WO2019041116A1 - 光学测距方法以及光学测距装置 - Google Patents

光学测距方法以及光学测距装置 Download PDF

Info

Publication number
WO2019041116A1
WO2019041116A1 PCT/CN2017/099408 CN2017099408W WO2019041116A1 WO 2019041116 A1 WO2019041116 A1 WO 2019041116A1 CN 2017099408 W CN2017099408 W CN 2017099408W WO 2019041116 A1 WO2019041116 A1 WO 2019041116A1
Authority
WO
WIPO (PCT)
Prior art keywords
time
distance
flight
module
parameters
Prior art date
Application number
PCT/CN2017/099408
Other languages
English (en)
French (fr)
Inventor
杨孟达
Original Assignee
深圳市汇顶科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市汇顶科技股份有限公司 filed Critical 深圳市汇顶科技股份有限公司
Priority to EP17872880.4A priority Critical patent/EP3477251B1/en
Priority to CN201780001028.9A priority patent/CN109729721B/zh
Priority to KR1020187016159A priority patent/KR102134688B1/ko
Priority to PCT/CN2017/099408 priority patent/WO2019041116A1/zh
Priority to US15/974,705 priority patent/US10908290B2/en
Publication of WO2019041116A1 publication Critical patent/WO2019041116A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/25Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object
    • G01B11/2513Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object with several lines being projected in more than one direction, e.g. grids, patterns
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/42Simultaneous measurement of distance and other co-ordinates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/46Indirect determination of position data
    • G01S17/48Active triangulation systems, i.e. using the transmission and reflection of electromagnetic waves other than radio waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/89Lidar systems specially adapted for specific applications for mapping or imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/89Lidar systems specially adapted for specific applications for mapping or imaging
    • G01S17/8943D imaging with simultaneous measurement of time-of-flight at a 2D array of receiver pixels, e.g. time-of-flight cameras or flash lidar
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers
    • G01S7/4865Time delay measurement, e.g. time-of-flight measurement, time of arrival measurement or determining the exact position of a peak
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/497Means for monitoring or calibrating

Definitions

  • the present invention relates to an optical ranging method and an optical ranging device, and more particularly to an optical ranging method and an optical ranging device that are mutually correctable.
  • the optical ranging device can acquire its distance/depth information with respect to the target using a 3D image sensing system, and thus generate three-dimensional image data by the pitch value or distance value of each pixel of the 3D image, which is also referred to as a distance.
  • Image or depth map can be used in a variety of applications to get more information about objects in the scene captured by the camera, solving different tasks in the field of industrial sensors.
  • a 3D image sensing system emits incident light through a light emitting diode and utilizes a plurality of pixel circuits in the pixel array to acquire reflected light corresponding to the incident light.
  • the prior art has developed a method for measuring the distance according to the time-of-flight (ToF) between the modulated incident light and the reflected light.
  • the advantage of using the modulated light for the time-of-flight ranging is that the background light is resistant. Good interference and poor accuracy.
  • the prior art has developed the use of structured light and triangulation to measure distance, which has better accuracy, but its ability to resist background light interference is poor.
  • the triangulation method needs to correct some parameters when calculating the distance, and the flying time measurement distance has the time-of-flight error. When the parameters required by the triangulation method and the time-of-flight error are unknown, Existing optical ranging devices cannot accurately provide distance/depth information of the target.
  • the present invention provides an optical ranging method, which is applied to an optical ranging device, the optical ranging device comprising a light emitting module and a photosensitive module, wherein the light emitting module emits incident light, and the photosensitive module Receiving reflected light reflected from the object reflection point and generating an image, the correction method comprising determining an expression of a first measurement distance according to the plurality of first parameters; according to the incident light and the reflected light Calculating a time-of-flight measurement distance according to the flight time; calculating an optimal value of the plurality of first parameters and corresponding to the time-of-flight measurement distance according to the expression of the first measurement distance and the flying time measurement distance An optimal value of the time-of-flight error; and obtaining the optical ranging device from the measured distance according to the time of flight, the optimal value of the plurality of first parameters, and the optimal value of the time-of-flight error Image depth information of the object reflection point; wherein the plurality of first parameters include a first angle,
  • the step of determining the first measurement distance according to the plurality of first parameters comprises: determining coordinates of the object reflection point relative to the photosensitive module according to the plurality of first parameters; according to the coordinates, Determining an expression of a return distance of the object reflection point with respect to the photosensitive module and an expression of a distance of the object reflection point with respect to the light-emitting module; and an expression of the first measurement distance is The sum of the expression of the return distance and the expression of the forward distance.
  • calculating an optimal value of the plurality of first parameters and a time-of-flight error corresponding to the measured time of the flying time according to the expression of the first measured distance and the measured time of the flying time includes: formulating an objective function according to the expression of the first measured distance and the measured time of the flying time; And calculating an optimal value of the plurality of first parameters and an optimal value of the time-of-flight error corresponding to the time-of-flight measurement distance according to the objective function.
  • the objective function is an absolute value of the expression of the first measured distance and the flying time measuring distance and the flying time error.
  • the step of calculating an optimal value of the plurality of first parameters and an optimal value of the time-of-flight error corresponding to the time-of-flight measurement distance according to the objective function comprises: using a Gauss-Newton algorithm, according to the target a function calculates an optimal value of the plurality of first parameters and an optimal value of a time-of-flight error corresponding to the time-of-flight measurement distance.
  • the incident light includes structured light
  • the determining, according to the plurality of first parameters, the expression of the first measured distance comprises determining according to the reflected light corresponding to the structured light and the plurality of first parameters.
  • the incident light includes modulated light
  • calculating a time-of-flight measurement distance according to a time of flight between the incident light and the reflected light comprises: according to the reflected light corresponding to the modulated light and Flight time, calculate the time measurement distance.
  • the invention further provides an optical distance measuring device, comprising: a light emitting module for emitting incident light; a photosensitive module for receiving reflected light reflected from a reflection point of the object, and generating an image; and a calculation module coupled to the a photosensitive module, the calculation module includes: a structured photon module, configured to determine an expression of the first measured distance according to the plurality of first parameters; and a modulated photon module for using the incident light and the reflected light Calculating the time-of-flight measurement distance; the optimal calculation sub-module is configured to calculate an optimal value of the plurality of first parameters according to the expression of the first measurement distance and the time-of-flight measurement distance And an optimal value of a time-of-flight error corresponding to the time-of-flight measurement distance; and an acquisition sub-module for measuring a distance according to the time of flight, an optimal value of the plurality of first parameters, and the flying And obtaining an image depth information of the optical ranging device relative to the object reflection point; wherein the plurality of first
  • the invention combines the measurement distance of the triangulation method and the measurement distance of the time-of-flight distance measurement method into one, and uses the measurement distance of the time-of-flight distance measurement method to correct the parameters required by the triangulation method, and uses the amount of the triangulation method.
  • the distance is measured to correct the time-of-flight error of the time-of-flight ranging method to solve the shortcomings in the prior art.
  • FIG. 1 is a schematic view of an optical distance measuring device according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of a process according to an embodiment of the present invention.
  • Figure 3 is a schematic diagram of a three-dimensional space coordinate.
  • FIG. 4 is a schematic diagram of a process according to an embodiment of the present invention.
  • FIG. 1 is a schematic diagram of an optical ranging device 10 according to an embodiment of the present invention.
  • the optical distance measuring device 10 includes a light emitting module 12, a light sensing module 14, and a calculation module 16.
  • the light emitting module 12 can include a light emitting diode (LED) for emitting incident light, and the light emitting diode can be an infrared light emitting diode.
  • the photosensitive module 14 may be an imaging unit, which may include a lens (Lens) and an image sensor (Image Sensor) for receiving reflected light reflected from the object reflection point OBJ and generating an image.
  • the computing module 16 can include a structural photonic module, a modulated photonic module, an optimal computing sub-module, and an obtaining sub-module.
  • the computing module 16 can include a processing unit and a storage unit, which can be an application processor ( Application Process, AP) or digital signal A digital signal processor (DSP) can store program code for instructing the processing unit to execute a flow to calculate image depth information of the optical ranging device 10 with respect to the object reflection point OBJ.
  • AP Application Process
  • DSP digital signal processor
  • the incident light emitted by the light-emitting module 12 is Modulated and Structured Light, that is, the incident light has the characteristics of Structured Light and Modulated Light.
  • the incident light since the incident light has the characteristic of structured light, the incident light may have a light-dark distribution such as a stripe spatially; since the incident light has the characteristic of modulated light, the incident light may follow
  • the modulation signal input to the light module 12 exhibits a light and dark change in time (Temporally). Other details regarding structured light and modulated light characteristics are known to those of ordinary skill in the art and will not be described again.
  • the photosensitive module 14 and the calculation module 16 can calculate the first measurement distance D1 by using the characteristics of the structured light and the triangulation method; using the characteristics of the modulated light, and according to the flight time between the incident light and the reflected light (Time of Flight, ToF), calculate the time-of-flight measurement distance D ToF .
  • the calculation module 16 when calculating the first measurement distance D1 by using the characteristics of the structured light and the triangulation method, the calculation module 16 needs to know the parameters ⁇ , ⁇ , b in advance, where ⁇ is the target reflection point OBJ relative to The elevation angle of the light-emitting module 12 and the light-sensing module 14, ⁇ is the azimuth angle of the object reflection point OBJ with respect to the light-emitting module 12 and the light-sensing module 14, and b is between the light-emitting module 12 and the light-sensing module 14. distance.
  • the parameters ⁇ , ⁇ , and b need to be known in advance, and the calculation module 16 has a way to calculate the first measurement distance D1 by using the triangulation method. That is, when the calculation module 16 calculates the first measurement distance D1 using the structured light characteristics and the triangulation method, the parameters ⁇ , ⁇ , b are unknown to the calculation module 16. On the other hand, the calculation module 16 uses the time-of-flight measurement distance D ToF calculated by the flight time to have a time-of-flight error ⁇ ToF , and the time-of-flight error ⁇ ToF is also unknown to the calculation module 16 .
  • the parameters ⁇ , ⁇ , b and the time-of-flight error ⁇ ToF have an uncertainty (Uncertainty) for the calculation module 16, and the first measurement distance D1 and the fly-time measurement distance D ToF cannot be accurately Represents the image depth information of the optical ranging device 10 with respect to the object reflection point OBJ.
  • the calculation module corrects the parameters ⁇ , ⁇ , b in the case where the distance between the optical distance measuring device and the object reflection point is known. In other words, the user needs to place the object reflection point. In the case of a known distance from the optical distance measuring device, the calculation module corrects the parameters ⁇ , ⁇ , b, and the prior art brings operational inconvenience.
  • the present invention utilizes the mutual measurement triangulation method and the time-of-flight distance measurement method, specifically, The present invention utilizes the time-of-flight measurement distance D ToF to correct the parameters ⁇ , ⁇ , b required by the calculation module 16 for calculating the first measurement distance D1 by using the triangulation method, and correcting by using the first measurement distance D1.
  • the present invention utilizes the time-of-flight measurement distance D ToF to correct the parameters ⁇ , ⁇ , b required by the calculation module 16 for calculating the first measurement distance D1 by using the triangulation method, and correcting by using the first measurement distance D1.
  • FIG. 2 is a schematic diagram of a process 20 according to an embodiment of the present invention.
  • the process 20 can be compiled into program code and stored in a storage unit, and the process 20 can be executed by the calculation module 16. As shown in FIG. 2, the process 20 includes the following steps:
  • Step 202 Determine an expression corresponding to the first measurement distance D1( ⁇ , ⁇ , b) of the parameters ⁇ , ⁇ , b according to the parameters ⁇ , ⁇ , b.
  • Step 204 Calculate a time-of-flight measurement distance D ToF corresponding to the flight time according to a flight time between the incident light and the reflected light.
  • Step 208 Calculate an optimal value of the parameters ⁇ , ⁇ , b and an optimal value of the flight time error ⁇ ToF according to the objective function r( ⁇ , ⁇ , b, ⁇ ToF ).
  • Step 210 Calculate image depth information of the optical ranging device 10 with respect to the object reflection point OBJ according to the optimal values of the flying time measurement distance D ToF , the parameters ⁇ , ⁇ , b, and the flying time error ⁇ ToF .
  • the structured photonic module of the calculation module 16 determines an expression corresponding to the first measurement distance D1( ⁇ , ⁇ , b) of the parameters ⁇ , ⁇ , b according to the parameters ⁇ , ⁇ , b.
  • the calculation module 16 may first obtain the image coordinate (x 0 , y 0 ) of the object reflection point OBJ in the image, and obtain the object according to the image coordinates (x 0 , y 0 ) and the parameters ⁇ , ⁇ , b.
  • the coordinates (X 0 , Y 0 , Z 0 ) of the reflection point OBJ with respect to the photosensitive module 14 and the outward distance of the object reflection point OBJ with respect to the light-emitting module 12 are determined according to the coordinates (X 0 , Y 0 , Z 0 ).
  • the expression and the expression of the return distance of the object reflection point OBJ with respect to the photosensitive module 14, the expression of the first measurement distance D1 ( ⁇ , ⁇ , b) is the sum of the forward distance and the return distance.
  • the calculation module 16 can determine the coordinates (X 0 , Y 0 , Z 0 ) of the object reflection point OBJ relative to the photosensitive module 14 according to the image coordinates (x 0 , y 0 ) and the parameters ⁇ , ⁇ , b. 4, and according to the coordinates (X 0 , Y 0 , Z 0 ) determined by the formula 4, determine the travel distance is And determine the return distance is Accordingly, the calculation module 16 can determine that the first measurement distance D1 ( ⁇ , ⁇ , b) is
  • FIG. 3 is a schematic diagram of three-dimensional space coordinates of the object reflection point OBJ, the light-emitting module 12, and the photosensitive module 14.
  • the coordinate points O, P, and P 0 respectively represent the coordinates of the photosensitive module 14, the object reflection point OBJ, and the light-emitting module 12 in three-dimensional space, and it is assumed that the photosensitive module 14 is located at the coordinate origin O (ie, the photosensitive module 14/coordinate point).
  • the coordinates of O are (0, 0, 0)), the coordinates of the object reflection point OBJ/coordinate point P are (X 0 , Y 0 , Z 0 ), and the coordinates of the light-emitting module 12 / coordinate point P 0 are (0, - b, 0).
  • the focal length of the known lens is f
  • the modulation photon module of the calculation module 16 in step 204 calculates the technical details of the time-of-flight measurement distance D ToF corresponding to the flight time based on the flight time between the incident light and the reflected light, which is known to those of ordinary skill in the art. Therefore, it will not be repeated here.
  • the optimal calculation sub-module of the calculation module 16 formulates the objective function r( ⁇ , ⁇ , b, ⁇ ToF ) as
  • the optimal calculation sub-module of the calculation module 16 calculates the optimal values of the parameters ⁇ , ⁇ , b and the optimal value of the flight time error ⁇ ToF according to the objective function r( ⁇ , ⁇ , b, ⁇ ToF ).
  • the calculation module 16 may utilize a Recursive/Iterative algorithm to find the solution of Equation 6.
  • the optimal calculation sub-module of the calculation module 16 can use the Gauss-Newton algorithm, the Gradient-Related algorithm, the Golden Search algorithm, etc. to obtain the solution of Equation 6.
  • the best parameters ⁇ , ⁇ , b and the time-of-flight error ⁇ ToF are obtained .
  • the Gauss Newton algorithm, the gradient correlation algorithm, and the gold search algorithm are known to those skilled in the art, and thus will not be described herein.
  • Step 400 Start.
  • Step 402 Obtain parameters ⁇ n , ⁇ n , b n and time-of-flight error ⁇ ToF,n .
  • Step 404 Calculate the objective function r( ⁇ n , ⁇ n , b n , ⁇ ToF, n ) according to the parameters ⁇ n , ⁇ n , b n and the time-of-flight error ⁇ ToF,n .
  • Step 406 Calculate the parameters ⁇ n+1 , ⁇ n+1 , b n+1 and the time-of-flight error ⁇ ToF,n+1 .
  • Step 408 Determine whether convergence is achieved? If yes, go to step 412; if no, go to step 410.
  • Step 412 End.
  • the obtaining sub-module of the computing module 16 can be based on the parameters corresponding to the optimal parameters ⁇ , ⁇ , b. Or D ToF + ⁇ ToF corresponding to the optimal time-of-flight error ⁇ ToF , the image depth information of the optical distance measuring device 10 with respect to the object reflection point OBJ is obtained.
  • the calculation module 16 formulates the objective function r( ⁇ , ⁇ , b, ⁇ ToF ) in step 206, and finds in step 208 that the objective function r( ⁇ , ⁇ , b, ⁇ ToF ) reaches the minimum value.
  • Good parameters ⁇ , ⁇ , b and optimal time-of-flight error ⁇ ToF steps 206, 208 are substantially equivalent to using the measuring distance of the time-of-flight ranging method to correct the parameters ⁇ , ⁇ , b required for triangulation, and The fly-time error ⁇ ToF of the time-of-flight ranging method is corrected by the measurement distance of the triangulation method (the first measurement distance D1).
  • the present invention utilizes steps 206, 208 to achieve the effects of the parameters ⁇ , ⁇ , b required for mutual calibration triangulation and the time-of-flight error ⁇ ToF of the time-of-flight ranging method.
  • the calculation module 16 is based on the values corresponding to the optimal parameters ⁇ , ⁇ , b.
  • the image depth information of the optical ranging device 10 obtained from the D ToF + ⁇ ToF corresponding to the optimal time-of-flight error ⁇ ToF with respect to the object reflection point OBJ can be regarded as the measurement distance of the triangulation method and the time-of-flight distance measurement method.
  • the measurement distance combining/fusion (Fusion) is one, which can simultaneously have the precision of structured light and triangulation, and the advantages of modulated light and fly-time ranging method against background light interference.
  • the present invention utilizes the measuring distance of the time-of-flight ranging method to correct the parameters required for the triangulation method, and uses the measuring distance of the triangulation method to correct the time-of-flight error of the time-of-flight ranging method, which is equivalent to
  • the measurement distance of the triangulation method and the measurement distance of the time-of-flight distance measurement method are combined into one, which can simultaneously have the precision of the structured light and the triangulation method, and the advantages of the modulated light and the flying time ranging method against the background light interference. .

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Optical Radar Systems And Details Thereof (AREA)
  • Measurement Of Optical Distance (AREA)

Abstract

一种光学测距方法,包括根据复数个第一参数,确定第一量测距离的表达式(202);根据飞行时间,计算飞时量测距离(204);根据第一量测距离的表达式与飞时量测距离,计算该复数个第一参数的最优值和对应于飞时量测距离的飞时误差的最优值(208);以及根据飞时量测距离、该复数个第一参数的最优值以及飞时误差的最优值,取得影像深度信息(210);其中,该复数个第一参数包括对应于对象反射点的俯仰角、方位角以及发光模块与感光模块之间的距离。

Description

光学测距方法以及光学测距装置 技术领域
本发明涉及一种光学测距方法以及光学测距装置,尤其涉及一种可相互校正的光学测距方法以及光学测距装置。
背景技术
光学测距装置可利用3D图像传感系统采集其相对于目标物的距离/深度信息,并因此通过3D图像各个像素的间距值或距离值生成三维图像数据,所述3D图像也被称为距离图像或深度图。额外的距离维度可在多种应用中使用,以获取更多有关由相机所捕获的场景中对象的信息,从而解决工业传感器领域中的不同任务。
一般来说,3D图像传感系统透过一发光二极管来发射入射光,并利用像素数组中的复数个像素电路来采集对应于入射光的反射光。现有技术已发展出根据经调变的入射光与反射光之间的飞行时间(Time of Flight,ToF)来量测距离的方法,利用调变光进行飞时测距的优点是抗背景光干扰能力佳,而具有较差的精准度。现有技术已发展出利用结构光以及三角测量法来量测距离,其具有较佳的精准度,但其抗背景光干扰能力较差。除此之外,三角测量法在计算距离时需对某些参数进行校正,而飞时量测距离具有飞时误差,在三角测量法所需的参数以及飞时误差为未知的情况下,造成现有光学测距装置无法精准地提供目标物的距离/深度信息。
因此,现有技术实有改进的必要。
发明内容
因此,本发明的主要目的即在于提供一种结合利用结构光的三角测量法与利用调变光的飞时测距法的光学测距方法以及光学测距装置,其可相互校正所需参数及误差的光学测距方法以及光学测距装置,以改善现有技术的缺点。
为了解决上述技术问题,本发明提供了一种光学测距方法,应用于光学测距装置,所述光学测距装置包括发光模块以及感光模块,其中所述发光模块发射入射光,所述感光模块接受反射自对象反射点的反射光,并产生图像,所述校正方法包括根据复数个第一参数,确定一第一量测距离的表达式;根据所述入射光与所述反射光之间的飞行时间,计算飞时量测距离;根据所述第一量测距离的表达式与所述飞时量测距离,计算复数个第一参数的最优值和对应于所述飞时量测距离的飞时误差的最优值;以及根据所述飞时量测距离、所述复数个第一参数的最优值以及所述飞时误差的最优值,取得所述光学测距装置相对于所述对象反射点的影像深度信息;其中,所述复数个第一参数包括第一角度、第二角度以及所述发光模块与所述感光模块之间的第一距离;其中,所述第一角度为所述对象反射点相对于所述发光模块及所述感光模块的俯仰角,所述第二角度为所述对象反射点相对于所述发光模块及所述感光模块的方位角。
较佳地,根据复数个第一参数,确定第一量测距离的表达式步骤包括:根据复数个第一参数,确定所述对象反射点相对于所述感光模块的坐标;根据所述坐标,确定所述对象反射点相对于所述感光模块的回程距离的表达式以及所述对象反射点相对于所述发光模块的去程距离的表达式;以及第一量测距离的表达式为所述回程距离的表达式与所述去程距离的表达式的总和。
较佳地,根据所述第一量测距离的表达式与所述飞时量测距离,计算所述复数个第一参数的最优值和对应于所述飞时量测距离的飞时误差的最优值步骤包括根据所述第一量测距离的表达式及所述飞时量测距离,制定目标函数;以 及根据所述目标函数,计算复数个第一参数的最优值以及对应于所述飞时量测距离的飞时误差的最优值。
较佳地,所述目标函数为所述第一量测距离的表达式与所述飞时量测距离及飞时误差相减的绝对值。
较佳地,根据所述目标函数,计算复数个第一参数的最优值以及对应于所述飞时量测距离的飞时误差的最优值步骤包括:利用高斯牛顿算法,根据所述目标函数,计算复数个第一参数的最优值以及对应于所述飞时量测距离的飞时误差的最优值。
较佳地,所述入射光包括结构光,所述根据复数个第一参数,确定第一量测距离的表达式包括根据对应于所述结构光的反射光以及复数个第一参数,确定第一量测距离的表达式。
较佳地,所述入射光包括调变光,所述根据所述入射光与所述反射光之间的飞行时间,计算飞时量测距离包括根据对应于所述调变光的反射光以及飞行时间,计算飞时量测距离。
本发明另提供了一种光学测距装置,包括发光模块,用来发射入射光;感光模块,用来接受反射自对象反射点的反射光,并产生图像;以及计算模块,耦接于所述感光模块,所述计算模块包括:结构光子模块,用于根据复数个第一参数,确定第一量测距离的表达式;调变光子模块,用于根据所述入射光与所述反射光之间的飞行时间,计算飞时量测距离;最优计算子模块,用于根据所述第一量测距离的表达式与所述飞时量测距离,计算复数个第一参数的最优值和对应于所述飞时量测距离的飞时误差的最优值;以及取得子模块,用于根据所述飞时量测距离、所述复数个第一参数的最优值以及所述飞时误差的最优值,取得所述光学测距装置相对于所述对象反射点的影像深度信息;其中,所述复数个第一参数包括第一角度、第二角度以及所述发光模块与所述感光模块 之间的第一距离;其中,所述第一角度为所述对象反射点相对于所述发光模块及所述感光模块的俯仰角,所述第二角度为所述对象反射点相对于所述发光模块及所述感光模块的方位角。
本发明将三角测量法的量测距离及飞时测距法的量测距离融合为一,利用飞时测距法的量测距离来校正三角测量法所需的参数,并用三角测量法的量测距离来校正飞时测距法的飞时误差,以解决现有技术中的缺点。
附图说明
图1为本发明实施例一光学测距装置的示意图。
图2为本发明实施例一流程的示意图。
图3为一三维空间坐标示意图。
图4为本发明实施例一流程的示意图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
请参考图1,图1为本发明实施例一光学测距装置10的示意图。光学测距装置10包括发光模块12、感光模块14以及计算模块16。发光模块12可包含发光二极管(Light Emitting Diode,LED),用来发射入射光,该发光二极管可为红外线发光二极管。感光模块14可为摄像单元,其可包括镜头(Lens)以及图像传感器(Image Sensor),感光模块14用来接受反射自对象反射点OBJ的反射光,并产生图像。计算模块16可包含结构光子模块、调变光子模块、最优计算子模块和取得子模块,于一实施例中,计算模块16可包含处理单元以及存储单元,该处理单元可为应用处理器(Application Process,AP)或数字信号处 理器(Digital Signal Processor,DSP),该存储单元可储存有程序代码,该程序代码用来指示该处理单元执行流程,以计算光学测距装置10相对于对象反射点OBJ的影像深度信息。
更进一步地,发光模块12所发射的入射光为调变结构光(Modulated and Structured Light),即该入射光同时具有结构光(Structured Light)以及调变光(Modulated Light)的特性。换句话说,因该入射光具有结构光的特性,该入射光在空间上(Spatially)可具有如条纹般的亮暗分布;因该入射光具有调变光的特性,该入射光可随着输入至发光模块12的调变信号,在时间上(Temporally)呈现亮暗变化。其他关于结构光以及调变光特性的细节,为本领域具通常知识者所知,于此不再赘述。
在此情形下,感光模块14及计算模块16可利用结构光的特性以及三角测量法,计算第一量测距离D1;利用调变光的特性,并根据入射光与反射光之间的飞行时间(Time of Flight,ToF),计算飞时量测距离DToF。然而,在理想的情况下,计算模块16在利用结构光的特性以及三角测量法计算第一量测距离D1时,需事先得知参数α、ρ、b,其中α为对象反射点OBJ相对于发光模块12及感光模块14的俯仰角(Elevation Angle),ρ为对象反射点OBJ相对于发光模块12及感光模块14的方位角(Azimuth Angle),b为发光模块12与感光模块14之间的距离。换句话说,需事先得知参数α、ρ、b,计算模块16才有办法利用三角测量法计算第一量测距离D1。也就是说,当计算模块16在利用结构光特性以及三角测量法计算第一量测距离D1时,参数α、ρ、b对计算模块16来说是未知数。另一方面,计算模块16利用飞行时间所计算出的飞时量测距离DToF具有飞时误差ΔToF,飞时误差ΔToF对计算模块16也是未知数。简言之,参数α、ρ、b以及飞时误差ΔToF对计算模块16来说具有不确定性 (Uncertainty),而导致第一量测距离D1与飞时量测距离DToF皆无法准确地代表光学测距装置10相对于对象反射点OBJ的影像深度信息。
现有技术中,计算模块是在已知光学测距装置与对象反射点之间的距离的情况下,针对参数α、ρ、b进行校正,换句话说,使用者需将对象反射点摆放于距离光学测距装置一已知距离的情况下,计算模块再对参数α、ρ、b进行校正,而现有技术带来操作上的不便。
为了解决参数α、ρ、b以及飞时误差ΔToF的不确定性导致影像深度信息不准确的问题,本发明利用相互校正三角测量法与飞时测距法的量测距离,具体来说,本发明利用飞时量测距离DToF来校正(Calibrate)计算模块16利用三角测量法计算第一量测距离D1时所需的参数α、ρ、b,并利用第一量测距离D1来校正对应于飞时量测距离DToF的飞时误差ΔToF
请参考图2,图2为本发明实施例一流程20之示意图。流程20可编译成程序代码而储存于存储单元中,流程20可由计算模块16来执行。如图2所示,流程20包含以下步骤:
步骤202:根据参数α、ρ、b,确定对应于参数α、ρ、b的第一量测距离D1(α,ρ,b)的表达式。
步骤204:根据入射光与反射光之间的飞行时间,计算对应于该飞行时间的飞时量测距离DToF
步骤206:制定目标函数,r(α,ρ,b,ΔToF)为r(α,ρ,b,ΔToF)=D1(α,ρ,b)-DToF-ΔToF
步骤208:根据目标函数r(α,ρ,b,ΔToF),计算参数α、ρ、b的最优值以及飞时误差ΔToF的最优值。
步骤210:根据飞时量测距离DToF、参数α、ρ、b的最优值以及飞时误差ΔToF的最优值,计算光学测距装置10相对于对象反射点OBJ的影像深度信息。
于步骤202中,计算模块16的结构光子模块根据参数α、ρ、b,确定对应于参数α、ρ、b的第一量测距离D1(α,ρ,b)的表达式。于一实施例中,计算模块16可先取得对象反射点OBJ于图像的图像坐标(x0,y0),并根据图像坐标(x0,y0)以及参数α、ρ、b,取得对象反射点OBJ相对于感光模块14的坐标(X0,Y0,Z0),并根据坐标(X0,Y0,Z0),确定对象反射点OBJ相对于发光模块12的去程距离的表达式以及对象反射点OBJ相对于感光模块14的回程距离的表达式,第一量测距离D1(α,ρ,b)的表达式为去程距离与回程距离的总和。
具体来说,计算模块16可根据图像坐标(x0,y0)以及参数α、ρ、b,确定对象反射点OBJ相对于感光模块14的坐标(X0,Y0,Z0)如公式4,并根据由公式4所确定出来的坐标(X0,Y0,Z0),确定去程距离为
Figure PCTCN2017099408-appb-000001
并确定回程距离为
Figure PCTCN2017099408-appb-000002
据此,计算模块16可确定第一量测距离D1(α,ρ,b)为
Figure PCTCN2017099408-appb-000003
Figure PCTCN2017099408-appb-000004
关于公式4的原理,请参考图3,图3为对象反射点OBJ、发光模块12及感光模块14的三维空间坐标示意图。于图3中,坐标点O、P、P0分别代表感光模块14、对象反射点OBJ、发光模块12于三维空间中的坐标,假设感光模块14位于坐标原点O(即感光模块14/坐标点O的坐标为(0,0,0)),对象反射 点OBJ/坐标点P的坐标为(X0,Y0,Z0),发光模块12/坐标点P0的坐标为(0,-b,0)。在已知镜头的焦距为f的情况下,根据图像坐标(x0,y0),可得到坐标点O与坐标点P之间形成的直线OP,其中直线OP上的每一点X=(X,Y,Z)可表示为公式1。另外,于图3中,入射光形成一光平面П,光平面П的法向量n可表示为公式2,其相关于参数α、ρ。因光平面П通过坐标点P0且其法向量为n,因此光平面П上的每一点X=(X,Y,Z)皆满足公式3(或光平面П的方程式可表示为公式3。由于坐标点P(X0,Y0,Z0)同时位于直线OP以及光平面П上,因此(X0,Y0,Z0)需同时满足公式1以及公式3,而可解得k如公式5。将公式5中的k值带入公式1,即可得到公式4。
Figure PCTCN2017099408-appb-000005
Figure PCTCN2017099408-appb-000006
n(X-P0)=0(公式3)
Figure PCTCN2017099408-appb-000007
另外,步骤204中计算模块16的调变光子模块根据入射光与反射光之间的飞行时间计算对应于该飞行时间的飞时量测距离DToF的技术细节为本领域具通常知识者所知,故于此不再赘述。
于步骤206中,计算模块16的最优计算子模块制定(Formulate)目标函数r(α,ρ,b,ΔToF)为
Figure PCTCN2017099408-appb-000008
于步骤208中,计算模块16的最优计算子模块根据目标函数r(α,ρ,b,ΔToF),计算参数α、ρ、b的最优值以及飞时误差ΔToF的最优值。详细来说,计算模块16可利用递归式(Recursive)/迭代式(Iterative)算法来求得公式6的解。举例来说,计算模块16的最优计算子模块可利用高斯牛顿(Gauss-Newton)算法、 梯度相关(Gradient-Related)算法、黄金寻找(Golden Search)算法等来求得公式6的解,以得到最佳的参数α、ρ、b以及飞时误差ΔToF。其中,高斯牛顿算法、梯度相关算法、黄金寻找算法为本领域具通常知识者所知,故于此不再赘述。
Figure PCTCN2017099408-appb-000009
递归式/迭代式算法来求解的步骤为本领域具通常知识者所知,如图4所示,其包括以下步骤:
步骤400:开始。
步骤402:取得参数αn、ρn、bn以及飞时误差ΔToF,n
步骤404:根据参数αn、ρn、bn以及飞时误差ΔToF,n,计算目标函数r(αnn,bnToF,n)。
步骤406:计算参数αn+1、ρn+1、bn+1以及飞时误差ΔToF,n+1
步骤408:判断是否收敛?若是,执行步骤412;若否,执行步骤410。
步骤410:令n=n+1。
步骤412:结束。
在理想的情况下,将最佳参数α、ρ、b以及最佳飞时误差ΔToF代入r(α,ρ,b,ΔToF),应会得到r(α,ρ,b,ΔToF)=0,代表利用结构光特性及三角测量法并经过校正后的量测结果(即对应于最佳参数α、ρ、b的
Figure PCTCN2017099408-appb-000010
Figure PCTCN2017099408-appb-000011
与利用调变光特性根据飞行时间所计算出校正后的飞时量测距离(即对应于最佳飞时误差ΔToF的DToFToF)相等。
如此一来,于步骤210中,计算模块16的取得子模块即可根据对应于最佳参数α、ρ、b的
Figure PCTCN2017099408-appb-000012
或对应于最佳飞时误差ΔToF的DToFToF,取得光学测距装置10相对于对象反射点OBJ的影像深度信息。
由上述可知,计算模块16于步骤206制定目标函数r(α,ρ,b,ΔToF),并于步骤208求得使目标函数r(α,ρ,b,ΔToF)达到最小值的最佳参数α、ρ、b以及最佳飞时误差ΔToF,步骤206、208实质上等同于利用飞时测距法的量测距离来校正三角测量法所需的参数α、ρ、b,并利用三角测量法的量测距离(第一量测距离D1)来校正飞时测距法的飞时误差ΔToF。换句话说,本发明利用步骤206、208可达到相互校正三角测量法所需的参数α、ρ、b与飞时测距法的飞时误差ΔToF的效果。更进一步地,计算模块16根据对应于最佳参数α、ρ、b的
Figure PCTCN2017099408-appb-000013
及对应于最佳飞时误差ΔToF的DToFToF所取得光学测距装置10相对于对象反射点OBJ的影像深度信息可视为将三角测量法的量测距离及飞时测距法的量测距离结合/融合(Fusion)为一,其可同时具有结构光及三角测量法的精准度以及调变光及飞时测距法抗背景光干扰的优点。
综上所述,本发明利用飞时测距法的量测距离来校正三角测量法所需的参数,并用三角测量法的量测距离来校正飞时测距法的飞时误差,等同于将三角测量法的量测距离及飞时测距法的量测距离融合为一,其可同时具有结构光及三角测量法的精准度以及调变光及飞时测距法抗背景光干扰的优点。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包括在本发明的保护范围之内。

Claims (14)

  1. 一种光学测距方法,应用于光学测距装置,所述光学测距装置包括发光模块以及感光模块,其中所述发光模块发射入射光,所述感光模块接受反射自对象反射点的反射光,并产生图像,其特征在于,所述方法包括:
    根据复数个第一参数,确定第一量测距离的表达式;
    根据所述入射光与所述反射光之间的飞行时间,计算飞时量测距离;
    根据所述第一量测距离的表达式与所述飞时量测距离,计算复数个第一参数的最优值和对应于所述飞时量测距离的飞时误差的最优值;以及
    根据所述飞时量测距离、所述复数个第一参数的最优值以及所述飞时误差的最优值,取得所述光学测距装置相对于所述对象反射点的影像深度信息;
    其中,所述复数个第一参数包括第一角度、第二角度以及所述发光模块与所述感光模块之间的第一距离;
    其中,所述第一角度为所述对象反射点相对于所述发光模块及所述感光模块的俯仰角,所述第二角度为所述对象反射点相对于所述发光模块及所述感光模块的方位角。
  2. 如权利要求1所述的光学测距方法,其特征在于,根据复数个第一参数,确定第一量测距离的表达式步骤包括:
    根据复数个第一参数,确定所述对象反射点相对于所述感光模块的坐标;
    根据所述坐标,确定所述对象反射点相对于所述感光模块的回程距离的表达式以及所述对象反射点相对于所述发光模块的去程距离的表达式;以及
    第一量测距离的表达式为所述回程距离的表达式与所述去程距离的表达式的总和。
  3. 如权利要求1所述的光学测距方法,其特征在于,根据所述第一量测距离的表达式与所述飞时量测距离,计算所述复数个第一参数的最优值和对应于所述飞时量测距离的飞时误差的最优值步骤包括:
    根据所述第一量测距离的表达式及所述飞时量测距离,制定目标函数;以及
    根据所述目标函数,计算复数个第一参数的最优值以及对应于所述飞时量测距离的飞时误差的最优值。
  4. 如权利要求3所述的光学测距方法,其特征在于,所述目标函数为所述第一量测距离的表达式与所述飞时量测距离及飞时误差相减的绝对值。
  5. 如权利要求3所述的光学测距方法,其特征在于,根据所述目标函数,计算复数个第一参数的最优值以及对应于所述飞时量测距离的飞时误差的最优值步骤包括:
    利用高斯牛顿算法,根据所述目标函数,计算复数个第一参数的最优值以及对应于所述飞时量测距离的飞时误差的最优值。
  6. 如权利要求1所述的光学测距方法,其特征在于,所述入射光包括结构光,所述根据复数个第一参数,确定第一量测距离的表达式包括:
    根据对应于所述结构光的反射光以及复数个第一参数,确定第一量测距离的表达式。
  7. 如权利要求1所述的光学测距方法,其特征在于,所述入射光包括调变光,所述根据所述入射光与所述反射光之间的飞行时间,计算飞时量测距离包括:
    根据对应于所述调变光的反射光以及飞行时间,计算飞时量测距离。
  8. 一种光学测距装置,其特征在于,包括:
    发光模块,用来发射入射光;
    感光模块,用来接受反射自对象反射点的反射光,并产生图像;以及
    计算模块,耦接于所述感光模块,所述计算模块包括:
    结构光子模块,用于根据复数个第一参数,确定第一量测距离的表达式;
    调变光子模块,用于根据所述入射光与所述反射光之间的飞行时间,计算飞时量测距离;
    最优计算子模块,用于根据所述第一量测距离的表达式与所述飞时量测距离,计算复数个第一参数的最优值和对应于所述飞时量测距离的飞时误差的最优值;以及
    取得子模块,用于根据所述飞时量测距离、所述复数个第一参数的最优值以及所述飞时误差的最优值,取得所述光学测距装置相对于所述对象反射点的影像深度信息;
    其中,所述复数个第一参数包括第一角度、第二角度以及所述发光模块与所述感光模块之间的第一距离;
    其中,所述第一角度为所述对象反射点相对于所述发光模块及所述感光模块的俯仰角,所述第二角度为所述对象反射点相对于所述发光模块及所述感光模块的方位角。
  9. 如权利要求8所述的光学测距装置,其特征在于,所述结构光子模块具体用来执行以下步骤:
    根据复数个第一参数,确定所述对象反射点相对于所述感光模块的坐标;
    根据所述坐标,确定所述对象反射点相对于所述感光模块的回程距离的表达式以及所述对象反射点相对于所述发光模块的去程距离的表达式;以及
    第一量测距离的表达式为所述回程距离的表达式与所述去程距离的的表达式的总和。
  10. 如权利要求8所述的光学测距装置,其特征在于,所述最优计算子模块用来执行以下步骤:
    根据所述第一量测距离的表达式、所述飞时量测距离,制定目标函数;以及
    根据所述目标函数,计算复数个第一参数的最优值以及对应于所述飞时量测距离的飞时误差的最优值。
  11. 如权利要求10所述的光学测距装置,其特征在于,所述目标函数为所述第一量测距离的表达式与所述飞时量测距离及飞时误差相减的绝对值。
  12. 如权利要求10所述的光学测距装置,其特征在于,所述最优计算子模块用来执行以下步骤:
    利用高斯牛顿算法,根据所述目标函数,计算复数个第一参数的最优值以及对应于所述飞时量测距离的飞时误差的最优值。
  13. 如权利要求8所述的光学测距装置,其特征在于,所述入射光包括结构光,所述结构光子模块用来执行以下步骤:
    根据对应于所述结构光的反射光以及复数个第一参数,确定第一量测距离的表达式;
  14. 如权利要求8所述的光学测距装置,其特征在于,所述入射光包括调变光,所述调变光子模块用来执行以下步骤:
    根据对应于所述调变光的反射光以及飞行时间,计算飞时量测距离。
PCT/CN2017/099408 2017-08-29 2017-08-29 光学测距方法以及光学测距装置 WO2019041116A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP17872880.4A EP3477251B1 (en) 2017-08-29 2017-08-29 Optical ranging method and optical ranging apparatus
CN201780001028.9A CN109729721B (zh) 2017-08-29 2017-08-29 光学测距方法以及光学测距装置
KR1020187016159A KR102134688B1 (ko) 2017-08-29 2017-08-29 광학 거리 측정 방법 및 광학 거리 측정 장치
PCT/CN2017/099408 WO2019041116A1 (zh) 2017-08-29 2017-08-29 光学测距方法以及光学测距装置
US15/974,705 US10908290B2 (en) 2017-08-29 2018-05-09 Optical distance measuring method and optical distance measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/099408 WO2019041116A1 (zh) 2017-08-29 2017-08-29 光学测距方法以及光学测距装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/974,705 Continuation US10908290B2 (en) 2017-08-29 2018-05-09 Optical distance measuring method and optical distance measuring device

Publications (1)

Publication Number Publication Date
WO2019041116A1 true WO2019041116A1 (zh) 2019-03-07

Family

ID=65437315

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/099408 WO2019041116A1 (zh) 2017-08-29 2017-08-29 光学测距方法以及光学测距装置

Country Status (5)

Country Link
US (1) US10908290B2 (zh)
EP (1) EP3477251B1 (zh)
KR (1) KR102134688B1 (zh)
CN (1) CN109729721B (zh)
WO (1) WO2019041116A1 (zh)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019070867A2 (en) 2017-10-08 2019-04-11 Magik Eye Inc. DISTANCE MEASUREMENT USING A LONGITUDINAL GRID PATTERN
WO2019182871A1 (en) 2018-03-20 2019-09-26 Magik Eye Inc. Adjusting camera exposure for three-dimensional depth sensing and two-dimensional imaging
US11474245B2 (en) 2018-06-06 2022-10-18 Magik Eye Inc. Distance measurement using high density projection patterns
WO2020033169A1 (en) 2018-08-07 2020-02-13 Magik Eye Inc. Baffles for three-dimensional sensors having spherical fields of view
CN109470166B (zh) * 2018-11-09 2020-12-08 业成科技(成都)有限公司 结构光深度感测器及感测方法
US11483503B2 (en) 2019-01-20 2022-10-25 Magik Eye Inc. Three-dimensional sensor including bandpass filter having multiple passbands
WO2020197813A1 (en) 2019-03-25 2020-10-01 Magik Eye Inc. Distance measurement using high density projection patterns
CN110986816B (zh) * 2019-10-20 2022-02-11 奥比中光科技集团股份有限公司 一种深度测量系统及其测量方法
CN110764102B (zh) * 2019-11-07 2023-05-05 浙江缔科新技术发展有限公司 一种具备测距功能的光量子激光瞄镜
US11320537B2 (en) 2019-12-01 2022-05-03 Magik Eye Inc. Enhancing triangulation-based three-dimensional distance measurements with time of flight information
JP2023508501A (ja) 2019-12-29 2023-03-02 マジック アイ インコーポレイテッド 3次元座標と2次元特徴点との関連付け
US11688088B2 (en) 2020-01-05 2023-06-27 Magik Eye Inc. Transferring the coordinate system of a three-dimensional camera to the incident point of a two-dimensional camera
CN111443361B (zh) * 2020-06-18 2022-03-29 深圳市汇顶科技股份有限公司 飞时测距方法与相关系统
TWI773133B (zh) * 2020-07-10 2022-08-01 大陸商廣州印芯半導體技術有限公司 測距裝置以及測距方法
CN113687387B (zh) * 2021-09-07 2024-03-01 广州大学 一种激光雷达扫描装置以及激光雷达扫描方法
CN117190911A (zh) * 2023-09-06 2023-12-08 中国铁建大桥工程局集团有限公司 一种基于三维激光扫描的钢桁架拱桥施工线形监测方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013104784A (ja) * 2011-11-14 2013-05-30 Mitsubishi Electric Corp 光3次元カメラ
CN104903677A (zh) * 2012-12-17 2015-09-09 Lsi公司 用于将使用不同深度成像技术生成的深度图像合并的方法和装置
CN105572684A (zh) * 2014-11-05 2016-05-11 日立-Lg数据存储韩国公司 距离测量设备
TW201632912A (zh) * 2014-12-02 2016-09-16 新加坡恒立私人有限公司 深度感測模組及深度感測方法
US20170068319A1 (en) * 2015-09-08 2017-03-09 Microvision, Inc. Mixed-Mode Depth Detection
CN106780618A (zh) * 2016-11-24 2017-05-31 周超艳 基于异构深度摄像机的三维信息获取方法及其装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6570646B2 (en) 2001-03-06 2003-05-27 The Regents Of The University Of California Optical distance measurement device and method thereof
CN1632463A (zh) * 2004-12-28 2005-06-29 天津大学 基于角度测量的三角法测距误差补偿装置
ES2307467T1 (es) * 2005-10-06 2008-12-01 Gutehoffnungshutte Radsatz Gmbh Proceso para el registro dinamico sin contacto del perfil de un cuerpo solido.
EP1882959A1 (de) * 2006-07-17 2008-01-30 Leica Geosystems AG Optisches Distanzmessverfahren und entsprechender optischer Distanzmesser
JP5338228B2 (ja) * 2008-09-29 2013-11-13 カシオ計算機株式会社 画像生成装置、及びプログラム
DE102009046124A1 (de) * 2009-10-28 2011-05-05 Ifm Electronic Gmbh Verfahren und Vorrichtung zur Kalibrierung eines 3D-TOF-Kamerasystems
US8970827B2 (en) * 2012-09-24 2015-03-03 Alces Technology, Inc. Structured light and time of flight depth capture with a MEMS ribbon linear array spatial light modulator
EP2728306A1 (en) * 2012-11-05 2014-05-07 Hexagon Technology Center GmbH Method and device for determining three-dimensional coordinates of an object
CN103090846B (zh) * 2013-01-15 2016-08-10 广州市盛光微电子有限公司 一种测距装置、测距系统及其测距方法
CN104280739A (zh) * 2013-07-10 2015-01-14 富泰华工业(深圳)有限公司 距离测量系统及方法
US10061028B2 (en) * 2013-09-05 2018-08-28 Texas Instruments Incorporated Time-of-flight (TOF) assisted structured light imaging
CN104266605B (zh) * 2014-06-27 2017-01-11 西北工业大学 一种三维激光扫描成像仪的成像方法
US9377533B2 (en) * 2014-08-11 2016-06-28 Gerard Dirk Smits Three-dimensional triangulation and time-of-flight based tracking systems and methods
JP7215996B2 (ja) * 2016-11-17 2023-01-31 トリナミクス ゲゼルシャフト ミット ベシュレンクテル ハフツング 少なくとも1つの物体を光学的に検出するための検出器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013104784A (ja) * 2011-11-14 2013-05-30 Mitsubishi Electric Corp 光3次元カメラ
CN104903677A (zh) * 2012-12-17 2015-09-09 Lsi公司 用于将使用不同深度成像技术生成的深度图像合并的方法和装置
CN105572684A (zh) * 2014-11-05 2016-05-11 日立-Lg数据存储韩国公司 距离测量设备
TW201632912A (zh) * 2014-12-02 2016-09-16 新加坡恒立私人有限公司 深度感測模組及深度感測方法
US20170068319A1 (en) * 2015-09-08 2017-03-09 Microvision, Inc. Mixed-Mode Depth Detection
CN106780618A (zh) * 2016-11-24 2017-05-31 周超艳 基于异构深度摄像机的三维信息获取方法及其装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3477251A4 *

Also Published As

Publication number Publication date
EP3477251B1 (en) 2020-05-13
US20190064359A1 (en) 2019-02-28
KR20190034489A (ko) 2019-04-02
CN109729721B (zh) 2021-04-16
CN109729721A (zh) 2019-05-07
EP3477251A1 (en) 2019-05-01
EP3477251A4 (en) 2019-05-01
KR102134688B1 (ko) 2020-07-17
US10908290B2 (en) 2021-02-02

Similar Documents

Publication Publication Date Title
WO2019041116A1 (zh) 光学测距方法以及光学测距装置
US10764487B2 (en) Distance image acquisition apparatus and application thereof
Dorrington et al. Separating true range measurements from multi-path and scattering interference in commercial range cameras
CN106550228B (zh) 获取三维场景的深度图的设备
CN108362266B (zh) 一种基于ekf激光测距辅助单目视觉测量方法和系统
US10430956B2 (en) Time-of-flight (TOF) capturing apparatus and image processing method of reducing distortion of depth caused by multiple reflection
WO2020101576A1 (en) Depth sensing using optical time-of-flight techniques through a transmissive cover
CN109373897B (zh) 一种基于激光虚拟标尺的测量方法
JP2011027623A (ja) 位置姿勢計測方法及び装置
CN106959075B (zh) 利用深度相机进行精确测量的方法和系统
US10295657B2 (en) Time of flight-based systems operable for ambient light and distance or proximity measurements
TWI725522B (zh) 具有校正功能的影像擷取系統
CN111095914B (zh) 三维图像传感系统以及相关电子装置以及飞时测距方法
TWI741291B (zh) 飛行時間相機模組的驗證方法及其驗證系統
WO2022183658A1 (zh) 光斑位置自适应搜索方法、时间飞行测距系统及测距方法
JP2019078682A (ja) レーザ測距装置、レーザ測距方法および位置調整プログラム
CN108594255A (zh) 一种激光测距辅助光学影像联合平差方法及系统
CN109470201B (zh) 用于运行手持式激光测距仪的方法和手持式激光测距仪
CN112230244B (zh) 一种融合的深度测量方法及测量装置
WO2021184155A1 (zh) 三维图像传感系统以及相关电子装置以及飞时测距方法
US20220364849A1 (en) Multi-sensor depth mapping
CN115311372B (zh) 一种相机误差校正方法及相关装置
RU2468383C1 (ru) Способ определения взаимного положения объектов
JP7275941B2 (ja) 3次元情報取得装置及び3次元情報取得方法
CN116261674A (zh) 用于校准三维扫描仪和优化点云数据的设备和方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20187016159

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017872880

Country of ref document: EP

Effective date: 20180529

ENP Entry into the national phase

Ref document number: 2017872880

Country of ref document: EP

Effective date: 20180529

ENP Entry into the national phase

Ref document number: 2017872880

Country of ref document: EP

Effective date: 20180529

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17872880

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE