WO2019042103A1 - Memory cell structure of three-dimensional memory device - Google Patents

Memory cell structure of three-dimensional memory device Download PDF

Info

Publication number
WO2019042103A1
WO2019042103A1 PCT/CN2018/099378 CN2018099378W WO2019042103A1 WO 2019042103 A1 WO2019042103 A1 WO 2019042103A1 CN 2018099378 W CN2018099378 W CN 2018099378W WO 2019042103 A1 WO2019042103 A1 WO 2019042103A1
Authority
WO
WIPO (PCT)
Prior art keywords
forming
memory device
slit
substrate
conductor
Prior art date
Application number
PCT/CN2018/099378
Other languages
French (fr)
Inventor
Xiaowang DAI
Zhenyu Lu
Jun Chen
Qian Tao
Yushi Hu
Jifeng Zhu
Jinwen Dong
Ji XIA
Zhong Zhang
Yanni LI
Original Assignee
Yangtze Memory Technologies Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yangtze Memory Technologies Co., Ltd. filed Critical Yangtze Memory Technologies Co., Ltd.
Priority to CN201880005478.XA priority Critical patent/CN110168731B/en
Priority to TW107127842A priority patent/TWI688080B/en
Priority to US16/126,820 priority patent/US10644015B2/en
Publication of WO2019042103A1 publication Critical patent/WO2019042103A1/en
Priority to US16/847,427 priority patent/US10847528B2/en
Priority to US17/028,154 priority patent/US11133325B2/en
Priority to US17/465,231 priority patent/US20210399001A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B43/00EEPROM devices comprising charge-trapping gate insulators
    • H10B43/10EEPROM devices comprising charge-trapping gate insulators characterised by the top-view layout
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B41/00Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
    • H10B41/20Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by three-dimensional arrangements, e.g. with cells on different height levels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76802Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics
    • H01L21/76816Aspects relating to the layout of the pattern or to the size of vias or trenches
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76877Filling of holes, grooves or trenches, e.g. vias, with conductive material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/5226Via connections in a multilevel interconnection structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/528Geometry or layout of the interconnection structure
    • H01L23/5283Cross-sectional geometry
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/532Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body characterised by the materials
    • H01L23/53204Conductive materials
    • H01L23/53209Conductive materials based on metals, e.g. alloys, metal silicides
    • H01L23/53257Conductive materials based on metals, e.g. alloys, metal silicides the principal metal being a refractory metal
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B41/00Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
    • H10B41/10Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by the top-view layout
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B41/00Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
    • H10B41/20Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by three-dimensional arrangements, e.g. with cells on different height levels
    • H10B41/23Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by three-dimensional arrangements, e.g. with cells on different height levels with source and drain on different levels, e.g. with sloping channels
    • H10B41/27Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by three-dimensional arrangements, e.g. with cells on different height levels with source and drain on different levels, e.g. with sloping channels the channels comprising vertical portions, e.g. U-shaped channels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B41/00Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
    • H10B41/30Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by the memory core region
    • H10B41/35Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by the memory core region with a cell select transistor, e.g. NAND
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B41/00Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
    • H10B41/40Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by the peripheral circuit region
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B41/00Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
    • H10B41/40Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by the peripheral circuit region
    • H10B41/41Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by the peripheral circuit region of a memory region comprising a cell select transistor, e.g. NAND
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B43/00EEPROM devices comprising charge-trapping gate insulators
    • H10B43/20EEPROM devices comprising charge-trapping gate insulators characterised by three-dimensional arrangements, e.g. with cells on different height levels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B43/00EEPROM devices comprising charge-trapping gate insulators
    • H10B43/20EEPROM devices comprising charge-trapping gate insulators characterised by three-dimensional arrangements, e.g. with cells on different height levels
    • H10B43/23EEPROM devices comprising charge-trapping gate insulators characterised by three-dimensional arrangements, e.g. with cells on different height levels with source and drain on different levels, e.g. with sloping channels
    • H10B43/27EEPROM devices comprising charge-trapping gate insulators characterised by three-dimensional arrangements, e.g. with cells on different height levels with source and drain on different levels, e.g. with sloping channels the channels comprising vertical portions, e.g. U-shaped channels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B43/00EEPROM devices comprising charge-trapping gate insulators
    • H10B43/30EEPROM devices comprising charge-trapping gate insulators characterised by the memory core region
    • H10B43/35EEPROM devices comprising charge-trapping gate insulators characterised by the memory core region with cell select transistors, e.g. NAND
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B43/00EEPROM devices comprising charge-trapping gate insulators
    • H10B43/40EEPROM devices comprising charge-trapping gate insulators characterised by the peripheral circuit region

Definitions

  • the present disclosure generally relates to the field of semiconductor technology, and more particularly, to a method for forming a three-dimensional (3D) memory device.
  • Flash memory devices have undergone rapid development. Flash memory devices can store data for a considerably long time without powering, and have advantages such as high integration level, fast access, easy erasing, and rewriting.
  • Planar memory cells are scaled to smaller sizes by improving process technology, circuit design, programming algorithm, and fabrication process.
  • feature sizes of the memory cells approach a lower limit
  • planar process and fabrication techniques become challenging and costly.
  • memory density for planar memory cells approaches an upper limit.
  • 3D NAND flash memory devices As advances in integration level and increases in demand for storage, to further improve the bit density and reduce cost of flash memory devices, 3D NAND flash memory devices have been developed.
  • a 3D memory architecture can address the density limitation in planar memory cells.
  • 3D memory devices such as 3D NAND memory devices, keep scaling more oxide/nitride (ON) layers to improve the area utilization of wafers.
  • a memory finger includes multiple rows of channel holes arranged in a staggered manner. It is a challenge to increase memory density while providing uniform channel holes deposition and reducing etch loading effect.
  • Embodiments of a 3D memory device architectures and fabrication methods therefore are disclosed herein.
  • the disclosed structures and methods provide numerous benefits, including, but not limited to increasing memory density, simplifying the fabrication process, improving etching uniformity, and improving the space utility of the chip which the 3D memory device is formed on.
  • a 3D memory device including: a substrate; a plurality of conductor layers disposed on the substrate; a plurality of NAND strings disposed on the substrate; and a plurality of slit structures disposed on the substrate.
  • the plurality of NAND strings is arranged perpendicular to the substrate and in a hexagonal lattice orientation including a plurality of hexagons, and each hexagon including three pairs of sides with a first pair perpendicular to a first direction and parallel to a second direction. The second direction is perpendicular to the first direction.
  • the plurality of slit structures extend in the first direction.
  • the plurality of slit structures include a plurality of gate line slits.
  • the gate line slits are parallel to a second and a third pair of sides of each hexagon of the hexagonal lattice, forming a zigzag pattern extending in the first direction.
  • the plurality of NAND strings intersect with each conductor layer of the plurality of conductor layers forming a plurality of intersections, and the plurality of intersections form a hexagonal lattice.
  • the slit structure is parallel to the second and the third pair of sides of each hexagon of the hexagonal lattice, forming a zigzag pattern extending in the first direction.
  • the slit structures further include a plurality of through holes.
  • the conductor layer includes tungsten.
  • the 3D memory device further includes a top select gate.
  • the top select gate is parallel to the slit structures and forms a zigzag pattern extending in the first direction.
  • the 3D memory device further includes a 3D memory drive circuit on the substrate configured to supplying a voltage source to the 3D memory device.
  • the 3D memory device further includes a plurality of bit lines.
  • the plurality of bit lines form a 30-degree angle with respect to the second direction.
  • the 3D memory device further includes a plurality of bit line contacts.
  • a spacing between two neighboring bit lines is D nm
  • a spacing between two neighboring bit line contacts is about 1.15*D nm
  • D is between about 10 nm and about 60 nm.
  • a 3D memory device including: an alternating conductor/dielectric stack disposed on a substrate; a plurality of channel holes formed on the substrate penetrating the alternating conductor/dielectric stack; a channel structure in each channel hole; and a plurality of gate line slit disposed on the substrate.
  • the plurality of channel holes are perpendicular to the substrate and are arranged in a hexagonal lattice orientation including a plurality of hexagons, and each hexagon including three pairs of sides, with a first pair perpendicular to a first direction and parallel to a second direction. The second direction is perpendicular to the first direction.
  • the plurality of gate line slit extend in the first direction.
  • the alternating conductor/dielectric stack includes a plurality of conductor/dielectric layers stacked in a vertical direction, and each conductive/dielectric layer includes a dielectric layer and a conductor layer.
  • the channel structure includes a semiconductor channel and a memory film.
  • the 3D memory device further includes a top select gate structure.
  • the top select gate is parallel to the gate line slit, forming a zigzag pattern extending in the first direction.
  • Another aspect of the present disclosure provides a method for forming a 3D memory device, including: 1) forming an alternating dielectric stack on a substrate; 2) forming a staircase structure in the alternating dielectric stack; 3) forming a plurality of channel structures in the alternating dielectric stack, with each channel structures extending vertically through the alternating dielectric stack, and the plurality of channel structures being arranged in a hexagonal lattice and each hexagon including three pairs of sides, with a first pair perpendicular to a first direction and parallel to a second direction, and the first direction perpendicular to the second direction; 4) forming a slit, and replacing a portion of the alternating dielectric stack with conductor layers to form an alternating conductor/dielectric stack including a plurality of conductor/dielectric layers; 5) disposing a conductor in the slit to form a slit structure, which is parallel to a second and a third pair of sides of each hexagon of the hexagonal lattice, forming a
  • forming the channel structure includes forming a semiconductor channel and forming a memory film.
  • forming the slit structure includes forming a gate line slit by PVD, CVD, ALD, or a combination thereof.
  • the method further includes forming a plurality of through holes on the gate line slit.
  • the method further includes forming a top select gate structure.
  • the top select gate is parallel to the slit structure, forming a zigzag pattern extending in the first direction.
  • forming the plurality of contact includes forming a plurality of bit line contact by photolithography, etching, thin film deposition, chemical mechanical polishing, or a combination thereof.
  • forming the plurality of contact includes forming a plurality of through array contact by photolithography, etching, thin film deposition, chemical mechanical polishing, or a combination thereof.
  • FIG. 1 illustrates a plan view of various regions of a 3D memory device, according to some embodiments of the present disclosure.
  • FIG. 2 illustrates a cross-sectional view of a 3D memory device, according to some embodiments of the present disclosure.
  • FIG. 3A illustrates a schematic enlarged plan view of a NAND string region of a 3D memory device with a memory array arrangement.
  • FIG. 3B illustrates a schematic enlarged plan view of a NAND string region of a 3D memory device with a memory array arrangement, according to some embodiments of the present disclosure.
  • FIG. 4A illustrates a schematic gas pathway in a NAND string region of a 3D memory device with a memory array arrangement.
  • FIG. 4B illustrates a schematic gas pathway in a NAND string region of a 3D memory device with a memory array arrangement, according to some embodiments of the present disclosure.
  • FIG. 5A illustrates a bit line contact structure of a 3D memory device.
  • FIG. 5B illustrates a bit line contact structure of a 3D memory device, according to some embodiments of the present disclosure.
  • FIG. 6A illustrates a TAC region with a bit line pickup structure of a 3D memory device.
  • FIG. 6B illustrates a TAC region with a bit line pickup structure of a 3D memory device, according to some embodiments of the present disclosure.
  • FIG. 7A illustrates a bit line contact structure of a 3D memory device.
  • FIG. 7B illustrates a bit line contact structure of a 3D memory device, according to some embodiments of the present disclosure.
  • FIG. 8 is a flowchart of an exemplary method for forming a 3D memory device, according to some embodiments of the present disclosure.
  • references in the specification to “one embodiment, ” “an embodiment, ” “an example embodiment, ” “some embodiments, ” etc., indicate that the embodiment described may include a particular feature, structure, or characteristic, but every embodiment may not necessarily include the particular feature, structure, or characteristic. Moreover, such phrases do not necessarily refer to the same embodiment. Further, when a particular feature, structure or characteristic is described in connection with an embodiment, it would be within the knowledge of a person skilled in the pertinent art to affect such feature, structure or characteristic in connection with other embodiments whether or not explicitly described.
  • terminology may be understood at least in part from usage in context.
  • the term “one or more” as used herein, depending at least in part upon context may be used to describe any feature, structure, or characteristic in a singular sense or may be used to describe combinations of features, structures or characteristics in a plural sense.
  • terms, such as “a, ” “an, ” or “the, ” again, may be understood to convey a singular usage or to convey a plural usage, depending at least in part upon context.
  • spatially relative terms such as “beneath, ” “below, ” “lower, ” “above, ” “upper, ” and the like, may be used herein for ease of description to describe one element or feature’s relationship to another element (s) or feature (s) as illustrated in the figures.
  • the spatially relative terms are intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the figures.
  • the apparatus may be otherwise oriented (rotated 90 degrees or at other orientations) and the spatially relative descriptors used herein may likewise be interpreted accordingly.
  • the term “substrate” refers to a material onto which subsequent material layers are added.
  • the substrate itself can be patterned. Materials added on top of the substrate can be patterned or can remain unpatterned.
  • the substrate can include a wide array of semiconductor materials, such as silicon, germanium, gallium arsenide, indium phosphide, etc.
  • the substrate can be made from an electrically non-conductive material, such as a glass, a plastic, or a sapphire wafer.
  • a layer refers to a material portion including a region with a thickness.
  • a layer can extend over the entirety of an underlying or overlying structure, or may have an extent less than the extent of an underlying or overlying structure. Further, a layer can be a region of a homogeneous or inhomogeneous continuous structure that has a thickness less than the thickness of the continuous structure. For example, a layer can be located between any pair of horizontal planes between, or at, a top surface and a bottom surface of the continuous structure. A layer can extend horizontally, vertically, and/or along a tapered surface.
  • a substrate can be a layer, can include one or more layers therein, and/or can have one or more layer thereupon, thereabove, and/or therebelow.
  • a layer can include multiple layers.
  • an interconnect layer can include one or more conductor and contact layers (in which contacts, interconnect lines, and/or vias are formed) and one or more dielectric layers.
  • the term “nominal/nominally” refers to a desired, or target, value of a characteristic or parameter for a component or a process operation, set during the design phase of a product or a process, together with a range of values above and/or below the desired value.
  • the range of values can be due to slight variations in manufacturing processes or tolerances.
  • the term “about” indicates the value of a given quantity that can vary based on a particular technology node associated with the subject semiconductor device. Based on the particular technology node, the term “about” can indicate a value of a given quantity that varies within, for example, 10–30%of the value (e.g., ⁇ 10%, ⁇ 20%, or ⁇ 30%of the value) .
  • 3D memory device refers to a semiconductor device with vertically oriented strings of memory cell transistors (referred to herein as “memory strings, ” such as NAND strings) on a laterally-oriented substrate so that the memory strings extend in the vertical direction with respect to the substrate.
  • memory strings such as NAND strings
  • vertical/vertically means nominally perpendicular to the lateral surface of a substrate.
  • Various embodiments in accordance with the present disclosure provide a method for forming a 3D memory device with a specific memory array (also referred to herein as an “NAND string” ) arrangement.
  • NAND string also referred to herein as an “NAND string”
  • the formed NAND string array can increase memory density, provide smooth gas pathway to improve etching uniformity, increase spacing for bit line connection, and simplify the fabrication process.
  • FIG. 1 illustrates a plan view of various regions of a 3D memory device, according to some embodiments of the present disclosure.
  • FIG. 1 depicts a 3D memory device 100, including NAND string regions 110, a TAC (through array contact) region 120, and top select gate (TSG) staircase regions 130.
  • NAND string regions 110 can include an array of NAND strings 112, each including a plurality of stacked memory cells.
  • TAC region 120 can be disposed between two NAND string regions 110 and including a plurality of TACs 126.
  • TSG staircase regions 130 can be disposed on the sides of NAND string regions 110 and adjacent to TAC region 120 in the plan view.
  • TSG staircase regions 130 can include an array of TSG contacts 132 formed on a staircase structure (e.g., with two levels) for making electrical connections with the top select gates 116 of NAND strings 112 in NAND string region 110.
  • dummy channel structures 122 are formed outside TAC region 120 to provide mechanical support for the memory array structures. It is understood that dummy channel structures 122 can be formed in any regions outside TAC region 120, for example, along the edges of NAND string regions 110 adjacent to TSG staircase regions 130.
  • 3D memory device 100 can also include a plurality of slit structures 114 each extending in the word line direction (x axis, also referred to herein as “first direction” ) .
  • At least some slit structures 114 can function as the common source contact for an array of NAND strings 112 in NAND string regions 110.
  • Slit structures 114 e.g., gate line slit
  • a top select gate 116 can be formed in the middle of the memory finger to separate the memory finger into two equal parts.
  • 3D memory device 100 can also include a peripheral device on the substrate (not shown) .
  • the peripheral device can include any suitable digital, analog, and/or mixed-signal peripheral circuits used for facilitating the operation of a 3D memory device 100.
  • the peripheral device can include one or more of a page buffer, a decoder (e.g., a row decoder and a column decoder) , a driver, a charge pump, a current or voltage reference, or any active or passive components of the circuits (e.g., transistors, diodes, resistors, or capacitors) .
  • the peripheral device can include a drive circuit configured to supplying a voltage source to the 3D memory device.
  • the peripheral device is formed using CMOS technology, and peripheral device structure can be referred to as a “CMOS structure” or a “CMOS chip. ”
  • FIG. 2 illustrates a cross-sectional view of a 3D memory device 100 (as shown in FIG. 1) , according to some embodiments of the present disclosure.
  • 3D memory device 100 can include a substrate 202.
  • substrate 202 can include silicon (e.g., single crystalline silicon) , silicon germanium (SiGe) , gallium arsenide (GaAs) , germanium (Ge) , silicon on insulator (SOI) , germanium on insulator (GOI) , or any other suitable materials.
  • substrate 202 is a thinned substrate (e.g., a semiconductor layer) , which can be thinned by grinding, wet/dry etching, chemical mechanical polishing (CMP) , or a combination thereof.
  • CMP chemical mechanical polishing
  • 3D memory device 100 is a NAND Flash memory device in which memory cells are in the form of an array of NAND strings 112 extending vertically above substrate 202.3D memory device 100 can include a plurality of NAND strings 112 that extend through a plurality of conductor layers 206 and dielectric layers 208.
  • a plurality of NAND strings 112 intersect with each conductor layer 206 forming a plurality of intersections, and the plurality of intersections form a hexagonal lattice in the horizontal plane (x-y plane) .
  • the plurality of conductor layers and dielectric layers are also referred to herein as an “alternating conductor/dielectric stack” 216.
  • the number of the conductor/dielectric layers in alternating conductor/dielectric stack 216 can set the number of memory cells in 3D memory device 100.
  • Conductor layers 206 and dielectric layers 208 in alternating conductor/dielectric stack 216 alternate in the vertical direction. Conductor layers 206 can each have the same thickness or have different thicknesses. Similarly, dielectric layers 208 can each have the same thickness or have different thicknesses.
  • Conductor layers 206 can include conductor materials including, but not limited to, tungsten (W) , cobalt (Co) , copper (Cu) , aluminum (Al) , polycrystalline silicon (polysilicon) , doped silicon, silicides, or a combination thereof.
  • Dielectric layers 208 can include dielectric materials including, but not limited to, silicon oxide, silicon nitride, silicon oxynitride, or a combination thereof.
  • conductor layers 206 include metal layers, such as W, and dielectric layers 208 include silicon oxide.
  • each NAND string 112 can include a channel structure 218 extending through alternating conductor/dielectric stack 216.
  • Channel structure 218 can include a channel hole filled with semiconductor materials (e.g., as a semiconductor channel 220) and dielectric materials (e.g., as a memory film 222) .
  • semiconductor channel 220 includes silicon, such as amorphous silicon, polysilicon, or single crystalline silicon.
  • memory film 222 is a composite layer including a tunneling layer, a storage layer (also known as “charge trap/storage layer” ) , and a blocking layer.
  • Each NAND string 112 can have a cylinder shape (e.g., a pillar shape) .
  • the tunneling layer can include silicon oxide, silicon nitride, or a combination thereof.
  • the storage layer can include silicon nitride, silicon oxynitride, silicon, or a combination thereof.
  • the blocking layer can include silicon oxide, silicon nitride, high dielectric constant (high-k) dielectrics, or a combination thereof.
  • NAND string 112 includes an epitaxial plug 224 and an etch stop plug 226 at a respective end in the vertical direction. Each of epitaxial plug 224 and etch stop plug 226 can be in contact with a respective end of channel structure 218.
  • Epitaxial plug 224 can include a semiconductor material, such as silicon, that is epitaxially grown from substrate 202. Epitaxial plug 224 can function as the channel controlled by a source selective gate of NAND string 112. Etch stop plug 226 can be at the upper end of NAND string 112 and in contact with channel structure 218 (e.g., on the upper end of channel structure 218) .
  • Etch stop plug 226 can include semiconductor materials (e.g., polysilicon) or conductor materials (e.g., metals) .
  • etch stop plug 226 includes an opening filled with Ti/TiN (as a barrier layer) and W (as a conductor) .
  • etch stop plug 226 can function as an etch stop layer to prevent etching of dielectrics filled in channel structure 218, such as silicon oxide and silicon nitride. In some embodiments, etch stop plug 226 functions as the drain of NAND string 112.
  • 3D memory device 100 further includes slit structures 114.
  • Each slit structure 114 can extend vertically through alternating conductor/dielectric stack 216.
  • Slit structure 114 can also extend laterally to separate alternating conductor/dielectric stack 216 into multiple blocks.
  • Slit structure 114 can include a slit filled with conductor materials including, but not limited to, W, Co, Cu, Al, silicides, or a combination thereof.
  • Slit structure 114 can further include a dielectric layer with any suitable dielectric materials between the filled conductor materials and alternating conductor/dielectric stack 216 to electrically insulate the filled conductor materials from surrounding conductor layers 206 in alternating conductor/dielectric stack 216.
  • slit structures 114 can separate 3D memory device 100 into multiple memory blocks and/or memory fingers (e.g., as shown in FIG. 1 in the plan view) .
  • slit structure 114 functions as the source contact for NAND strings 112 in the same memory block or the same memory finger that share the same array common source. Slit structure 114 can thus be referred to as a “common source contact” of multiple NAND strings 112.
  • substrate 202 includes a doped region 230 (including p-type or n-type dopants at a desired doping level) , and the lower end of slit structure 114 is in contact with doped region 230 of substrate 202. Slit structure 114 thus can electrically connect to NAND strings 112 by doped region 230.
  • 3D memory device 100 can include TACs 126 each extending vertically through alternating dielectric stack 234. Each TAC 126 can extend through the entire thickness of alternating dielectric stack 234 (e.g., all the dielectric layers in the vertical direction) . In some embodiments, TAC 126 further extends through at least part of substrate 202. TACs 126 can carry electrical signals from and/or to 3D memory device 100, such as part of the power bus, with shorten interconnect routing. In some embodiments, TACs 126 can provide electrical connections between 3D memory device 100 and the peripheral device (e.g., on a CMOS chip; not shown) and/or between BEOL interconnects (not shown) and the peripheral device.
  • the peripheral device e.g., on a CMOS chip; not shown
  • BEOL interconnects not shown
  • TACs 126 can also provide mechanical support to alternating layer stack 216.
  • Each TAC 126 can include a vertical opening through alternating dielectric stack 234.
  • the vertical opening can be filled with conductor materials, including, but not limited to, W, Co, Cu, Al, doped silicon, silicides, or a combination thereof.
  • 3D memory device 100 includes a plurality of local contacts in contact with the various memory array structures disclosed herein, such as NAND strings 112, slit structures 114, and conductor layers 206 (word lines) in a staircase region (e.g., staircase regions 130 in FIG. 1) .
  • the contacts are referred to herein as “local contacts” as they are in contact with the memory array structures directly.
  • local contacts can include NAND string contacts 238 and slit structure contacts 240.
  • the term “contact” can broadly include any suitable types of interconnects, including vertical interconnect accesses (e.g., vias) and lateral lines (e.g., interconnect lines) .
  • an end (e.g., the upper end) of each local contact is flush with one another, e.g., on the top surface of a dielectric layer in which the local contacts are formed.
  • Another end (e.g., the lower end) of each local contact can be in contact with the respective memory array structure.
  • the lower end of NAND string contact 238 can be in contact with etch stop plug 226 of NAND string 112
  • the lower end of slit structure contact 240 can be in contact with the upper end of slit structure 114.
  • Each local contact can include an opening (e.g., a via hole or a trench) filled with conductor materials including, but not limited to, W, Co, Cu, Al, silicides, or a combination thereof.
  • 3D memory device 100 can further include a contact layer 244 and an interconnect conductor layer 246 as part of the interconnect structures.
  • Contact layer 244 can include a dielectric layer and a plurality of contacts 248 (e.g., vias) in the dielectric layer.
  • Interconnect conductor layer 246 can be formed on contact layer 244 and can include a dielectric layer and a plurality of contacts 250 (e.g., interconnect lines) in the dielectric layer.
  • Each contact 250 can include an opening (e.g., a trench) filled with conductor materials including, but not limited to, W, Co, Cu, Al, silicides, or a combination thereof. All contacts 250 can be formed simultaneously in a single contact formation process.
  • contacts 250 in interconnect conductor layer 246 include bit lines 252 electrically connected to NAND strings 112, respectively, by corresponding contact 248 and NAND string contact 238 to individually address corresponding NAND string 112.
  • Contacts 250 can further include source lines electrically connected to slit structures 114 (source contacts) , interconnect lines electrically connected to TACs 126, and interconnect lines electrically connected to word lines in the staircase region (e.g., staircase regions 130 in Fig. 1) .
  • FIGs. 3A, 4A, 5A, 6A, and 7A show various regions of a 3D memory device with one memory array arrangement.
  • FIGs. 3B, 4B, 5B, 6B, and 7B show various regions of a 3D memory device with another memory array arrangement, according to some embodiments of the present disclosure (e.g., memory array arrangement in FIG. 1) .
  • FIG. 3A illustrates a schematic enlarged plan view of a NAND string region of a 3D memory device with a memory array (NAND string) arrangement.
  • a plurality of NAND strings 312 A are arranged in a hexagonal lattice. Each NAND string can be disposed at vertices and center of hexagons of a hexagonal lattice.
  • a hexagonal lattice is a two-dimensional lattice structure in which hexagons of a same shape are repeated along three different directions.
  • Each hexagon (e.g., hexagon H A ) within the hexagonal lattice has a same hexagonal shape, which can be a regular hexagonal shape in which all sides of the hexagon have the same length.
  • the angle between adjoining sides of each hexagon can be 60 degrees.
  • Each hexagon has three pairs of sides, e.g., a first pair of sides L A11 and L A12 ; a second pair of sides L A21 and L A22 and a third pair of sides L A31 and L A32 .
  • a "pair of sides” refers to the two sides of the hexagon that are parallel to each other.
  • each hexagon of the hexagonal lattice has a first pair of sides (e.g., L A11 and L A12 ) that are parallel to a first direction (x axis) and perpendicular to a second direction (y axis) .
  • FIG. 3B illustrates a schematic enlarged plan view of a NAND string region 110 of 3D memory device with a memory array arrangement, according to some embodiments.
  • a plurality of NAND strings 112 can be arranged in a hexagonal lattice.
  • Each NAND string can be disposed at vertices and center of hexagons of a hexagonal lattice.
  • Each hexagon (e.g., hexagon H B ) within the hexagonal lattice has a same hexagonal shape, which can be a regular hexagonal shape in which all sides of the hexagon have the same length.
  • the angle between adjoining sides of each hexagon can be 60 degrees.
  • Each hexagon has three pairs of sides, e.g., a first pair of sides L B11 and L B12 ; a second pair of sides L B21 and L B22 and a third pair of sides L B31 and L B32 .
  • Each hexagon of the hexagonal lattice has a first pair of sides (e.g., L B11 and L B12 ) that are perpendicular to a first direction (x axis) and parallel to a second direction (y axis) .
  • NAND string region 110 can include a plurality of slit structures 114. Each slit structure 114 can extend in the first direction (x axis) in a zigzag pattern, separating NAND string region 110 into multiple memory blocks and/or memory fingers.
  • Slit structure 114 is parallel to the second and the third pairs of sides of each hexagon (e.g., the second pair of sides L B21 and L B22 and the third pair of sides L B31 and L B32 ) of the hexagonal lattice, forming a zigzag pattern extending in the first direction (x axis) .
  • plurality of NAND strings 112 intersect with each conductor layer 206 forming a plurality of intersections, and the plurality of intersections form a hexagonal lattice in the horizontal plane (x-y plane) .
  • Slit structure 114 is parallel to the second and the third pair of sides of each hexagon of the hexagonal lattice (e.g., the second pair of sides L B21 and L B22 and the third pair of sides L B31 and L B32) , forming a zigzag pattern extending in the first direction (x axis) .
  • the memory array arrangement in FIG. 3B can increase the memory density of the memory device by at least about 6%.
  • a NAND string area including 72 NAND strings can be used as an example.
  • the spacing (D1) between the centers of any two adjacent NAND string in the hexagonal lattice is equal.
  • D1 can be about 156 nm.
  • FIG. 4A illustrates a schematic gas pathway in a NAND string region of 3D memory device with a memory array arrangement.
  • FIG. 4B illustrates a schematic gas pathway in a NAND string region of 3D memory device with a memory array arrangement, according to some embodiments.
  • the channel hole needs to be etched.
  • a metal layer can be deposited on the NAND string.
  • slit structure 314 A and 114 can be a gate line slit.
  • the gate line slit can further include a plurality of through holes for depositing the metal layer onto the plurality of NAND strings during fabrication process.
  • the metal layer can include tungsten.
  • the memory array arrangement in FIG. 4B can provide smooth ventilation for uniform etching and deposition.
  • the gas indicated by gas flow arrow 410 A
  • the gas pathway is blocked by the second row of NAND strings and gas flow is diverted into two different directions (e.g., as indicated by arrow 420 A ) .
  • the gas pathway is again blocked by the third row of NAND strings and gas flow again splits into two different directions (e.g., as indicated by arrow 430) .
  • the series of arrows (e.g., arrows 420 A , 430 A , 440 A and 450 A ) indicate the blockage of gas flow and diverted gas paths due to the memory array arrangement.
  • the blocked gas pathway can cause uneven etching and deposition. As shown in Fig.
  • the gas can pass along the second direction (y axis) smoothly in a straight direction (as indicated by gas flow arrow 410 B ) and diffuse towards the second direction (as indicated by arrow 420 B , 425 B , 430 B , 435 B , 440 B , 445 B , 450 B , and 455 B ) without any hindrance, therefore, achieving uniform deposition of the metal layer.
  • FIG. 5A illustrates a bit line contact structure of a 3D memory device.
  • FIG. 5B illustrates a bit line contact structure of a 3D memory device, according to some embodiments of the present disclosure.
  • the 3D memory device can include a plurality of bit lines (e.g., bit line 552 A or bit line 252) connected to NAND strings (NAND strings 312 A and 112) forming a plurality of conductive contacts (560 A and 560 B ) in a top interconnected layer.
  • the bit lines can be used to individually address a corresponding NAND string.
  • the bit line is perpendicular to the gate select lines.
  • top select gate 116 is parallel to slit structure 114 (e.g., gate select lines) , forming a zigzag pattern extending in the first direction, as shown in FIG. 5B.
  • Bit line 252 can form a 30-degree angle with respect to the second direction (y axis) .
  • memory array arrangement 110 B in FIG. 5B can enhance bit line contact efficiency as a result of the increase of number of conductive contact between the bit line and the NAND string per bit line.
  • FIG. 6A illustrates a TAC region with a bit line pickup structure of a 3D memory device.
  • FIG. 6B illustrates a TAC region with a bit line pickup structure of a 3D memory device, according to some embodiments of the present disclosure.
  • the TAC region can include TAC structures (e.g., TAC structure 632 A and structure 632 B ) between staircase regions (e.g., staircase regions 636 A and structure 636 B ) . Both the power supply and the peripheral signal can be provided to the 3D memory device through the TAC structures.
  • the TAC structures can connect with the bit lines (e.g., bit lines 552 A and bit lines 252) .
  • bit line pickup region can include a bit line pickup area (e.g., bit line pickup area 630 A and bit line pickup area 630 B ) .
  • the bit line pickup area can be used for wiring and addressing of the bit lines (e.g., bit line 552 A and bit line 252) .
  • memory array arrangement in FIG. 6B can increase 3D memory device layout efficiency of the TAC structure with reduced bit line pickup area 630 B while maintaining same number of the bit lines.
  • FIG. 7A illustrates a bit line contact structure of a 3D memory device.
  • FIG. 7B illustrates a bit line contact structure of a 3D memory device, according to some embodiments of the present disclosure.
  • Each bit line pickup area (bit line pickup area 630 A in FIG. 6A and bit line pickup area 630 B in FIG. 6B) can include a plurality of bit line contacts (735 A and 735 B ) .
  • a spacing between two neighboring bit lines (D 1 ) is between about 10 nm and about 60 nm. In some embodiments, the spacing between two neighboring bit lines is about 39 nm. As shown in FIG.
  • a spacing between two neighboring bit line contacts is D1 /cos (30-degrees) , which equals to D1 / (sqrt (3) /2) .
  • the spacing between two neighboring bit line contacts is about 1.15*D nm.
  • a spacing between two neighboring bit lines contacts is between about 11 nm and about 69 nm.
  • the spacing between two neighboring bit line contacts is about 45 nm.
  • the memory array arrangement in FIG. 7B can increase the spacing between two neighboring bit line contacts while maintaining the same spacing between bit lines, which reduces the process difficulty in 3D memory device fabrication process.
  • FIG. 8 is a flowchart of an exemplary method 800 for forming a 3D memory device, according to some embodiments of the present disclosure. Operations shown in method 800 are not exhaustive; other steps can be performed as well before, after, or between any of the illustrated steps. In some embodiments, operations of method 800 can be performed in a different order. Variations of method 800 are within the scope of the present disclosure.
  • method 800 starts at operation 802, in which an alternating dielectric stack is formed on a substrate (e.g., substrate 202 in FIG. 2) .
  • the substrate can be a silicon substrate.
  • a plurality of first dielectric layers and second dielectric layers can be formed on the substrate to form the alternating dielectric stack.
  • each dielectric layer includes a layer of silicon nitride and a layer of silicon oxide.
  • Alternating dielectric stack can be formed by one or more thin film deposition processes including, but not limited to, CVD, PVD, ALD, or a combination thereof.
  • Method 800 proceeds to operation 804, in which a staircase structure is formed in the alternating dielectric stack.
  • a trim-etch process can be performed on at least one side (in the lateral direction) of the alternating dielectric stack to form the staircase structure with multiple levels.
  • Each level can include one or more dielectric layers with alternating dielectric stack.
  • Method 800 proceeds to operation 806, in which a channel structure is formed to form a NAND string.
  • Each channel structure can extend vertically through the alternating dielectric stack.
  • fabrication processes to form the channel structure (e.g., channel structure 218 in FIG. 2) further include forming a channel hole that extends vertically through alternating dielectric stack by, for example, wet etching and/or dry etching.
  • fabrication processes to form channel structure 218 further include forming semiconductor channel 220 and memory film 222 between semiconductor channel 220 and the dielectric layers in alternating dielectric stack.
  • Semiconductor channel 220 can include semiconductor materials, such as polysilicon.
  • Memory film 222 can be a composite dielectric layer, such as a combination of a tunneling layer, a storage layer, and a blocking layer.
  • the tunneling layer can include dielectric materials including, but not limited to, silicon oxide, silicon nitride, silicon oxynitride, or a combination thereof. Electrons or holes from the semiconductor channel can tunnel to a storage layer through the tunneling layer.
  • the storage layer can include materials for storing charge for memory operation.
  • the storage layer materials include, but are not limited to, silicon nitride, silicon oxynitride, a combination of silicon oxide and silicon nitride, or a combination thereof.
  • the blocking layer can include dielectric materials including, but not limited to, silicon oxide or a combination of silicon oxide/silicon nitride/silicon oxide (ONO) .
  • the blocking layer can further include a high-k dielectric layer, such as an aluminum oxide (Al 2 O 3 ) layer.
  • a high-k dielectric layer such as an aluminum oxide (Al 2 O 3 ) layer.
  • Semiconductor channel 220 and memory film 222 can be formed by one or more thin film deposition processes, such as ALD, CVD, PVD, any other suitable processes, or a combination thereof.
  • an etch stop layer can be formed on the channel structure.
  • dummy channel structures are formed simultaneously with channel structures 218.
  • the dummy channel structures can extend vertically through the alternating layer stack and can be filled with the same materials as those in channel structures 218.
  • contacts are not formed on the dummy channel structures to provide electrical connections with other components of the 3D memory device.
  • the dummy channel structures cannot be used for forming memory cells in the 3D memory device.
  • a barrier structure can be formed.
  • the barrier structure can extend vertically through the alternating layer stack, such that the alternating layer stack is separated laterally into an alternating dielectric stack region including a plurality of dielectric layers, and an alternating conductor/dielectric stack region including a plurality of conductor/dielectric layers.
  • Method 800 proceeds to operation 808, in which a slit is formed, and first dielectric layers in the alternating dielectric stack (e.g., in the NAND string region) are replaced with conductor layers through the slit.
  • slit structure 114 can be first formed by wet etching and/or dry etching of dielectrics (e.g., silicon oxide and silicon nitride) through alternating dielectric stack.
  • the formed slits are used for the gate replacement process (also known as the “word line replacement” process) that replaces the second dielectric layers with conductor layers.
  • alternating dielectric stack becomes alternating layer stack including alternating conductor/dielectric stack (e.g., conductor/dielectric stack 216) in the NAND string region (e.g., NAND string region 110) .
  • Method 800 proceeds to operation 810, in which slit structures are formed.
  • Slit structures 114 can be formed by filling (e.g., depositing) conductor materials into the slits by PVD, CVD, ALD, any other suitable process, or a combination thereof.
  • Slit structures 114 can include conductor materials including, but not limited to, W, Co, Cu, Al, polysilicon, silicides, or a combination thereof.
  • a dielectric layer e.g., a silicon oxide layer is formed first between the conductor materials of slit structure 114 and conductor layers 206 surrounding slit structure 114 in alternating conductor/dielectric stack 216 for insulation purposes.
  • slit structure 114 can be in contact with doped region 230.
  • slit structure 114 functions as a source contact electrically connected to NAND string 112 by doped region 230 of substrate 202.
  • the upper end of each slit structure 114 is flush with the upper end of each etch stop plug 226 (e.g., on the top surface of the dielectric layer in which etch stop plugs 226 and slit structures 114 are formed.
  • Slit structures 114 can be extended in parallel along a lateral direction to divide the memory array into multiple memory fingers.
  • a top select gate can be formed in the middle of the memory finger to separate the memory finger into two equal parts. In some embodiments, the top select gate is parallel to the slit structure, forming a zigzag pattern extending in the first direction.
  • Method 800 proceeds to operation 812, in which a plurality of contacts are formed on the substrate.
  • the contact (including NAND string contacts 238, gate slit contacts 240, TAC 126, and bit line contacts 248) can be formed through a dielectric layer by first etching vertical openings (e.g., by wet etching and/or dry etching) , followed by filling the openings with conductor materials using ALD, CVD, PVD, any other suitable processes, or a combination thereof.
  • the conductor materials used to fill the contacts can include, but are not limited to, W, Co, Cu, Al, polysilicon, silicides, or a combination thereof.
  • the contacts can be simultaneously formed in the same contact forming process.
  • a contact forming process can include multiple processes, for example, photolithography, etching, thin film deposition, and CMP.

Abstract

Various embodiments disclose a 3D memory device, including a substrate; a plurality of conductor layers disposed on the substrate; a plurality of NAND strings disposed on the substrate; and a plurality of slit structures disposed on the substrate. The plurality of NAND strings can be arranged perpendicular to the substrate and in a hexagonal lattice orientation including a plurality of hexagons, and each hexagon including three pairs of sides with a first pair perpendicular to a first direction and parallel to a second direction. The second direction is perpendicular to the first direction. The plurality of slit structures can extend in the first direction.

Description

MEMORY CELL STRUCTURE OF A THREE-DIMENSIONAL MEMORY DEVICE
CROSS-REFERENCES TO RELATED APPLICATIONS
This application claims the priority to Chinese Patent Application No. 201710749865.1 filed on August 28, 2017, the entire content of which is incorporated herein by reference.
TECHNICAL FIELD
The present disclosure generally relates to the field of semiconductor technology, and more particularly, to a method for forming a three-dimensional (3D) memory device.
BACKGROUND
Flash memory devices have undergone rapid development. Flash memory devices can store data for a considerably long time without powering, and have advantages such as high integration level, fast access, easy erasing, and rewriting.
Planar memory cells are scaled to smaller sizes by improving process technology, circuit design, programming algorithm, and fabrication process. However, as feature sizes of the memory cells approach a lower limit, planar process and fabrication techniques become challenging and costly. As such, memory density for planar memory cells approaches an upper limit.
As advances in integration level and increases in demand for storage, to further improve the bit density and reduce cost of flash memory devices, 3D NAND flash memory devices have been developed. A 3D memory architecture can address the density limitation in planar memory cells.
As semiconductor technology advances, 3D memory devices, such as 3D NAND memory devices, keep scaling more oxide/nitride (ON) layers to improve the area utilization of wafers. In some existing 3D NAND memory devices, a memory finger includes multiple rows of channel holes arranged in a staggered manner. It is a challenge to increase memory density while providing uniform channel holes deposition and reducing etch loading effect.
BRIEF SUMMARY
Embodiments of a 3D memory device architectures and fabrication methods therefore are disclosed herein. The disclosed structures and methods provide numerous benefits, including, but not limited to increasing memory density, simplifying the fabrication process, improving etching uniformity, and improving the space utility of the chip which the 3D memory device is formed on.
Disclosed is a 3D memory device, including: a substrate; a plurality of conductor layers disposed on the substrate; a plurality of NAND strings disposed on the substrate; and a plurality of slit structures disposed on the substrate. In some embodiments, the plurality of NAND strings is arranged perpendicular to the substrate and in a hexagonal lattice orientation including a plurality of hexagons, and each hexagon including three pairs of sides with a first pair perpendicular to a first direction and parallel to a second direction. The second direction is perpendicular to the first direction. In some embodiments, the plurality of slit structures extend in the first direction.
In some embodiments, the plurality of slit structures include a plurality of gate line slits. In some embodiments, the gate line slits are parallel to a second and a third pair of sides of each hexagon of the hexagonal lattice, forming a zigzag pattern extending in the first direction.
In some embodiments, the plurality of NAND strings intersect with each conductor layer of the plurality of conductor layers forming a plurality of intersections, and the plurality of intersections form a hexagonal lattice. In some embodiments, the slit structure is parallel to the second and the third pair of sides of each hexagon of the hexagonal lattice, forming a zigzag pattern extending in the first direction.
In some embodiments, the slit structures further include a plurality of through holes.
In some embodiments, the conductor layer includes tungsten.
In some embodiments, the 3D memory device further includes a top select gate. In some embodiments, the top select gate is parallel to the slit structures and forms a zigzag pattern extending in the first direction.
In some embodiments, the 3D memory device further includes a 3D memory drive circuit on the substrate configured to supplying a voltage source to the 3D memory device.
In some embodiments, the 3D memory device further includes a plurality of bit lines. In some embodiments, the plurality of bit lines form a 30-degree angle with respect to the second direction.
In some embodiments, the 3D memory device further includes a plurality of bit line contacts. In some embodiments, a spacing between two neighboring bit lines is D nm, a spacing between two neighboring bit line contacts is about 1.15*D nm, and D is between about 10 nm and about 60 nm.
Another aspect of the present disclosure provides a 3D memory device, including: an alternating conductor/dielectric stack disposed on a substrate; a plurality of channel holes formed on the substrate penetrating the alternating conductor/dielectric stack; a channel structure in each channel hole; and a plurality of gate line slit disposed on the substrate. In some embodiments, the plurality of channel holes are perpendicular to the substrate and are arranged in a hexagonal lattice orientation including a plurality of hexagons, and each hexagon including three pairs of sides, with a first pair perpendicular to a first direction and parallel to a second direction. The second direction is perpendicular to the first direction. In some embodiments. the plurality of gate line slit extend in the first direction.
In some embodiments, the alternating conductor/dielectric stack includes a plurality of conductor/dielectric layers stacked in a vertical direction, and each conductive/dielectric layer includes a dielectric layer and a conductor layer.
In some embodiments, the channel structure includes a semiconductor channel and a memory film.
In some embodiments, the 3D memory device further includes a top select gate structure. In some embodiments, the top select gate is parallel to the gate line slit, forming a zigzag pattern extending in the first direction.
Another aspect of the present disclosure provides a method for forming a 3D memory device, including: 1) forming an alternating dielectric stack on a substrate; 2) forming a staircase structure in the alternating dielectric stack; 3) forming a plurality of channel structures in the alternating dielectric stack, with each channel structures extending vertically through the alternating dielectric stack, and the plurality of channel structures being arranged in a hexagonal lattice and each hexagon including three pairs of sides, with a first pair perpendicular to a first direction and parallel to a second direction, and the first direction perpendicular to the second direction; 4) forming a slit, and replacing a portion of the alternating dielectric stack with conductor layers to form an alternating conductor/dielectric stack including a plurality of conductor/dielectric layers; 5) disposing a conductor in the slit to form a slit structure, which is parallel to a second and a third pair of sides of each hexagon of the hexagonal lattice, forming a zigzag pattern extending in the first direction; and 6) forming a plurality of contacts on the substrate.
In some embodiments, forming the channel structure includes forming a semiconductor channel and forming a memory film.
In some embodiments, forming the slit structure includes forming a gate line slit by PVD, CVD, ALD, or a combination thereof.
In some embodiments, the method further includes forming a plurality of through holes on the gate line slit.
In some embodiments, the method further includes forming a top select gate structure. In some embodiments, the top select gate is parallel to the slit structure, forming a zigzag pattern extending in the first direction.
In some embodiments, forming the plurality of contact includes forming a plurality of bit line contact by photolithography, etching, thin film deposition, chemical mechanical polishing, or a combination thereof.
In some embodiments, forming the plurality of contact includes forming a plurality of through array contact by photolithography, etching, thin film deposition, chemical mechanical polishing, or a combination thereof.
BRIEF DESCRIPTION OF THE DRAWINGS
Aspects of the present disclosure are best understood from the following detailed description when read with the accompanying figures. It is noted that, in accordance with the common practice in the industry, various features are not drawn to scale. In fact, the dimensions of the various features may be arbitrarily increased or reduced for clarity of illustration and discussion.
FIG. 1 illustrates a plan view of various regions of a 3D memory device, according to some embodiments of the present disclosure.
FIG. 2 illustrates a cross-sectional view of a 3D memory device, according to some embodiments of the present disclosure.
FIG. 3A illustrates a schematic enlarged plan view of a NAND string region of a 3D memory device with a memory array arrangement.
FIG. 3B illustrates a schematic enlarged plan view of a NAND string region of a 3D memory device with a memory array arrangement, according to some embodiments of the present disclosure.
FIG. 4A illustrates a schematic gas pathway in a NAND string region of a 3D memory device with a memory array arrangement.
FIG. 4B illustrates a schematic gas pathway in a NAND string region of a 3D memory device with a memory array arrangement, according to some embodiments of the present disclosure.
FIG. 5A illustrates a bit line contact structure of a 3D memory device.
FIG. 5B illustrates a bit line contact structure of a 3D memory device, according to some embodiments of the present disclosure.
FIG. 6A illustrates a TAC region with a bit line pickup structure of a 3D memory device.
FIG. 6B illustrates a TAC region with a bit line pickup structure of a 3D memory device, according to some embodiments of the present disclosure.
FIG. 7A illustrates a bit line contact structure of a 3D memory device.
FIG. 7B illustrates a bit line contact structure of a 3D memory device, according to some embodiments of the present disclosure.
FIG. 8 is a flowchart of an exemplary method for forming a 3D memory device, according to some embodiments of the present disclosure.
DETAILED DESCRIPTION
Although specific configurations and arrangements are discussed, it should be understood that this is done for illustrative purposes only. A person skilled in the pertinent art will recognize that other configurations and arrangements can be used without departing from the spirit and scope of the present disclosure. It will be apparent to a person skilled in the pertinent art that the present disclosure can also be employed in a variety of other applications.
It is noted that references in the specification to “one embodiment, ” “an embodiment, ” “an example embodiment, ” “some embodiments, ” etc., indicate that the embodiment described may include a particular feature, structure, or characteristic, but every embodiment may not necessarily include the particular feature, structure, or characteristic. Moreover, such phrases do not necessarily refer to the same embodiment. Further, when a particular feature, structure or characteristic is described in connection with an embodiment, it would be within the knowledge of a person skilled in the pertinent art to affect such feature, structure or characteristic in connection with other embodiments whether or not explicitly described.
In general, terminology may be understood at least in part from usage in context. For example, the term “one or more” as used herein, depending at least in part upon context, may be used to describe any feature, structure, or characteristic in a singular  sense or may be used to describe combinations of features, structures or characteristics in a plural sense. Similarly, terms, such as “a, ” “an, ” or “the, ” again, may be understood to convey a singular usage or to convey a plural usage, depending at least in part upon context.
It should be readily understood that the meaning of “on, ” “above, ” and “over” in the present disclosure should be interpreted in the broadest manner such that “on” not only means “directly on” something but also includes the meaning of “on” something with an intermediate feature or a layer therebetween, and that “above” or “over” not only means the meaning of “above” or “over” something but can also include the meaning it is “above” or “over” something with no intermediate feature or layer therebetween (i.e., directly on something) .
Further, spatially relative terms, such as “beneath, ” “below, ” “lower, ” “above, ” “upper, ” and the like, may be used herein for ease of description to describe one element or feature’s relationship to another element (s) or feature (s) as illustrated in the figures. The spatially relative terms are intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the figures. The apparatus may be otherwise oriented (rotated 90 degrees or at other orientations) and the spatially relative descriptors used herein may likewise be interpreted accordingly.
As used herein, the term “substrate” refers to a material onto which subsequent material layers are added. The substrate itself can be patterned. Materials added on top of the substrate can be patterned or can remain unpatterned. Furthermore, the substrate can include a wide array of semiconductor materials, such as silicon, germanium, gallium arsenide, indium phosphide, etc. Alternatively, the substrate can be made from an electrically non-conductive material, such as a glass, a plastic, or a sapphire wafer.
As used herein, the term “layer” refers to a material portion including a region with a thickness. A layer can extend over the entirety of an underlying or overlying structure, or may have an extent less than the extent of an underlying or overlying structure. Further, a layer can be a region of a homogeneous or inhomogeneous continuous structure that has a thickness less than the thickness of the continuous structure. For example, a layer can be located between any pair of horizontal planes  between, or at, a top surface and a bottom surface of the continuous structure. A layer can extend horizontally, vertically, and/or along a tapered surface. A substrate can be a layer, can include one or more layers therein, and/or can have one or more layer thereupon, thereabove, and/or therebelow. A layer can include multiple layers. For example, an interconnect layer can include one or more conductor and contact layers (in which contacts, interconnect lines, and/or vias are formed) and one or more dielectric layers.
As used herein, the term “nominal/nominally” refers to a desired, or target, value of a characteristic or parameter for a component or a process operation, set during the design phase of a product or a process, together with a range of values above and/or below the desired value. The range of values can be due to slight variations in manufacturing processes or tolerances. As used herein, the term “about” indicates the value of a given quantity that can vary based on a particular technology node associated with the subject semiconductor device. Based on the particular technology node, the term “about” can indicate a value of a given quantity that varies within, for example, 10–30%of the value (e.g., ±10%, ±20%, or ±30%of the value) .
As used herein, the term “3D memory device” refers to a semiconductor device with vertically oriented strings of memory cell transistors (referred to herein as “memory strings, ” such as NAND strings) on a laterally-oriented substrate so that the memory strings extend in the vertical direction with respect to the substrate. As used herein, the term “vertical/vertically” means nominally perpendicular to the lateral surface of a substrate.
Various embodiments in accordance with the present disclosure provide a method for forming a 3D memory device with a specific memory array (also referred to herein as an “NAND string” ) arrangement. By arranging NAND string in a hexagonal lattice (e.g., honeycomb pattern) with each hexagon of the hexagonal lattice having a first pair of sides perpendicular to slit structures (e.g., gate line slit) and parallel to etching/deposition gas ventilation pathway, the formed NAND string array can increase memory density, provide smooth gas pathway to improve etching uniformity, increase spacing for bit line connection, and simplify the fabrication process.
FIG. 1 illustrates a plan view of various regions of a 3D memory device, according to some embodiments of the present disclosure. FIG. 1 depicts a 3D memory device 100, including NAND string regions 110, a TAC (through array contact) region 120, and top select gate (TSG) staircase regions 130. NAND string regions 110 can include an array of NAND strings 112, each including a plurality of stacked memory cells. TAC region 120 can be disposed between two NAND string regions 110 and including a plurality of TACs 126. TSG staircase regions 130 can be disposed on the sides of NAND string regions 110 and adjacent to TAC region 120 in the plan view. TSG staircase regions 130 can include an array of TSG contacts 132 formed on a staircase structure (e.g., with two levels) for making electrical connections with the top select gates 116 of NAND strings 112 in NAND string region 110. In some embodiments, dummy channel structures 122 are formed outside TAC region 120 to provide mechanical support for the memory array structures. It is understood that dummy channel structures 122 can be formed in any regions outside TAC region 120, for example, along the edges of NAND string regions 110 adjacent to TSG staircase regions 130. As shown in FIG. 1, 3D memory device 100 can also include a plurality of slit structures 114 each extending in the word line direction (x axis, also referred to herein as “first direction” ) . At least some slit structures 114 can function as the common source contact for an array of NAND strings 112 in NAND string regions 110. Slit structures 114 (e.g., gate line slit) can also divide the 3D memory device into multiple memory blocks and/or multiple memory fingers. A top select gate 116 can be formed in the middle of the memory finger to separate the memory finger into two equal parts. In some embodiments, 3D memory device 100 can also include a peripheral device on the substrate (not shown) . The peripheral device can include any suitable digital, analog, and/or mixed-signal peripheral circuits used for facilitating the operation of a 3D memory device 100. For example, the peripheral device can include one or more of a page buffer, a decoder (e.g., a row decoder and a column decoder) , a driver, a charge pump, a current or voltage reference, or any active or passive components of the circuits (e.g., transistors, diodes, resistors, or capacitors) . In some embodiments, the peripheral device can include a drive circuit configured to supplying a voltage source to the 3D memory device. In some  embodiments, the peripheral device is formed using CMOS technology, and peripheral device structure can be referred to as a “CMOS structure” or a “CMOS chip. ”
FIG. 2 illustrates a cross-sectional view of a 3D memory device 100 (as shown in FIG. 1) , according to some embodiments of the present disclosure. 3D memory device 100 can include a substrate 202. In some embodiments, substrate 202 can include silicon (e.g., single crystalline silicon) , silicon germanium (SiGe) , gallium arsenide (GaAs) , germanium (Ge) , silicon on insulator (SOI) , germanium on insulator (GOI) , or any other suitable materials. In some embodiments, substrate 202 is a thinned substrate (e.g., a semiconductor layer) , which can be thinned by grinding, wet/dry etching, chemical mechanical polishing (CMP) , or a combination thereof.
In some embodiments, 3D memory device 100 is a NAND Flash memory device in which memory cells are in the form of an array of NAND strings 112 extending vertically above substrate 202.3D memory device 100 can include a plurality of NAND strings 112 that extend through a plurality of conductor layers 206 and dielectric layers 208. In some embodiments, a plurality of NAND strings 112 intersect with each conductor layer 206 forming a plurality of intersections, and the plurality of intersections form a hexagonal lattice in the horizontal plane (x-y plane) . The plurality of conductor layers and dielectric layers are also referred to herein as an “alternating conductor/dielectric stack” 216. The number of the conductor/dielectric layers in alternating conductor/dielectric stack 216 (e.g., 32, 64, or 96) can set the number of memory cells in 3D memory device 100. Conductor layers 206 and dielectric layers 208 in alternating conductor/dielectric stack 216 alternate in the vertical direction. Conductor layers 206 can each have the same thickness or have different thicknesses. Similarly, dielectric layers 208 can each have the same thickness or have different thicknesses. Conductor layers 206 can include conductor materials including, but not limited to, tungsten (W) , cobalt (Co) , copper (Cu) , aluminum (Al) , polycrystalline silicon (polysilicon) , doped silicon, silicides, or a combination thereof. Dielectric layers 208 can include dielectric materials including, but not limited to, silicon oxide, silicon nitride, silicon oxynitride, or a combination thereof. In some embodiments, conductor layers 206 include metal layers, such as W, and dielectric layers 208 include silicon oxide.
As shown in FIG. 2, each NAND string 112 can include a channel structure 218 extending through alternating conductor/dielectric stack 216. Channel structure 218 can include a channel hole filled with semiconductor materials (e.g., as a semiconductor channel 220) and dielectric materials (e.g., as a memory film 222) . In some embodiments, semiconductor channel 220 includes silicon, such as amorphous silicon, polysilicon, or single crystalline silicon. In some embodiments, memory film 222 is a composite layer including a tunneling layer, a storage layer (also known as “charge trap/storage layer” ) , and a blocking layer. Each NAND string 112 can have a cylinder shape (e.g., a pillar shape) . Semiconductor channel 220, the tunneling layer, the storage layer, and the blocking layer are arranged along a direction from the center toward the outer surface of the pillar in this order, according to some embodiments of the present disclosure. The tunneling layer can include silicon oxide, silicon nitride, or a combination thereof. The storage layer can include silicon nitride, silicon oxynitride, silicon, or a combination thereof. The blocking layer can include silicon oxide, silicon nitride, high dielectric constant (high-k) dielectrics, or a combination thereof.
In some embodiments, NAND string 112 includes an epitaxial plug 224 and an etch stop plug 226 at a respective end in the vertical direction. Each of epitaxial plug 224 and etch stop plug 226 can be in contact with a respective end of channel structure 218. Epitaxial plug 224 can include a semiconductor material, such as silicon, that is epitaxially grown from substrate 202. Epitaxial plug 224 can function as the channel controlled by a source selective gate of NAND string 112. Etch stop plug 226 can be at the upper end of NAND string 112 and in contact with channel structure 218 (e.g., on the upper end of channel structure 218) . As used herein, the “upper end” of a component (e.g., NAND string 112) is the end further away from substrate 202 in the z-direction, and the “lower end” of the component (e.g., NAND string 112) is the end closer to substrate 202 in the z-direction when substrate 202 is positioned in the lowest plane of a 3D memory device 100. Etch stop plug 226 can include semiconductor materials (e.g., polysilicon) or conductor materials (e.g., metals) . In some embodiments, etch stop plug 226 includes an opening filled with Ti/TiN (as a barrier layer) and W (as a conductor) . By covering the upper end of channel structure 218 during the fabrication of a 3D  memory device 100, etch stop plug 226 can function as an etch stop layer to prevent etching of dielectrics filled in channel structure 218, such as silicon oxide and silicon nitride. In some embodiments, etch stop plug 226 functions as the drain of NAND string 112.
In some embodiments, 3D memory device 100 further includes slit structures 114. Each slit structure 114 can extend vertically through alternating conductor/dielectric stack 216. Slit structure 114 can also extend laterally to separate alternating conductor/dielectric stack 216 into multiple blocks. Slit structure 114 can include a slit filled with conductor materials including, but not limited to, W, Co, Cu, Al, silicides, or a combination thereof. Slit structure 114 can further include a dielectric layer with any suitable dielectric materials between the filled conductor materials and alternating conductor/dielectric stack 216 to electrically insulate the filled conductor materials from surrounding conductor layers 206 in alternating conductor/dielectric stack 216. As a result, slit structures 114 can separate 3D memory device 100 into multiple memory blocks and/or memory fingers (e.g., as shown in FIG. 1 in the plan view) . In some embodiments, slit structure 114 functions as the source contact for NAND strings 112 in the same memory block or the same memory finger that share the same array common source. Slit structure 114 can thus be referred to as a “common source contact” of multiple NAND strings 112. In some embodiments, substrate 202 includes a doped region 230 (including p-type or n-type dopants at a desired doping level) , and the lower end of slit structure 114 is in contact with doped region 230 of substrate 202. Slit structure 114 thus can electrically connect to NAND strings 112 by doped region 230.
As shown in FIGs. 1 and 2, 3D memory device 100 can include TACs 126 each extending vertically through alternating dielectric stack 234. Each TAC 126 can extend through the entire thickness of alternating dielectric stack 234 (e.g., all the dielectric layers in the vertical direction) . In some embodiments, TAC 126 further extends through at least part of substrate 202. TACs 126 can carry electrical signals from and/or to 3D memory device 100, such as part of the power bus, with shorten interconnect routing. In some embodiments, TACs 126 can provide electrical connections between 3D memory device 100 and the peripheral device (e.g., on a CMOS chip; not shown) and/or between  BEOL interconnects (not shown) and the peripheral device. TACs 126 can also provide mechanical support to alternating layer stack 216. Each TAC 126 can include a vertical opening through alternating dielectric stack 234. The vertical opening can be filled with conductor materials, including, but not limited to, W, Co, Cu, Al, doped silicon, silicides, or a combination thereof.
In some embodiments, 3D memory device 100 includes a plurality of local contacts in contact with the various memory array structures disclosed herein, such as NAND strings 112, slit structures 114, and conductor layers 206 (word lines) in a staircase region (e.g., staircase regions 130 in FIG. 1) . The contacts are referred to herein as “local contacts” as they are in contact with the memory array structures directly. As shown in FIG. 2, local contacts can include NAND string contacts 238 and slit structure contacts 240. As used herein, the term “contact” can broadly include any suitable types of interconnects, including vertical interconnect accesses (e.g., vias) and lateral lines (e.g., interconnect lines) . In some embodiments, an end (e.g., the upper end) of each local contact is flush with one another, e.g., on the top surface of a dielectric layer in which the local contacts are formed. Another end (e.g., the lower end) of each local contact can be in contact with the respective memory array structure. For example, the lower end of NAND string contact 238 can be in contact with etch stop plug 226 of NAND string 112, and the lower end of slit structure contact 240 can be in contact with the upper end of slit structure 114. Each local contact can include an opening (e.g., a via hole or a trench) filled with conductor materials including, but not limited to, W, Co, Cu, Al, silicides, or a combination thereof.
As shown in FIG. 2, in addition to the local contacts, 3D memory device 100 can further include a contact layer 244 and an interconnect conductor layer 246 as part of the interconnect structures. Contact layer 244 can include a dielectric layer and a plurality of contacts 248 (e.g., vias) in the dielectric layer. Interconnect conductor layer 246 can be formed on contact layer 244 and can include a dielectric layer and a plurality of contacts 250 (e.g., interconnect lines) in the dielectric layer. Each contact 250 can include an opening (e.g., a trench) filled with conductor materials including, but not limited to, W, Co, Cu, Al, silicides, or a combination thereof. All contacts 250 can be formed  simultaneously in a single contact formation process. In some embodiments, contacts 250 in interconnect conductor layer 246 include bit lines 252 electrically connected to NAND strings 112, respectively, by corresponding contact 248 and NAND string contact 238 to individually address corresponding NAND string 112. Contacts 250 can further include source lines electrically connected to slit structures 114 (source contacts) , interconnect lines electrically connected to TACs 126, and interconnect lines electrically connected to word lines in the staircase region (e.g., staircase regions 130 in Fig. 1) .
FIGs. 3A, 4A, 5A, 6A, and 7A show various regions of a 3D memory device with one memory array arrangement. FIGs. 3B, 4B, 5B, 6B, and 7B show various regions of a 3D memory device with another memory array arrangement, according to some embodiments of the present disclosure (e.g., memory array arrangement in FIG. 1) . FIG. 3A illustrates a schematic enlarged plan view of a NAND string region of a 3D memory device with a memory array (NAND string) arrangement. A plurality of NAND strings 312 A are arranged in a hexagonal lattice. Each NAND string can be disposed at vertices and center of hexagons of a hexagonal lattice. As used herein, a hexagonal lattice is a two-dimensional lattice structure in which hexagons of a same shape are repeated along three different directions. Each hexagon (e.g., hexagon H A) within the hexagonal lattice has a same hexagonal shape, which can be a regular hexagonal shape in which all sides of the hexagon have the same length. The angle between adjoining sides of each hexagon can be 60 degrees. Each hexagon has three pairs of sides, e.g., a first pair of sides L A11 and L A12; a second pair of sides L A21 and L A22 and a third pair of sides L A31 and L A32. As used herein, a "pair of sides" refers to the two sides of the hexagon that are parallel to each other. For the memory array arrangement in FIG. 3A, each hexagon of the hexagonal lattice has a first pair of sides (e.g., L A11 and L A12) that are parallel to a first direction (x axis) and perpendicular to a second direction (y axis) .
FIG. 3B illustrates a schematic enlarged plan view of a NAND string region 110 of 3D memory device with a memory array arrangement, according to some embodiments. A plurality of NAND strings 112 can be arranged in a hexagonal lattice. Each NAND string can be disposed at vertices and center of hexagons of a hexagonal lattice. Each hexagon (e.g., hexagon H B) within the hexagonal lattice has a same  hexagonal shape, which can be a regular hexagonal shape in which all sides of the hexagon have the same length. The angle between adjoining sides of each hexagon can be 60 degrees. Each hexagon has three pairs of sides, e.g., a first pair of sides L B11 and L B12; a second pair of sides L B21 and L B22 and a third pair of sides L B31 and L B32. Each hexagon of the hexagonal lattice has a first pair of sides (e.g., L B11 and L B12) that are perpendicular to a first direction (x axis) and parallel to a second direction (y axis) . NAND string region 110 can include a plurality of slit structures 114. Each slit structure 114 can extend in the first direction (x axis) in a zigzag pattern, separating NAND string region 110 into multiple memory blocks and/or memory fingers. Slit structure 114 is parallel to the second and the third pairs of sides of each hexagon (e.g., the second pair of sides L B21 and L B22 and the third pair of sides L B31 and L B32) of the hexagonal lattice, forming a zigzag pattern extending in the first direction (x axis) . In some embodiments, plurality of NAND strings 112 intersect with each conductor layer 206 forming a plurality of intersections, and the plurality of intersections form a hexagonal lattice in the horizontal plane (x-y plane) . Slit structure 114 is parallel to the second and the third pair of sides of each hexagon of the hexagonal lattice (e.g., the second pair of sides L B21 and L B22 and the third pair of sides L B31 and L B32) , forming a zigzag pattern extending in the first direction (x axis) .
Compared with memory array arrangement in FIG. 3A,  the memory array arrangement in FIG. 3B can increase the memory density of the memory device by at least about 6%. To illustrate the increase of memory density, a NAND string area including 72 NAND strings can be used as an example. Generally, the spacing (D1) between the centers of any two adjacent NAND string in the hexagonal lattice is equal. In some embodiments, D1 can be about 156 nm. As shown in FIG. 3A, the total length in the second direction (y axis) is D2 = 156 × 9 = 1404 nm, and the total length in the first direction (x axis) is D3 = 1528 nm, therefore the area occupied by the 72 NAND strings with the memory array arrangement as FIG. 3A is A1 = 1404 × 1528 = 1145312. As shown in FIG. 3B, the length in the first direction (x axis) is D4 = 6 × sqrt (3) × 156 = 1621.2, and the length in the second direction (y axis) is D5 = 156 × 8 = 1248. The area occupied by the 72 NAND strings with the memory array arrangement as FIG. 3B is A2  = 1621.2×1248=2023257.6. (A1-A2) ÷A2 = (1145312-2023245.6) ÷2011145.6 = 6%. It is thus calculated that the memory density is increased by 6%by rotating the hexagonal lattice memory array arrangement in FIG. 3A 30-degree clockwise on the x-y plane.
FIG. 4A illustrates a schematic gas pathway in a NAND string region of 3D memory device with a memory array arrangement. FIG. 4B illustrates a schematic gas pathway in a NAND string region of 3D memory device with a memory array arrangement, according to some embodiments. During the fabrication process of a 3D memory device, the channel hole needs to be etched. In the etching process, a metal layer can be deposited on the NAND string. In some embodiments, slit structure 314 A and 114 can be a gate line slit. In some embodiments, the gate line slit can further include a plurality of through holes for depositing the metal layer onto the plurality of NAND strings during fabrication process. In some embodiments, the metal layer can include tungsten. Compared with the memory array arrangement in FIG. 4A, the memory array arrangement in FIG. 4B can provide smooth ventilation for uniform etching and deposition. As shown in Fig. 4A, after the gas (indicated by gas flow arrow 410 A) passing through the gap of the first row of NAND strings, the gas pathway is blocked by the second row of NAND strings and gas flow is diverted into two different directions (e.g., as indicated by arrow 420 A) . Similarly, after passing through the gap of the second row of NAND strings, the gas pathway is again blocked by the third row of NAND strings and gas flow again splits into two different directions (e.g., as indicated by arrow 430) . The series of arrows (e.g., arrows 420 A, 430 A, 440 A and 450 A) indicate the blockage of gas flow and diverted gas paths due to the memory array arrangement. The blocked gas pathway can cause uneven etching and deposition. As shown in Fig. 4B, with NAND string arranged in a straight line in the second direction (y axis) , the gas can pass along the second direction (y axis) smoothly in a straight direction (as indicated by gas flow arrow 410 B) and diffuse towards the second direction (as indicated by arrow 420 B, 425 B, 430 B, 435 B, 440 B, 445 B, 450 B, and 455 B) without any hindrance, therefore, achieving uniform deposition of the metal layer.
FIG. 5A illustrates a bit line contact structure of a 3D memory device. FIG. 5B illustrates a bit line contact structure of a 3D memory device, according to some  embodiments of the present disclosure. As shown in FIG. 5A and FIG. 5B, the 3D memory device can include a plurality of bit lines (e.g., bit line 552 A or bit line 252) connected to NAND strings (NAND strings 312 A and 112) forming a plurality of conductive contacts (560 A and 560 B) in a top interconnected layer. The bit lines can be used to individually address a corresponding NAND string. In some embodiments, the bit line is perpendicular to the gate select lines. In some embodiments, top select gate 116 is parallel to slit structure 114 (e.g., gate select lines) , forming a zigzag pattern extending in the first direction, as shown in FIG. 5B. Bit line 252 can form a 30-degree angle with respect to the second direction (y axis) . Compared with memory array arrangement in FIG. 5A,   memory array arrangement 110 B in FIG. 5B can enhance bit line contact efficiency as a result of the increase of number of conductive contact between the bit line and the NAND string per bit line.
FIG. 6A illustrates a TAC region with a bit line pickup structure of a 3D memory device. FIG. 6B illustrates a TAC region with a bit line pickup structure of a 3D memory device, according to some embodiments of the present disclosure. The TAC region can include TAC structures (e.g., TAC structure 632 A and structure 632 B) between staircase regions (e.g., staircase regions 636 A and structure 636 B) . Both the power supply and the peripheral signal can be provided to the 3D memory device through the TAC structures. The TAC structures can connect with the bit lines (e.g., bit lines 552 A and bit lines 252) . In some embodiments, bit line pickup region can include a bit line pickup area (e.g., bit line pickup area 630 A and bit line pickup area 630 B) . The bit line pickup area can be used for wiring and addressing of the bit lines (e.g., bit line 552 A and bit line 252) . Compared with memory array arrangement in FIG. 6A,  memory array arrangement in FIG. 6B can increase 3D memory device layout efficiency of the TAC structure with reduced bit line pickup area 630 B while maintaining same number of the bit lines.
FIG. 7A illustrates a bit line contact structure of a 3D memory device. FIG. 7B illustrates a bit line contact structure of a 3D memory device, according to some embodiments of the present disclosure. Each bit line pickup area (bit line pickup area 630 A in FIG. 6A and bit line pickup area 630 B in FIG. 6B) can include a plurality of bit line contacts (735 A and 735 B) . In some embodiments, a spacing between two neighboring  bit lines (D 1) is between about 10 nm and about 60 nm. In some embodiments, the spacing between two neighboring bit lines is about 39 nm. As shown in FIG. 7B, a spacing between two neighboring bit line contacts (D 2) is D1 /cos (30-degrees) , which equals to D1 / (sqrt (3) /2) . In some embodiments, the spacing between two neighboring bit line contacts is about 1.15*D nm. In some embodiments, a spacing between two neighboring bit lines contacts is between about 11 nm and about 69 nm. In some embodiments, the spacing between two neighboring bit line contacts is about 45 nm. Compared with the memory array arrangement in FIG. 7A, the memory array arrangement in FIG. 7B can increase the spacing between two neighboring bit line contacts while maintaining the same spacing between bit lines, which reduces the process difficulty in 3D memory device fabrication process.
FIG. 8 is a flowchart of an exemplary method 800 for forming a 3D memory device, according to some embodiments of the present disclosure. Operations shown in method 800 are not exhaustive; other steps can be performed as well before, after, or between any of the illustrated steps. In some embodiments, operations of method 800 can be performed in a different order. Variations of method 800 are within the scope of the present disclosure.
Referring to FIG. 8, method 800 starts at operation 802, in which an alternating dielectric stack is formed on a substrate (e.g., substrate 202 in FIG. 2) . The substrate can be a silicon substrate. A plurality of first dielectric layers and second dielectric layers can be formed on the substrate to form the alternating dielectric stack. In some embodiments, each dielectric layer includes a layer of silicon nitride and a layer of silicon oxide. Alternating dielectric stack can be formed by one or more thin film deposition processes including, but not limited to, CVD, PVD, ALD, or a combination thereof.
Method 800 proceeds to operation 804, in which a staircase structure is formed in the alternating dielectric stack. In some embodiments, a trim-etch process can be performed on at least one side (in the lateral direction) of the alternating dielectric stack to form the staircase structure with multiple levels. Each level can include one or more dielectric layers with alternating dielectric stack.
Method 800 proceeds to operation 806, in which a channel structure is formed to form a NAND string. Each channel structure can extend vertically through the alternating dielectric stack. In some embodiments, fabrication processes to form the channel structure (e.g., channel structure 218 in FIG. 2) further include forming a channel hole that extends vertically through alternating dielectric stack by, for example, wet etching and/or dry etching. In some embodiments, fabrication processes to form channel structure 218 further include forming semiconductor channel 220 and memory film 222 between semiconductor channel 220 and the dielectric layers in alternating dielectric stack. Semiconductor channel 220 can include semiconductor materials, such as polysilicon. Memory film 222 can be a composite dielectric layer, such as a combination of a tunneling layer, a storage layer, and a blocking layer.
The tunneling layer can include dielectric materials including, but not limited to, silicon oxide, silicon nitride, silicon oxynitride, or a combination thereof. Electrons or holes from the semiconductor channel can tunnel to a storage layer through the tunneling layer. The storage layer can include materials for storing charge for memory operation. The storage layer materials include, but are not limited to, silicon nitride, silicon oxynitride, a combination of silicon oxide and silicon nitride, or a combination thereof. The blocking layer can include dielectric materials including, but not limited to, silicon oxide or a combination of silicon oxide/silicon nitride/silicon oxide (ONO) . The blocking layer can further include a high-k dielectric layer, such as an aluminum oxide (Al 2O 3) layer. Semiconductor channel 220 and memory film 222 can be formed by one or more thin film deposition processes, such as ALD, CVD, PVD, any other suitable processes, or a combination thereof. In some embodiments, an etch stop layer can be formed on the channel structure.
In some embodiments, dummy channel structures (e.g., dummy channel structures 122 in FIG. 1) are formed simultaneously with channel structures 218. The dummy channel structures can extend vertically through the alternating layer stack and can be filled with the same materials as those in channel structures 218. Different from channel structures 218, contacts are not formed on the dummy channel structures to provide electrical connections with other components of the 3D memory device. Thus, the  dummy channel structures cannot be used for forming memory cells in the 3D memory device.
In some embodiments, a barrier structure can be formed. The barrier structure can extend vertically through the alternating layer stack, such that the alternating layer stack is separated laterally into an alternating dielectric stack region including a plurality of dielectric layers, and an alternating conductor/dielectric stack region including a plurality of conductor/dielectric layers.
Method 800 proceeds to operation 808, in which a slit is formed, and first dielectric layers in the alternating dielectric stack (e.g., in the NAND string region) are replaced with conductor layers through the slit. For example, slit structure 114 can be first formed by wet etching and/or dry etching of dielectrics (e.g., silicon oxide and silicon nitride) through alternating dielectric stack. In some embodiments, the formed slits are used for the gate replacement process (also known as the “word line replacement” process) that replaces the second dielectric layers with conductor layers. After the gate replacement process, alternating dielectric stack becomes alternating layer stack including alternating conductor/dielectric stack (e.g., conductor/dielectric stack 216) in the NAND string region (e.g., NAND string region 110) .
Method 800 proceeds to operation 810, in which slit structures are formed. Slit structures 114 can be formed by filling (e.g., depositing) conductor materials into the slits by PVD, CVD, ALD, any other suitable process, or a combination thereof. Slit structures 114 can include conductor materials including, but not limited to, W, Co, Cu, Al, polysilicon, silicides, or a combination thereof. In some embodiments, a dielectric layer (e.g., a silicon oxide layer) is formed first between the conductor materials of slit structure 114 and conductor layers 206 surrounding slit structure 114 in alternating conductor/dielectric stack 216 for insulation purposes. The lower end of slit structure 114 can be in contact with doped region 230. In some embodiments, slit structure 114 functions as a source contact electrically connected to NAND string 112 by doped region 230 of substrate 202. The upper end of each slit structure 114 is flush with the upper end of each etch stop plug 226 (e.g., on the top surface of the dielectric layer in which etch stop plugs 226 and slit structures 114 are formed. Slit structures 114 can be extended in  parallel along a lateral direction to divide the memory array into multiple memory fingers. A top select gate can be formed in the middle of the memory finger to separate the memory finger into two equal parts. In some embodiments, the top select gate is parallel to the slit structure, forming a zigzag pattern extending in the first direction.
Method 800 proceeds to operation 812, in which a plurality of contacts are formed on the substrate. The contact (including NAND string contacts 238, gate slit contacts 240, TAC 126, and bit line contacts 248) can be formed through a dielectric layer by first etching vertical openings (e.g., by wet etching and/or dry etching) , followed by filling the openings with conductor materials using ALD, CVD, PVD, any other suitable processes, or a combination thereof. The conductor materials used to fill the contacts can include, but are not limited to, W, Co, Cu, Al, polysilicon, silicides, or a combination thereof. The contacts can be simultaneously formed in the same contact forming process. A contact forming process can include multiple processes, for example, photolithography, etching, thin film deposition, and CMP.
The foregoing description of the specific embodiments will so fully reveal the general nature of the present disclosure that others can, by applying knowledge within the skill of the art, readily modify and/or adapt for various applications such specific embodiments, without undue experimentation, without departing from the general concept of the present disclosure. Therefore, such adaptations and modifications are intended to be within the meaning and range of equivalents of the disclosed embodiments, based on the teaching and guidance presented herein. It is to be understood that the phraseology or terminology herein is for the purpose of description and not of limitation, such that the terminology or phraseology of the present specification is to be interpreted by the skilled artisan in light of the teachings and guidance.
Embodiments of the present disclosure have been described above with the aid of functional building blocks illustrating the implementation of specified functions and relationships thereof. The boundaries of these functional building blocks have been arbitrarily defined herein for the convenience of the description. Alternate boundaries can be defined so long as the specified functions and relationships thereof are appropriately performed.
The Summary and Abstract sections may set forth one or more but not all exemplary embodiments of the present disclosure as contemplated by the inventor (s) , and thus, are not intended to limit the present disclosure and the appended claims in any way.
The breadth and scope of the present disclosure should not be limited by any of the above-described exemplary embodiments, but should be defined only in accordance with the following claims and their equivalents.

Claims (20)

  1. A three-dimensional (3D) memory device, comprising:
    a substrate;
    a plurality of conductor layers disposed on the substrate;
    a plurality of NAND strings disposed on the substrate; and
    a plurality of slit structures disposed on the substrate, wherein
    the plurality of NAND strings are arranged perpendicular to the substrate and in a hexagonal lattice orientation comprising a plurality of hexagons,
    each hexagon comprising three pairs of sides, wherein a first pair is perpendicular to a first direction and parallel to a second direction, and wherein the second direction is perpendicular to the first direction, and
    the plurality of slit structures extend in the first direction.
  2. The 3D memory device of claim 1, wherein the plurality of slit structures comprises a plurality of gate line slits, wherein the gate line slits are parallel to a second and a third pair of sides of each hexagon of the hexagonal lattice, forming a zigzag pattern extending in the first direction.
  3. The 3D memory device of claim 1, wherein
    the plurality of NAND strings intersect with each conductor layer of the plurality of conductor layers forming a plurality of intersections, and the plurality of intersections form a hexagonal lattice; and
    the slit structure is parallel to the second and the third pair of sides of each hexagon of the hexagonal lattice, forming a zigzag pattern extending in the first direction.
  4. The 3D memory device of claim 1, wherein the slit structures further comprise a plurality of through holes.
  5. The 3D memory device of claim 4, wherein the conductor layer comprises tungsten.
  6. The 3D memory device of claim 1, further comprising a top select gate, wherein the top select gate is parallel to the slit structures and forms a zigzag pattern extending in the first direction.
  7. The 3D memory device of claim 1, further comprising a 3D memory drive circuit on the substrate configured to supplying a voltage source to the 3D memory device.
  8. The 3D memory device of claim 1, further comprising a plurality of bit lines, wherein the plurality of bit lines form a 30-degree angle with respect to the second direction.
  9. The 3D memory device of claim 8, further comprising a plurality of bit line contacts, wherein;
    a spacing between two neighboring bit lines is D nm,
    a spacing between two neighboring bit line contacts is about 1.15*D nm, and
    D is between about 10 nm and about 60 nm.
  10. A three-dimensional (3D) memory device, comprising:
    an alternating conductor/dielectric stack disposed on a substrate;
    a plurality of channel holes formed on the substrate penetrating the alternating conductor/dielectric stack;
    a channel structure in each channel hole; and
    a plurality of gate line slits disposed on the substrate, wherein
    the plurality of channel holes are perpendicular to the substrate and are arranged in a hexagonal lattice orientation comprising a plurality of hexagons,
    each hexagon comprising three pairs of sides, wherein a first pair is perpendicular to a first direction and parallel to a second direction, and wherein the second direction is perpendicular to the first direction, and
    the plurality of gate line slits extend in the first direction.
  11. The 3D memory device of claim 10, wherein the alternating conductor/dielectric stack comprises a plurality of conductor/dielectric layers stacked in a vertical direction, wherein each conductive/dielectric layer comprises a dielectric layer and a conductor layer.
  12. The 3D memory device of claim 10, wherein the channel structure comprises a semiconductor channel and a memory film.
  13. The 3D memory device of claim 10, further comprising a top select gate structure, wherein the top select gate is parallel to the gate line slit, forming a zigzag pattern extending in the first direction.
  14. A method for forming a three-dimensional (3D) memory device, comprising:
    forming an alternating dielectric stack on a substrate;
    forming a staircase structure in the alternating dielectric stack;
    forming a plurality of channel structures in the alternating dielectric stack, each channel structures extending vertically through the alternating dielectric stack, and the plurality of channel structures being arranged in a hexagonal lattice and each hexagon comprising three pairs of sides, wherein a first pair is perpendicular to a first direction and parallel to a second direction, and, wherein the first direction is perpendicular to the second direction;
    forming a slit, and replacing a portion of the alternating dielectric stack with conductor layers to form an alternating conductor/dielectric stack comprising a plurality of conductor/dielectric layers;
    disposing a conductor in the slit to form a slit structure, wherein the slit structure is parallel to a second and a third pair of sides of each hexagon of the hexagonal lattice, forming a zigzag pattern extending in the first direction; and
    forming a plurality of contacts on the substrate.
  15. The method of claim 14, wherein forming the channel structure comprises forming a semiconductor channel and forming a memory film.
  16. The method of claim 14, wherein forming the slit structure comprises forming a gate line slit by PVD, CVD, ALD, or a combination thereof.
  17. The method of claim 16, further comprises forming a plurality of through holes on the gate line slit.
  18. The method of claim 14, further comprising forming a top select gate structure, wherein the top select gate is parallel to the slit structure, forming a zigzag pattern extending in the first direction.
  19. The method of claim 14, wherein forming the plurality of contacts comprise forming a plurality of bit line contacts by photolithography, etching, thin film deposition, chemical mechanical polishing, or a combination thereof.
  20. The method of claim 14, wherein forming the plurality of contacts comprise forming a plurality of through array contacts by photolithography, etching, thin film deposition, chemical mechanical polishing, or a combination thereof.
PCT/CN2018/099378 2017-08-28 2018-08-08 Memory cell structure of three-dimensional memory device WO2019042103A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201880005478.XA CN110168731B (en) 2017-08-28 2018-08-08 Memory cell structure of three-dimensional memory device
TW107127842A TWI688080B (en) 2017-08-28 2018-08-09 Memory cell structure of a three-dimensional memory device
US16/126,820 US10644015B2 (en) 2017-08-28 2018-09-10 Memory cell structure of a three-dimensional memory device
US16/847,427 US10847528B2 (en) 2017-08-28 2020-04-13 Memory cell structure of a three-dimensional memory device
US17/028,154 US11133325B2 (en) 2017-08-28 2020-09-22 Memory cell structure of a three-dimensional memory device
US17/465,231 US20210399001A1 (en) 2017-08-28 2021-09-02 Memory cell structure of a three-dimensional memory device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710749865.1A CN107658311B (en) 2017-08-28 2017-08-28 Three-dimensional storage
CN201710749865.1 2017-08-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/126,820 Continuation US10644015B2 (en) 2017-08-28 2018-09-10 Memory cell structure of a three-dimensional memory device

Publications (1)

Publication Number Publication Date
WO2019042103A1 true WO2019042103A1 (en) 2019-03-07

Family

ID=61127896

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/099378 WO2019042103A1 (en) 2017-08-28 2018-08-08 Memory cell structure of three-dimensional memory device

Country Status (4)

Country Link
US (4) US10644015B2 (en)
CN (3) CN107658311B (en)
TW (1) TWI688080B (en)
WO (1) WO2019042103A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020077593A1 (en) 2018-10-18 2020-04-23 Yangtze Memory Technologies Co., Ltd. Three-dimensional memory device having zigzag slit structures and method for forming the same
WO2020252892A1 (en) 2019-06-17 2020-12-24 Yangtze Memory Technologies Co., Ltd. Three-dimensional memory device with support structures in slit structures and method for forming the same
CN113130499A (en) * 2020-01-14 2021-07-16 爱思开海力士有限公司 Semiconductor memory device and method of manufacturing the same
US11716850B2 (en) 2019-06-17 2023-08-01 Yangtze Memory Technologies Co., Ltd. Three-dimensional memory device with support structures in gate line slits and methods for forming the same
US11765897B2 (en) 2019-06-17 2023-09-19 Yangtze Memory Technologies Co., Ltd. Three-dimensional memory device without gate line slits and method for forming the same
EP4294148A1 (en) * 2022-06-07 2023-12-20 Samsung Electronics Co., Ltd. Semiconductor devices and data storage systems including the same

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107658311B (en) 2017-08-28 2018-12-14 长江存储科技有限责任公司 Three-dimensional storage
KR102633484B1 (en) * 2019-07-10 2024-02-05 삼성전자주식회사 Semiconductor devices including dummy patterns
US11037944B2 (en) 2019-07-10 2021-06-15 Micron Technology, Inc. Memory arrays and methods used in forming a memory array comprising strings of memory cells and operative through-array-vias
US10985179B2 (en) 2019-08-05 2021-04-20 Micron Technology, Inc. Memory arrays and methods used in forming a memory array comprising strings of memory cells and operative through-array-vias
KR20210032592A (en) 2019-09-16 2021-03-25 삼성전자주식회사 Three dimensional semiconductor memory device
CN110808253B (en) * 2019-10-12 2022-10-11 长江存储科技有限责任公司 Three-dimensional memory structure and preparation method thereof
KR20210056778A (en) 2019-11-11 2021-05-20 삼성전자주식회사 Integrated circuit device and method of manufacturing the same
CN114981966B (en) * 2019-12-18 2023-09-29 美光科技公司 Vertical 3D memory device and method of manufacturing the same
KR20210083545A (en) 2019-12-27 2021-07-07 삼성전자주식회사 Memory device having cop structure and memory package including the same
CN111244099A (en) * 2020-01-20 2020-06-05 长江存储科技有限责任公司 Method for manufacturing 3D memory device
KR20220002575A (en) 2020-01-28 2022-01-06 양쯔 메모리 테크놀로지스 씨오., 엘티디. Three-dimensional memory devices and method of forming the same
WO2021151220A1 (en) 2020-01-28 2021-08-05 Yangtze Memory Technologies Co., Ltd. Three-dimensional memory devices and methods for forming the same
CN111341786B (en) * 2020-03-11 2023-07-28 长江存储科技有限责任公司 Three-dimensional memory and method for manufacturing the same
WO2021237403A1 (en) * 2020-05-25 2021-12-02 Yangtze Memory Technologies Co., Ltd. Memory device and method for forming the same
US11532640B2 (en) 2020-05-29 2022-12-20 Taiwan Semiconductor Manufacturing Co., Ltd. Method for manufacturing a three-dimensional memory
US11404091B2 (en) 2020-06-19 2022-08-02 Taiwan Semiconductor Manufacturing Co., Ltd. Memory array word line routing
US11355516B2 (en) 2020-07-16 2022-06-07 Taiwan Semiconductor Manufacturing Co., Ltd. Three-dimensional memory device and method
US11647634B2 (en) 2020-07-16 2023-05-09 Taiwan Semiconductor Manufacturing Co., Ltd. Three-dimensional memory device and method
US11423966B2 (en) 2020-07-30 2022-08-23 Taiwan Semiconductor Manufacturing Co., Ltd. Memory array staircase structure
CN111968988B (en) * 2020-08-28 2023-11-03 长江存储科技有限责任公司 Three-dimensional memory and method for manufacturing the same
US11910601B2 (en) * 2021-01-05 2024-02-20 Micron Technology, Inc. Microelectronic devices with source region vertically between tiered decks, and related methods and systems
JP2022139644A (en) * 2021-03-12 2022-09-26 キオクシア株式会社 semiconductor storage device
CN112928117B (en) * 2021-03-15 2022-06-10 长江存储科技有限责任公司 Three-dimensional memory device and method of fabricating the same
US11910596B2 (en) * 2021-04-06 2024-02-20 Micron Technology, Inc. Integrated assemblies and methods of forming integrated assemblies
US20230126600A1 (en) * 2021-10-26 2023-04-27 Sandisk Technologies Llc Three-dimensional memory device with orthogonal memory opening and support opening arrays and method of making thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104157654A (en) * 2014-08-15 2014-11-19 中国科学院微电子研究所 Three-dimensional memory and manufacturing method thereof
CN104253130A (en) * 2013-06-27 2014-12-31 三星电子株式会社 Semiconductor device
CN104347634A (en) * 2013-07-30 2015-02-11 中芯国际集成电路制造(上海)有限公司 Flash memory cell array
US9263462B2 (en) * 2014-07-14 2016-02-16 SK Hynix Inc. Semiconductor device
CN106601743A (en) * 2015-10-14 2017-04-26 旺宏电子股份有限公司 Storage element
CN107658311A (en) * 2017-08-28 2018-02-02 长江存储科技有限责任公司 Three-dimensional storage

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7746680B2 (en) * 2007-12-27 2010-06-29 Sandisk 3D, Llc Three dimensional hexagonal matrix memory array
KR101855437B1 (en) * 2010-12-02 2018-05-08 삼성전자주식회사 Nonvolatile memory device and operating method thereof
JP6140400B2 (en) * 2011-07-08 2017-05-31 エスケーハイニックス株式会社SK hynix Inc. Semiconductor device and manufacturing method thereof
US8878278B2 (en) * 2012-03-21 2014-11-04 Sandisk Technologies Inc. Compact three dimensional vertical NAND and method of making thereof
CN104795103B (en) * 2014-01-22 2018-05-11 旺宏电子股份有限公司 3 D semiconductor element
JP2015149413A (en) * 2014-02-06 2015-08-20 株式会社東芝 Semiconductor storage device and manufacturing method of the same
US9159736B2 (en) * 2014-02-07 2015-10-13 Micron Technology, Inc. Data line arrangement and pillar arrangement in apparatuses
CN104022120B (en) * 2014-06-23 2018-03-30 中国科学院微电子研究所 Three-dimensional semiconductor device and its manufacture method
CN105336724B (en) * 2014-07-18 2018-10-23 中芯国际集成电路制造(上海)有限公司 Semiconductor devices
KR102188501B1 (en) * 2014-09-02 2020-12-09 삼성전자주식회사 Semiconductor device
US9230984B1 (en) * 2014-09-30 2016-01-05 Sandisk Technologies Inc Three dimensional memory device having comb-shaped source electrode and methods of making thereof
CN106033791B (en) * 2014-12-24 2018-07-10 旺宏电子股份有限公司 A kind of memory component
US9812461B2 (en) * 2015-03-17 2017-11-07 Sandisk Technologies Llc Honeycomb cell structure three-dimensional non-volatile memory device
US9508731B2 (en) * 2015-03-24 2016-11-29 Intel Corporation Pillar arrangement in NAND memory
US9679906B2 (en) * 2015-08-11 2017-06-13 Sandisk Technologies Llc Three-dimensional memory devices containing memory block bridges
TWI574387B (en) * 2015-10-06 2017-03-11 旺宏電子股份有限公司 Memory device
CN105261617B (en) * 2015-10-28 2018-03-30 中国科学院微电子研究所 Three-dimensional semiconductor device and its manufacture method
US9899399B2 (en) * 2015-10-30 2018-02-20 Sandisk Technologies Llc 3D NAND device with five-folded memory stack structure configuration
US10381371B2 (en) * 2015-12-22 2019-08-13 Sandisk Technologies Llc Through-memory-level via structures for a three-dimensional memory device
WO2017125834A1 (en) * 2016-01-18 2017-07-27 Semiconductor Energy Laboratory Co., Ltd. Input/output device and data processor
KR102551350B1 (en) * 2016-01-28 2023-07-04 삼성전자 주식회사 Integrated circuit device including vertical memory device and method of manufacturing the same
CN107068687B (en) * 2017-03-08 2018-10-12 长江存储科技有限责任公司 A kind of 3D nand memories part and its manufacturing method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104253130A (en) * 2013-06-27 2014-12-31 三星电子株式会社 Semiconductor device
CN104347634A (en) * 2013-07-30 2015-02-11 中芯国际集成电路制造(上海)有限公司 Flash memory cell array
US9263462B2 (en) * 2014-07-14 2016-02-16 SK Hynix Inc. Semiconductor device
CN104157654A (en) * 2014-08-15 2014-11-19 中国科学院微电子研究所 Three-dimensional memory and manufacturing method thereof
CN106601743A (en) * 2015-10-14 2017-04-26 旺宏电子股份有限公司 Storage element
CN107658311A (en) * 2017-08-28 2018-02-02 长江存储科技有限责任公司 Three-dimensional storage

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020077593A1 (en) 2018-10-18 2020-04-23 Yangtze Memory Technologies Co., Ltd. Three-dimensional memory device having zigzag slit structures and method for forming the same
EP3827461A4 (en) * 2018-10-18 2022-03-02 Yangtze Memory Technologies Co., Ltd. Three-dimensional memory device having zigzag slit structures and method for forming the same
WO2020252892A1 (en) 2019-06-17 2020-12-24 Yangtze Memory Technologies Co., Ltd. Three-dimensional memory device with support structures in slit structures and method for forming the same
EP3909079A4 (en) * 2019-06-17 2022-10-19 Yangtze Memory Technologies Co., Ltd. Three-dimensional memory device with support structures in slit structures and method for forming the same
US11716850B2 (en) 2019-06-17 2023-08-01 Yangtze Memory Technologies Co., Ltd. Three-dimensional memory device with support structures in gate line slits and methods for forming the same
US11765897B2 (en) 2019-06-17 2023-09-19 Yangtze Memory Technologies Co., Ltd. Three-dimensional memory device without gate line slits and method for forming the same
US11963356B2 (en) 2019-06-17 2024-04-16 Yangtze Memory Technologies Co., Ltd. Three-dimensional memory device without gate line slits and method for forming the same
CN113130499A (en) * 2020-01-14 2021-07-16 爱思开海力士有限公司 Semiconductor memory device and method of manufacturing the same
EP4294148A1 (en) * 2022-06-07 2023-12-20 Samsung Electronics Co., Ltd. Semiconductor devices and data storage systems including the same

Also Published As

Publication number Publication date
CN110168731B (en) 2020-08-25
US10644015B2 (en) 2020-05-05
US11133325B2 (en) 2021-09-28
TW201913971A (en) 2019-04-01
US10847528B2 (en) 2020-11-24
CN110168731A (en) 2019-08-23
US20200243553A1 (en) 2020-07-30
CN107658311A (en) 2018-02-02
US20210005625A1 (en) 2021-01-07
US20210399001A1 (en) 2021-12-23
TWI688080B (en) 2020-03-11
CN107658311B (en) 2018-12-14
US20190096901A1 (en) 2019-03-28
CN112038351A (en) 2020-12-04

Similar Documents

Publication Publication Date Title
US11133325B2 (en) Memory cell structure of a three-dimensional memory device
US10910397B2 (en) Through array contact structure of three- dimensional memory device
CN110121775B (en) Interconnect structure for three-dimensional memory devices
US9659959B2 (en) Semiconductor devices
US11729978B2 (en) Channel hole and bitline architecture and method to improve page or block size and performance of 3D NAND
US9331088B2 (en) Transistor device with gate bottom isolation and method of making thereof
US20200411547A1 (en) Three-dimensional memory devices and fabricating methods thereof
US11502099B2 (en) Three-dimensional memory devices with architecture of increased number of bit lines

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18851456

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A 14.09.2020)

122 Ep: pct application non-entry in european phase

Ref document number: 18851456

Country of ref document: EP

Kind code of ref document: A1