WO2019042136A1 - 定日聚光光伏发电机及其定位方法 - Google Patents

定日聚光光伏发电机及其定位方法 Download PDF

Info

Publication number
WO2019042136A1
WO2019042136A1 PCT/CN2018/100726 CN2018100726W WO2019042136A1 WO 2019042136 A1 WO2019042136 A1 WO 2019042136A1 CN 2018100726 W CN2018100726 W CN 2018100726W WO 2019042136 A1 WO2019042136 A1 WO 2019042136A1
Authority
WO
WIPO (PCT)
Prior art keywords
sun
axis
season
shaft
earth
Prior art date
Application number
PCT/CN2018/100726
Other languages
English (en)
French (fr)
Inventor
李杰吾
肖孚松
邹敏
李湘
李萌
肖伟民
肖飞菲
Original Assignee
李杰吾
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 李杰吾 filed Critical 李杰吾
Publication of WO2019042136A1 publication Critical patent/WO2019042136A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D3/00Control of position or direction
    • G05D3/12Control of position or direction using feedback
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the invention relates to a photovoltaic power generation technology, in particular to a fixed-day concentrated photovoltaic generator and a positioning method thereof.
  • the current electronic technology-based tracking device tracks the sun's altitude angle. Because there is no global uniform law, it can only be random tracking. It is difficult to capture the sun's target in the cloud, rainy or windy weather. Coupled with the tracking of dip angles and severe weather in different regions, the tracking mechanism of existing photovoltaic power generation is complicated, costly and reliable.
  • Chinese Patent No. 200910002758.8 discloses an asymmetric concentrating tracking photovoltaic system that uses the electronic controller of the Japanese axis and the motor to simultaneously control the movement of the Japanese and Japanese axes, and achieves 24-hour tracking.
  • PV modules need to be adaptively adjusted, adding to the difficulty of installation and maintenance.
  • the technical problem solved by the invention is to provide a fixed-day concentrating photovoltaic generator and a positioning method thereof, which can accurately locate and point to a set position, and effectively solve the problem of positioning of photovoltaic components in photovoltaic power generation.
  • the positioning method of the fixed-day concentrating photovoltaic generator includes:
  • the sun axis in the fixed-day concentrating photovoltaic generator is parallel to the earth rotation axis, and the season axis is perpendicular to the sun axis, and the sun axis and the season axis are adjusted so that the photovoltaic module is facing the sun;
  • the reducer and the stepping motor drive the sun shaft to rotate, and the sun shaft drives the PV module to rotate, rotating one cycle every 24 hours;
  • the sun shaft drives the quarter shaft to rotate through the gear set, and the season axis rotates according to the sinusoidal law, so that the photovoltaic components are vertically aligned with the sunlight.
  • the controller will first adjust the time of the positive sun as the starting time for adjusting the rotation of the sun axis and the season axis, so that the sun axis and the season axis are always synchronized with the sun in the subsequent rotation process.
  • the controller in the main control box maintains the time synchronization with the geosynchronous satellite through communication with the geosynchronous satellite; the controller issues a command to the stepping motor, and the stepping motor and the speed reducer drive the sun shaft to rotate.
  • the seasonal axis adjusts the pitch angle of the photovoltaic module according to the season, and the position swings one cycle per year, and the maximum swing is 23.5 degrees.
  • the direction of rotation of the season axis is opposite to the direction of the earth's autobiography.
  • the fixed-day concentrating photovoltaic generator including the Japanese axis and the seasonal axis, is characterized in that it further comprises a main control box, which is provided with a controller, a stepping motor and a speed reducer; the Japanese axis is parallel to the earth rotation axis, and the season The axis is perpendicular to the sun axis, the stepper motor and reducer are used to drive the sun shaft and the season axis; the controller is used to adjust the sun shaft and the season axis so that the photovoltaic module is facing the sun.
  • the reducer and the stepping motor drive the sun shaft to rotate, and the sun shaft drives the photovoltaic module to rotate, rotating one cycle every 24 hours.
  • the sun axis drives the quarter axis rotation through the gear set; the season axis rotates according to the sine law, and the rotation direction of the season axis is opposite to the self-propagation direction of the earth, thereby making the photovoltaic
  • the components are always vertically aligned with the sun.
  • the controller first adjusts the time of the positive sun as the starting time for adjusting the rotation of the sun axis and the season axis, so that the sun axis and the season axis are always synchronized with the sun in the subsequent rotation process.
  • the sun shaft and the season shaft are mounted on the rotating bracket, the rotating bracket is connected with the sun shaft, and the photovoltaic component is fixed on the rotating bracket;
  • the main control box and the square box are respectively installed at the two ends of the sleeve, and the sun shaft is disposed in the sleeve, One end of the sun shaft is connected to the main control box, and the other end is connected to the square box;
  • the quarter shaft is movably connected to the rotating bracket through the connecting rod;
  • the transmission box, the composite gear, the small gear, the transmission gear and the composite gear are respectively engaged with the pinion;
  • the sleeve gear is arranged on the sun shaft, the sleeve gear is engaged with the compound gear, and the transmission gear is connected with the season shaft through the connecting rod;
  • the bottom of the column is connected with the bottom plate, and the top is connected with the sleeve.
  • the fixed date referred to in the present invention means that the present invention can accurately and accurately track the sun during its 25-year working life, reliably and substantially maintenance-free (adding lubricating oil per year).
  • the present invention increases the annual power generation by 37% over currently fixed photovoltaic systems.
  • the concentrating photovoltaic referred to in the present invention means that a simple and practical mirror is added beside the photovoltaic module under the premise of reliable tracking.
  • the investment in this device is small, and the investment of only a few hundred yuan will increase the power generation capacity of several thousand yuan.
  • the invention can actively track the sun all the time, and the machine runs continuously. Unlike all current tracking devices, they can only return automatically if they turn halfway. After several years of operation and testing of the prototype: 1.5 times concentrating and 2.1 times concentrating can increase the annual power generation by 67%-103%, so that the photovoltaic cost is reduced by more than 20% compared with the fixed type. Moreover, as the photoelectric conversion efficiency of the photovoltaic module is improved, the power generation efficiency of the present invention is more remarkable, and is increased by more than 30% compared with the fixed type. This is a new photovoltaic product that can be driven in parallel with a fixed PV system.
  • the principle and actual invention of physical active precise tracking included in the present invention can be widely applied to medium-and high-power concentrating photovoltaic systems, solar and stellar observers, and large-scale introduction of sunlight into indoor, underground, and underwater environments.
  • the device is widely used.
  • FIG. 1 is a schematic structural view of a day-concentrating concentrating photovoltaic generator of the present invention
  • Figure 2 is a schematic view showing the structure of a preferred embodiment 1 of the present invention.
  • Figure 3 is a schematic view showing the structure of a preferred embodiment 2 of the present invention.
  • the date refers to the fact that the photovoltaic system can accurately and strictly maintain the sun during the 25-year working life (the annual lubrication is added), which is 37% higher than the currently installed photovoltaic system. Annual power generation.
  • Concentrated photovoltaic means that under the premise of reliable tracking, as long as a simple and practical mirror is added next to the photovoltaic module, the power generation capacity is increased.
  • the generator means that the system can actively track the sun all day, running continuously like a machine. Unlike all current tracking devices, it can only return automatically if it is turned halfway. After several years of operation and testing of the prototype: 1.5 times concentrating and 2.1 times concentrating can increase the annual power generation by 67%-103%, so that the photovoltaic cost is reduced by more than 20% compared with the fixed type. And with the increase of the photoelectric conversion efficiency of the photovoltaic module, the power generation of the machine will increase more significantly, and the rate of reduction of the fixed type will increase to more than 30%. This is a new photovoltaic product that can be driven in parallel with a fixed PV system.
  • the positioning method included in the invention can be widely applied to medium-and high-power concentrating photovoltaic systems, solar and stellar observers, and a variety of devices for large-scale introduction of sunlight into indoor, underground, and underwater environments, and are widely used.
  • the invention combines the theory of accurate active tracking of physical astronomical orbits confirmed by higher mathematics, the precise control of synchronous earth satellites, and the latest improvement of mechatronics technology and other high-tech achievements.
  • the positioning method of the fixed-day concentrating photovoltaic generator is as follows:
  • Step 1 The Japanese axis 3 in the fixed-day concentrating photovoltaic generator is parallel to the earth rotation axis, the seasonal axis 4 is perpendicular to the Japanese axis, and the Japanese axis 3 and the seasonal axis 4 are adjusted so that the photovoltaic module 1 faces the sun;
  • the invention selects the earth rotation axis (referred to as the earth axis) as the object, and combines the movement laws of the sun shaft 3 and the season axis 4 of the present invention, so that the sun shaft 3 of the fixed-day concentrating photovoltaic generator erected anywhere on the ground is parallel to the ground axis.
  • the yoke 4 is perpendicular to the sun shaft 3, so that at any point on the ground, the photovoltaic module 1 can accurately align with the sun.
  • the controller in the main control box 10 maintains time synchronization with the geosynchronous satellite by communicating with the geosynchronous satellite. After the first alignment of the sun, the controller will first adjust the time of the positive sun as the starting time for adjusting the rotation of the sun axis 3 and the season axis 4, so that the sun shaft 3 and the season axis 4 are always synchronized with the sun during the subsequent rotation process, so that the photovoltaic Component 1 is always facing the sun, resulting in maintenance-free operation.
  • the fixed-day concentrating photovoltaic generator only needs to realize the reliable maintenance-free active day-to-day orbit tracking at any position on the ground under the remote control of the synchronous satellite.
  • the tracking accuracy is around 0.1 degrees, and the tracking cost is very low.
  • the power consumption is only less than three thousandths of the local power generation.
  • Step 2 With the autobiography of the earth, the reducer and the stepping motor drive the rotation of the sun shaft 3, and the sun shaft 3 drives the photovoltaic module 1 (and the mirror 2) to rotate, and rotates every 24 hours;
  • the controller sends a command to the stepping motor, and the stepping motor and the speed reducer drive the sun shaft 3 to rotate.
  • Step 3 As the earth revolves, the relative position of the earth relative to the sun changes.
  • the sun shaft 3 drives the quarter shaft 4 to rotate through the gear set, and the season shaft 4 rotates according to the sine law, so that the photovoltaic module 1 is vertically aligned with the sunlight. .
  • the sunlight reflected by the mirror 2 can uniformly cover the photovoltaic module 1 at all times, and the power generation amount of the photovoltaic module is greatly improved.
  • the season axis 4 adjusts the pitch angle of the photovoltaic module 1 and the mirror 2 in accordance with the season, and the position is swung one cycle per year with a maximum swing of 23.5 degrees.
  • the season axis 4 rotates in a sinusoidal manner, and the direction of rotation is opposite to the direction of the earth's autobiography.
  • FIG. 1 it is a schematic structural view of a fixed-day concentrating photovoltaic generator in the present invention.
  • a fixing screw 15 is disposed in the cement pier 16, and the bottom plate 14 is connected to the upper portion of the fixing screw 15.
  • the horizontal column 17 is connected at one end to the bottom plate 14, and the other end is connected to the outer cement pier 16.
  • the angle between the two horizontal columns 17 is 60. °.
  • the bottom of the column 11 is connected to the bottom plate 14, and the top is connected with a sleeve 7, and the column 11 and the sleeve 7 are connected by a fastening bolt 9; the diagonal strut 12 and the reinforcing rib 13 are connected between the column 11 and the bottom plate 14 (the column 11) 6 pieces of ribs 13 and two diagonal struts 12 are welded to the bottom plate 14).
  • the main control box 10 and the square box 6 are respectively installed at two ends of the sleeve 7, and the sun shaft 3 is disposed in the sleeve 7, the one end of the sun shaft 3 is connected to the main control box 10, and the other end is connected to the rotating bracket 8 through the square box 6
  • the photovoltaic module 1 and the mirror 2 are fixed on the rotating bracket 8; the season shaft 4 is movably connected to the rotating bracket 8 through the connecting rod 5.
  • the gear box (transmission gear, compound gear, pinion) is arranged in the square box 6, the transmission gear and the composite gear are respectively engaged with the pinion gear; the sleeve gear is arranged on the sun shaft 3, the sleeve gear meshes with the composite gear, and the transmission gear passes
  • the connecting rod 5 is connected to the season shaft 4.
  • the sun shaft 3 drives the sleeve gear to rotate, the sleeve gear drives the compound gear to rotate, the composite gear drives the pinion to rotate, the pinion drives the transmission gear to rotate, and the transmission gear drives the season shaft 4 to rotate through the connecting rod 5.
  • the transmission gear, the composite gear, and the pinion gear are adjusted in diameter to adjust the rotation angle of the season shaft 4.
  • the column 11 is located at the side of the rotating bracket 8 to prevent the rotating bracket 8 from rotating the photovoltaic module 1 and the mirror 2.
  • the main control box 10 is provided with a speed reducer, a stepping motor and a controller; the speed reducer and the stepping motor are used to drive the rotation of the sun shaft 3, and the sun shaft 3 uses the gear set in the square box 6 to drive the rotation of the season shaft 4.
  • the direct current generated by the photovoltaic module 1 with the help of the mirror 2 is introduced into the room through the cable under the main control box 10, connected to the grid-connected inverter, and then connected to the indoor power grid via the electricity meter.
  • FIG. 2 it is a schematic structural view of a preferred embodiment 1 of the present invention.
  • the fixed-day concentrating photovoltaic generator comprises two sets of photovoltaic modules 1 and mirrors 2 of different sizes and powers, which are respectively located on both sides of the column 11.
  • FIG. 3 it is a schematic structural view of a preferred embodiment 2 of the present invention.
  • the fixed-day concentrating photovoltaic generator comprises two sets of photovoltaic modules 1 of the same size and power, which are respectively located on both sides of the column 11.
  • the speed reducer in the main control box 10 is driven by a stepping motor.
  • the speed reducer makes the daily shaft 3 accurately rotate once a day.
  • the connecting rod 5 drives the quarter shaft 4 to swing back and forth once a year, and the maximum swing is 23.5 degrees.
  • the horizontal column 17 and the cement pier 16 form an equilateral triangle erection, and the center of gravity of the whole machine is located on the center of gravity of the triangle, and the wind resistance capability reaches ten levels.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Photovoltaic Devices (AREA)

Abstract

一种定日聚光光伏发电机的定位方法,包括:将定日聚光光伏发电机中的日轴(3)平行于地球自转轴,季轴(4)垂直于日轴(3),调整日轴(3)、季轴(4),使得光伏组件(1)正对太阳;随着地球的自传,减速器和步进电机带动日轴(3)旋转,日轴(3)带动光伏组件(1)旋转,每24小时旋转一周;随着地球的公转,地球相对太阳的相对位置发生变化,日轴(3)通过齿轮组带动季轴(4)旋转,季轴(4)按照正弦规律做相应转动,从而使得光伏组件(1)时刻垂直对准阳光。该方法能够准确定位,并指向设定位置,有效解决了光伏发电中光伏组件(1)的定位问题。

Description

定日聚光光伏发电机及其定位方法
本申请基于下列中国专利申请提出:
申请号:201710757244.8,申请日:2017年8月29日;
并要求上述中国专利申请的优先权,上述中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本发明涉及一种光伏发电技术,具体说,涉及一种定日聚光光伏发电机及其定位方法。
背景技术
当前的电子技术为主的跟踪装置对于太阳高度角的跟踪,因没有全球性的统一规律,只能是随机性的跟踪,在云多、阴雨或风大的天气很难捕捉太阳的目标,再加上不同地区跟踪倾角、恶劣气候等诸多因素,使得现有光伏发电的跟踪机构复杂、成本高、可靠性低。
中国专利号200910002758.8公开了一种非对称聚光跟踪光伏系统,用日轴的电子控制器与电机来同时控制日轴与季轴的运动,并实现了24小时跟踪。但是,在不同地点安装时,光伏组件需要进行适应性调整,增加了的安装和维护难度。
发明内容
本发明所解决的技术问题是提供一种定日聚光光伏发电机及其定位方法,能够准确定位,并指向设定位置,有效解决了光伏发电中光伏组件的定位问题。
技术方案如下:
定日聚光光伏发电机的定位方法,包括:
将定日聚光光伏发电机中的日轴平行于地球自转轴,季轴垂直于日轴, 调整日轴、季轴,使得光伏组件正对太阳;
随着地球的自传,减速器和步进电机带动日轴旋转,日轴带动光伏组件旋转,每24小时旋转一周;
随着地球的公转,地球相对太阳的相对位置发生变化,日轴通过齿轮组带动季轴旋转,季轴按照正弦规律做相应转动,从而使得光伏组件时刻垂直对准阳光。
进一步:首次对正太阳后,控制器将首次对正太阳的时刻作为调整日轴、季轴转动的起始时间,使得日轴、季轴在后续的转动过程始终与太阳同步。
进一步:主控箱中控制器通过与地球同步卫星的通信,保持时间与地球同步卫星的时间同步;控制器下发指令给步进电机,步进电机和减速器带动日轴转动。
进一步:季轴按照季节调整光伏组件的俯仰角,位置每年摆动一个周期,最大摆幅为23.5度。
进一步:季轴转动方向与地球自传方向相反。
定日聚光光伏发电机,包括日轴和季轴,其特征在于:还包括主控箱,主控箱中设置有控制器、步进电机和减速器;日轴平行于地球自转轴,季轴垂直于日轴,步进电机和减速器用于带动日轴和季轴转动;控制器用于调整日轴、季轴,使得光伏组件正对太阳。
优选的:随着地球的自传,减速器和步进电机带动日轴旋转,日轴带动光伏组件旋转,每24小时旋转一周。
优选的:随着地球的公转,地球相对太阳的相对位置发生变化,日轴通过齿轮组带动季轴旋转;季轴按照正弦规律做相应转动,季轴转动方向与地球自传方向相反,从而使得光伏组件时刻垂直对准阳光。
优选的:首次对正太阳后,控制器将首次对正太阳的时刻作为调整日轴、季轴转动的起始时间,使得日轴、季轴在后续的转动过程始终与太阳同步。
优选的:日轴和季轴安装在转动支架上,转动支架与日轴连接,光伏组件固定在转动支架上;主控箱、方盒分别安装在套管两端,日轴设置在套管内,日轴一端连接主控箱,另一端穿过方盒;季轴通过连杆与转动支架活动 连接;方盒内有传动齿轮、复合齿轮、小齿轮,传动齿轮、复合齿轮分别与小齿轮咬合;套齿轮设置在日轴上,套齿轮与复合齿轮相咬合,传动齿轮通过连杆与季轴相连接;立柱的底部连接有底板,顶部连接套管。
与现有技术相比,本发明技术效果包括:
1、本发明中所指的定日是指,本发明在其25年的工作寿命内,能够可靠并且基本免维护(每年加次润滑油)地准确跟踪太阳。本发明比现在固定架设的光伏系统提高37%的年发电量。
2、本发明中所指聚光光伏是指,在可靠跟踪的前提下,在光伏组件旁边加上简单实用的反射镜。该装置投资小,仅仅数百元的投入就会增加数千元的发电能力。
3、本发明可主动全天候跟踪太阳,机器一样连续运转。不像现在的所有跟踪装置,都只能转大半圈就得自动返回。经几年来样机的运行与测试:1.5倍聚光与2.1倍聚光平均能提高年发电量67%-103%,使光伏成本比固定式再降低20%以上。且随着光伏组件的光电转换效率的提高,本发明的发电效率提高会更显著,比固定式的增加30%以上。这是一种可与固定光伏系统并驱齐驱的新光伏产品。
4、本发明所包含的物理主动精确跟踪的原理与实际发明可广泛用于中倍、高倍的聚光光伏系统,太阳及恒星观测仪,以及阳光大规模引入室内、地下、水下的多种装置,应用极为广泛。
附图说明
图1是本发明中定日聚光光伏发电机的结构示意图;
图2是本发明中优选实施例1的结构示意图;
图3是本发明中优选实施例2的结构示意图。
本发明的较佳实施方式
下面参考示例实施方式对本发明技术方案作详细说明。然而,示例实施方式能够以多种形式实施,且不应被理解为限于在此阐述的实施方式;相反, 提供这些实施方式使得本发明更全面和完整,并将示例实施方式的构思全面地传达给本领域的技术人员。
本发明中,定日是指本光伏系统可在其25年的工作寿命内可靠而基本免维护(每年加次润滑油)的准确跟踪太阳,这就要比现在固定架设的光伏系统提高37%的年发电量。
聚光光伏是指在可靠跟踪的前提下,只要在光伏组件旁边加上简单实用的反射镜,增加发电能力。
发电机是指本系统可主动全天侯跟踪太阳,象机器一样连续运转,不象现在的所有跟踪装置,都只能转大半圈就得自动返回。经几年来样机的运行与测试:1.5倍聚光与2.1倍聚光平均能提高年发电量67%-103%,使光伏成本比固定式再降低20%以上。且随着光伏组件的光电转换效率的提高,本机的发电量提高会更显著,比固定式的降本率还会增大到30%以上。这是一种可与固定光伏系统并驱齐驱的新光伏产品。
本发明所包含定位方法,理论与实际可广泛用于中倍、高倍的聚光光伏系统,太阳及恒星观测仪,以及阳光大规模引入室内、地下、水下的多种装置,应用极为广泛。
本发明综合了用高等数学确认的物理天文轨道精确主动跟踪的理论、同步地球卫星的精确控制、机电一体化技术的最新改进等多种高新技术成果。
定日聚光光伏发电机的定位方法,具体如下:
步骤1:将定日聚光光伏发电机中的日轴3平行于地球自转轴,季轴4垂直于日轴,调整日轴3、季轴4,使得光伏组件1正对太阳;
本发明选取地球自转轴(简称为地轴)为对象,结合本发明日轴3与季轴4的运动规律,使得地面任何一处架设的定日聚光光伏发电机的日轴3平行于地轴,季轴4垂直于日轴3,这样就使得地面任何一点,光伏组件1能够准确对准太阳。
主控箱10中控制器通过与地球同步卫星的通信,保持时间与地球同步卫星的时间同步。首次对正太阳后,控制器将首次对正太阳的时刻作为调整日轴3、季轴4转动的起始时间,使得日轴3、季轴4在后续的转动过程始终与 太阳同步,使得光伏组件1始终正对太阳,从而实现了免维护。
定日聚光光伏发电机只需要在同步卫星的摇控下,只控制一个时间要素就可在地面任何一处位置实现可靠免维护的主动对日轨道式跟踪。跟踪精度在0.1度左右,且跟踪成本很低,耗电只有本机发电量的千分之三以下。
步骤2:随着地球的自传,减速器和步进电机带动日轴3旋转,日轴3带动光伏组件1(和反射镜2)旋转,每24小时旋转一周;
控制器下发指令给步进电机,步进电机和减速器带动日轴3转动。
步骤3:随着地球的公转,地球相对太阳的相对位置发生变化,日轴3通过齿轮组带动季轴4旋转,季轴4按照正弦规律做相应转动,从而使得光伏组件1时刻垂直对准阳光。
同时,使得反射镜2所反射的阳光时刻都能全部均匀的覆盖光伏组件1,大大提高光伏组件的发电量。
季轴4按照季节调整光伏组件1和反射镜2的俯仰角,位置每年摆动一个周期,最大摆幅为23.5度。季轴4按照正弦规律转动,转动方向与地球自传方向相反。
如图1所示,是本发明中定日聚光光伏发电机的结构示意图。
水泥墩16内设置有固定螺杆15,底板14连接在固定螺杆15上部,水平柱17一端连接在底板14上,另一端连接在外侧的水泥墩16上,两个水平柱17的夹角为60°。立柱11的底部连接在底板14上,顶部连接有套管7,立柱11、套管7通过紧固螺栓9连接;立柱11和底板14之间连接有斜撑杆12和加强筋13(立柱11用6片加强筋13及两根斜撑杆12与底板14焊在一起)。
主控箱10、方盒6分别安装在套管7两端,日轴3设置在套管7内,日轴3一端连接主控箱10,另一端穿过方盒6与转动支架8相连接,光伏组件1、反射镜2固定在转动支架8上;季轴4通过连杆5与转动支架8活动连接。方盒6内设置有齿轮组(传动齿轮、复合齿轮、小齿轮),传动齿轮、复合齿轮分别与小齿轮咬合;套齿轮设置在日轴3上,套齿轮与复合齿轮相咬合,传动齿轮通过连杆5与季轴4相连接。日轴3带动套齿轮转动,套齿轮带动 复合齿轮转动,复合齿轮带动小齿轮转动,小齿轮带动传动齿轮转动,传动齿轮通过连杆5带动季轴4转动。传动齿轮、复合齿轮、小齿轮通过直径大小,调整季轴4的转动角度。立柱11位于转动支架8的侧部,避免阻挡转动支架8带动光伏组件1、反射镜2的转动。
主控箱10内设置有减速器、步进电机、控制器;减速器、步进电机用于带动日轴3转动,日轴3利用方盒6内的齿轮组带动季轴4转动。
光伏组件1在反射镜2帮助下发的直流电经主控箱10下的电缆引入室内,与并网逆变器相连接,再经电度表与室内电网并网。
如图2所示,是本发明中优选实施例1的结构示意图。
定日聚光光伏发电机包括两套不同尺寸和功率的光伏组件1和反射镜2,分别位于立柱11两侧。
如图3所示,是本发明中优选实施例2的结构示意图。
定日聚光光伏发电机包括两套相同尺寸和功率的光伏组件1,分别位于立柱11两侧。
主控箱10内的减速器由步进电机驱动,减速器使日轴3每日准确转过一周,连杆5每年驱传季轴4来回摆动一周期,最大摆幅为23.5度。水平柱17、水泥墩16形成正三角形架设,整机的重心位于三角形的重心上,抗风能力达十级。
本发明所用的术语是说明和示例性、而非限制性的术语。由于本发明能够以多种形式具体实施而不脱离发明的精神或实质,所以应当理解,上述实施例不限于任何前述的细节,而应在随附权利要求所限定的精神和范围内广泛地解释,因此落入权利要求或其等效范围内的全部变化和改型都应为随附权利要求所涵盖。
工业实用性
本发明所包含的物理主动精确跟踪的原理与实际发明可广泛用于中倍、高倍的聚光光伏系统,太阳及恒星观测仪,以及阳光大规模引入室内、地下、水下的多种装置,应用极为广泛。

Claims (10)

  1. 一种定日聚光光伏发电机的定位方法,包括:
    将定日聚光光伏发电机中的日轴平行于地球自转轴,季轴垂直于日轴,调整日轴、季轴,使得光伏组件正对太阳;
    随着地球的自传,减速器和步进电机带动日轴旋转,日轴带动光伏组件旋转,每24小时旋转一周;
    随着地球的公转,地球相对太阳的相对位置发生变化,日轴通过齿轮组带动季轴旋转,季轴按照正弦规律做相应转动,从而使得光伏组件时刻垂直对准阳光。
  2. 如权利要求1所述定日聚光光伏发电机的定位方法,其特征在于:首次对正太阳后,控制器将首次对正太阳的时刻作为调整日轴、季轴转动的起始时间,使得日轴、季轴在后续的转动过程始终与太阳同步。
  3. 如权利要求1所述定日聚光光伏发电机的定位方法,其特征在于:主控箱中控制器通过与地球同步卫星的通信,保持时间与地球同步卫星的时间同步;控制器下发指令给步进电机,步进电机和减速器带动日轴转动。
  4. 如权利要求1所述定日聚光光伏发电机的定位方法,其特征在于:季轴按照季节调整光伏组件的俯仰角,位置每年摆动一个周期,最大摆幅为23.5度。
  5. 如权利要求1至4任一项所述定日聚光光伏发电机的定位方法,其特征在于:季轴转动方向与地球自传方向相反。
  6. 一种定日聚光光伏发电机,包括日轴和季轴,其特征在于:还包括主控箱,主控箱中设置有控制器、步进电机和减速器;日轴平行于地球自转轴,季轴垂直于日轴,步进电机和减速器用于带动日轴和季轴转动;控制器用于调整日轴、季轴,使得光伏组件正对太阳。
  7. 如权利要求6所述定日聚光光伏发电机,其特征在于:随着地球的 自传,减速器和步进电机带动日轴旋转,日轴带动光伏组件旋转,每24小时旋转一周。
  8. 如权利要求6所述定日聚光光伏发电机,其特征在于:随着地球的公转,地球相对太阳的相对位置发生变化,日轴通过齿轮组带动季轴旋转;季轴按照正弦规律做相应转动,季轴转动方向与地球自传方向相反,从而使得光伏组件时刻垂直对准阳光。
  9. 如权利要求6所述定日聚光光伏发电机,其特征在于:首次对正太阳后,控制器将首次对正太阳的时刻作为调整日轴、季轴转动的起始时间,使得日轴、季轴在后续的转动过程始终与太阳同步。
  10. 如权利要求6所述定日聚光光伏发电机,其特征在于:日轴和季轴安装在转动支架上,转动支架与日轴连接,光伏组件固定在转动支架上;主控箱、方盒分别安装在套管两端,日轴设置在套管内,日轴一端连接主控箱,另一端穿过方盒;季轴通过连杆与转动支架活动连接;方盒内有传动齿轮、复合齿轮、小齿轮,传动齿轮、复合齿轮分别与小齿轮咬合;套齿轮设置在日轴上,套齿轮与复合齿轮相咬合,传动齿轮通过连杆与季轴相连接;立柱的底部连接有底板,顶部连接套管。
PCT/CN2018/100726 2017-08-29 2018-08-16 定日聚光光伏发电机及其定位方法 WO2019042136A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710757244.8A CN107368105A (zh) 2017-08-29 2017-08-29 定日聚光光伏发电机及其定位方法
CN201710757244.8 2017-08-29

Publications (1)

Publication Number Publication Date
WO2019042136A1 true WO2019042136A1 (zh) 2019-03-07

Family

ID=60312361

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/100726 WO2019042136A1 (zh) 2017-08-29 2018-08-16 定日聚光光伏发电机及其定位方法

Country Status (2)

Country Link
CN (2) CN107368105A (zh)
WO (1) WO2019042136A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110109485A (zh) * 2019-05-28 2019-08-09 浙江晶科能源有限公司 一种光伏组件的光照跟踪装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107368105A (zh) * 2017-08-29 2017-11-21 李杰吾 定日聚光光伏发电机及其定位方法
CN112428860A (zh) * 2020-12-27 2021-03-02 陈秋霖 一种多功能新能源汽车充电桩

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201513305U (zh) * 2009-09-08 2010-06-23 彩熙太阳能环保技术(天津)有限公司 集群式太阳能发电装置
WO2013005721A1 (ja) * 2011-07-07 2013-01-10 株式会社ユニバンス 太陽追尾装置
CN103135609A (zh) * 2011-12-01 2013-06-05 西安大昱光电科技有限公司 一种平行于地球自转轴的单轴跟踪装置
CN103135597A (zh) * 2011-11-24 2013-06-05 陕西科林能源发展股份有限公司 一种利用太阳能发电的多组光伏发电跟踪控制系统
CN203350723U (zh) * 2013-08-05 2013-12-18 中科院南京天文仪器有限公司 太阳和卫星跟踪装置
CN206211902U (zh) * 2016-08-24 2017-05-31 内蒙古科林统德新能源科技发展有限公司 一种新型带跟踪装置的太阳能聚光发电装置
CN107368105A (zh) * 2017-08-29 2017-11-21 李杰吾 定日聚光光伏发电机及其定位方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE20317666U1 (de) * 2003-11-15 2004-01-29 Braunstein, Stefan Vorrichtung zur Nachführung eines Sonnenlichtkollektors
CN2909107Y (zh) * 2006-04-13 2007-06-06 沈阳慧宇真空技术有限公司 聚光太阳电池双轴跟踪太阳装置
CN203054606U (zh) * 2012-11-30 2013-07-10 西安晶捷电子技术有限公司 一种基于地球自转轴的轨道式定日镜控制系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201513305U (zh) * 2009-09-08 2010-06-23 彩熙太阳能环保技术(天津)有限公司 集群式太阳能发电装置
WO2013005721A1 (ja) * 2011-07-07 2013-01-10 株式会社ユニバンス 太陽追尾装置
CN103135597A (zh) * 2011-11-24 2013-06-05 陕西科林能源发展股份有限公司 一种利用太阳能发电的多组光伏发电跟踪控制系统
CN103135609A (zh) * 2011-12-01 2013-06-05 西安大昱光电科技有限公司 一种平行于地球自转轴的单轴跟踪装置
CN203350723U (zh) * 2013-08-05 2013-12-18 中科院南京天文仪器有限公司 太阳和卫星跟踪装置
CN206211902U (zh) * 2016-08-24 2017-05-31 内蒙古科林统德新能源科技发展有限公司 一种新型带跟踪装置的太阳能聚光发电装置
CN107368105A (zh) * 2017-08-29 2017-11-21 李杰吾 定日聚光光伏发电机及其定位方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110109485A (zh) * 2019-05-28 2019-08-09 浙江晶科能源有限公司 一种光伏组件的光照跟踪装置
CN110109485B (zh) * 2019-05-28 2024-05-14 浙江晶科能源有限公司 一种光伏组件的光照跟踪装置

Also Published As

Publication number Publication date
CN114415739A (zh) 2022-04-29
CN107368105A (zh) 2017-11-21

Similar Documents

Publication Publication Date Title
EP2546975B1 (en) Sunlight-tracking device
US7884308B1 (en) Solar-powered sun tracker
WO2013003737A2 (en) Sun tracking solar power collection system designed for pole structures including wind turbine poles
CN103412578B (zh) 一种太阳能用黄道跟踪器
WO2019042136A1 (zh) 定日聚光光伏发电机及其定位方法
KR20120007249A (ko) 고효율 태양광 발전시스템
CN110138326A (zh) 一种新型双轴光伏跟踪器
CN103208947B (zh) 一种屋顶太阳能聚光发电系统
CN202102316U (zh) 一种赤道式光伏电池跟踪装置
Davlyatovich et al. Selection of Compronents for Tracking Systems of A Solar Plant
EP2194343A1 (en) Mechanical solar tracker
CN101539343B (zh) 一种无间歇实时跟踪的太阳能采光驱动机构及其工作方法
CN202331219U (zh) 同步跟踪摇杆式聚光型太阳能电站
CN201956932U (zh) 一种光伏组跟踪装置
CN101777856A (zh) 利用光感差的光伏跟踪装置及基于网络的监控方法
Khandekar et al. Development of an intelligent sun tracking system for solar PV panel
CN202872691U (zh) 一种屋顶太阳能聚光发电系统
CN102520734A (zh) 同步跟踪摇杆式聚光型太阳能电站
CN103062931B (zh) 塔式太阳能定日镜锥齿轮光线角度转换控制装置
CN103135609A (zh) 一种平行于地球自转轴的单轴跟踪装置
CN105929859B (zh) 太阳能跟踪高度角传动机构
CN207689922U (zh) 分布式超前定时限太阳能跟踪装置
CN203083168U (zh) 塔式太阳能定日镜锥齿轮光线角度转换控制装置
CN102541091A (zh) 一种太阳能全时段单轴追踪法
CN106142080B (zh) 太阳能跟踪互联三轴机器人

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18851169

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18851169

Country of ref document: EP

Kind code of ref document: A1