WO2019041308A1 - Power back-off controlling method, apparatus and equipment - Google Patents

Power back-off controlling method, apparatus and equipment Download PDF

Info

Publication number
WO2019041308A1
WO2019041308A1 PCT/CN2017/100198 CN2017100198W WO2019041308A1 WO 2019041308 A1 WO2019041308 A1 WO 2019041308A1 CN 2017100198 W CN2017100198 W CN 2017100198W WO 2019041308 A1 WO2019041308 A1 WO 2019041308A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
power
input voltage
radio unit
sample
Prior art date
Application number
PCT/CN2017/100198
Other languages
French (fr)
Inventor
Gan Wen
Stefan Wallin
Yalan HE
Original Assignee
Telefonaktiebolaget Lm Ericsson (Publ)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Telefonaktiebolaget Lm Ericsson (Publ) filed Critical Telefonaktiebolaget Lm Ericsson (Publ)
Priority to PCT/CN2017/100198 priority Critical patent/WO2019041308A1/en
Publication of WO2019041308A1 publication Critical patent/WO2019041308A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/16Circuits
    • H04B1/1607Supply circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • H04B1/401Circuits for selecting or indicating operating mode
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/36TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets

Definitions

  • Embodiments of the present disclosure generally relate to a field of communication, and more particularly, to a radio power back-off controlling method, an apparatus and an equipment.
  • a radio unit in a communication system is powered by a power supplier.
  • Fig. 1 is a diagram which shows a relationship between an output voltage of the power supplier and time in different modes.
  • the output voltage of the power supplier when the power supplier is in a normal power supplying mode, the output voltage of the power supplier is stable; when the power supplier is in a battery supplying mode, the output voltage will drift lower and lower over time, while an output current of the power supplier becomes higher and higher.
  • the output current may exceed the maximum current that is allowed to flow in a site material (i.e. fuse or power cable) in the communication system, so that the radio unit is forced to shut down or restart.
  • a method to solve the voltage-drift problem is using higher dimensioned site materials, for instance, upgrading the power supplier with bigger fuse trip capacity. However, that always means customer cannot re-use the site material.
  • An alternative method to solve this problem is to estimate a real-time power supply capacity of the power supplier through current/voltage measurements on the radio unit, and back-off output power of the radio unit, so that power consumption of the radio unit is always lower than the power supply capacity, and the output current will not exceed the maximum current that is allowed in the communication system.
  • the first one is based on the measured input voltage; the second one is based on the measured input current.
  • the input voltage V in of the radio unit is measured, and if V in is lower than a threshold, the power back-off shall be performed.
  • Fig. 2 is a diagram which shows a connection between a power supplier 201 and a radio unit 202. As shown in Fig. 2, the radio unit 202 is powered by the power supplier 201 via a power cable 203.
  • I in is the input current of the radio unit 202, which is dependent on a radio load of the radio unit 202.
  • R is a resistance of the power cable 203 between the power supplier 201 and the radio unit 202.
  • V drop may reach up to 6V.
  • the output voltage V out of the power supplier 201 drifts at a very slow rate, it can be viewed as quasi-static over relatively long-time duration. Then the input voltage V in of the radio unit 202 may be expressed as equation (2) :
  • V in V out -I in R (2)
  • the input voltage V in will dynamically change according to the radio load, which may change in a very fast way.
  • a circuit used for measuring the input voltage V in is low passed, and the measured input voltage is also low pass filtered, it is hard to track the input voltage V in , and it is hard to perform the back-off before the site material trips.
  • the input current I in of the radio unit 202 is measured, and compared to a threshold to trigger the back-off.
  • the input current will change according to the radio load, so that similar to the first method, it is hard to track the change and perform the back-off before the site material trips.
  • the embodiments of the present disclosure provide a solution for controlling power back-off to solve the problem mentioned above.
  • a method for controlling a radio unit to perform power back-off is provided, the radio unit is powered by a power supplier.
  • the method includes: estimating a maximum available power that is allowed to be inputted into the radio unit, according to an input voltage of the radio unit, an input current of the radio unit and a maximum current that is allowed to be inputted into the radio unit; comparing the maximum available power to a maximum consumption power of the radio unit; and controlling the radio unit to perform power back-off according to a comparing result.
  • the estimating a maximum available power includes: sensing the input current and the input voltage to generate an input current signal and an input voltage signal; amplifying the input voltage signal and the input current signal to generate an amplified input current signal and an amplified input voltage signal; converting the amplified input current signal and the amplified input voltage signal into digital signals to generate a digitalized input voltage signal and a digitalized input current signal; obtaining at least two pairs of sample current signals and sample voltage signals from the digitalized input voltage signal and the digitalized input current signal; calculating an output voltage of the power supplier and a resistance of a power cable which transmits power from the power supplier to the radio unit, according to the at least two pairs of sample current signals and sample voltage signals; and calculating the maximum available power according to the output voltage, the resistance and the maximum current.
  • the estimating a maximum available power further includes: performing low pass filtering on the digitalized input voltage signal and the digitalized input current signal to generate a Low-pass filtered input voltage signal and a Low-pass filtered input current signal.
  • the estimating a maximum available power further includes: obtaining the at least two pairs of sample current signals and sample voltage signals from the Low-pass filtered input voltage signal and the Low-pass filtered input current signal, and calculating the output voltage and the resistance according to the at least two pairs of sample current signals and sample voltage signals.
  • the estimating a maximum available power further includes: performing delay alignment on the Low-pass filtered input voltage signal and the Low-pass filtered input current signal to generate an aligned input voltage signal and an aligned input current signal.
  • the estimating a maximum available power further includes: obtaining the at least two pairs of sample current signals and sample voltage signals from the aligned input voltage signal and the aligned input current signal, and calculating the output voltage and the resistance according to the at least two pairs of sample current signals and sample voltage signals.
  • the performing delay alignment includes: performing a first processing on the Low-pass filtered input voltage signal to generate a first signal sequence; performing a second processing on the Low-pass filtered input voltage signal to generate a second signal sequence; performing correlation on the first signal sequence and the time shifted second signal sequence to generate a mapping between a correlation value and a delay between the first signal sequence and the second signal sequence; detecting a first delay corresponding to the minimum correlation value according to the mapping; and aligning the first signal sequence with the second signal sequence according to the first delay.
  • the radio unit is controlled to start to perform the power back-off when the maximum available power is less than a sum of a first predetermined power value and the maximum consumption power of the radio unit.
  • the method further includes: updating the maximum consumption power by subtracting a second predetermined power value when the radio unit is controlled to start to perform the power back-off.
  • an equipment in a second aspect, includes: at least one processor; and at least one memory including computer program code, the at least one memory and the computer program code are configured to, with the at least one processor, cause the equipment at least to perform the method as described in the first aspect.
  • a computer readable storage medium stores instructions which, when executed on a processor of a device, cause the device to perform the method as described in the first aspect.
  • the power back-off will be performed according to maximum available power that is allowed to be inputted into the radio unit.
  • the maximum available power is slow varying; thus it is possible to track the change of the maximum available power and perform the power back-off before the site material trips.
  • Fig. 1 shows the output voltage of the power supplier vs. time in different mode
  • Fig. 2 shows the connection between the power supplier and the radio unit
  • Fig. 3 shows an apparatus in accordance with an embodiment of the present disclosure
  • Fig. 4 shows an example of power back-off process according to one embodiment of the disclosure
  • Fig. 5 shows another example of an estimation device
  • Fig. 6 shows an example of a pairing device 502 according to an embodiment of the disclosure.
  • Fig. 7 shows a flowchart of a method 700 for controlling a radio unit to perform power back-off in accordance with an embodiment of the present disclosure
  • Fig. 8 shows a flowchart of the method for estimating a maximum available power in accordance with an embodiment of the present disclosure
  • Fig. 9 shows a flowchart of the method of performing delay alignment in accordance with an embodiment of the present disclosure.
  • Fig. 10 shows a simplified block diagram of an equipment 1000 in a wireless communication system in accordance with an embodiment of the present disclosure.
  • the terms “first” and “second” refer to different elements.
  • the singular forms “a” and “an” are intended to include the plural forms as well, unless the context clearly indicates otherwise.
  • the term “based on” is to be read as “based at least in part on. ”
  • the term “one embodiment” and “an embodiment” are to be read as “at least one embodiment. ”
  • the term “another embodiment” is to be read as “at least one other embodiment. ”
  • Other definitions, explicit and implicit, may be included below.
  • FIG. 2 An apparatus for controlling a radio unit to perform power back-off is provided in these embodiments. As shown in Fig. 2, the radio unit 202 is powered by the power supplier 201.
  • FIG. 3 shows an apparatus in accordance with an embodiment of the present disclosure.
  • an apparatus 300 includes an estimation device 301 and a power back-off controller 302.
  • the estimation device 301 is configured to estimate a maximum available power P av, max that is allowed to be inputted into the radio unit 202, according to an input voltage V in of the radio unit 202, an input current I in of the radio unit 202, and a maximum current I max ; and the power back-off controller 302 is configured to compare the maximum available power P av, max to a maximum consumption power P radio, max of the radio unit 202, and control the radio unit 202 to perform power back-off according to a comparing result.
  • I max is the maximum current that is allowed to be inputted into the radio unit 202.
  • I max is the maximum continuous current that a site material in a communication system can tolerate, and I max is limited by the site material.
  • the maximum available power P av, max may be defined as the maximum deliverable power from the power supplier 201 with cable power loss excluded, that is to say, P av, max denotes the maximum power that can be inputted into the radio unit 202.
  • the available power P av that is inputted into the radio unit 202 has below relationship to the input current I in of the radio unit 202, as shown in equation (3) :
  • V out is an output voltage of the power supplier 201
  • R is a resistance of the power cable 203 between the power supplier 201 and the radio unit 202. represents the cable power loss.
  • Equation (3) Given a fixed V out , if the available power P av is monotone increasing to the input current I in , where V drop is a voltage drop over the power cable 203.
  • V drop,max I max R.
  • V drop,max is typically 6V, while the output voltage V out of the power supplier is over 42V.
  • the maximum available power P av, max can be expressed as equation (3a) :
  • item V out I max represents the maximum power outputted from the power supplier 201, and item represents the maximum cable power loss.
  • the power back-off will be performed according to the maximum available power that is allowed to be inputted into the radio unit.
  • the maximum available power is slowly varying, thus it is possible to track the change of the maximum available power and perform the power back-off before the site material trips.
  • the estimation device 301 may include: a sensing device 3011, a signal amplifier 3012, an analog to digital converter (ADC) 3013, an obtaining device 3014, a first calculating device 3015, and a second calculating device 3016.
  • ADC analog to digital converter
  • the sensing device 3011 is configured to sense the input current and the input voltage to generate an input current signal I in (t) and an input voltage signal V in (t) , the input current signal I in (t) and the input voltage signal V in (t) may be analog signals.
  • the signal amplifier 3012 is configured to amplify the input voltage signal and the input current signal to generate an amplified input current signal and an amplified input voltage signal.
  • the ADC 3013 is configured to convert the amplified input current signal and the amplified input voltage signal into digital signals to generate a digitalized input voltage signal and a digitalized input current signal.
  • the obtaining device 3014 is configured to obtain at least two pairs of sample current signals and sample voltage signals from the digitalized input voltage signal and the digitalized input current signal.
  • the obtaining device 3014 is further configured to obtain two pairs of sample current signals and sample voltage signals, one pair is ⁇ V in (i) , I in (i) ⁇ , the other pair is ⁇ V in (j) , I in (j) ⁇ , and they meet the following condition (4) :
  • he first calculating device 3015 is configured to calculate the output voltage V out of the power supplier 201 and the resistance R of the power cable 203, according to the at least two pairs of sample current signals and sample voltage signals.
  • the first calculating device 3015 may use Vin (i) , Iin (i) , Vin (j) and Iin(j) to calculate V out and R according to the following equations (5) and (6) :
  • V out V in (i) +I in (i) R (5)
  • V out V in (j) +I in (j) R (6)
  • the second calculating device 3016 is configured to calculate the maximum available power P av, max according to the output voltage V out , the resistance R and the maximum current I max .
  • the second calculating device 3016 may use equation (3a) to calculate P av, max , and V out and R could be obtained from the first calculating device 3015.
  • the maximum available power P av, max calculated by the second calculating device 3016 could be sent to the power back-off controller 302.
  • the power back-off controller 302 may be configured to compare the maximum available power P av, max to a sum of a first predetermined power value ⁇ and the maximum consumption power P radio, max of the radio unit 202. When a comparing result is “less” , the power back-off controller 302 controls the radio unit 202 to perform power back-off. For example, the radio unit 202 is controlled to back-off the power by S watt, where S is a back-off step, and ⁇ is used to tolerate the measurement uncertainty and gain the time for back-off operation.
  • the power back-off controller 302 may further compare the maximum available power P av, max to a sum of the first predetermined power value ⁇ , the maximum consumption power P radio, max and the back-off step S. When a comparing result is “greater” , the power back-off controller 302 control the radio unit 202 to perform power restoring. For example, the radio unit 202 is controlled to restore the power by S watt.
  • the apparatus 300 may further includes an updating device 303.
  • the updating device 303 may be configured to update the maximum consumption power P radio, max by subtracting a second predetermined power value after the radio unit 202 finishes performing the power back-off.
  • the second predetermined power value may be equal to the back-off step S.
  • P radio, max P radio, max -S.
  • the updating device 303 may further be configured to update the maximum consumption power P radio, max by adding the second predetermined power value when the radio unit 202 is controlled to start to perform power restoring.
  • P radio, max P radio, max + S.
  • Fig. 4 shows an example of power back-off process according to an embodiment of the disclosure.
  • L1 represents the maximum available power P av
  • max L2 represents the maximum consumption power P radio, max
  • P 0 represents the initial value of the maximum consumption power P radio, max .
  • the power back-off will be performed. The power back-off will repeat again and again until the minimum supported input voltage is reached at time Tm.
  • the power back-off will be performed according to maximum available power that is allowed to be inputted into the radio unit.
  • the maximum available power is slowly varying, thus it is possible to track the change of the maximum available power and perform the power back-off before the site material trips.
  • Fig. 5 shows another example of an estimation device.
  • an estimation device 301a is a variation of the estimation device 301 in Fig. 3.
  • the estimation device 301a may further include a low pass filter 501 when comparing to the estimation device 301.
  • the low pass filter 501 is configured to perform low pass filtering on the digitalized input voltage signal and the digitalized input current signal of the ADC 3013, so as to generate a Low-pass filtered input voltage signal and a Low-pass filtered input current signal.
  • the principle of the low pass filter 501 is described as follows:
  • V out (t) V in (t) +I in (t) R (t) +n (t) (7)
  • Equation (7) becomes (8) :
  • V out (t) *h (t) (V tn (t) +I in (t) R (t) +n (t) ) *h (t) (8)
  • h (t) represents the low pass linear filter and *means the linear convolution.
  • Equation (8) may be transformed into (9) :
  • V out (t) *h (t) V in (t) *h (t) + (I in (t) R (t) ) *h (t) +n (t) *h (t) (9)
  • equation (13) can be obtained:
  • V out V in (t) *h (t) +R (I in (t) *h (t) ) (13)
  • V out V′′ in (t) +RI′′ in (t) (13a)
  • the filtered input current signal and the filtered input voltage signal may also be called as the Low-pass filtered input voltage signal and the Low-pass filtered input current signal, respectively.
  • equation (14) Converting the continuous equation (13) to a discrete one, equation (14) can be obtained:
  • V out V in (n) *g (n) +R (I in (n) *g (n) ) (14)
  • V in (n) , I in (n) are the digitalized input voltage signal and digitalized input current signal, for example, V in (n) and I in (n) can be outputted from the ADC 3013.
  • g (n) is a common low pass digital filter, and g (n) is corresponding to h (t) .
  • the low pass filter 501 since the low pass filter 501 has a low bandwidth, a sampling offset between the input current I in (t) and input voltage V in (t) can be alleviated.
  • the obtaining device 3014 may obtain the at least two pairs of sample current signals and sample voltage signals from the Low-pass filtered input voltage signal and the Low-pass filtered input current signal.
  • the first calculating device 3015 may further calculate the output voltage and the resistance according to the at least two pairs of sample current signals and sample voltage signals, by using equations (5) and (6) .
  • the low pass filter 501 may be set after the signal amplifier 3012, therefore, and above mentioned h (t) may represent the low pass filter 501.
  • the low pass filter 501 can filter the noise, and generate the filtered input current signal and the filtered input voltage signal.
  • the estimation device 301a may further include a pairing device 502.
  • the pairing device 502 may be configured to perform delay alignment on the Low-pass filtered input voltage signal and the Low-pass filtered input current signal to generate an aligned input voltage signal and an aligned input current signal.
  • the sensing device 3011 may use different circuit to measure voltage and current, and the inputted voltage signal and the inputted current signal may not be sampled at the same time.
  • the pairing device 502 the time offset between the inputted voltage signal and the inputted current signal may be eliminated, and the aligned input voltage signal and the aligned input current signal can be regarded as time aligned with each other.
  • Fig. 6 shows an example of the pairing device 502 according to an embodiment of the disclosure.
  • the pairing device 502 may include: a first processing device 601, a second processing device 602, a correlation device 603, a peak detection device 604, and a delay offset estimation device 605.
  • the first processing device 601 is configured to perform a first processing on the Low-pass filtered input voltage signal V′ in (n) to generate a first signal sequence.
  • the first processing device 601 may include: an up-sampling unit 6011, a sample capture unit 6012, and a rectangle windowing unit 6013.
  • the up-sampling unit 6011 is configured to perform up-sampling on the Low-pass filtered input voltage signal V′ in (n) , and generate an up-sampled signal.
  • the sample capture unit 6012 is configured to capture M continuous samples from the up-sampled signal.
  • the rectangle windowing unit 6013 is configured to select samples from the M continuous samples, to generate the first signal sequence.
  • the second processing device 602 is configured to perform a second processing on the Low-pass filtered input current signal I′ in (n) to generate a second signal sequence.
  • the second processing device 602 may include: an up-sampling unit 6021, a sample capture unit 6022, a cyclic shift unit 6023, and a rectangle windowing unit 6024.
  • the up-sampling unit 6021 is configured to perform up-sampling on the Low-pass filtered input current signal I′ in (n) , and generate an up-sampled signal.
  • the sample capture unit 6022 is configured to capture M continuous samples from the up-sampled signal.
  • the cyclic shift unit 6023 is configured to perform cyclic shift on the samples.
  • the rectangle windowing unit 6024 is configured to select samples from the cyclic shifted samples, to generate the second signal sequence.
  • the correlation device 603 is configured to perform correlation on the first signal sequence and the second signal sequence to generate a mapping between a correlation value and a delay between the first signal sequence and the second signal sequence, for example, the correlation value is a function of the delay D, thus the correlation value is expressed as corr (D) .
  • the peak detection device 604 is configured to detect a first delay D1 corresponding to the minimum correlation value according to the mapping.
  • the delay offset estimation device 605 is configured to align the first signal sequence with the second signal sequence according to the first delay D1, so as to eliminate the time offset. For example, the delay offset estimation device 605 delays the first signal sequence or the second signal sequence by D1, so as to generate the aligned input voltage signal and the aligned input current signal.
  • the obtaining device 3014 may further obtain the at least two pairs of sample current signals and sample voltage signals from the aligned input voltage signal and the aligned input current signal outputted from the pairing device 502.
  • the first calculating device 3015 may further calculate the output voltage V out and the resistance R according to the at least two pairs of sample current signals and sample voltage signals.
  • the position of the pairing device 502 will not be limited by Fig. 5.
  • the position of the pairing device 502 could be set before the signal amplifier 3012 etc.
  • the low pass filter 501 and the pairing device 502 are both included in the apparatus 301a.
  • the embodiment will not be limited by Fig. 5.
  • the low pass filter 501 may be omitted; in another embodiment, the pairing device 502 may be omitted; in another embodiment, as shown in Fig. 3, the low pass filter 501 and the pairing device 502 both may be omitted.
  • the power back-off will be performed according to maximum available power that is allowed to be inputted into the radio unit.
  • the maximum available power is slowly varying, thus it is possible to track the change of the maximum available power and perform the power back-off before the site material trips.
  • a method for controlling a radio unit to perform power back-off is provided in these embodiments.
  • the method is corresponding to the apparatus provided in the first aspect of embodiments, and the same contents as those in the first aspect of embodiments are omitted.
  • Fig. 7 shows a flowchart of the method 700 for controlling a radio unit to perform power back-off in accordance with the embodiment of the present disclosure. As shown in Fig. 7, the method includes:
  • Block 701 estimating a maximum available power that is allowed to be inputted into the radio unit, according to an input voltage of the radio unit, an input current of the radio unit and a maximum current that is allowed to be inputted into the radio unit;
  • Block 702 comparing the maximum available power to a maximum consumption power of the radio unit.
  • Block 703 controlling the radio unit to perform power back-off according to a comparing result.
  • the radio unit is controlled to start to perform the power back-off when the maximum available power is less than a sum of a first predetermined power value and the maximum consumption power of the radio unit.
  • the method may further include:
  • Block 704 updating the maximum consumption power by subtracting a second predetermined power value after the power back-off is finished.
  • Fig. 8 shows a flowchart of the method for estimating a maximum available power in accordance with the embodiment of the present disclosure. As shown in Fig. 8, the method includes:
  • Block 801 sensing the input current and the input voltage to generate an input current signal and an input voltage signal
  • Block 802 amplifying the input voltage signal and the input current signal to generate an amplified input current signal and an amplified input voltage signal;
  • Block 803 converting the amplified input current signal and the amplified input voltage signal into digital signals to generate a digitalized input voltage signal and a digitalized input current signal;
  • Block 804 obtaining at least two pairs of sample current signals and sample voltage signals from the digitalized input voltage signal and the digitalized input current signal;
  • Block 805 calculating an output voltage of the power supplier and a resistance of a power cable which transmits power from the power supplier to the radio unit, according to the at least two pairs of sample current signals and sample voltage signals;
  • Block 806 calculating the maximum available power according to the output voltage, the resistance and the maximum current.
  • estimating a maximum available power may further include:
  • Block 807 performing low pass filtering on the digitalized input voltage signal and the digitalized input current signal to generate a Low-pass filtered input voltage signal and a Low-pass filtered input current signal.
  • estimating a maximum available power may further include:
  • estimating a maximum available power may further include:
  • Block 808 performing delay alignment on the Low-pass filtered input voltage signal and the Low-pass filtered input current signal to generate an aligned input voltage signal and an aligned input current signal.
  • estimating a maximum available power may further include:
  • Fig. 9 shows a flowchart of the method of performing delay alignment in accordance with the embodiment of the present disclosure. As shown in Fig. 9, the method includes:
  • Block 901 performing a first processing on the Low-pass filtered input voltage signal to generate a first signal sequence
  • Block 902 performing a second processing on the Low-pass filtered input current signal to generate a second signal sequence
  • Block 903 performing correlation on the first signal sequence and the second signal sequence to generate a mapping between a correlation value and a delay between the first signal sequence and the second signal sequence;
  • Block 904 detecting a first delay corresponding to the minimum correlation value according to the mapping.
  • Block 905 aligning the first signal sequence with the second signal sequence according to the first delay.
  • the power back-off will be performed according to maximum available power that is allowed to be inputted into the radio unit.
  • the maximum available power is slowly varying, thus it is possible to track the change of the maximum available power and perform the power back-off before the site material trips.
  • An equipment in a wireless communication system is provided in these embodiments.
  • Fig. 10 shows a simplified block diagram of an equipment 1000 in a wireless communication system in accordance with an embodiment of the present disclosure. It would be appreciated that the equipment 1000 may be implemented as at least a part of, for example, a network device or a terminal device.
  • the equipment 1000 may include: a processing means 1050.
  • the processing means 1050 includes a data processor (DP) 1010, a memory (MEM) 1020 coupled to the DP 1010.
  • the MEM 1020 stores a program (PROG) 1040.
  • the equipment 1000 acts as a network device. In some other embodiments, the equipment 1000 acts as a terminal device.
  • the memory 1020 stores a plurality of instructions; and the processor 1010 couples to the memory 1020 and could be configured to execute the instructions to cause the equipment 1000 to: estimate a maximum available power that is allowed to be inputted into a radio unit being powered by a power supplier, according to an input voltage of the radio unit, an input current of the radio unit and a maximum current that is allowed to be inputted into the radio unit; compare the maximum available power to a maximum consumption power of the radio unit; and control the radio unit to perform power back-off according to a comparing result.
  • the processor 1010 could also be configured to execute the instructions to cause the equipment 1000 to: sense the input current and the input voltage to generate an input current signal and an input voltage signal; amplify the input voltage signal and the input current signal to generate an amplified input current signal and an amplified input voltage signal; convert the amplified input current signal and the amplified input voltage signal into digital signals to generate a digitalized input voltage signal and a digitalized input current signal; obtain at least two pairs of sample current signals and sample voltage signals from the digitalized input voltage signal and the digitalized input current signal; calculate an output voltage of the power supplier and a resistance of a power cable which transmits power from the power supplier to the radio unit, according to the at least two pairs of sample current signals and sample voltage signals; and calculate the maximum available power according to the output voltage, the resistance and the maximum current.
  • the processor 1010 could also be configured to execute the instructions to cause the equipment 1000 to: perform low pass filtering on the digitalized input voltage signal and the digitalized input current signal to generate a Low-pass filtered input voltage signal and a Low-pass filtered input current signal.
  • the processor 1010 could also be configured to execute the instructions to cause the equipment 1000 to: obtain the at least two pairs of sample current signals and sample voltage signals from the Low-pass filtered input voltage signal and the Low-pass filtered input current signal, and calculate the output voltage and the resistance according to the at least two pairs of sample current signals and sample voltage signals.
  • the processor 1010 could also be configured to execute the instructions to cause the equipment 1000 to: perform delay alignment on the Low-pass filtered input voltage signal and the Low-pass filtered input current signal to generate an aligned input voltage signal and an aligned input current signal.
  • the processor 1010 could also be configured to execute the instructions to cause the equipment 1000 to: obtain the at least two pairs of sample current signals and sample voltage signals from the aligned input voltage signal and the aligned input current signal, and calculate the output voltage and the resistance according to the at least two pairs of sample current signals and sample voltage signals.
  • the processor 1010 could also be configured to execute the instructions to cause the equipment 1000 to: perform a first processing on the Low-pass filtered input voltage signal to generate a first signal sequence; perform a second processing on the Low-pass filtered input voltage signal to generate a second signal sequence; perform correlation on the first signal sequence and the second signal sequence to generate a mapping between a correlation value and a delay between the first signal sequence and the second sequence; detect a first delay corresponding to the minimum correlation value according to the mapping; and align the first signal sequence with the second signal sequence according to the first delay.
  • the processor 1010 could also be configured to execute the instructions to cause the equipment 1000 to: control the radio unit to start to perform the power back-off when the maximum available power is less than a sum of a first predetermined power value and the maximum consumption power of the radio unit.
  • the processor 1010 could also be configured to execute the instructions to cause the equipment 1000 to: update the maximum consumption power by subtracting a second predetermined power value after the power back-off is finished.
  • the PROG 1040 is assumed to include program instructions that, when executed by the associated DP 1010, enable the equipment 1000 to operate in accordance with the embodiments of the present disclosure, as discussed herein with the above methods.
  • the embodiments herein may be implemented by computer software executable by the DP 1010 of the equipment 1000, or by hardware, or by a combination of software and hardware.
  • a combination of the data processor 1010 and MEM 1020 may form processing means 1050 adapted to implement various embodiments of the present disclosure.
  • the MEM 1020 may be of any type suitable to the local technical environment and may be implemented using any suitable data storage technology, such as semiconductor based memory devices, magnetic memory devices and systems, optical memory devices and systems, fixed memory and removable memory, as non-limiting examples. While only one MEM is shown in the equipment 1000, there may be several physically distinct memory modules in the equipment 1000.
  • the DP 1010 may be of any type suitable to the local technical environment, and may include one or more of general purpose computers, special purpose computers, microprocessors, digital signal processors (DSPs) and processors based on multicore processor architecture, as non-limiting examples.
  • the equipment 1000 may have multiple processors, such as an application specific integrated circuit chip that is slaved in time to a clock which synchronizes the main processor.
  • a device such as a terminal device or a network device, not shown
  • the device includes the apparatus 300 or equipment 1000, and the same contents as those in the first aspect and the second aspect of embodiments are omitted.
  • An embodiment of the present disclosure provides a computer program product being tangibly stored on a computer readable storage medium and including instructions which, when executed by a device or an apparatus, cause the device or the apparatus to perform a method provided in the second aspect of embodiments.
  • An embodiment of the present disclosure provides a storage medium in which a computer program is stored, wherein the computer program enables a computer to carry out a method provided in the second aspect of embodiments in an apparatus.
  • embodiments of the invention described herein may be comprised of one or more conventional processors and unique stored program instructions that control the one or more processors to implement, in conjunction with certain non-processor circuits, some, most, or all of the functions of controlling a radio unit to perform power back-off as described herein.
  • the non-processor circuits may include, but are not limited to, a signal amplifier, an Analog to Digital Converter, and user input devices. As such, these functions may be interpreted as blocks of a method for controlling a radio unit to perform power back-off.
  • some or all functions could be implemented by a state machine that has no stored program instructions, or in one or more application specific integrated circuits (ASICs) , in which each function or some combinations of certain of the functions are implemented as custom logic.
  • ASICs application specific integrated circuits
  • various embodiments of the present disclosure may be implemented in hardware or special purpose circuits, software, logic or any combination thereof. Some aspects may be implemented in hardware, while other aspects may be implemented in firmware or software which may be executed by a controller, microprocessor or other computing device. While various aspects of embodiments of the present disclosure are illustrated and described as block diagrams, flowcharts, or using some other pictorial representation, it will be appreciated that the blocks, apparatus, systems, techniques or methods described herein may be implemented in, as non-limiting examples, hardware, software, firmware, special purpose circuits or logic, general purpose hardware or controller or other computing devices, or some combination thereof.
  • embodiments of the present disclosure can be described in the general context of machine-executable instructions, such as those included in program modules, being executed in a device on a target real or virtual processor.
  • program modules include routines, programs, libraries, objects, classes, components, data structures, or the like that perform particular tasks or implement particular abstract data types.
  • the functionality of the program modules may be combined or split between program modules as desired in various embodiments.
  • Machine-executable instructions for program modules may be executed within a local or distributed device. In a distributed device, program modules may be located in both local and remote storage media.
  • Program code for carrying out methods of the present disclosure may be written in any combination of one or more programming languages. These program codes may be provided to a processor or controller of a general purpose computer, special purpose computer, or other programmable data processing apparatus, such that the program codes, when executed by the processor or controller, cause the functions/operations specified in the flowcharts and/or block diagrams to be implemented.
  • the program code may execute entirely on a machine, partly on the machine, as a stand-alone software package, partly on the machine and partly on a remote machine or entirely on the remote machine or server.
  • the above program code may be embodied on a machine readable medium, which may be any tangible medium that may contain, or store a program for use by or in connection with an instruction execution system, apparatus, or device.
  • the machine readable medium may be a machine readable signal medium or a machine readable storage medium.
  • the machine readable medium may include but not limited to an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus, or device, or any suitable combination of the foregoing.
  • machine readable storage medium More specific examples of the machine readable storage medium would include an electrical connection having one or more wires, a portable computer diskette, a hard disk, a random access memory (RAM) , a read-only memory (ROM) , an erasable programmable read-only memory (EPROM or Flash memory) , an optical fiber, a portable compact disc read-only memory (CD-ROM) , an optical storage device, a magnetic storage device, or any suitable combination of the foregoing.
  • RAM random access memory
  • ROM read-only memory
  • EPROM or Flash memory erasable programmable read-only memory
  • CD-ROM portable compact disc read-only memory
  • magnetic storage device or any suitable combination of the foregoing.
  • the device may be implemented in the general context of computer system-executable instructions, such as program modules, being executed by a computer system.
  • program modules may include routines, programs, objects, components, logic, data structures, and so on that perform particular tasks or implement particular abstract data types.
  • the device may be practiced in distributed cloud computing environments where tasks are performed by remote processing devices that are linked through a communications network.
  • program modules may be located in both local and remote computer system storage media including memory storage devices.
  • the device may be implemented in the general context of computer system-executable instructions, such as program modules, being executed by a computer system.
  • program modules may include routines, programs, objects, components, logic, data structures, and so on that perform particular tasks or implement particular abstract data types.
  • the device may be practiced in distributed cloud computing environments where tasks are performed by remote processing devices that are linked through a communications network.
  • program modules may be located in both local and remote computer system storage media including memory storage devices.

Abstract

A radio power back-off controlling method, an apparatus and an electronic equipment. In the disclosure, the power back-off will be performed according to maximum available power that is allowed to be inputted into the radio unit. The maximum available power is slow varying, thus it is possible to track the change of the maximum available power and perform the power back-off before the site material trips.

Description

POWER BACK-OFF CONTROLLING METHOD, APPARATUS AND EQUIPMENT TECHNICAL FIELD
Embodiments of the present disclosure generally relate to a field of communication, and more particularly, to a radio power back-off controlling method, an apparatus and an equipment.
BACKGROUND
A radio unit in a communication system is powered by a power supplier.
Fig. 1 is a diagram which shows a relationship between an output voltage of the power supplier and time in different modes. As shown in Fig. 1, when the power supplier is in a normal power supplying mode, the output voltage of the power supplier is stable; when the power supplier is in a battery supplying mode, the output voltage will drift lower and lower over time, while an output current of the power supplier becomes higher and higher. At a time T1, the output current may exceed the maximum current that is allowed to flow in a site material (i.e. fuse or power cable) in the communication system, so that the radio unit is forced to shut down or restart.
A method to solve the voltage-drift problem is using higher dimensioned site materials, for instance, upgrading the power supplier with bigger fuse trip capacity. However, that always means customer cannot re-use the site material.
An alternative method to solve this problem is to estimate a real-time power supply capacity of the power supplier through current/voltage measurements on the radio unit, and back-off output power of the radio unit, so that power consumption of the radio unit is always lower than the power supply capacity, and the output current will not exceed the maximum current that is allowed in the communication system.
This section introduces aspects that may facilitate a better understanding of the disclosure. Accordingly, the statements of this section are to be read in this light and are not to be understood as admissions about what is in the prior art or what is not in the prior art.
SUMMARY
There are two methods to perform power back-off in related art. The first one is based on the measured input voltage; the second one is based on the measured input current.
For the first method, the input voltage Vin of the radio unit is measured, and if Vin is lower than a threshold, the power back-off shall be performed.
Fig. 2 is a diagram which shows a connection between a power supplier 201 and a radio unit 202. As shown in Fig. 2, the radio unit 202 is powered by the power supplier 201 via a power cable 203.
As shown in Fig. 2, there is voltage drop Vdrop over the power cable 203, which may be approximated as equation (1) :
Vdrop=IinR                 (1)
Where, Iin is the input current of the radio unit 202, which is dependent on a radio load of the radio unit 202. And R is a resistance of the power cable 203 between the power supplier 201 and the radio unit 202. In practical, for example, Vdrop may reach up to 6V.
Since the output voltage Vout of the power supplier 201 drifts at a very slow rate, it can be viewed as quasi-static over relatively long-time duration. Then the input voltage Vin of the radio unit 202 may be expressed as equation (2) :
Vin=Vout-IinR                (2)
That means the input voltage Vin will dynamically change according to the radio load, which may change in a very fast way. However, since a circuit used for measuring the input voltage Vin is low passed, and the measured input voltage is also low pass filtered, it is hard to track the input voltage Vin, and it is hard to perform the back-off before the site material trips.
For the second method, the input current Iin of the radio unit 202 is measured, and compared to a threshold to trigger the back-off. As mentioned, the input current will  change according to the radio load, so that similar to the first method, it is hard to track the change and perform the back-off before the site material trips.
In order to solve at least part of the above problems, one or more methods, apparatus, devices and computer programs are provided in the present disclosure. Various embodiments of the present disclosure mainly aim at providing methods, apparatuses, and equipments for controlling power back-off. Other features and advantages of the embodiments of the present disclosure will also be understood from the following description of particular embodiments when read in conjunction with the accompanying drawings, which illustrate, by way of example, the principles of embodiments of the present disclosure.
In general, the embodiments of the present disclosure provide a solution for controlling power back-off to solve the problem mentioned above.
In a first aspect, a method for controlling a radio unit to perform power back-off is provided, the radio unit is powered by a power supplier. The method includes: estimating a maximum available power that is allowed to be inputted into the radio unit, according to an input voltage of the radio unit, an input current of the radio unit and a maximum current that is allowed to be inputted into the radio unit; comparing the maximum available power to a maximum consumption power of the radio unit; and controlling the radio unit to perform power back-off according to a comparing result.
In an embodiment, the estimating a maximum available power includes: sensing the input current and the input voltage to generate an input current signal and an input voltage signal; amplifying the input voltage signal and the input current signal to generate an amplified input current signal and an amplified input voltage signal; converting the amplified input current signal and the amplified input voltage signal into digital signals to generate a digitalized input voltage signal and a digitalized input current signal; obtaining at least two pairs of sample current signals and sample voltage signals from the digitalized input voltage signal and the digitalized input current signal; calculating an output voltage of the power supplier and a resistance of a power cable which transmits power from the power supplier to the radio unit, according to the at least two pairs of sample current signals and  sample voltage signals; and calculating the maximum available power according to the output voltage, the resistance and the maximum current.
In an embodiment, the estimating a maximum available power further includes: performing low pass filtering on the digitalized input voltage signal and the digitalized input current signal to generate a Low-pass filtered input voltage signal and a Low-pass filtered input current signal.
In an embodiment, the estimating a maximum available power further includes: obtaining the at least two pairs of sample current signals and sample voltage signals from the Low-pass filtered input voltage signal and the Low-pass filtered input current signal, and calculating the output voltage and the resistance according to the at least two pairs of sample current signals and sample voltage signals.
In an embodiment, the estimating a maximum available power further includes: performing delay alignment on the Low-pass filtered input voltage signal and the Low-pass filtered input current signal to generate an aligned input voltage signal and an aligned input current signal.
In an embodiment, the estimating a maximum available power further includes: obtaining the at least two pairs of sample current signals and sample voltage signals from the aligned input voltage signal and the aligned input current signal, and calculating the output voltage and the resistance according to the at least two pairs of sample current signals and sample voltage signals.
In an embodiment, the performing delay alignment includes: performing a first processing on the Low-pass filtered input voltage signal to generate a first signal sequence; performing a second processing on the Low-pass filtered input voltage signal to generate a second signal sequence; performing correlation on the first signal sequence and the time shifted second signal sequence to generate a mapping between a correlation value and a delay between the first signal sequence and the second signal sequence; detecting a first delay corresponding to the minimum correlation value according to the mapping; and aligning the first signal sequence with the second signal sequence according to the first delay.
In an embodiment, the radio unit is controlled to start to perform the power back-off when the maximum available power is less than a sum of a first predetermined power value and the maximum consumption power of the radio unit.
In an embodiment, the method further includes: updating the maximum consumption power by subtracting a second predetermined power value when the radio unit is controlled to start to perform the power back-off.
In a second aspect, an equipment is provided. The equipment includes: at least one processor; and at least one memory including computer program code, the at least one memory and the computer program code are configured to, with the at least one processor, cause the equipment at least to perform the method as described in the first aspect.
In a third aspect, a computer readable storage medium is provided. The computer readable storage medium stores instructions which, when executed on a processor of a device, cause the device to perform the method as described in the first aspect.
According to various embodiments of the present disclosure, the power back-off will be performed according to maximum available power that is allowed to be inputted into the radio unit. The maximum available power is slow varying; thus it is possible to track the change of the maximum available power and perform the power back-off before the site material trips.
BRIEF DESCRIPTION OF THE DRAWINGS
The above and other aspects, features, and benefits of various embodiments of the disclosure will become more fully apparent, by way of example, from the following detailed description with reference to the accompanying drawings, in which like reference numerals or letters are used to designate like or equivalent elements. The drawings are illustrated for facilitating better understanding of the embodiments of the disclosure and not necessarily drawn to scale, in which:
Fig. 1 shows the output voltage of the power supplier vs. time in different mode;
Fig. 2 shows the connection between the power supplier and the radio unit;
Fig. 3 shows an apparatus in accordance with an embodiment of the present disclosure;
Fig. 4 shows an example of power back-off process according to one embodiment of the disclosure;
Fig. 5 shows another example of an estimation device;
Fig. 6 shows an example of a pairing device 502 according to an embodiment of the disclosure.
Fig. 7 shows a flowchart of a method 700 for controlling a radio unit to perform power back-off in accordance with an embodiment of the present disclosure;
Fig. 8 shows a flowchart of the method for estimating a maximum available power in accordance with an embodiment of the present disclosure;
Fig. 9 shows a flowchart of the method of performing delay alignment in accordance with an embodiment of the present disclosure; and
Fig. 10 shows a simplified block diagram of an equipment 1000 in a wireless communication system in accordance with an embodiment of the present disclosure.
DETAILED DESCRIPTION
The present disclosure will now be described with reference to several exemplary embodiments. It should be understood that these embodiments are discussed only for the purpose of enabling those skilled persons in the art to better understand and thus implement the present disclosure, rather than suggesting any limitations on the scope of the present disclosure.
In the following description, details are given to provide thorough understanding of the various aspects of the disclosure. However, it will be understood by one of ordinary skill in the art that the aspects may be practiced without these details. For example, circuits may be shown in block diagrams in order to avoid obscuring the aspects in unnecessary detail. In other instances, well-known circuits, structures and techniques may not be shown  in detail in order not to obscure the aspects of the disclosure.
As used herein, the terms “first” and “second” refer to different elements. The singular forms “a” and “an” are intended to include the plural forms as well, unless the context clearly indicates otherwise. The terms “comprises, ” “comprising, ” “has, ” “having, ” “includes” and/or “including” as used herein, specify the presence of stated features, elements, and/or components and the like, but do not preclude the presence or addition of one or more other features, elements, components and/or combinations thereof. The term “based on” is to be read as “based at least in part on. ” The term “one embodiment” and “an embodiment” are to be read as “at least one embodiment. ” The term “another embodiment” is to be read as “at least one other embodiment. ” Other definitions, explicit and implicit, may be included below.
Before describing the examples illustratively depicted in the several figures, a general introduction is provided for further understanding. With the above general understanding borne in mind, various embodiments are generally described below.
A first aspect of embodiments
An apparatus for controlling a radio unit to perform power back-off is provided in these embodiments. As shown in Fig. 2, the radio unit 202 is powered by the power supplier 201.
Fig. 3 shows an apparatus in accordance with an embodiment of the present disclosure. As shown in Fig. 3, an apparatus 300 includes an estimation device 301 and a power back-off controller 302.
In an embodiment, the estimation device 301 is configured to estimate a maximum available power Pav, max that is allowed to be inputted into the radio unit 202, according to an input voltage Vin of the radio unit 202, an input current Iin of the radio unit 202, and a maximum current Imax; and the power back-off controller 302 is configured to compare the maximum available power Pav, max to a maximum consumption power Pradio, max of the radio unit 202, and control the radio unit 202 to perform power back-off according to  a comparing result.
In the embodiment, Imax is the maximum current that is allowed to be inputted into the radio unit 202. For example, Imax is the maximum continuous current that a site material in a communication system can tolerate, and Imax is limited by the site material.
In the embodiment, the maximum available power Pav, max may be defined as the maximum deliverable power from the power supplier 201 with cable power loss excluded, that is to say, Pav, max denotes the maximum power that can be inputted into the radio unit 202.
In the embodiment, assuming the cable power loss is ohm loss only, the available power Pav that is inputted into the radio unit 202 has below relationship to the input current Iin of the radio unit 202, as shown in equation (3) :
Figure PCTCN2017100198-appb-000001
Where, Vout is an output voltage of the power supplier 201, R is a resistance of the power cable 203 between the power supplier 201 and the radio unit 202. 
Figure PCTCN2017100198-appb-000002
represents the cable power loss.
In equation (3) , given a fixed Vout, if
Figure PCTCN2017100198-appb-000003
the available power Pav is monotone increasing to the input current Iin, where Vdrop is a voltage drop over the power cable 203.
When the input current Iin reaches to Imax, the voltage drops over the power cable 203 and reaches to Vdrop,max=ImaxR. In a real communication system, for example, Vdrop,max is typically 6V, while the output voltage Vout of the power supplier is over 42V.
Therefore, 
Figure PCTCN2017100198-appb-000004
will be always met when Iin changes from 0 to Imax, and the available power Pav will reach to its maximum value as Pav,max when Iin reaches to Imax.
In the embodiment, the maximum available power Pav, max can be expressed as equation (3a) :
Figure PCTCN2017100198-appb-000005
Where, item VoutImax represents the maximum power outputted from the power supplier 201, and item
Figure PCTCN2017100198-appb-000006
represents the maximum cable power loss.
In equation (3a) , Vout and R are very slowly varying parameters, thus Pav, max is slowly varying.
In the embodiment, the power back-off will be performed according to the maximum available power that is allowed to be inputted into the radio unit. The maximum available power is slowly varying, thus it is possible to track the change of the maximum available power and perform the power back-off before the site material trips.
In an embodiment, as shown in Fig. 3, the estimation device 301 may include: a sensing device 3011, a signal amplifier 3012, an analog to digital converter (ADC) 3013, an obtaining device 3014, a first calculating device 3015, and a second calculating device 3016.
In an embodiment, the sensing device 3011 is configured to sense the input current and the input voltage to generate an input current signal Iin (t) and an input voltage signal Vin (t) , the input current signal Iin (t) and the input voltage signal Vin (t) may be analog signals.
The signal amplifier 3012 is configured to amplify the input voltage signal and the input current signal to generate an amplified input current signal and an amplified input voltage signal.
The ADC 3013 is configured to convert the amplified input current signal and the amplified input voltage signal into digital signals to generate a digitalized input voltage signal and a digitalized input current signal.
The obtaining device 3014 is configured to obtain at least two pairs of sample current signals and sample voltage signals from the digitalized input voltage signal and the digitalized input current signal.
For example, the obtaining device 3014 is further configured to obtain two pairs of sample current signals and sample voltage signals, one pair is {Vin (i) , Iin (i) } , the other pair is {Vin (j) , Iin (j) } , and they meet the following condition (4) :
i≠j, Vin (i) ≠Vin (j) , Iin (i) ≠Iin (j)             (4)
he first calculating device 3015 is configured to calculate the output voltage Vout of the power supplier 201 and the resistance R of the power cable 203, according to the at least two pairs of sample current signals and sample voltage signals.
For example, the first calculating device 3015 may use Vin (i) , Iin (i) , Vin (j) and Iin(j) to calculate Vout and R according to the following equations (5) and (6) :
Vout=Vin (i) +Iin (i) R               (5)
Vout=Vin (j) +Iin (j) R               (6)
The second calculating device 3016 is configured to calculate the maximum available power Pav, max according to the output voltage Vout, the resistance R and the maximum current Imax.
For example, the second calculating device 3016 may use equation (3a) to calculate Pav, max , and Vout and R could be obtained from the first calculating device 3015.
In the embodiment, the maximum available power Pav, max calculated by the second calculating device 3016 could be sent to the power back-off controller 302.
The power back-off controller 302 may be configured to compare the maximum available power Pav, max to a sum of a first predetermined power value δ and the maximum consumption power Pradio, max of the radio unit 202. When a comparing result is “less” , the power back-off controller 302 controls the radio unit 202 to perform power back-off. For example, the radio unit 202 is controlled to back-off the power by S watt, where S is a back-off step, and δ is used to tolerate the measurement uncertainty and gain the time for back-off operation.
In the embodiment, the power back-off controller 302 may further compare the maximum available power Pav, max to a sum of the first predetermined power value δ , the maximum consumption power Pradio, max and the back-off step S. When a comparing result is “greater” , the power back-off controller 302 control the radio unit 202 to perform power restoring. For example, the radio unit 202 is controlled to restore the power by S watt.
As shown in Fig. 3, the apparatus 300 may further includes an updating device  303. The updating device 303 may be configured to update the maximum consumption power Pradio, max by subtracting a second predetermined power value after the radio unit 202 finishes performing the power back-off. The second predetermined power value may be equal to the back-off step S. For example, Pradio, max = Pradio, max -S.
In the embodiment, the updating device 303 may further be configured to update the maximum consumption power Pradio, max by adding the second predetermined power value when the radio unit 202 is controlled to start to perform power restoring. For example, Pradio, max = Pradio, max+ S.
Fig. 4 shows an example of power back-off process according to an embodiment of the disclosure. In Fig. 4, L1 represents the maximum available power Pav, max , L2 represents the maximum consumption power Pradio, max , and P0 represents the initial value of the maximum consumption power Pradio, max.
As shown in Fig. 4, when the power supplier 201 is in a battery supplying mode, the maximum available power Pav, max is drift lower and lower over time, and when it becomes lower than the maximum consumption power Pradio, max of the radio unit 202, the power back-off will be performed. The power back-off will repeat again and again until the minimum supported input voltage is reached at time Tm.
As can be seen from the embodiment, the power back-off will be performed according to maximum available power that is allowed to be inputted into the radio unit. The maximum available power is slowly varying, thus it is possible to track the change of the maximum available power and perform the power back-off before the site material trips.
Fig. 5 shows another example of an estimation device. In Fig. 5, an estimation device 301a is a variation of the estimation device 301 in Fig. 3. As shown in Fig. 5, the estimation device 301a may further include a low pass filter 501 when comparing to the estimation device 301.
In the embodiment, the low pass filter 501 is configured to perform low pass filtering on the digitalized input voltage signal and the digitalized input current signal of the ADC 3013, so as to generate a Low-pass filtered input voltage signal and a Low-pass  filtered input current signal.
The principle of the low pass filter 501 is described as follows:
In reality, there are many noise sources introducing noise in the input current signal Iin (t) and the input voltage signal Vin (t) , therefore, the real Vout (t) may be expressed as equation (7) :
Vout (t) =Vin (t) +Iin (t) R (t) +n (t)            (7)
Where n (t) represents the noise. If a low pass linear filter is used to filter Vout (t) , equation (7) becomes (8) :
Vout (t) *h (t) = (Vtn (t) +Iin (t) R (t) +n (t) ) *h (t)        (8)
Where h (t) represents the low pass linear filter and *means the linear convolution.
Equation (8) may be transformed into (9) :
Vout (t) *h (t) =Vin (t) *h (t) + (Iin (t) R (t) ) *h (t) +n (t) *h (t)     (9)
Since Vout (t) and R (t) are very slowly varying, they can be assumed as constant, and equation (10) and (11) can be obtained:
Vout (t) *h (t) =Vout                (10)
(Iin (t) R (t) ) *h (t) =R (Iin (t) *h (t) )             (11)
Suppose noise has a high frequency spectrum, so that equation (12) can be obtained:
n (t) *h (t) ≈0                                                        (12)
In total, equation (13) can be obtained:
Vout=Vin (t) *h (t) +R (Iin (t) *h (t) )            (13)
According to equation (13) , when a low pass filter h (t) is used to filter the input current signal Iin (t) and the input voltage signal Vin (t) , the filtered input current signal (Iin (t) *h (t) ) =I″in (t) , the filtered input voltage signal (Vin (t) *h (t) ) =V″in (t) , and Vout satisfy the equation (13a) :
Vout=V″in (t) +RI″in (t)                    (13a)
As can be seen from equation (13) and (13a) , when the low pass filter h (t) is applied, the filtered input current signal and the filtered input voltage signal can still get the equation (5) and (6) hold.
In the embodiment, the filtered input current signal and the filtered input voltage signal may also be called as the Low-pass filtered input voltage signal and the Low-pass filtered input current signal, respectively.
Converting the continuous equation (13) to a discrete one, equation (14) can be obtained:
Vout=Vin (n) *g (n) +R (Iin (n) *g (n) )            (14)
Where, Vin (n) , Iin (n) are the digitalized input voltage signal and digitalized input current signal, for example, Vin (n) and Iin (n) can be outputted from the ADC 3013. g (n) is a common low pass digital filter, and g (n) is corresponding to h (t) .
In the embodiment, g (n) may represent the low pass filter 501, thus the low pass filter 501 can filter the noise and generate the filtered input current signal Iin (n) *g (n) =I′in (n) and the filtered input voltage signal Vin (n) *g (n) =V′in (n) (i.e. the Low-pass filtered input voltage signal and the Low-pass filtered input current signal) .
In addition, since the low pass filter 501 has a low bandwidth, a sampling offset between the input current Iin (t) and input voltage Vin (t) can be alleviated.
In the embodiments, as shown in Fig. 5, the obtaining device 3014 may obtain the at least two pairs of sample current signals and sample voltage signals from the Low-pass filtered input voltage signal and the Low-pass filtered input current signal.
In the embodiments, as shown in Fig. 5, the first calculating device 3015 may further calculate the output voltage and the resistance according to the at least two pairs of sample current signals and sample voltage signals, by using equations (5) and (6) .
In another embodiment, the low pass filter 501 may be set after the signal amplifier 3012, therefore, and above mentioned h (t) may represent the low pass filter  501. Thus, the low pass filter 501 can filter the noise, and generate the filtered input current signal and the filtered input voltage signal.
As shown in Fig. 5, the estimation device 301a may further include a pairing device 502.
In the embodiment, the pairing device 502 may be configured to perform delay alignment on the Low-pass filtered input voltage signal and the Low-pass filtered input current signal to generate an aligned input voltage signal and an aligned input current signal.
In the embodiments, the sensing device 3011 may use different circuit to measure voltage and current, and the inputted voltage signal and the inputted current signal may not be sampled at the same time. By using the pairing device 502, the time offset between the inputted voltage signal and the inputted current signal may be eliminated, and the aligned input voltage signal and the aligned input current signal can be regarded as time aligned with each other.
Fig. 6 shows an example of the pairing device 502 according to an embodiment of the disclosure. As shown in Fig. 6, the pairing device 502 may include: a first processing device 601, a second processing device 602, a correlation device 603, a peak detection device 604, and a delay offset estimation device 605.
In an embodiment, the first processing device 601 is configured to perform a first processing on the Low-pass filtered input voltage signal V′in (n) to generate a first signal sequence.
As shown in Fig. 6, the first processing device 601 may include: an up-sampling unit 6011, a sample capture unit 6012, and a rectangle windowing unit 6013.
In the embodiment, the up-sampling unit 6011 is configured to perform up-sampling on the Low-pass filtered input voltage signal V′in (n) , and generate an up-sampled signal. The sample capture unit 6012 is configured to capture M continuous samples from the up-sampled signal. The rectangle windowing unit 6013 is configured to select samples from the M continuous samples, to generate the first signal sequence.
In the embodiment, the second processing device 602 is configured to perform a second processing on the Low-pass filtered input current signal I′in (n) to generate a second signal sequence.
As shown in Fig. 6, the second processing device 602 may include: an up-sampling unit 6021, a sample capture unit 6022, a cyclic shift unit 6023, and a rectangle windowing unit 6024.
In the embodiment, the up-sampling unit 6021 is configured to perform up-sampling on the Low-pass filtered input current signal I′in (n) , and generate an up-sampled signal. The sample capture unit 6022 is configured to capture M continuous samples from the up-sampled signal. The cyclic shift unit 6023 is configured to perform cyclic shift on the samples. The rectangle windowing unit 6024 is configured to select samples from the cyclic shifted samples, to generate the second signal sequence.
As shown in Fig. 6, the correlation device 603 is configured to perform correlation on the first signal sequence and the second signal sequence to generate a mapping between a correlation value and a delay between the first signal sequence and the second signal sequence, for example, the correlation value is a function of the delay D, thus the correlation value is expressed as corr (D) .
The peak detection device 604 is configured to detect a first delay D1 corresponding to the minimum correlation value according to the mapping.
The delay offset estimation device 605 is configured to align the first signal sequence with the second signal sequence according to the first delay D1, so as to eliminate the time offset. For example, the delay offset estimation device 605 delays the first signal sequence or the second signal sequence by D1, so as to generate the aligned input voltage signal and the aligned input current signal.
In the embodiment, the obtaining device 3014 may further obtain the at least two pairs of sample current signals and sample voltage signals from the aligned input voltage signal and the aligned input current signal outputted from the pairing device 502.
The first calculating device 3015 may further calculate the output voltage Vout  and the resistance R according to the at least two pairs of sample current signals and sample voltage signals.
In the embodiment, the position of the pairing device 502 will not be limited by Fig. 5. For example, the position of the pairing device 502 could be set before the signal amplifier 3012 etc.
In Fig. 5, the low pass filter 501 and the pairing device 502 are both included in the apparatus 301a. However, the embodiment will not be limited by Fig. 5. For example, in an embodiment, the low pass filter 501 may be omitted; in another embodiment, the pairing device 502 may be omitted; in another embodiment, as shown in Fig. 3, the low pass filter 501 and the pairing device 502 both may be omitted.
As can be seen from the embodiment, the power back-off will be performed according to maximum available power that is allowed to be inputted into the radio unit. The maximum available power is slowly varying, thus it is possible to track the change of the maximum available power and perform the power back-off before the site material trips.
It is to be understood that the above examples or embodiments are discussed for illustration only, rather than limitation. Those skilled in the art would appreciate that there may be many other embodiments or examples within the scope of the present disclosure.
A second aspect of embodiments
A method for controlling a radio unit to perform power back-off is provided in these embodiments. The method is corresponding to the apparatus provided in the first aspect of embodiments, and the same contents as those in the first aspect of embodiments are omitted.
Fig. 7 shows a flowchart of the method 700 for controlling a radio unit to perform power back-off in accordance with the embodiment of the present disclosure. As shown in Fig. 7, the method includes:
Block 701: estimating a maximum available power that is allowed to be inputted  into the radio unit, according to an input voltage of the radio unit, an input current of the radio unit and a maximum current that is allowed to be inputted into the radio unit;
Block 702: comparing the maximum available power to a maximum consumption power of the radio unit; and
Block 703: controlling the radio unit to perform power back-off according to a comparing result.
In the block 703, the radio unit is controlled to start to perform the power back-off when the maximum available power is less than a sum of a first predetermined power value and the maximum consumption power of the radio unit.
As shown in Fig. 7, the method may further include:
Block 704: updating the maximum consumption power by subtracting a second predetermined power value after the power back-off is finished.
Fig. 8 shows a flowchart of the method for estimating a maximum available power in accordance with the embodiment of the present disclosure. As shown in Fig. 8, the method includes:
Block 801: sensing the input current and the input voltage to generate an input current signal and an input voltage signal;
Block 802: amplifying the input voltage signal and the input current signal to generate an amplified input current signal and an amplified input voltage signal;
Block 803: converting the amplified input current signal and the amplified input voltage signal into digital signals to generate a digitalized input voltage signal and a digitalized input current signal;
Block 804: obtaining at least two pairs of sample current signals and sample voltage signals from the digitalized input voltage signal and the digitalized input current signal;
Block 805: calculating an output voltage of the power supplier and a resistance  of a power cable which transmits power from the power supplier to the radio unit, according to the at least two pairs of sample current signals and sample voltage signals; and
Block 806: calculating the maximum available power according to the output voltage, the resistance and the maximum current.
As shown in Fig. 8, estimating a maximum available power may further include:
Block 807: performing low pass filtering on the digitalized input voltage signal and the digitalized input current signal to generate a Low-pass filtered input voltage signal and a Low-pass filtered input current signal.
In the embodiment, estimating a maximum available power may further include:
obtaining the at least two pairs of sample current signals and sample voltage signals from the Low-pass filtered input voltage signal and the Low-pass filtered input current signal; and calculating the output voltage and the resistance according to the at least two pairs of sample current signals and sample voltage signals.
As shown in Fig. 8, estimating a maximum available power may further include:
Block 808: performing delay alignment on the Low-pass filtered input voltage signal and the Low-pass filtered input current signal to generate an aligned input voltage signal and an aligned input current signal.
In the embodiment, estimating a maximum available power may further include:
obtaining the at least two pairs of sample current signals and sample voltage signals from the aligned input voltage signal and the aligned input current signal; and, calculating the output voltage and the resistance according to the at least two pairs of sample current signals and sample voltage signals.
Fig. 9 shows a flowchart of the method of performing delay alignment in accordance with the embodiment of the present disclosure. As shown in Fig. 9, the method includes:
Block 901: performing a first processing on the Low-pass filtered input voltage  signal to generate a first signal sequence;
Block 902: performing a second processing on the Low-pass filtered input current signal to generate a second signal sequence;
Block 903: performing correlation on the first signal sequence and the second signal sequence to generate a mapping between a correlation value and a delay between the first signal sequence and the second signal sequence;
Block 904: detecting a first delay corresponding to the minimum correlation value according to the mapping; and
Block 905: aligning the first signal sequence with the second signal sequence according to the first delay.
As can be seen from the embodiment, the power back-off will be performed according to maximum available power that is allowed to be inputted into the radio unit. The maximum available power is slowly varying, thus it is possible to track the change of the maximum available power and perform the power back-off before the site material trips.
It is to be understood that the above examples or embodiments are discussed for illustration only, rather than limitation. Those skilled in the art would appreciate that there may be many other embodiments or examples within the scope of the present disclosure.
A third aspect of embodiments
An equipment in a wireless communication system is provided in these embodiments.
Fig. 10 shows a simplified block diagram of an equipment 1000 in a wireless communication system in accordance with an embodiment of the present disclosure. It would be appreciated that the equipment 1000 may be implemented as at least a part of, for example, a network device or a terminal device.
As shown in Fig. 10, the equipment 1000 may include: a processing means 1050.  The processing means 1050 includes a data processor (DP) 1010, a memory (MEM) 1020 coupled to the DP 1010. The MEM 1020 stores a program (PROG) 1040.
In some embodiments, the equipment 1000 acts as a network device. In some other embodiments, the equipment 1000 acts as a terminal device.
For example, the memory 1020 stores a plurality of instructions; and the processor 1010 couples to the memory 1020 and could be configured to execute the instructions to cause the equipment 1000 to: estimate a maximum available power that is allowed to be inputted into a radio unit being powered by a power supplier, according to an input voltage of the radio unit, an input current of the radio unit and a maximum current that is allowed to be inputted into the radio unit; compare the maximum available power to a maximum consumption power of the radio unit; and control the radio unit to perform power back-off according to a comparing result.
For example, the processor 1010 could also be configured to execute the instructions to cause the equipment 1000 to: sense the input current and the input voltage to generate an input current signal and an input voltage signal; amplify the input voltage signal and the input current signal to generate an amplified input current signal and an amplified input voltage signal; convert the amplified input current signal and the amplified input voltage signal into digital signals to generate a digitalized input voltage signal and a digitalized input current signal; obtain at least two pairs of sample current signals and sample voltage signals from the digitalized input voltage signal and the digitalized input current signal; calculate an output voltage of the power supplier and a resistance of a power cable which transmits power from the power supplier to the radio unit, according to the at least two pairs of sample current signals and sample voltage signals; and calculate the maximum available power according to the output voltage, the resistance and the maximum current.
For example, the processor 1010 could also be configured to execute the instructions to cause the equipment 1000 to: perform low pass filtering on the digitalized input voltage signal and the digitalized input current signal to generate a Low-pass filtered input voltage signal and a Low-pass filtered input current signal.
For example, the processor 1010 could also be configured to execute the instructions to cause the equipment 1000 to: obtain the at least two pairs of sample current signals and sample voltage signals from the Low-pass filtered input voltage signal and the Low-pass filtered input current signal, and calculate the output voltage and the resistance according to the at least two pairs of sample current signals and sample voltage signals.
For example, the processor 1010 could also be configured to execute the instructions to cause the equipment 1000 to: perform delay alignment on the Low-pass filtered input voltage signal and the Low-pass filtered input current signal to generate an aligned input voltage signal and an aligned input current signal.
For example, the processor 1010 could also be configured to execute the instructions to cause the equipment 1000 to: obtain the at least two pairs of sample current signals and sample voltage signals from the aligned input voltage signal and the aligned input current signal, and calculate the output voltage and the resistance according to the at least two pairs of sample current signals and sample voltage signals.
For example, the processor 1010 could also be configured to execute the instructions to cause the equipment 1000 to: perform a first processing on the Low-pass filtered input voltage signal to generate a first signal sequence; perform a second processing on the Low-pass filtered input voltage signal to generate a second signal sequence; perform correlation on the first signal sequence and the second signal sequence to generate a mapping between a correlation value and a delay between the first signal sequence and the second sequence; detect a first delay corresponding to the minimum correlation value according to the mapping; and align the first signal sequence with the second signal sequence according to the first delay.
For example, the processor 1010 could also be configured to execute the instructions to cause the equipment 1000 to: control the radio unit to start to perform the power back-off when the maximum available power is less than a sum of a first predetermined power value and the maximum consumption power of the radio unit.
For example, the processor 1010 could also be configured to execute the instructions to cause the equipment 1000 to: update the maximum consumption power by  subtracting a second predetermined power value after the power back-off is finished.
The PROG 1040 is assumed to include program instructions that, when executed by the associated DP 1010, enable the equipment 1000 to operate in accordance with the embodiments of the present disclosure, as discussed herein with the above methods. The embodiments herein may be implemented by computer software executable by the DP 1010 of the equipment 1000, or by hardware, or by a combination of software and hardware. A combination of the data processor 1010 and MEM 1020 may form processing means 1050 adapted to implement various embodiments of the present disclosure.
The MEM 1020 may be of any type suitable to the local technical environment and may be implemented using any suitable data storage technology, such as semiconductor based memory devices, magnetic memory devices and systems, optical memory devices and systems, fixed memory and removable memory, as non-limiting examples. While only one MEM is shown in the equipment 1000, there may be several physically distinct memory modules in the equipment 1000. The DP 1010 may be of any type suitable to the local technical environment, and may include one or more of general purpose computers, special purpose computers, microprocessors, digital signal processors (DSPs) and processors based on multicore processor architecture, as non-limiting examples. The equipment 1000 may have multiple processors, such as an application specific integrated circuit chip that is slaved in time to a clock which synchronizes the main processor.
A device (such as a terminal device or a network device, not shown) is provided in an embodiment, the device includes the apparatus 300 or equipment 1000, and the same contents as those in the first aspect and the second aspect of embodiments are omitted.
An embodiment of the present disclosure provides a computer program product being tangibly stored on a computer readable storage medium and including instructions which, when executed by a device or an apparatus, cause the device or the apparatus to perform a method provided in the second aspect of embodiments.
An embodiment of the present disclosure provides a storage medium in which a computer program is stored, wherein the computer program enables a computer to carry out a method provided in the second aspect of embodiments in an apparatus.
It will be appreciated that embodiments of the invention described herein may be comprised of one or more conventional processors and unique stored program instructions that control the one or more processors to implement, in conjunction with certain non-processor circuits, some, most, or all of the functions of controlling a radio unit to perform power back-off as described herein. The non-processor circuits may include, but are not limited to, a signal amplifier, an Analog to Digital Converter, and user input devices. As such, these functions may be interpreted as blocks of a method for controlling a radio unit to perform power back-off. Alternatively, some or all functions could be implemented by a state machine that has no stored program instructions, or in one or more application specific integrated circuits (ASICs) , in which each function or some combinations of certain of the functions are implemented as custom logic. Further, it is expected that one of ordinary skill, notwithstanding possibly significant effort and many design choices motivated by, for example, available time, current technology, and economic considerations, when guided by the concepts and principles disclosed herein will be readily capable of generating such software instructions and programs and integrated circuits (ICs) with minimal experimentation.
Generally, various embodiments of the present disclosure may be implemented in hardware or special purpose circuits, software, logic or any combination thereof. Some aspects may be implemented in hardware, while other aspects may be implemented in firmware or software which may be executed by a controller, microprocessor or other computing device. While various aspects of embodiments of the present disclosure are illustrated and described as block diagrams, flowcharts, or using some other pictorial representation, it will be appreciated that the blocks, apparatus, systems, techniques or methods described herein may be implemented in, as non-limiting examples, hardware, software, firmware, special purpose circuits or logic, general purpose hardware or controller or other computing devices, or some combination thereof.
By way of example, embodiments of the present disclosure can be described in the general context of machine-executable instructions, such as those included in program modules, being executed in a device on a target real or virtual processor. Generally, program modules include routines, programs, libraries, objects, classes, components, data structures,  or the like that perform particular tasks or implement particular abstract data types. The functionality of the program modules may be combined or split between program modules as desired in various embodiments. Machine-executable instructions for program modules may be executed within a local or distributed device. In a distributed device, program modules may be located in both local and remote storage media.
Program code for carrying out methods of the present disclosure may be written in any combination of one or more programming languages. These program codes may be provided to a processor or controller of a general purpose computer, special purpose computer, or other programmable data processing apparatus, such that the program codes, when executed by the processor or controller, cause the functions/operations specified in the flowcharts and/or block diagrams to be implemented. The program code may execute entirely on a machine, partly on the machine, as a stand-alone software package, partly on the machine and partly on a remote machine or entirely on the remote machine or server.
The above program code may be embodied on a machine readable medium, which may be any tangible medium that may contain, or store a program for use by or in connection with an instruction execution system, apparatus, or device. The machine readable medium may be a machine readable signal medium or a machine readable storage medium. The machine readable medium may include but not limited to an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus, or device, or any suitable combination of the foregoing.
More specific examples of the machine readable storage medium would include an electrical connection having one or more wires, a portable computer diskette, a hard disk, a random access memory (RAM) , a read-only memory (ROM) , an erasable programmable read-only memory (EPROM or Flash memory) , an optical fiber, a portable compact disc read-only memory (CD-ROM) , an optical storage device, a magnetic storage device, or any suitable combination of the foregoing.
In the context of this disclosure, the device may be implemented in the general context of computer system-executable instructions, such as program modules, being executed by a computer system. Generally, program modules may include routines,  programs, objects, components, logic, data structures, and so on that perform particular tasks or implement particular abstract data types. The device may be practiced in distributed cloud computing environments where tasks are performed by remote processing devices that are linked through a communications network. In a distributed cloud computing environment, program modules may be located in both local and remote computer system storage media including memory storage devices.
Further, while operations are depicted in a particular order, this should not be understood as requiring that such operations be performed in the particular order shown or in sequential order, or that all illustrated operations be performed, to achieve desirable results. In certain circumstances, multitasking and parallel processing may be advantageous. Likewise, while several specific implementation details are contained in the above discussions, these should not be construed as limitations on the scope of the present disclosure, but rather as descriptions of features that may be specific to particular embodiments. Certain features that are described in the context of separate embodiments may also be implemented in combination in a single embodiment. Conversely, various features that are described in the context of a single embodiment may also be implemented in multiple embodiments separately or in any suitable sub-combination.
In the context of this disclosure, the device may be implemented in the general context of computer system-executable instructions, such as program modules, being executed by a computer system. Generally, program modules may include routines, programs, objects, components, logic, data structures, and so on that perform particular tasks or implement particular abstract data types. The device may be practiced in distributed cloud computing environments where tasks are performed by remote processing devices that are linked through a communications network. In a distributed cloud computing environment, program modules may be located in both local and remote computer system storage media including memory storage devices.
Further, while operations are depicted in a particular order, this should not be understood as requiring that such operations be performed in the particular order shown or in sequential order, or that all illustrated operations be performed, to achieve desirable  results. In certain circumstances, multitasking and parallel processing may be advantageous. Likewise, while several specific implementation details are contained in the above discussions, these should not be construed as limitations on the scope of the present disclosure, but rather as descriptions of features that may be specific to particular embodiments. Certain features that are described in the context of separate embodiments may also be implemented in combination in a single embodiment. Conversely, various features that are described in the context of a single embodiment may also be implemented in multiple embodiments separately or in any suitable sub-combination.
Although the present disclosure has been described in language specific to structural features and/or methodological acts, it is to be understood that the present disclosure defined in the appended claims is not necessarily limited to the specific features or acts described above. Rather, the specific features and acts described above are disclosed as example forms of implementing the claims.

Claims (19)

  1. A method for controlling a radio unit to perform power back-off, the radio unit is powered by a power supplier, the method comprising:
    estimating a maximum available power that is allowed to be inputted into the radio unit, according to an input voltage of the radio unit, an input current of the radio unit and a maximum current that is allowed to be inputted into the radio unit;
    comparing the maximum available power to a maximum consumption power of the radio unit; and
    controlling the radio unit to perform power back-off according to a comparing result.
  2. The method according to claim 1, wherein, the estimating a maximum available power comprises:
    sensing the input current and the input voltage to generate an input current signal and an input voltage signal;
    amplifying the input voltage signal and the input current signal to generate an amplified input current signal and an amplified input voltage signal;
    converting the amplified input current signal and the amplified input voltage signal into digital signals to generate a digitalized input voltage signal and a digitalized input current signal;
    obtaining at least two pairs of sample current signals and sample voltage signals from the digitalized input voltage signal and the digitalized input current signal;
    calculating an output voltage of the power supplier and a resistance of a power cable which transmits power from the power supplier to the radio unit, according to the at least two pairs of sample current signals and sample voltage signals; and
    calculating the maximum available power according to the output voltage, the resistance and the maximum current.
  3. The method according to claim 2, wherein, the estimating a maximum available power further comprises:
    performing low pass filtering on the digitalized input voltage signal and the digitalized input current signal to generate a Low-pass filtered input voltage signal and a Low-pass filtered input current signal.
  4. The method according to claim 3, wherein, the estimating a maximum available power further comprises:
    obtaining the at least two pairs of sample current signals and sample voltage signals from the Low-pass filtered input voltage signal and the Low-pass filtered input current signal, and
    calculating the output voltage and the resistance according to the at least two pairs of sample current signals and sample voltage signals.
  5. The method according to claim 3, wherein, the estimating a maximum available power further comprises:
    performing delay alignment on the Low-pass filtered input voltage signal and the Low-pass filtered input current signal to generate an aligned input voltage signal and an aligned input current signal.
  6. The method according to claim 5, wherein, the estimating a maximum available power further comprises:
    obtaining the at least two pairs of sample current signals and sample voltage signals from the aligned input voltage signal and the aligned input current signal, and
    calculating the output voltage and the resistance according to the at least two pairs of sample current signals and sample voltage signals.
  7. The method according to claim 5, wherein, the performing delay alignment comprises:
    performing a first processing on the Low-pass filtered input voltage signal to generate a first signal sequence;
    performing a second processing on the Low-pass filtered input voltage signal to generate a second signal sequence;
    performing correlation on the first signal sequence and the second signal sequence to generate a mapping between a correlation value and a delay between the first signal sequence and the second signal sequence;
    detecting a first delay corresponding to the minimum correlation value according to the mapping; and
    aligning the first signal sequence with the second signal sequence according to the first delay.
  8. The method according to claim 1, wherein,
    the radio unit is controlled to start to perform the power back-off when the maximum available power is less than a sum of a first predetermined power value and the maximum consumption power of the radio unit.
  9. The method according to claim 8, wherein, the method further comprises:
    updating the maximum consumption power by subtracting a second predetermined power value after the power back-off is finished.
  10. An equipment in a wireless communication system, comprising:
    at least one processor; and
    at least one memory comprising computer program code,
    the at least one memory and the computer program code configured to, with the at least one processor, cause the equipment to:
    estimate a maximum available power that is allowed to be inputted into a radio unit being powered by a power supplier, according to an input voltage of the radio unit, an input current of the radio unit and a maximum current that is allowed to be inputted into the radio unit;
    compare the maximum available power to a maximum consumption power of the radio unit; and
    control the radio unit to perform power back-off according to a comparing result.
  11. The equipment according to claim 10, wherein, the equipment is caused to:
    sense the input current and the input voltage to generate an input current signal and an input voltage signal;
    amplify the input voltage signal and the input current signal to generate an amplified input current signal and an amplified input voltage signal;
    convert the amplified input current signal and the amplified input voltage signal into digital signals to generate a digitalized input voltage signal and a digitalized input current signal;
    obtain at least two pairs of sample current signals and sample voltage signals from the digitalized input voltage signal and the digitalized input current signal;
    calculate an output voltage of the power supplier and a resistance of a power cable which transmits power from the power supplier to the radio unit, according to the at least two pairs of sample current signals and sample voltage signals; and
    calculate the maximum available power according to the output voltage, the resistance and the maximum current.
  12. The equipment according to claim 11, wherein, the equipment is caused to:
    perform low pass filtering on the digitalized input voltage signal and the digitalized input current signal to generate a Low-pass filtered input voltage signal and a Low-pass filtered input current signal.
  13. The equipment according to claim 12, wherein, the equipment is caused to:
    obtain the at least two pairs of sample current signals and sample voltage signals from the Low-pass filtered input voltage signal and the Low-pass filtered input current signal, and
    calculate the output voltage and the resistance according to the at least two pairs of sample current signals and sample voltage signals.
  14. The equipment according to claim 12, wherein, the equipment is caused to:
    perform delay alignment on the Low-pass filtered input voltage signal and the Low-pass filtered input current signal to generate an aligned input voltage signal and an aligned input current signal.
  15. The equipment according to claim 14, wherein, the equipment is caused to:
    obtain the at least two pairs of sample current signals and sample voltage signals from the aligned input voltage signal and the aligned input current signal, and
    calculate the output voltage and the resistance according to the at least two pairs of sample current signals and sample voltage signals.
  16. The equipment according to claim 14, wherein, the equipment is caused to perform the delay alignment by:
    perform a first processing on the Low-pass filtered input voltage signal to generate a first signal sequence;
    perform a second processing on the Low-pass filtered input voltage signal to generate a second signal sequence;
    perform correlation on the first signal sequence and the second signal sequence to generate a mapping between a correlation value and a delay between the first signal sequence and the second signal sequence;
    detect a first delay corresponding to the minimum correlation value according to the mapping; and
    align the first signal sequence with the second signal sequence according to the first delay.
  17. The equipment according to claim 10, wherein, the equipment is caused to:
    control the radio unit to start to perform the power back-off when the maximum available power is less than a sum of a first predetermined power value and the maximum consumption power of the radio unit.
  18. The equipment according to claim 17, wherein, the equipment is further caused to:
    update the maximum consumption power by subtracting a second predetermined power value after the power back-off is finished.
  19. A computer readable storage medium storing instructions which, when executed on a processor of a device, cause the device to perform the method according to any of claims 1-9.
PCT/CN2017/100198 2017-09-01 2017-09-01 Power back-off controlling method, apparatus and equipment WO2019041308A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/100198 WO2019041308A1 (en) 2017-09-01 2017-09-01 Power back-off controlling method, apparatus and equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/100198 WO2019041308A1 (en) 2017-09-01 2017-09-01 Power back-off controlling method, apparatus and equipment

Publications (1)

Publication Number Publication Date
WO2019041308A1 true WO2019041308A1 (en) 2019-03-07

Family

ID=65524791

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/100198 WO2019041308A1 (en) 2017-09-01 2017-09-01 Power back-off controlling method, apparatus and equipment

Country Status (1)

Country Link
WO (1) WO2019041308A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050054383A1 (en) * 2003-08-21 2005-03-10 Conexant Systems, Inc. Power-based hardware diversity
CN101068122A (en) * 2007-05-25 2007-11-07 中兴通讯股份有限公司 Multi-switch-in terminal maximum transmission power obtaining method
CN101741479A (en) * 2008-11-04 2010-06-16 中兴通讯股份有限公司 Joint test method for maximum power regression and adjacent channel leakage ratio
CN102986280A (en) * 2010-06-29 2013-03-20 高通股份有限公司 Interaction between maximum power reduction and power scaling in wireless networks
CN104853426A (en) * 2015-04-09 2015-08-19 上海与德通讯技术有限公司 Method for adjusting signal transmitting power and mobile terminal

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050054383A1 (en) * 2003-08-21 2005-03-10 Conexant Systems, Inc. Power-based hardware diversity
CN101068122A (en) * 2007-05-25 2007-11-07 中兴通讯股份有限公司 Multi-switch-in terminal maximum transmission power obtaining method
CN101741479A (en) * 2008-11-04 2010-06-16 中兴通讯股份有限公司 Joint test method for maximum power regression and adjacent channel leakage ratio
CN102986280A (en) * 2010-06-29 2013-03-20 高通股份有限公司 Interaction between maximum power reduction and power scaling in wireless networks
CN104853426A (en) * 2015-04-09 2015-08-19 上海与德通讯技术有限公司 Method for adjusting signal transmitting power and mobile terminal

Similar Documents

Publication Publication Date Title
Cassel et al. Testing SUSY at the LHC: Electroweak and Dark matter fine tuning at two-loop order
US11856549B2 (en) Fingerprint data pre-process method for improving localization model
US10103666B1 (en) Synchronous generator modeling and frequency control using unscented Kalman filter
US9627959B2 (en) Switch power converter and frequency response characteristic testing and adjusting method thereof
Amendola et al. Internal robustness: systematic search for systematic bias in SN Ia data
JP2001249158A (en) Sampling method for current value of power source of integrated circuit, device thereof and storage medium storing control program
EP3117226B1 (en) Digital frequency response analysis system and method useful for power supplies
Tsybulev New-generation data acquisition and control system for continuum radio-astronomic observations with RATAN-600 radio telescope: Development, observations, and measurements
US10571515B2 (en) Frequency guard band validation of processors
WO2014160798A2 (en) Processor power measurement
Pal et al. Automation and evaluation of two different techniques to calibrate precision calibrators for low frequency voltage using thermal devices
US9401641B2 (en) Systems and methods for self-calibration of a voltage regulator
Shimazu et al. Qualitative performance comparison of reactivity estimation between the extended Kalman filter technique and the inverse point kinetic method
WO2019041308A1 (en) Power back-off controlling method, apparatus and equipment
US20100052927A1 (en) System and method for testing charging current of a mobile electronic device
US8072587B2 (en) Machine and method for measuring a characteristic of an optical signal
TWI493850B (en) Monitoring method with function of correlation-based system identification
US10955488B2 (en) Modular power supply monitoring by accessory interface of a test and measurement instrument
KR102438775B1 (en) Impedance measurement apparatus and method
CN115792559A (en) Scanning speed determination method and device, electronic equipment and storage medium
JP2018119795A (en) Thickness measurement device and thickness measurement method
US10156597B2 (en) Method and system for determining power consumption
US20180102662A1 (en) Cancel voltage offset of operational amplifier
JP6814692B2 (en) Automatic voltage regulator and power transmission direction determination device
US20190034002A1 (en) Dynamic range enhancement for self-capacitance measurement

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17923201

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17923201

Country of ref document: EP

Kind code of ref document: A1