WO2019039875A2 - Culture vessel for three-dimensional cell cultivation and three-dimensional cell co-cultivation method using same - Google Patents

Culture vessel for three-dimensional cell cultivation and three-dimensional cell co-cultivation method using same Download PDF

Info

Publication number
WO2019039875A2
WO2019039875A2 PCT/KR2018/009688 KR2018009688W WO2019039875A2 WO 2019039875 A2 WO2019039875 A2 WO 2019039875A2 KR 2018009688 W KR2018009688 W KR 2018009688W WO 2019039875 A2 WO2019039875 A2 WO 2019039875A2
Authority
WO
WIPO (PCT)
Prior art keywords
culture
support
column
culture container
dimensional cell
Prior art date
Application number
PCT/KR2018/009688
Other languages
French (fr)
Korean (ko)
Other versions
WO2019039875A3 (en
Inventor
이동목
이우종
김우진
박현숙
이순례
김기영
박성범
김광록
고범석
최경진
남혜진
강덕진
Original Assignee
한국생산기술연구원
(주)세포바이오
한국화학연구원
한국표준과학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020180097285A external-priority patent/KR102115878B1/en
Application filed by 한국생산기술연구원, (주)세포바이오, 한국화학연구원, 한국표준과학연구원 filed Critical 한국생산기술연구원
Priority to US16/640,849 priority Critical patent/US11802263B2/en
Priority to JP2020511163A priority patent/JP7046160B2/en
Publication of WO2019039875A2 publication Critical patent/WO2019039875A2/en
Publication of WO2019039875A3 publication Critical patent/WO2019039875A3/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • C12M1/26Inoculator or sampler
    • C12M1/32Inoculator or sampler multiple field or continuous type
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor

Definitions

  • the present invention relates to a culture container for three-dimensional cell culture and a three-dimensional cell culture method using the same, and more particularly, to a method for culturing a three-dimensional cell
  • the present invention relates to a culture container for three-dimensional cell culturing in which air supply necessary for a culture structure is smooth and a three-dimensional cell co-culture method using the same.
  • Cell culture is one of the most fundamental research methods in the field of biotechnology, and is widely used not only for the study of living organisms but also for the study of human diseases. Although more than 40 years have passed since the development and establishment of cell culture methods for eukaryotic cells, the most commonly used methods to date for adherent cell growth are polystyrene, poly Dimensional surface consisting of a substrate made of a synthetic polymer resin such as polypropylene, polyethylene, polycarbonate (PC) or glass.
  • a synthetic polymer resin such as polypropylene, polyethylene, polycarbonate (PC) or glass.
  • the two-dimensional cell culture method which is a method of culturing a single cell
  • the two-dimensional and three-dimensional cell cultures show general morphological differences, and the expression of the receptor, gene transcription, cell migration and apoptosis, which occur through conventional two-dimensional cell culture, Since the complex life phenomenon differs greatly from the phenomenon occurring in the actual tissue environment, the two-dimensional cell culture method has a problem that it can not accurately reflect the physiological environment of the living body in which the cells grow on the three-dimensional plane.
  • the present invention has been made to solve the above problems, and it is an object of the present invention to provide a method for culturing cells in a three-dimensional cell culture And to provide a three-dimensional cell co-culture method using the same.
  • Dimensional structure by separately forming a supporting structure for supporting the three-dimensional structure on the culture container, thereby facilitating insertion, acquisition, and removal of the three-dimensional structure.
  • the three-dimensional cell culture method according to the present invention can rapidly and variously regulate the growth of cells, and the three-dimensional culture differentiated cells can be effectively applied to drug screening and toxicity test by applying to an animal replacement test.
  • the present invention also provides a culture container for three-dimensional cell culture with high durability and a three-dimensional cell co-culture method using the same, by preventing the outer contraction phenomenon due to the supporting portion protruding from the column from being prevented by designing the support portion region in an in- .
  • the present invention also aims to provide a three-dimensional cell culture and differentiation or tissue culture container for restoring damaged human tissue function.
  • a culture container for three-dimensional cell culture comprises a well formed by a column located on a bottom surface of the culture container, And at least one support portion.
  • the support may be located at a height of 20 to 60% of the column apart from the bottom surface of the culture vessel.
  • the supporting portion may be in contact with the bottom surface of the culture container, and a supporting portion may be formed along the side surface of the column.
  • the uppermost end of the support portion may be located at a height of 20 to 60% of the column from the culture container.
  • the distance from the column to the end of the support may be 15 to 30% of the diameter of the well, with respect to the cross section of the well.
  • a culture container for three-dimensional cell culture is characterized in that a well is formed by a column located on a bottom surface of the culture container, And at least a part of the upper surface of the support portion may be formed in a concave shape.
  • the upper surface of the support portion is divided into an edge region and a central region, the central region is concave and the edge region is flat or convexly protruding in the protruding direction, and at the upper surface of the support, The area may occupy 10 to 30%, and the central area may occupy 70 to 90% area.
  • the top of the support may be curved and the top of the support may be 20 to 60% of the height of the column.
  • a three-dimensional cell co-culturing method is a three-dimensional cell co-culturing method comprising the steps of: forming a three-dimensional cell co- Preparing a culture container for cell culture; An inoculation step of inoculating the first cell into the well; An exchange step of removing the supernatant and at least partially exchanging the culture medium after the first cell is cultured; And a co-culturing step of co-culturing the three-dimensional structure inoculated with the second cell on the support.
  • the cells are cultured at a position apart from the bottom surface of the culture container, There is a good advantage of supply.
  • the three-dimensional cell culture method according to the present invention is capable of rapid cell growth and various size control, and is more effective for drug screening, drug efficacy and toxicity test by a biomimetic model or an animal replacement test method.
  • the support portion region is designed to be inwardly recessed, it is possible to prevent the outer contraction due to the support portion protruding from the column, thereby providing high durability.
  • FIG. 1 is a perspective view showing a first embodiment of a culture container for three-dimensional cell culture of the present invention
  • FIG. 2 is a plan view showing a first embodiment of a culture container for three-dimensional cell culture of the present invention
  • FIG. 3 is a perspective view showing a second embodiment of a culture container for three-dimensional cell culture of the present invention
  • FIG. 4 is a perspective view showing a 16-well form of a culture container for three-dimensional cell culture of the present invention
  • FIG. 5 is a perspective view showing a third embodiment of the culture container for three-dimensional cell culture of the present invention
  • FIG. 6 is an external view showing a third embodiment of the culture container for three-dimensional cell culture of the present invention
  • FIG. 7 is a perspective view showing a fourth embodiment of the culture container for three-dimensional cell culture of the present invention.
  • FIG. 8 is a plan view showing a fourth embodiment of the culture container for three-dimensional cell culture of the present invention
  • FIG. 9 is a plan view showing a fifth embodiment of the culture container for three-dimensional cell culture of the present invention.
  • FIG. 10 is a plan view showing a sixth embodiment of the culture container for three-dimensional cell culture of the present invention
  • 11 is a graph showing experimental results of three-dimensional cell culture with a culture container for three-dimensional cell culture of the present invention
  • FIG. 12 is an embodiment of a culture container for three-dimensional cell culture according to the present invention, wherein (a) is an image for culturing beads containing cells in the culture container in which the culture is carried out, and (b) Is obtained in a culture vessel.
  • a first embodiment of a culture container 100 for three-dimensional cell culture of the present invention is a cell culture container 100 for culturing three-dimensional cells in a well (not shown) by a column 120 placed on a bottom surface 110 of a culture container and at least one supporting part 130 protruding from the column 120 may be formed in the well 140.
  • a column 120 placed on a bottom surface 110 of a culture container and at least one supporting part 130 protruding from the column 120 may be formed in the well 140.
  • the bottom surface 110 of the culture container is a surface on which a base is formed, and is made of any material applied to cell culture such as polystyrene (PS), polypropylene (PP), polyethylene (PE), polycarbonate It may be configured.
  • PS polystyrene
  • PP polypropylene
  • PE polyethylene
  • PC polycarbonate
  • the column 120 is formed in contact with the bottom surface 110 of the culture container and is preferably made of the same material as the bottom surface 11 and can be integrally injected.
  • the pillars 120 may be located on the bottom surface 110 of one culture container in plural and the wells 140 may be formed for each pillars 120. As shown in Figure 4, it can be configured to have various numbers of wells, such as 16 wells, 96 wells.
  • the cross-sectional shape of the column 120 can be circular or polygonal, and can be preferably elliptical or circular, and most preferably circular.
  • the support portion 130 is located at a height of 20 to 60% of the column 120 away from the bottom surface 110 of the culture container and more preferably 25 To 50%, and most preferably at a height of 30 to 35%. If it is located at a height of less than 20%, it is difficult to smoothly circulate and supply air to the cells in the lower part. If it is located at a height of more than 60%, the three-dimensional cell structure and the well 140) is difficult to co-cultivate with other cells.
  • the distance from the column 120 to the end of the support part 130 is preferably 15 to 30% of the diameter of the well 140 with respect to the cross section of the well 140, , More preferably 20 to 25%, and most preferably 22 to 23%. If it is less than 15%, it is difficult to stably support the three-dimensional cell structure. If it exceeds 30%, the separation effect from the bottom surface 110 of the support part 130 is deteriorated. That is, There is a problem that adversely affects growth.
  • the number of the support portions 130 is preferably 2 to 5, more preferably 3 to 4, and most preferably 3. If less than two, the three-dimensional cell structure is virtually impossible to support. If the number exceeds 5, the open space between the support portion 130 and the bottom surface 110 of the culture container is excessively narrow, There is a problem that efficiency of cell co-culture or the like is significantly lowered.
  • the support part 130 is in contact with the bottom surface 110 of the culture container,
  • the support portion 130 may be formed along the side surface of the support member 120.
  • the supporting part 130 is formed along the side surface of the column 120 from the bottom surface 110 of the culture container, the injection can be easily performed integrally, which simplifies the manufacturing process and increases the economic efficiency.
  • the support portion 130 is formed in a columnar shape along the side surface of the column 120, it has higher stability and durability.
  • the uppermost end of the support part 130 is located at a height of 20 to 60% of the column 120 from the bottom surface 110 of the culture container, more preferably 25 to 50% , And most preferably at a height of 30 to 35%. If the height is less than 20%, it is difficult to smoothly supply oxygen to the cells in the lower part. If the height is more than 60%, the three-dimensional cell structure and the well 140, There is a problem that it is difficult to co-cultivate other cells in the cells.
  • the third embodiment of the culture container 100 for three-dimensional cell culture according to the present invention is characterized in that at least a part of the area of the column 120 in contact with the support part 130, At least a part of the region of the support 130 contacting the region 120 may be removed.
  • Some of the removed regions of the support 130 and the removed portions of the column 120 in contact with the support 130 are the undercut regions 150 shown in Figures 5 and 6 and are formed in the well 140 It is preferable that all the remaining areas except the surface of the support part 130 are removed.
  • the fourth embodiment of the culture container 100 for the three-dimensional cell culture of the present invention is characterized in that the column 120 is placed on the bottom surface 110 of the culture container, And a well 140 may be formed in the well 140.
  • the well 140 may include at least one support 130 protruding from the bottom surface 110 of the culture container. This serves to separate the three-dimensional cell structure from the bottom surface 110 of the culture container by protruding the support portion 130 on the bottom surface 110 of the culture container rather than the column 120.
  • the uppermost portion of the support portion 130 is preferably located at a height of 20 to 60% of the column 120 from the bottom surface 110 of the culture container, more preferably at a height of 25 to 50% , And most preferably at a height of 30 to 35%. If the height is less than 20%, it is difficult to smoothly supply oxygen to the cells in the lower part. If the height is more than 60%, the three-dimensional cell structure and the well 140, There is a problem that it is difficult to co-cultivate other cells in the cells.
  • the diameter of the support 130 is preferably 2 to 10% of the diameter of the well 140, more preferably 4 to 8 times the diameter of the well 140, %, And most preferably 5 to 6%. If it is less than 2%, it is difficult to stably support the three-dimensional cell structure. If it exceeds 10%, the effect of separating the supporting part 130 from the bottom surface 110 of the culture container is deteriorated, There is a problem that the supply of the components is difficult and adversely affects the cell growth.
  • the upper end of the support part 130 may be configured as a curved surface shape 131.
  • FIG. it is possible to prevent the cell damage due to the angled region and also to increase the survival rate because the cell-inoculated three-dimensional structure can be supported more stably.
  • At least a part of the upper surface of the support part 130 may be formed in a concave shape. Since the central portion at the upper end of the support portion 130 is recessed most deeply, cell support is more stable, and the co-culture efficiency and survival rate can be remarkably improved. In addition, the surface where cells contact with the support 130 is minimized, and the concave surface is effective for cell growth since it can maximize the smooth air circulation effect.
  • the upper surface of the support part 130 is divided into an edge area and a center area 132.
  • the center area 132 is concave and the edge area may be flat or convexly protruding in the protruding direction. have.
  • the cell is brought into contact with only the edge region, thereby minimizing the damage, and the survival rate is greatly increased by the smooth air circulation.
  • the edge region may occupy 10 to 30% and the central region may occupy 70 to 90%. More preferably, the edge region may be 15 to 20% Is effective to occupy an area of 80 to 85%. This is an optimized area range through several experiments to maximize cell growth and survival while providing optimal area for stable cell support.
  • the three-dimensional cell culture method of the present invention comprises a preparing step (S10); And a culture step (S11). This is a method for effectively culturing cells using the culture container structure for three-dimensional cell culture of the present invention.
  • the preparation step S10 includes at least one support protruding from the column or at least one support protruding from the bottom surface of the culture container in a well formed by a column located on a bottom surface of the culture container And a culture vessel for three-dimensional cell culture including the culture medium.
  • the uppermost end of the support part may be located at a height of 20 to 60% of the column from the bottom surface of the column or the culture container.
  • the culturing step (S11) is a step of placing the cell-inoculated three-dimensional structure on the supporting part and culturing it. Due to the support structure optimized for the three - dimensional culture, three - dimensional cell culture proceeds efficiently.
  • the three-dimensional cell co-culturing method of the present invention comprises preparing (S20); Inoculation step S21; Exchange step S22; And a co-culture step (S23). This is a method by which the first cell and the second cell can be effectively co-cultured using the culture container structure for the three-dimensional cell culture of the present invention.
  • the preparing step S20 includes at least one support protruding from the column or at least one support protruding from the bottom surface of the culture container in a well formed by a column located on the culture container. And preparing a culture container for the 3D cell culture.
  • the uppermost end of the support part may be located at a height of 20 to 60% of the column from the bottom surface of the column or the culture container.
  • Inoculation step S21 is a step of inoculating the first cells into the wells. That is, the first cells and the culture liquid can be inoculated into the wells.
  • the first cell may be any cell capable of co-culturing with the second cell, but may be an adherent cell, and may be a mesenchymal stem cell, a mesenchymal stem cell, a fat precursor cell, a smooth muscle cell (Smooth Muscle Cell, SMC) Or a macrophage.
  • a mesenchymal stem cell a mesenchymal stem cell
  • a mesenchymal stem cell a fat precursor cell
  • a smooth muscle cell Smooth Muscle Cell, SMC
  • macrophage a macrophage.
  • the exchange step S22 is a step of culturing the first cells, removing the supernatant, and at least partially exchanging the culture liquid.
  • the co-culture efficiency can be increased by removing the supernatant resulting from the first cell culture in the culture medium in the well and replacing part or all of the culture medium.
  • the co-culture step (S23) is a step of co-culturing the three-dimensional structure inoculated with the second cells on the support.
  • the three-dimensional structure is preferably in the form of a bead or a support.
  • the second cell may be a culturable eukaryotic cell, and more particularly, an epithelial cell, a fibroblast, an osteoblast, a cartilage cell, a hepatocyte, a umbilical cord cell, a umbilical cord mesenchymal stem cell (UCMSC ), Adipose-derived mesenchymal stem cells (ADMSC), or bone marrow-derived mesenchymal stem cells (BMMSC).
  • an epithelial cell a fibroblast, an osteoblast, a cartilage cell, a hepatocyte, a umbilical cord cell, a umbilical cord mesenchymal stem cell (UCMSC ), Adipose-derived mesenchymal stem cells (ADMSC), or bone marrow-derived mesenchymal stem cells (BMMSC).
  • the replacing step S24 is a step of replacing the culture solution every 1 to 5 days after the co-cultivation step S23. More preferably, it is effective to replace it every two to three days. This is to supply the necessary nutrients to the cell culture and to remove the cell-viability inhibitor that is generated during the cultivation, so that the cells or tissues are continuously grown.
  • a culture container is manufactured by using a 3D printing technique that forms a layer by stacking one layer by using a solid freeform fabrication (SFF) method using rapid prototyping (RP) equipment, Was performed using an electron beam accelerator.
  • SFF solid freeform fabrication
  • RP rapid prototyping
  • 3T3-L1 lipocal precursor cells (2.45x10 6 cells / 5mL / Tube), adipose-derived mesenchymal stem cells (ADMSC)
  • the frozen first cells were thawed in a constant-temperature water bath at 37 ° C and transferred to a 15 ml tube, followed by addition of a basic medium (DMEM + 1% antibiotics) to 1,500 The supernatant was removed by centrifugation for 5 min at RPM and the supernatant was added again. The above procedure was repeated to completely remove the frozen storage component.
  • the cells were then transferred to a 100 mm culture dish with DMEM + 1% antibiotics + 10%
  • the cells were inoculated and cultured in a 5% carbon dioxide incubator at 37 ° C. After 4 to 5 days, the cells were sufficiently proliferated. Then, 0.05% trypsin-EDTA was added thereto to inoculate cells per well in the culture vessel at a concentration of 1 ⁇ 10 3 .
  • the second cell was adipose-derived mesenchymal stem cell (ADMSC), and the 3-dimensional structure inoculated with the second cell was prepared in bead form.
  • ADMSC adipose-derived mesenchymal stem cell
  • the beads include a melting step in which a culture solution, alginate and gelatin are put into a tube and melted at 65 ⁇ ; The temperature of the tube was lowered to 37 DEG C, the second cell (2.45x10 < 6 > cells / 5mL / Tube) was added to the tube and stirred at 500RPM for 2 minutes; And a manufacturing step of making the mixture in the tube into a bead form and crosslinking it in a calcium chloride solution.
  • the bubbles are removed by centrifugation at 1500 RPM.
  • the concentration of the calcium chloride solution was 5%.
  • the crosslinked beads were washed with phosphate buffered saline (PBS), and cultured in a culture medium containing 10% fetal bovine serum at 37 ° C in a 5% carbon dioxide incubator. As a result, (Fig. 10 (b)).
  • PBS phosphate buffered saline
  • the support was made using polycaprolactone.
  • polycaprolactone was introduced into a tube and a pressure of 650 to 730 kPa was applied at 90 ° C.
  • a three-dimensional support was prepared using the suction function of the air controller, and the sterilization process was performed using electron beam acceleration.
  • Example 5 Three-dimensional cell culture using a support containing a second cell
  • the second cells were inoculated on 4 drop supports on a 4-drop support, cultured for 1 hour, and cultured in 1 ml medium at 37 ° C under 5% A three-dimensional structure of the support type in which the second cells were inoculated was prepared.
  • the three-dimensional cell culture using the culture container according to the present invention showed that the cell number did not decrease but increased as the culture time passed, unlike the two-dimensional cell culture using the general culture container Able to know. That is, it has been confirmed in actual experiments that the three-dimensional cell culture can be more continuously performed with the culture container of the present invention.
  • the present invention relates to a culture container for three-dimensional cell culture and a three-dimensional cell co-culture method using the same, and is industrially applicable.

Abstract

The present invention relates to a culture vessel for three-dimensional cell cultivation and a three-dimensional cell co-cultivation method using the same. The culture vessel comprises a well formed by a column positioned thereon and at least one support protruding from the column within the well. In contrast to conventional techniques, the present invention allows cells to be cultured at a position spaced from a culture vessel, thus enjoying the advantage of smoothly supplying oxygen necessary for three-dimensional cell culture structures.

Description

3차원 세포배양을 위한 배양용기 및 이를 이용한 3차원 세포 공배양 방법 Culture vessel for three-dimensional cell culture and three-dimensional cell culture method using the same
본 발명은 3차원 세포배양을 위한 배양용기 및 이를 이용한 3차원 세포 공배양 방법에 관한 것으로, 더욱 상세하게는 종래와 달리, 배양용기의 바닥면과 이격된 위치에서 세포가 배양됨으로써, 3차원 세포배양 구조물에 필요한 공기의 공급이 원활한 3차원 세포배양을 위한 배양용기 및 이를 이용한 3차원 세포 공배양 방법에 관한 것이다.The present invention relates to a culture container for three-dimensional cell culture and a three-dimensional cell culture method using the same, and more particularly, to a method for culturing a three-dimensional cell The present invention relates to a culture container for three-dimensional cell culturing in which air supply necessary for a culture structure is smooth and a three-dimensional cell co-culture method using the same.
세포의 배양은 바이오 분야 연구에서 가장 기본이 되는 연구 방법으로서 생명체의 기능 연구뿐만 아니라 인체 질환을 연구하는 데에도 매우 광범위하게 이용되고 있다. 일반적인 진핵세포(eukaryotic cell)의 세포배양 방법이 개발 및 확립된지도 40 여년이 경과되었지만, 부착성 세포(adherent cell)의 성장을 지지하기 위해 현재까지 가장 흔히 사용되고 있는 방법은 폴리스티렌(polystyrene), 폴리프로필렌(polypropylene), 폴리에틸렌(polyethylene), 폴리카보네이트(PC)과 같은 합성 폴리머 수지 혹은 유리(glass)로 된 기질로 이루어진 2차원 표면에서 세포를 배양하는 것이다. Cell culture is one of the most fundamental research methods in the field of biotechnology, and is widely used not only for the study of living organisms but also for the study of human diseases. Although more than 40 years have passed since the development and establishment of cell culture methods for eukaryotic cells, the most commonly used methods to date for adherent cell growth are polystyrene, poly Dimensional surface consisting of a substrate made of a synthetic polymer resin such as polypropylene, polyethylene, polycarbonate (PC) or glass.
그러나, 단층 세포배양 방법인 2차원적 세포배양법에 의해 성장하는 세포는 세포가 잘 부착될 수 있도록 처리된 배양용기 표면에 부착되어 자라므로 3차원적 생체조직 환경에서 성장하는 세포와 많은 차이점을 나타낸다. 따라서, 2차원적 및 3차원적 세포배양은 전반적인 형태학적 차이를 나타내며, 또한 통상적인 2차원적 세포배양을 통하여 일어나는 수용체의 발현, 유전자의 전사조절, 세포의 이동 및 세포자멸사(apoptosis) 등 많은 복잡한 생명 현상이 실제 생체 조직환경에서 일어나는 현상과 크게 다르기 때문에, 2차원적 세포배양 방법은 3차원 상에서 세포가 성장하는 생체의 생리적 환경을 정확히 반영할 수 없다는 문제점을 가지고 있다.However, since the cells grown by the two-dimensional cell culture method, which is a method of culturing a single cell, are attached to the surface of the cultured cell so that the cells can be adhered well, they show many differences from the cells growing in a three-dimensional biotissue environment . Therefore, the two-dimensional and three-dimensional cell cultures show general morphological differences, and the expression of the receptor, gene transcription, cell migration and apoptosis, which occur through conventional two-dimensional cell culture, Since the complex life phenomenon differs greatly from the phenomenon occurring in the actual tissue environment, the two-dimensional cell culture method has a problem that it can not accurately reflect the physiological environment of the living body in which the cells grow on the three-dimensional plane.
실제로, 비만, 당뇨, 동맥경화 등과 같은 대사성 질환(metabolic disease)의 치료제 개발 시에, 초기 시험관 내(in vitro) 실험에서는 우수한 약효를 보였던 약물들이 생체 내(in vivo) 동물 실험에서는 약효가 현저히 떨어지는 등 신약 개발에 많은 어려움이 따르고 있다. 이러한 문제를 해결하기 위해서는, 치료제 개발의 초기 단계에서부터 약물의 정확한 효능 및 독성을 예측할 수 있는 생체 내 모델과 유사한 시험관 내 모델이 필요하다.Indeed, in the development of therapeutic agents for metabolic diseases such as obesity, diabetes, and arteriosclerosis, drugs that have shown excellent drug efficacy in the initial in vitro test are significantly less effective in animal experiments in vivo ( in vivo ) And the like. To address this problem, an in vitro model similar to the in vivo model is needed to predict the correct efficacy and toxicity of the drug from the early stages of drug development.
종래의 세포배양 용기는 3차원 세포배양시 공간적 한계로 공기의 공급과 순환이 원활하지 않아 3차원 세포의 성장과 조직형성이 충분히 이루어지기 어려워, 약물 스크리닝이나 독성 시험에 적용하기에 어려움이 있었다. Conventional cell culture vessels are difficult to apply to drug screening and toxicity tests because the supply and circulation of air is not smooth due to the spatial limitation of the three-dimensional cell culture, and the growth and tissue formation of the three-dimensional cells are difficult to be sufficiently performed.
따라서, 이와 같은 문제점을 해결하기 위하여, 3차원 세포의 빠른 성장에 적합하면서도, 2차원과 3차원 공배양도 가능한 세포배양 용기에 대한 기술개발이 요구되고 있다. Therefore, in order to solve such a problem, it is required to develop a technology for a cell culture container which is suitable for rapid growth of three-dimensional cells and capable of two-dimensional and three-dimensional cocurrent transfer.
본 발명은 상기 문제점을 해결하기 위한 것으로서, 종래와 달리, 배양용기의 바닥면과 이격된 위치에서 세포가 배양됨으로써, 3차원 세포배양 구조물에 필요한 공기 순환과 공급이 원활한 3차원 세포배양을 위한 배양용기 및 이를 이용한 3차원 세포 공배양 방법을 제공하는 것으로 목적으로 한다. Disclosure of Invention Technical Problem [8] Accordingly, the present invention has been made to solve the above problems, and it is an object of the present invention to provide a method for culturing cells in a three-dimensional cell culture And to provide a three-dimensional cell co-culture method using the same.
배양용기 상에 3차원 구조체를 별도로 지지하는 지지부 구조를 구현함으로써, 3차원 구조체의 삽입과 획득 및 제거가 용이한 것을 목적으로 한다.Dimensional structure by separately forming a supporting structure for supporting the three-dimensional structure on the culture container, thereby facilitating insertion, acquisition, and removal of the three-dimensional structure.
또한, 3차원 배양에 최적화된 지지부 구조로 인하여, 공기 순환과 배양액 내 영양 성분의 원활한 공급으로 3차원 세포 배양뿐만 아니라 2가지 이상의 세포를 공배양하는 경우 이를 효율적으로 유지할 수 있는 것을 목적으로 한다.In addition, due to the support structure optimized for the three-dimensional culture, it is possible to efficiently maintain the three-dimensional cell culture as well as two or more cells co-cultured by air circulation and smooth supply of nutrients in the culture solution.
본 발명에 따른 3차원 세포 배양방법은 세포의 성장이 빠르고 다양한 크기 조절이 가능하며, 3차원 배양 분화된 세포는 동물대체시험에 적용하여 약물 스크리닝이나 독성 시험 등에 효과적으로 이용할 수 있다.The three-dimensional cell culture method according to the present invention can rapidly and variously regulate the growth of cells, and the three-dimensional culture differentiated cells can be effectively applied to drug screening and toxicity test by applying to an animal replacement test.
또한, 지지부 영역이 안으로 파인 형태로 설계함으로써, 기둥으로 돌출된 지지부로 인한 외관 수축현상을 방지하여 내구성이 높은 3차원 세포배양을 위한 배양용기 및 이를 이용한 3차원 세포 공배양 방법을 제공하는 것으로 목적으로 한다.The present invention also provides a culture container for three-dimensional cell culture with high durability and a three-dimensional cell co-culture method using the same, by preventing the outer contraction phenomenon due to the supporting portion protruding from the column from being prevented by designing the support portion region in an in- .
또한, 손상된 인체조직 기능을 복원하기 위한 3차원 세포배양 및 분화 혹은 조직배양 용기로 활용 가능한 것을 목적으로 한다.The present invention also aims to provide a three-dimensional cell culture and differentiation or tissue culture container for restoring damaged human tissue function.
상기와 같은 목적을 달성하기 위한 본 발명에 따른 3차원 세포배양을 위한 배양용기는, 상기 배양용기의 바닥면 상에 위치한 기둥에 의하여 웰(well)이 형성되며, 상기 웰 내부에는 상기 기둥으로부터 돌출된 적어도 하나의 지지부를 포함할 수 있다. In order to achieve the above object, a culture container for three-dimensional cell culture according to the present invention comprises a well formed by a column located on a bottom surface of the culture container, And at least one support portion.
상기 지지부는 상기 배양용기의 바닥면으로부터 이격되어 상기 기둥의 20 내지 60%의 높이에 위치할 수 있다. The support may be located at a height of 20 to 60% of the column apart from the bottom surface of the culture vessel.
또는 상기 지지부는 상기 배양용기의 바닥면에 접하는 형태로서, 상기 기둥의 측면을 따라 지지부가 형성될 수 있다. 여기서, 상기 지지부의 최상단은 상기 배양용기로부터 상기 기둥의 20 내지 60%의 높이에 위치할 수 있다.Alternatively, the supporting portion may be in contact with the bottom surface of the culture container, and a supporting portion may be formed along the side surface of the column. Here, the uppermost end of the support portion may be located at a height of 20 to 60% of the column from the culture container.
본 발명에 따른 3차원 세포배양을 위한 배양용기에서, 상기 웰의 단면부를 기준으로, 상기 기둥으로부터 상기 지지부 끝단까지의 거리는 상기 웰의 지름 대비 15 내지 30%일 수 있다.In the culture vessel for three-dimensional cell culture according to the present invention, the distance from the column to the end of the support may be 15 to 30% of the diameter of the well, with respect to the cross section of the well.
또한, 상기 지지부와 접하는 상기 기둥 영역 중 적어도 일부와 상기 기둥 영역에 접하는 상기 지지부 영역 중 적어도 일부가 제거될 수 있다. In addition, at least a part of the column area in contact with the support part and the support part area in contact with the column area can be removed.
또한, 본 발명에 따른 3차원 세포배양을 위한 배양용기는, 상기 배양용기의 바닥면 상에 위치한 기둥에 의하여 웰(well)이 형성되며, 상기 웰 내부에는 상기 배양용기의 바닥면으로부터 돌출된 적어도 하나의 지지부를 포함하고, 상기 지지부의 상단 표면 중 적어도 일부가 오목하게 파인 형태로 구성될 수 있다. 상기 지지부의 상단 표면은 가장자리 영역과 중앙부 영역으로 구분되며, 상기 중앙부 영역은 오목하게 파인 형태이고, 상기 가장자리 영역은 플랫하거나 돌출방향으로 볼록하게 돌출된 형태이며, 상기 지지부의 상단 표면에서, 상기 가장자리 영역은 10 내지 30%, 상기 중앙부 영역은 70 내지 90% 면적을 차지할 수 있다. In addition, a culture container for three-dimensional cell culture according to the present invention is characterized in that a well is formed by a column located on a bottom surface of the culture container, And at least a part of the upper surface of the support portion may be formed in a concave shape. Wherein the upper surface of the support portion is divided into an edge region and a central region, the central region is concave and the edge region is flat or convexly protruding in the protruding direction, and at the upper surface of the support, The area may occupy 10 to 30%, and the central area may occupy 70 to 90% area.
상기 지지부의 상단은 곡면 형태로 구성되고, 상기 지지부의 최상단은 상기 기둥의 20 내지 60%의 높이에 위치할 수 있다. The top of the support may be curved and the top of the support may be 20 to 60% of the height of the column.
또한, 본 발명에 따른 3차원 세포 공배양 방법은, 배양용기의 바닥면 상에 위치한 기둥에 의해 형성된 웰(well) 내부에 상기 기둥 또는 상기 바닥면으로부터 돌출된 적어도 하나의 지지부를 포함하는 3차원 세포배양을 위한 배양용기를 준비하는 준비단계; 제 1세포를 상기 웰 내부에 접종하는 접종단계; 상기 제 1세포를 배양한 후 상층액을 제거하고 배양액을 적어도 일부 교환하는 교환단계; 및 제 2세포가 접종된 3차원 구조체를 상기 지지부 상에 위치시켜 공배양하는 공배양단계;를 포함할 수 있다. A three-dimensional cell co-culturing method according to the present invention is a three-dimensional cell co-culturing method comprising the steps of: forming a three-dimensional cell co- Preparing a culture container for cell culture; An inoculation step of inoculating the first cell into the well; An exchange step of removing the supernatant and at least partially exchanging the culture medium after the first cell is cultured; And a co-culturing step of co-culturing the three-dimensional structure inoculated with the second cell on the support.
상기 공배양단계 이후, 1 내지 5일 간격으로 상기 배양액을 교체하는 교체단계;를 더 포함할 수 있다. And a replacement step of replacing the culture medium at intervals of 1 to 5 days after the co-cultivation step.
본 발명의 3차원 세포배양을 위한 배양용기 및 이를 이용한 3차원 세포 공배양 방법에 따르면, 종래와 달리, 배양용기의 바닥면과 이격된 위치에서 세포가 배양됨으로써, 3차원 세포배양 구조물에 필요한 산소 공급이 원활한 장점이 있다. According to the culture container for the three-dimensional cell culture of the present invention and the three-dimensional cell culture method using the same, the cells are cultured at a position apart from the bottom surface of the culture container, There is a good advantage of supply.
배양용기 상에 3차원 구조체를 별도로 지지하는 지지부 구조를 구현함으로써, 3차원 구조체의 삽입과 획득 및 제거가 용이한 장점이 있다. By embodying a support structure for separately supporting a three-dimensional structure on a culture container, it is easy to insert, acquire and remove the three-dimensional structure.
또한, 3차원 배양에 최적화된 지지부 구조로 인하여, 3차원 세포배양뿐만 아니라, 2종류 이상의 세포 공배양을 효율적으로 진행할 수 있는 장점이 있다.In addition, due to the support structure optimized for three-dimensional culture, there is an advantage that two or more types of cell co-culture can be efficiently performed as well as three-dimensional cell culture.
본 발명에 따른 3차원 세포 배양방법은 세포의 성장이 빠르고 다양한 크기 조절이 가능하며, 생체 모사 모델 혹은 동물대체시험법으로 약물 스크리닝이나 약효 확인, 독성 시험 등에 보다 효과적인 장점이 있다.The three-dimensional cell culture method according to the present invention is capable of rapid cell growth and various size control, and is more effective for drug screening, drug efficacy and toxicity test by a biomimetic model or an animal replacement test method.
또한, 지지부 영역이 안으로 파인 형태로 설계함으로써, 기둥으로 돌출된 지지부로 인한 외관 수축현상을 방지하여 내구성이 높은 장점이 있다. In addition, since the support portion region is designed to be inwardly recessed, it is possible to prevent the outer contraction due to the support portion protruding from the column, thereby providing high durability.
또한, 손상된 인체조직 기능을 복원하기 위한 3차원 세포배양 및 조직배양 용기로 활용 가능한 장점이 있다. In addition, there is an advantage that it can be utilized as a three-dimensional cell culture and tissue culture container for restoring damaged human tissue function.
도 1은 본 발명의 3차원 세포배양을 위한 배양용기의 제1실시예를 나타낸 사시도1 is a perspective view showing a first embodiment of a culture container for three-dimensional cell culture of the present invention
도 2는 본 발명의 3차원 세포배양을 위한 배양용기의 제1실시예를 나타낸 평면도2 is a plan view showing a first embodiment of a culture container for three-dimensional cell culture of the present invention
도 3은 본 발명의 3차원 세포배양을 위한 배양용기의 제2실시예를 나타낸 사시도3 is a perspective view showing a second embodiment of a culture container for three-dimensional cell culture of the present invention
도 4는 본 발명의 3차원 세포배양을 위한 배양용기의 16웰 형태를 나타낸 사시도FIG. 4 is a perspective view showing a 16-well form of a culture container for three-dimensional cell culture of the present invention
도 5는 본 발명의 3차원 세포배양을 위한 배양용기의 제3실시예를 나타낸 사시도5 is a perspective view showing a third embodiment of the culture container for three-dimensional cell culture of the present invention
도 6은 본 발명의 3차원 세포배양을 위한 배양용기의 제3실시예를 나타낸 외면도6 is an external view showing a third embodiment of the culture container for three-dimensional cell culture of the present invention
도 7은 본 발명의 3차원 세포배양을 위한 배양용기의 제4실시예를 나타낸 사시도7 is a perspective view showing a fourth embodiment of the culture container for three-dimensional cell culture of the present invention
도 8은 본 발명의 3차원 세포배양을 위한 배양용기의 제4실시예를 나타낸 평면도8 is a plan view showing a fourth embodiment of the culture container for three-dimensional cell culture of the present invention
도 9는 본 발명의 3차원 세포배양을 위한 배양용기의 제5실시예를 나타낸 평면도9 is a plan view showing a fifth embodiment of the culture container for three-dimensional cell culture of the present invention
도 10은 본 발명의 3차원 세포배양을 위한 배양용기의 제6실시예를 나타낸 평면도10 is a plan view showing a sixth embodiment of the culture container for three-dimensional cell culture of the present invention
도 11은 본 발명의 3차원 세포배양을 위한 배양용기로 3차원 세포배양을 실시한 실험결과를 나타낸 그래프11 is a graph showing experimental results of three-dimensional cell culture with a culture container for three-dimensional cell culture of the present invention
도 12는 본 발명의 3차원 세포배양을 위한 배양용기를 구현한 구현예로서, (a)는 구현된 배양용기에서 세포가 포함된 비드를 배양하는 이미지, 및 (b)는 세포가 포함된 비드를 배양용기에서 획득하는 단계를 보여주는 이미지FIG. 12 is an embodiment of a culture container for three-dimensional cell culture according to the present invention, wherein (a) is an image for culturing beads containing cells in the culture container in which the culture is carried out, and (b) Is obtained in a culture vessel.
이하, 본 발명에 의한 3차원 세포배양을 위한 배양용기 및 이를 이용한 3차원 세포 공배양 방법에 대하여 본 발명의 바람직한 하나의 실시형태를 첨부된 도면을 참조하여 상세히 설명한다. 본 발명은 하기의 실시예에 의하여 보다 더 잘 이해될 수 있으며, 하기의 실시예는 본 발명의 예시목적을 위한 것이고, 첨부된 특허청구범위에 의하여 한정되는 보호범위를 제한하고자 하는 것은 아니다.Hereinafter, a preferred embodiment of the present invention will be described in detail with reference to the accompanying drawings on a culture container for three-dimensional cell culture according to the present invention and a three-dimensional cell culture method using the same. The present invention may be better understood by the following examples, which are for the purpose of illustrating the present invention and are not intended to limit the scope of protection defined by the appended claims.
도 1 및 도 2 에 나타난 바와 같이, 본 발명의 3차원 세포배양을 위한 배양용기(100)의 제 1실시예는, 배양용기의 바닥면(110) 상에 위치한 기둥(120)에 의하여 웰(well)(140)이 형성되며, 상기 웰(140) 내부에는 상기 기둥(120)으로부터 돌출된 적어도 하나의 지지부(130)를 포함할 수 있다.1 and 2, a first embodiment of a culture container 100 for three-dimensional cell culture of the present invention is a cell culture container 100 for culturing three-dimensional cells in a well (not shown) by a column 120 placed on a bottom surface 110 of a culture container and at least one supporting part 130 protruding from the column 120 may be formed in the well 140. In addition,
먼저, 배양용기의 바닥면(110)은 기초를 형성하는 면으로, 폴리스티렌(PS), 폴리프로필렌(PP), 폴리에틸렌(PE), 폴리카보네이트(PC), 유리 등 세포배양에 적용되는 어떠한 소재로 구성되어도 무방하다. First, the bottom surface 110 of the culture container is a surface on which a base is formed, and is made of any material applied to cell culture such as polystyrene (PS), polypropylene (PP), polyethylene (PE), polycarbonate It may be configured.
상기 기둥(120)은 배양용기의 바닥면(110)에 접하여 형성되며, 바닥면(11)과 동일한 소재로 구성되는 것이 바람직하며, 일체로 사출될 수 있다. 기둥(120)은 하나의 배양용기의 바닥면(110) 상에 복수로 위치할 수 있으며, 각 기둥(120)마다 웰(140)이 형성될 수 있다. 도 4에 나타난 바와 같이, 16웰, 96웰처럼 다양한 숫자의 웰을 갖도록 구성될 수 있다.The column 120 is formed in contact with the bottom surface 110 of the culture container and is preferably made of the same material as the bottom surface 11 and can be integrally injected. The pillars 120 may be located on the bottom surface 110 of one culture container in plural and the wells 140 may be formed for each pillars 120. As shown in Figure 4, it can be configured to have various numbers of wells, such as 16 wells, 96 wells.
기둥(120)의 단면 형태는, 원형 또는 다각형일 수 있으며, 바람직하게는, 타원형 또는 원형, 가장 바람직하게는, 원형일 수 있다.The cross-sectional shape of the column 120 can be circular or polygonal, and can be preferably elliptical or circular, and most preferably circular.
상기 지지부(130)는 상기 배양용기의 바닥면(110)로부터 이격되어 상기 다박면(110)로부터 상기 기둥(120)의 20 내지 60%의 높이에 위치하는 것이 바람직하며, 더 바람직하게는, 25 내지 50%의 높이에 위치하고, 가장 바람직하게는, 30 내지 35%의 높이에 위치하는 것이 효과적이다. 20% 미만의 높이에 위치하는 경우에는 하부에서의 세포에의 원활한 공기 순환 및 공급이 어려우며, 60%를 초과하는 높이에 위치하는 경우에는 지지부(130) 상에 올려지는 3차원 세포 구조체와 웰(140)에 담긴 타 세포간의 공배양이 이루어지기 어려운 문제가 있다. It is preferable that the support portion 130 is located at a height of 20 to 60% of the column 120 away from the bottom surface 110 of the culture container and more preferably 25 To 50%, and most preferably at a height of 30 to 35%. If it is located at a height of less than 20%, it is difficult to smoothly circulate and supply air to the cells in the lower part. If it is located at a height of more than 60%, the three-dimensional cell structure and the well 140) is difficult to co-cultivate with other cells.
또한, 도 2에 나타난 바와 같이, 상기 웰(140)의 단면부를 기준으로, 상기 기둥(120)으로부터 상기 지지부(130) 끝단까지의 거리는 웰(140)의 지름 대비 15 내지 30%인 것이 바람직하며, 더 바람직하게는, 20 내지 25%, 가장 바람직하게는, 22 내지 23%인 것이 효과적이다. 15% 미만인 경우에는 3차원 세포 구조체를 안정적으로 지지하기 어려우며, 30%를 초과하는 경우에는 지지부(130)의 바닥면(110)로부터의 이격 효과가 떨어지며, 즉, 원활한 공기 순환 및 공급이 어려워 세포 성장에 악영향을 주는 문제가 있다. 2, the distance from the column 120 to the end of the support part 130 is preferably 15 to 30% of the diameter of the well 140 with respect to the cross section of the well 140, , More preferably 20 to 25%, and most preferably 22 to 23%. If it is less than 15%, it is difficult to stably support the three-dimensional cell structure. If it exceeds 30%, the separation effect from the bottom surface 110 of the support part 130 is deteriorated. That is, There is a problem that adversely affects growth.
상기 지지부(130)의 개수는 2 내지 5개인 것이 바람직하며, 더 바람직하게는, 3 내지 4개, 가장 바람직하게는, 3개인 것이 효과적이다. 2개 미만인 경우에는 사실상 3차원 세포 구조체의 지지가 불가능하며, 5개를 초과하는 경우에는 지지부(130)와 배양용기의 바닥면(110)간의 오픈 공간이 과도하게 좁아 공기 순환 및 공급, 2종 이상의 세포 공배양 등의 효율이 현저히 저하되는 문제가 있다.  The number of the support portions 130 is preferably 2 to 5, more preferably 3 to 4, and most preferably 3. If less than two, the three-dimensional cell structure is virtually impossible to support. If the number exceeds 5, the open space between the support portion 130 and the bottom surface 110 of the culture container is excessively narrow, There is a problem that efficiency of cell co-culture or the like is significantly lowered.
도 3에 나타난 바와 같이, 본 발명의 3차원 세포배양을 위한 배양용기(100)의 제 2실시예는, 상기 지지부(130)는 상기 배양용기의 바닥면(110)에 접하는 형태로서, 상기 기둥(120)의 측면을 따라 지지부(130)가 형성될 수 있다. As shown in FIG. 3, in the second embodiment of the culture container 100 for three-dimensional cell culture of the present invention, the support part 130 is in contact with the bottom surface 110 of the culture container, The support portion 130 may be formed along the side surface of the support member 120. [
이와 같이, 상기 배양용기의 바닥면(110)로부터 기둥(120)의 측면을 따라 지지부(130)가 형성되므로, 일체로 사출이 용이하여 제조공정이 단순해지고 경제성이 높아지는 장점이 있다. 뿐만 아니라, 지지부(130)가 기둥(120)의 측면을 따라 기둥형태로 형성되므로, 보다 높은 안정성과 내구성을 갖는다.Since the supporting part 130 is formed along the side surface of the column 120 from the bottom surface 110 of the culture container, the injection can be easily performed integrally, which simplifies the manufacturing process and increases the economic efficiency. In addition, since the support portion 130 is formed in a columnar shape along the side surface of the column 120, it has higher stability and durability.
여기서, 상기 지지부(130)의 최상단은 상기 배양용기의 바닥면(110)로부터 상기 기둥(120)의 20 내지 60%의 높이에 위치하는 것이 바람직하며, 더 바람직하게는, 25 내지 50%의 높이에 위치하고, 가장 바람직하게는, 30 내지 35%의 높이에 위치하는 것이 효과적이다. 20% 미만의 높이에 위치하는 경우에는 하부에서의 세포에의 원활한 산소 공급이 어려우며, 60%를 초과하는 높이에 위치하는 경우에는 지지부(130) 상에 올려지는 3차원 세포 구조체와 웰(140)에 담긴 타 세포간의 공배양이 이루어지기 어려운 문제가 있다. It is preferable that the uppermost end of the support part 130 is located at a height of 20 to 60% of the column 120 from the bottom surface 110 of the culture container, more preferably 25 to 50% , And most preferably at a height of 30 to 35%. If the height is less than 20%, it is difficult to smoothly supply oxygen to the cells in the lower part. If the height is more than 60%, the three-dimensional cell structure and the well 140, There is a problem that it is difficult to co-cultivate other cells in the cells.
도 5 및 도 6에 나타난 바와 같이, 본 발명의 3차원 세포배양을 위한 배양용기(100)의 제 3실시예는, 상기 지지부(130)와 접하는 상기 기둥(120) 영역 중 적어도 일부와 상기 기둥(120) 영역에 접하는 상기 지지부(130) 영역 중 적어도 일부가 제거될 수 있다. 5 and 6, the third embodiment of the culture container 100 for three-dimensional cell culture according to the present invention is characterized in that at least a part of the area of the column 120 in contact with the support part 130, At least a part of the region of the support 130 contacting the region 120 may be removed.
여기서, 지지부(130) 영역 중 제거된 일부 영역과 지지부(130)와 접하는 기둥(120) 영역 중 제거된 일부는 도 5 및 도 6에 나타난 언더컷 영역(150)으로, 웰(140) 내부에 형성된 지지부(130)의 표면을 제외한 나머지 영역은 모두 제거되는 것이 바람직하다. Some of the removed regions of the support 130 and the removed portions of the column 120 in contact with the support 130 are the undercut regions 150 shown in Figures 5 and 6 and are formed in the well 140 It is preferable that all the remaining areas except the surface of the support part 130 are removed.
또한, 도 7 및 도 8에 나타난 바와 같이, 본 발명의 3차원 세포배양을 위한 배양용기(100)의 제 4실시예는, 배양용기의 바닥면(110) 상에 위치한 기둥(120)에 의하여 웰(well)(140)이 형성되며, 웰(140) 내부에는 상기 배양용기의 바닥면(110)로부터 돌출된 적어도 하나의 지지부(130)를 포함할 수 있다. 이는 기둥(120)이 아닌 배양용기의 바닥면(110) 상에 지지부(130)가 돌출됨으로써, 배양용기의 바닥면(110)와의 3차원 세포 구조체를 이격시키는 역할을 한다.7 and 8, the fourth embodiment of the culture container 100 for the three-dimensional cell culture of the present invention is characterized in that the column 120 is placed on the bottom surface 110 of the culture container, And a well 140 may be formed in the well 140. The well 140 may include at least one support 130 protruding from the bottom surface 110 of the culture container. This serves to separate the three-dimensional cell structure from the bottom surface 110 of the culture container by protruding the support portion 130 on the bottom surface 110 of the culture container rather than the column 120.
상기 지지부(130)의 최상단은 상기 배양용기의 바닥면(110)로부터 상기 기둥(120)의 20 내지 60%의 높이에 위치하는 것이 바람직하며, 더 바람직하게는, 25 내지 50%의 높이에 위치하고, 가장 바람직하게는, 30 내지 35%의 높이에 위치하는 것이 효과적이다. 20% 미만의 높이에 위치하는 경우에는 하부에서의 세포에의 원활한 산소 공급이 어려우며, 60%를 초과하는 높이에 위치하는 경우에는 지지부(130) 상에 올려지는 3차원 세포 구조체와 웰(140)에 담긴 타 세포간의 공배양이 이루어지기 어려운 문제가 있다. The uppermost portion of the support portion 130 is preferably located at a height of 20 to 60% of the column 120 from the bottom surface 110 of the culture container, more preferably at a height of 25 to 50% , And most preferably at a height of 30 to 35%. If the height is less than 20%, it is difficult to smoothly supply oxygen to the cells in the lower part. If the height is more than 60%, the three-dimensional cell structure and the well 140, There is a problem that it is difficult to co-cultivate other cells in the cells.
도 8에 나타난 바와 같이, 상기 웰(140)의 단면부를 기준으로, 상기 지지부(130)의 지름은 웰(140)의 지름 대비 2 내지 10%인 것이 바람직하며, 더 바람직하게는, 4 내지 8%, 가장 바람직하게는, 5 내지 6%인 것이 효과적이다. 2% 미만인 경우에는 3차원 세포 구조체를 안정적으로 지지하기 어려우며, 10%를 초과하는 경우에는 지지부(130)의 배양용기의 바닥면(110)으로부터의 이격 효과가 떨어지며, 즉, 원활한 공기 순환과 영양성분의 공급이 어려워 세포 성장에 악영향을 주는 문제가 있다.8, the diameter of the support 130 is preferably 2 to 10% of the diameter of the well 140, more preferably 4 to 8 times the diameter of the well 140, %, And most preferably 5 to 6%. If it is less than 2%, it is difficult to stably support the three-dimensional cell structure. If it exceeds 10%, the effect of separating the supporting part 130 from the bottom surface 110 of the culture container is deteriorated, There is a problem that the supply of the components is difficult and adversely affects the cell growth.
또한, 도 9에 나타난 바와 같이, 본 발명의 3차원 세포배양을 위한 배양용기(100)의 제 5실시예는, 상기 지지부(130)의 상단이 곡면 형태(131)로 구성될 수 있다. 곡면으로 형성됨으로써, 각이 진 영역으로 인한 세포 손상을 방지할 수 있을 뿐만 아니라, 세포가 접종된 3차원 구조체가 더 안정적으로 지지될 수 있어서 생존율이 높아지는 장점이 있다. 9, in the fifth embodiment of the culture container 100 for three-dimensional cell culture according to the present invention, the upper end of the support part 130 may be configured as a curved surface shape 131. FIG. As a result, it is possible to prevent the cell damage due to the angled region and also to increase the survival rate because the cell-inoculated three-dimensional structure can be supported more stably.
도 10에 나타난 바와 같이, 본 발명의 3차원 세포배양을 위한 배양용기(100)의 제 6실시예는, 상기 지지부(130)의 상단 표면 중 적어도 일부가 오목하게 파인 형태로 구성될 수 있다. 지지부(130) 상단의 중앙부위가 가장 깊도록 오목하게 파여 있으므로, 세포 지지가 더욱 안정적이여서 공배양의 효율과 생존율을 현저히 향상시킬 수 있다. 또한, 세포가 지지부(130)에 접촉되는 면이 최소화되고 오목하게 파인 면은 원활한 공기 순환 효과를 극대화시킬 수 있어서 세포 성장에 효과적이다.10, in the sixth embodiment of the culture container 100 for three-dimensional cell culture of the present invention, at least a part of the upper surface of the support part 130 may be formed in a concave shape. Since the central portion at the upper end of the support portion 130 is recessed most deeply, cell support is more stable, and the co-culture efficiency and survival rate can be remarkably improved. In addition, the surface where cells contact with the support 130 is minimized, and the concave surface is effective for cell growth since it can maximize the smooth air circulation effect.
상기 지지부(130)의 상단 표면은 가장자리 영역과 중앙부 영역(132)으로 구분되며, 상기 중앙부 영역(132)은 오목하게 파인 형태이고, 상기 가장자리 영역은 플랫하거나 돌출방향으로 볼록하게 돌출된 형태일 수 있다. 세포가 가장자리 영역에만 접촉하게 되어 손상을 최소화하면서도 원활한 공기 순환으로 생존율이 크게 높아지는 장점이 있다.The upper surface of the support part 130 is divided into an edge area and a center area 132. The center area 132 is concave and the edge area may be flat or convexly protruding in the protruding direction. have. The cell is brought into contact with only the edge region, thereby minimizing the damage, and the survival rate is greatly increased by the smooth air circulation.
상기 지지부(130)의 상단 표면에서, 상기 가장자리 영역은 10 내지 30%, 상기 중앙부 영역은 70 내지 90% 면적을 차지할 수 있으며, 더 바람직하게는, 상기 가장자리 영역은 15 내지 20%, 상기 중앙부 영역은 80 내지 85% 면적을 차지하는 것이 효과적이다. 이는 세포가 안정적으로 지지되기 위한 최적의 면적을 제공하면서도 세포 성장 및 생존율을 최대한 높일 수 있도록 수차례 실험을 통하여 최적화된 면적 범위이다. In the upper surface of the support portion 130, the edge region may occupy 10 to 30% and the central region may occupy 70 to 90%. More preferably, the edge region may be 15 to 20% Is effective to occupy an area of 80 to 85%. This is an optimized area range through several experiments to maximize cell growth and survival while providing optimal area for stable cell support.
다음으로, 본 발명의 3차원 세포 배양 방법은, 준비단계(S10); 및 배양단계(S11)를 포함할 수 있다. 이는 본 발명의 3차원 세포배양을 위한 배양용기 구조를 이용하여 효과적으로 세포를 배양할 수 있는 방법이다.Next, the three-dimensional cell culture method of the present invention comprises a preparing step (S10); And a culture step (S11). This is a method for effectively culturing cells using the culture container structure for three-dimensional cell culture of the present invention.
먼저, 준비단계(S10)는 배양용기의 바닥면 상에 위치한 기둥에 의해 형성된 웰(well) 내부에 상기 기둥으로부터 돌출된 적어도 하나의 지지부 또는 상기 배양용기의 바닥면으로부터 돌출된 적어도 하나의 지지부를 포함하는 3차원 세포배양을 위한 배양용기를 준비하는 단계이다. 상기 준비단계(S10)에서, 상기 지지부의 최상단은 상기 기둥 또는 상기 배양용기의 바닥면으로부터 상기 기둥의 20 내지 60%의 높이에 위치할 수 있다. First, the preparation step S10 includes at least one support protruding from the column or at least one support protruding from the bottom surface of the culture container in a well formed by a column located on a bottom surface of the culture container And a culture vessel for three-dimensional cell culture including the culture medium. In the preparation step (S10), the uppermost end of the support part may be located at a height of 20 to 60% of the column from the bottom surface of the column or the culture container.
배양단계(S11)는 세포가 접종된 3차원 구조체를 상기 지지부 상에 위치시켜 배양하는 단계이다. 3차원 배양에 최적화된 지지부 구조로 인하여, 3차원 세포배양이 효율적으로 진행된다.The culturing step (S11) is a step of placing the cell-inoculated three-dimensional structure on the supporting part and culturing it. Due to the support structure optimized for the three - dimensional culture, three - dimensional cell culture proceeds efficiently.
다음으로, 본 발명의 3차원 세포 공배양 방법은, 준비단계(S20); 접종단계(S21); 교환단계(S22); 및 공배양단계(S23)를 포함할 수 있다. 이는 제 1세포와 제 2세포를 본 발명의 3차원 세포배양을 위한 배양용기 구조를 이용하여 효과적으로 공배양할 수 있는 방법이다.Next, the three-dimensional cell co-culturing method of the present invention comprises preparing (S20); Inoculation step S21; Exchange step S22; And a co-culture step (S23). This is a method by which the first cell and the second cell can be effectively co-cultured using the culture container structure for the three-dimensional cell culture of the present invention.
먼저, 준비단계(S20)는 배양용기 상에 위치한 기둥에 의해 형성된 웰(well) 내부에 상기 기둥으로부터 돌출된 적어도 하나의 지지부 또는 상기 배양용기의 바닥면으로부터 돌출된 적어도 하나의 지지부를 포함하는 3차원 세포배양을 위한 배양용기를 준비하는 단계이다. 상기 준비단계(S20)에서, 상기 지지부의 최상단은 상기 기둥 또는 상기 배양용기의 바닥면으로부터 상기 기둥의 20 내지 60%의 높이에 위치할 수 있다.First, the preparing step S20 includes at least one support protruding from the column or at least one support protruding from the bottom surface of the culture container in a well formed by a column located on the culture container. And preparing a culture container for the 3D cell culture. In the preparation step (S20), the uppermost end of the support part may be located at a height of 20 to 60% of the column from the bottom surface of the column or the culture container.
접종단계(S21)는 제 1세포를 상기 웰 내부에 접종하는 단계이다. 즉, 제 1세포와 배양액을 웰 내부에 접종할 수 있다. Inoculation step S21 is a step of inoculating the first cells into the wells. That is, the first cells and the culture liquid can be inoculated into the wells.
여기서, 제 1세포는 제 2세포와 공배양이 가능한 어떠한 세포이든 무방하나, 정확히는 부착세포일 수 있으며, 간엽세포 혹은 간엽줄기세포, 지방전구세포, 지방세포, 평활근 세포(Smooth Muscle Cell, SMC) 또는 마크로파지(macrophage) 중 적어도 하나일 수 있다.Herein, the first cell may be any cell capable of co-culturing with the second cell, but may be an adherent cell, and may be a mesenchymal stem cell, a mesenchymal stem cell, a fat precursor cell, a smooth muscle cell (Smooth Muscle Cell, SMC) Or a macrophage.
교환단계(S22)는 상기 제 1세포를 배양한 후 상층액을 제거하고 배양액을 적어도 일부 교환하는 단계이다. 웰 내의 배양액에서 제 1세포 배양으로 인해 발생한 상층액을 제거하고 배양액의 일부 또는 전부를 교환함으로써, 공배양 효율을 높일 수 있다.The exchange step S22 is a step of culturing the first cells, removing the supernatant, and at least partially exchanging the culture liquid. The co-culture efficiency can be increased by removing the supernatant resulting from the first cell culture in the culture medium in the well and replacing part or all of the culture medium.
공배양단계(S23)는 제 2세포가 접종된 3차원 구조체를 상기 지지부 상에 위치시켜 공배양하는 단계이다. 여기서, 3차원 구조체는 비드 또는 지지체 형태인 것이 바람직하다. The co-culture step (S23) is a step of co-culturing the three-dimensional structure inoculated with the second cells on the support. Here, the three-dimensional structure is preferably in the form of a bead or a support.
여기서, 상기 제 2세포는, 배양 가능한 진핵세포일 수 있으며, 더 상세하게는 상피세포, 섬유아세포, 골아세포, 연골세포, 간세포, 제대혈세포, 탯줄 유래 간엽줄기세포(Umbilical cord mesenchymal stem cell, UCMSC), 지방 유래 간엽줄기세포(Adipose derived mesenchymal stem cell, ADMSC) 또는 골수 유래 간엽줄기세포(Bone marrow-derived mesenchymal stem cell, BMMSC) 중 적어도 하나일 수 있다.Herein, the second cell may be a culturable eukaryotic cell, and more particularly, an epithelial cell, a fibroblast, an osteoblast, a cartilage cell, a hepatocyte, a umbilical cord cell, a umbilical cord mesenchymal stem cell (UCMSC ), Adipose-derived mesenchymal stem cells (ADMSC), or bone marrow-derived mesenchymal stem cells (BMMSC).
마지막으로, 교체단계(S24)는 상기 공배양단계(S23) 이후, 1 내지 5일 간격으로 상기 배양액을 교체하는 단계이다. 더 바람직하게는, 2 내지 3일 간격으로 교체하는 것이 효과적이다. 이는 세포배양에 필요한 영양성분의 공급과 배양 중 생성되는 세포 생존 저해 물질을 제거함으로써 세포 또는 조직이 지속적으로 성장하도록 하기 위함이다.Finally, the replacing step S24 is a step of replacing the culture solution every 1 to 5 days after the co-cultivation step S23. More preferably, it is effective to replace it every two to three days. This is to supply the necessary nutrients to the cell culture and to remove the cell-viability inhibitor that is generated during the cultivation, so that the cells or tissues are continuously grown.
실시예 1) 배양용기 제작 및 멸균 Example 1) Culture vessel preparation and sterilization
본 개발의 실시예로 쾌속 조형(RP;rapid prototyping) 장비를 이용한 임의형상제작 (SFF;solid freeform fabrication) 방식으로 한층, 한층 적층하여 형상을 제작하는 3D 프린팅 기술을 이용하여 배양용기를 제작하고 멸균은 전자빔 가속기를 사용하여 수행하였다.As an embodiment of the present invention, a culture container is manufactured by using a 3D printing technique that forms a layer by stacking one layer by using a solid freeform fabrication (SFF) method using rapid prototyping (RP) equipment, Was performed using an electron beam accelerator.
실시예 2) 제 1세포 배양Example 2) First cell culture
본 발명의 3차원 세포배양을 위한 배양용기를 이용한 3차원 세포배양의 효과를 측정하기 위한 실험으로 다음과 같은 조건으로 실험을 실시하였다.Experiments were conducted under the following conditions to measure the effect of the three-dimensional cell culture using the culture container for the three-dimensional cell culture of the present invention.
- 세포: 3T3-L1(지방전구세포)(2.45x106cells/5mL/Tube), 지방 유래 간엽줄기세포(ADMSC)Cells: 3T3-L1 (lipocal precursor cells) (2.45x10 6 cells / 5mL / Tube), adipose-derived mesenchymal stem cells (ADMSC)
- 배양기간: 7일간 배양- Culture period: Culture for 7 days
- 세포계수: 0, 3, 7일째 세포계수- Cell count: 0, 3, 7 days Cell count
- 알지네이트 혼합: 1.3% 농도- Alginate mixture: 1.3% concentration
제 1세포는 3T3-L1(지방전구세포)로, 구체적으로, 냉동 보관된 제 1세포를 37℃ 항온수조에서 해동하여 15ml tube로 옮기 뒤, 기본배지(DMEM + 1% antibiotics)를 추가하여 1,500RPM에서 5분간 원심분리하여 상등액을 제거하고 다시 한번 기본배지를 추가하여 앞의 방법을 반복함으로써 동결보존액 성분을 완전히 제거한 후 100mm 배양접시에 DMEM + 1% antibiotics + 10% FBS 포함한 배지와 함께 세포를 접종하여 37℃, 5% 이산화탄소 배양기에서 배양하고, 4 내지 5일 후 충분히 세포가 증식되면 0.05% trypsin-EDTA를 처리하여 배양용기의 웰당 세포를 1x103 농도로 접종하였다.Specifically, the frozen first cells were thawed in a constant-temperature water bath at 37 ° C and transferred to a 15 ml tube, followed by addition of a basic medium (DMEM + 1% antibiotics) to 1,500 The supernatant was removed by centrifugation for 5 min at RPM and the supernatant was added again. The above procedure was repeated to completely remove the frozen storage component. The cells were then transferred to a 100 mm culture dish with DMEM + 1% antibiotics + 10% The cells were inoculated and cultured in a 5% carbon dioxide incubator at 37 ° C. After 4 to 5 days, the cells were sufficiently proliferated. Then, 0.05% trypsin-EDTA was added thereto to inoculate cells per well in the culture vessel at a concentration of 1 × 10 3 .
실시예 3) 제 2세포가 포함된 비드 제작Example 3) Production of beads containing second cells
제 2세포는 지방 유래 간엽줄기세포(Adipose derived mesenchymal stem cell, ADMSC)로, 제 2세포가 접종된 3차원 구조체를 비드 형태로 제작하였다.The second cell was adipose-derived mesenchymal stem cell (ADMSC), and the 3-dimensional structure inoculated with the second cell was prepared in bead form.
비드는, 배양액, 알지네이트 및 젤라틴을 튜브에 투입하여 65℃ 하에서 녹이는 멜팅단계; 상기 튜브의 온도를 37℃로 낮추고, 상기 튜브에 상기 제 2세포(2.45x106cells/5mL/Tube)를 투입하여 500RPM으로 2분간 교반하는 교반단계; 및 상기 튜브 내의 혼합물을 비드 형태로 만들고, 염화칼슘용액에 넣어 가교시켜 제조하는 제조단계;를 포함하여 제조되었다.The beads include a melting step in which a culture solution, alginate and gelatin are put into a tube and melted at 65 캜; The temperature of the tube was lowered to 37 DEG C, the second cell (2.45x10 < 6 > cells / 5mL / Tube) was added to the tube and stirred at 500RPM for 2 minutes; And a manufacturing step of making the mixture in the tube into a bead form and crosslinking it in a calcium chloride solution.
교반 이후에는, 원심분리를 통하여 1500RPM으로 버블을 제거한다. 상기 제조단계에서, 염화칼슘용액의 농도는 5%로 하였다.After stirring, the bubbles are removed by centrifugation at 1500 RPM. In the preparation step, the concentration of the calcium chloride solution was 5%.
상기 가교된 비드는 인산완충식염수(phosphate buffered saline, PBS)로 세척하고, 10% 우태아 혈청이 함유된 배양액에 넣어 37℃, 5% 이산화탄소 배양기에서 배양함으로써, 상기 제 2세포가 접종된 비드 형태의 3차원 구조체를 제조하였다(도 10의 (b)).The crosslinked beads were washed with phosphate buffered saline (PBS), and cultured in a culture medium containing 10% fetal bovine serum at 37 ° C in a 5% carbon dioxide incubator. As a result, (Fig. 10 (b)).
실시예 4) 지지체 제작과 멸균공정Example 4) Supporting and Sterilization Process
지지체는, 폴리카프롤락톤을 이용하여 제작하였다. 우선 폴리카프롤락톤을 튜브에 투입하여 90℃ 하에서 650 내지 730kPa의 압력을 가한 이후에는 에어컨트롤러의 흡입기능을 이용하여 3차원 지지체를 제작하고 전자빔 가속도를 이용하여 멸균공정을 처리하였다. The support was made using polycaprolactone. First, polycaprolactone was introduced into a tube and a pressure of 650 to 730 kPa was applied at 90 ° C. Then, a three-dimensional support was prepared using the suction function of the air controller, and the sterilization process was performed using electron beam acceleration.
실시예 5) 제2세포가 포함된 지지체를 이용한 3차원 세포 배양Example 5) Three-dimensional cell culture using a support containing a second cell
제2세포가 포함된 지지체를 이용한 3차원 세포배양은, 제 2세포를 25㎕씩 4개의 drop 지지체 위에 접종한 후 1시간 동안 배양하고 1ml 배지 첨가하고 37℃, 5% 이산화탄소 조건하에서 배양함으로써, 상기 제 2세포가 접종된 지지체 형태의 3차원 구조체를 제조하였다.In the three-dimensional cell culture using the supernatant containing the second cells, the second cells were inoculated on 4 drop supports on a 4-drop support, cultured for 1 hour, and cultured in 1 ml medium at 37 ° C under 5% A three-dimensional structure of the support type in which the second cells were inoculated was prepared.
도 11 및 도 12에 나타난 바와 같이, 본 발명에 의한 배양용기를 사용하여 실시한 3차원 세포배양은 일반적인 배양용기를 이용한 2차원 세포배양과 달리, 배양시간이 지날수록 세포수가 감소하지 않고 증가하는 것을 알 수 있다. 즉, 본 발명의 배양용기로 3차원 세포배양이 보다 지속적으로 이루어질 수 있음을 실제 실험에서 확인할 수 있었다.As shown in FIG. 11 and FIG. 12, the three-dimensional cell culture using the culture container according to the present invention showed that the cell number did not decrease but increased as the culture time passed, unlike the two-dimensional cell culture using the general culture container Able to know. That is, it has been confirmed in actual experiments that the three-dimensional cell culture can be more continuously performed with the culture container of the present invention.
이상에서 본 발명의 바람직한 실시예를 설명하였으나, 본 발명은 다양한 변화와 변경 및 균등물을 사용할 수 있다. 본 발명은 상기 실시예를 적절히 변형하여 동일하게 응용할 수 있음이 명확하다. 따라서 상기 기재 내용은 하기 특허청구범위의 한계에 의해 정해지는 본 발명의 범위를 한정하는 것이 아니다.While the present invention has been particularly shown and described with reference to exemplary embodiments thereof, it is to be understood that the invention is not limited to the disclosed exemplary embodiments. It is clear that the present invention can be suitably modified and applied in the same manner. Therefore, the above description does not limit the scope of the present invention, which is defined by the limitations of the following claims.
본 발명은 3차원 세포배양을 위한 배양용기 및 이를 이용한 3차원 세포 공배양 방법에 관한 것으로 산업상 이용가능성이 있다.The present invention relates to a culture container for three-dimensional cell culture and a three-dimensional cell co-culture method using the same, and is industrially applicable.

Claims (11)

  1. 3차원 세포배양을 위한 배양용기에 있어서, In a culture container for three-dimensional cell culture,
    상기 배양용기의 바닥면 상에 위치한 기둥에 의하여 웰(well)이 형성되며,A well is formed by a column located on a bottom surface of the culture container,
    상기 웰 내부에는 상기 기둥으로부터 돌출된 적어도 하나의 지지부를 포함하는 3차원 세포배양을 위한 배양용기.And at least one support protruding from the column in the well.
  2. 제 1항에 있어서,The method according to claim 1,
    상기 지지부는 상기 배양용기의 바닥면으로부터 이격되어 상기 기둥의 20 내지 60%의 높이에 위치하는 3차원 세포배양을 위한 배양용기.Wherein the support portion is located at a height of 20 to 60% of the column, spaced from the bottom surface of the culture container.
  3. 제 1항에 있어서,The method according to claim 1,
    상기 지지부는 상기 배양용기의 바닥면에 접하는 형태로서, 상기 기둥의 측면을 따라 지지부가 형성되는 것을 특징으로 하는 3차원 세포배양을 위한 배양용기.Wherein the supporting portion is in contact with a bottom surface of the culture container, and a supporting portion is formed along a side surface of the column.
  4. 제 3항에 있어서,The method of claim 3,
    상기 지지부의 최상단은 상기 배양용기의 바닥면으로부터 상기 기둥의 20 내지 60%의 높이에 위치하는 3차원 세포배양을 위한 배양용기.And the uppermost end of the support is located at a height of 20 to 60% of the column from the bottom surface of the culture container.
  5. 제 1항에 있어서,The method according to claim 1,
    상기 웰의 단면부를 기준으로, 상기 기둥으로부터 상기 지지부 끝단까지의 거리는 상기 웰의 지름 대비 15 내지 30%인 3차원 세포배양을 위한 배양용기.Wherein the distance from the column to the end of the support is 15 to 30% of the diameter of the well, with respect to the cross section of the well.
  6. 제 3항에 있어서,The method of claim 3,
    상기 지지부와 접하는 상기 기둥 영역 중 적어도 일부와 상기 기둥 영역에 접하는 상기 지지부 영역 중 적어도 일부가 제거된 3차원 세포배양을 위한 배양용기.Wherein at least a part of the column area contacting the support part and at least a part of the support part area contacting the column area are removed.
  7. 3차원 세포배양을 위한 배양용기에 있어서,In a culture container for three-dimensional cell culture,
    상기 배양용기의 바닥면 상에 위치한 기둥에 의하여 웰(well)이 형성되며, A well is formed by a column located on a bottom surface of the culture container,
    상기 웰 내부에는 상기 배양용기의 바닥면으로부터 돌출된 적어도 하나의 지지부를 포함하고, 상기 지지부의 상단 표면 중 적어도 일부가 오목하게 파인 형태로 구성되는 3차원 세포배양을 위한 배양용기.And at least one support protruding from a bottom surface of the culture container, wherein at least a part of the upper surface of the support is concave.
  8. 제 7항에 있어서, 8. The method of claim 7,
    상기 지지부의 상단 표면은 가장자리 영역과 중앙부 영역으로 구분되며, 상기 중앙부 영역은 오목하게 파인 형태이고, 상기 가장자리 영역은 플랫하거나 돌출방향으로 볼록하게 돌출된 형태이며, The upper surface of the support portion is divided into an edge region and a central region. The central region is concave and the edge region is flat or convexly protruding in a protruding direction.
    상기 지지부의 상단 표면에서, 상기 가장자리 영역은 10 내지 30%, 상기 중앙부 영역은 70 내지 90% 면적을 차지하는 3차원 세포배양을 위한 배양용기.Wherein the edge region occupies an area of 10 to 30% and the central region occupies an area of 70 to 90% on the upper surface of the support.
  9. 제 7항에 있어서, 8. The method of claim 7,
    상기 지지부의 상단은 곡면 형태로 구성되고, The upper end of the support portion is formed in a curved shape,
    상기 지지부의 최상단은 상기 기둥의 20 내지 60%의 높이에 위치하는 3차원 세포배양을 위한 배양용기.Wherein the top of the support is located at a height of 20 to 60% of the column.
  10. 배양용기의 바닥면 상에 위치한 기둥에 의해 형성된 웰(well) 내부에 상기 기둥 또는 상기 바닥면으로부터 돌출된 적어도 하나의 지지부를 포함하는 3차원 세포배양을 위한 배양용기를 준비하는 준비단계; Preparing a culture container for three-dimensional cell culture comprising a column or at least one support protruding from the bottom in a well formed by a column located on a bottom surface of the culture container;
    제 1세포를 상기 웰 내부에 접종하는 접종단계; An inoculation step of inoculating the first cell into the well;
    상기 제 1세포를 배양한 후 상층액을 제거하고 배양액을 적어도 일부 교환하는 교환단계; 및An exchange step of removing the supernatant and at least partially exchanging the culture medium after the first cell is cultured; And
    제 2세포가 접종된 3차원 구조체를 상기 지지부 상에 위치시켜 공배양하는 공배양단계;를 포함하며,And co-culturing the three-dimensional structure inoculated with the second cells on the support,
    상기 준비단계에서, 상기 지지부의 최상단은 상기 기둥 또는 상기 배양용기의 바닥면으로부터 상기 기둥의 20 내지 60%의 높이에 위치하는 3차원 세포 공배양 방법.Wherein the uppermost end of the support is located at a height of 20 to 60% of the column from the bottom surface of the column or the culture container in the preparing step.
  11. 제 10항에 있어서,11. The method of claim 10,
    상기 공배양단계 이후, After the co-culture step,
    1 내지 5일 간격으로 상기 배양액을 교체하는 교체단계;를 더 포함하는 3차원 세포 공배양 방법.And replacing the culture medium at intervals of 1 to 5 days.
PCT/KR2018/009688 2017-08-22 2018-08-22 Culture vessel for three-dimensional cell cultivation and three-dimensional cell co-cultivation method using same WO2019039875A2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/640,849 US11802263B2 (en) 2017-08-22 2018-08-22 Culture vessel for three-dimensional cell cultivation and three-dimensional cell co-cultivation method using same
JP2020511163A JP7046160B2 (en) 2017-08-22 2018-08-22 Culture container for 3D cell culture and 3D cell co-culture method using this

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2017-0106348 2017-08-22
KR20170106348 2017-08-22
KR1020180097285A KR102115878B1 (en) 2017-08-22 2018-08-21 Culture device for three dimensional cell culture and co-culture method of three dimensional cell using the same
KR10-2018-0097285 2018-08-21

Publications (2)

Publication Number Publication Date
WO2019039875A2 true WO2019039875A2 (en) 2019-02-28
WO2019039875A3 WO2019039875A3 (en) 2019-07-11

Family

ID=65439099

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/009688 WO2019039875A2 (en) 2017-08-22 2018-08-22 Culture vessel for three-dimensional cell cultivation and three-dimensional cell co-cultivation method using same

Country Status (1)

Country Link
WO (1) WO2019039875A2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4632400B2 (en) * 2003-12-16 2011-02-16 キヤノン株式会社 Cell culture substrate, method for producing the same, and cell screening method using the same
JP4665589B2 (en) * 2005-04-01 2011-04-06 ニプロ株式会社 Cell culture vessel
EP2358860A1 (en) * 2008-11-21 2011-08-24 Corning Incorporated Spaced projection substrates and devices for cell culture
KR101703988B1 (en) * 2014-04-11 2017-02-08 중앙대학교 산학협력단 Polydimethylsiloxane-Based Apparatus for Three-dimensional Cell Culture
JP6421473B2 (en) * 2014-06-25 2018-11-14 大日本印刷株式会社 Cell culture vessel

Also Published As

Publication number Publication date
WO2019039875A3 (en) 2019-07-11

Similar Documents

Publication Publication Date Title
US20240093134A1 (en) Culture chamber and culture method
Deutsch et al. Fabrication of microtextured membranes for cardiac myocyte attachment and orientation
KR101678796B1 (en) Devices and Methods for Culture of Cells
WO2023020599A1 (en) Organoid culture chip and organoid culture method
US20140295553A1 (en) In-vitro cell colony culture device and use thereof
CN112940940B (en) Cell culture method and kit
US9534206B2 (en) Cell carrier, associated methods for making cell carrier and culturing cells using the same
WO2022001631A1 (en) Device for preparing cell clusters, construction method therefor and application thereof
CN113846050B (en) Preparation method of tissue organoids
KR20190021179A (en) Culture device for three dimensional cell culture and co-culture method of three dimensional cell using the same
WO2019112391A1 (en) Insertable culture container and kit for three-dimensional cell culture, and three-dimensional cell co-culture method using same
JPWO2010047133A1 (en) Cell storage method and cell transport method
WO2016043489A1 (en) Three-dimensional cell culture system and cell culture method using same
Egger et al. Physiologic isolation and expansion of human mesenchymal stem/stromal cells for manufacturing of cell‐based therapy products
CN108699520A (en) Cell block, eucaryotic cell structure body and three-dimensional organizer
WO2019039875A2 (en) Culture vessel for three-dimensional cell cultivation and three-dimensional cell co-cultivation method using same
CN112522183B (en) Stem cell in-vitro amplification method
WO2020111503A1 (en) Core-shell structure for establishing normal and cancer organoid microenvironment and fabrication method therefor
WO2016064154A1 (en) Trypsin-free cell stamp system and use thereof
WO2017034316A1 (en) Cell patterning material, preparation method therefor, and use thereof
WO2020130312A1 (en) Heart tissue simulating sheet for heart transplants, containing adipose stem cell sheet, and manufacturing method therefor
CN108660107B (en) Skeletal muscle organoid construction method
US20030109037A1 (en) Methods for application of genetically-modified endogenous or exogenous stem/progenitor or their progeny for treatment of disease
CN110804548B (en) Cell co-culture equipment
Kreß et al. Application of Scaffold-Free 3D Models

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18849309

Country of ref document: EP

Kind code of ref document: A2

ENP Entry into the national phase

Ref document number: 2020511163

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18849309

Country of ref document: EP

Kind code of ref document: A2