应理解,本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通信(global system of mobile communication,GSM)系统、码分多址(code division multiple access,CDMA)系统、宽带码分多址(wideband code division multiple access,WCDMA)系统、通用分组无线业务(general packet radio service,GPRS)、长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、通用移动通信系统(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信系统、未来的第五代(5th generation,5G)系统或新无线(new radio,NR)等。
还应理解,本申请实施例的技术方案还可以应用于各种基于非正交多址接入技术的通信系统,例如稀疏码多址接入(sparse code multiple access,SCMA)系统,当然SCMA在通信领域也可以被称为其他名称;进一步地,本申请实施例的技术方案可以应用于采用非正交多址接入技术的多载波传输系统,例如采用非正交多址接入技术正交频分复用(orthogonal frequency division multiplexing,OFDM)、滤波器组多载波(filter bank multi-carrier,FBMC)、通用频分复用(generalized frequency division multiplexing,GFDM)、滤波正交频分复用(filtered-OFDM,F-OFDM)系统等。
还应理解,在本申请实施例中,终端设备可以经无线接入网(radio access network,RAN)与一个或多个核心网进行通信,该终端设备可称为接入终端、用户设备(userequipment,UE)、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。接入终端可以是蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字处理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、未来5G网络中的终端设备或者未来演进的公共陆地移动网络(public land mobile network,PLMN)中的终端设备等。
还应理解,在本申请实施例中,网络设备可用于与终端设备通信,该网络设备可以是GSM系统或CDMA系统中的基站(base transceiver station,BTS),也可以是WCDMA系统中的基站(node B,NB),还可以是LTE系统中的演进型基站(evolutional node B,eNB或eNode B),或者该网络设备可以为中继站、接入点、车载设备、可穿戴设备、未来5G网络中的网络侧设备或者未来演进的PLMN网络中的网络设备等。
本申请实施例可以适用于LTE系统以及后续的演进系统如5G等,或其他采用各种无线接入技术的无线通信系统,如采用码分多址,频分多址,时分多址,正交频分多址,单载波频分多址等接入技术的系统,尤其适用于需要信道信息反馈和/或应用二级预编码技术的场景,例如应用Massive MIMO技术的无线网络、应用分布式天线技术的无线网络等。
应理解,多输入输出(multiple-input multiple-output,MIMO)技术是指在发送端设备和接收端设备分别使用多个发射天线和接收天线,使信号通过发送端设备与接收端设备的多个天线传送和接收,从而改善通信质量。它能充分利用空间资源,通过多个天线实现多发多收,在不增加频谱资源和天线发射功率的情况下,可以成倍地提高系统信道容量。
MIMO可以分为单用户多输入多输出(single-user MIMO,SU-MIMO)和多用户多输入多输出(multi-user MIMO,MU-MIMO)。Massive MIMO基于多用户波束成形的原理,在发送端设备布置几百根天线,对几十个目标接收机调制各自的波束,通过空间信号隔离,在同一频率资源上同时传输几十条信号。因此,Massive MIMO技术能够充分利用大规模天线配置带来的空间自由度,提升频谱效率。
图1是本申请实施例所用的通信系统的示意图。如图1所示,该通信系统100包括网络设备102,网络设备102可包括多个天线组。每个天线组可以包括一个或多个天线,例如,一个天线组可包括天线104和106,另一个天线组可包括天线108和110,附加组可包括天线112和114。图1中对于每个天线组示出了2个天线,然而可以对于每个组使用更多或更少的天线。网络设备102可附加地包括发射机链和接收机链,本领域普通技术人员可以理解,它们均可包括与信号发送和接收相关的多个部件,例如处理器、调制器、复用器、解调器、解复用器或天线等。
网络设备102可以与多个终端设备通信,例如,网络设备102可以与终端设备116和终端设备122通信。然而,可以理解,网络设备102可以与类似于终端设备116或122的任意数目的终端设备通信。终端设备116和122可以是例如蜂窝电话、智能电话、便携式电脑、手持通信设备、手持计算设备、卫星无线电装置、全球定位系统、PDA和/或用于在无线通信系统100上通信的任意其它适合设备。
如图1所示,终端设备116与天线112和114通信,其中天线112和114通过前向链路118向终端设备116发送信息,并通过反向链路120从终端设备116接收信息。此外,终端设备122与天线104和106通信,其中天线104和106通过前向链路124向终端设备122发送信息,并通过反向链路126从终端设备122接收信息。
例如,在频分双工FDD系统中,例如,前向链路118可利用与反向链路120所使用的不同频带,前向链路124可利用与反向链路126所使用的不同频带。
再例如,在时分双工TDD系统和全双工(full duplex)系统中,前向链路118和反向链路120可使用共同频带,前向链路124和反向链路126可使用共同频带。
被设计用于通信的每组天线和/或区域称为网络设备102的扇区。例如,可将天线组 设计为与网络设备102覆盖区域的扇区中的终端设备通信。在网络设备102通过前向链路118和124分别与终端设备116和122进行通信的过程中,网络设备102的发射天线可利用波束成形来改善前向链路118和124的信噪比。此外,与网络设备通过单个天线向它所有的终端设备发送信号的方式相比,在网络设备102利用波束成形向相关覆盖区域中随机分散的终端设备116和122发送信号时,相邻小区中的移动设备会受到较少的干扰。
在给定时间,网络设备102、终端设备116或终端设备122可以是无线通信发送装置和/或无线通信接收装置。当发送数据时,无线通信发送装置可对数据进行编码以用于传输。具体地,无线通信发送装置可获取要通过信道发送至无线通信接收装置的一定数目的数据比特,例如,无线通信发送装置可生成、从其它通信装置接收、或在存储器中保存等要通过信道发送至无线通信接收装置的一定数目的数据比特。这种数据比特可包含在数据的传输块或多个传输块中,传输块可被分段以产生多个码块。
此外,该通信系统100可以是公共陆地移动网络PLMN网络或者设备对设备(device to device,D2D)网络或者机器对机器(machine to machine,M2M)网络或者其他网络,图1仅为便于理解而示例的简化示意图,网络中还可以包括其他网络设备,图1中未予以画出。
图2示出了本申请实施例的数据传输方法200的示意性流程图。该方法200可以应用于图1所示的通信系统100,但本申请实施例不限于此。
S210,网络设备向终端设备发送第一参考信号;
则对应地,所述终端设备接收所述网络设备发送的第一参考信号;
S220,所述终端设备根据所述第一参考信号,对下行信道进行测量,获得所述下行信道的信道状态;
S230,所述终端设备根据所述下行信道的信道状态,从多个模式中确定目标模式,所述终端设备在所述多个模式中的不同模式下发送的用于反馈信道状态信息CSI的信息不同;
S240,所述终端设备向所述网络设备发送指示信息,所述指示信息用于指示所述目标模式;
则对应地,所述网络设备接收所述终端设备发送的所述指示信息,并进一步根据所述指示信息确定所述终端设备所采用的目标模式。
应理解,上述多个模式中不同的模式可以分别对应不同的内容,且该多个模式可以是网络设备通过信令预先配置给终端设备的,也可以是协议约定的,本申请实施例对此不作限定。
在本申请实施例中,通过终端设备先根据网络设备发送的第一参考信号获得下行信道的信道状态,再结合信道状态从多种模式中选择用于反馈当前CSI所采用的目标模式,并通过指示信息告知该网络设备,能够提高终端设备反馈CSI的灵活性。
作为一个可选的实施例,该终端设备还可以结合自身的发送端口的相关性来确定上述目标模式,假设该终端设备有n个发送端口,该n个发送端口的相关性表示n个发送端口对应的发送信道的相关程度,具体可以为该n个发送端口的相关矩阵的秩,但本申请实施例对此不作限定。
作为一个可选的实施例,所述第一参考信号为信道状态信息参考信号CSI-RS;和/或 所述第二参考信号为探测参考信号SRS。
具体地,在网络设备和终端设备均进行了互易性校准的情况下,网络设备可以通过多种方式获取下行信道的信道状态。例如,在TDD系统中,网络设备可以通过接收终端设备发送的SRS估计得到上行信道的信道状态,进而获得对应的下行信道的信道状态,也可以通过发送CSI-RS,获取终端设备根据CSI-RS反馈的CSI,还可以将采用SRS估计得到的信息和终端设备反馈的部分CSI进行合成,获得全部下行信道的信道状态,从而降低终端设备的CSI反馈开销。
作为一个可选的实施例,所述多个模式包括第一模式、第二模式和第三模式,在所述第一模式下,所述终端设备反馈所述CSI的全部信息,在所述第二模式下,所述终端设备反馈所述CSI的部分信息,并发送第二参考信号,在所述第三模式下,所述终端设备发送所述第二参考信号,其中,所述全部信息用于表示所述下行信道中全部信道的信道状态,所述部分信息用于表示所述下行信道中部分信道的信道状态。
作为一个可选的实施例,所述终端设备包括m个接收端口和n个发送端口,且所述m个发送端口包括所述n个接收端口,m和n均为正整数。
在本申请实施例中,终端设备具有m个接收端口和n个发送端口,且该m个接收端口包括该n个发送端口,m>n,因此,根据信道的互易性,网络设备根据终端设备发送的第二参考信号仅能获得n个端口的信道状态,另外m-n个端口的信道状态可能仍旧需要网络设备向终端设备发送第一参考信号获得,这取决于该m-n个端口对应的下行信道的相关性。因此,在网络设备需要获取下行信道的信道状态时,该网络设备可以先向终端设备发送第一参考信号,该终端设备接收该第一参考信号,并对下行信道进行测量获得下行信道的信道状态,即CSI,然后,该终端设备可以根据下行信道的信道状态以及终端设备的n个发送端口的相关程度,确定合理的用于反馈CSI的模式。具体地,该终端设备可以从下列三种模式中选择一种目标模式用于反馈CSI,从而使得CSI的反馈更加灵活。
1、第一模式
终端设备在接收网络设备发送的第一参考信号之后,获得CSI,并向网络设备反馈该CSI的全部信息。该模式为FDD系统中的CSI反馈方式,并没有利用到信道的互易性。
2、第二模式
终端设备在接收网络设备发送的第一参考信号之后,获得CSI,向网络设备反馈该CSI的部分信息,同时,该终端设备向该网络设备发送第二参考信号,该第二参考信号用于该网络设备估计上行信道,从而获得对应的下行信道。该模式有效利用了信道的互易性。
3、第三模式
终端设备在接收网络设备发送的第一参考信号之后,获得CSI,该终端设备向网络设备发送第二参考信号。由于全部下行信道中可能存在部分下行信道是强相关的,因此,在这种方式下,终端设备已经获知了下行信道的信道状态,确定网络设备通过第二参考信号就可以获得全部下行信道的信道状态,无需再反馈CSI了,这样能够大大降低CSI的反馈开销。
因此,在本申请实施例中,通过终端设备先根据网络设备发送的第一参考信号获得下行信道的信道状态,再结合信道状态与自身的发送端口确定用于反馈CSI所采用的目标模式,并通过指示信息告知该网络设备,能够提高终端设备反馈CSI的灵活性。
应理解,终端设备的n个发送端口可以是固定的,也可以是不固定的,本申请实施例对此不作限定。例如,m=4,n=2,该终端设备具有4个端口(1-4号端口),并且每个端口都配置为接收端口,但该终端设备只有2个发送端口。因此,该终端设备在每个时刻只有2个端口可以作为发送端口。若该终端设备的2个发送端口固定,为1号端口和2号端口,那么该终端设备每次发送第二参考信号均采用的是1号端口和2号端口;若该终端设备的2个发送端口不固定,那么该终端设备可以根据下行信道的信道状态,即根据所有端口对应的下行信道之间的相关性,从4个端口中选择2个端口作为发送端口。
还应理解,信道矩阵的秩或相关矩阵的秩在实际中一般是根据某种判定准则确定的,例如,将小于某个阈值的特征值忽略不计,从而得到信道矩阵的秩或相关矩阵的秩,但本申请实施例对此不作限定。
作为一个可选的实施例,所述终端设备包括m个接收端口和n个发送端口,且所述m个接收端口包括所述n个发送端口,m和n均为正整数,在所述n个发送端口固定的情况下,所述终端设备根据所述下行信道的信道状态,从多个模式中确定用于反馈信道状态信息CSI所采用的目标模式,包括:
所述终端设备根据所述下行信道的信道状态,确定所述下行信道的信道矩阵的秩以及所述n个发送端口的相关矩阵的秩;
所述终端设备将所述n个发送端口的相关矩阵的秩与所述下行信道的信道矩阵的秩进行比较;
若所述n个发送端口的相关矩阵的秩等于所述下行信道的信道矩阵的秩,所述终端设备将所述第三模式确定为所述目标模式。
作为一个可选的实施例,所述方法还包括:
若所述n个发送端口的相关矩阵的秩小于所述下行信道的信道矩阵的秩,所述终端设备根据所述下行信道的信道状态,确定所述m个接收端口中除所述n个发送端口之外的剩余端口的相关矩阵的秩;
所述终端设备将所述剩余端口的相关矩阵的秩与所述下行信道的信道矩阵的秩进行比较;
若所述剩余端口的相关矩阵的秩等于所述下行信道的信道矩阵的秩,所述终端设备将所述第一模式确定为所述目标模式;
若所述剩余端口的相关矩阵的秩小于所述下行信道的信道矩阵的秩,所述终端设备将所述第二模式确定为所述目标模式。
具体地,在该终端设备的n个发送端口固定的情况下,该终端设备可以先根据下行信道的信道状态,确定下行信道的信道矩阵的秩,以及该n个发送端口的相关矩阵的秩,并比较二者的大小。如果该n个发送端口的相关矩阵的秩等于该下行信道的信道矩阵的秩,那么说明该终端设备通过n个发送端口发送第二参考信号已经足以反映全部下行信道的信道状态,在这种情况下,该终端设备可以选择第三模式,即只向网络设备发送第二参考信号即可。
如果该n个发送端口的相关矩阵的秩小于该下行信道的信道矩阵的秩,那么说明该终端设备通过n个发送端口发送第二参考信号只能反映出一部分下行信道的信道状态,在这种情况下,该终端设备需要再根据测量得到的下行信道的信道状态,确定m个接收端口 中除该n个发送端口之外的剩余m-n个端口的相关矩阵的秩,并比较剩余m-n个端口的相关矩阵的秩与下行信道的信道矩阵的秩的大小。如果剩余m-n个端口的相关矩阵的秩等于下行信道的信道矩阵的秩,那么说明该终端设备通过n个发送端口发送第二参考信号并没有对降低CSI的反馈开销起到任何作用,该终端设备仍旧需要反馈所有下行信道的信道状态,在这种情况下,该终端设备就无需通过n个发送端口发送第二参考信号了,采用第一模式反馈CSI的全部信息即可。
如果剩余m-n个端口的相关矩阵的秩小于下行信道的信道矩阵的秩,那么说明该终端设备可以通过n个发送端口发送第二参考信号来反馈一部分信道的信道状态,再通过反馈CSI的部分信息来反馈另一部分信道的信道状态,从而达到降低CSI的反馈开销的目的,因此,在这种情况下,终端设备可以采用第二模式。
应理解,在本申请实施例中,由于下行信道的信道矩阵反映的是全部信道的信道状态,n个发送端口的相关矩阵反映的是部分信道的信道状态,因此,不存在n个发送端口的相关矩阵的秩大于下行信道的信道矩阵的秩的情况。同理,也不存在剩余m-n个端口的相关矩阵的秩大于下行信道的信道矩阵的秩的情况。
为便于理解,下面结合具体实施例对本申请如何确定目标模式进行详细地说明。
在一种可能的实现方式中,m=4,n=2,终端设备根据网络设备发送的CSI-RS对下行信道进行测量,确定下行信道的信道矩阵的秩RI1=2,假设4个端口分别称为1-4号端口,且2个发送端口分别为1号端口和2号端口,终端设备可以根据上述测量确定1号端口和2号端口的相关矩阵的秩RI2,根据RI2的取值可以分如下几种情况:
1、若RI2=2,即RI2=RI1,该终端设备可以直接采用第三模式;
2、若RI2<2,即RI2<RI1,该终端设备可以根据上述测量的结果,确定3号端口和4号端口的相关矩阵的秩RI3;
(1)若RI3=2,即RI3=RI1,该终端设备可以采用第一模式;
(2)若RI3<2,即RI3<RI1,该终端设备可以采用第二模式。
作为一个可选的实施例,所述终端设备包括m个接收端口和n个发送端口,且所述m个接收端口包括所述n个发送端口,m和n均为正整数,在所述n个发送端口不固定的情况下,所述终端设备根据所述下行信道的信道状态,从多个模式中确定用于反馈信道状态信息CSI所采用的目标模式,包括:
所述终端设备根据所述下行信道的信道状态,确定所述下行信道的信道矩阵的秩;
所述终端设备将所述下行信道的信道矩阵的秩与所述发送端口的个数n进行比较;
若所述下行信道的信道矩阵的秩小于或等于n,所述终端设备将所述第三模式确定为所述目标模式;
所述终端设备从所述m个接收端口中选择n个第一目标端口作为所述n个发送端口,所述n个第一目标端口的相关矩阵的秩等于所述下行信道的信道矩阵的秩。
作为一个可选的实施例,所述方法还包括:
若所述下行信道的信道矩阵的秩大于n,所述终端设备根据所述下行信道的信道状态,从所述m个接收端口中选择n个第二目标端口作为所述n个发送端口,所述n个第二目标端口的相关矩阵满秩;
所述终端设备根据所述下行信道的测量结果,确定所述m个接收端口中除所述n个 第二目标端口之外的剩余端口的相关矩阵的秩;
所述终端设备将所述剩余端口的相关矩阵的秩与所述下行信道的信道矩阵的秩进行比较;
若所述剩余端口的相关矩阵的秩等于所述下行信道的信道矩阵的秩,所述终端设备将所述第一模式确定为所述目标模式;
若所述剩余端口的相关矩阵的秩小于所述下行信道的信道矩阵的秩,所述终端设备将所述第二模式确定为所述目标模式。
具体地,在该终端设备的n个发送端口不固定的情况下,该终端设备可以根据实际情况选择n个端口作为发送端口发送第二参考信号。该终端设备可以先根据所述下行信道的信道状态,确定所述下行信道的信道矩阵的秩,并将所述下行信道的信道矩阵的秩与所述发送端口的个数n进行比较。如果下行信道的信道矩阵的秩小于或等于n,那么说明该终端设备能够通过n个发送端口发送第二参考信号,来反映出全部下行信道的信道状态,在这种情况下,该终端设备可以采用第三模式,无需再反馈CSI。此时,该终端设备需要从m个接收端口中选择n个第一目标端口作为所述n个发送端口,且所选择的n个第一目标端口的相关矩阵的秩等于下行信道的信道矩阵的秩。
如果下行信道的信道矩阵的秩大于n,那么说明该终端设备无法仅通过发送第二参考信号反馈全部下行信道的信道状态,在这种情况下,该终端设备还需要反馈CSI。该终端设备可以先从m个接收端口中选择n个第二目标端口作为发送端口,且所选择的n个第二目标端口的相关矩阵是满秩的。然后,该终端设备再将n个第二目标端口的相关矩阵的秩与下行信道的信道矩阵的秩进行比较,确定用于反馈CSI的模式。具体确定方法与上述端口固定的方法相同,此处不再赘述。
在本申请实施例中,由于终端设备的n个发送端口不固定,终端设备可以根据下行信道的信道状态灵活选择,尽可能使得通过该n个发送端口发送第二参考信号反馈较多信道的信道状态,这样,终端设备反馈的CSI就可以相应地减少,有利于降低终端设备的CSI反馈开销。
为便于理解,下面结合具体实施例对本申请如何确定目标模式进行详细地说明。
在一种可能的实现方式中,m=4,n=2,终端设备根据网络设备发送的CSI-RS对下行信道进行测量,确定下行信道的信道矩阵的秩RI1=2,假设4个端口分别称为1-4号端口,且终端设备的发送端口不固定,此时,RI1=n,该终端设备可以直接采用第三模式,并从4个端口中选择2个不强相关的端口作为发送端口,使得这两个发送端口的相关矩阵的秩为2。
在另一种可能的实现方式中,m=4,n=2,终端设备根据网络设备发送的CSI-RS对下行信道进行测量,确定下行信道的信道矩阵的秩RI1=3,假设4个端口分别称为1-4号端口,且终端设备的发送端口不固定,此时,RI1>n,这表明仅通过n个端口发送SRS是无法使网络设备获取全部下行信道的信道状态的,该终端设备可以根据上述测量的结果,从4个端口中选择2个端口作为发送端口,并保证这2个端口的相关矩阵是满秩的,RI2=2,即RI2<RI1,假设这2个端口分别为1号端口和2号端口,在这种情况下,该终端设备可以根据上述测量的结果确定3号端口和4号端口的相关矩阵的秩RI3,RI3=1或RI3=2,即RI3<RI1,该终端设备可以采用第二模式。
作为一个可选的实施例,所述终端设备包括m个接收端口和n个发送端口,且所述m个接收端口包括所述n个发送端口,m和n均为正整数,在所述目标模式为所述第二模式的情况下,所述方法还包括:
所述终端设备根据所述m个接收端口中除所述n个发送端口之外的剩余端口的相关矩阵的秩,确定需要反馈的所述部分信道;
所述终端设备向所述网络设备发送所述部分信息,所述部分信息用于表示所述部分信道的相关矩阵;
所述终端设备通过所述n个发送端口向所述网络设备发送所述第二参考信号。
则对应地,所述网络设备接收所述终端设备发送的第二参考信号以及所述部分信息。
具体地,若终端设备采用第二模式反馈CSI,该终端设备可以在反馈之前,根据剩余m-n个信道的相关矩阵的秩,确定需要反馈的部分信道。该终端设备向网络设备发送该部分信道的信道信息,并通过上述n个发送端口向网络设备发送第二参考信号。该网络设备接收第二参考信号,进行信道估计获得n个发送端口对应的下行信道的信道状态,并接收部分信息,获得剩余m-n个端口的下行信道的信道状态,将二者进行合成,即可得到全部下行信道的信道状态。
例如,m=2,n=1,第一参考信号为CSI-RS,第二参考信号为SRS,终端设备若采用2个端口发送SRS,对应的全部信道为
Figure PCTCN2018101305-appb-000001
由于终端设备的发送端口的个数为1,因此,网络设备通过终端设备发送SRS一次只能获取1个下行信道的信道状态,假设网络设备可以通过SRS进行信道估计得到H 1。网络设备由于并未获得全部下行信道的信道状态,可以向终端设备发送CSI-RS,该终端设备通过CSI-RS可以获得全部下行信道
Figure PCTCN2018101305-appb-000002
上述两个信道矩阵H SRS和G CSI-RS包含终端设备和网络设备的功率增益等因素,因此,终端设备可以对上述两个信道矩阵进行归一化处理,获得下列矩阵:
Figure PCTCN2018101305-appb-000003
根据信道的互易性,[g′ 21 g′ 22 … g′ 2N]=[h′ 21 h′ 22 … h′ 2N],因此,网络设备可以向终端设备发送CSI-RS,根据终端设备反馈G′ 2来获得H′ 2,并接收终端设备发送的SRS,根据SRS进行信道估计获得H′ 1,最终,网络设备将H′ 1和G′ 2进行合成,获得
Figure PCTCN2018101305-appb-000004
的相关矩阵:
Figure PCTCN2018101305-appb-000005
作为一个可选的实施例,所述终端设备向所述网络设备发送所述部分信息,包括:
所述终端设备向所述网络设备发送所述部分信道的相关矩阵的特征向量和特征值;
则对应地,所述网络设备接收所述终端设备发送的所述部分信道的相关矩阵的特征向量和特征值;或
所述终端设备向所述网络设备发送所述特征向量、所述特征值以及归一化系数的标 识,所述归一化系数用于对所述部分信道的相关矩阵进行归一化处理。
则对应地,所述网络设备接收所述终端设备发送的所述特征向量、所述特征值以及归一化系数的标识。
应理解,在反馈CSI的部分信息时,终端设备可以仅向网络设备反馈部分信道的相关矩阵的特征向量,也可以向网络设备反馈部分信道的相关矩阵的特征向量和特征值,还可以向网络设备反馈部分信道的相关矩阵的特征向量、特征值以及归一化系数的标识(例如,归一化系数的位置),本申请实施例对此不作限定。反馈特征值能够提高CSI的精度,网络设备能够根据特征值匹配SRS估计的信道和CSI反馈的部分信道的功率,从而使得网络设备合成的信道更加准确,减小信道合成的误差。但由于信道的特征值量化需要范围,对信道矩阵进行归一化处理并上报归一化系数,能够保证特征值的范围固定,使得终端设备对特征值进行量化反馈。
具体地,由于G' 2的相关矩阵G' 2 *G' 2进行奇异值分解为U *ΛU,终端设备反馈U中特征向量和特征值,网络设备便可以恢复出G' 2 *G' 2。因此,为了消除终端设备和网络设备的功率增益等问题,根据某一特定元素进行归一化后,网络设备通过SRS估计得到的信道H 1′与终端设备通过CSI-RS估计得到的信道G′ 2的信号功率可以对齐,保证合成信道的精确性。即只有G' 2 *G' 2精确反馈,合成信道的准确性才能得到保证。
如上所述,在本申请实施例中,可以采用如下三种方式反馈G' 2 *G' 2
1、只反馈其特征向量
网络设备在合成G' 2 *G' 2时,可以将特征值默认为1,H′ 1与G′ 2进行功率对齐的元素为预先设定的某一个位置的元素,这样,G' 2 *G' 2中元素的相对大小没有得到体现。
2、反馈其特征向量和特征值
网络设备在合成G' 2 *G' 2时,可以使用终端设备反馈的特征值,准确性相对较高。但是量化特征值可能有损失,因为实际量化时,会划定量化范围和量化比特数,可能存在量化误差,例如,实际特征值大于量化范围。
3、反馈其特征向量、特征值以及归一化系数标号
H′ 1与G′ 2进行功率对齐的元素为终端设备根据G′ 2元素值进行选择,尽量保证G′ 2中的每个元素的绝对值均小于或等于1,使得G' 2 *G' 2特征值范围可控,避免超出量化范围的情况,并且可以合理设计量化比特数,尽量减少量化误差。
应理解,该归一化系数可以为归一化系数标号,或其他可以标识该归一化系数的信息,本申请实施例对此不作限定。
在上述m=2,n=1的例子中,
Figure PCTCN2018101305-appb-000006
归一化处理之后,
Figure PCTCN2018101305-appb-000007
G′ 2中的每个元素的绝对值均小于或等于1,
Figure PCTCN2018101305-appb-000008
因此,每个特征值量化的范围均小于或等于
Figure PCTCN2018101305-appb-000009
应理解,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
上文中结合图1至图2,详细描述了根据本申请实施例的数据传输方法,下面将结合图3至图6,详细描述根据本申请实施例的数据传输装置。
图3示出了本申请实施例提供的数据传输装置300,该装置300包括:
接收单元310,用于接收网络设备发送的第一参考信号;
测量单元320,用于根据所述第一参考信号,对下行信道进行测量,获得所述下行信道的信道状态;
确定单元330,用于根据所述下行信道的信道状态,从多个模式中确定目标模式,所述装置在所述多个模式中的不同模式下发送的用于反馈信道状态信息CSI的信息不同;
发送单元340,用于向所述网络设备发送指示信息,所述指示信息用于指示所述目标模式。
本申请实施例的数据传输装置,通过终端设备先根据网络设备发送的第一参考信号获得下行信道的信道状态,再结合信道状态确定用于反馈CSI所采用的目标模式,并通过指示信息告知该网络设备,能够提高终端设备反馈CSI的灵活性。
可选地,所述多个模式包括第一模式、第二模式和第三模式,在所述第一模式下,所述装置反馈所述CSI的全部信息,在所述第二模式下,所述装置反馈所述CSI的部分信息,并发送第二参考信号,在所述第三模式下,所述装置发送所述第二参考信号;其中,所述全部信息用于表示所述下行信道中全部信道的信道状态,所述部分信息用于表示所述下行信道中部分信道的信道状态。
可选地,所述装置包括m个接收端口和n个发送端口,且所述m个接收端口包括所述n个发送端口,m和n均为正整数,在所述n个发送端口固定的情况下,所述确定单元330具体用于:根据所述下行信道的信道状态,确定所述下行信道的信道矩阵的秩以及所述n个发送端口的相关矩阵的秩;将所述n个发送端口的相关矩阵的秩与所述下行信道的信道矩阵的秩进行比较;若所述n个发送端口的相关矩阵的秩等于所述下行信道的信道矩阵的秩,将所述第三模式确定为所述目标模式。
可选地,所述确定单元330还用于:若所述n个发送端口的相关矩阵的秩小于所述下行信道的信道矩阵的秩,根据所述下行信道的信道状态,确定所述m个接收端口中除所述n个发送端口之外的剩余端口的相关矩阵的秩;将所述剩余端口的相关矩阵的秩与所述下行信道的信道矩阵的秩进行比较;若所述剩余端口的相关矩阵的秩等于所述下行信道的信道矩阵的秩,将所述第一模式确定为所述目标模式;若所述剩余端口的相关矩阵的秩小于所述下行信道的信道矩阵的秩,将所述第二模式确定为所述目标模式。
可选地,所述终端设备包括m个接收端口和n个发送端口,且所述m个接收端口包括所述n个发送端口,m和n均为正整数,在所述n个发送端口不固定的情况下,所述确定单元330具体用于:根据所述下行信道的信道状态,确定所述下行信道的信道矩阵的秩;将所述下行信道的信道矩阵的秩与所述发送端口的个数n进行比较;若所述下行信道的信道矩阵的秩小于或等于n,将所述第三模式确定为所述目标模式;从所述m个接收端口中选择n个第一目标端口作为所述n个发送端口,所述n个第一目标端口的相关矩阵的秩等于所述下行信道的信道矩阵的秩。
可选地,所述确定单元330还用于:若所述下行信道的信道矩阵的秩大于n,根据所述下行信道的信道状态,从所述m个接收端口中选择n个第二目标端口作为所述n个发送端口,所述n个第二目标端口的相关矩阵满秩;根据所述下行信道的测量结果,确定所述m个接收端口中除所述n个第二目标端口之外的剩余端口的相关矩阵的秩;将所述剩 余端口的相关矩阵的秩与所述下行信道的信道矩阵的秩进行比较;若所述剩余端口的相关矩阵的秩等于所述下行信道的信道矩阵的秩,将所述第一模式确定为所述目标模式;若所述剩余端口的相关矩阵的秩小于所述下行信道的信道矩阵的秩,将所述第二模式确定为所述目标模式。
可选地,所述终端设备包括m个接收端口和n个发送端口,且所述m个接收端口包括所述n个发送端口,m和n均为正整数,在所述目标模式为所述第二模式的情况下,所述确定单元330还用于:根据所述m个接收端口中除所述n个发送端口之外的剩余端口的相关矩阵的秩,确定需要反馈的所述部分信道;所述发送单元340还用于:向所述网络设备发送所述部分信息,所述部分信息用于表示所述部分信道的相关矩阵;通过所述n个发送端口向所述网络设备发送所述第二参考信号。
可选地,所述发送单元340具体用于:向所述网络设备发送所述部分信道的相关矩阵的特征向量和特征值;或向所述网络设备发送所述特征向量、所述特征值以及归一化系数的标识,所述归一化系数用于对所述部分信道的相关矩阵进行归一化处理。
可选地,所述第一参考信号为信道状态信息参考信号CSI-RS;和/或所述第二参考信号为探测参考信号SRS。
应理解,这里的装置300以功能单元的形式体现。这里的术语“单元”可以指应用特有集成电路(application specific integrated circuit,ASIC)、电子电路、用于执行一个或多个软件或固件程序的处理器(例如共享处理器、专有处理器或组处理器等)和存储器、合并逻辑电路和/或其它支持所描述的功能的合适组件。在一个可选例子中,本领域技术人员可以理解,装置300可以具体为上述实施例中的终端设备,装置300可以用于执行上述方法实施例中与终端设备对应的各个流程和/或步骤,为避免重复,在此不再赘述。
图4示出了本申请实施例提供的另一数据传输装置400,该装置400包括:
发送单元410,用于向终端设备发送第一参考信号;
接收单元420,用于接收所述终端设备根据所述第一参考信号发送的指示信息,所述指示信息用于指示所述终端设备用于反馈信道状态信息CSI所采用的目标模式。
本申请实施例的数据传输装置,通过终端设备先根据网络设备发送的第一参考信号获得下行信道的信道状态,再结合下行信道的信道状态确定用于反馈CSI所采用的目标模式,并通过指示信息告知该网络设备,能够提高终端设备反馈CSI的灵活性。
可选地,所述目标模式为第一模式、第二模式或第三模式,在所述第一模式下,所述终端设备反馈所述CSI的全部信息,在所述第二模式下,所述终端设备反馈所述CSI的部分信息,并发送第二参考信号,在所述第三模式下,所述终端设备发送所述第二参考信号;其中,所述全部信息用于表示所述下行信道中全部信道的信道状态,所述部分信息用于表示所述下行信道中部分信道的信道状态。
可选地,所述目标模式为所述第二模式,所述接收单元420还用于:在接收所述终端设备根据所述第一参考信号发送的指示信息之后,接收所述终端设备发送的第二参考信号;接收所述终端设备根据所述第一参考信号发送的所述部分信息。
可选地,所述接收单元420具体用于:接收所述终端设备发送的所述部分信道的相关矩阵的特征向量和特征值;或接收所述终端设备发送的所述特征向量、所述特征值以及归一化系数的标识,所述归一化系数用于对所述部分信道的相关矩阵进行归一化处理。
可选地,所述装置还包括:处理单元,用于根据所述第二参考信号进行信道估计,获得上行信道的相关矩阵;根据所述特征向量和所述特征值,合成所述部分信道的相关矩阵;将所述上行信道的相关矩阵与所述部分信道的相关矩阵进行叠加,获得所述下行信道中全部信道的相关矩阵;根据所述全部信道的相关矩阵,获得下行预编码矩阵。
可选地,所述第一参考信号为信道状态信息参考信号CSI-RS;和/或所述第二参考信号为探测参考信号SRS。
应理解,这里的装置400以功能单元的形式体现。这里的术语“单元”可以指应用特有集成电路(application specific integrated circuit,ASIC)、电子电路、用于执行一个或多个软件或固件程序的处理器(例如共享处理器、专有处理器或组处理器等)和存储器、合并逻辑电路和/或其它支持所描述的功能的合适组件。在一个可选例子中,本领域技术人员可以理解,装置400可以具体为上述实施例中的网络设备,装置400可以用于执行上述方法实施例中与网络设备对应的各个流程和/或步骤,为避免重复,在此不再赘述。
图5示出了本申请实施例提供的另一数据传输装置500。该装置500包括处理器510、收发器520和存储器530。其中,处理器510、收发器520和存储器530通过内部连接通路互相通信,该存储器530用于存储指令,该处理器510用于执行该存储器530存储的指令,以控制该收发器520发送信号和/或接收信号。
其中,该收发器520用于接收网络设备发送的第一参考信号;该处理器510用于根据所述第一参考信号,对下行信道进行测量,获得所述下行信道的信道状态;根据所述下行信道的信道状态,从多个模式中确定目标模式,所述装置在所述多个模式中的不同模式下发送的用于反馈信道状态信息CSI的信息不同;该收发器520还用于向所述网络设备发送指示信息,所述指示信息用于指示所述目标模式。
应理解,装置500可以具体为上述实施例中的终端设备,并且可以用于执行上述方法实施例中与终端设备对应的各个步骤和/或流程。可选地,该存储器530可以包括只读存储器和随机存取存储器,并向处理器提供指令和数据。存储器的一部分还可以包括非易失性随机存取存储器。例如,存储器还可以存储设备类型的信息。该处理器510可以用于执行存储器中存储的指令,并且当该处理器510执行存储器中存储的指令时,该处理器510用于执行上述与该终端设备对应的方法实施例的各个步骤和/或流程。
图6示出了本申请实施例提供的另一数据传输装置600。该装置600包括处理器610、收发器620和存储器630。其中,处理器610、收发器620和存储器630通过内部连接通路互相通信,该存储器630用于存储指令,该处理器610用于执行该存储器630存储的指令,以控制该收发器620发送信号和/或接收信号。
其中,该收发器620用于:向终端设备发送第一参考信号;接收所述终端设备根据所述第一参考信号发送的指示信息,所述指示信息用于指示所述终端设备用于反馈信道状态信息CSI所采用的目标模式。
应理解,装置600可以具体为上述实施例中的网络设备,并且可以用于执行上述方法实施例中网络设备对应的各个步骤和/或流程。可选地,该存储器630可以包括只读存储器和随机存取存储器,并向处理器提供指令和数据。存储器的一部分还可以包括非易失性随机存取存储器。例如,存储器还可以存储设备类型的信息。该处理器610可以用于执行存储器中存储的指令,并且当该处理器610执行存储器中存储的指令时,该处理器610用 于执行上述与该网络设备对应的方法实施例的各个步骤和/或流程。
应理解,在本申请实施例中,上述装置的处理器可以是中央处理单元(central processing unit,CPU),该处理器还可以是其他通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
在实现过程中,上述方法的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件单元组合执行完成。软件单元可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器执行存储器中的指令,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
本领域普通技术人员可以意识到,结合本文中所公开的实施例中描述的各方法步骤和单元,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各实施例的步骤及组成。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。本领域普通技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口、装置或单元的间接耦合或通信连接,也可以是电的,机械的或其它的形式连接。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本申请实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以是两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分,或者该技术方案的全部或部分可以以软件产品的形式体现 出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (33)

  1. 一种数据传输方法,其特征在于,包括:
    终端设备接收网络设备发送的第一参考信号;
    所述终端设备根据所述第一参考信号,对下行信道进行测量,获得所述下行信道的信道状态;
    所述终端设备根据所述下行信道的信道状态,从多个模式中确定目标模式,所述终端设备在所述多个模式中的不同模式下发送的用于反馈信道状态信息CSI的信息不同;
    所述终端设备向所述网络设备发送指示信息,所述指示信息用于指示所述目标模式。
  2. 根据权利要求1所述的方法,其特征在于,所述多个模式包括第一模式、第二模式和第三模式,在所述第一模式下,所述终端设备反馈所述CSI的全部信息,在所述第二模式下,所述终端设备反馈所述CSI的部分信息,并发送第二参考信号,在所述第三模式下,所述终端设备发送所述第二参考信号;
    其中,所述全部信息用于表示所述下行信道中全部信道的信道状态,所述部分信息用于表示所述下行信道中部分信道的信道状态。
  3. 根据权利要求2所述的方法,其特征在于,所述终端设备包括m个接收端口和n个发送端口,且所述m个接收端口包括所述n个发送端口,m和n均为正整数,在所述n个发送端口固定的情况下,所述终端设备根据所述下行信道的信道状态,从多个模式中确定用于反馈信道状态信息CSI所采用的目标模式,包括:
    所述终端设备根据所述下行信道的信道状态,确定所述下行信道的信道矩阵的秩以及所述n个发送端口的相关矩阵的秩;
    所述终端设备将所述n个发送端口的相关矩阵的秩与所述下行信道的信道矩阵的秩进行比较;
    若所述n个发送端口的相关矩阵的秩等于所述下行信道的信道矩阵的秩,所述终端设备将所述第三模式确定为所述目标模式。
  4. 根据权利要求3所述的方法,其特征在于,所述方法还包括:
    若所述n个发送端口的相关矩阵的秩小于所述下行信道的信道矩阵的秩,所述终端设备根据所述下行信道的信道状态,确定所述m个接收端口中除所述n个发送端口之外的剩余端口的相关矩阵的秩;
    所述终端设备将所述剩余端口的相关矩阵的秩与所述下行信道的信道矩阵的秩进行比较;
    若所述剩余端口的相关矩阵的秩等于所述下行信道的信道矩阵的秩,所述终端设备将所述第一模式确定为所述目标模式;
    若所述剩余端口的相关矩阵的秩小于所述下行信道的信道矩阵的秩,所述终端设备将所述第二模式确定为所述目标模式。
  5. 根据权利要求2所述的方法,其特征在于,所述终端设备包括m个接收端口和n个发送端口,且所述m个接收端口包括所述n个发送端口,m和n均为正整数,在所述n个发送端口不固定的情况下,所述终端设备根据所述下行信道的信道状态,从多个模式中 确定用于反馈信道状态信息CSI所采用的目标模式,包括:
    所述终端设备根据所述下行信道的信道状态,确定所述下行信道的信道矩阵的秩;
    所述终端设备将所述下行信道的信道矩阵的秩与所述发送端口的个数n进行比较;
    若所述下行信道的信道矩阵的秩小于或等于n,所述终端设备将所述第三模式确定为所述目标模式;
    所述终端设备从所述m个接收端口中选择n个第一目标端口作为所述n个发送端口,所述n个第一目标端口的相关矩阵的秩等于所述下行信道的信道矩阵的秩。
  6. 根据权利要求5所述的方法,其特征在于,所述方法还包括:
    若所述下行信道的信道矩阵的秩大于n,所述终端设备根据所述下行信道的信道状态,从所述m个接收端口中选择n个第二目标端口作为所述n个发送端口,所述n个第二目标端口的相关矩阵满秩;
    所述终端设备根据所述下行信道的测量结果,确定所述m个接收端口中除所述n个第二目标端口之外的剩余端口的相关矩阵的秩;
    所述终端设备将所述剩余端口的相关矩阵的秩与所述下行信道的信道矩阵的秩进行比较;
    若所述剩余端口的相关矩阵的秩等于所述下行信道的信道矩阵的秩,所述终端设备将所述第一模式确定为所述目标模式;
    若所述剩余端口的相关矩阵的秩小于所述下行信道的信道矩阵的秩,所述终端设备将所述第二模式确定为所述目标模式。
  7. 根据权利要求2至6中任一项所述的方法,其特征在于,所述终端设备包括m个接收端口和n个发送端口,且所述m个接收端口包括所述n个发送端口,m和n均为正整数,在所述目标模式为所述第二模式的情况下,所述方法还包括:
    所述终端设备根据所述m个接收端口中除所述n个发送端口之外的剩余端口的相关矩阵的秩,确定需要反馈的所述部分信道;
    所述终端设备向所述网络设备发送所述部分信息,所述部分信息用于表示所述部分信道的相关矩阵;
    所述终端设备通过所述n个发送端口向所述网络设备发送所述第二参考信号。
  8. 根据权利要求7所述的方法,其特征在于,所述终端设备向所述网络设备发送所述部分信息,包括:
    所述终端设备向所述网络设备发送所述部分信道的相关矩阵的特征向量和特征值;或
    所述终端设备向所述网络设备发送所述特征向量、所述特征值以及归一化系数的标识,所述归一化系数用于对所述部分信道的相关矩阵进行归一化处理。
  9. 根据权利要求1至8中任一项所述的方法,其特征在于,所述第一参考信号为信道状态信息参考信号CSI-RS;和/或
    所述第二参考信号为探测参考信号SRS。
  10. 一种数据传输方法,其特征在于,包括:
    网络设备向终端设备发送第一参考信号;
    所述网络设备接收所述终端设备根据所述第一参考信号发送的指示信息,所述指示信息用于指示所述终端设备用于反馈信道状态信息CSI所采用的目标模式。
  11. 根据权利要求10所述的方法,其特征在于,所述目标模式为第一模式、第二模式或第三模式,在所述第一模式下,所述终端设备反馈所述CSI的全部信息,在所述第二模式下,所述终端设备反馈所述CSI的部分信息,并发送第二参考信号,在所述第三模式下,所述终端设备发送所述第二参考信号;
    其中,所述全部信息用于表示所述下行信道中全部信道的信道状态,所述部分信息用于表示所述下行信道中部分信道的信道状态。
  12. 根据权利要求11所述的方法,其特征在于,所述目标模式为所述第二模式,在所述网络设备接收所述终端设备根据所述第一参考信号发送的指示信息之后,所述方法还包括:
    所述网络设备接收所述终端设备发送的第二参考信号;
    所述网络设备接收所述终端设备根据所述第一参考信号发送的所述部分信息。
  13. 根据权利要求12所述的方法,其特征在于,所述网络设备接收所述终端设备根据所述第一参考信号发送的所述部分信息,包括:
    所述网络设备接收所述终端设备发送的所述部分信道的相关矩阵的特征向量和特征值;或
    所述网络设备接收所述终端设备发送的所述特征向量、所述特征值以及归一化系数的标识,所述归一化系数用于对所述部分信道的相关矩阵进行归一化处理。
  14. 根据权利要求13所述的方法,其特征在于,所述方法还包括:
    所述网络设备根据所述第二参考信号进行信道估计,获得上行信道的相关矩阵;
    所述网络设备根据所述特征向量和所述特征值,合成所述部分信道的相关矩阵;
    所述网络设备将所述上行信道的相关矩阵与所述部分信道的相关矩阵进行叠加,获得所述下行信道中全部信道的相关矩阵;
    所述网络设备根据所述全部信道的相关矩阵,获得下行预编码矩阵。
  15. 根据权利要求10至14中任一项所述的方法,其特征在于,所述第一参考信号为信道状态信息参考信号CSI-RS;和/或
    所述第二参考信号为探测参考信号SRS。
  16. 一种数据传输装置,其特征在于,包括:
    接收单元,用于接收网络设备发送的第一参考信号;
    测量单元,用于根据所述第一参考信号,对下行信道进行测量,获得所述下行信道的信道状态;
    确定单元,用于根据所述下行信道的信道状态,从多个模式中确定目标模式,所述装置在所述多个模式中的不同模式下发送的用于反馈信道状态信息CSI的信息不同;
    发送单元,用于向所述网络设备发送指示信息,所述指示信息用于指示所述目标模式。
  17. 根据权利要求16所述的装置,其特征在于,所述多个模式包括第一模式、第二模式和第三模式,在所述第一模式下,所述装置反馈所述CSI的全部信息,在所述第二模式下,所述装置反馈所述CSI的部分信息,并发送第二参考信号,在所述第三模式下,所述装置发送所述第二参考信号;
    其中,所述全部信息用于表示所述下行信道中全部信道的信道状态,所述部分信息用于表示所述下行信道中部分信道的信道状态。
  18. 根据权利要求17所述的装置,其特征在于,所述装置包括m个接收端口和n个发送端口,且所述m个接收端口包括所述n个发送端口,m和n均为正整数,在所述n个发送端口固定的情况下,所述确定单元具体用于:
    根据所述下行信道的信道状态,确定所述下行信道的信道矩阵的秩以及所述n个发送端口的相关矩阵的秩;
    将所述n个发送端口的相关矩阵的秩与所述下行信道的信道矩阵的秩进行比较;
    若所述n个发送端口的相关矩阵的秩等于所述下行信道的信道矩阵的秩,将所述第三模式确定为所述目标模式。
  19. 根据权利要求18所述的装置,其特征在于,所述确定单元还用于:
    若所述n个发送端口的相关矩阵的秩小于所述下行信道的信道矩阵的秩,根据所述下行信道的信道状态,确定所述m个接收端口中除所述n个发送端口之外的剩余端口的相关矩阵的秩;
    将所述剩余端口的相关矩阵的秩与所述下行信道的信道矩阵的秩进行比较;
    若所述剩余端口的相关矩阵的秩等于所述下行信道的信道矩阵的秩,将所述第一模式确定为所述目标模式;
    若所述剩余端口的相关矩阵的秩小于所述下行信道的信道矩阵的秩,将所述第二模式确定为所述目标模式。
  20. 根据权利要求17所述的装置,其特征在于,所述装置包括m个接收端口和n个发送端口,且所述m个接收端口包括所述n个发送端口,m和n均为正整数,在所述n个发送端口不固定的情况下,所述确定单元具体用于:
    根据所述下行信道的信道状态,确定所述下行信道的信道矩阵的秩;
    将所述下行信道的信道矩阵的秩与所述发送端口的个数n进行比较;
    若所述下行信道的信道矩阵的秩小于或等于n,将所述第三模式确定为所述目标模式;
    从所述m个接收端口中选择n个第一目标端口作为所述n个发送端口,所述n个第一目标端口的相关矩阵的秩等于所述下行信道的信道矩阵的秩。
  21. 根据权利要求20所述的装置,其特征在于,所述确定单元还用于:
    若所述下行信道的信道矩阵的秩大于n,根据所述下行信道的信道状态,从所述m个接收端口中选择n个第二目标端口作为所述n个发送端口,所述n个第二目标端口的相关矩阵满秩;
    根据所述下行信道的测量结果,确定所述m个接收端口中除所述n个第二目标端口之外的剩余端口的相关矩阵的秩;
    将所述剩余端口的相关矩阵的秩与所述下行信道的信道矩阵的秩进行比较;
    若所述剩余端口的相关矩阵的秩等于所述下行信道的信道矩阵的秩,将所述第一模式确定为所述目标模式;
    若所述剩余端口的相关矩阵的秩小于所述下行信道的信道矩阵的秩,将所述第二模式确定为所述目标模式。
  22. 根据权利要求17至21中任一项所述的装置,其特征在于,所述装置包括m个接收端口和n个发送端口,且所述m个接收端口包括所述n个发送端口,m和n均为正整数,在所述目标模式为所述第二模式的情况下,所述确定单元还用于:
    根据所述m个接收端口中除所述n个发送端口之外的剩余端口的相关矩阵的秩,确定需要反馈的所述部分信道;
    所述发送单元还用于:
    向所述网络设备发送所述部分信息,所述部分信息用于表示所述部分信道的相关矩阵;
    通过所述n个发送端口向所述网络设备发送所述第二参考信号。
  23. 根据权利要求22所述的装置,其特征在于,所述发送单元具体用于:
    向所述网络设备发送所述部分信道的相关矩阵的特征向量和特征值;或
    向所述网络设备发送所述特征向量、所述特征值以及归一化系数的标识,所述归一化系数用于对所述部分信道的相关矩阵进行归一化处理。
  24. 根据权利要求16至23中任一项所述的装置,其特征在于,所述第一参考信号为信道状态信息参考信号CSI-RS;和/或
    所述第二参考信号为探测参考信号SRS。
  25. 一种数据传输装置,其特征在于,包括:
    发送单元,用于向终端设备发送第一参考信号;
    接收单元,用于接收所述终端设备根据所述第一参考信号发送的指示信息,所述指示信息用于指示所述终端设备用于反馈信道状态信息CSI所采用的目标模式。
  26. 根据权利要求25所述的装置,其特征在于,所述目标模式为第一模式、第二模式或第三模式,在所述第一模式下,所述终端设备反馈所述CSI的全部信息,在所述第二模式下,所述终端设备反馈所述CSI的部分信息,并发送第二参考信号,在所述第三模式下,所述终端设备发送所述第二参考信号;
    其中,所述全部信息用于表示所述下行信道中全部信道的信道状态,所述部分信息用于表示所述下行信道中部分信道的信道状态。
  27. 根据权利要求26所述的装置,其特征在于,所述目标模式为所述第二模式,所述接收单元还用于:
    在接收所述终端设备根据所述第一参考信号发送的指示信息之后,接收所述终端设备发送的第二参考信号;
    接收所述终端设备根据所述第一参考信号发送的所述部分信息。
  28. 根据权利要求27所述的装置,其特征在于,所述接收单元具体用于:
    接收所述终端设备发送的所述部分信道的相关矩阵的特征向量和特征值;或
    接收所述终端设备发送的所述特征向量、所述特征值以及归一化系数的标识,所述归一化系数用于对所述部分信道的相关矩阵进行归一化处理。
  29. 根据权利要求28所述的装置,其特征在于,所述装置还包括:
    处理单元,用于根据所述第二参考信号进行信道估计,获得上行信道的相关矩阵;
    根据所述特征向量和所述特征值,合成所述部分信道的相关矩阵;
    将所述上行信道的相关矩阵与所述部分信道的相关矩阵进行叠加,获得所述下行信道中全部信道的相关矩阵;
    根据所述全部信道的相关矩阵,获得下行预编码矩阵。
  30. 根据权利要求25至29中任一项所述的装置,其特征在于,所述第一参考信号为 信道状态信息参考信号CSI-RS;和/或
    所述第二参考信号为探测参考信号SRS。
  31. 一种计算机可读介质,用于存储计算机程序,其特征在于,所述计算机程序包括用于实现上述权利要求1至15中任一项所述的方法的指令。
  32. 一种计算机程序产品,所述计算机程序产品中包括计算机程序代码,其特征在于,当所述计算机程序代码在计算机上运行时,使得计算机实现上述权利要求1至15中任一项所述的方法。
  33. 一种芯片,其特征在于,包括:处理器,用于读取存储器中存储的指令,当所述处理器执行所述指令时,使得所述芯片实现上述权利要求1至15中任一项所述的方法的指令。
PCT/CN2018/101305 2017-09-01 2018-08-20 数据传输方法和装置 WO2019042177A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP18850588.7A EP3667958B1 (en) 2017-09-01 2018-08-20 Data transmission method and device
US16/805,271 US11165480B2 (en) 2017-09-01 2020-02-28 Data transmission method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710779976.7A CN109428641B (zh) 2017-09-01 2017-09-01 数据传输方法和装置
CN201710779976.7 2017-09-01

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/805,271 Continuation US11165480B2 (en) 2017-09-01 2020-02-28 Data transmission method and apparatus

Publications (1)

Publication Number Publication Date
WO2019042177A1 true WO2019042177A1 (zh) 2019-03-07

Family

ID=65512953

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/101305 WO2019042177A1 (zh) 2017-09-01 2018-08-20 数据传输方法和装置

Country Status (4)

Country Link
US (1) US11165480B2 (zh)
EP (1) EP3667958B1 (zh)
CN (1) CN109428641B (zh)
WO (1) WO2019042177A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023029320A1 (zh) * 2021-09-03 2023-03-09 展讯通信(上海)有限公司 通信方法及装置、计算机可读存储介质、通信设备

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11037330B2 (en) * 2017-04-08 2021-06-15 Intel Corporation Low rank matrix compression
US11349208B2 (en) * 2019-01-14 2022-05-31 Analog Devices International Unlimited Company Antenna apparatus with switches for antenna array calibration
CN114270723A (zh) * 2019-08-26 2022-04-01 Oppo广东移动通信有限公司 一种信道状态信息处理方法、电子设备及存储介质
CN113726490B (zh) * 2020-05-26 2023-01-03 中国移动通信有限公司研究院 数据处理方法、装置、相关设备及存储介质
EP4066408A4 (en) * 2020-06-12 2022-12-28 ZTE Corporation REFERENCE SIGNAL SETUP METHOD
US20220278717A1 (en) * 2021-03-01 2022-09-01 At&T Intellectual Property I, L.P. Method and system for artificial intelligence (ai)-based monitoring and controlling of network parameters
CN115412139A (zh) * 2021-05-28 2022-11-29 华为技术有限公司 一种信道信息上报方法及相关装置
CN117200837A (zh) * 2022-05-31 2023-12-08 华为技术有限公司 一种通信方法及装置
CN115459813B (zh) * 2022-07-29 2024-01-23 网络通信与安全紫金山实验室 Mimo系统的性能优化方法、装置、设备及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102281128A (zh) * 2011-08-08 2011-12-14 电信科学技术研究院 信道状态信息反馈触发及反馈方法和设备
US20130322280A1 (en) * 2012-06-05 2013-12-05 Samsung Electronics Co., Ltd. Uplink channel sounding and channel state information estimation in mobile communication systems with multiple antennas
CN106160924A (zh) * 2015-04-07 2016-11-23 中国移动通信集团公司 一种信道状态信息反馈的方法、装置、终端及基站
CN106301509A (zh) * 2015-05-21 2017-01-04 电信科学技术研究院 一种信道状态信息反馈方法和终端

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101202577A (zh) * 2006-12-14 2008-06-18 中兴通讯股份有限公司 无线通信系统的多业务波束赋形装置
US8867495B2 (en) * 2009-03-20 2014-10-21 Qualcomm Incorporated Feedback mechanisms for beamforming operation
CN102013904A (zh) * 2009-09-27 2011-04-13 大唐移动通信设备有限公司 一种上行数据处理方法及系统
CN102237922B (zh) * 2011-08-04 2014-06-04 北京北方烽火科技有限公司 一种波束赋形的方法和装置
EP2769516B1 (en) * 2011-10-18 2016-09-21 Telefonaktiebolaget LM Ericsson (publ) Methods and devices for determining a transmission rank
US10361757B2 (en) * 2015-04-10 2019-07-23 Lg Electronics Inc. Method for reporting channel state information in wireless communication system and device therefor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102281128A (zh) * 2011-08-08 2011-12-14 电信科学技术研究院 信道状态信息反馈触发及反馈方法和设备
US20130322280A1 (en) * 2012-06-05 2013-12-05 Samsung Electronics Co., Ltd. Uplink channel sounding and channel state information estimation in mobile communication systems with multiple antennas
CN106160924A (zh) * 2015-04-07 2016-11-23 中国移动通信集团公司 一种信道状态信息反馈的方法、装置、终端及基站
CN106301509A (zh) * 2015-05-21 2017-01-04 电信科学技术研究院 一种信道状态信息反馈方法和终端

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HUAWEI ET AL.: "Discussion on Reciprocity Based DL CSI Feedback", 3GPP TSG RAN WGI NR AD HOC MEETING RL-1700059, 20 January 2017 (2017-01-20), XP051207601 *
See also references of EP3667958A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023029320A1 (zh) * 2021-09-03 2023-03-09 展讯通信(上海)有限公司 通信方法及装置、计算机可读存储介质、通信设备

Also Published As

Publication number Publication date
CN109428641B (zh) 2021-10-15
EP3667958A1 (en) 2020-06-17
EP3667958A4 (en) 2020-08-26
EP3667958B1 (en) 2023-04-19
US11165480B2 (en) 2021-11-02
CN109428641A (zh) 2019-03-05
US20200204233A1 (en) 2020-06-25

Similar Documents

Publication Publication Date Title
US11165480B2 (en) Data transmission method and apparatus
CN108631847B (zh) 传输信道状态信息的方法、终端设备和网络设备
CN109151887B (zh) 通信方法和通信装置
WO2019192530A1 (zh) 数据传输方法、终端设备和网络设备
TWI746711B (zh) 傳輸信號的方法、終端設備和網絡設備
WO2019149216A1 (zh) 上报信道状态信息csi的方法和装置
US20180191410A1 (en) Subset of w2 method and apparatus for sending precoding information and feeding back precoding information
CN111817798B (zh) 一种信道测量方法和通信装置
US10911122B2 (en) Reference signal sending method, reference signal receiving method, network device, and terminal device
US11923940B2 (en) Channel state information reporting method and apparatus
JP7238167B2 (ja) プリコーディング行列表示及び決定方法、及び通信装置
WO2018202071A1 (zh) 数据传输方法、终端设备和网络设备
WO2018127126A1 (zh) 一种信道状态信息上报方法、基站和用户设备
CN112470419A (zh) 上报信道状态信息的方法和装置
WO2016183835A1 (zh) 传输信号的方法和设备
US20230239014A1 (en) Information indication method and apparatus
WO2015054879A1 (zh) 信道状态信息的测量和反馈方法、终端及基站
WO2018094709A1 (zh) 一种确定预编码矩阵的方法、装置及系统
CN109391312B (zh) 数据传输方法和装置
CN109644363B (zh) 信道质量的测量和反馈方法和装置
EP4193497A1 (en) Apparatus for csi reporting overhead reduction via joint csi report quantization and encoding
WO2019085637A1 (zh) 一种信道测量方法和用户设备
CN115118316B (zh) 类型ⅱ端口选择码本的反馈、确定方法及装置、计算机可读存储介质
CN111741482B (zh) 一种确定和获得下行干扰的方法、终端设备及网络设备
WO2024000164A1 (zh) Csi上报方法、接收方法、装置、设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18850588

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018850588

Country of ref document: EP

Effective date: 20200312