WO2019039602A1 - Protein, and isolation method for antibodies or fragments thereof using carrier including said protein - Google Patents

Protein, and isolation method for antibodies or fragments thereof using carrier including said protein Download PDF

Info

Publication number
WO2019039602A1
WO2019039602A1 PCT/JP2018/031432 JP2018031432W WO2019039602A1 WO 2019039602 A1 WO2019039602 A1 WO 2019039602A1 JP 2018031432 W JP2018031432 W JP 2018031432W WO 2019039602 A1 WO2019039602 A1 WO 2019039602A1
Authority
WO
WIPO (PCT)
Prior art keywords
protein
linker
amino acid
ala
domain
Prior art date
Application number
PCT/JP2018/031432
Other languages
French (fr)
Japanese (ja)
Inventor
敬 市居
雅晃 金原
智亮 芳賀
Original Assignee
Jsr株式会社
Jsrライフサイエンス株式会社
ジェイエスアール マイクロ インコーポレイテッド
ジェイエスアール マイクロ エヌ.ブイ.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jsr株式会社, Jsrライフサイエンス株式会社, ジェイエスアール マイクロ インコーポレイテッド, ジェイエスアール マイクロ エヌ.ブイ. filed Critical Jsr株式会社
Publication of WO2019039602A1 publication Critical patent/WO2019039602A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/14Extraction; Separation; Purification
    • C07K1/16Extraction; Separation; Purification by chromatography
    • C07K1/22Affinity chromatography or related techniques based upon selective absorption processes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • C07K14/305Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Micrococcaceae (F)
    • C07K14/31Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Micrococcaceae (F) from Staphylococcus (G)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K17/00Carrier-bound or immobilised peptides; Preparation thereof
    • C07K17/02Peptides being immobilised on, or in, an organic carrier
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/10Cells modified by introduction of foreign genetic material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/88Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86

Definitions

  • the present invention relates to a protein available as an affinity chromatography ligand, and a method for isolating an antibody or a fragment thereof using a carrier containing the protein.
  • SpA Staphylococcus aureus protein A
  • Natural SpA contains five domains of E, D, A, B and C in order from the N-terminus as immunoglobulin binding domains. These domains, and Z domains, which are modified domains of B domains, are commonly used as affinity chromatography ligands.
  • Spacers or linkers When multiple proteins are artificially linked, short peptide sequences called spacers or linkers may be inserted between the proteins. Spacers or linkers are used to maintain the conformation and activity of the linked protein complex.
  • an alanine-proline linker of 10 to 34 residues is inserted between two proteins, and IFN- ⁇ of the fusion protein The activity is described to be low when the linker length is short, but increased to 88% of the original when the linker length is 34 residues.
  • Non-Patent Document 2 insertion of a linker between two proteins of human serum albumin-IFN- ⁇ 2b fusion protein improves the yield and stability of the fusion protein, as compared to a fusion protein without a linker. It is described that the antiviral activity was increased, and that the length of the linker was sufficient at 5 residues.
  • the increase in the number of immunoglobulin binding domains on the affinity chromatography support was not necessarily linked to the proportional increase in the immunoglobulin binding capacity or purification efficiency of the support. It is presumed that this is due to the interference between a plurality of linked domains and the effect of immunoglobulin bound to a ligand that the binding between the domain and the immunoglobulin is inhibited.
  • the present invention relates to an affinity chromatography ligand having a high ability to bind to immunoglobulin and a carrier for affinity chromatography having high immunoglobulin purification efficiency using the same.
  • a protein comprising two or more domains linked by a linker, wherein the domains have an affinity for immunoglobulin, and the linker is a peptide having a rod-like structure.
  • a protein comprising two or more domains linked by a linker, The domain has an affinity for immunoglobulins and The linker, a linker comprising a polypeptide comprising at least one proline (a), and X a - (A) i -X b or X b - at least one (A) consisting of i -X a peptide units Containing at least one of the following linkers (b) (wherein X a is an acidic amino acid, X b is a basic amino acid, A is alanine and i is an integer of 3 or 4): , protein.
  • linker (a) comprises a polypeptide having a length of 8 amino acids or more.
  • linker (a) contains 4 or more in total of peptide units selected from the group consisting of Pro-Xaa and Xaa-Pro.
  • Xaa is an amino acid other than Pro.
  • linker consists of 4 or more Ala-Pro units.
  • linker (b) comprises a polypeptide having a length of 10 amino acids or more.
  • the linker (b) is Glu- (Ala) i- Arg, Glu- (Ala) i- Lys, Asp- (Ala) i- Arg, Asp- (Ala) i- Lys, Arg- (Ala) ) i -Glu, including Lys- (Ala) i -Glu, Arg- (Ala) i -Asp, and Lys- (Ala) i 2 or more in total peptide units selected from the group consisting -Asp, [ 2] The described protein. [10] The protein according to [9], wherein the peptide unit is Glu- (Ala) 3 -Lys or Lys- (Ala) 3 -Glu.
  • the N-terminus of the linker is linked to the C-terminus of any one of the two or more domains, and the C-terminus of the linker is linked to the N-terminus of another domain, [1] to [10]
  • the protein according to any one of [12] The protein according to any one of [1] to [11], wherein each of the two or more domains is an immunoglobulin binding domain of protein A or protein L or a variant thereof.
  • each of the two or more domains consists of the amino acid sequence shown in any of SEQ ID NOs: 3 to 10, and at least 85% with the amino acid sequence shown in any of SEQ ID NOs: 3 to 10
  • the protein according to [12] which is selected from the group consisting of an amino acid sequence having identity and a polypeptide having immunoglobulin binding activity.
  • a vector comprising the polynucleotide of [16].
  • a vector transformant comprising the vector of [17].
  • a carrier for affinity chromatography which comprises a solid phase carrier and the protein according to any one of [1] to [15] bound to the solid phase carrier.
  • the immunoglobulin binding ability of the ligand is improved by interposing a specific linker between the immunoglobulin binding domains in the ligand, and the immunoglobulin purification efficiency of the carrier for affinity chromatography is improved. It can be improved.
  • the immunoglobulin dynamic binding capacity (DBC) and ligand utilization efficiency in a carrier for affinity chromatography can be obtained by modifying the linker that links the immunoglobulin binding domains in the ligand protein without mutating the immunoglobulin binding domains.
  • the carrier for affinity chromatography of the present invention can be compared to a carrier containing a ligand protein using a conventional linker for immunoglobulin binding domain, for example, a linker consisting of a repeating unit of GGSGGS (Patent Document 1), an immunoglobulin DBC and a ligand Utilization efficiency is improved.
  • a conventional linker for immunoglobulin binding domain for example, a linker consisting of a repeating unit of GGSGGS (Patent Document 1), an immunoglobulin DBC and a ligand Utilization efficiency is improved.
  • the identity of amino acid sequences and nucleotide sequences can be determined using the algorithm BLAST by Carlin and Artur (Pro. Natl. Acad. Sci. USA, 1993, 90: 5873-5877). Based on this BLAST algorithm, programs called BLASTN, BLASTX, BLASTP, TBLASTN and TBLASTX have been developed (J. Mol. Biol., 1990, 215: 403-410). When using these programs, use the default parameters of each program. Specific procedures for these analysis methods are known (see www.ncbi.nlm.nih.gov).
  • amino acid sequence and nucleotide sequence means 85% or more identity, preferably 90% or more identity, more preferably 95% or more identity, more preferably Is 97% or more identity, more preferably 98% or more identity, still more preferably 99% or more identity.
  • the “corresponding position” on the amino acid sequence and nucleotide sequence refers to the conservation that the target sequence and the reference sequence (eg, the amino acid sequence shown in SEQ ID NO: 1) are present in each amino acid sequence or nucleotide sequence It can be determined by aligning the amino acid residues or nucleotides so as to give the greatest homology. Alignment can be performed using known algorithms, the procedures of which are known to those skilled in the art. For example, alignment can be performed using the Clustal W multiple alignment program (Thompson, J. D. et al, 1994, Nucleic Acids Res., 22: 4673-4680) with default settings.
  • Clustal W is, for example, the Japan Bioinformatics Institute (EBI [www.ebi.ac.uk/index.html]) or the Japanese DNA databank (DDBJ [www. ddbj.nig.ac.jp/Welcome-j.html] can be used on the website.
  • EBI Japan Bioinformatics Institute
  • DDBJ Japanese DNA databank
  • amino acid residues are also described by the following abbreviations: alanine (Ala or A), arginine (Arg or R), asparagine (Asn or N), aspartic acid (Asp or D), cysteine (Cys or C) glutamine (Gln or Q), glutamic acid (Glu or E), glycine (Gly or G), histidine (His or H), isoleucine (Ile or I), leucine (Leu or L), lysine (Lys or K) ), Methionine (Met or M), phenylalanine (Phe or F), proline (Pro or P), serine (Ser or S), threonine (Thr or T), tryptophan (Trp or W), tyrosine (Tyr or Y) Valine (Val or V); and any amino acid residue (Xaa or X).
  • any acidic amino acid residue eg aspartic acid or glutamic acid
  • any basic amino acid residue eg arginine, tryptophan, histidine or lysine
  • X b any basic amino acid residue
  • the amino acid sequence of the peptide is described according to a conventional method such that the amino terminus (hereinafter referred to as N-terminus) is located on the left and the carboxyl terminus (hereinafter referred to as C-terminus) on the right.
  • protein A refers to protein A which is a cell wall component of Staphylococcus aureus (Staphylococcus aureus).
  • protein L refers to protein L, which is one of the proteins produced by Finegoldia magna.
  • immunoglobulin includes any class of immunoglobulin such as IgG, IgA, IgD, IgE, IgM, and their subclasses.
  • antibody refers to an immunoglobulin or a fragment thereof containing an antigen recognition site, for example, an immunoglobulin of any class such as IgG, IgA, IgD, IgE, IgM and their subclasses, a fragment thereof, They may include variants thereof.
  • the "antibody” in the present specification may be a chimeric antibody such as a humanized antibody, an antibody complex, and other modified immunoglobulins containing an antigen recognition site.
  • a fragment of an antibody may be a fragment of an antibody containing an antigen recognition site or a fragment of an antibody not containing an antigen recognition site.
  • antibody fragments that do not contain an antigen recognition site include proteins consisting of only the Fc region of immunoglobulins, Fc fusion proteins, and variants and modifications thereof.
  • a domain having affinity for immunoglobulin or “immunoglobulin binding domain” refers to a functional unit of a polypeptide having immunoglobulin binding activity alone, which is contained in a protein.
  • “having an affinity to an immunoglobulin” preferably refers to binding to a region other than the complementarity determining region (CDR) of an immunoglobulin molecule, and more preferably binding to at least an Fc fragment.
  • CDR complementarity determining region
  • the domain which has the affinity to immunoglobulin may be only hereafter called a domain.
  • Preferred examples of the “domain having affinity to immunoglobulin” or “immunoglobulin binding domain” in the present specification include Fc binding protein, immunoglobulin binding domain of protein A, immunoglobulin binding domain of protein L, and immuno Those variants having globulin binding activity are mentioned. Among these, the immunoglobulin binding domain of protein A, the immunoglobulin binding domain of protein L, and variants thereof having immunoglobulin binding activity are mentioned as more preferable examples.
  • immunoglobulin binding domain of protein A examples include protein A's A domain, B domain, C domain, D domain, E domain, and Z domain which is a modified domain of B domain, among which B More preferred are domain, Z domain, C domain and D domain.
  • the A domain of protein A consists of the amino acid sequence shown in SEQ ID NO: 1.
  • the E domain of protein A consists of the amino acid sequence shown in SEQ ID NO: 2.
  • the B domain of protein A consists of the amino acid sequence shown in SEQ ID NO: 3.
  • the Z domain of protein A consists of the amino acid sequence shown in SEQ ID NO: 4.
  • the C domain of protein A consists of the amino acid sequence shown in SEQ ID NO: 5.
  • the D domain of protein A consists of the amino acid sequence shown in SEQ ID NO: 6.
  • immunoglobulin binding domain of the protein L examples include the B1 domain, the B2 domain, the B3 domain, the B4 domain, and the B5 domain of protein L produced by the Finegoldia magna 312 strain;
  • the C1 domain, the C2 domain, the C3 domain and the C4 domain of protein L produced by the magna 3316 strain can be mentioned, and among these, the C1 domain, the C2 domain, the C3 domain and the C4 domain are more preferable.
  • the C1 domain of protein L consists of the amino acid sequence shown in SEQ ID NO: 7.
  • the C2 domain of protein L consists of the amino acid sequence shown in SEQ ID NO: 8.
  • the C3 domain of protein L consists of the amino acid sequence shown in SEQ ID NO: 9.
  • the C4 domain of protein L consists of the amino acid sequence shown in SEQ ID NO: 10.
  • the B1 domain of protein L consists of the amino acid sequence shown in SEQ ID NO: 11.
  • the B2 domain of protein L consists of the amino acid sequence shown in SEQ ID NO: 12.
  • the B3 domain of protein L consists of the amino acid sequence shown in SEQ ID NO: 13.
  • the B4 domain of protein L consists of the amino acid sequence shown in SEQ ID NO: 14.
  • the B5 domain of protein L consists of the amino acid sequence shown in SEQ ID NO: 15.
  • An example of a variant of the immunoglobulin binding domain of protein A comprises an amino acid sequence having at least 85% identity to the amino acid sequence shown in any of SEQ ID NOs: 1 to 6, and has immunoglobulin binding activity Polypeptides are included.
  • an example of a variant of the immunoglobulin binding domain of protein A comprises an amino acid sequence having at least 85% identity to the amino acid sequence shown in any one of SEQ ID NOs: 3 to 6, and immunoglobulin binding Included are polypeptides having activity.
  • An example of a variant of the immunoglobulin binding domain of said protein L consists of an amino acid sequence having at least 85% identity to the amino acid sequence shown in any of SEQ ID NO: 7 to 15, and has immunoglobulin binding activity Polypeptides are included.
  • the immunoglobulin binding domain of the protein L consists of an amino acid sequence having at least 85% identity to the amino acid sequence shown in any of SEQ ID NOs: 7 to 10, and immunoglobulin binding Included are polypeptides having activity.
  • a variant of the above immunoglobulin binding domain is prepared by modifying the amino acid sequence of the domain by addition, deletion, substitution or deletion of amino acid residues, or chemical modification of amino acid residues.
  • means for addition, deletion, substitution or deletion of amino acid residues include known means such as site-specific mutation for a polynucleotide encoding the above-mentioned domain.
  • the present invention provides proteins that function as affinity chromatography ligands.
  • the protein of the present invention comprises two or more domains linked by a linker and having an affinity for immunoglobulin.
  • the protein of the present invention comprises two or more domains linked by a linker, and the domains are domains having affinity for immunoglobulin.
  • the linker linking the domains is preferably a peptide having a rod-like structure.
  • the rod-like structure includes, for example, a needle-like, helical, rod-like structure, and preferably, the rod-like structure is helical or rod-like.
  • the linker is a linker comprising at least one proline.
  • the linker is a linker comprising a peptide having an acidic amino acid (X a ) and a basic amino acid (X b ).
  • the linker contained in the protein of the present invention is such that the N terminus is bound to any one of two or more domains having an affinity for the immunoglobulin constituting the protein of the present invention, and The C-terminus of the linker is linked to another domain that constitutes the protein of the invention.
  • the position on the domain to which the linker binds is not particularly limited.
  • the number of the linkers bound to one domain is not particularly limited. Therefore, the protein of the present invention may have a structure in which two or more of the domains are connected in tandem with the linker, or a structure in which two or more of the domains are connected in parallel with the linker You may have.
  • the linker contained in the protein of the present invention is such that the N terminus is bound to the C terminus of any one of two or more of the domains constituting the protein of the present invention, and The end is linked to the N-terminus of a domain different from the domain to which the N-terminus is linked.
  • the basic structure of the protein of the invention consists of repeats of this domain-linker unit.
  • the protein of the present invention preferably has a structure in which two or more of the domains are linked in tandem via the linker.
  • two or more of the linkers may be respectively linked to different positions of the C-terminal region of one domain, and different domains may be linked to the respective linkers (preferably, the N-terminus of the linker is Conjugated to the C-terminal region of one domain, the C-terminus of the linker being coupled to the N-terminus of another domain).
  • the protein of the present invention so constructed may have a structure in which three or more of the domains are linked in parallel via the linker.
  • the linker comprised in the protein of the invention is a proline-containing linker.
  • the proline-containing linker comprises at least one proline, preferably comprises two or more prolines, more preferably comprises four or more prolines, more preferably selected from the group consisting of Pro-Xaa and Xaa-Pro Containing four or more peptide units in total.
  • Xaa contained in the proline-containing linker may be any amino acid including Pro, but preferably any amino acid other than Pro (ie, Ala, Arg, Asn, Asp, Cys, GIn, Glu, Gly, His, Ile, Leu, Lys, Met, Phe, Ser, Thr, Trp, Tyr or Val), more preferably Ala.
  • the proline-containing linker comprises a total of four or more peptide units selected from the group consisting of Pro-Ala and Ala-Pro. More preferably, the proline-containing linker consists of 4 or more Ala-Pro units. More preferably, the proline-containing linker consists of (Ala-Pro) n, where n is an integer, 4 or more, preferably 5 or more, more preferably 6 or more, and 25 or less. Preferably it is 15 or less, More preferably, it is 10 or less, More preferably, it is 9 or less. For example, n is an integer of 4 to 25, preferably 4 to 15, more preferably 5 to 15, still more preferably 4 to 10, still more preferably 5 to 10, still more preferably 5 to 9, more preferably 6 to 10 And more preferably 6 to 9.
  • the proline-containing linker contained in the protein of the present invention is a polypeptide linker consisting of a polypeptide having a length of 8 amino acids or more, from the viewpoint of improving the avidity of the antibody to each domain. More preferably, the length of the proline-containing linker is 10 amino acids or more, and more preferably 12 amino acids or more.
  • the upper limit of the length of the proline-containing linker is preferably 50 amino acids or less, more preferably 30 amino acids or less, still more preferably 22 amino acids or less, more preferably 20 amino acids or less from the viewpoint of stability of the expression amount of recombinant protein in E. coli It is an amino acid or less, more preferably 18 amino acids or less.
  • the proline-containing linker has a length of 8 to 50 amino acids, preferably 8 to 30 amino acids, more preferably 10 to 30 amino acids, still more preferably 10 to 22 amino acids, still more preferably 8 to 20 amino acids, more preferably Is 10 to 20 amino acids, more preferably 10 to 18 amino acids, more preferably 12 to 20 amino acids, and still more preferably 12 to 18 amino acids.
  • the linker included in the protein of the present invention is a linker comprising a peptide having an acidic amino acid (X a ) and a basic amino acid (X b ) (herein, X a X b Also called a linker).
  • the X a X b linker includes a peptide unit consisting of X a- (A) i- X b or X b- (A) i- X a , and the number of the peptide units contained in the X a X b linker Is at least one, preferably two or more; wherein X a is an acidic amino acid (eg aspartic acid or glutamic acid) and X b is a basic amino acid (eg arginine, tryptophan, (Histidine or lysine, preferably arginine or lysine), A is alanine, i is 2 or more, preferably an integer of 3 or 4.
  • X a is an acidic amino acid (eg aspartic acid or glutamic acid)
  • X b is a basic amino acid (eg arginine, tryptophan, (Histidine or lysine, preferably arginine or lysine)
  • the X a X b linker is Glu- (Ala) i -Arg, Glu- (Ala) i -Lys, Asp- (Ala) i -Arg, Asp- (Ala) i -Lys, Arg- ( Ala) i -Glu, Lys- (Ala ) i -Glu, Arg- (Ala) i -Asp, and Lys- (Ala) i peptide units (i selected from the group consisting -Asp 3 or 4 integer 2) or more in total.
  • the X a X b linker is selected from the group consisting of Glu- (Ala) i- Arg, Glu- (Ala) i- Lys, Asp- (Ala) i- Arg, and Asp- (Ala) i- Lys.
  • the selected peptide units (i is an integer of 3 or 4) in total contain 2 or more.
  • the X a X b linker Arg- (Ala) i -Glu, Lys- (Ala) i -Glu, Arg- (Ala) i -Asp, and Lys- (Ala) group consisting of i -Asp It contains two or more peptide units (i is an integer of 3 or 4) selected in total. More preferably, the X a X b linker comprises 2 or more of Glu- (Ala) 3 -Lys or 2 or more of Lys- (Ala) 3 -Glu.
  • said X a X b linker consists of two or more Glu- (Ala) 3 -Lys or consists of two or more Lys- (Ala) 3 -Glu. More preferably, said X a X b linker consists of [Glu- (Ala) 3 -Lys] j , where j is an integer, 2 or more and 10 or less, preferably It is 8 or less, more preferably 6 or less, and still more preferably 4 or less. For example, j is an integer of 2 to 10, preferably 2 to 8, more preferably 2 to 6, and further preferably 2 to 4.
  • the X a X b linker contained in the protein of the present invention is a polypeptide linker consisting of a polypeptide having a length of 10 amino acids or more, from the viewpoint of improving the avidity of the antibody to each domain.
  • the upper limit of the length of the proline-containing linker is preferably 50 amino acids or less, more preferably 40 amino acids or less, still more preferably 30 amino acids or less, more preferably 20 amino acids or less from the viewpoint of stability of the expression amount of recombinant protein in E. coli etc. Less than amino acids.
  • the proline-containing linker has a length of 10 to 50 amino acids, more preferably 10 to 40 amino acids, more preferably 10 to 30 amino acids, and still more preferably 10 to 20 amino acids.
  • the number of the linkers contained in the protein of the present invention may be one or more, and varies depending on the number of domains. Typically, the number of linkers contained in the protein of the present invention is one less than the number of domains having affinity for immunoglobulin in the protein.
  • the amino acid sequence of each linker or the length thereof may be the same or different. Preferably, the amino acid sequences and lengths of the respective linkers are identical.
  • the protein of the present invention contains two or more, preferably 2 to 12, more preferably 3 to 8 domains having affinity for immunoglobulin.
  • Each of two or more of the domains contained in the protein of the present invention may be the same domain or different domains, but is preferably the same domain.
  • each of the domains having affinity for the immunoglobulin is a protein A B domain, a Z domain, a C domain and a D domain, a protein L C1 domain, a C2 domain, a C3 domain and a C4 domain, and It is selected from the group consisting of those mutants.
  • each of the domains having affinity to the immunoglobulin is a polypeptide consisting of the amino acid sequence shown in any of SEQ ID NO: 3 to 10, and shown in any of SEQ ID NO: 3 to 10 It is selected from the group consisting of an amino acid sequence having at least 85% identity with the amino acid sequence, and a polypeptide having immunoglobulin binding activity.
  • each of the domains having affinity to the immunoglobulin is a polypeptide consisting of the amino acid sequence set forth in any of SEQ ID NOs: 3-10, with the proviso that any of SEQ ID NOs: 3-10 It is a polypeptide having Val at the position corresponding to position 1 of the amino acid sequence shown in
  • each of the domains having affinity to the immunoglobulin is a polypeptide consisting of an amino acid sequence having at least 85% identity to the amino acid sequence shown in any of SEQ ID NOs: 3-10. However, it is a polypeptide having Val at the position corresponding to position 1 of the amino acid sequence shown in any of SEQ ID NOs: 3 to 10.
  • Val at position 1 is preferable is that the specific expression amount (weight-protien / weight-cell) by E. coli differs depending on the type of amino acid adjacent to the terminal methionine, and the specific expression amount of valine is larger than that of alanine (Proc Natl Acad Sci USA. 1989, 86 (21): 8247-8251. Fig 2).
  • each of the domains having affinity to the immunoglobulin is a polypeptide consisting of the amino acid sequence set forth in any of SEQ ID NOs: 3-10, with the proviso that any of SEQ ID NOs: 3-10 A polypeptide having Ala at the position corresponding to position 29 of the amino acid sequence shown in
  • each of the domains having affinity to the immunoglobulin is a polypeptide consisting of an amino acid sequence having at least 85% identity to the amino acid sequence shown in any of SEQ ID NOs: 3-10.
  • it is a polypeptide having Ala at the position corresponding to position 29 of the amino acid sequence shown in any of SEQ ID NOs: 3 to 10.
  • Position 29 Ala is preferred from the viewpoint of increasing the alkali resistance of the protein of the present invention (WO 2010/110288).
  • each of the domains having affinity for the immunoglobulin is a Val1 / Ala29 variant of a polypeptide consisting of the amino acid sequence set forth in any of SEQ ID NOs: 3-10, or SEQ ID NO: 3 10.
  • each of the domains having affinity to the immunoglobulin is a polypeptide consisting of the amino acid sequence set forth in any of SEQ ID NOs: 3-10, with the proviso that any of SEQ ID NOs: 3-10 A polypeptide in which one amino acid is inserted between the position corresponding to position 3 and the position corresponding to position 4 of the amino acid sequence shown in
  • each of the domains having affinity to the immunoglobulin is a polypeptide consisting of an amino acid sequence having at least 85% identity to the amino acid sequence shown in any of SEQ ID NOs: 3-10.
  • polypeptide in which one amino acid is inserted between the position corresponding to position 3 and the position corresponding to position 4 of the amino acid sequence shown in any of SEQ ID NOs: 3 to 10.
  • the amino acid to be inserted is selected from the group consisting of Ala, Arg, Asp, Gln, Glu, His, Met, Thr, Val, Phe, Leu, Ile, Pro, Trp and Tyr, preferably Leu.
  • the insertion mutation is preferable from the viewpoint of improving the antibody binding capacity of the protein of the present invention (WO2016 / 152946).
  • each of the domains having affinity to the immunoglobulin is an N3K4_insL variant of a polypeptide consisting of the amino acid sequence set forth in any of SEQ ID NOs: 3-10, or SEQ ID NOs: 3-10 And a N3K4_insL variant of a polypeptide consisting of an amino acid sequence having at least 85% identity to the amino acid sequence shown in any of the following.
  • each of the domains having affinity to the immunoglobulin is a Val1 / Ala29 / N3K4_insL variant of a polypeptide consisting of the amino acid sequence set forth in any of SEQ ID NOs: 3 to 10, or a sequence It is a Val1 / Ala29 / N3K4_insL variant of a polypeptide consisting of an amino acid sequence having at least 85% identity to the amino acid sequence represented by any one of Nos. 3 to 10.
  • each of the domains having affinity for said immunoglobulin is a polypeptide consisting of SEQ ID NO: 16.
  • the protein of the invention comprises a polypeptide represented by [(PL) mP]:
  • P is a domain having affinity for the above mentioned immunoglobulins, preferably a sequence 16 is a polypeptide consisting of the amino acid sequence shown by the number 16, each P may be the same or different;
  • L is, independently of each other, a proline-containing linker or an X a X b linker as described above
  • the proline-containing linker is a polypeptide consisting of the sequence shown in (Ala-Pro) n (where n is as described above);
  • the X a X b linker is [Glu- (Ala ) 3 [j is as described above] -Lys]
  • j is a polypeptide consisting of the sequence shown in;
  • m is 1 or more, preferably 1 to 11, more preferably ⁇ Is 7.
  • a plurality of L may be the same or different.
  • the protein of the present invention comprises the above linker and two or more domains having affinity for the above immunoglobulin, preferably a poly represented by the above [(PL) mP]. It consists of a peptide.
  • the protein of the present invention comprises the above linker and two or more domains having an affinity for the above immunoglobulin, preferably a polypeptide represented by the [(PL) mP].
  • it may further contain a linker for binding to a solid support.
  • each of one or more linkers for binding the protein of the present invention to a solid phase carrier may be bound at any position in the domain having affinity to the immunoglobulin.
  • the linker for binding the protein of the present invention to a solid phase carrier may be bound to the C-terminus or N-terminus of the domain having affinity to the immunoglobulin, or an amino acid residue which is not a terminal residue May be combined with
  • a linker for linking the protein of the present invention to a solid phase carrier is linked to the C-terminus or N-terminus of the amino acid sequence of the polypeptide represented by [(PL) mP].
  • each of one or more linkers for binding to the solid support may be bound to both ends of the amino acid sequence of the polypeptide represented by [(PL) mP].
  • the linker for binding to the solid phase carrier may be bound to an amino acid residue which is not a terminal residue. Examples of the linker for binding the protein of the present invention to a solid phase carrier include 1 or more and 20 or less Gly.
  • Preferred examples of the protein of the present invention include a polypeptide consisting of the amino acid sequence shown in SEQ ID NO: 17, a polypeptide consisting of the amino acid sequence shown in SEQ ID NO: 18, and a polypeptide consisting of the amino acid sequence shown in SEQ ID NO: 19 It can be mentioned. However, preferred examples of the protein of the present invention are not limited thereto.
  • the protein of the present invention can be produced by a method known in the art, such as a chemical synthesis method based on an amino acid sequence, a recombinant method and the like.
  • a protein of the invention can be produced by Frederick M. It can be manufactured using known genetic recombination techniques described in Ausbel et al., Current Protocols In Molecular Biology, and Sambrook et al., Molecular Cloning (Cold Spring Harbor Laboratory Press, 3rd edition, 2001). That is, the expression vector containing the polynucleotide encoding the protein of the present invention is transformed into a host such as E.
  • any of known vectors that can replicate in host cells can be used, for example, the plasmids described in US Pat. No. 5,151,350, and those edited by Sambrook et al. Examples include plasmids described in Molecular Cloning (Cold Spring Harbor Laboratory Press, 3rd edition, 2001) and the like.
  • the host for transformation is not particularly limited, and known hosts used for expressing recombinant proteins such as bacteria such as E. coli, fungi, insect cells, mammalian cells and the like can be used.
  • any method known in the art may be used to transform the host by introducing the nucleic acid into the host, for example, Molecular Cloning (Cold Spring Harbor, edited by Sambrook et al.). The known methods described in Laboratory Press, 3rd edition, 2001) can be used. Methods for culturing transformed recombinants (such as bacteria) and recovering the expressed protein are well known to those skilled in the art.
  • the present invention also provides a polynucleotide (such as DNA) encoding the above-mentioned protein of the present invention, a vector containing it, and a transformant containing them.
  • a polynucleotide such as DNA
  • Carrier for Affinity Chromatography can be produced by immobilizing the protein for affinity chromatography ligands of the present invention on a solid phase carrier.
  • the form of the solid phase carrier contained in the carrier for affinity chromatography of the present invention may be in the form of particles, and such particles may be porous or non-porous.
  • the particulate carrier can be used as a packed bed or in suspension form. Suspension forms include what are known as expanded beds and pure suspensions, in which the particles can move freely. In the case of monoliths, packed beds and fluidized beds, the separation procedure generally follows conventional chromatographic methods with concentration gradients. In the case of pure suspensions, the batch method is used.
  • the carrier is a filler.
  • the carrier may be in the form of a chip, capillary or filter.
  • the solid support is preferably 20 to 200 ⁇ m, more preferably 20 to 100 ⁇ m, more preferably 30 to 80 ⁇ m when the carrier is a synthetic polymer, more preferably 50 to 200 ⁇ m when the carrier is a polysaccharide. More preferably, it has a particle size of 60 to 150 ⁇ m. If the particle size is less than 20 ⁇ m, the column pressure will be high at high flow rates, which is not practical. When the particle size exceeds 200 ⁇ m, the amount of immunoglobulin bound to the carrier for affinity chromatography (binding capacity) may be poor.
  • the “particle size” in the present specification is a volume average particle size obtained by a laser diffraction scattering type particle size distribution measuring apparatus.
  • the solid support is preferably porous and has a specific surface area of 50 to 150 m 2 / g, more preferably 80 to 130 m 2 / g.
  • the specific surface area is less than 50 m 2 / g, the binding capacity may be inferior, while if it exceeds 150 m 2 / g, the strength of the support is inferior and the support is broken under high flow rate, Column pressure may increase.
  • the “specific surface area” in the present specification is a value obtained by dividing the surface area of pores having a pore diameter of 10 to 5000 nm obtained by a mercury porosimeter by the dry weight of particles.
  • the solid support is preferably 100 to 1400 nm, more preferably 100 to 400 nm, more preferably 200 to 300 nm when the support is a synthetic polymer, more preferably 500 to 500 nm when the support is a polysaccharide. It has a volume average pore size of 1400 nm, more preferably 800 to 1200 nm.
  • the “volume-average pore diameter” in the present specification is the volume-average pore diameter of pores with a pore diameter of 10 to 5000 nm obtained by a mercury porosimeter.
  • the solid phase support satisfies the particle diameter, specific surface area, and pore diameter distribution in the above range, the gaps between the particles serving as the flow path of the solution to be purified and the relatively large pore diameter in the particles and the binding of the molecule to be purified
  • the surface area balance is optimized to keep the binding capacity at high flow rates at high levels.
  • the material of the solid phase support is, for example, a polymer having a hydrophilic surface, and for example, a hydroxy group (-OH), a carboxy group (-COOH) on the outer surface (and also on the inner surface if present) , An aminocarbonyl group (-CONH 2 or N-substituted type), an amino group (-NH 2 or substituted type), or a polymer having an oligo or polyethyleneoxy group.
  • the polymer may be a synthetic polymer such as polymethacrylate, polyacrylamide, polystyrene, polyvinyl alcohol and the like, and preferably, it is preferably co-crosslinked with a polyfunctional monomer such as polyfunctional (meth) acrylate and divinylbenzene. It is a synthetic polymer such as a polymer.
  • synthetic polymers are readily prepared by known methods (see, for example, the methods described in J. MATER. CHEM 1991, 1 (3), 371-374). Alternatively, commercially available products such as Toyopearl (Tosoh Corporation) are also used.
  • the polymer is a polysaccharide such as dextran, starch, cellulose, pullulan, agarose and the like.
  • polysaccharides are easily produced by known methods (see, for example, the method described in Patent No. 4081143).
  • commercially available products such as Sepharose (GE Healthcare Biosciences) are also used.
  • Sepharose GE Healthcare Biosciences
  • it may be an inorganic support such as silica or zirconium oxide.
  • porous particles used as the solid phase carrier for example, 20 to 50% by mass of a crosslinkable vinyl monomer and 3 to 80% by mass of an epoxy group-containing vinyl monomer Body, containing 20 to 80% by mass of a copolymer with a diol group-containing vinyl monomer, having a particle size of 20 to 80 ⁇ m, a specific surface area of 50 to 150 m 2 / g, and a volume average pore diameter Porous organic polymer particles having a size of 100 to 400 nm can be mentioned.
  • the penetration volume (pore volume) of pores with a pore diameter of 10 to 5000 nm when the solid support is measured with a mercury porosimeter is preferably 1.3 to 7.0 mL / g, and the carrier is a synthetic polymer.
  • the carrier is more preferably 1.3 to 2.5 mL / g, and more preferably 3.0 to 6.0 mL / g.
  • the method for attaching a ligand (ie, the protein of the present invention) to the solid phase carrier can be carried out using a general method of immobilizing a protein on a carrier.
  • a carrier having a carboxy group the carboxy group is activated with N-hydroxysuccinimide and reacted with the amino group of the ligand; using a carrier having an amino group or a carboxy group, dehydration of a water-soluble carbodiimide or the like
  • the alcoholic hydroxyl group which is a ring-opened epoxy group formed by ring-opening of an epoxy group, hydrophilizes the surface of the carrier to prevent non-specific adsorption of proteins etc. and improve the toughness of the carrier in water, under high flow rate. It serves to prevent the destruction of the carrier. Therefore, when the residual epoxy group not bound to the ligand is present in the carrier after the ligand is immobilized, it is preferable to open the residual epoxy group.
  • carrier the method of stirring this support
  • the epoxy group may be ring-opened with a blocking agent having a mercapto group such as mercaptoethanol and thioglycerol, or a blocking agent having an amino group such as monoethanolamine.
  • a more preferable ring-opened epoxy group is a ring-opened epoxy group obtained by ring-opening an epoxy group contained in a carrier with thioglycerol. Thioglycerol is less toxic than mercaptoethanol etc. as a raw material, and the epoxy ring-opened group to which thioglycerol is added has lower non-specific adsorption than the ring-opened group by the blocking agent having an amino group, and dynamic binding It has the advantage that the amount is high.
  • the solid support and the protein of the present invention are linked via a linker for binding the protein of the present invention described above to the solid support.
  • the linker is contained in the protein of the present invention as described above, and the linker moiety reacts with the solid phase carrier to bind the solid phase carrier and the protein of the present invention.
  • the protein of the present invention can be bound to the linker previously bound to the solid support.
  • the carrier for affinity chromatography of the present invention has a ligand with high immunoglobulin binding ability, and thus has high immunoglobulin dynamic binding capacity (DBC) and high ligand utilization efficiency.
  • DBC immunoglobulin dynamic binding capacity
  • a method of isolating an antibody or fragment thereof according to one embodiment of the present invention is described.
  • the method for isolating the antibody or fragment thereof according to the present embodiment is carried out by passing the sample containing the antibody or fragment thereof into the carrier for affinity chromatography on which the protein for affinity chromatography ligand of the present invention is immobilized.
  • a step of adsorbing the antibody or fragment thereof to the carrier (first step), and a step of eluting the antibody or fragment thereof from the carrier (second step) are included.
  • the sample containing the antibody or its fragment is flowed in a column or the like packed with the carrier for affinity chromatography of the present invention under the condition that the antibody or its fragment is adsorbed to the ligand (the protein of the present invention) .
  • the carrier may be washed with a neutral buffer containing a salt such as NaCl, if necessary, in order to remove some of the substances weakly retained by the ligand.
  • an appropriate buffer of pH 2-5 is applied to elute the antibody or fragment thereof adsorbed to the ligand. By collecting this eluate, the antibody or fragment thereof can be isolated from the sample.
  • the antibody or fragment thereof to be isolated may be an antibody or fragment thereof, or a medicament comprising them. Therefore, in one embodiment, the present invention provides a method for producing an antibody drug using the carrier for affinity chromatography of the present invention.
  • the procedure of the method is basically the same as the procedure of the method for isolating an antibody or a fragment thereof described above except that a sample containing an antibody drug of interest is used.
  • the purified protein was concentrated and desalted by Tangential Flow Filteration against 10 mM citrate buffer.
  • the theoretical molecular weight [Da] of the obtained recombinant ligand protein was determined using ExPASy ([web.expasy.org/protparam/]).
  • the purity and molecular weight of the recombinant ligand protein were measured using LC-MS (Waters). The purity (LC purity) was determined as a percentage of the peak area of IgGBP0 to the total area of all peaks detected on the chromatogram of LC-MS.
  • Examples 1 to 3 Preparation of recombinant ligand protein: IgGBP1 to IgGBP3 A plasmid encoding a recombinant ligand protein IgGBP1 consisting of the amino acid sequence shown in SEQ ID NO: 17, a recombinant ligand protein IgGBP2 consisting of the amino acid sequence shown in SEQ ID NO: 18 And a plasmid encoding a recombinant ligand protein IgGBP3 consisting of the amino acid sequence shown in SEQ ID NO: 19. Using these plasmids, a recombinant ligand protein was prepared in the same manner as in Comparative Example 1.
  • IgGBPs 1, 2 and 3 contain the amino acid sequence shown by SEQ ID NO: 16 linked by an inter-domain linker shown in Table 1, respectively.
  • the theoretical molecular weight, LC purity and measured molecular weight of the obtained recombinant ligand protein were measured in the same manner as in Comparative Example 1.
  • IgGBP4 A plasmid encoding a recombinant ligand protein IgGBP4 consisting of the amino acid sequence shown in SEQ ID NO: 21 was prepared. Using this plasmid, a recombinant ligand protein was prepared in the same manner as in Comparative Example 1. IgGBP4 comprises the amino acid sequence shown by SEQ ID NO: 16 linked by an inter-domain linker (Patent Document 1) consisting of repeating units of GGSGGS. The theoretical molecular weight, LC purity and measured molecular weight of the obtained recombinant ligand protein were measured in the same manner as in Comparative Example 1.
  • Test Example 1 (1) Preparation of Ligand Protein-Immobilized Porous Particles With respect to the porous particles PB obtained in Reference Example 1, 1.2 M sodium sulfate / 0. 2 so that the amount of ligand protein per 1 g of particles is 0.15 g.
  • the ligand protein of Example 1-3 or Comparative Example 1-2 and PB are mixed in a solution containing 1 M sodium carbonate buffer (pH 8.8), shaken for 5 hours at 25 ° C., ligand protein-immobilized porous particles ( IgGBP0 / PB, IgGBP1 / PB, IgGBP2 / PB, IgGBP3 / PB, and IgGBP4 / BP) were obtained. The epoxy groups remaining on these particles were blocked with thioglycerol. The particles were then washed with 0.5 M NaOH and 0.1 M citrate buffer (pH 3.2) and finally suspended in PBS.
  • IgG Dynamic Binding Capacity (DBC) IgGBP0 / BP was packed in a column with an inner diameter of 0.5 cm to a bed height of 20 cm. After equilibrating the column with 20 mM phosphate buffer (pH 7.5), flow 20 mM phosphate buffer (pH 7.5) containing human polyclonal IgG (5 mg / mL) at a linear flow rate of 300 cm / hour and elute with absorbance monitor Dynamic binding capacity (DBC) was determined from the amount of human polyclonal IgG adsorbed and the carrier volume when the concentration of human polyclonal IgG in the solution was 10% breakthrough (breakthrough).
  • DSC absorbance monitor Dynamic binding capacity
  • the DBC of IgGBP1 / PB to IgGBP4 / PB was determined in the same manner. Furthermore, for each particle, DBC was divided by the amount of ligand binding, and the relative value (%) of the obtained value to the value of Comparative Example 1 was determined to calculate the ligand utilization efficiency.
  • the particles immobilized with any of the ligand proteins IgGBP1 to 3 which are ligand proteins respectively containing the inter-domain linkers of Examples 1 to 3 are the ligand proteins which do not contain the linker of Comparative Example 1 are IgGBP0.
  • DBC and ligand utilization efficiency was improved as compared to immobilized particles. Furthermore, it was found from the comparison of Examples 1 and 2 that the ligand utilization efficiency tends to further increase as the length of the inter-domain linker increases.
  • particles on which any one of IgGBPs 1 to 3 is immobilized are compared to particles on which IgGBP 4 (comparative example 2), which is a ligand protein containing a linker (Patent Document 1) consisting of repeating units of GGSGGS, is immobilized. DBC and ligand utilization efficiency was improved.
  • the present invention includes configurations substantially the same as the configurations of the embodiments described above (for example, configurations having the same function, method and result, or configurations having the same purpose and result).
  • the present invention also includes configurations in which nonessential parts of the configurations of the embodiments described above are replaced.
  • the present invention also includes configurations that can achieve the same effects or the same objects as the configurations of the embodiments described above.
  • the present invention also includes a configuration in which a known technique is added to the configuration of the embodiment described above.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Biochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Zoology (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Medicinal Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Microbiology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Cell Biology (AREA)
  • Plant Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Peptides Or Proteins (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

Provided is a carrier for affinity chromatography having high immunoglobulin purification efficiency. This protein contains two or more domains linked together by a linker. The domains have affinity to immunoglobulins. The linker is a peptide having a rod-shaped structure, or the linker includes (a) a linker comprising a polypeptide containing at least one proline and/or (b) a linker comprising a polypeptide including at least one peptide unit comprising Xa-(A)i-Xb or Xb-(A)i-Xa (where Xa represents an acidic amino acid, Xb represents a basic amino acid, A represents alanine, and i represents an integer of 3 or 4).

Description

タンパク質、及び当該タンパク質を含む担体を用いる抗体又はその断片の単離方法Protein and method for isolating antibody or fragment thereof using carrier containing said protein
 本発明は、アフィニティークロマトグラフィーリガンドとして利用可能なタンパク質、及び該タンパク質を含む担体を用いる抗体又はその断片の単離方法に関する。 The present invention relates to a protein available as an affinity chromatography ligand, and a method for isolating an antibody or a fragment thereof using a carrier containing the protein.
 アフィニティークロマトグラフィーにおいては、分離すべき目的の物質と特異的に結合する物質(リガンド)を固定化した担体が使用される。黄色ブドウ球菌(Staphylococcus aureus)プロテインA(SpA)及びその変異体は、イムノグロブリンに対して特異的に結合するタンパク質であり、代表的なアフィニティークロマトグラフィーリガンドの1つである。天然のSpAには、イムノグロブリン結合ドメインとして、N末端から順にE、D、A、B及びCの5つのドメインが含まれる。これらのドメイン、及びBドメインの改変型ドメインであるZドメインは、アフィニティークロマトグラフィーリガンドとして一般的に使用されている。さらに、アフィニティークロマトグラフィー担体のイムノグロブリン結合能を高める目的で、上記ドメインを複数連結させたものをリガンドとして用いることも一般的である。 In affinity chromatography, a carrier on which a substance (ligand) that specifically binds to a target substance to be separated is immobilized is used. Staphylococcus aureus protein A (SpA) and its variants are proteins that bind specifically to immunoglobulins and are one of the representative affinity chromatography ligands. Natural SpA contains five domains of E, D, A, B and C in order from the N-terminus as immunoglobulin binding domains. These domains, and Z domains, which are modified domains of B domains, are commonly used as affinity chromatography ligands. Furthermore, for the purpose of enhancing the immunoglobulin binding ability of the affinity chromatography carrier, it is also common to use a plurality of linked domains described above as a ligand.
 複数のタンパク質を人工的に連結させる場合、各タンパク質の間にスペーサー又はリンカーと呼ばれる短いペプチド配列を挿入することがある。スペーサー又はリンカーは、連結されたタンパク質複合体の立体構造や活性の維持のために使用される。非特許文献1には、インターフェロンγ(INF-γ)-gp120融合タンパク質において、2つのタンパク質の間に10~34残基のアラニン-プロリンリンカーを挿入したこと、及び、該融合タンパク質のINF-γ活性は、リンカーの長さが短い場合には低いが、リンカー長が34残基のときには本来の88%まで上昇したことが記載されている。非特許文献2には、ヒト血清アルブミン-IFN-α2b融合タンパク質の2つのタンパク質の間にリンカーを挿入したことにより、融合タンパク質の収率や安定性が向上したこと、リンカーなしの融合タンパク質に比べて抗ウイルス活性が上昇していること、リンカーの長さは5残基で充分であったことが記載されている。特許文献1には、イムノグロブリンのFc領域に結合するドメインを、GGSGGSの繰り返し単位からなるリンカーで複数個連結させたタンパク質が、アフィニティ精製の際、中性域ではイムノグロブリンに対する結合性を維持し、弱酸性域ではイムノグロブリンを解離することができることが記載されている。 When multiple proteins are artificially linked, short peptide sequences called spacers or linkers may be inserted between the proteins. Spacers or linkers are used to maintain the conformation and activity of the linked protein complex. In Non-Patent Document 1, in the interferon γ (INF-γ) -gp120 fusion protein, an alanine-proline linker of 10 to 34 residues is inserted between two proteins, and IFN-γ of the fusion protein The activity is described to be low when the linker length is short, but increased to 88% of the original when the linker length is 34 residues. In Non-Patent Document 2, insertion of a linker between two proteins of human serum albumin-IFN-α2b fusion protein improves the yield and stability of the fusion protein, as compared to a fusion protein without a linker. It is described that the antiviral activity was increased, and that the length of the linker was sufficient at 5 residues. In Patent Document 1, a protein in which a plurality of domains, each of which binds to the Fc region of an immunoglobulin, is linked by a linker consisting of GGSGGS repeat units, maintains affinity for immunoglobulin in the neutral region during affinity purification. It is described that immunoglobulins can be dissociated in weakly acidic regions.
国際公開公報第2015/050153号International Publication No. 2015/050153
 アフィニティークロマトグラフィー担体上でのイムノグロブリン結合ドメイン数の増加は、それに比例した該担体のイムノグロブリン結合能又は精製効率の上昇には必ずしも結びついていなかった。これは、連結した複数のドメイン同士の干渉や、リガンドに結合したイムノグロブリンの影響で、ドメインとイムノグロブリンとの結合が阻害されることによるものと推測される。本発明は、イムノグロブリンとの結合能の高いアフィニティークロマトグラフィーリガンド、及びそれを用いたイムノグロブリン精製効率の高いアフィニティークロマトグラフィー用担体の提供に関する。 The increase in the number of immunoglobulin binding domains on the affinity chromatography support was not necessarily linked to the proportional increase in the immunoglobulin binding capacity or purification efficiency of the support. It is presumed that this is due to the interference between a plurality of linked domains and the effect of immunoglobulin bound to a ligand that the binding between the domain and the immunoglobulin is inhibited. The present invention relates to an affinity chromatography ligand having a high ability to bind to immunoglobulin and a carrier for affinity chromatography having high immunoglobulin purification efficiency using the same.
 したがって、本発明は以下を提供する。
〔1〕リンカーで連結された2個以上のドメインを含み、該ドメインはイムノグロブリンに対する親和性を有し、該リンカーはロッド状構造を有するペプチドである、タンパク質。
〔2〕リンカーで連結された2個以上のドメインを含むタンパク質であって、
 該ドメインはイムノグロブリンに対する親和性を有し、
 該リンカーは、少なくとも1個のプロリンを含むポリペプチドからなるリンカー(a)、及びX-(A)-X又はX-(A)-Xからなるペプチド単位を少なくとも1個含むポリペプチドからなるリンカー(b)(但し、Xは酸性アミノ酸であり、Xは塩基性アミノ酸であり、Aはアラニンであり、iは3又は4の整数である)の少なくとも一方を含む、
タンパク質。
〔3〕前記リンカー(a)が長さ8アミノ酸以上のポリペプチドからなる、〔2〕記載のタンパク質。
〔4〕前記リンカー(a)が、Pro-Xaa及びXaa-Proからなる群より選択されるペプチド単位を合計で4個以上含む、〔3〕記載のタンパク質。
〔5〕XaaがPro以外のアミノ酸である、〔4〕記載のタンパク質。
〔6〕XaaがAlaである、〔4〕記載のタンパク質。
〔7〕前記リンカーが4個以上のAla-Pro単位からなる、〔4〕記載のタンパク質。
〔8〕前記リンカー(b)が長さ10アミノ酸以上のポリペプチドからなる、〔2〕記載のタンパク質。
〔9〕前記リンカー(b)が、Glu-(Ala)-Arg、Glu-(Ala)-Lys、Asp-(Ala)-Arg、Asp-(Ala)-Lys、Arg-(Ala)-Glu、Lys-(Ala)-Glu、Arg-(Ala)-Asp、及びLys-(Ala)-Aspからなる群より選択されるペプチド単位を合計で2個以上含む、〔2〕記載のタンパク質。
〔10〕前記ペプチド単位が、Glu-(Ala)3-Lys又はLys-(Ala)3-Gluである、〔9〕記載のタンパク質。
〔11〕前記リンカーのN末端が前記2個以上のドメインのいずれか1つのC末端に結合し、かつ該リンカーのC末端が別のドメインのN末端に結合する、〔1〕~〔10〕のいずれか1項記載のタンパク質。
〔12〕前記2個以上のドメインの各々が、プロテインAもしくはプロテインLのイムノグロブリン結合ドメイン又はその変異体である、〔1〕~〔11〕のいずれか1項記載のタンパク質。
〔13〕前記2個以上のドメインの各々が、配列番号3~10のいずれかで示されるアミノ酸配列からなるポリペプチド、及び配列番号3~10のいずれかで示されるアミノ酸配列と少なくとも85%の同一性を有するアミノ酸配列からなり、かつイムノグロブリン結合活性を有するポリペプチド、からなる群より選択される、〔12〕記載のタンパク質。
〔14〕前記ドメインを3~8個含む、〔1〕~〔13〕のいずれか1項記載のタンパク質。
〔15〕アフィニティークロマトグラフィーリガンドである、〔1〕~〔14〕のいずれか1項記載のタンパク質。
〔16〕〔1〕~〔15〕のいずれか1項記載のタンパク質をコードするポリヌクレオチド。
〔17〕〔16〕記載のポリヌクレオチドを含むベクター。
〔18〕〔17〕記載のベクターを含むベクター形質転換体。
〔19〕固相担体と、該固相担体に結合した〔1〕~〔15〕のいずれか1項記載のタンパク質とを含む、アフィニティークロマトグラフィー用担体。
〔20〕〔19〕記載のアフィニティークロマトグラフィー用担体を用いる、抗体又はその断片の単離方法。
Accordingly, the present invention provides the following.
[1] A protein comprising two or more domains linked by a linker, wherein the domains have an affinity for immunoglobulin, and the linker is a peptide having a rod-like structure.
[2] A protein comprising two or more domains linked by a linker,
The domain has an affinity for immunoglobulins and
The linker, a linker comprising a polypeptide comprising at least one proline (a), and X a - (A) i -X b or X b - at least one (A) consisting of i -X a peptide units Containing at least one of the following linkers (b) (wherein X a is an acidic amino acid, X b is a basic amino acid, A is alanine and i is an integer of 3 or 4): ,
protein.
[3] The protein according to [2], wherein the linker (a) comprises a polypeptide having a length of 8 amino acids or more.
[4] The protein according to [3], wherein the linker (a) contains 4 or more in total of peptide units selected from the group consisting of Pro-Xaa and Xaa-Pro.
[5] The protein according to [4], wherein Xaa is an amino acid other than Pro.
[6] The protein according to [4], wherein Xaa is Ala.
[7] The protein according to [4], wherein the linker consists of 4 or more Ala-Pro units.
[8] The protein according to [2], wherein the linker (b) comprises a polypeptide having a length of 10 amino acids or more.
[9] The linker (b) is Glu- (Ala) i- Arg, Glu- (Ala) i- Lys, Asp- (Ala) i- Arg, Asp- (Ala) i- Lys, Arg- (Ala) ) i -Glu, including Lys- (Ala) i -Glu, Arg- (Ala) i -Asp, and Lys- (Ala) i 2 or more in total peptide units selected from the group consisting -Asp, [ 2] The described protein.
[10] The protein according to [9], wherein the peptide unit is Glu- (Ala) 3 -Lys or Lys- (Ala) 3 -Glu.
[11] The N-terminus of the linker is linked to the C-terminus of any one of the two or more domains, and the C-terminus of the linker is linked to the N-terminus of another domain, [1] to [10] The protein according to any one of
[12] The protein according to any one of [1] to [11], wherein each of the two or more domains is an immunoglobulin binding domain of protein A or protein L or a variant thereof.
[13] A polypeptide, wherein each of the two or more domains consists of the amino acid sequence shown in any of SEQ ID NOs: 3 to 10, and at least 85% with the amino acid sequence shown in any of SEQ ID NOs: 3 to 10 The protein according to [12], which is selected from the group consisting of an amino acid sequence having identity and a polypeptide having immunoglobulin binding activity.
[14] The protein according to any one of [1] to [13], comprising 3 to 8 of the domains.
[15] The protein according to any one of [1] to [14], which is an affinity chromatography ligand.
[16] A polynucleotide encoding a protein according to any one of [1] to [15].
[17] A vector comprising the polynucleotide of [16].
[18] A vector transformant comprising the vector of [17].
[19] A carrier for affinity chromatography, which comprises a solid phase carrier and the protein according to any one of [1] to [15] bound to the solid phase carrier.
[20] [19] A method of isolating an antibody or a fragment thereof, using the carrier for affinity chromatography according to [20].
 本発明のアフィニティークロマトグラフィー用担体においては、リガンド中のイムノグロブリン結合ドメイン間に特定のリンカーを介在させることで、リガンドのイムノグロブリン結合能を向上させ、アフィニティークロマトグラフィー用担体のイムノグロブリン精製効率を向上させることができる。本発明では、リガンドタンパク質中のイムノグロブリン結合ドメインを変異させなくとも、それらドメインを連結するリンカーを改変することで、アフィニティークロマトグラフィー用担体におけるイムノグロブリン動的結合容量(DBC)及びリガンド利用効率を向上させる。本発明のアフィニティークロマトグラフィー用担体は、既存のイムノグロブリン結合ドメイン用リンカー、例えばGGSGGSの繰り返し単位からなるリンカー(特許文献1)を用いたリガンドタンパク質を含む担体と比べて、イムノグロブリンのDBC及びリガンド利用効率が向上する。 In the carrier for affinity chromatography of the present invention, the immunoglobulin binding ability of the ligand is improved by interposing a specific linker between the immunoglobulin binding domains in the ligand, and the immunoglobulin purification efficiency of the carrier for affinity chromatography is improved. It can be improved. In the present invention, the immunoglobulin dynamic binding capacity (DBC) and ligand utilization efficiency in a carrier for affinity chromatography can be obtained by modifying the linker that links the immunoglobulin binding domains in the ligand protein without mutating the immunoglobulin binding domains. Improve. The carrier for affinity chromatography of the present invention can be compared to a carrier containing a ligand protein using a conventional linker for immunoglobulin binding domain, for example, a linker consisting of a repeating unit of GGSGGS (Patent Document 1), an immunoglobulin DBC and a ligand Utilization efficiency is improved.
 本明細書において、アミノ酸配列やヌクレオチド配列の同一性は、カーリンとアルチュールによるアルゴリズムBLAST(Pro. Natl. Acad. Sci. USA, 1993, 90:5873-5877)を用いて決定することができる。このBLASTアルゴリズムに基づいて、BLASTN、BLASTX、BLASTP、TBLASTN及びTBLASTXとよばれるプログラムが開発されている(J. Mol. Biol., 1990, 215:403-410)。これらのプログラムを用いる場合には、各プログラムのデフォルトパラメーターを用いる。これらの解析方法の具体的な手法は公知である(www.ncbi.nlm.nih.gov参照)。 In the present specification, the identity of amino acid sequences and nucleotide sequences can be determined using the algorithm BLAST by Carlin and Artur (Pro. Natl. Acad. Sci. USA, 1993, 90: 5873-5877). Based on this BLAST algorithm, programs called BLASTN, BLASTX, BLASTP, TBLASTN and TBLASTX have been developed (J. Mol. Biol., 1990, 215: 403-410). When using these programs, use the default parameters of each program. Specific procedures for these analysis methods are known (see www.ncbi.nlm.nih.gov).
 本明細書において、アミノ酸配列及びヌクレオチド配列に関する「少なくとも85%の同一性」とは、85%以上の同一性、好ましくは90%以上の同一性、より好ましくは95%以上の同一性、さらに好ましくは97%以上の同一性、さらに好ましくは98%以上の同一性、なお好ましくは99%以上の同一性をいう。 In the present specification, "at least 85% identity" with respect to the amino acid sequence and nucleotide sequence means 85% or more identity, preferably 90% or more identity, more preferably 95% or more identity, more preferably Is 97% or more identity, more preferably 98% or more identity, still more preferably 99% or more identity.
 本明細書において、アミノ酸配列及びヌクレオチド配列上の「相当する位置」は、目的配列と参照配列(例えば、配列番号1で示されるアミノ酸配列)とを、各アミノ酸配列又はヌクレオチド配列中に存在する保存アミノ酸残基又はヌクレオチドに最大の相同性を与えるように整列(アラインメント)させることにより決定することができる。アラインメントは、公知のアルゴリズムを用いて実行することができ、その手順は当業者に公知である。例えば、アラインメントは、Clustal Wマルチプルアラインメントプログラム(Thompson, J. D. et al, 1994, Nucleic Acids Res., 22:4673-4680)をデフォルト設定で用いることにより行うことができる。Clustal Wは、例えば、欧州バイオインフォマティクス研究所(European Bioinformatics Institute: EBI [www.ebi.ac.uk/index.html])や、国立遺伝学研究所が運営する日本DNAデータバンク(DDBJ [www.ddbj.nig.ac.jp/Welcome-j.html])のウェブサイト上で利用することができる。 In the present specification, the “corresponding position” on the amino acid sequence and nucleotide sequence refers to the conservation that the target sequence and the reference sequence (eg, the amino acid sequence shown in SEQ ID NO: 1) are present in each amino acid sequence or nucleotide sequence It can be determined by aligning the amino acid residues or nucleotides so as to give the greatest homology. Alignment can be performed using known algorithms, the procedures of which are known to those skilled in the art. For example, alignment can be performed using the Clustal W multiple alignment program (Thompson, J. D. et al, 1994, Nucleic Acids Res., 22: 4673-4680) with default settings. Clustal W is, for example, the Japan Bioinformatics Institute (EBI [www.ebi.ac.uk/index.html]) or the Japanese DNA databank (DDBJ [www. ddbj.nig.ac.jp/Welcome-j.html] can be used on the website.
 本明細書において、アミノ酸残基は次の略号でも記載される:アラニン(Ala又はA)、アルギニン(Arg又はR)、アスパラギン(Asn又はN)、アスパラギン酸(Asp又はD)、システイン(Cys又はC)、グルタミン(Gln又はQ)、グルタミン酸(Glu又はE)、グリシン(Gly又はG)、ヒスチジン(His又はH)、イソロイシン(Ile又はI)、ロイシン(Leu又はL)、リジン(Lys又はK)、メチオニン(Met又はM)、フェニルアラニン(Phe又はF)、プロリン(Pro又はP)、セリン(Ser又はS)、トレオニン(Thr又はT)、トリプトファン(Trp又はW)、チロシン(Tyr又はY)、バリン(Val又はV);及び任意のアミノ酸残基(Xaa又はX)。また本明細書において、任意の酸性アミノ酸残基(例えばアスパラギン酸又はグルタミン酸)はXで表され、任意の塩基性アミノ酸残基(例えばアルギニン、トリプトファン、ヒスチジン又はリジン)はXで表される。また本明細書において、ペプチドのアミノ酸配列は、常法に従って、アミノ末端(以下N末端という)が左側、カルボキシル末端(以下C末端という)が右側に位置するように記載される。 In the present specification, amino acid residues are also described by the following abbreviations: alanine (Ala or A), arginine (Arg or R), asparagine (Asn or N), aspartic acid (Asp or D), cysteine (Cys or C) glutamine (Gln or Q), glutamic acid (Glu or E), glycine (Gly or G), histidine (His or H), isoleucine (Ile or I), leucine (Leu or L), lysine (Lys or K) ), Methionine (Met or M), phenylalanine (Phe or F), proline (Pro or P), serine (Ser or S), threonine (Thr or T), tryptophan (Trp or W), tyrosine (Tyr or Y) Valine (Val or V); and any amino acid residue (Xaa or X). Also herein, any acidic amino acid residue (eg aspartic acid or glutamic acid) is represented by X a and any basic amino acid residue (eg arginine, tryptophan, histidine or lysine) is represented by X b . Also in the present specification, the amino acid sequence of the peptide is described according to a conventional method such that the amino terminus (hereinafter referred to as N-terminus) is located on the left and the carboxyl terminus (hereinafter referred to as C-terminus) on the right.
 本明細書において、プロテインAとは、黄色ブドウ球菌(Staphylococcus aureus)の細胞壁成分であるプロテインAをいう。本明細書において、プロテインLとは、Finegoldia magnaによって生産される蛋白質の1種であるプロテインLをいう。 In the present specification, protein A refers to protein A which is a cell wall component of Staphylococcus aureus (Staphylococcus aureus). As used herein, protein L refers to protein L, which is one of the proteins produced by Finegoldia magna.
 本明細書において、「イムノグロブリン」(Ig)とは、IgG、IgA、IgD、IgE、IgM、及びこれらのサブクラス等の任意のクラスのイムノグロブリンを含む。本明細書における「抗体」は、イムノグロブリン又は抗原認識部位を含むその断片をいい、例えば、IgG、IgA、IgD、IgE、IgM、及びこれらのサブクラス等の任意のクラスのイムノグロブリン、その断片、それらの変異体などを含み得る。また本明細書における「抗体」は、ヒト化抗体等のキメラ抗体、抗体複合体、及び抗原認識部位を含む他のイムノグロブリン修飾体などであってもよい。また本明細書における「抗体の断片」は、抗原認識部位を含む抗体の断片であっても、抗原認識部位を含まない抗体の断片であってもよい。抗原認識部位を含まない抗体の断片としては、例えばイムノグロブリンのFc領域のみからなるタンパク質、Fc融合タンパク質、及びそれらの変異体や修飾体などが挙げられる。 As used herein, "immunoglobulin" (Ig) includes any class of immunoglobulin such as IgG, IgA, IgD, IgE, IgM, and their subclasses. The term "antibody" as used herein refers to an immunoglobulin or a fragment thereof containing an antigen recognition site, for example, an immunoglobulin of any class such as IgG, IgA, IgD, IgE, IgM and their subclasses, a fragment thereof, They may include variants thereof. Furthermore, the "antibody" in the present specification may be a chimeric antibody such as a humanized antibody, an antibody complex, and other modified immunoglobulins containing an antigen recognition site. In the present specification, "a fragment of an antibody" may be a fragment of an antibody containing an antigen recognition site or a fragment of an antibody not containing an antigen recognition site. Examples of antibody fragments that do not contain an antigen recognition site include proteins consisting of only the Fc region of immunoglobulins, Fc fusion proteins, and variants and modifications thereof.
 本明細書において、「イムノグロブリンに対する親和性を有するドメイン」又は「イムノグロブリン結合ドメイン」とは、タンパク質中に含まれる、単独でイムノグロブリン結合活性を有するポリペプチドの機能単位をいう。本明細書における「イムノグロブリンに対する親和性を有する」とは、好ましくはイムノグロブリン分子の相補性決定領域(CDR)以外の領域への結合性を有し、より好ましくは少なくともFcフラグメントへの結合性を有することをいう。なお、イムノグロブリンに対する親和性を有するドメインを、以下、単にドメインともいうことがある。 As used herein, "a domain having affinity for immunoglobulin" or "immunoglobulin binding domain" refers to a functional unit of a polypeptide having immunoglobulin binding activity alone, which is contained in a protein. In the present specification, "having an affinity to an immunoglobulin" preferably refers to binding to a region other than the complementarity determining region (CDR) of an immunoglobulin molecule, and more preferably binding to at least an Fc fragment. To have. In addition, the domain which has the affinity to immunoglobulin may be only hereafter called a domain.
 本明細書における「イムノグロブリンに対する親和性を有するドメイン」又は「イムノグロブリン結合ドメイン」の好ましい例としては、Fc結合性タンパク、プロテインAのイムノグロブリン結合ドメイン、プロテインLのイムノグロブリン結合ドメイン、ならびにイムノグロブリン結合活性を有するそれらの変異体が挙げられる。このうち、プロテインAのイムノグロブリン結合ドメイン、プロテインLのイムノグロブリン結合ドメイン、ならびにイムノグロブリン結合活性を有するそれらの変異体がより好ましい例として挙げられる。 Preferred examples of the “domain having affinity to immunoglobulin” or “immunoglobulin binding domain” in the present specification include Fc binding protein, immunoglobulin binding domain of protein A, immunoglobulin binding domain of protein L, and immuno Those variants having globulin binding activity are mentioned. Among these, the immunoglobulin binding domain of protein A, the immunoglobulin binding domain of protein L, and variants thereof having immunoglobulin binding activity are mentioned as more preferable examples.
 当該プロテインAのイムノグロブリン結合ドメインの例としては、プロテインAのAドメイン、Bドメイン、Cドメイン、Dドメイン、Eドメイン、及びBドメインの改変型ドメインであるZドメインが挙げられ、このうち、Bドメイン、Zドメイン、Cドメイン及びDドメインがより好ましい。プロテインAのAドメインは、配列番号1で示されるアミノ酸配列からなる。プロテインAのEドメインは、配列番号2で示されるアミノ酸配列からなる。プロテインAのBドメインは、配列番号3で示されるアミノ酸配列からなる。プロテインAのZドメインは、配列番号4で示されるアミノ酸配列からなる。プロテインAのCドメインは、配列番号5で示されるアミノ酸配列からなる。プロテインAのDドメインは、配列番号6で示されるアミノ酸配列からなる。 Examples of the immunoglobulin binding domain of protein A include protein A's A domain, B domain, C domain, D domain, E domain, and Z domain which is a modified domain of B domain, among which B More preferred are domain, Z domain, C domain and D domain. The A domain of protein A consists of the amino acid sequence shown in SEQ ID NO: 1. The E domain of protein A consists of the amino acid sequence shown in SEQ ID NO: 2. The B domain of protein A consists of the amino acid sequence shown in SEQ ID NO: 3. The Z domain of protein A consists of the amino acid sequence shown in SEQ ID NO: 4. The C domain of protein A consists of the amino acid sequence shown in SEQ ID NO: 5. The D domain of protein A consists of the amino acid sequence shown in SEQ ID NO: 6.
 当該プロテインLのイムノグロブリン結合ドメインの例としては、Finegoldia magna 312株が産生するプロテインLのB1ドメイン、B2ドメイン、B3ドメイン、B4ドメイン、及びB5ドメインや、F.magna 3316株が産生するプロテインLのC1ドメイン、C2ドメイン、C3ドメイン、及びC4ドメインが挙げられ、このうち、C1ドメイン、C2ドメイン、C3ドメイン及びC4ドメインがより好ましい。プロテインLのC1ドメインは、配列番号7で示されるアミノ酸配列からなる。プロテインLのC2ドメインは、配列番号8で示されるアミノ酸配列からなる。プロテインLのC3ドメインは、配列番号9で示されるアミノ酸配列からなる。プロテインLのC4ドメインは、配列番号10で示されるアミノ酸配列からなる。プロテインLのB1ドメインは、配列番号11で示されるアミノ酸配列からなる。プロテインLのB2ドメインは、配列番号12で示されるアミノ酸配列からなる。プロテインLのB3ドメインは、配列番号13で示されるアミノ酸配列からなる。プロテインLのB4ドメインは、配列番号14で示されるアミノ酸配列からなる。プロテインLのB5ドメインは、配列番号15で示されるアミノ酸配列からなる。 Examples of the immunoglobulin binding domain of the protein L include the B1 domain, the B2 domain, the B3 domain, the B4 domain, and the B5 domain of protein L produced by the Finegoldia magna 312 strain; The C1 domain, the C2 domain, the C3 domain and the C4 domain of protein L produced by the magna 3316 strain can be mentioned, and among these, the C1 domain, the C2 domain, the C3 domain and the C4 domain are more preferable. The C1 domain of protein L consists of the amino acid sequence shown in SEQ ID NO: 7. The C2 domain of protein L consists of the amino acid sequence shown in SEQ ID NO: 8. The C3 domain of protein L consists of the amino acid sequence shown in SEQ ID NO: 9. The C4 domain of protein L consists of the amino acid sequence shown in SEQ ID NO: 10. The B1 domain of protein L consists of the amino acid sequence shown in SEQ ID NO: 11. The B2 domain of protein L consists of the amino acid sequence shown in SEQ ID NO: 12. The B3 domain of protein L consists of the amino acid sequence shown in SEQ ID NO: 13. The B4 domain of protein L consists of the amino acid sequence shown in SEQ ID NO: 14. The B5 domain of protein L consists of the amino acid sequence shown in SEQ ID NO: 15.
 当該プロテインAのイムノグロブリン結合ドメインの変異体の例としては、配列番号1~6のいずれかで示されるアミノ酸配列と少なくとも85%の同一性を有するアミノ酸配列からなり、かつイムノグロブリン結合活性を有するポリペプチドが挙げられる。好ましくは、当該プロテインAのイムノグロブリン結合ドメインの変異体の例としては、配列番号3~6のいずれかで示されるアミノ酸配列と少なくとも85%の同一性を有するアミノ酸配列からなり、かつイムノグロブリン結合活性を有するポリペプチドが挙げられる。当該プロテインLのイムノグロブリン結合ドメインの変異体の例としては、配列番号7~15のいずれかで示されるアミノ酸配列と少なくとも85%の同一性を有するアミノ酸配列からなり、かつイムノグロブリン結合活性を有するポリペプチドが挙げられる。好ましくは、当該プロテインLのイムノグロブリン結合ドメインの変異体の例としては、配列番号7~10のいずれかで示されるアミノ酸配列と少なくとも85%の同一性を有するアミノ酸配列からなり、かつイムノグロブリン結合活性を有するポリペプチドが挙げられる。 An example of a variant of the immunoglobulin binding domain of protein A comprises an amino acid sequence having at least 85% identity to the amino acid sequence shown in any of SEQ ID NOs: 1 to 6, and has immunoglobulin binding activity Polypeptides are included. Preferably, an example of a variant of the immunoglobulin binding domain of protein A comprises an amino acid sequence having at least 85% identity to the amino acid sequence shown in any one of SEQ ID NOs: 3 to 6, and immunoglobulin binding Included are polypeptides having activity. An example of a variant of the immunoglobulin binding domain of said protein L consists of an amino acid sequence having at least 85% identity to the amino acid sequence shown in any of SEQ ID NO: 7 to 15, and has immunoglobulin binding activity Polypeptides are included. Preferably, as an example of a variant of the immunoglobulin binding domain of the protein L, it consists of an amino acid sequence having at least 85% identity to the amino acid sequence shown in any of SEQ ID NOs: 7 to 10, and immunoglobulin binding Included are polypeptides having activity.
 上記イムノグロブリン結合ドメインの変異体は、該ドメインのアミノ酸配列に対して、アミノ酸残基の付加、削除、置換又は欠失や、アミノ酸残基の化学的修飾等の改変を施すことによって作製することができる。アミノ酸残基の付加、削除、置換又は欠失の手段としては、上記ドメインをコードするポリヌクレオチドに対する部位特異的突然変異(Site-specific mutaion)等の公知の手段が挙げられる。 A variant of the above immunoglobulin binding domain is prepared by modifying the amino acid sequence of the domain by addition, deletion, substitution or deletion of amino acid residues, or chemical modification of amino acid residues. Can. Examples of means for addition, deletion, substitution or deletion of amino acid residues include known means such as site-specific mutation for a polynucleotide encoding the above-mentioned domain.
1.アフィニティークロマトグラフィーリガンド用タンパク質
 一実施形態において、本発明は、アフィニティークロマトグラフィーリガンドとして機能するタンパク質を提供する。当該本発明のタンパク質は、リンカーで連結された2個以上の、イムノグロブリンに対する親和性を有するドメインを含む。言い換えると、該本発明のタンパク質はリンカーで連結された2個以上のドメインを含み、該ドメインは、イムノグロブリンに対する親和性を有するドメインである。該ドメインを連結する該リンカーは、好ましくはロッド状構造を有するペプチドである。該ロッド状構造としては、例えば、針状、ヘリックス状、棒状等の構造が挙げられ、好ましくは、該ロッド状構造はヘリックス状又は棒状である。好ましい一実施形態において、該リンカーは、少なくとも1個のプロリンを含むリンカーである。別の好ましい一実施形態において、該リンカーは、酸性アミノ酸(X)と塩基性アミノ酸(X)を有するペプチドを含むリンカーである。
1. Proteins for Affinity Chromatography Ligands In one embodiment, the present invention provides proteins that function as affinity chromatography ligands. The protein of the present invention comprises two or more domains linked by a linker and having an affinity for immunoglobulin. In other words, the protein of the present invention comprises two or more domains linked by a linker, and the domains are domains having affinity for immunoglobulin. The linker linking the domains is preferably a peptide having a rod-like structure. The rod-like structure includes, for example, a needle-like, helical, rod-like structure, and preferably, the rod-like structure is helical or rod-like. In a preferred embodiment, the linker is a linker comprising at least one proline. In another preferred embodiment, the linker is a linker comprising a peptide having an acidic amino acid (X a ) and a basic amino acid (X b ).
 本発明のタンパク質に含まれるリンカーは、そのN末端が、本発明のタンパク質を構成する2個以上の、該イムノグロブリンに対する親和性を有するドメインのうちのいずれか1つと結合しており、かつ該リンカーのC末端は、本発明のタンパク質を構成する別のドメインと結合している。該リンカーが結合する該ドメイン上の位置は特に限定されない。また、該ドメイン1個に対して結合する該リンカーの個数も特に限定されない。したがって、本発明のタンパク質は、2個以上の該ドメインが該リンカーで直列に連結された構造を有していてもよく、又は2個以上の該ドメインが該リンカーで並列に連結された構造を有していてもよい。 The linker contained in the protein of the present invention is such that the N terminus is bound to any one of two or more domains having an affinity for the immunoglobulin constituting the protein of the present invention, and The C-terminus of the linker is linked to another domain that constitutes the protein of the invention. The position on the domain to which the linker binds is not particularly limited. Further, the number of the linkers bound to one domain is not particularly limited. Therefore, the protein of the present invention may have a structure in which two or more of the domains are connected in tandem with the linker, or a structure in which two or more of the domains are connected in parallel with the linker You may have.
 より好ましくは、本発明のタンパク質に含まれるリンカーは、そのN末端が、本発明のタンパク質を構成する2個以上の該ドメインのうちのいずれか1つのC末端と結合しており、かつそのC末端は、そのN末端が結合しているドメインとは別のドメインのN末端と結合している。好ましくは、本発明のタンパク質の基本構造は、このドメイン-リンカー単位の繰り返しからなる。結果、本発明のタンパク質は、好ましくは、2個以上の該ドメインが該リンカーを介して直列に連結された構造を有する。あるいは、1個の該ドメインのC末端領域の異なる位置に2つ以上の該リンカーをそれぞれ結合させ、その各々のリンカーにそれぞれ別のドメインを連結させてもよい(好ましくは、リンカーのN末端が1つのドメインのC末端領域と結合し、該リンカーのC末端は別のドメインのN末端と結合する)。そのように構築された本発明のタンパク質は、3個以上の該ドメインが該リンカーを介して並列に連結された構造を有し得る。 More preferably, the linker contained in the protein of the present invention is such that the N terminus is bound to the C terminus of any one of two or more of the domains constituting the protein of the present invention, and The end is linked to the N-terminus of a domain different from the domain to which the N-terminus is linked. Preferably, the basic structure of the protein of the invention consists of repeats of this domain-linker unit. As a result, the protein of the present invention preferably has a structure in which two or more of the domains are linked in tandem via the linker. Alternatively, two or more of the linkers may be respectively linked to different positions of the C-terminal region of one domain, and different domains may be linked to the respective linkers (preferably, the N-terminus of the linker is Conjugated to the C-terminal region of one domain, the C-terminus of the linker being coupled to the N-terminus of another domain). The protein of the present invention so constructed may have a structure in which three or more of the domains are linked in parallel via the linker.
 本発明の好ましい一実施形態において、本発明のタンパク質に含まれるリンカーは、プロリン含有リンカーである。該プロリン含有リンカーは、少なくとも1個のプロリンを含み、好ましくは2個以上のプロリンを含み、より好ましくは4個以上のプロリンを含み、さらに好ましくはPro-Xaa及びXaa-Proからなる群より選択されるペプチド単位を合計で4個以上含む。該プロリン含有リンカーに含まれるXaaは、Proを含む任意のアミノ酸であればよいが、好ましくはPro以外の任意のアミノ酸(すなわちAla、Arg、Asn、Asp、Cys、Gln、Glu、Gly、His、Ile、Leu、Lys、Met、Phe、Ser、Thr、Trp、Tyr又はVal)であり、より好ましくはAlaである。さらに好ましくは、該プロリン含有リンカーは、Pro-Ala及びAla-Proからなる群より選択されるペプチド単位を合計で4個以上含む。さらに好ましくは、該プロリン含有リンカーは、4個以上のAla-Pro単位からなる。さらに好ましくは、該プロリン含有リンカーは(Ala-Pro)nからなり、ここでnは整数で、4以上であればよく、好ましくは5以上、より好ましくは6以上であり、かつ25以下であればよく、好ましくは15以下、より好ましくは10以下、さらに好ましくは9以下である。例えば、nは整数で4~25、好ましくは4~15、より好ましくは5~15、さらに好ましくは4~10、さらに好ましくは5~10、さらに好ましくは5~9、さらに好ましくは6~10、さらに好ましくは6~9である。 In a preferred embodiment of the invention, the linker comprised in the protein of the invention is a proline-containing linker. The proline-containing linker comprises at least one proline, preferably comprises two or more prolines, more preferably comprises four or more prolines, more preferably selected from the group consisting of Pro-Xaa and Xaa-Pro Containing four or more peptide units in total. Xaa contained in the proline-containing linker may be any amino acid including Pro, but preferably any amino acid other than Pro (ie, Ala, Arg, Asn, Asp, Cys, GIn, Glu, Gly, His, Ile, Leu, Lys, Met, Phe, Ser, Thr, Trp, Tyr or Val), more preferably Ala. More preferably, the proline-containing linker comprises a total of four or more peptide units selected from the group consisting of Pro-Ala and Ala-Pro. More preferably, the proline-containing linker consists of 4 or more Ala-Pro units. More preferably, the proline-containing linker consists of (Ala-Pro) n, where n is an integer, 4 or more, preferably 5 or more, more preferably 6 or more, and 25 or less. Preferably it is 15 or less, More preferably, it is 10 or less, More preferably, it is 9 or less. For example, n is an integer of 4 to 25, preferably 4 to 15, more preferably 5 to 15, still more preferably 4 to 10, still more preferably 5 to 10, still more preferably 5 to 9, more preferably 6 to 10 And more preferably 6 to 9.
 好ましくは、本発明のタンパク質に含まれるプロリン含有リンカーは、ドメイン各々への抗体の結合性向上の観点から、長さ8アミノ酸以上のポリペプチドからなるポリペプチドリンカーである。より好ましくは、該プロリン含有リンカーの長さは10アミノ酸以上であり、さらに好ましくは12アミノ酸以上である。該プロリン含有リンカーの長さの上限は、大腸菌等における組換えタンパク質の発現量の安定の観点から、好ましくは50アミノ酸以下、より好ましくは30アミノ酸以下、さらに好ましくは22アミノ酸以下、さらに好ましくは20アミノ酸以下、さらに好ましくは18アミノ酸以下である。好適には、該プロリン含有リンカーの長さは8~50アミノ酸、好ましくは8~30アミノ酸、より好ましくは10~30アミノ酸、さらに好ましくは10~22アミノ酸、さらに好ましくは8~20アミノ酸、さらに好ましくは10~20アミノ酸、さらに好ましくは10~18アミノ酸、さらに好ましくは12~20アミノ酸、さらに好ましくは12~18アミノ酸である。 Preferably, the proline-containing linker contained in the protein of the present invention is a polypeptide linker consisting of a polypeptide having a length of 8 amino acids or more, from the viewpoint of improving the avidity of the antibody to each domain. More preferably, the length of the proline-containing linker is 10 amino acids or more, and more preferably 12 amino acids or more. The upper limit of the length of the proline-containing linker is preferably 50 amino acids or less, more preferably 30 amino acids or less, still more preferably 22 amino acids or less, more preferably 20 amino acids or less from the viewpoint of stability of the expression amount of recombinant protein in E. coli It is an amino acid or less, more preferably 18 amino acids or less. Suitably, the proline-containing linker has a length of 8 to 50 amino acids, preferably 8 to 30 amino acids, more preferably 10 to 30 amino acids, still more preferably 10 to 22 amino acids, still more preferably 8 to 20 amino acids, more preferably Is 10 to 20 amino acids, more preferably 10 to 18 amino acids, more preferably 12 to 20 amino acids, and still more preferably 12 to 18 amino acids.
 本発明の別の好ましい一実施形態において、本発明のタンパク質に含まれるリンカーは、酸性アミノ酸(X)と塩基性アミノ酸(X)を有するペプチドを含むリンカー(本明細書においてXリンカーとも呼ぶ)である。該Xリンカーは、X-(A)-X又はX-(A)-Xからなるペプチド単位を含み、該Xリンカーに含まれる該ペプチド単位の個数は、少なくとも1個であればよく、好ましくは2個以上である;ここで、Xは、酸性アミノ酸(例えばアスパラギン酸又はグルタミン酸)であり、Xは、塩基性アミノ酸(例えばアルギニン、トリプトファン、ヒスチジン又はリジン、好ましくはアルギニン又はリジン)であり、Aはアラニンであり、iは2以上であり、好ましくは3又は4の整数である。好ましくは、該Xリンカーは、Glu-(Ala)-Arg、Glu-(Ala)-Lys、Asp-(Ala)-Arg、Asp-(Ala)-Lys、Arg-(Ala)-Glu、Lys-(Ala)-Glu、Arg-(Ala)-Asp、及びLys-(Ala)-Aspからなる群より選択されるペプチド単位(iは3又は4の整数)を合計で2個以上含む。例えば、該Xリンカーは、Glu-(Ala)-Arg、Glu-(Ala)-Lys、Asp-(Ala)-Arg、及びAsp-(Ala)-Lysからなる群より選択されるペプチド単位(iは3又は4の整数)を合計で2個以上含む。また例えば、該Xリンカーは、Arg-(Ala)-Glu、Lys-(Ala)-Glu、Arg-(Ala)-Asp、及びLys-(Ala)-Aspからなる群より選択されるペプチド単位(iは3又は4の整数)を合計で2個以上含む。さらに好ましくは、該Xリンカーは、Glu-(Ala)3-Lysを2個以上含むか、又はLys-(Ala)3-Gluを2個以上含む。さらに好ましくは、該Xリンカーは、2個以上のGlu-(Ala)3-Lysからなるか、又は2個以上のLys-(Ala)3-Gluからなる。さらに好ましくは、該Xリンカーは、[Glu-(Ala)3-Lys]からなり、ここでjは整数で、2以上であればよく、かつ10以下であればよく、好ましくは8以下、より好ましくは6以下、さらに好ましくは4以下である。例えば、jは整数で2~10、好ましくは2~8、さらに好ましくは2~6、さらに好ましくは2~4である。 In another preferred embodiment of the present invention, the linker included in the protein of the present invention is a linker comprising a peptide having an acidic amino acid (X a ) and a basic amino acid (X b ) (herein, X a X b Also called a linker). The X a X b linker includes a peptide unit consisting of X a- (A) i- X b or X b- (A) i- X a , and the number of the peptide units contained in the X a X b linker Is at least one, preferably two or more; wherein X a is an acidic amino acid (eg aspartic acid or glutamic acid) and X b is a basic amino acid (eg arginine, tryptophan, (Histidine or lysine, preferably arginine or lysine), A is alanine, i is 2 or more, preferably an integer of 3 or 4. Preferably, the X a X b linker is Glu- (Ala) i -Arg, Glu- (Ala) i -Lys, Asp- (Ala) i -Arg, Asp- (Ala) i -Lys, Arg- ( Ala) i -Glu, Lys- (Ala ) i -Glu, Arg- (Ala) i -Asp, and Lys- (Ala) i peptide units (i selected from the group consisting -Asp 3 or 4 integer 2) or more in total. For example, the X a X b linker is selected from the group consisting of Glu- (Ala) i- Arg, Glu- (Ala) i- Lys, Asp- (Ala) i- Arg, and Asp- (Ala) i- Lys. The selected peptide units (i is an integer of 3 or 4) in total contain 2 or more. Further, for example, the X a X b linker, Arg- (Ala) i -Glu, Lys- (Ala) i -Glu, Arg- (Ala) i -Asp, and Lys- (Ala) group consisting of i -Asp It contains two or more peptide units (i is an integer of 3 or 4) selected in total. More preferably, the X a X b linker comprises 2 or more of Glu- (Ala) 3 -Lys or 2 or more of Lys- (Ala) 3 -Glu. More preferably, said X a X b linker consists of two or more Glu- (Ala) 3 -Lys or consists of two or more Lys- (Ala) 3 -Glu. More preferably, said X a X b linker consists of [Glu- (Ala) 3 -Lys] j , where j is an integer, 2 or more and 10 or less, preferably It is 8 or less, more preferably 6 or less, and still more preferably 4 or less. For example, j is an integer of 2 to 10, preferably 2 to 8, more preferably 2 to 6, and further preferably 2 to 4.
 好ましくは、本発明のタンパク質に含まれるXリンカーは、ドメイン各々への抗体の結合性向上の観点から、長さ10アミノ酸以上のポリペプチドからなるポリペプチドリンカーである。該プロリン含有リンカーの長さの上限は、大腸菌等における組換えタンパク質の発現量の安定の観点から、好ましくは50アミノ酸以下、より好ましくは40アミノ酸以下、さらに好ましくは30アミノ酸以下、さらに好ましくは20アミノ酸以下である。好適には、該プロリン含有リンカーの長さは10~50アミノ酸、さらに好ましくは10~40アミノ酸さらに好ましくは10~30アミノ酸、さらに好ましくは10~20アミノ酸である。 Preferably, the X a X b linker contained in the protein of the present invention is a polypeptide linker consisting of a polypeptide having a length of 10 amino acids or more, from the viewpoint of improving the avidity of the antibody to each domain. The upper limit of the length of the proline-containing linker is preferably 50 amino acids or less, more preferably 40 amino acids or less, still more preferably 30 amino acids or less, more preferably 20 amino acids or less from the viewpoint of stability of the expression amount of recombinant protein in E. coli etc. Less than amino acids. Suitably, the proline-containing linker has a length of 10 to 50 amino acids, more preferably 10 to 40 amino acids, more preferably 10 to 30 amino acids, and still more preferably 10 to 20 amino acids.
 本発明のタンパク質に含まれる該リンカーの数は、1個以上であればよく、ドメイン数に応じて変化する。典型的には、本発明のタンパク質に含まれるリンカーの数は、該タンパク質中のイムノグロブリンに対する親和性を有するドメインの数より1つ少ない。本発明のタンパク質が2個以上のリンカーを含む場合、各々のリンカーのアミノ酸配列又はその長さは、同一であっても異なっていてもよい。好ましくは、該各々のリンカーのアミノ酸配列及び長さは同一である。 The number of the linkers contained in the protein of the present invention may be one or more, and varies depending on the number of domains. Typically, the number of linkers contained in the protein of the present invention is one less than the number of domains having affinity for immunoglobulin in the protein. When the protein of the present invention comprises two or more linkers, the amino acid sequence of each linker or the length thereof may be the same or different. Preferably, the amino acid sequences and lengths of the respective linkers are identical.
 本発明のタンパク質は、イムノグロブリンに対する親和性を有するドメインを2個以上、好ましくは2~12個、より好ましくは3~8個含む。本発明のタンパク質に含まれる2個以上の該ドメインの各々は、同一のドメインでも異なるドメインであってもよいが、好ましくは同一のドメインである。 The protein of the present invention contains two or more, preferably 2 to 12, more preferably 3 to 8 domains having affinity for immunoglobulin. Each of two or more of the domains contained in the protein of the present invention may be the same domain or different domains, but is preferably the same domain.
 好ましい実施形態において、当該イムノグロブリンに対する親和性を有するドメインの各々は、プロテインAのBドメイン、Zドメイン、Cドメイン及びDドメイン、プロテインLのC1ドメイン、C2ドメイン、C3ドメイン、及びC4ドメイン、ならびにそれらの変異体からなる群より選択される。 In a preferred embodiment, each of the domains having affinity for the immunoglobulin is a protein A B domain, a Z domain, a C domain and a D domain, a protein L C1 domain, a C2 domain, a C3 domain and a C4 domain, and It is selected from the group consisting of those mutants.
 別の好ましい実施形態において、当該イムノグロブリンに対する親和性を有するドメインの各々は、配列番号3~10のいずれかで示されるアミノ酸配列からなるポリペプチド、及び配列番号3~10のいずれかで示されるアミノ酸配列と少なくとも85%の同一性を有するアミノ酸配列からなり、かつイムノグロブリン結合活性を有するポリペプチド、からなる群より選択される。 In another preferred embodiment, each of the domains having affinity to the immunoglobulin is a polypeptide consisting of the amino acid sequence shown in any of SEQ ID NO: 3 to 10, and shown in any of SEQ ID NO: 3 to 10 It is selected from the group consisting of an amino acid sequence having at least 85% identity with the amino acid sequence, and a polypeptide having immunoglobulin binding activity.
 別の好ましい実施形態において、当該イムノグロブリンに対する親和性を有するドメインの各々は、配列番号3~10のいずれかで示されるアミノ酸配列からなるポリペプチドであって、ただし配列番号3~10のいずれかで示されるアミノ酸配列の1位に相当する位置にValを有する、ポリペプチドである。別の好ましい実施形態において、当該イムノグロブリンに対する親和性を有するドメインの各々は、配列番号3~10のいずれかで示されるアミノ酸配列と少なくとも85%の同一性を有するアミノ酸配列からなるポリペプチドであって、ただし配列番号3~10のいずれかで示されるアミノ酸配列の1位に相当する位置にValを有する、ポリペプチドである。1位のValが好ましい理由は、末端メチオニンに隣接するアミノ酸の種類によって大腸菌等による比発現量(weight-protien/weight-cell)が異なり、アラニンよりバリンの方がその比発現量が多いためである(Proc Natl Acad Sci USA.1989,86(21):8247-8251.Fig2)。 In another preferred embodiment, each of the domains having affinity to the immunoglobulin is a polypeptide consisting of the amino acid sequence set forth in any of SEQ ID NOs: 3-10, with the proviso that any of SEQ ID NOs: 3-10 It is a polypeptide having Val at the position corresponding to position 1 of the amino acid sequence shown in In another preferred embodiment, each of the domains having affinity to the immunoglobulin is a polypeptide consisting of an amino acid sequence having at least 85% identity to the amino acid sequence shown in any of SEQ ID NOs: 3-10. However, it is a polypeptide having Val at the position corresponding to position 1 of the amino acid sequence shown in any of SEQ ID NOs: 3 to 10. The reason why Val at position 1 is preferable is that the specific expression amount (weight-protien / weight-cell) by E. coli differs depending on the type of amino acid adjacent to the terminal methionine, and the specific expression amount of valine is larger than that of alanine (Proc Natl Acad Sci USA. 1989, 86 (21): 8247-8251. Fig 2).
 別の好ましい実施形態において、当該イムノグロブリンに対する親和性を有するドメインの各々は、配列番号3~10のいずれかで示されるアミノ酸配列からなるポリペプチドであって、ただし配列番号3~10のいずれかで示されるアミノ酸配列の29位に相当する位置にAlaを有する、ポリペプチドである。別の好ましい実施形態において、当該イムノグロブリンに対する親和性を有するドメインの各々は、配列番号3~10のいずれかで示されるアミノ酸配列と少なくとも85%の同一性を有するアミノ酸配列からなるポリペプチドであって、ただし配列番号3~10のいずれかで示されるアミノ酸配列の29位に相当する位置にAlaを有する、ポリペプチドである。29位Alaは、本発明のタンパク質のアルカリ耐性の増大の観点から好ましい(WO2010/110288)。 In another preferred embodiment, each of the domains having affinity to the immunoglobulin is a polypeptide consisting of the amino acid sequence set forth in any of SEQ ID NOs: 3-10, with the proviso that any of SEQ ID NOs: 3-10 A polypeptide having Ala at the position corresponding to position 29 of the amino acid sequence shown in In another preferred embodiment, each of the domains having affinity to the immunoglobulin is a polypeptide consisting of an amino acid sequence having at least 85% identity to the amino acid sequence shown in any of SEQ ID NOs: 3-10. However, it is a polypeptide having Ala at the position corresponding to position 29 of the amino acid sequence shown in any of SEQ ID NOs: 3 to 10. Position 29 Ala is preferred from the viewpoint of increasing the alkali resistance of the protein of the present invention (WO 2010/110288).
 さらに好ましい実施形態において、当該イムノグロブリンに対する親和性を有するドメインの各々は、配列番号3~10のいずれかで示されるアミノ酸配列からなるポリペプチドのVal1/Ala29変異体であるか、又は配列番号3~10のいずれかで示されるアミノ酸配列と少なくとも85%の同一性を有するアミノ酸配列からなるポリペプチドのVal1/Ala29変異体である。 In a further preferred embodiment, each of the domains having affinity for the immunoglobulin is a Val1 / Ala29 variant of a polypeptide consisting of the amino acid sequence set forth in any of SEQ ID NOs: 3-10, or SEQ ID NO: 3 10. A Val1 / Ala29 variant of a polypeptide consisting of an amino acid sequence having at least 85% identity to the amino acid sequence as set forth in any of ̃10.
 別の好ましい実施形態において、当該イムノグロブリンに対する親和性を有するドメインの各々は、配列番号3~10のいずれかで示されるアミノ酸配列からなるポリペプチドであって、ただし配列番号3~10のいずれかで示されるアミノ酸配列の3位に相当する位置と4位に相当する位置との間に1アミノ酸が挿入されている、ポリペプチドである。別の好ましい実施形態において、当該イムノグロブリンに対する親和性を有するドメインの各々は、配列番号3~10のいずれかで示されるアミノ酸配列と少なくとも85%の同一性を有するアミノ酸配列からなるポリペプチドであって、ただし配列番号3~10のいずれかで示されるアミノ酸配列の3位に相当する位置と4位に相当する位置との間に1アミノ酸が挿入されている、ポリペプチドである。該挿入されるアミノ酸は、Ala、Arg、Asp、Gln、Glu、His、Met、Thr、Val、Phe、Leu、Ile、Pro、Trp及びTyrからなる群より選択され、好ましくはLeuである。当該挿入変異は、本発明のタンパク質の抗体結合容量の向上の観点から好ましい(WO2016/152946)。さらに好ましい実施形態において、当該イムノグロブリンに対する親和性を有するドメインの各々は、配列番号3~10のいずれかで示されるアミノ酸配列からなるポリペプチドのN3K4_insL変異体であるか、又は配列番号3~10のいずれかで示されるアミノ酸配列と少なくとも85%の同一性を有するアミノ酸配列からなるポリペプチドのN3K4_insL変異体である。 In another preferred embodiment, each of the domains having affinity to the immunoglobulin is a polypeptide consisting of the amino acid sequence set forth in any of SEQ ID NOs: 3-10, with the proviso that any of SEQ ID NOs: 3-10 A polypeptide in which one amino acid is inserted between the position corresponding to position 3 and the position corresponding to position 4 of the amino acid sequence shown in In another preferred embodiment, each of the domains having affinity to the immunoglobulin is a polypeptide consisting of an amino acid sequence having at least 85% identity to the amino acid sequence shown in any of SEQ ID NOs: 3-10. However, it is a polypeptide in which one amino acid is inserted between the position corresponding to position 3 and the position corresponding to position 4 of the amino acid sequence shown in any of SEQ ID NOs: 3 to 10. The amino acid to be inserted is selected from the group consisting of Ala, Arg, Asp, Gln, Glu, His, Met, Thr, Val, Phe, Leu, Ile, Pro, Trp and Tyr, preferably Leu. The insertion mutation is preferable from the viewpoint of improving the antibody binding capacity of the protein of the present invention (WO2016 / 152946). In a further preferred embodiment, each of the domains having affinity to the immunoglobulin is an N3K4_insL variant of a polypeptide consisting of the amino acid sequence set forth in any of SEQ ID NOs: 3-10, or SEQ ID NOs: 3-10 And a N3K4_insL variant of a polypeptide consisting of an amino acid sequence having at least 85% identity to the amino acid sequence shown in any of the following.
 さらに好ましい実施形態において、当該イムノグロブリンに対する親和性を有するドメインの各々は、配列番号3~10のいずれかで示されるアミノ酸配列からなるポリペプチドのVal1/Ala29/N3K4_insL変異体であるか、又は配列番号3~10のいずれかで示されるアミノ酸配列と少なくとも85%の同一性を有するアミノ酸配列からなるポリペプチドのVal1/Ala29/N3K4_insL変異体である。さらに好ましい実施形態において、当該イムノグロブリンに対する親和性を有するドメインの各々は、配列番号16からなるポリペプチドである。 In a further preferred embodiment, each of the domains having affinity to the immunoglobulin is a Val1 / Ala29 / N3K4_insL variant of a polypeptide consisting of the amino acid sequence set forth in any of SEQ ID NOs: 3 to 10, or a sequence It is a Val1 / Ala29 / N3K4_insL variant of a polypeptide consisting of an amino acid sequence having at least 85% identity to the amino acid sequence represented by any one of Nos. 3 to 10. In a further preferred embodiment, each of the domains having affinity for said immunoglobulin is a polypeptide consisting of SEQ ID NO: 16.
 したがって、好ましい実施形態において、本発明のタンパク質は、[(P-L)m-P]で示されるポリペプチドを含む:Pは、上述したイムノグロブリンに対する親和性を有するドメインであり、好ましくは配列番号16で示されるアミノ酸配列からなるポリペプチドであり、各々のPは同一であっても異なっていてもよい;Lは、相互に独立に、上述したプロリン含有リンカー又はXリンカーである;好ましくは、該プロリン含有リンカーは、(Ala-Pro)n〔nは上述のとおり〕で示される配列からなるポリペプチドである;好ましくは、該Xリンカーは、[Glu-(Ala)3-Lys]〔jは上述のとおり〕で示される配列からなるポリペプチドである;mは1以上、好ましくは1~11、より好ましくは2~7である。mが2以上である場合、複数存在するLは同一であっても異なっていてもよい。 Thus, in a preferred embodiment, the protein of the invention comprises a polypeptide represented by [(PL) mP]: P is a domain having affinity for the above mentioned immunoglobulins, preferably a sequence 16 is a polypeptide consisting of the amino acid sequence shown by the number 16, each P may be the same or different; L is, independently of each other, a proline-containing linker or an X a X b linker as described above Preferably, the proline-containing linker is a polypeptide consisting of the sequence shown in (Ala-Pro) n (where n is as described above); preferably, the X a X b linker is [Glu- (Ala ) 3 [j is as described above] -Lys] j is a polypeptide consisting of the sequence shown in; m is 1 or more, preferably 1 to 11, more preferably ~ Is 7. When m is 2 or more, a plurality of L may be the same or different.
 一実施形態において、本発明のタンパク質は、上記リンカーと、上記のイムノグロブリンに対する親和性を有するドメイン2個以上とからなり、好ましくは、上記[(P-L)m-P]で示されるポリペプチドからなる。別の実施形態において、本発明のタンパク質は、上記リンカーと、上記のイムノグロブリンに対する親和性を有するドメイン2個以上、好ましくは該[(P-L)m-P]で示されるポリペプチド、に加えて、固相担体との結合のためのリンカーをさらに含んでいてもよい。例えば、該本発明のタンパク質と固相担体との結合のための1つ以上のリンカーのそれぞれが、該イムノグロブリンに対する親和性を有するドメインにおける任意の位置に結合されていればよい。該本発明のタンパク質と固相担体との結合のためのリンカーは、該イムノグロブリンに対する親和性を有するドメインのC末端もしくはN末端に結合されていてもよく、又は末端残基ではないアミノ酸残基に結合されてもよい。好ましくは、該本発明のタンパク質と固相担体との結合のためのリンカーは、該[(P-L)m-P]で示されるポリペプチドのアミノ酸配列のC末端又はN末端に結合される。あるいは、該固相担体との結合のための1つ以上のリンカーのそれぞれが、該[(P-L)m-P]で示されるポリペプチドのアミノ酸配列の両末端に各々結合されてもよく、又は、該固相担体との結合のためのリンカーは末端残基ではないアミノ酸残基に結合されてもよい。該本発明のタンパク質と固相担体との結合のためのリンカーの例としては、1個以上20個以下のGlyが挙げられる。 In one embodiment, the protein of the present invention comprises the above linker and two or more domains having affinity for the above immunoglobulin, preferably a poly represented by the above [(PL) mP]. It consists of a peptide. In another embodiment, the protein of the present invention comprises the above linker and two or more domains having an affinity for the above immunoglobulin, preferably a polypeptide represented by the [(PL) mP]. In addition, it may further contain a linker for binding to a solid support. For example, each of one or more linkers for binding the protein of the present invention to a solid phase carrier may be bound at any position in the domain having affinity to the immunoglobulin. The linker for binding the protein of the present invention to a solid phase carrier may be bound to the C-terminus or N-terminus of the domain having affinity to the immunoglobulin, or an amino acid residue which is not a terminal residue May be combined with Preferably, a linker for linking the protein of the present invention to a solid phase carrier is linked to the C-terminus or N-terminus of the amino acid sequence of the polypeptide represented by [(PL) mP]. . Alternatively, each of one or more linkers for binding to the solid support may be bound to both ends of the amino acid sequence of the polypeptide represented by [(PL) mP]. Alternatively, the linker for binding to the solid phase carrier may be bound to an amino acid residue which is not a terminal residue. Examples of the linker for binding the protein of the present invention to a solid phase carrier include 1 or more and 20 or less Gly.
 本発明のタンパク質の好ましい例としては、配列番号17で示されるアミノ酸配列からなるポリペプチド、配列番号18で示されるアミノ酸配列からなるポリペプチド、及び配列番号19で示されるアミノ酸配列からなるポリペプチドが挙げられる。しかしながら、本発明のタンパク質の好ましい例は、これらに限定されない。 Preferred examples of the protein of the present invention include a polypeptide consisting of the amino acid sequence shown in SEQ ID NO: 17, a polypeptide consisting of the amino acid sequence shown in SEQ ID NO: 18, and a polypeptide consisting of the amino acid sequence shown in SEQ ID NO: 19 It can be mentioned. However, preferred examples of the protein of the present invention are not limited thereto.
 2.アフィニティークロマトグラフィーリガンド用タンパク質の製造
 本発明のタンパク質は、当該分野で公知の手法、例えばアミノ酸配列に基づく化学合成法や、リコンビナント法などにより製造することができる。例えば、本発明のタンパク質は、Frederick M. AusbelらによるCurrent Protocols In Molecular Biologyや、Sambrookら編集のMolecular Cloning(Cold Spring Harbor Laboratory Press,3rd edition,2001)などに記載されている公知の遺伝子組換え技術を利用して製造することができる。すなわち、上記本発明のタンパク質をコードするポリヌクレオチドを含有する発現ベクターを大腸菌などの宿主に形質転換し、得られた組換え体を適切な液体培地で培養することにより、培養後の細胞から、目的のタンパク質リガンドを大量かつ経済的に取得することができる。好ましい発現ベクターとしては、宿主細胞内で複製可能な既知のベクターのいずれをも用いることができ、例えば、米国特許第5,151,350号明細書に記載されているプラスミドや、Sambrookら編集のMolecular Cloning(Cold Spring Harbor Laboratory Press, 3rd edition, 2001)などに記載されているプラスミドが挙げられる。また、形質転換のための宿主としては、特に限定されないが、大腸菌などのバクテリア、真菌類、昆虫細胞、ほ乳類細胞等の組換えタンパク質を発現させるために用いられる公知の宿主を用いることができる。宿主中に核酸を導入することにより宿主を形質転換させるためには、各宿主に応じて当該技術分野において知られるいずれの方法を用いてもよく、例えば、Sambrookら編集のMolecular Cloning(Cold Spring Harbor Laboratory Press,3rd edition,2001)などに記載されている公知の方法を利用することができる。形質転換した組換え体(細菌等)を培養して発現されたタンパク質を回収する方法は、当業者によく知られている。
2. Production of Protein for Affinity Chromatography Ligand The protein of the present invention can be produced by a method known in the art, such as a chemical synthesis method based on an amino acid sequence, a recombinant method and the like. For example, a protein of the invention can be produced by Frederick M. It can be manufactured using known genetic recombination techniques described in Ausbel et al., Current Protocols In Molecular Biology, and Sambrook et al., Molecular Cloning (Cold Spring Harbor Laboratory Press, 3rd edition, 2001). That is, the expression vector containing the polynucleotide encoding the protein of the present invention is transformed into a host such as E. coli, and the resulting recombinant is cultured in an appropriate liquid medium to obtain a cultured cell, The protein ligand of interest can be obtained in large amounts and economically. As a preferred expression vector, any of known vectors that can replicate in host cells can be used, for example, the plasmids described in US Pat. No. 5,151,350, and those edited by Sambrook et al. Examples include plasmids described in Molecular Cloning (Cold Spring Harbor Laboratory Press, 3rd edition, 2001) and the like. The host for transformation is not particularly limited, and known hosts used for expressing recombinant proteins such as bacteria such as E. coli, fungi, insect cells, mammalian cells and the like can be used. Depending on the host, any method known in the art may be used to transform the host by introducing the nucleic acid into the host, for example, Molecular Cloning (Cold Spring Harbor, edited by Sambrook et al.). The known methods described in Laboratory Press, 3rd edition, 2001) can be used. Methods for culturing transformed recombinants (such as bacteria) and recovering the expressed protein are well known to those skilled in the art.
 したがって、本発明はまた、上記本発明のタンパク質をコードするポリヌクレオチド(DNA等)、それを含むベクター、及びそれらを含む形質転換体を提供する。 Therefore, the present invention also provides a polynucleotide (such as DNA) encoding the above-mentioned protein of the present invention, a vector containing it, and a transformant containing them.
3.アフィニティークロマトグラフィー用担体
 本発明のアフィニティークロマトグラフィーリガンド用タンパク質を固相担体に固定化することによって、アフィニティークロマトグラフィー用担体を製造することができる。
3. Carrier for Affinity Chromatography A carrier for affinity chromatography can be produced by immobilizing the protein for affinity chromatography ligands of the present invention on a solid phase carrier.
 本発明のアフィニティークロマトグラフィー用担体に含まれる固相担体の形状としては、粒子の形態であることができ、かかる粒子は多孔性でも非多孔性でもよい。粒子状の担体は充填ベッドとして使用することもできるし、懸濁形態で使用することもできる。懸濁形態には流動層(expanded bed)及び純然たる懸濁物として知られるものが包含され、該形態中では粒子が自由に運動できる。モノリス、充填床及び流動層の場合、分離手順は一般に濃度勾配による従来のクロマトグラフィー法に従う。純然たる懸濁物の場合は、回分法が用いられる。好ましくは、当該担体は充填剤である。あるいは、担体は、チップ、キャピラリー又はフィルターのような形態であってもよい。 The form of the solid phase carrier contained in the carrier for affinity chromatography of the present invention may be in the form of particles, and such particles may be porous or non-porous. The particulate carrier can be used as a packed bed or in suspension form. Suspension forms include what are known as expanded beds and pure suspensions, in which the particles can move freely. In the case of monoliths, packed beds and fluidized beds, the separation procedure generally follows conventional chromatographic methods with concentration gradients. In the case of pure suspensions, the batch method is used. Preferably, the carrier is a filler. Alternatively, the carrier may be in the form of a chip, capillary or filter.
 一実施形態において、当該固相担体は、好ましくは20~200μm、担体が合成ポリマーの場合、より好ましくは20~100μm、さらに好ましくは30~80μm、担体が多糖の場合、より好ましくは50~200μm、さらに好ましくは60~150μmの粒径を有する。粒径が20μm未満であると、高流速下でカラム圧力が高くなり、実用に耐えない。粒径が200μmを超えると、イムノグロブリンがアフィニティークロマトグラフィー用担体に結合する量(結合容量)に劣る場合がある。なお、本明細書における「粒径」とは、レーザ回折散乱式粒度分布測定装置により得られる体積平均粒径である。 In one embodiment, the solid support is preferably 20 to 200 μm, more preferably 20 to 100 μm, more preferably 30 to 80 μm when the carrier is a synthetic polymer, more preferably 50 to 200 μm when the carrier is a polysaccharide. More preferably, it has a particle size of 60 to 150 μm. If the particle size is less than 20 μm, the column pressure will be high at high flow rates, which is not practical. When the particle size exceeds 200 μm, the amount of immunoglobulin bound to the carrier for affinity chromatography (binding capacity) may be poor. The “particle size” in the present specification is a volume average particle size obtained by a laser diffraction scattering type particle size distribution measuring apparatus.
 一実施形態において、当該固相担体は、好ましくは、多孔質であり、50~150m/g、より好ましくは、80~130m/gの比表面積を有する。ここで、比表面積が50m/g未満であると、結合容量が劣る場合があり、一方、150m/gを超えると、担体の強度が劣るために高流速下で担体が破壊されて、カラム圧力が上昇する場合がある。なお、本明細書における「比表面積」とは、水銀ポロシメーターにより得られる細孔径10~5000nmの細孔の有する表面積を粒子の乾燥重量で除した値である。 In one embodiment, the solid support is preferably porous and has a specific surface area of 50 to 150 m 2 / g, more preferably 80 to 130 m 2 / g. Here, if the specific surface area is less than 50 m 2 / g, the binding capacity may be inferior, while if it exceeds 150 m 2 / g, the strength of the support is inferior and the support is broken under high flow rate, Column pressure may increase. The “specific surface area” in the present specification is a value obtained by dividing the surface area of pores having a pore diameter of 10 to 5000 nm obtained by a mercury porosimeter by the dry weight of particles.
 一実施形態において、当該固相担体は、好ましくは、100~1400nm、担体が合成ポリマーの場合、より好ましくは100~400nm、さらに好ましくは200~300nm、担体が多糖の場合、より好ましくは500~1400nm、さらに好ましくは800~1200nmの体積平均細孔径を有する。ここで、体積平均細孔径が100nm未満であると、高流速下の結合容量低下が顕著になる場合があり、一方、1400nmを超えると、流速にかかわらず結合容量が低下する場合がある。なお、本明細書における「体積平均細孔径」とは、水銀ポロシメーターにより得られる細孔径10~5000nmの細孔の体積平均細孔径である。 In one embodiment, the solid support is preferably 100 to 1400 nm, more preferably 100 to 400 nm, more preferably 200 to 300 nm when the support is a synthetic polymer, more preferably 500 to 500 nm when the support is a polysaccharide. It has a volume average pore size of 1400 nm, more preferably 800 to 1200 nm. Here, if the volume average pore diameter is less than 100 nm, the decrease in binding capacity under high flow rate may be remarkable, while if it exceeds 1400 nm, the binding capacity may decrease regardless of the flow rate. The “volume-average pore diameter” in the present specification is the volume-average pore diameter of pores with a pore diameter of 10 to 5000 nm obtained by a mercury porosimeter.
 当該固相担体が上記範囲の粒径、比表面積、及び細孔径分布を満たす場合、精製対象溶液の流路となる粒子間の隙間及び粒子内の比較的大きな細孔径と、精製対象分子の結合表面積のバランスが最適化され、高流速下の結合容量が高いレベルに維持される。 When the solid phase support satisfies the particle diameter, specific surface area, and pore diameter distribution in the above range, the gaps between the particles serving as the flow path of the solution to be purified and the relatively large pore diameter in the particles and the binding of the molecule to be purified The surface area balance is optimized to keep the binding capacity at high flow rates at high levels.
 当該固相担体の材質としては、例えば、親水性表面を有するポリマーであり、例えば、外表面に(及び存在する場合には内表面にも)ヒドロキシ基(-OH)、カルボキシ基(-COOH)、アミノカルボニル基(-CONH、又はN置換型)、アミノ基(-NH、又は置換型)、又はオリゴもしくはポリエチレンオキシ基を有するポリマーである。一実施形態において、該ポリマーは、ポリメタクリレート、ポリアクリルアミド、ポリスチレン、ポリビニルアルコール系等の合成ポリマーであり得、好ましくは、多官能(メタ)アクリレート、ジビニルベンゼン等の多官能モノマーで架橋された共重合体のような合成ポリマーである。かかる合成ポリマーは公知の方法により容易に製造される(例えば、J.MATER.CHEM1991,1(3),371-374に記載の方法を参照されたい)。あるいは、トヨパール(東ソー社)のような市販品も使用される。他の実施形態におけるポリマーはデキストラン、デンプン、セルロース、プルラン、アガロース等の多糖類である。かかる多糖類は公知の方法により容易に製造される(例えば特許第4081143号に記載の方法を参照されたい)。あるいは、セファロース(GEヘルスケアバイオサイエンス社)のような市販品も使用される。その他の実施形態ではシリカ、酸化ジルコニウムなどの無機担体であってもよい。 The material of the solid phase support is, for example, a polymer having a hydrophilic surface, and for example, a hydroxy group (-OH), a carboxy group (-COOH) on the outer surface (and also on the inner surface if present) , An aminocarbonyl group (-CONH 2 or N-substituted type), an amino group (-NH 2 or substituted type), or a polymer having an oligo or polyethyleneoxy group. In one embodiment, the polymer may be a synthetic polymer such as polymethacrylate, polyacrylamide, polystyrene, polyvinyl alcohol and the like, and preferably, it is preferably co-crosslinked with a polyfunctional monomer such as polyfunctional (meth) acrylate and divinylbenzene. It is a synthetic polymer such as a polymer. Such synthetic polymers are readily prepared by known methods (see, for example, the methods described in J. MATER. CHEM 1991, 1 (3), 371-374). Alternatively, commercially available products such as Toyopearl (Tosoh Corporation) are also used. In another embodiment, the polymer is a polysaccharide such as dextran, starch, cellulose, pullulan, agarose and the like. Such polysaccharides are easily produced by known methods (see, for example, the method described in Patent No. 4081143). Alternatively, commercially available products such as Sepharose (GE Healthcare Biosciences) are also used. In other embodiments, it may be an inorganic support such as silica or zirconium oxide.
 一実施形態において、当該固相担体として使用される多孔性粒子の一具体例としては、例えば、20~50質量%の架橋性ビニル単量体と3~80質量%のエポキシ基含有ビニル単量体、20~80質量%のジオール基含有ビニル単量体との共重合体を含有し、粒径が20~80μmであり、比表面積が50~150m/gであり、体積平均細孔径が100~400nmである多孔性有機重合体粒子が挙げられる。 In one embodiment, as a specific example of the porous particles used as the solid phase carrier, for example, 20 to 50% by mass of a crosslinkable vinyl monomer and 3 to 80% by mass of an epoxy group-containing vinyl monomer Body, containing 20 to 80% by mass of a copolymer with a diol group-containing vinyl monomer, having a particle size of 20 to 80 μm, a specific surface area of 50 to 150 m 2 / g, and a volume average pore diameter Porous organic polymer particles having a size of 100 to 400 nm can be mentioned.
 なお、当該固相担体を水銀ポロシメーターで測定した場合の細孔径10~5000nmの細孔の浸入体積(細孔体積)は、好ましくは、1.3~7.0mL/g、担体が合成ポリマーの場合、より好ましくは1.3~2.5mL/g、担体が多糖の場合、より好ましくは3.0~6.0mL/gである。 The penetration volume (pore volume) of pores with a pore diameter of 10 to 5000 nm when the solid support is measured with a mercury porosimeter is preferably 1.3 to 7.0 mL / g, and the carrier is a synthetic polymer. In the case of a polysaccharide, the carrier is more preferably 1.3 to 2.5 mL / g, and more preferably 3.0 to 6.0 mL / g.
 当該固相担体へのリガンド(すなわち本発明のタンパク質)の結合方法としては、タンパク質を担体に固定化する一般的方法を用いて行うことができる。例えば、カルボキシ基を有する担体を用い、このカルボキシ基をN-ヒドロキシコハク酸イミドにより活性化させリガンドのアミノ基と反応させる方法;アミノ基又はカルボキシ基を有する担体を用い、水溶性カルボジイミド等の脱水縮合剤存在下でリガンドのカルボキシ基又はアミノ基と反応させアミド結合を形成する方法;水酸基を有する担体を用い、臭化シアン等のハロゲン化シアンで活性化させてリガンドのアミノ基と反応させる方法;担体の水酸基をトシル化又はトレシル化しリガンドのアミノ基と反応させる方法;ビスエポキシド、エピクロロヒドリン等によりエポキシ基を担体に導入し、リガンドのアミノ基、水酸基又はチオール基と反応させる方法;エポキシ基を有する担体を用い、リガンドのアミノ基又、水酸基又はチオール基と反応させる方法、などが挙げられる。上記のうち、反応を実施する水溶液中での安定性の観点からは、エポキシ基を介してリガンドを結合させる方法が望ましい。 The method for attaching a ligand (ie, the protein of the present invention) to the solid phase carrier can be carried out using a general method of immobilizing a protein on a carrier. For example, using a carrier having a carboxy group, the carboxy group is activated with N-hydroxysuccinimide and reacted with the amino group of the ligand; using a carrier having an amino group or a carboxy group, dehydration of a water-soluble carbodiimide or the like Method of reacting with the carboxy group or amino group of the ligand to form an amide bond in the presence of a condensing agent; using a carrier having a hydroxyl group, activating with a cyan halide such as cyanogen bromide and reacting with the amino group of the ligand A method of tosylation or tresylation of the hydroxyl group of the carrier to react with the amino group of the ligand; a method of introducing an epoxy group into the carrier by bisepoxide, epichlorohydrin etc. and reacting with the amino group, hydroxyl group or thiol group of the ligand; Using a carrier having an epoxy group, the amino group of the ligand, hydroxyl group or thio A method of reacting a group, and the like. Among the above, from the viewpoint of stability in an aqueous solution in which the reaction is carried out, a method of binding a ligand via an epoxy group is desirable.
 エポキシ基が開環して生成する開環エポキシ基であるアルコール性水酸基は、担体表面を親水化し、タンパク質などの非特異吸着を防止すると共に、水中で担体の靱性を向上させ、高流速下の担体の破壊を防止する役割を果たす。したがって、リガンドを固定化させた後の担体中にリガンドと結合していない残余のエポキシ基が存在している場合、当該残余のエポキシ基を開環させることが好ましい。担体中のエポキシ基の開環方法としては、例えば、水溶媒中で、酸又はアルカリにより、加熱又は室温で該担体を撹拌する方法を挙げることができる。また、メルカプトエタノール、チオグリセロール等のメルカプト基を有するブロッキング剤やモノエタノールアミン等のアミノ基を有するブロッキング剤で、エポキシ基を開環させても良い。より好ましい開環エポキシ基は、担体に含まれるエポキシ基をチオグリセロールにより開環させて得られる開環エポキシ基である。チオグリセロールは、原料としてメルカプトエタノール等よりも毒性が低く、またチオグリセロールが付加したエポキシ開環基は、アミノ基を有するブロッキング剤による開環基よりも非特異吸着が低い上に、動的結合量が高くなる、といった利点を有する。 The alcoholic hydroxyl group, which is a ring-opened epoxy group formed by ring-opening of an epoxy group, hydrophilizes the surface of the carrier to prevent non-specific adsorption of proteins etc. and improve the toughness of the carrier in water, under high flow rate. It serves to prevent the destruction of the carrier. Therefore, when the residual epoxy group not bound to the ligand is present in the carrier after the ligand is immobilized, it is preferable to open the residual epoxy group. As a ring-opening method of the epoxy group in a support | carrier, the method of stirring this support | carrier at heating or room temperature with an acid or an alkali in water solvent can be mentioned, for example. Alternatively, the epoxy group may be ring-opened with a blocking agent having a mercapto group such as mercaptoethanol and thioglycerol, or a blocking agent having an amino group such as monoethanolamine. A more preferable ring-opened epoxy group is a ring-opened epoxy group obtained by ring-opening an epoxy group contained in a carrier with thioglycerol. Thioglycerol is less toxic than mercaptoethanol etc. as a raw material, and the epoxy ring-opened group to which thioglycerol is added has lower non-specific adsorption than the ring-opened group by the blocking agent having an amino group, and dynamic binding It has the advantage that the amount is high.
 好ましくは、当該固相担体と本発明のタンパク質は、上述した本発明のタンパク質と固相担体との結合のためのリンカーを介して結合される。好ましくは、該リンカーは、上述したように本発明のタンパク質に含まれており、該リンカー部分が該固相担体と反応することで、該固相担体と本発明のタンパク質が結合される。あるいは、該固相担体に予め結合された該リンカーに、本発明のタンパク質を結合させることもできる。 Preferably, the solid support and the protein of the present invention are linked via a linker for binding the protein of the present invention described above to the solid support. Preferably, the linker is contained in the protein of the present invention as described above, and the linker moiety reacts with the solid phase carrier to bind the solid phase carrier and the protein of the present invention. Alternatively, the protein of the present invention can be bound to the linker previously bound to the solid support.
 当該本発明のアフィニティークロマトグラフィー用担体は、イムノグロブリン結合能の高いリガンドを有しているため、イムノグロブリン動的結合容量(DBC)及びリガンド利用効率が高い。 The carrier for affinity chromatography of the present invention has a ligand with high immunoglobulin binding ability, and thus has high immunoglobulin dynamic binding capacity (DBC) and high ligand utilization efficiency.
 4.抗体又はその断片を単離する方法
 本発明の一実施形態に係る抗体又はその断片を単離する方法を説明する。本実施形態に係る抗体又はその断片を単離する方法は、本発明のアフィニティークロマトグラフィーリガンド用タンパク質を固定化したアフィニティークロマトグラフィー用担体に、抗体又はその断片を含有する試料を通液し、該担体に抗体又はその断片を吸着させる工程(第一の工程)、及び、該担体から該抗体又はその断片を溶出させる工程(第二の工程)を含む。
4. Methods of Isolating Antibodies or Fragments Thereof A method of isolating an antibody or fragment thereof according to one embodiment of the present invention is described. The method for isolating the antibody or fragment thereof according to the present embodiment is carried out by passing the sample containing the antibody or fragment thereof into the carrier for affinity chromatography on which the protein for affinity chromatography ligand of the present invention is immobilized. A step of adsorbing the antibody or fragment thereof to the carrier (first step), and a step of eluting the antibody or fragment thereof from the carrier (second step) are included.
 当該第一の工程では、本発明のアフィニティークロマトグラフィー用担体を充填したカラム等に抗体又はその断片を含有する試料を、リガンド(本発明のタンパク質)に抗体又はその断片が吸着する条件にて流す。この第一の工程では、試料中の抗体又はその断片以外の物質のほとんどは、リガンドに吸着されずカラムを通過する。この後、必要に応じて、リガンドに弱く保持された一部の物質を除去するため、担体をNaClなどの塩を含む中性の緩衝液で洗浄してもよい。 In the first step, the sample containing the antibody or its fragment is flowed in a column or the like packed with the carrier for affinity chromatography of the present invention under the condition that the antibody or its fragment is adsorbed to the ligand (the protein of the present invention) . In this first step, most of the substances other than the antibody or fragment thereof in the sample pass through the column without being adsorbed to the ligand. After this, the carrier may be washed with a neutral buffer containing a salt such as NaCl, if necessary, in order to remove some of the substances weakly retained by the ligand.
 当該第二の工程では、pH2~5の適切な緩衝液を流し、リガンドに吸着された抗体又はその断片を溶出させる。この溶出液を回収することで、試料から抗体又はその断片を単離することができる。 In the second step, an appropriate buffer of pH 2-5 is applied to elute the antibody or fragment thereof adsorbed to the ligand. By collecting this eluate, the antibody or fragment thereof can be isolated from the sample.
 本発明の抗体又はその断片の単離方法の一実施形態において、単離すべき抗体又はその断片は、抗体又はその断片、あるいはそれらを含む医薬であり得る。したがって、一実施形態において、本発明は、本発明のアフィニティークロマトグラフィー用担体を用いる抗体医薬の製造方法を提供する。当該方法の手順は、目的とする抗体医薬を含有する試料を用いる以外は、基本的に上述した抗体又はその断片の単離方法の手順と同様である。 In one embodiment of the method for isolating an antibody or fragment thereof of the present invention, the antibody or fragment thereof to be isolated may be an antibody or fragment thereof, or a medicament comprising them. Therefore, in one embodiment, the present invention provides a method for producing an antibody drug using the carrier for affinity chromatography of the present invention. The procedure of the method is basically the same as the procedure of the method for isolating an antibody or a fragment thereof described above except that a sample containing an antibody drug of interest is used.
 以下、本発明を、実施例を挙げてさらに具体的に説明する。また、以下の記載は本発明の態様を概括的に示すものであり、特に理由なく、かかる記載により本発明は限定されるものではない。 Hereinafter, the present invention will be described in more detail by way of examples. In addition, the following description generally shows the embodiments of the present invention, and the present invention is not limited by the description without any particular reason.
参考例1 多孔質粒子の合成
(1)360gの純水にポリビニルアルコール(クラレ社製 PVA-217)3.58gを添加し、加熱撹拌してポリビニルアルコールを溶解させ、冷却した後、ドデシル硫酸ナトリウム(和光純薬工業製)0.36g、硫酸ナトリウム(和光純薬工業製)0.36g、及び亜硝酸ナトリウム(和光純薬工業製)0.18gを添加し、撹拌して水溶液Sを調製した。
(2)グリシジルメタクリレート(三菱レーヨン社製)12.00g及びジビニルベンゼン(新日鐵化学社製)1.33gからなる単量体組成物を、ジイソブチルケトン(三井化学社製)24.43gに溶解させ、単量体溶液を調製した。
(3)該水溶液Sを、セパラブルフラスコ内に全量投入し、温度計、撹拌翼及び冷却管を装着して、温水バスにセットし、窒素雰囲気下で撹拌を開始した。セパラブルフラスコ内に該単量体溶液を全量投入して、温水バスにより加温した。内温が85℃に到達したところで2,2’-アゾイソブチロニトリル(和光純薬工業社製)0.53gを添加した。
(4)得られた反応液を、86℃に温度を維持しながら、3時間撹拌した。次いで、反応液を冷却した後、ろ過し、純水とエタノールで洗浄した。洗浄した粒子を純水に分散させてデカンテーションを3回行い、小粒子を除いた。次いで、粒子の濃度が10質量%となるように粒子を純水に分散させ、多孔質粒子(PB)分散液を得た。
Reference Example 1 Synthesis of Porous Particles (1) 3.58 g of polyvinyl alcohol (PVA-217 manufactured by Kuraray) is added to 360 g of pure water, heated and stirred to dissolve polyvinyl alcohol, and after cooling, sodium dodecyl sulfate 0.36 g (manufactured by Wako Pure Chemical Industries, Ltd.), 0.36 g of sodium sulfate (manufactured by Wako Pure Chemical Industries, Ltd.), and 0.18 g of sodium nitrite (manufactured by Wako Pure Chemical Industries) were added and stirred to prepare an aqueous solution S. .
(2) A monomer composition consisting of 12.00 g of glycidyl methacrylate (manufactured by Mitsubishi Rayon) and 1.33 g of divinylbenzene (manufactured by Nippon Steel Chemical Co., Ltd.) is dissolved in 24.43 g of diisobutyl ketone (manufactured by Mitsui Chemicals) The monomer solution was prepared.
(3) The entire amount of the aqueous solution S was charged into a separable flask, and a thermometer, a stirring blade and a cooling pipe were attached, and the solution S was set in a hot water bath, and stirring was started under a nitrogen atmosphere. The whole amount of the monomer solution was charged into the separable flask and heated by a hot water bath. When the internal temperature reached 85 ° C., 0.53 g of 2,2′-azoisobutyronitrile (manufactured by Wako Pure Chemical Industries, Ltd.) was added.
(4) The resulting reaction solution was stirred for 3 hours while maintaining the temperature at 86 ° C. Then, after cooling the reaction solution, it was filtered and washed with pure water and ethanol. The washed particles were dispersed in pure water and decanted three times to remove small particles. Next, the particles were dispersed in pure water so that the concentration of the particles was 10% by mass, to obtain a porous particle (PB) dispersion.
比較例1 組換えリガンドタンパク質:IgGBP0の作製
 配列番号16で示されるアミノ酸配列の4個の繰り返しを含む、配列番号20に示すアミノ酸配列からなる組換えリガンドタンパク質IgGBP0をコードするプラスミドを調製した。このプラスミドを用いて大腸菌コンピテントセルBL21(DE3)(NEW ENGLAND BIOLABS製)を形質転換した。得られた組換え体を、吸光度(OD600)が約10に到達するまで37℃でインキュベートし、その後、終濃度で1mMになるようにIPTG(和光純薬工業製)を添加し、さらに5時間37℃でインキュベートして、組換えタンパク質を発現させた。タンパク質発現後、細胞を遠心分離により回収し、pH8.5のトリス緩衝液中に分散させた。これにTritonX-100を添加し、大腸菌を破壊した。得られた菌体破壊液から、陽イオン交換クロマトグラフィー(BioProS75、YMC製)及び陰イオン交換クロマトグラフィー(BioProQ75、YMC製)によって組換えタンパク質を精製した。精製したタンパク質を、10mMクエン酸緩衝液に対してTangential Flow Filterationにより、濃縮・脱塩した。得られた組換えリガンドタンパク質の理論分子量[Da]をExPASy([web.expasy.org/protparam/])を用いて求めた。また、該組換えリガンドタンパク質の純度及び分子量は、LC-MS(Waters社)を用いて測定した。純度(LC純度)は、LC-MSのクロマトグラム上で検出された全てのピークの総面積に対するIgGBP0のピーク面積の百分率を求めた。
Comparative Example 1 Preparation of Recombinant Ligand Protein: IgGBP0 A plasmid encoding a recombinant ligand protein IgGBP0 consisting of the amino acid sequence shown in SEQ ID NO: 20, containing four repeats of the amino acid sequence shown in SEQ ID NO: 16 was prepared. E. coli competent cell BL21 (DE3) (manufactured by NEW ENGLAND BIOLABS) was transformed using this plasmid. The resulting recombinants are incubated at 37 ° C. until the absorbance (OD600) reaches about 10, and then IPTG (manufactured by Wako Pure Chemical Industries, Ltd.) is added to a final concentration of 1 mM for an additional 5 hours The recombinant protein was expressed by incubation at 37 ° C. After protein expression, cells were harvested by centrifugation and dispersed in Tris buffer, pH 8.5. To this, Triton X-100 was added to destroy E. coli. The recombinant protein was purified from the resulting disrupted cell suspension by cation exchange chromatography (BioProS 75, YMC) and anion exchange chromatography (BioProQ 75, YMC). The purified protein was concentrated and desalted by Tangential Flow Filteration against 10 mM citrate buffer. The theoretical molecular weight [Da] of the obtained recombinant ligand protein was determined using ExPASy ([web.expasy.org/protparam/]). Also, the purity and molecular weight of the recombinant ligand protein were measured using LC-MS (Waters). The purity (LC purity) was determined as a percentage of the peak area of IgGBP0 to the total area of all peaks detected on the chromatogram of LC-MS.
実施例1~3 組換えリガンドタンパク質:IgGBP1~IgGBP3の作製
 配列番号17に示すアミノ酸配列からなる組換えリガンドタンパク質IgGBP1をコードするプラスミド、配列番号18に示すアミノ酸配列からなる組換えリガンドタンパク質IgGBP2をコードするプラスミド、及び配列番号19に示すアミノ酸配列からなる組換えリガンドタンパク質IgGBP3をコードするプラスミドを調製した。これらのプラスミドを用いて、比較例1と同様の手順で組換えリガンドタンパク質を調製した。IgGBP1、2及び3は、それぞれ表1に示すドメイン間リンカーで連結された配列番号16で示されるアミノ酸配列を含む。得られた組換えリガンドタンパク質の理論分子量、LC純度、測定分子量は比較例1と同様に測定した。
Examples 1 to 3 Preparation of recombinant ligand protein: IgGBP1 to IgGBP3 A plasmid encoding a recombinant ligand protein IgGBP1 consisting of the amino acid sequence shown in SEQ ID NO: 17, a recombinant ligand protein IgGBP2 consisting of the amino acid sequence shown in SEQ ID NO: 18 And a plasmid encoding a recombinant ligand protein IgGBP3 consisting of the amino acid sequence shown in SEQ ID NO: 19. Using these plasmids, a recombinant ligand protein was prepared in the same manner as in Comparative Example 1. IgGBPs 1, 2 and 3 contain the amino acid sequence shown by SEQ ID NO: 16 linked by an inter-domain linker shown in Table 1, respectively. The theoretical molecular weight, LC purity and measured molecular weight of the obtained recombinant ligand protein were measured in the same manner as in Comparative Example 1.
比較例2 組換えリガンドタンパク質:IgGBP4の作成
 配列番号21に示すアミノ酸配列からなる組換えリガンドタンパク質IgGBP4をコードするプラスミドを調製した。このプラスミドを用いて、比較例1と同様の手順で組換えリガンドタンパク質を調製した。IgGBP4は、GGSGGSの繰り返し単位からなるドメイン間リンカー(特許文献1)で連結された、配列番号16で示されるアミノ酸配列を含む。得られた組換えリガンドタンパク質の理論分子量、LC純度、測定分子量は比較例1と同様に測定した。
Comparative Example 2 Preparation of Recombinant Ligand Protein: IgGBP4 A plasmid encoding a recombinant ligand protein IgGBP4 consisting of the amino acid sequence shown in SEQ ID NO: 21 was prepared. Using this plasmid, a recombinant ligand protein was prepared in the same manner as in Comparative Example 1. IgGBP4 comprises the amino acid sequence shown by SEQ ID NO: 16 linked by an inter-domain linker (Patent Document 1) consisting of repeating units of GGSGGS. The theoretical molecular weight, LC purity and measured molecular weight of the obtained recombinant ligand protein were measured in the same manner as in Comparative Example 1.
 比較例1~2及び実施例1~3の組換えリガンドタンパク質のLC純度及び分子量を表1に示す。 The LC purity and molecular weight of the recombinant ligand proteins of Comparative Examples 1-2 and Examples 1-3 are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
試験例1
(1)リガンドタンパク質固定化多孔質粒子の調製
 参考例1で取得した多孔質粒子PBに対して、粒子1gあたりのリガンドタンパク質量が0.15gになるように、1.2M硫酸ナトリウム/0.1M炭酸ナトリウムバッファー(pH8.8)を含む液に実施例1~3又は比較例1~2のリガンドタンパク質とPBを混和し、25℃で5時間振盪して、リガンドタンパク質固定化多孔質粒子(IgGBP0/PB、IgGBP1/PB、IgGBP2/PB、IgGBP3/PB、及びIgGBP4/BP)を得た。これら粒子に残存するエポキシ基をチオグリセロールを用いてブロッキングした。その後、0.5M NaOH及び0.1Mクエン酸バッファー(pH3.2)を用いて粒子を洗浄し、最終的にPBSに懸濁した。
Test Example 1
(1) Preparation of Ligand Protein-Immobilized Porous Particles With respect to the porous particles PB obtained in Reference Example 1, 1.2 M sodium sulfate / 0. 2 so that the amount of ligand protein per 1 g of particles is 0.15 g. The ligand protein of Example 1-3 or Comparative Example 1-2 and PB are mixed in a solution containing 1 M sodium carbonate buffer (pH 8.8), shaken for 5 hours at 25 ° C., ligand protein-immobilized porous particles ( IgGBP0 / PB, IgGBP1 / PB, IgGBP2 / PB, IgGBP3 / PB, and IgGBP4 / BP) were obtained. The epoxy groups remaining on these particles were blocked with thioglycerol. The particles were then washed with 0.5 M NaOH and 0.1 M citrate buffer (pH 3.2) and finally suspended in PBS.
(2)リガンド結合量の測定
 1mgのIgGBP0/PBを含む150μLの懸濁液について、BCA Assayキット(PIERCE社)を用いて、粒子に結合したリガンドタンパク質の量を測定した。同様の手順で、IgGBP1/PB~IgGBP4/PBにおける粒子に対するリガンドタンパク質の結合量を測定した。
(2) Measurement of Ligand Binding Amount The amount of ligand protein bound to particles was measured using a BCA Assay kit (PIERCE) for a suspension of 150 μL containing 1 mg of IgGBP0 / PB. The amount of ligand protein bound to the particles in IgGBP1 / PB to IgGBP4 / PB was measured in the same manner.
(3)IgG動的結合容量(DBC)の測定
 IgGBP0/BPを内径0.5cmのカラムにベッド高20cmまで充填した。カラムを20mMリン酸バッファー(pH7.5)で平衡化した後、ヒトポリクローナルIgG(5mg/mL)を含む20mMリン酸バッファー(pH7.5)を、線流速300cm/時間で流し、吸光度モニターで溶出液中のヒトポリクローナルIgG濃度が10%ブレークスルー(破過)のときのヒトポリクローナルIgG吸着量と担体体積から動的結合容量(DBC)を求めた。同様の手順で、IgGBP1/PB~IgGBP4/PBのDBCを求めた。さらに各粒子について、DBCをリガンド結合量で除し、得られた値の比較例1の値に対する相対値(%)を求め、リガンド利用効率を算出した。
(3) Measurement of IgG Dynamic Binding Capacity (DBC) IgGBP0 / BP was packed in a column with an inner diameter of 0.5 cm to a bed height of 20 cm. After equilibrating the column with 20 mM phosphate buffer (pH 7.5), flow 20 mM phosphate buffer (pH 7.5) containing human polyclonal IgG (5 mg / mL) at a linear flow rate of 300 cm / hour and elute with absorbance monitor Dynamic binding capacity (DBC) was determined from the amount of human polyclonal IgG adsorbed and the carrier volume when the concentration of human polyclonal IgG in the solution was 10% breakthrough (breakthrough). The DBC of IgGBP1 / PB to IgGBP4 / PB was determined in the same manner. Furthermore, for each particle, DBC was divided by the amount of ligand binding, and the relative value (%) of the obtained value to the value of Comparative Example 1 was determined to calculate the ligand utilization efficiency.
 表2に示すとおり、実施例1~3のドメイン間リンカーをそれぞれ含むリガンドタンパク質であるIgGBP1~3のいずれかが固定化された粒子は、比較例1のリンカーを含まないリガンドタンパク質であるIgGBP0が固定化された粒子に比べて、DBC及びリガンド利用効率が向上していた。さらに実施例1と2の比較から、ドメイン間リンカーの長さが長くなるとリガンド利用効率がより上昇する傾向にあることが分かった。  As shown in Table 2, the particles immobilized with any of the ligand proteins IgGBP1 to 3 which are ligand proteins respectively containing the inter-domain linkers of Examples 1 to 3 are the ligand proteins which do not contain the linker of Comparative Example 1 are IgGBP0. DBC and ligand utilization efficiency was improved as compared to immobilized particles. Furthermore, it was found from the comparison of Examples 1 and 2 that the ligand utilization efficiency tends to further increase as the length of the inter-domain linker increases.
 また、IgGBP1~3のいずれかが固定化された粒子は、GGSGGSの繰り返し単位からなるリンカー(特許文献1)を含むリガンドタンパク質であるIgGBP4(比較例2)が固定化された粒子に比べて、DBC及びリガンド利用効率が向上していた。 In addition, particles on which any one of IgGBPs 1 to 3 is immobilized are compared to particles on which IgGBP 4 (comparative example 2), which is a ligand protein containing a linker (Patent Document 1) consisting of repeating units of GGSGGS, is immobilized. DBC and ligand utilization efficiency was improved.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 本発明の実施形態に係る説明は以上である。しかしながら、本発明は上述した実施形態に限定されるものではなく、本発明のさらなる種々の変形が可能である。また本発明は、上記で説明した実施形態の構成と実質的に同一の構成(例えば、機能、方法及び結果が同一の構成、あるいは目的及び結果が同一の構成)を含む。また、本発明は、上記で説明した実施形態の構成の本質的でない部分を置き換えた構成を含む。また、本発明は、上記で説明した実施形態の構成と同一の作用効果を奏する構成又は同一の目的を達成することができる構成を含む。また、本発明は、上記で説明した実施形態の構成に公知技術を付加した構成を含む。 The explanation according to the embodiment of the present invention is as described above. However, the present invention is not limited to the embodiments described above, and various modifications of the present invention are possible. Furthermore, the invention includes configurations substantially the same as the configurations of the embodiments described above (for example, configurations having the same function, method and result, or configurations having the same purpose and result). The present invention also includes configurations in which nonessential parts of the configurations of the embodiments described above are replaced. The present invention also includes configurations that can achieve the same effects or the same objects as the configurations of the embodiments described above. The present invention also includes a configuration in which a known technique is added to the configuration of the embodiment described above.

Claims (20)

  1.  リンカーで連結された2個以上のドメインを含み、該ドメインはイムノグロブリンに対する親和性を有し、該リンカーはロッド状構造を有するペプチドである、タンパク質。 A protein comprising two or more domains linked by a linker, wherein the domains have an affinity for immunoglobulin and the linker is a peptide having a rod-like structure.
  2.  リンカーで連結された2個以上のドメインを含むタンパク質であって、
     該ドメインはイムノグロブリンに対する親和性を有し、
     該リンカーは、少なくとも1個のプロリンを含むポリペプチドからなるリンカー(a)、及びX-(A)-X又はX-(A)-Xからなるペプチド単位を少なくとも1個含むポリペプチドからなるリンカー(b)(但し、Xは酸性アミノ酸であり、Xは塩基性アミノ酸であり、Aはアラニンであり、iは3又は4の整数である)の少なくとも一方を含む、
    タンパク質。
    A protein comprising two or more domains linked by a linker, wherein
    The domain has an affinity for immunoglobulins and
    The linker, a linker comprising a polypeptide comprising at least one proline (a), and X a - (A) i -X b or X b - at least one (A) consisting of i -X a peptide units Containing at least one of the following linkers (b) (wherein X a is an acidic amino acid, X b is a basic amino acid, A is alanine and i is an integer of 3 or 4): ,
    protein.
  3.  前記リンカー(a)が長さ8アミノ酸以上のポリペプチドからなる、請求項2記載のタンパク質。 The protein according to claim 2, wherein the linker (a) consists of a polypeptide having a length of 8 amino acids or more.
  4.  前記リンカー(a)が、Pro-Xaa及びXaa-Proからなる群より選択されるペプチド単位を合計で4個以上含む、請求項3記載のタンパク質。 The protein according to claim 3, wherein the linker (a) comprises 4 or more in total of peptide units selected from the group consisting of Pro-Xaa and Xaa-Pro.
  5.  XaaがPro以外のアミノ酸である、請求項4記載のタンパク質。 5. The protein of claim 4, wherein Xaa is an amino acid other than Pro.
  6.  XaaがAlaである、請求項4記載のタンパク質。 5. The protein of claim 4, wherein Xaa is Ala.
  7.  前記リンカー(a)が4個以上のAla-Pro単位からなる、請求項4記載のタンパク質。 The protein according to claim 4, wherein the linker (a) consists of 4 or more Ala-Pro units.
  8.  前記リンカー(b)が長さ10アミノ酸以上のポリペプチドからなる、請求項2記載のタンパク質。 The protein according to claim 2, wherein the linker (b) consists of a polypeptide having a length of 10 amino acids or more.
  9.  前記リンカー(b)が、Glu-(Ala)-Arg、Glu-(Ala)-Lys、Asp-(Ala)-Arg、Asp-(Ala)-Lys、Arg-(Ala)-Glu、Lys-(Ala)-Glu、Arg-(Ala)-Asp、及びLys-(Ala)-Aspからなる群より選択されるペプチド単位を合計で2個以上含む、請求項2記載のタンパク質。 The linker (b) is Glu- (Ala) i- Arg, Glu- (Ala) i- Lys, Asp- (Ala) i- Arg, Asp- (Ala) i- Lys, Arg- (Ala) i- Glu, Lys- (Ala) i -Glu , Arg- (Ala) i -Asp, and Lys- (Ala) i comprises two or more in total peptide units selected from the group consisting -Asp, claim 2, wherein Protein.
  10.  前記ペプチド単位が、Glu-(Ala)3-Lys又はLys-(Ala)3-Gluである、請求項9記載のタンパク質。 The protein according to claim 9, wherein the peptide unit is Glu- (Ala) 3- Lys or Lys- (Ala) 3- Glu.
  11.  前記リンカーのN末端が前記2個以上のドメインのいずれか1つのC末端に結合し、かつ該リンカーのC末端が別のドメインのN末端に結合する、請求項1~10のいずれか1項記載のタンパク質。 11. The method according to any one of claims 1 to 10, wherein the N terminus of the linker is attached to the C terminus of any one of the two or more domains, and the C terminus of the linker is attached to the N terminus of another domain. Described protein.
  12.  前記2個以上のドメインの各々が、プロテインAもしくはプロテインLのイムノグロブリン結合ドメイン又はその変異体である、請求項1~11のいずれか1項記載のタンパク質。 The protein according to any one of claims 1 to 11, wherein each of the two or more domains is an immunoglobulin binding domain of protein A or protein L or a variant thereof.
  13.  前記2個以上のドメインの各々が、配列番号3~10のいずれかで示されるアミノ酸配列からなるポリペプチド、及び配列番号3~10のいずれかで示されるアミノ酸配列と少なくとも85%の同一性を有するアミノ酸配列からなり、かつイムノグロブリン結合活性を有するポリペプチド、からなる群より選択される、請求項12記載のタンパク質。 Each of the two or more domains has at least 85% identity to a polypeptide consisting of the amino acid sequence shown in any of SEQ ID NOs: 3 to 10, and the amino acid sequence shown in any of SEQ ID NOs: 3 to 10 The protein according to claim 12, which is selected from the group consisting of an amino acid sequence having and a polypeptide having an immunoglobulin binding activity.
  14.  前記ドメインを3~8個含む、請求項1~13のいずれか1項記載のタンパク質。 The protein according to any one of claims 1 to 13, comprising 3 to 8 of the domains.
  15.  アフィニティークロマトグラフィーリガンドである、請求項1~14のいずれか1項記載のタンパク質。 The protein according to any one of claims 1 to 14, which is an affinity chromatography ligand.
  16.  請求項1~15のいずれか1項記載のタンパク質をコードするポリヌクレオチド。 A polynucleotide encoding a protein according to any one of claims 1-15.
  17.  請求項16記載のポリヌクレオチドを含むベクター。 A vector comprising the polynucleotide according to claim 16.
  18.  請求項17記載のベクターを含むベクター形質転換体。 A vector transformant comprising the vector according to claim 17.
  19.  固相担体と、該固相担体に結合した請求項1~15のいずれか1項記載のタンパク質とを含む、アフィニティークロマトグラフィー用担体。 A carrier for affinity chromatography, comprising a solid phase carrier and the protein according to any one of claims 1 to 15 bound to the solid phase carrier.
  20.  請求項19記載のアフィニティークロマトグラフィー用担体を用いる、抗体又はその断片の単離方法。  A method of isolating an antibody or a fragment thereof using the affinity chromatography carrier according to claim 19.
PCT/JP2018/031432 2017-08-24 2018-08-24 Protein, and isolation method for antibodies or fragments thereof using carrier including said protein WO2019039602A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-160840 2017-08-24
JP2017160840A JP2020198783A (en) 2017-08-24 2017-08-24 Affinity chromatography ligands

Publications (1)

Publication Number Publication Date
WO2019039602A1 true WO2019039602A1 (en) 2019-02-28

Family

ID=65439488

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/031432 WO2019039602A1 (en) 2017-08-24 2018-08-24 Protein, and isolation method for antibodies or fragments thereof using carrier including said protein

Country Status (2)

Country Link
JP (1) JP2020198783A (en)
WO (1) WO2019039602A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2811436C1 (en) * 2023-10-13 2024-01-11 Общество С Ограниченной Ответственностью "Алтай-Энзим" (Ооо "Алтай-Энзим") RECOMBINANT PLASMID pETZ, PROVIDING SYNTHESIS AND SECRETION OF RECOMBINANT PROTEIN A, AND RECOMBINANT PROTEIN A USED FOR IMMUNOCHEMICAL ASSAYS

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009297018A (en) * 2008-05-16 2009-12-24 National Institute Of Advanced Industrial & Technology Antibody-bondable protein having improved dissociation characteristic in slightly acidic region, and antibody scavenger
WO2010080424A1 (en) * 2008-12-18 2010-07-15 E. I. Du Pont De Nemours And Company Peptide linkers for effective multivalent peptide binding
WO2010110288A1 (en) * 2009-03-24 2010-09-30 株式会社カネカ Protein having affinity for immunoglobulin, and immunoglobulin-binding affinity ligand
WO2013018880A1 (en) * 2011-08-04 2013-02-07 独立行政法人産業技術総合研究所 Novel modified protein comprising tandem-type multimer of mutant extracellular domain of protein g
JP2015019615A (en) * 2013-07-18 2015-02-02 独立行政法人産業技術総合研究所 Novel modified protein derived from variant of outer membrane domain of cell of protein g
WO2015050153A1 (en) * 2013-10-04 2015-04-09 独立行政法人産業技術総合研究所 PROTEIN COMPRISED BY LINKING BY LINKER MULTIPLE DOMAINS HAVING AFFINITY FOR PROTEINS HAVING Fc PART OF IMMUNOGLOBULIN G (IgG)
WO2016152946A1 (en) * 2015-03-26 2016-09-29 Jsr株式会社 Immunoglobulin-binding protein and affinity carrier using same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009297018A (en) * 2008-05-16 2009-12-24 National Institute Of Advanced Industrial & Technology Antibody-bondable protein having improved dissociation characteristic in slightly acidic region, and antibody scavenger
WO2010080424A1 (en) * 2008-12-18 2010-07-15 E. I. Du Pont De Nemours And Company Peptide linkers for effective multivalent peptide binding
WO2010110288A1 (en) * 2009-03-24 2010-09-30 株式会社カネカ Protein having affinity for immunoglobulin, and immunoglobulin-binding affinity ligand
WO2013018880A1 (en) * 2011-08-04 2013-02-07 独立行政法人産業技術総合研究所 Novel modified protein comprising tandem-type multimer of mutant extracellular domain of protein g
JP2015019615A (en) * 2013-07-18 2015-02-02 独立行政法人産業技術総合研究所 Novel modified protein derived from variant of outer membrane domain of cell of protein g
WO2015050153A1 (en) * 2013-10-04 2015-04-09 独立行政法人産業技術総合研究所 PROTEIN COMPRISED BY LINKING BY LINKER MULTIPLE DOMAINS HAVING AFFINITY FOR PROTEINS HAVING Fc PART OF IMMUNOGLOBULIN G (IgG)
WO2016152946A1 (en) * 2015-03-26 2016-09-29 Jsr株式会社 Immunoglobulin-binding protein and affinity carrier using same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LEE J H. ET AL.: "Enhancing immunoassay detection of antigens with multimeric protein Gs", BIOSENSORS AND BIOELECTRONICS, vol. 28, no. 1, 2011, pages 146 - 151, XP028340765, DOI: doi:10.1016/j.bios.2011.07.011 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2811436C1 (en) * 2023-10-13 2024-01-11 Общество С Ограниченной Ответственностью "Алтай-Энзим" (Ооо "Алтай-Энзим") RECOMBINANT PLASMID pETZ, PROVIDING SYNTHESIS AND SECRETION OF RECOMBINANT PROTEIN A, AND RECOMBINANT PROTEIN A USED FOR IMMUNOCHEMICAL ASSAYS

Also Published As

Publication number Publication date
JP2020198783A (en) 2020-12-17

Similar Documents

Publication Publication Date Title
US11884705B2 (en) Immunoglobulin binding protein, and affinity support using same
JP7335881B2 (en) Immunoglobulin-binding protein and affinity carrier using the same
JP6843438B2 (en) Modified κ light chain binding polypeptide
JP5298242B2 (en) Carrier for affinity chromatography and method for isolating immunoglobulin
JP6950957B2 (en) Immunoglobulin-binding polypeptide
WO2013027796A1 (en) IgG-BINDING PEPTIDE AND METHOD FOR DETECTING AND PURIFYING IgG USING SAME
US11753449B2 (en) Immunoglobulin binding protein, and affinity support using same
WO2011118599A1 (en) Filler for affinity chromatography and method for isolating immunoglobulin
WO2016152946A1 (en) Immunoglobulin-binding protein and affinity carrier using same
EP2881403A1 (en) Scavenger containing protein formed from tandem-type multimer of mutant extracellular domain of protein g
WO2019039602A1 (en) Protein, and isolation method for antibodies or fragments thereof using carrier including said protein
KR102578538B1 (en) Methods for isolating affinity carriers and immunoglobulins
JP2022081709A (en) Immunoglobulin-binding protein and affinity carrier using the same
WO2019203248A1 (en) Immunoglobulin-binding polypeptide and affinity support using same
JP2024508587A (en) AAV2 affinity agent
CN116670150A (en) Immunoglobulin binding polypeptides

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18848181

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18848181

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP