WO2019039852A1 - Method for determining heat dissipation material dispensing device - Google Patents

Method for determining heat dissipation material dispensing device Download PDF

Info

Publication number
WO2019039852A1
WO2019039852A1 PCT/KR2018/009638 KR2018009638W WO2019039852A1 WO 2019039852 A1 WO2019039852 A1 WO 2019039852A1 KR 2018009638 W KR2018009638 W KR 2018009638W WO 2019039852 A1 WO2019039852 A1 WO 2019039852A1
Authority
WO
WIPO (PCT)
Prior art keywords
filler
heat dissipation
dispensing device
determining
static mixer
Prior art date
Application number
PCT/KR2018/009638
Other languages
French (fr)
Korean (ko)
Inventor
조윤경
양세우
강양구
박은숙
김현석
박형숙
박상민
양영조
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to EP18848936.3A priority Critical patent/EP3663582B1/en
Priority to US16/641,120 priority patent/US11598325B2/en
Priority to CN201880053601.5A priority patent/CN111051698B/en
Priority to JP2020511247A priority patent/JP6976420B2/en
Priority claimed from KR1020180097734A external-priority patent/KR102118366B1/en
Publication of WO2019039852A1 publication Critical patent/WO2019039852A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B19/00Machines or pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B1/00 - F04B17/00
    • F04B19/20Other positive-displacement pumps
    • F04B19/22Other positive-displacement pumps of reciprocating-piston type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B51/00Testing machines, pumps, or pumping installations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C14/00Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations
    • F04C14/28Safety arrangements; Monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • F04C2/08Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing

Definitions

  • the present invention relates to a method of determining a heat dissipating material dispensing apparatus.
  • a battery, a television, a video, a computer, a medical instrument, an office machine, a communication device, or the like generates heat during operation, and an increase in temperature due to the heat causes operation failure or destruction.
  • a heat dissipating member used for the heat dissipating member used for the heat dissipating member.
  • the heat source and the cooling medium or the heat sink are thermally connected to each other as much as possible.
  • the present invention provides a method of determining a dispensing device for a heat dissipating material, which can predict the service life and durability due to abrasion.
  • a method of determining a dispensing apparatus for a heat dissipating material comprising the steps of: detecting an inner material of a dispensing apparatus from a heat dissipating material flowing out of the dispensing apparatus; And determining the suitability of the dispensing apparatus based on the detected amount of the inner material.
  • the dispensing apparatus may be determined to be suitable.
  • the inner material may include iron (Fe).
  • the iron is detected as 30 mg / kg or less, it can be determined that the dispensing apparatus is suitable.
  • the dispensing device may be determined to be suitable if iron is detected to be less than 10 mg / kg.
  • the heat-radiating material may include a urethane-based resin component and a thermally conductive filler.
  • the heat dissipation material may include a filler having a Mohs hardness of 8 or more.
  • the heat dissipation material may have a filler having a Mohs hardness of 8 or more and 80 wt% or more of the total filler.
  • the heat dissipation material may have a filler weight of 70 wt% or more of the total paste weight.
  • the spanning apparatus may include at least one static mixer individually connected to the dispensing portion having the first and second supply cartridge portions and the first and second supply cartridge portions, respectively. At this time, the heat dissipating material flows out through the static mixer.
  • the present invention relates to detecting the internal material of a dispensing device from a heat dissipating material that flows out through a static mixer.
  • the first supply cartridge portion may be provided to supply the main resin and the thermally conductive filler to the static mixer
  • the second supply cartridge portion may be provided to supply the hardener and the thermally conductive filler to the static mixer.
  • first and second supply cartridge portions may be configured as a gear pump type or a plunger type, respectively.
  • the inner material of the dispensing device is detected from the heat dissipating material discharged from the dispensing device, You can decide.
  • FIG. 1 is a schematic view showing a dispensing apparatus used in a method of determining a dispensing apparatus for a heat dissipating material according to an embodiment of the present invention.
  • FIG. 2 is a schematic view showing another embodiment of the dispensing apparatus
  • FIGS. 3 and 4 are schematic views showing embodiments in which a heat dissipation material is injected into a first external device.
  • FIG. 5 is a schematic diagram of the static mixer shown in FIG.
  • FIG. 6 is a schematic view of a module case constituting a battery module.
  • FIG. 7 is a schematic view showing a battery module.
  • FIG. 8 is a schematic view for explaining an injection hole of a module case.
  • FIG. 1 is a schematic view showing a dispensing apparatus 10 used in a method of determining a heat dissipating material dispensing apparatus according to an embodiment of the present invention
  • Fig. 2 is a schematic view showing another embodiment of the dispensing apparatus 10 '
  • FIGS. 3 and 4 are schematic views showing embodiments in which a heat dissipation material is injected into the first external device 200.
  • FIG. 1 is a schematic view showing a dispensing apparatus 10 used in a method of determining a heat dissipating material dispensing apparatus according to an embodiment of the present invention
  • Fig. 2 is a schematic view showing another embodiment of the dispensing apparatus 10 '
  • FIGS. 3 and 4 are schematic views showing embodiments in which a heat dissipation material is injected into the first external device 200.
  • FIG. 5 is a schematic diagram of the static mixer 100 shown in FIG.
  • the heat dissipating material dispensing apparatus (10, 10 ') is a device for injecting a heat dissipating material including a room temperature hardening filler into an external device.
  • the heat dissipation material may be injected into the external devices 200 and 300 through the dispensing device 10.
  • the dispensing apparatus 10 includes at least one static mixer 100 connected to the dispensing unit 20 and the dispensing unit 20.
  • the external device may be a battery module.
  • a first external device refers to a first battery module and a second external device refers to a second battery module.
  • the first and second battery modules have the same structure and are merely referred to as separate terms for the purpose of describing sequential process units.
  • mixing and injection of the heat-radiating material is performed through the static mixer 100.
  • the heat dissipation material may be mixed in the static mixer 100, and the heat dissipation material may be injected into the single battery module through the plurality of static mixers 100.
  • FIG. 6 is a schematic view of a module case 210 constituting a battery module
  • FIG. 7 is a schematic view showing a battery module 200
  • FIG. 8 is a schematic view for illustrating an injection hole 230 of a module case.
  • the battery module 200 includes a module case 210 and a plurality of battery cells 220 disposed in the module case 210.
  • the battery cell 220 may be a pouch-type secondary battery.
  • the battery cell 200 may typically include an electrode assembly, an electrolyte, and a pouch exterior. The heat dissipation material is injected into a space between the battery cells in the module case and functions to dissipate heat generated in the battery cells 220.
  • the module case 210 may have, for example, a rectangular parallelepiped shape, and may have a bottom surface 211, a side surface 212, and a top surface 213. At this time, one or more injection holes 230 may be formed in the upper surface 213. At this time, one static mixer 100 is connected to one injection hole 230 so that the heat dissipating material flowing out of the static mixer 100 can be injected into the battery module 200 through the injection hole 230.
  • the step of injecting the heat dissipation material may be sequentially performed on the plurality of battery modules. For example, referring to FIG. 1, after the heat radiation material is completely injected into the first battery module 200, the heat radiation material may be injected into the second battery module 300.
  • the first and second battery modules 200 and 300 are conveyed by a conveyance unit (for example, a belt conveyor), sequentially passed through the dispensing apparatus 100, and a heat dissipation material can be injected.
  • the heat dissipation material may be injected into one battery module (for example, the first battery module 200) through one static mixer.
  • the heat dissipation material may be injected into one battery module (for example, the first battery module 200) through the static mixer 100.
  • a dispensing device 100 for mixing and injecting heat dissipation materials in accordance with the present invention includes at least one static mixer 100 connected to a dispensing part 20 and a dispensing part 20.
  • the static mixer 100 may be replaceable.
  • a heat-radiating material mixed through a static mixer and injected into a battery module relates to a thermally conductive resin composition.
  • the resin composition may include a resin component and a thermally conductive filler.
  • the dispensing portion 20 includes a first supply cartridge portion 21 and a second supply cartridge portion 22. At this time, the first supply cartridge portion 21 and the second supply cartridge portion 22 are individually connected to the static mixer 100.
  • the first supply cartridge portion 21 supplies the main resin and the thermally conductive filler for forming the resin composition to the static mixer 100 and the second supply cartridge portion 22 supplies the hardener and thermally conductive filler to the static mixer 100. [ To the mixer (100).
  • the static mixer 100 has an inlet 101 and an outlet 102.
  • the inflow section 101 is provided separately from the first supply cartridge section 21 and the second supply cartridge section 22, and the outflow section 102 is connected to the module case 100 of the battery module 200 And is connected to the injection hole 230 provided in the injection tube 210.
  • the static mixer 100 includes a screw portion 120 for mixing and transporting.
  • the screw part 120 is composed of a plurality of elements 121.
  • One element 121 forms one end B and the number of the elements 121 can be referred to as a single number.
  • the number of the elements 121 of the static mixer 100 may be 5 to 25. If the number of the elements 121 is insufficient, the mixing efficiency lowers, which may affect the curing speed, the adhesive force, the insulating property, and the like, or cause a problem in reliability. Alternatively, if the number of the elements 121 is excessively large, the mixer having a small diameter and a long length is used to maintain the same mixer capacity.
  • the static mixer 100 has a mixer inner diameter D of about 9 mm in which the screw portion 120 is disposed, a width of the screw portion 120 of 5 mm, a diameter A of the outflow portion 102, 3 mm, the mixer length L is 225 mm, and the number of stages is 24.
  • the first and second supply cartridge portions 21 and 22 may each include an application pump for supplying the main resin and the curing agent to the static mixer.
  • the application pump is divided into a reciprocating pump and a rotary pump, in which a space is provided in a reciprocating part or a rotating part, and a fluid (for example, a main resin / a hardening agent)
  • the first and second supply cartridge portions 21 and 22 may each include a reciprocating pump or a rotary pump.
  • the characteristic of the applied pump is that the discharge amount fluctuates during operation but the high pressure is generated and the efficiency is good. Further, even if the pressure is changed, the discharge amount does not change.
  • the reciprocating pump is a pump which sucks fluid by reciprocating in a cylinder by a piston or plunger, compresses the fluid at a required pressure, and discharges the fluid.
  • the reciprocating pump has a small amount of water, but has a simple structure and is suitable for a high-pressure pump.
  • the fluctuation of the water pressure in the reciprocating motion is severe, there is a change in the discharge amount and the quantity control is difficult.
  • the rotary pump is a pump that pumps liquid by the rotation of one to three rotors, and is simple in structure and easy to handle.
  • the characteristics of the pump is that it is relatively easy to obtain a high pressure, and it is suitable for transporting a liquid having a high viscosity such as oil.
  • a vane pump a gear pump
  • a screw pump a pump that pumps liquid by the rotation of one to three rotors.
  • the present invention relates to a method of determining a heat dissipating material dispensing apparatus.
  • the method of determining a dispensing device includes determining the suitability of the dispensing device based on the amount of detection of the inner material and detecting the inner material of the dispensing device from the dissipating material exiting the dispensing device.
  • the heat dissipating material flowing out of the dispensing device means a heat dissipating material flowing out of the static mixer.
  • ICP analysis can be used as a method of detecting the internal material.
  • the instrument used may be ICP-OES (Optima 8300DV), and 0.2 g of the heat dissipation material from the static mill is treated with nitric acid / hydrogen peroxide, filtered using a 0.45 ⁇ m PTFE syringe and analyzed with ICP-OES .
  • the dispensing apparatus may be determined to be suitable when the internal material is detected to be less than a predetermined amount.
  • the inner material may include iron (Fe).
  • the iron is detected as 30 mg / kg or less, it can be determined that the dispensing apparatus is suitable.
  • the dispensing device may be determined to be suitable if iron is detected to be less than 10 mg / kg.
  • the heat-radiating material may include a urethane-based resin component and a thermally conductive filler.
  • the heat dissipation material may include a filler having a Mohs hardness of 8 or more.
  • the heat dissipation material may have a filler having a Mohs hardness of 8 or more and 80 wt% or more of the total filler.
  • the heat dissipation material may have a filler weight of 70 wt% or more of the total paste weight.
  • the heat dissipating material includes a filler having a Mohs hardness of 8 or more, and the heat dissipating material is preferably a filler having a Mohs hardness of 8 or more of 80 wt% or more of the entire filler.
  • the part can be configured as a gear pump type or a plunger pump type.
  • the heat-radiating material relates to a thermally conductive resin composition.
  • the resin composition may include a resin component and a thermally conductive filler.
  • the resin composition may be an adhesive composition, for example, a composition capable of forming an adhesive through a curing reaction or the like.
  • the resin composition may be a solvent type resin composition, a water-based resin composition or a solvent-free resin composition.
  • a thermally conductive filler to be described later is added to a resin composition capable of forming a known acrylic adhesive, epoxy adhesive, urethane adhesive, olefin adhesive, EVA (ethylene vinyl acetate) adhesive or silicone adhesive, Can be prepared.
  • resin component is used to mean a component that is generally known as a resin, as well as a component that can be converted to a resin through a curing reaction or polymerization reaction.
  • a precursor capable of forming an adhesive resin or an adhesive resin can be applied as the resin component.
  • a resin component include, but are not limited to, an acrylic resin, an epoxy resin, a urethane resin, an olefin resin, an ethylene vinyl acetate (EVA) resin or a silicone resin, or a precursor such as a polyol or an isocyanate compound.
  • the resin composition may include a thermally conductive filler together with the resin component.
  • thermally conductive filler refers to a material having a thermal conductivity of at least about 1 W / mK, at least about 5 W / mK, at least about 10 W / mK, or at least about 15 W / mK.
  • the thermal conductivity of the thermally conductive filler may be about 400 W / mK or less, about 350 W / mK or less, or about 300 W / mK or less.
  • the kind of the thermally conductive filler is not particularly limited, but a ceramic filler can be applied in consideration of insulation and the like.
  • ceramic particles such as alumina, aluminum nitride (AlN), boron nitride (BN), silicon nitride, SiC or BeO may be used. If insulation properties can be secured, application of carbon filler such as graphite can be considered.
  • the resin composition may include about 600 parts by weight or more of the thermally conductive filler based on 100 parts by weight of the resin component.
  • the proportion of the filler may be at least 650 parts by weight or at least 700 parts by weight based on 100 parts by weight of the resin component.
  • the proportion may be up to about 2,000 parts by weight, up to about 1,500 parts by weight, or up to about 1,100 parts by weight, based on 100 parts by weight of the resin component. It is possible to secure desired physical properties such as thermal conductivity and insulating property within the ratio range of the filler.
  • the viscosity of the resin composition increases greatly and the handling property is accordingly deteriorated. Even after the resin material is formed, the resin composition contains bubbles or voids, It can fall.
  • a filler having at least three different diameters may be applied to the resin composition at a predetermined ratio.
  • the shape of the filler is not particularly limited and may be selected in consideration of viscosity and tin-firing of the resin composition, possibility of settling in the composition, desired thermal resistance or thermal conductivity, insulating property, filling effect or dispersibility.
  • a spherical filler in consideration of the amount to be filled.
  • a non-spherical filler for example, a filler such as a needle or a plate, Can be used.
  • the resin composition basically includes the above components, that is, the resin component and the thermally conductive filler, and may include other components if necessary.
  • the resin composition may contain a viscosity controlling agent such as a thixotropic agent, a diluent, a dispersing agent, a surface treatment agent, or a dispersing agent for controlling viscosity, for example, increasing or decreasing viscosity, A coupling agent, and the like.
  • the thixotropic agent can control the viscosity according to the shear force of the resin composition so that the manufacturing process of the battery module can be effectively performed.
  • thixotropic agents that can be used, fumed silica and the like can be exemplified.
  • the diluent or dispersant is usually used for lowering the viscosity of the resin composition and may be any of various kinds known in the art as long as it can exhibit the above-mentioned action.
  • the surface treatment agent is for surface treatment of the filler introduced into the resin composition, and any of various kinds of art known in the art can be used without limitation as long as it can exhibit the above-mentioned action.
  • the coupling agent can be used, for example, to improve the dispersibility of the thermally conductive filler such as alumina, and any of various kinds known in the art can be used without limitation as long as it can exhibit the above-mentioned action.
  • the resin composition may further include a flame retardant or a flame retardant auxiliary.
  • a resin composition can form a flame retardant resin composition.
  • the flame retardant various known flame retardants may be applied without particular limitation, and for example, solid phase filler-type flame retardants and liquid flame retardants can be applied.
  • the flame retardant include organic flame retardants such as melamine cyanurate and the like, inorganic flame retardants such as magnesium hydroxide and the like, but are not limited thereto.
  • TEP triethyl phosphate
  • TCPP tris (1,3-chloro-2-propyl) phosphate, etc.
  • a silane coupling agent capable of acting as a flame retardant may be added.
  • the inner material of the dispensing device is detected from the heat dissipating material discharged from the dispensing device, You can decide.

Abstract

The present invention relates to a method for determining a heat dissipation material dispensing device. Provided according to an aspect of the present invention is a method for determining a heat dissipation material dispensing device, the method comprising the steps of: detecting the inner material of the dispensing device from a heat dissipation material discharged from the dispensing device; and determining the suitability of the dispensing device on the basis of the amount of the detected inner material.

Description

방열 소재 디스펜싱 장치의 결정방법Determination method of heat dissipating material dispensing device
본 발명은 방열 소재 디스펜싱 장치의 결정방법에 관한 것이다.The present invention relates to a method of determining a heat dissipating material dispensing apparatus.
본 출원은 2017년 8월 22일자 한국 특허 출원 제10-2017-0105934호 및 2018년 8월 22일자 한국 특허 출원 제10-2018-0097734호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원들의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.This application claims the benefit of priority based on Korean Patent Application No. 10-2017-0105934 dated August 22, 2017, and Korean Patent Application No. 10-2018-0097734 dated August 22, 2018, The entire contents of which are incorporated herein by reference.
배터리, 텔레비전, 비디오, 컴퓨터, 의료 기구, 사무 기계 또는 통신 장치 등은, 동작 시에 열을 발생시키고, 그 열에 의한 온도의 상승은, 동작 불량이나 파괴 등을 유발하기 때문에 상기 온도 상승을 억제하기 위한 열 발산 방법이나 그에 사용되는 열 발산 부재 등이 제안되어 있다.BACKGROUND ART A battery, a television, a video, a computer, a medical instrument, an office machine, a communication device, or the like generates heat during operation, and an increase in temperature due to the heat causes operation failure or destruction. And a heat dissipating member used for the heat dissipating member.
예를 들면, 냉각수 등의 냉각 매체로 열을 전달시키거나, 알루미늄이나 구리 등과 같이 열전도율이 높은 금속판 등을 이용한 히트싱크로의 열전도를 통해 온도 상승을 억제하는 방식이 알려져 있다. For example, there is known a method of transferring heat to a cooling medium such as cooling water, or suppressing temperature rise through heat conduction to a heat sink using a metal plate or the like having a high thermal conductivity such as aluminum or copper.
열원에서의 열을 냉각 매체나 히트싱크로 효율적으로 전달하기 위해서는, 열원과 냉각 매체 또는 히트싱크를 가급적 밀착시키커거나 열적으로 연결시키는 것이 유리하고, 이를 위해 방열 소재가 사용될 수 있다.In order to efficiently transfer the heat from the heat source to the cooling medium or the heat sink, it is advantageous that the heat source and the cooling medium or the heat sink are thermally connected to each other as much as possible.
한편, 배터리 모듈의 고출력화로 고방열 성능이 요구되고, 방열 필러의 충진량을 늘리고, 충진 시 얇은 두께로 열저항을 줄임과 동시에 비정형 부위에 도포할 수 있는 디스펜싱 장치가 요구된다.On the other hand, there is a demand for a dispensing device that requires high heat dissipation performance due to high power output of the battery module, increases the filling amount of the heat dissipation filler, reduces heat resistance with a thin thickness during filling, and can apply to irregular portions.
또한, 디스펜싱 장치 선택 시, 마모로 인한 수명과 내구성 문제를 예측하여 결정하는 것이 중요하다.Further, when selecting a dispensing apparatus, it is important to predict and determine the life span and durability problem due to abrasion.
본 발명은 마모로 인한 수명과 내구성을 예측할 수 있는, 방열 소재 디스펜싱 장치의 결정방법을 제공하는 것을 해결하고자 하는 과제로 한다.Disclosure of Invention Technical Problem [8] The present invention provides a method of determining a dispensing device for a heat dissipating material, which can predict the service life and durability due to abrasion.
상기한 과제를 해결하기 위하여, 본 발명의 일 측면에 따르면, 방열 소재 디스펜싱 장치의 결정방법으로서, 디스펜싱 장치로부터 유출된 방열소재에서 디스펜싱 장치의 내부 재질을 검출하는 단계; 및 내부 재질의 검출량에 기초하여 디스펜싱 장치의 적합성을 결정하는 단계를 포함하는, 방열 소재 디스펜싱 장치의 결정방법이 제공된다.According to an aspect of the present invention, there is provided a method of determining a dispensing apparatus for a heat dissipating material, comprising the steps of: detecting an inner material of a dispensing apparatus from a heat dissipating material flowing out of the dispensing apparatus; And determining the suitability of the dispensing apparatus based on the detected amount of the inner material.
또한, 적합성을 결정하는 단계에서, 내부 재질이 소정 량 이하로 검출되는 경우 디스펜싱 장치가 적합한 것으로 결정될 수 있다.Further, in the step of determining conformity, if the internal material is detected to be less than a predetermined amount, the dispensing apparatus may be determined to be suitable.
또한, 내부 재질은 철(Fe)을 포함할 수 있다. Further, the inner material may include iron (Fe).
또한, 적합성을 결정하는 단계에서, 철이 30mg/kg 이하로 검출되는 경우 디스펜싱 장치를 적합한 것으로 결정될 수 있다. Further, in the step of determining the suitability, if the iron is detected as 30 mg / kg or less, it can be determined that the dispensing apparatus is suitable.
또한, 적합성을 결정하는 단계에서, 바람직하게, 철이 10mg/kg 이하로 검출되는 경우 디스펜싱 장치를 적합한 것으로 결정될 수 있다. Also, in the step of determining the suitability, preferably the dispensing device may be determined to be suitable if iron is detected to be less than 10 mg / kg.
또한, 방열 소재는 우레탄 계열의 수지 성분 및 열전도성 필러를 포함할 수 있다. Further, the heat-radiating material may include a urethane-based resin component and a thermally conductive filler.
또한, 방열 소재는 모스 경도 8 이상의 필러를 포함할 수 있다. Further, the heat dissipation material may include a filler having a Mohs hardness of 8 or more.
또한, 방열 소재는 모스 경도 8 이상의 필러가 전체 필러의 80wt% 이상일 수 있다. In addition, the heat dissipation material may have a filler having a Mohs hardness of 8 or more and 80 wt% or more of the total filler.
또한, 방열 소재는 필러 중량이 전체 페이스트 중량의 70wt%이상일 수 있다.In addition, the heat dissipation material may have a filler weight of 70 wt% or more of the total paste weight.
또한, 스펜싱 장치는 제1 및 제2 공급 카트리지부를 구비한 디스펜싱부 및 제1 및 제2 공급 카트리지부와 각각 개별적으로 접속된 하나 이상의 스태틱 믹서를 포함할 수 있다. 이때, 방열소재는 스태틱 믹서를 통해 외부로 유출된다. 본 발명은, 스태틱 믹서를 통해 외부로 유출된 방열소재에서 디스펜싱 장치의 내부 재질을 검출하는 것과 관련된다.In addition, the spanning apparatus may include at least one static mixer individually connected to the dispensing portion having the first and second supply cartridge portions and the first and second supply cartridge portions, respectively. At this time, the heat dissipating material flows out through the static mixer. The present invention relates to detecting the internal material of a dispensing device from a heat dissipating material that flows out through a static mixer.
또한, 제1 공급 카트리지부는 주제 수지 및 열전도성 필러를 스태틱 믹서로 공급하도록 마련되고, 제2 공급 카트리지부는 경화제 및 열전도성 필러를 스태틱 믹서로 공급하도록 마련될 수 있다. Also, the first supply cartridge portion may be provided to supply the main resin and the thermally conductive filler to the static mixer, and the second supply cartridge portion may be provided to supply the hardener and the thermally conductive filler to the static mixer.
또한, 제1 및 제2 공급 카트리지부는, 각각 기어 펌프 타입 또는 플런저 타입으로 구성될 수 있다. Further, the first and second supply cartridge portions may be configured as a gear pump type or a plunger type, respectively.
이상에서 살펴본 바와 같이, 본 발명의 일 실시예와 관련된 방열 소재 디스펜싱 장치의 결정방법에 따르면, 디스펜싱 장치로부터 유출된 방열소재에서 디스펜싱 장치의 내부 재질을 검출함으로써, 디스펜싱 장치의 적합성을 결정할 수 있다. As described above, according to the method of determining a dispensing device for a heat dissipating material according to an embodiment of the present invention, the inner material of the dispensing device is detected from the heat dissipating material discharged from the dispensing device, You can decide.
도 1은 본 발명의 일 실시예와 관련된, 방열소재 디스펜싱 장치의 결정방법에 사용되는 디스펜싱 장치를 나타내는 개략도이다.1 is a schematic view showing a dispensing apparatus used in a method of determining a dispensing apparatus for a heat dissipating material according to an embodiment of the present invention.
도 2는 디스펜싱 장치의 또 다른 실시예를 나타내는 개략도이다.2 is a schematic view showing another embodiment of the dispensing apparatus;
도 3 및 도 4는 제1 외부기기에 방열소재를 주입하는 실시예들을 나타내는 개략도들이다.FIGS. 3 and 4 are schematic views showing embodiments in which a heat dissipation material is injected into a first external device. FIG.
도 5는 도 1에 도시된 스태틱 믹서의 개략도이다.5 is a schematic diagram of the static mixer shown in FIG.
도 6은 배터리 모듈을 구성하는 모듈 케이스의 개략도이다.6 is a schematic view of a module case constituting a battery module.
도 7은 배터리 모듈을 나타내는 개략도이다.7 is a schematic view showing a battery module.
도 8은 모듈 케이스의 주입홀을 설명하기 위한 개략도이다.8 is a schematic view for explaining an injection hole of a module case.
이하, 본 발명의 일 실시예에 따른 방열 소재 디스펜싱 장치의 결정방법을 첨부된 도면을 참고하여 상세히 설명한다.DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A method of determining a dispensing apparatus for a heat dissipating material according to an embodiment of the present invention will be described in detail with reference to the accompanying drawings.
또한, 도면 부호에 관계없이 동일하거나 대응되는 구성요소는 동일 또는 유사한 참조번호를 부여하고 이에 대한 중복 설명은 생략하기로 하며, 설명의 편의를 위하여 도시된 각 구성 부재의 크기 및 형상은 과장되거나 축소될 수 있다.In addition, the same or corresponding reference numerals are given to the same or corresponding reference numerals regardless of the reference numerals, and redundant description thereof will be omitted. For convenience of explanation, the size and shape of each constituent member shown in the drawings are exaggerated or reduced .
도 1은 본 발명의 일 실시예와 관련된 방열 소재 디스펜싱 장치의 결정방법에 사용되는 디스펜싱 장치(10)를 나타내는 개략도이고, 도 2는 디스펜싱 장치(10')의 또 다른 실시예를 나타내는 개략도이며, 도 3 및 도 4는 제1 외부기기(200)에 방열소재를 주입하는 실시예들을 나타내는 개략도들이다.1 is a schematic view showing a dispensing apparatus 10 used in a method of determining a heat dissipating material dispensing apparatus according to an embodiment of the present invention, and Fig. 2 is a schematic view showing another embodiment of the dispensing apparatus 10 ' And FIGS. 3 and 4 are schematic views showing embodiments in which a heat dissipation material is injected into the first external device 200. FIG.
또한, 도 5는 도 1에 도시된 스태틱 믹서(100)의 개략도이다.5 is a schematic diagram of the static mixer 100 shown in FIG.
본 발명과 관련된 방열소재 디스펜싱 장치(10, 10')는 상온 경화용 필러를 포함하는 방열 소재를 외부 기기로 주입하기 위한 장치이다.The heat dissipating material dispensing apparatus (10, 10 ') according to the present invention is a device for injecting a heat dissipating material including a room temperature hardening filler into an external device.
도 1을 참조하면, 방열소재는 디스펜싱 장치(10)를 통해 외부 기기(200, 300)에 주입될 수 있다. 상기 디스펜싱 장치(10)는 디스펜싱부(20) 및 디스펜싱부(20)와 연결된 하나 이상의 스태틱 믹서(100)를 포함한다. 상기 외부 기기는 배터리 모듈일 수 있다.Referring to FIG. 1, the heat dissipation material may be injected into the external devices 200 and 300 through the dispensing device 10. The dispensing apparatus 10 includes at least one static mixer 100 connected to the dispensing unit 20 and the dispensing unit 20. The external device may be a battery module.
본 문서에서, 제1 외부기기는 제1 배터리 모듈을 지칭하고, 제2 외부기기는 제2 배터리 모듈을 지칭한다. 제1 및 제2 배터리 모듈은, 차례로 이루어지는 공정 단위를 설명하기 위하여, 구분하여 지칭하는 용어일 뿐, 동일한 구조를 갖는다.In this document, a first external device refers to a first battery module and a second external device refers to a second battery module. The first and second battery modules have the same structure and are merely referred to as separate terms for the purpose of describing sequential process units.
디스펜싱 장치(10, 10')에서, 방열소재의 혼합 및 주입은 스태틱 믹서(100)를 통해 이루어진다. 또한, 방열소재의 혼합은 각각의 스태틱 믹서(100)에서 이루어지고, 하나의 배터리 모듈에 대한 방열소재의 주입은 복수 개의 스태틱 믹서(100)를 통해 이루어질 수 있다. In the dispensing apparatuses 10 and 10 ', mixing and injection of the heat-radiating material is performed through the static mixer 100. The heat dissipation material may be mixed in the static mixer 100, and the heat dissipation material may be injected into the single battery module through the plurality of static mixers 100.
도 6은 배터리 모듈을 구성하는 모듈 케이스(210)의 개략도이고, 도 7은 배터리 모듈(200)을 나타내는 개략도이며, 도 8은 모듈 케이스의 주입홀(230)을 설명하기 위한 개략도이다.FIG. 6 is a schematic view of a module case 210 constituting a battery module, FIG. 7 is a schematic view showing a battery module 200, and FIG. 8 is a schematic view for illustrating an injection hole 230 of a module case.
배터리 모듈(200)은 모듈 케이스(210) 및 모듈 케이스(210) 내에 배치된 복수 개의 배터리 셀(220)을 포함한다. 상기 배터리 셀(220)은 파우치 타입의 이차 전지일 수 있다. 상기 배터리 셀(200)은 통상적으로 전극 조립체, 전해질 및 파우치 외장재를 포함할 수 있다. 상기 방열 소재는 모듈 케이스 내, 배터리 셀들 사이 공간으로 주입되며, 배터리 셀(220)에서 발생하는 열을 방열시키는 기능을 수행한다.The battery module 200 includes a module case 210 and a plurality of battery cells 220 disposed in the module case 210. The battery cell 220 may be a pouch-type secondary battery. The battery cell 200 may typically include an electrode assembly, an electrolyte, and a pouch exterior. The heat dissipation material is injected into a space between the battery cells in the module case and functions to dissipate heat generated in the battery cells 220.
모듈 케이스(210)는 예를 들어, 직육면체 형상을 가질 수 있고, 바닥면(211), 측면(212) 및 상부면(213)을 가질 수 있다. 이때, 상부면(213)에는 하나 이상의 주입홀(230)이 형성될 수 있다. 이때, 하나의 주입홀(230)에 하나의 스태틱 믹서(100)가 접속되어, 스태틱 믹서(100)로부터 유출되는 방열소재가 주입홀(230)을 통해 배터리 모듈(200) 내로 주입될 수 있다. The module case 210 may have, for example, a rectangular parallelepiped shape, and may have a bottom surface 211, a side surface 212, and a top surface 213. At this time, one or more injection holes 230 may be formed in the upper surface 213. At this time, one static mixer 100 is connected to one injection hole 230 so that the heat dissipating material flowing out of the static mixer 100 can be injected into the battery module 200 through the injection hole 230.
또한, 방열 소재의 주입 단계는, 복수 개의 배터리 모듈에 대하여 순차적으로 이루어질 수 있다. 예를 들어, 도 1을 참조하면, 제1 배터리 모듈(200)에 방열소재의 주입이 완료된 후, 제2 배터리모듈(300)에 방열소재의 주입이 수행될 수 있다. 제1 및 제2 배터리 모듈(200, 300)은 이송부(예를 들어, 벨트컨베이어)에 의해 이송되며, 차례로 디스펜싱 장치(100)를 통과하며, 방열소재가 주입될 수 있다. Also, the step of injecting the heat dissipation material may be sequentially performed on the plurality of battery modules. For example, referring to FIG. 1, after the heat radiation material is completely injected into the first battery module 200, the heat radiation material may be injected into the second battery module 300. The first and second battery modules 200 and 300 are conveyed by a conveyance unit (for example, a belt conveyor), sequentially passed through the dispensing apparatus 100, and a heat dissipation material can be injected.
방열 소재의 주입은, 도 3을 참조하면, 하나의 스태틱 믹서를 통해 하나의 배터리 모듈(예를 들어 제1 배터리 모듈, 200)에 방열소재가 주입될 수도 있고, 도 4를 참조하면, 복수 개의 스태틱 믹서(100)를 통해 하나의 배터리 모듈(예를 들어 제1 배터리 모듈, 200)에 방열소재가 주입될 수 있다. Referring to FIG. 3, the heat dissipation material may be injected into one battery module (for example, the first battery module 200) through one static mixer. Referring to FIG. 4, The heat dissipation material may be injected into one battery module (for example, the first battery module 200) through the static mixer 100. [
본 발명과 관련된, 방열소재의 혼합 및 주입을 위한 디스펜싱 장치(100)는 디스펜싱부(20) 및 디스펜싱부(20)와 연결된 하나 이상의 스태틱 믹서(100)를 포함한다. 상기 스태틱 믹서(100)는 교체 가능하게 마련될 수 있다. A dispensing device 100 for mixing and injecting heat dissipation materials in accordance with the present invention includes at least one static mixer 100 connected to a dispensing part 20 and a dispensing part 20. The static mixer 100 may be replaceable.
또한, 스태틱 믹서를 통해 혼합되고, 배터리 모듈로 주입되는 방열 소재는, 열전도성 수지 조성물에 관한 것이다. 상기 수지 조성물은, 수지 성분과 열전도성 필러를 포함할 수 있다. Also, a heat-radiating material mixed through a static mixer and injected into a battery module relates to a thermally conductive resin composition. The resin composition may include a resin component and a thermally conductive filler.
상기 디스펜싱부(20)는 제1 공급 카트리지부(21) 및 제2 공급 카트리지부(22)를 포함한다. 이때, 제1 공급 카트리지부(21) 및 제2 공급 카트리지부(22)는 개별적으로 스태틱 믹서(100)와 연결된다. 또한, 제1 공급 카트리지부(21)는 상기 수지 조성물을 형성하기 위한 주제 수지 및 열전도성 필러를 스태틱 믹서(100)로 공급하고, 제2 공급 카트리지부(22)는 경화제 및 열전도성 필러를 스태틱 믹서(100)로 공급한다. The dispensing portion 20 includes a first supply cartridge portion 21 and a second supply cartridge portion 22. At this time, the first supply cartridge portion 21 and the second supply cartridge portion 22 are individually connected to the static mixer 100. The first supply cartridge portion 21 supplies the main resin and the thermally conductive filler for forming the resin composition to the static mixer 100 and the second supply cartridge portion 22 supplies the hardener and thermally conductive filler to the static mixer 100. [ To the mixer (100).
도 5를 참조하면, 스태틱 믹서(100)는 유입부(101) 및 유출부(102)를 갖는다. 전술한 바와 같이, 유입부(101)는 제1 공급 카트리지부(21) 및 제2 공급 카트리지부(22)와 개별적으로 접속되게 마련되고, 유출부(102)는 배터리 모듈(200)의 모듈 케이스(210)에 마련된 주입홀(230)에 접속되게 마련된다.Referring to FIG. 5, the static mixer 100 has an inlet 101 and an outlet 102. As described above, the inflow section 101 is provided separately from the first supply cartridge section 21 and the second supply cartridge section 22, and the outflow section 102 is connected to the module case 100 of the battery module 200 And is connected to the injection hole 230 provided in the injection tube 210.
스태틱 믹서(100)는 혼합 및 이송을 위한 스크류부(120)를 포함한다. 상기 스크류부(120)는 복수 개의 엘리먼트(121, element)로 구성되며, 하나의 엘리먼트(121)가 하나의 단(B)을 형성하며, 엘리먼트(121)의 개수는 단수로 지칭될 수 있다. The static mixer 100 includes a screw portion 120 for mixing and transporting. The screw part 120 is composed of a plurality of elements 121. One element 121 forms one end B and the number of the elements 121 can be referred to as a single number.
이때, 스태틱 믹서(100)의 엘리먼트(121)의 개수는 5 내지 25개일 수 있다. 엘리먼트(121)의 개수가 부족할 경우, 믹싱 효율이 떨어져서 경화 속도, 접착력, 절연성 등에 영향을 주거나 신뢰성에 문제가 발생할 여지가 있다. 이와는 다르게, 엘리먼트(121)의 개수가 과도하게 많을 경우, 동일 믹서 용량을 유지하기 위하여 직경이 작고, 길이가 긴 믹서를 사용하게 되므로 공정속도가 떨어지게 된다. At this time, the number of the elements 121 of the static mixer 100 may be 5 to 25. If the number of the elements 121 is insufficient, the mixing efficiency lowers, which may affect the curing speed, the adhesive force, the insulating property, and the like, or cause a problem in reliability. Alternatively, if the number of the elements 121 is excessively large, the mixer having a small diameter and a long length is used to maintain the same mixer capacity.
일 실시태양으로, 스태틱 믹서(100)는 스크류부(120)가 배치되는 믹서 내경(D)이 약 9mm이고, 스크류부(120)의 폭이 5mm이며, 유출부(102)의 직경(A)이 3mm이고, 믹서 길이(L)가 225mm이며, 단수가 24개일 수 있다. In one embodiment, the static mixer 100 has a mixer inner diameter D of about 9 mm in which the screw portion 120 is disposed, a width of the screw portion 120 of 5 mm, a diameter A of the outflow portion 102, 3 mm, the mixer length L is 225 mm, and the number of stages is 24.
제1 및 제2 공급 카트리지부(21, 22)는 각각 스태틱 믹서로 주제 수지 및 경화제를 공급하기 위하여, 용적용 펌프를 포함할 수 있다. 용적용 펌프는 왕복부 또는 회전부에 공간을 두어 이 공간 내에 유체(예를 들어, 주제 수지/경화제)를 넣으면서 차례로 내보내는 형식의 펌프로서, 왕복 펌프와 회전펌프로 구분된다. 제1 및 제2 공급 카트리지부(21, 22)는 각각 왕복 펌프 또는 회전펌프를 포함할 수 있다.The first and second supply cartridge portions 21 and 22 may each include an application pump for supplying the main resin and the curing agent to the static mixer. The application pump is divided into a reciprocating pump and a rotary pump, in which a space is provided in a reciprocating part or a rotating part, and a fluid (for example, a main resin / a hardening agent) The first and second supply cartridge portions 21 and 22 may each include a reciprocating pump or a rotary pump.
용적용 펌프의 특징은 운전 중 토출량의 변동이 있으나, 고압이 발생되며 효율이 양호하다. 또한, 압력이 달라져도 토출량은 변하지 않는다.The characteristic of the applied pump is that the discharge amount fluctuates during operation but the high pressure is generated and the efficiency is good. Further, even if the pressure is changed, the discharge amount does not change.
왕복 펌프는 피스톤(piston) 또는 플런저(plunger)가 실린더 내를 왕복운동 함으로써 유체를 흡입하여 소요의 압력으로 압축하고, 토출하는 펌프이다. 펌프의 형식에는 여러 가지가 있다. 토출 밸브를 피스톤에 장치한 수동형 펌프, 봉모양의 플런저가 왕복할 때마다 흡입과 토출을 하는 단동 플런저 펌프, 플런저의 1왕복마다 흡입과 토출이 이루어지는 복동 플런저 펌프가 있으며, 이외에 유량을 많게 하고, 토출량의 변화를 적게 하기 위해 단동을 2개 이상 병렬로 연결한 펌프도 있다.The reciprocating pump is a pump which sucks fluid by reciprocating in a cylinder by a piston or plunger, compresses the fluid at a required pressure, and discharges the fluid. There are various types of pumps. A single-acting plunger pump for sucking and discharging the plunger when the rod-like plunger reciprocates, and a double-action plunger pump for sucking and discharging the plunger for every single reciprocation. In addition, In order to reduce the variation of the discharge amount, there is a pump in which two or more single ends are connected in parallel.
또한, 왕복 펌프는 양수량이 적으나 구조가 간단하며, 고양정(고압용)에 적당하다. 그러나 왕복동에서 생시는 송수압의 변동이 심하므로 토출량의 변화가 있으며 수량조절이 어렵다.In addition, the reciprocating pump has a small amount of water, but has a simple structure and is suitable for a high-pressure pump. However, since the fluctuation of the water pressure in the reciprocating motion is severe, there is a change in the discharge amount and the quantity control is difficult.
또한, 회전 펌프는 1 내지 3개의 회전자(rotor)의 회전에 의해 액체를 압송하는 펌프로서, 구조가 간단하고 취급이 용이하다. 펌프의 특징은 양수량의 변동이 적고, 고압을 얻기가 비교적 쉬우며, 기름 등의 점도가 높은 액체 수송에 적합하다. 회전자의 형상이나 구조에 따라 많은 종류가 있으나 대표적인 것으로, 베인 펌프(vane pump), 톱니 펌프(gear pump), 나사 펌프(screw pump) 등이 있다.Further, the rotary pump is a pump that pumps liquid by the rotation of one to three rotors, and is simple in structure and easy to handle. The characteristics of the pump is that it is relatively easy to obtain a high pressure, and it is suitable for transporting a liquid having a high viscosity such as oil. There are many kinds according to the shape and structure of the rotor, but typical examples thereof include a vane pump, a gear pump, and a screw pump.
본 발명은 방열 소재 디스펜싱 장치의 결정방법과 관련된다.The present invention relates to a method of determining a heat dissipating material dispensing apparatus.
방열 소재 디스펜싱 장치의 결정방법은 디스펜싱 장치로부터 유출된 방열소재에서 디스펜싱 장치의 내부 재질을 검출하는 단계 및 내부 재질의 검출량에 기초하여 디스펜싱 장치의 적합성을 결정하는 단계를 포함한다. 디스펜싱 장치로부터 유출된 방열소재라 함은 스태틱 믹서로부터 유출된 방열소재를 의미한다.The method of determining a dispensing device includes determining the suitability of the dispensing device based on the amount of detection of the inner material and detecting the inner material of the dispensing device from the dissipating material exiting the dispensing device. The heat dissipating material flowing out of the dispensing device means a heat dissipating material flowing out of the static mixer.
또한, 내부 재질을 검출하는 방법으로 ICP 분석법이 사용될 수 있다. 예를 들어, 사용기기는 ICP-OES (Optima 8300DV)일 수 있고, 스태틱 밀서로부터 유출된 방열소재 0.2g을 질산/과산화수소로 처리한 뒤 0.45 μm PTFE Syringe를 이용하여 필터링하여 ICP-OES로 분석할 수 있다.Further, ICP analysis can be used as a method of detecting the internal material. For example, the instrument used may be ICP-OES (Optima 8300DV), and 0.2 g of the heat dissipation material from the static mill is treated with nitric acid / hydrogen peroxide, filtered using a 0.45 μm PTFE syringe and analyzed with ICP-OES .
상기 분석 결과를 기초로, 적합성을 결정하는 단계에서, 내부 재질이 소정 량 이하로 검출되는 경우 디스펜싱 장치가 적합한 것으로 결정될 수 있다. Based on the analysis result, in the step of determining conformity, the dispensing apparatus may be determined to be suitable when the internal material is detected to be less than a predetermined amount.
또한, 내부 재질은 철(Fe)을 포함할 수 있다. Further, the inner material may include iron (Fe).
또한, 적합성을 결정하는 단계에서, 철이 30mg/kg 이하로 검출되는 경우 디스펜싱 장치를 적합한 것으로 결정될 수 있다. Further, in the step of determining the suitability, if the iron is detected as 30 mg / kg or less, it can be determined that the dispensing apparatus is suitable.
또한, 적합성을 결정하는 단계에서, 바람직하게, 철이 10mg/kg 이하로 검출되는 경우 디스펜싱 장치를 적합한 것으로 결정될 수 있다. Also, in the step of determining the suitability, preferably the dispensing device may be determined to be suitable if iron is detected to be less than 10 mg / kg.
또한, 방열 소재는 우레탄 계열의 수지 성분 및 열전도성 필러를 포함할 수 있다. Further, the heat-radiating material may include a urethane-based resin component and a thermally conductive filler.
또한, 방열 소재는 모스 경도 8 이상의 필러를 포함할 수 있다. Further, the heat dissipation material may include a filler having a Mohs hardness of 8 or more.
또한, 방열 소재는 모스 경도 8 이상의 필러가 전체 필러의 80wt% 이상일 수 있다. In addition, the heat dissipation material may have a filler having a Mohs hardness of 8 or more and 80 wt% or more of the total filler.
또한, 방열 소재는 필러 중량이 전체 페이스트 중량의 70wt%이상일 수 있다.In addition, the heat dissipation material may have a filler weight of 70 wt% or more of the total paste weight.
구분division 펌프타입Pump type 필러filler 모스경도Mohs hardness wt%wt% Fe(mg/Kg)Fe (mg / Kg) 적합성compatibility
실시예1Example 1 기어Gear 알루미나Alumina 99 6060 5미만Less than 5 OO
실시예2Example 2 기어Gear AlNAlN 88 6060 5미만Less than 5 OO
실시예3Example 3 기어Gear BNBN 22 8080 5미만Less than 5 OO
실시예4Example 4 세라믹용사기어Ceramic spray gear 알루미나Alumina 99 8080 5미만Less than 5 OO
실시예5Example 5 플런저plunger 알루미나Alumina 99 8080 5미만Less than 5 OO
실시예6Example 6 플런저plunger 알루미나Alumina 99 9090 5미만Less than 5 OO
비교예1Comparative Example 1 기어Gear 알루미나Alumina 99 8080 135135 XX
비교예2Comparative Example 2 기어Gear 알루미나BNAlumina BN 9292 819819 9797 XX
상기 표 1을 참조하면, 방열 소재는 모스 경도 8 이상의 필러를 포함하는 것이 바람직하고, 방열 소재는 모스 경도 8 이상의 필러가 전체 필러의 80wt% 이상인 것이 바람직하다.또한, 제1 및 제2 공급 카트리지부는 기어 펌프 타입 또는 플런저 펌프 타입으로 구성될 수 있다. Referring to Table 1, it is preferable that the heat dissipating material includes a filler having a Mohs hardness of 8 or more, and the heat dissipating material is preferably a filler having a Mohs hardness of 8 or more of 80 wt% or more of the entire filler. The part can be configured as a gear pump type or a plunger pump type.
한편, 방열 소재는, 열전도성 수지 조성물에 관한 것이다. 상기 수지 조성물은, 수지 성분과 열전도성 필러를 포함할 수 있다.On the other hand, the heat-radiating material relates to a thermally conductive resin composition. The resin composition may include a resin component and a thermally conductive filler.
하나의 예시에서 상기 수지 조성물은, 접착제 조성물, 예를 들면 경화 반응 등을 거쳐서 접착제를 형성할 수 있는 조성물일 수 있다. 이러한 수지 조성물은, 용제형 수지 조성물, 수계 수지 조성물 또는 무용제형 수지 조성물일 수 있다. 예를 들면, 공지의 아크릴계 접착제, 에폭시계 접착제, 우레탄계 접착제, 올레핀계 접착제, EVA(Ethylene vinyl acetate)계 접착제 또는 실리콘계 접착제를 형성할 수 있는 수지 조성물에 후술하는 열전도성 필러를 배합하여 상기 수지 조성물을 제조할 수 있다.In one example, the resin composition may be an adhesive composition, for example, a composition capable of forming an adhesive through a curing reaction or the like. The resin composition may be a solvent type resin composition, a water-based resin composition or a solvent-free resin composition. For example, a thermally conductive filler to be described later is added to a resin composition capable of forming a known acrylic adhesive, epoxy adhesive, urethane adhesive, olefin adhesive, EVA (ethylene vinyl acetate) adhesive or silicone adhesive, Can be prepared.
용어 수지 성분은, 일반적으로 수지로서 알려진 성분은 물론 경화 반응이나 중합 반응을 거쳐서 수지로 전환될 수 있는 성분도 포함하는 의미로 사용된다.The term resin component is used to mean a component that is generally known as a resin, as well as a component that can be converted to a resin through a curing reaction or polymerization reaction.
하나의 예시에서 상기 수지 성분으로는 접착제 수지 또는 접착제 수지를 형성할 수 있는 전구체를 적용할 수 있다. 이러한 수지 성분의 예로는, 아크릴 수지, 에폭시 수지, 우레탄 수지, 올레핀 수지, EVA(Ethylene vinyl acetate) 수지 또는 실리콘 수지 등이나, 폴리올 또는 이소시아네이트 화합물 등의 전구체 등이 있지만, 이에 제한되는 것은 아니다.In one example, as the resin component, a precursor capable of forming an adhesive resin or an adhesive resin can be applied. Examples of such a resin component include, but are not limited to, an acrylic resin, an epoxy resin, a urethane resin, an olefin resin, an ethylene vinyl acetate (EVA) resin or a silicone resin, or a precursor such as a polyol or an isocyanate compound.
수지 조성물은, 수지 성분과 함께 열전도성 필러를 포함할 수 있다. 용어 열전도성 필러는, 열전도도가 약 1 W/mK 이상, 약 5 W/mK 이상, 약 10 W/mK 이상 또는 약 15 W/mK 이상인 소재를 의미한다. 열전도성 필러의 열전도도는 약 400 W/mK 이하, 약 350 W/mK 이하 또는 약 300 W/mK 이하일 수 있다. 열전도성 필러의 종류는 특별히 제한되지 않지만, 절연성 등을 고려하여 세라믹 필러를 적용할 수 있다. 예를 들면, 알루미나, AlN(aluminum nitride), BN(boron nitride), 질화 규소(silicon nitride), SiC 또는 BeO 등과 같은 세라믹 입자가 사용될 수 있다. 절연 특성이 확보될 수 있다면, 그래파이트(graphite) 등의 탄소 필러의 적용도 고려할 수 있다.The resin composition may include a thermally conductive filler together with the resin component. The term thermally conductive filler refers to a material having a thermal conductivity of at least about 1 W / mK, at least about 5 W / mK, at least about 10 W / mK, or at least about 15 W / mK. The thermal conductivity of the thermally conductive filler may be about 400 W / mK or less, about 350 W / mK or less, or about 300 W / mK or less. The kind of the thermally conductive filler is not particularly limited, but a ceramic filler can be applied in consideration of insulation and the like. For example, ceramic particles such as alumina, aluminum nitride (AlN), boron nitride (BN), silicon nitride, SiC or BeO may be used. If insulation properties can be secured, application of carbon filler such as graphite can be considered.
수지 조성물은, 상기 수지 성분 100 중량부 대비 약 600 중량부 이상의 상기 열전도성 필러를 포함할 수 있다. 다른 예시에서 상기 필러의 비율은 상기 수지 성분 100 중량부 대비 650 중량부 이상 또는 700 중량부 이상일 수 있다. 상기 비율은 상기 수지 성분 100 중량부 대비 약 2,000 중량부 이하, 약 1,500 중량부 이하 또는 약 1,100 중량부 이하일 수 있다. 상기 필러의 비율 범위 내에서 목적하는 열전도도와 절연성 등의 물성을 확보할 수 있다.The resin composition may include about 600 parts by weight or more of the thermally conductive filler based on 100 parts by weight of the resin component. In another example, the proportion of the filler may be at least 650 parts by weight or at least 700 parts by weight based on 100 parts by weight of the resin component. The proportion may be up to about 2,000 parts by weight, up to about 1,500 parts by weight, or up to about 1,100 parts by weight, based on 100 parts by weight of the resin component. It is possible to secure desired physical properties such as thermal conductivity and insulating property within the ratio range of the filler.
열전도도와 절연성의 확보를 위해 상기와 같이 과량의 필러를 적용하게 되면, 수지 조성물의 점도가 크게 상승하고, 그에 따라 취급성이 떨어지며, 수지 재료를 형성한 후에도 기포 내지 공극을 포함하게 되어 열전도도가 떨어지게 될 수 있다.If an excessive amount of filler is applied to secure thermal conductivity and insulating property as described above, the viscosity of the resin composition increases greatly and the handling property is accordingly deteriorated. Even after the resin material is formed, the resin composition contains bubbles or voids, It can fall.
이에 따라 수지 조성물에는 적어도 3종의 서로 다른 입경을 가지는 필러가 소정 비율로 적용될 수도 있다.Accordingly, a filler having at least three different diameters may be applied to the resin composition at a predetermined ratio.
상기 필러의 형태는 특별히 제한되지 않으며, 수지 조성물의 점도 및 틱소성, 조성물 내에서의 침강 가능성, 목적 열저항 내지는 열전도도, 절연성, 충진 효과 또는 분산성 등을 고려하여 선택될 수 있다. 예를 들어, 충진되는 양을 고려하면 구형의 필러를 사용하는 것이 유리하지만, 네트워크의 형성이나 전도성, 틱소성 등을 고려하여 비구형의 필러, 예를 들면, 침상이나 판상 등과 같은 형태의 필러도 사용될 수 있다. The shape of the filler is not particularly limited and may be selected in consideration of viscosity and tin-firing of the resin composition, possibility of settling in the composition, desired thermal resistance or thermal conductivity, insulating property, filling effect or dispersibility. For example, it is advantageous to use a spherical filler in consideration of the amount to be filled. However, in consideration of formation of a network, conductivity, and tic baking, a non-spherical filler, for example, a filler such as a needle or a plate, Can be used.
수지 조성물은 상기 성분, 즉 수지 성분과 열전도성 필러를 기본적으로 포함하고, 필요하다면 다른 성분도 포함할 수 있다. 예를 들면, 수지 조성물은, 점도의 조절, 예를 들면 점도를 높이거나 혹은 낮추기 위해 또는 전단력에 따른 점도의 조절을 위하여 점도 조절제, 예를 들면, 요변성 부여제, 희석제, 분산제, 표면 처리제 또는 커플링제 등을 추가로 포함하고 있을 수 있다. The resin composition basically includes the above components, that is, the resin component and the thermally conductive filler, and may include other components if necessary. For example, the resin composition may contain a viscosity controlling agent such as a thixotropic agent, a diluent, a dispersing agent, a surface treatment agent, or a dispersing agent for controlling viscosity, for example, increasing or decreasing viscosity, A coupling agent, and the like.
요변성 부여제는 수지 조성물의 전단력에 따른 점도를 조절하여 배터리 모듈의 제조 공정이 효과적으로 이루어지도록 할 수 있다. 사용할 수 있는 요변성 부여제로는, 퓸드 실리카 등이 예시될 수 있다.The thixotropic agent can control the viscosity according to the shear force of the resin composition so that the manufacturing process of the battery module can be effectively performed. As thixotropic agents that can be used, fumed silica and the like can be exemplified.
희석제 또는 분산제는 통상 수지 조성물의 점도를 낮추기 위해 사용되는 것으로 상기와 같은 작용을 나타낼 수 있는 것이라면 업계에서 공지된 다양한 종류의 것을 제한 없이 사용할 수 있다.The diluent or dispersant is usually used for lowering the viscosity of the resin composition and may be any of various kinds known in the art as long as it can exhibit the above-mentioned action.
표면 처리제는 수지 조성물에 도입되어 있는 필러의 표면 처리를 위한 것이고, 상기와 같은 작용을 나타낼 수 있는 것이라면 업계에서 공지된 다양한 종류의 것을 제한 없이 사용할 수 있다. The surface treatment agent is for surface treatment of the filler introduced into the resin composition, and any of various kinds of art known in the art can be used without limitation as long as it can exhibit the above-mentioned action.
커플링제의 경우는, 예를 들면, 알루미나와 같은 열전도성 필러의 분산성을 개선하기 위해 사용될 수 있고, 상기와 같은 작용을 나타낼 수 있는 것이라면 업계에서 공지된 다양한 종류의 것을 제한 없이 사용할 수 있다. The coupling agent can be used, for example, to improve the dispersibility of the thermally conductive filler such as alumina, and any of various kinds known in the art can be used without limitation as long as it can exhibit the above-mentioned action.
수지 조성물은 난연제 또는 난연 보조제 등을 추가로 포함할 수 있다. 이러한 수지 조성물은 난연성 수지 조성물을 형성할 수 있다. 난연제로는 특별한 제한 없이 공지의 다양한 난연제가 적용될 수 있으며, 예를 들면, 고상의 필러 형태의 난연제나 액상 난연제 등이 적용될 수 있다. 난연제로는, 예를 들면, 멜라민 시아누레이트(melamine cyanurate) 등과 같은 유기계 난연제나 수산화 마그네슘 등과 같은 무기계 난연제 등이 있으나, 이에 제한되는 것은 아니다.The resin composition may further include a flame retardant or a flame retardant auxiliary. Such a resin composition can form a flame retardant resin composition. As the flame retardant, various known flame retardants may be applied without particular limitation, and for example, solid phase filler-type flame retardants and liquid flame retardants can be applied. Examples of the flame retardant include organic flame retardants such as melamine cyanurate and the like, inorganic flame retardants such as magnesium hydroxide and the like, but are not limited thereto.
수지 조성물에 충전되는 필러의 양이 많은 경우 액상 타입의 난연 재료(TEP, Triethyl phosphate 또는 TCPP, tris(1,3-chloro-2-propyl)phosphate 등)를 사용할 수도 있다. 또한, 난연상승제의 작용을 할 수 있는 실란 커플링제가 추가될 수도 있다.(TEP, triethyl phosphate, TCPP, tris (1,3-chloro-2-propyl) phosphate, etc.) may be used when the resin composition contains a large amount of filler. Further, a silane coupling agent capable of acting as a flame retardant may be added.
위에서 설명된 본 발명의 바람직한 실시예는 예시의 목적을 위해 개시된 것이고, 본 발명에 대한 통상의 지식을 가지는 당업자라면 본 발명의 사상과 범위 안에서 다양한 수정, 변경, 부가가 가능할 것이며, 이러한 수정, 변경 및 부가는 하기의 특허청구범위에 속하는 것으로 보아야 할 것이다.The foregoing description of the preferred embodiments of the present invention has been presented for purposes of illustration and various modifications, additions and substitutions are possible, without departing from the scope and spirit of the invention, And additions should be considered as falling within the scope of the following claims.
이상에서 살펴본 바와 같이, 본 발명의 일 실시예와 관련된 방열 소재 디스펜싱 장치의 결정방법에 따르면, 디스펜싱 장치로부터 유출된 방열소재에서 디스펜싱 장치의 내부 재질을 검출함으로써, 디스펜싱 장치의 적합성을 결정할 수 있다. As described above, according to the method of determining a dispensing device for a heat dissipating material according to an embodiment of the present invention, the inner material of the dispensing device is detected from the heat dissipating material discharged from the dispensing device, You can decide.

Claims (12)

  1. 방열 소재 디스펜싱 장치의 결정방법으로서,A method of determining a dispensing device for a heat dissipating material,
    디스펜싱 장치로부터 유출된 방열소재에서 디스펜싱 장치의 내부 재질을 검출하는 단계; 및Detecting an inner material of the dispensing device from the heat dissipating material flowing out of the dispensing device; And
    내부 재질의 검출량에 기초하여 디스펜싱 장치의 적합성을 결정하는 단계를 포함하는, 방열 소재 디스펜싱 장치의 결정방법.And determining the suitability of the dispensing device based on the amount of detection of the inner material.
  2. 제 1 항에 있어서,The method according to claim 1,
    내부 재질이 소정 량 이하로 검출되는 경우 디스펜싱 장치를 적합한 것으로 결정되는 방열 소재 디스펜싱 장치의 결정방법.And determining that the dispensing apparatus is suitable if the internal material is detected to be less than a predetermined amount.
  3. 제 2 항에 있어서,3. The method of claim 2,
    내부 재질은 철(Fe)을 포함하는 방열 소재 디스펜싱 장치의 결정방법.Wherein the inner material comprises iron (Fe).
  4. 제 3 항에 있어서,The method of claim 3,
    철이 30mg/kg 이하로 검출되는 경우 디스펜싱 장치를 적합한 것으로 결정되는 방열 소재 디스펜싱 장치의 결정방법.And determining that the dispensing apparatus is suitable if the iron is detected at 30 mg / kg or less.
  5. 제 4 항에 있어서,5. The method of claim 4,
    철이 10mg/kg 이하로 검출되는 경우 디스펜싱 장치를 적합한 것으로 결정되는 방열 소재 디스펜싱 장치의 결정방법.And determining that the dispensing apparatus is suitable if the iron is detected at 10 mg / kg or less.
  6. 제 1 항에 있어서,The method according to claim 1,
    방열 소재는 우레탄 계열의 수지 성분 및 열전도성 필러를 포함하는 방열 소재 디스펜싱 장치의 결정방법.Wherein the heat dissipation material comprises a urethane-based resin component and a thermally conductive filler.
  7. 제 6 항에 있어서,The method according to claim 6,
    방열 소재는 모스 경도 8 이상의 필러를 포함하는 방열 소재 디스펜싱 장치의 결정방법.Wherein the heat dissipation material includes a filler of a Mohs hardness of 8 or more.
  8. 제 7 항에 있어서,8. The method of claim 7,
    방열 소재는 모스 경도 8 이상의 필러가 전체 필러의 80wt% 이상인 방열 소재 디스펜싱 장치의 결정방법.Wherein the heat dissipation material has a filler having a Mohs hardness of 8 or more of 80 wt% or more of the total filler.
  9. 제 8 항에 있어서,9. The method of claim 8,
    방열 소재는 필러 중량이 전체 페이스트 중량의 70wt%이상인 방열 소재 디스펜싱 장치의 결정방법.Wherein the heat dissipation material has a filler weight of 70 wt% or more of the total paste weight.
  10. 제 1 항에 있어서, The method according to claim 1,
    디스펜싱 장치는 제1 및 제2 공급 카트리지부를 구비한 디스펜싱부 및 제1 및 제2 공급 카트리지부와 각각 개별적으로 접속된 하나 이상의 스태틱 믹서를 포함하며, The dispensing device includes a dispenser portion having first and second supply cartridge portions and at least one static mixer individually connected to the first and second supply cartridge portions,
    방열소재는 스태틱 믹서를 통해 외부로 유출되는, 방열 소재 디스펜싱 장치의 결정방법.Wherein the heat dissipation material flows out through the static mixer.
  11. 제 10 항에 있어서, 11. The method of claim 10,
    제1 공급 카트리지부는 주제 수지 및 열전도성 필러를 스태틱 믹서로 공급하도록 마련되고,The first supply cartridge portion is provided to supply the main resin and the thermally conductive filler to the static mixer,
    제2 공급 카트리지부는 경화제 및 열전도성 필러를 스태틱 믹서로 공급하도록 마련된 방열 소재 디스펜싱 장치의 결정방법.And the second supply cartridge portion is provided to supply the hardener and the thermally conductive filler to the static mixer.
  12. 제 10 항에 있어서, 11. The method of claim 10,
    제1 및 제2 공급 카트리지부는, 각각 기어 펌프 타입 또는 플런저 타입으로 구성된 방열 소재 디스펜싱 장치의 결정방법.Wherein the first and second supply cartridge portions are each of a gear pump type or a plunger type.
PCT/KR2018/009638 2017-08-22 2018-08-22 Method for determining heat dissipation material dispensing device WO2019039852A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP18848936.3A EP3663582B1 (en) 2017-08-22 2018-08-22 Method for determining the suitability of an apparatus for dispensing a heat-dissipating material
US16/641,120 US11598325B2 (en) 2017-08-22 2018-08-22 Method for determining dispensing apparatus for heat-dissipating material
CN201880053601.5A CN111051698B (en) 2017-08-22 2018-08-22 Method for determining a dispensing device for a heat-dissipating material
JP2020511247A JP6976420B2 (en) 2017-08-22 2018-08-22 How to determine the dispensing device for heat dissipation material

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2017-0105934 2017-08-22
KR20170105934 2017-08-22
KR1020180097734A KR102118366B1 (en) 2017-08-22 2018-08-22 Method for determining Dispensing apparatus for heat-dissipating material
KR10-2018-0097734 2018-08-22

Publications (1)

Publication Number Publication Date
WO2019039852A1 true WO2019039852A1 (en) 2019-02-28

Family

ID=65439124

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/009638 WO2019039852A1 (en) 2017-08-22 2018-08-22 Method for determining heat dissipation material dispensing device

Country Status (1)

Country Link
WO (1) WO2019039852A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030222249A1 (en) * 2002-05-31 2003-12-04 Bunyan Michael H. Thermally or electrically-conductive form-in-place gap filter
KR20130036216A (en) * 2010-03-03 2013-04-11 다우 코닝 도레이 캄파니 리미티드 Dispenser for highly viscous fluid
JP5227801B2 (en) * 2006-10-31 2013-07-03 電気化学工業株式会社 Alumina powder, production method thereof, and use thereof
US20150345688A1 (en) * 2013-01-09 2015-12-03 Cidra Corporate Services Inc. Smart pipe concept based on embedded taggant-sensor and/or color-encoded elements to monitor liner wear in lined pipelines, including urethane lined pipe
WO2017112653A1 (en) * 2015-12-22 2017-06-29 Carbon, Inc. Dual precursor resin systems for additive manufacturing with dual cure resins
KR20170105934A (en) 2016-03-11 2017-09-20 농업회사법인 주식회사 헵시바 에프엔비 Dry apparatus with an auto control function using of a humidity and temperature
KR20180097734A (en) 2016-01-13 2018-08-31 그뤼넨탈 게엠베하 8-amino-2-oxo-1,3-diaza-spiro- [4.5]

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030222249A1 (en) * 2002-05-31 2003-12-04 Bunyan Michael H. Thermally or electrically-conductive form-in-place gap filter
JP5227801B2 (en) * 2006-10-31 2013-07-03 電気化学工業株式会社 Alumina powder, production method thereof, and use thereof
KR20130036216A (en) * 2010-03-03 2013-04-11 다우 코닝 도레이 캄파니 리미티드 Dispenser for highly viscous fluid
US20150345688A1 (en) * 2013-01-09 2015-12-03 Cidra Corporate Services Inc. Smart pipe concept based on embedded taggant-sensor and/or color-encoded elements to monitor liner wear in lined pipelines, including urethane lined pipe
WO2017112653A1 (en) * 2015-12-22 2017-06-29 Carbon, Inc. Dual precursor resin systems for additive manufacturing with dual cure resins
KR20180097734A (en) 2016-01-13 2018-08-31 그뤼넨탈 게엠베하 8-amino-2-oxo-1,3-diaza-spiro- [4.5]
KR20170105934A (en) 2016-03-11 2017-09-20 농업회사법인 주식회사 헵시바 에프엔비 Dry apparatus with an auto control function using of a humidity and temperature

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3663582A4 *

Similar Documents

Publication Publication Date Title
KR20190021182A (en) Method for determining Dispensing apparatus for heat-dissipating material
KR20190021181A (en) Method for mixing heat-dissipating material
CN102675824B (en) Insulating heat-conducting composition and electronic device
KR20030041802A (en) Heat-Release Structure
US6113730A (en) Metal-foil-clad composite ceramic board and process for the production thereof
US7208192B2 (en) Thermally or electrically-conductive form-in-place gap filter
CN1976572A (en) Redundant assembly for a liquid and air cooled module
US8119191B2 (en) Dispensable cured resin
US20070243409A1 (en) Process for Producing Ceramic Sheet, Ceramic Substrate Utilizing The Same and Use Thereof
JP4054986B2 (en) Heat dissipation member
WO2014193180A1 (en) Composite graphite heat insulating material containing high-density compressed and expanded graphite particles and method for manufacturing same
WO2019039852A1 (en) Method for determining heat dissipation material dispensing device
KR20120009641A (en) Composition for heat radiation sheet and the manufacturing method of the same
JP2022103256A (en) Heat-dissipating structure on electrical device
WO2014007451A1 (en) Illumination device
WO2019039855A2 (en) Method for mixing heat dissipation material components
US7521789B1 (en) Electrical assembly having heat sink protrusions
US20170055369A1 (en) Ceramic coated flow channels for electrical isolation and thermal transfer
CN101280109A (en) Electrostatic-resistant heat conducting plastic
KR102576371B1 (en) Heat dissipation composition comprising strontium-based fluorescent filler and solvent-free epoxy resin
KR100312237B1 (en) Electronic device modules using a thermally conductive compliant sheet
WO2023132587A1 (en) Power conversion apparatus
KR101562647B1 (en) Epoxy adhesive composion for copper clad laminate
CN213484467U (en) Bus duct with heat radiation structure
CN219459601U (en) Insulating cooling device in mining high-voltage frequency conversion all-in-one

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18848936

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020511247

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018848936

Country of ref document: EP

Effective date: 20200302