WO2019039516A1 - Carbyne-containing composite material - Google Patents
Carbyne-containing composite material Download PDFInfo
- Publication number
- WO2019039516A1 WO2019039516A1 PCT/JP2018/031025 JP2018031025W WO2019039516A1 WO 2019039516 A1 WO2019039516 A1 WO 2019039516A1 JP 2018031025 W JP2018031025 W JP 2018031025W WO 2019039516 A1 WO2019039516 A1 WO 2019039516A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- cnt
- composite material
- carbyne
- containing composite
- calvin
- Prior art date
Links
- 239000002131 composite material Substances 0.000 title claims abstract description 94
- VRLIPUYDFBXWCH-UHFFFAOYSA-N hydridocarbon(.) Chemical compound [CH] VRLIPUYDFBXWCH-UHFFFAOYSA-N 0.000 title abstract 9
- 239000002041 carbon nanotube Substances 0.000 claims abstract description 87
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 82
- 229910021393 carbon nanotube Inorganic materials 0.000 claims abstract description 21
- MCOQHIWZJUDQIC-UHFFFAOYSA-N barban Chemical compound ClCC#CCOC(=O)NC1=CC=CC(Cl)=C1 MCOQHIWZJUDQIC-UHFFFAOYSA-N 0.000 claims description 108
- 239000002109 single walled nanotube Substances 0.000 claims description 72
- 238000001237 Raman spectrum Methods 0.000 claims description 28
- 230000005684 electric field Effects 0.000 claims description 20
- 238000001069 Raman spectroscopy Methods 0.000 claims description 13
- 238000000034 method Methods 0.000 claims description 5
- 238000011049 filling Methods 0.000 abstract description 19
- 230000004931 aggregating effect Effects 0.000 abstract 1
- 239000002079 double walled nanotube Substances 0.000 description 43
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 43
- 239000002048 multi walled nanotube Substances 0.000 description 26
- 238000003917 TEM image Methods 0.000 description 18
- 238000005259 measurement Methods 0.000 description 17
- 230000015572 biosynthetic process Effects 0.000 description 14
- 238000004458 analytical method Methods 0.000 description 12
- 238000004519 manufacturing process Methods 0.000 description 11
- 238000012360 testing method Methods 0.000 description 11
- 230000007547 defect Effects 0.000 description 10
- 239000000463 material Substances 0.000 description 10
- 229910052751 metal Inorganic materials 0.000 description 9
- 239000002184 metal Substances 0.000 description 9
- 238000001020 plasma etching Methods 0.000 description 9
- 239000007858 starting material Substances 0.000 description 9
- 125000004432 carbon atom Chemical group C* 0.000 description 8
- 229910003481 amorphous carbon Inorganic materials 0.000 description 6
- 229910021387 carbon allotrope Inorganic materials 0.000 description 6
- 230000008859 change Effects 0.000 description 6
- 229910021389 graphene Inorganic materials 0.000 description 6
- 239000000126 substance Substances 0.000 description 6
- 239000011230 binding agent Substances 0.000 description 5
- 229910052799 carbon Inorganic materials 0.000 description 5
- 239000003054 catalyst Substances 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 5
- 150000001721 carbon Chemical group 0.000 description 4
- 239000003575 carbonaceous material Substances 0.000 description 4
- 239000013078 crystal Substances 0.000 description 4
- 230000001965 increasing effect Effects 0.000 description 4
- 238000004611 spectroscopical analysis Methods 0.000 description 4
- 230000009471 action Effects 0.000 description 3
- 239000000654 additive Substances 0.000 description 3
- 230000000996 additive effect Effects 0.000 description 3
- 238000001241 arc-discharge method Methods 0.000 description 3
- 238000005229 chemical vapour deposition Methods 0.000 description 3
- 238000002485 combustion reaction Methods 0.000 description 3
- 229910003460 diamond Inorganic materials 0.000 description 3
- 239000010432 diamond Substances 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 230000000712 assembly Effects 0.000 description 2
- 238000000429 assembly Methods 0.000 description 2
- 125000004429 atom Chemical group 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 230000005284 excitation Effects 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 229910021392 nanocarbon Inorganic materials 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical group [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 238000001878 scanning electron micrograph Methods 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 230000002194 synthesizing effect Effects 0.000 description 2
- 230000004580 weight loss Effects 0.000 description 2
- KCADUUDDTBWILK-UHFFFAOYSA-N Cumulene Natural products CCCC=C=C=C1OC(=O)C=C1 KCADUUDDTBWILK-UHFFFAOYSA-N 0.000 description 1
- -1 DWNTs Substances 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000007596 consolidation process Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 238000005087 graphitization Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 229910052741 iridium Inorganic materials 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000003562 lightweight material Substances 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 239000005300 metallic glass Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- HZVOZRGWRWCICA-UHFFFAOYSA-N methanediyl Chemical compound [CH2] HZVOZRGWRWCICA-UHFFFAOYSA-N 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000002073 nanorod Substances 0.000 description 1
- 239000002072 nanorope Substances 0.000 description 1
- 239000002071 nanotube Substances 0.000 description 1
- 229910052762 osmium Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 238000010587 phase diagram Methods 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 150000005837 radical ions Chemical class 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000011514 reflex Effects 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 238000002411 thermogravimetry Methods 0.000 description 1
- 239000002562 thickening agent Substances 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/15—Nano-sized carbon materials
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/15—Nano-sized carbon materials
- C01B32/158—Carbon nanotubes
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/15—Nano-sized carbon materials
- C01B32/158—Carbon nanotubes
- C01B32/159—Carbon nanotubes single-walled
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/15—Nano-sized carbon materials
- C01B32/158—Carbon nanotubes
- C01B32/168—After-treatment
- C01B32/178—Opening; Filling
Definitions
- the present invention relates to carbin-containing composites. This application claims priority based on Japanese Patent Application No. 2017-162599 filed on Aug. 25, 2017, the entire contents of which are incorporated herein by reference.
- Carbin is a carbon allotrope in which carbon atoms (C) are bonded in one dimension. Calvin was identified in 1885, but because it is unstable in the atmosphere, its identification was made in the 1960s. Then, last year, it was reported that by using double-walled carbon nanotubes (DWNT) as a nanoreactor, it is possible to stably generate very long calvin in the internal space of DWNT (see Non-Patent Document 1) ).
- DWNT double-walled carbon nanotubes
- Non-Patent Document 1 discloses that Calvin can be suitably formed inside DWNT by heating DWNT at a high vacuum of 8 ⁇ 10 ⁇ 5 Pa and a high temperature of 1460 ° C.
- carbine can be grown only with DWNT having an inner tube diameter in the range of 0.62 to 0.85 nm, and 90% or more of DWNT of the inner diameter is filled with carbine.
- DWNT having the above-mentioned tube diameter can be obtained to only about 25% of the prepared DWNT set. Absent. Also, it is reported that only 24% of DWNTs in the prepared DWNTs are filled with calvin.
- the present invention has been made in view of the above-mentioned point, and its main object is to provide a carbyne-containing composite material which is an aggregate of carbene-containing carbon nanotubes with a higher filling rate.
- the carbyne-containing composite material provided by the present invention includes a CNT aggregate in which a plurality of carbon nanotubes (carbon nanotubes: CNT, hereinafter may be simply referred to as “CNT”) are assembled, and carbine. And, the above-mentioned calvin is filled in 30% or more of the above-mentioned plurality of CNTs.
- CNT carbon nanotubes
- the carbyne-containing composite material disclosed herein contains carbyne in CNT at a higher filling rate than heretofore known. It has been reported that, even when CNT has intrinsically semiconductive properties based on its crystal structure, it is possible to impart metallic properties to CNT by introducing carbin into the CNT. From this, for example, even if the CNT assembly contains a large amount of CNTs exhibiting semiconductive properties, by introducing calvin at a high filling rate, overall high metallic properties (for example, high electrical conductivity) Can be provided.
- the carbyne-containing composite material can realize a material in which the characteristics possessed by carbine are more strongly reflected as compared with conventional CNTs and CNTs containing carbine.
- the characteristics of the carbine provided in the carbyne-containing composite material may be various characteristics without being limited to the electrical conductivity.
- the relative intensity of the peak based on LCC band is 0 when the intensity of the peak based on G band is 1 in the Raman spectrum measured by Raman spectroscopy. .4 or more.
- Such a configuration also realizes a carbin-containing composite material in which a large amount of carbin is introduced.
- the carbon nanotube encapsulating the carbyne is at least partially represented as single-walled carbon nanotube (SWNT), hereinafter simply referred to as “SWNT”.
- SWNT single-walled carbon nanotube
- the above-mentioned CNT containing the above-mentioned carbine contains 10 or more% of SWNTs.
- Non-Patent Document 1 discloses that SWNT has relatively low thermal stability as compared to DWNT and the like, and therefore it can not form carbin therein.
- carbyne-containing composite material disclosed herein carbyne can be stably contained in SWNTs.
- the calvin-containing composite material disclosed herein can be a novel calvin-containing SWNT (calvin @ SWNT).
- a carbyne-containing composite material is preferable because it can more effectively increase the proportion of carbine in the entire composite material.
- This is also useful in that it can be a material in which the properties of SWNT and Calvin are strongly reflected.
- the proportion of CNTs having a specific structure in the CNT assembly can be grasped, for example, by observation with a transmission electron microscope (TEM).
- TEM transmission electron microscope
- the proportion of SWNTs in a CNT assembly can be obtained by calculating the proportion (several%) of the total number of SWNTs in the total number of CNTs observed in the field of view in TEM observation. it can.
- the number of CNTs may be measured, for example, for CNTs having a length of 500 nm or more, which can be confirmed in an observation image.
- a value measured based on an observation image at a magnification of about 50,000 to 500,000 can be preferably employed.
- CNT encapsulates two or more carbins in a direction orthogonal to the axial direction of the CNTs. That is, CNT can contain two or more calvins arranged in the short direction. It is known that Calvin is formed intermittently along the longitudinal direction (axial direction) inside the CNT. That is, a plurality of calvins can be included in the CNT along the longitudinal direction. However, there has been no report on CNTs encapsulated in a state of bundling two carbins.
- the calvin-containing composite material disclosed herein can include such novel calvin-containing CNTs (calvin @ CNT).
- the technology disclosed herein provides an unprecedented novel carbin-containing composite material.
- This carbin containing composite material can have the characteristics of the CNT assembly and the carbin together.
- Calvin is theoretically reported to have twice the tensile strength with respect to graphene, and the stiffness is reported to be about twice as high as that of graphene and CNT and about three times that of diamond.
- a carbyne-containing composite material can be of significantly improved tensile strength and stiffness relative to the CNT assembly.
- a carbyne-containing composite material can be one that enhances the electrical conductivity of the CNT assembly.
- the carbyne-containing composites disclosed herein provide new materials that enhance or modify the properties of the CNT assembly. This novel material can be used in applications similar to conventional CNTs, or in new and unprecedented applications. From this, the technology disclosed herein can provide various articles including a carbine-containing composite material.
- the technology disclosed herein also provides a method of producing a carbine-containing composite material.
- a plurality of carbon nanotubes are collected, and a carbon nanotube assembly having a G / D ratio of 25 or more is prepared, and a voltage at least at which electric field electron emission occurs is applied to the carbon nanotube assembly.
- a voltage at least at which electric field electron emission occurs is applied to the carbon nanotube assembly.
- FIG. 5B is a Raman spectrum of the calvin-containing composite material at measurement positions (a) to (c) shown in FIG. 5A.
- (A) to (C) are TEM images of SWNT in a CNT sheet not containing calvin
- D is a view showing the result of gradation profile analysis of (A). It is a TEM image of SWNT contained in the carbyne content composite material concerning one embodiment. It is a TEM image of other SWNTs contained in the carbyne content composite material concerning one embodiment.
- (A) (B) is a figure which shows the result of the gradation profile analysis of the area
- (A) and (B) are TEM images of DWNTs included in a carbin-containing composite material according to one embodiment.
- (A) (B) is a figure which shows the result of the gradation profile analysis of the area
- (A) is a TEM image of MWNT contained in the carbyne content composite material concerning one embodiment
- (B) is a figure showing the result of the gradation profile analysis of the field surrounded by the square.
- (A) is a TEM image of DWNT contained in the carbyne content composite material concerning one embodiment
- (B) is a figure showing the result of the gradation profile analysis of the field surrounded by the square.
- the carbyne-containing composite material disclosed herein includes a CNT assembly in which a plurality of CNTs are assembled, and carbyne. And, calvin is filled (included) in CNT.
- each component of a calvin containing composite material is demonstrated.
- the CNT assembly is a main component of the carbyne-containing composite material disclosed herein. And it has a role as a protective case which holds Calvin stably. In addition, the CNT assembly also has a function as a reactor of Calvin in the production of a Calvin-containing composite material described later.
- the configuration and the like of the CNT assembly are not particularly limited, and various CNT assemblies in which a plurality of CNTs are separately or integrally assembled can be considered. From the viewpoint of ease of handling, a plurality of CNTs may be integrated together.
- the CNT assembly may be constituted, for example, by a plurality of CNTs grown oriented in a direction perpendicular to the substrate.
- the number of CNTs constituting the “CNT assembly” is not strictly limited, and one example is a large number (for example, about 10 or more, preferably about 50 or more, more preferably about 100 or more) of CNTs. It can be considered as one consisting of a set. However, it can be said that it is not realistic to define the CNT assembly by the number of CNTs constituting it.
- “CNT aggregate” may be grasped as a set of 1 ⁇ g or more of CNTs.
- the CNT assembly may be an assembly of 10 ⁇ g or more of CNTs, may be 100 ⁇ g or more, for example, 1000 ⁇ g or more. There is no limitation on the upper limit of the mass of CNTs constituting the CNT assembly.
- the CNT assembly may be formed of SWNT in a form in which one graphene sheet is rolled in a cylindrical shape, or may be formed of DWNT in a form in which two different diameter SWNTs are nested.
- three or more different diameter SWNTs may be constituted by multi-walled carbon nanotubes (MWNT) in a nested form.
- the CNT assembly may be formed by mixing two or more of these SWNTs, DWNTs, and MWNTs.
- MWNT multi-walled carbon nanotubes
- three or more layers of CNTs are collectively referred to as MWNT, and unless otherwise specified, the ratio etc. shall mean the value for the entire MWNT.
- MWNT for example, about 3 to 200 layers of CNTs are common, and typically about 3 to 60 layers of CNTs.
- CNTs can have different layer structures, such as one layer, two layers, and three layers in one tube. In such a case, the number of layers with the highest proportion in the CNT may be adopted as the number of layers of the CNT.
- the CNT aggregate is not necessarily limited to this, but the ratio of SWNT to the total of SWNT, DWNT and MWNT is preferably 10% or more (10% or more based on the number). It is preferable to increase the amount of carbin contained per unit weight of the CNT assembly by increasing the proportion of SWNTs constituting the CNT assembly.
- the percentage of SWNTs in the CNT aggregate is more preferably 20 numbers% or more, still more preferably 30 numbers% or more, particularly preferably 40 numbers% or more, for example, 50 numbers% or more.
- the ratio of SWNTs may be 60 lines% or more, 70 lines% or more, 80 lines% or more, 90 lines% or more, and substantially 100 lines%. It may be.
- the method of synthesizing SWNT has been greatly improved, and a method of synthesizing SWNT of higher quality in terms of purity and degree of graphitization has been proposed.
- the content ratio of SWNTs may be evaluated on a mass basis. Therefore, for example, the CNT aggregate is not necessarily limited to this, but the ratio of SWNT in the total of SWNT, DWNT and MWNT is preferably 30% by mass or more, and 40% by mass or more is more Preferably, it is 50% by mass or more, more preferably 60% by mass or more, and for example, 70% by mass or more.
- the mass ratio of CNTs occupying in the entire of the carbyne-containing composite material can be effectively reduced.
- the upper limit of the proportion of SWNT is not particularly limited, and may be, for example, substantially 100% by mass (for example, 95% by mass or less).
- the ratio of DWNT in the total of SWNT, DWNT and MWNT may be 10% by mass or more, 15% by mass or more, for example, 20% by mass or more. It is also good.
- the carbin-containing composite material disclosed herein it is not necessary to increase the proportion of DWNT in order to convolute the calvin in the CNT at a high proportion.
- the CNT assembly is not necessarily limited to this, but for example, the proportion of DWNT in the total of SWNT, DWNT and MWNT may be 70% by mass or less, 60% by mass or more For example, 50 mass% or less may be sufficient. In addition, 30 mass% or less is preferable, for example, 20 mass% or less is more preferable, for example, 10 mass% or less may be sufficient as the ratio of MWNT to the sum total of CNT.
- the average diameter of the CNTs in the CNT aggregate is not strictly limited, and may be, for example, 0.43 nm or more and 100 nm or less, and typically 0.5 nm or more and 50 nm or less, preferably 0.6 nm.
- the thickness is 10 nm or less.
- the diameter of the CNT aggregate means a tube diameter (diameter) for SWNT and a tube system (diameter) for the innermost CNT for two or more CNT layers.
- carbyne-containing composite material disclosed herein although not necessarily limited thereto, it is confirmed that carbyne can be suitably contained in CNTs having a diameter of 0.6 nm or more, for example, 0.7 nm or more. ing.
- the average inner diameter of the CNTs in the CNT aggregate is preferably 0.6 nm or more, more preferably 0.7 nm or more, and can be, for example, 0.8 nm or more.
- the average inside diameter of the CNTs is preferably 5 nm or less, more preferably 2 nm or less, from the viewpoint that carbin can be present more stably.
- the average length of the CNTs is typically 1 ⁇ m or more.
- the average length of the CNTs is preferably 3 ⁇ m or more, more preferably 5 ⁇ m or more, still more preferably 8 ⁇ m or more, particularly preferably 10 ⁇ m or more, for example, 10 ⁇ m or more.
- the upper limit of the average length of the CNTs is not particularly limited, but is preferably about 30 ⁇ m or less, and may be, for example, 25 ⁇ m or less, typically 20 ⁇ m or less, for example 15 ⁇ m or less.
- a CNT having an average length of 5 ⁇ m to 30 ⁇ m, preferably 10 ⁇ m to 25 ⁇ m, and typically 12 ⁇ m to 20 ⁇ m is suitable.
- the average value of the aspect ratio of CNT (CNT length / diameter) in the CNT assembly is not particularly limited, but is typically 100 or more.
- the average aspect ratio of the CNTs is preferably 250 or more, more preferably 500 or more, still more preferably 800 or more, particularly preferably 1000 or more, from the viewpoint of, for example, enhancing the low resistance properties and strength of the CNT assembly.
- the upper limit of the average aspect ratio of the CNTs is not particularly limited, but from the viewpoint of handleability, easiness of production, etc., approximately 25000 or less is suitable, preferably 20000 or less, more preferably 15000 or less, still more preferably It is 12000 or less, particularly preferably 10000 or less.
- CNTs having an average aspect ratio of 100 to 10000 are preferable.
- the average aspect ratio (CNT length / diameter), average length, and average diameter of CNT can employ
- carbyne is contained in CNT, as shown in FIG. 1, for example.
- Calvin and CNT have the same longitudinal direction (axial direction).
- carbin is one of allotropes of carbon, and has a structure in which carbon atoms are linearly and sp-bonded in one dimension.
- carbyne has a polyyne structure (1) in which adjacent carbon atoms are alternately bonded by a triple bond and a single bond, and a continuous double It can be represented by the resonance structure of the bonded cumulene structure (2). Therefore, Calvin has a thickness (diameter) of one carbon atom, and the length is sufficiently long with respect to this thickness (for example, about 9 nm or more), so Calvin is an ultimate one-dimensional substance. .
- Non-Patent Document 2 precise simulation using a computer is performed on Calvin represented by the formulas (1) and (2) to predict that Calvin is harder than any substance existing in the world. Specifically, the tensile strength is about twice that of graphene, and the stiffness is about twice that of graphene and nanotubes, and about three times that of diamond.
- Calvin turns into a magnetic semiconductor when it is twisted by 90 ° with its coupling direction as the axis of rotation, and it is expected that energy will be stored and it will be stable even at room temperature.
- the phase diagram of Calvin is said to exist in a narrow region surrounded by gas phase, liquid phase, diamond and graphite, but since actual Calvin is a very unstable substance under normal pressure, The details are not disclosed.
- the Calvin-containing composite material disclosed herein contains a Calvin, in the Raman spectrum obtained by Raman spectroscopic analysis, approximately from 1850 cm -1 in the range of 1865cm -1, a linear carbon chain (linear carbon chains: LCC).
- LCC linear carbon chains
- a Raman spectrum means a spectrum obtained by Raman spectroscopy using a laser with a wavelength of 532 nm as excitation light.
- a peak based on a G band is observed around 1590 cm ⁇ 1 derived from the graphite structure of CNT.
- a peak based on D band can be observed around 1350 cm ⁇ 1 due to the defect of the graphite structure.
- the carbin containing composite material indicated here contains carbin in CNT in many ratios rather than before.
- the relative intensity I LCC of the peak based on the LCC band ie, the relative intensity I LCC / I G
- the relative intensity I LCC / I G is preferably 0.8 or more, more preferably 1.0 or more, more preferably 1.2 or more, particularly preferably 1.5 or more.
- the relative intensity I LCC / I G can be 2 or more, more preferably 2.5 or more, 3.0 or more is particularly preferable.
- the upper limit of the relative intensity I LCC / I G is not strictly limited.
- the upper limit of the relative intensity I LCC / I G can be about 6.1.
- the amount of carbin contained in the CNTs can also be evaluated by the filling rate of carbin.
- the filling rate of carbin is preferably 30% or more. CNT assemblies containing carbin at such high filling rates have not been known so far.
- the filling rate of carbin can be further increased by adjusting the method for producing a carbin-containing composite material described later and the starting material.
- the filling rate of calvin may be 32% or more, more preferably 33% or more, particularly preferably 35% or more, and still more preferably 37% or more, for example, 40% or more.
- the filling rate of carbin to CNTs is defined as follows. That is, first, the filling ratio of the carbin is defined as 100% with respect to the calvin-containing portion of one CNT which contains one long carbin without intermittent in the length direction. Then, in the Raman spectrum of the 100% packing ratio of the calvin, when the peak intensity I G * based on G band is “1”, the peak intensity I LCC * based on LCC band, ie, I LCC * / The relative intensity I LCC / G * (reference) of the LCC band to the G band at 100% filling rate is defined as I G * .
- the intensity I G of the peak based on the G bands when a "1” the intensity I LCC of peaks based on LCC band, LCC band for G bands of Calvin-containing composite material Relative strength I LCC / G.
- the relative intensity I LCC / G * of the LCC band to the G band when the filling rate is 100% may adopt a value obtained by measurement using a calvin-containing CNT having a filling rate of 100%, for example, non You may use "6.1" which is a value calculated based on the Raman spectrum disclosed by patent document 1.
- FIG. The Raman spectrum disclosed in Non-Patent Document 1 is shown in FIG.
- the calbin-containing composite material disclosed herein has a ratio ( IG / ID : G / D ratio) of peak intensity I G based on G band to intensity I D of peak based on D band. High is preferred.
- the G / D ratio of the carbin-containing composite material is, for example, preferably 6 or more, more preferably 7 or more, still more preferably 8 or more, and particularly preferably 10 or more.
- the calvin-containing composite material can also possess properties derived from calvin.
- an article can be provided that has high strength as compared to conventional CNT sheets and the like.
- calvin can cause changes in the properties of CNTs containing calvin.
- SWNTs differ in whether they exhibit metallic properties or semiconducting properties depending on chirality, they are practical because DWNT and MWNT exhibit metallic properties as a whole by including even more metallic properties of CNTs. It is known that almost all DWNTs and MWNTs can exhibit metallic properties.
- the carbyne-containing composite material disclosed herein can suitably contain SWNT, when the SWNT exhibits semiconductive properties, the carbyne-containing composite material can be modified to exhibit metallic properties by being made into a carbyne-containing composite material. .
- An article comprising such a carbyne-containing composite material can be used in place of almost all conventional CNT-based products.
- an article comprising a carbyne-containing composite material may be particularly useful as a lightweight material for mechanical or conductive material applications, and the like.
- a transparent electrode, a transparent conductive film and the like can be mentioned.
- a suitable method for producing the above-mentioned carbine-containing composite material includes the following steps (1) to (2). Each step will be described below. (1) A plurality of CNTs are assembled as a starting material, and a CNT assembly having a G / D ratio of 25 or more is prepared. (2) A voltage at which at least Field Electron Emission (FE) occurs is applied to the CNT assembly.
- FE Field Electron Emission
- the carbin containing composite material uses CNT aggregates as a starting material.
- the CNT aggregate may be prepared to have substantially the same configuration as the intended carbin-containing composite material.
- SWNT, DWNT, and MWNT proportions, shapes, and aggregation forms in the CNT assembly of a carbin-containing composite material may provide a CNT assembly having a desired aspect at the stage of the starting material.
- the CNT assembly may be held by any base material, or may be prepared as an independent body of only the CNT assembly.
- the above-mentioned CNT assembly from the viewpoint of suitably generating FE, one having a G / D ratio of 25 or more measured by Raman spectroscopic analysis can be preferably employed. It can be evaluated that the larger the G / D ratio is, the smaller the number of surface defects of the CNT and the higher the crystallinity. This makes it possible to generate FE in a suitable state in the next step. In addition, since the number of surface defects of the CNTs is small, the intermolecular force between the CNTs is effectively enhanced. Therefore, in formation of a CNT aggregate, it is suitable also in the point which can realize high film intensity, for example, without requiring a binder.
- the G / D ratio of CNTs is preferably 28 or more, more preferably 30 or more, and particularly preferably 35 or more.
- the G / D ratio of CNT may be 50 or more, and typically 100 or more.
- the upper limit of the G / D ratio of the CNT is not particularly limited, but may be, for example, 200 or less, typically 150 or less, for example 120 or less, from the viewpoint of ease of production and the like.
- the method for producing this CNT assembly is not particularly limited. For example, it may be a CNT aggregate manufactured by an arc discharge method, a CVD method or the like. However, a CNT assembly having a high G / D ratio as described above is preferably produced, for example, by the CVD method.
- the purity of the CNT assembly is not particularly limited, but typically 85% or more.
- the purity as used herein is the ratio of the carbonaceous material (CNT and amorphous carbon) in the CNT aggregate.
- the purity of the CNT aggregate is preferably 90% or more, more preferably 95% or more, from the viewpoints of suppression of variation in FE, reduction in resistance, improvement in film strength, and the like.
- the upper limit of the purity of the CNT assembly is not particularly limited, and may be typically 99% or less, for example, 98% or less from the viewpoint of ease of production and the like.
- the technology disclosed herein can be preferably practiced, for example, in a mode in which the purity of the CNT assembly is 85% or more and 100% or less (typically, 95% or more and 99% or less).
- the purity of CNT a value obtained by measurement with a differential thermal gravimetric analysis (TG-DTA) apparatus can be adopted.
- TG-DTA differential thermal gravimetric analysis
- the content of CNT which is the sum of SWNT and amorphous carbon, is calculated from the weight loss ratio due to combustion of SWNT at around 683 ° C and combustion of amorphous carbon at around 322 ° C. Can.
- the CNT assembly contains DWNT or MWNT, the weight loss associated with their combustion may be taken into consideration.
- the bulk density of the CNT assembly is not particularly limited.
- the bulk density of the CNT assembly is preferably 0.1 g / cm 3 or more, and 0.3 g / cm 3 or more. More preferably, 0.5 g / cm 3 or more is particularly preferable.
- the upper limit of the bulk density of the CNT aggregate is not particularly limited.
- an excessively dense CNT aggregate may increase the proportion of CNTs composed of MWNTs or increase the proportion of CNTs broken due to consolidation.
- the bulk density of the CNT aggregate can be typically 1 g / cm 3 or less from the viewpoint of easily avoiding such inconvenience.
- the bulk density is more preferably a value for CNTs that do not contain a catalyst metal, an amorphous metal, etc. described later.
- the CNT assembly can be allowed to contain, for example, a catalyst metal used for synthesis of CNT and the like.
- the catalyst metal may be, for example, at least one metal selected from the group consisting of Fe, Co and platinum group elements (Ru, Rh, Pd, Os, Ir, Pt) or an alloy containing such a metal.
- Such catalytic metals can be included in the CNT aggregate typically in the form of fine particles (eg, about 3 nm to 100 nm in average particle size).
- 85 atom% or more (more preferably 90 atom% or more) of the carbonaceous material is a carbon atom (C).
- 95 atomic% or more of the carbonaceous material may be a carbon atom, 99 atomic% or more may be a carbon atom, or a CNT substantially consisting of only carbon atoms may be used.
- a product obtained by any post-treatment for example, purification treatment such as removal of amorphous carbon, removal of catalyst metal, etc. may be used as the above-mentioned CNT.
- the CNT aggregate may contain materials other than the above-mentioned carbonaceous material and catalyst metal (hereinafter, also referred to as an additive material) within a range not significantly preventing the occurrence of FE in the next step.
- additive materials include resin binders, conductive materials, thickeners and the like.
- the content of these additive materials is, for example, 10% by mass or less, preferably 7% by mass or less, more preferably 5% by mass or less, based on the total mass of the CNT aggregate. Is 3% by mass or less.
- a preferred embodiment is that the CNT assembly is substantially free of a resin binder having an insulating function.
- the carbyne-containing composite material disclosed herein can be obtained by applying a voltage to the above-prepared CNT assembly to generate or equalize FE.
- the voltage to be applied, the atmosphere conditions, and the like can not be generally mentioned because they differ depending on the properties (crystallinity and shape, and in turn, field emission characteristics) of the CNT assembly.
- the fact that the CNT assembly emits electrons by the action of the electric field can be confirmed, for example, by the flow of a weak current (FE current) between the applied electrodes by the application of the electric field to the CNT assembly.
- FE current weak current
- field emission for metallic materials can not be stably generated unless under an ultra-high vacuum atmosphere (typically, an atmosphere of 10 -8 Pa or less).
- Such a reduced pressure environment can be, for example, a pressure exceeding 10 -5 Pa (eg, 10 -5 Pa or more and about 10 Pa or less).
- JIS Z8126-1 According to 1999, the following vacuum 10 -5 Pa since it is defined as "ultra high vacuum", according to the art disclosed herein, a reduced pressure environment for the FE, for example 10 - The “high vacuum” exceeding 5 Pa and 0.1 Pa ⁇ 1 or less or the “medium vacuum” exceeding 0.1 Pa ⁇ 1 and 10 Pa or less can be used.
- a more in terms of the generating the FE in an environment close to the atmospheric pressure, reduced pressure environment is preferably at least 10 -4 Pa, more preferably at least 10 -3 Pa, particularly preferably at least 10 -2 Pa, 10 - 1 Pa or more is more preferable, for example, it is good also as 10 0 Pa or more.
- voltage conditions for generating an electric field largely depend on the crystallinity and surface morphology of the CNT assembly, the distance between electrodes, etc.
- the distance between electrodes is 1.6 mm
- the voltage condition for generating the electric field may be, for example, about 3 kV or less, more preferably about 2.8 kV or less, for example, about 2.5 kV or less. There is no strict restriction on the direction of the electric field.
- the direction of the electric field is preferably a direction intersecting the surface rather than a direction parallel to the surface, and approaches the direction perpendicular to the surface. Is more preferable. Thereby, an electric field can be effectively applied to the entire CNT assembly.
- the action of the electric field allows electrons in the CNT to move smoothly and at low resistance through the tube wall (graphene sheet). And in the part of the CNT assembly where the electric field is concentrated, the electron extracting action is expressed. It is considered that this causes disorder in bonding of carbon atoms constituting the CNT at the site, and carbon atoms are arranged in a one-dimensional manner at the center of the inner space of the CNT to form carbine by sp bonding. Alternatively, volatilization of the amorphous carbon contained in the CNT aggregate is considered to similarly form carbine in the center of the inner space of the CNT. A discharge phenomenon (insulation breakdown) is not necessary at the time of field emission.
- an electric field may be applied by a nondestructive voltage.
- a relatively high voltage to the CNT assembly. From this point of view, it is acceptable to generate a discharge upon field emission in order to contain more carbine in the carbine-containing composite material. In this case, with discharge, the G / D ratio of CNTs in the carbyne-containing composite material may decrease as described above.
- carbine in the vicinity of the field emission of the CNT assembly, carbine may be formed inside the CNT.
- Carbin is filled in the CNT at a relatively high rate of, for example, a filling rate of 30% or more. This makes it possible to produce the carbyne-containing composite disclosed herein.
- CNT sheet Three sheet-like CNT aggregates having different G / D ratios (hereinafter, simply referred to as "CNT sheet") were prepared.
- the CNT sheet of Example 1 is a sheet made of SWNT "EC 1.5" manufactured by Meijo Nano Carbon Co., Ltd.
- the EC 1.5 is mainly composed of SWNTs produced by the CVD method.
- the CNT sheet of Example 2 is a sheet mainly made of SWNT manufactured by the arc discharge method manufactured by Meijo Nano Carbon Co., Ltd.
- the CNT sheet of Example 3 is a "high purity CNT tape” manufactured by JFE Engineering Corporation.
- the CNT sheet of Example 3 is a sheet made of MWNT produced by an arc discharge method.
- Each of these CNT sheets is a CNT-shaped bucky paper molded into a sheet, and no binder is contained in any of the sheets.
- SWNT was a measurement target in the sheets of Examples 1 and 2
- an arbitrary MWNT was a measurement target in the sheet of Example 3.
- seat thickness is an arithmetic mean value of the thickness of three or more points of each CNT sheet
- the applied voltage was varied between 0 and 2.5 kV until discharge occurred.
- the pressure in the chamber was set to (a) approximately 1 ⁇ 10 ⁇ 5 Pa and (b) approximately 1 ⁇ 10 ⁇ 1 Pa. Further, an insulating ceramic glass was inserted as a spacer between the electrodes, and the distance between the electrodes was adjusted to about 1.6 mm.
- the Raman spectroscopic analysis was omitted because the FE current itself was not observed when the pressure inside the chamber was set to a pressure close to about 1 ⁇ 10 ⁇ 1 Pa.
- the Raman spectrum of the obtained sample of Example 1 is shown in FIG. 3, and the Raman spectra of the samples of Example 2 and Example 3 are shown in FIG. Each Raman spectrum is shown by adjusting the peak intensity of the vertical axis so that the peak intensity of the G band is 1.
- the measurement position a is an area which is relatively uniform among them and has a flat surface morphology.
- Measurement positions b and c are raised up like a mountain ridge or a wall, and c looks brighter than b in the SEM image, so c is considered to be located higher from the sheet surface Be
- the obtained Raman spectrum is shown in FIG. 5B.
- the Raman spectrum at each measurement position is shown by adjusting the peak intensity on the vertical axis so that the peak intensity of the G band is 1.
- the LCC / D ratio increases in the order of the measurement positions a, b, and c, it is said that the position where the fluctuation of the CNT sheet due to the supply of the high electric field energy is large causes the formation of carbin.
- the three Raman spectra have no noticeable difference other than the peak height based on the LCC band, for example, the G / D ratio does not change significantly. From this, it is expected that not only the destruction (increase in defects) of the CNTs associated with the discharge does not necessarily affect the formation of calvin. In other words, Calvin is not formed using only carbon atoms of the defect portion (decay portion) of CNT as a carbon source, and it is expected that there is a portion due to the influence of high electric field energy.
- the CNTs shown in FIG. 6A were SWNTs composed of one layer of CNTs.
- the CNT shown in (B) was DWNT in which two different diameter SWNTs were nested.
- the CNT shown in (C) was a three-layer MWNT in which three different diameter SWNTs were nested.
- the CNT sheet of Example 1 is mainly (A) mainly composed of SWNTs (approximately 70 several% or more), and partially (B) DWNT or (C) It was confirmed to contain 3 layers of MWNT.
- the vertical axis corresponds to the contrast of the TEM image.
- the vertical axis means that the higher the position, the brighter the corresponding position of the TEM image, and the lower the value, the darker the corresponding position of the TEM image.
- this line scan makes the dark position corresponding to the SWNT wall shown by the arrow in FIG. 6 (A) into a deep valley, and other bright areas where nothing is observed. It can be confirmed that it appears in a mountain shape (hill shape). It has been confirmed that the gradation profile is substantially flat between the SWNT walls.
- the difference ⁇ C between the gradation of a portion corresponding to the wall of SWNT (tube wall) and the brightest gradation among hollow portions sandwiched by the wall was about 0.15.
- a tone difference ⁇ C between the wall portion and the hollow portion a line connecting a pair of darkest contrast points (a1 and b1 in FIG. 6D) corresponding to the innermost wall is used as a baseline.
- the maximum contrast ⁇ C which is an area between the pair of points (a1, b1) and in which the distance of the gray scale profile from the base line is maximum, is adopted.
- the maximum variation ⁇ C H of the gradation of the hollow portion the maximum contrast at which the distance of the gradation profile from the base line is maximum in the region between the pair of points (a1, b1)
- the difference between the gray scale and the minimum contrast at which the distance of the gray scale profile is minimized was adopted.
- a set of points (a1, b1) corresponding to the wall is a point at which the scan point is about 1.1 nm and about 3.8 nm.
- the gray scale profile with the longest distance from the baseline connecting these points is the point where the scan point is about 1.6 nm and about 3.3 nm (the maximum contrast ⁇ C is about 8.6 scale each), and the distance is nearest tone profile, scan point is a point of about 2.75 nm (minimum contrast of about 7.3 scale), these differences [Delta] C H was about 1.3 scale. From these pieces of information, the ratio ( ⁇ C H / ⁇ C) is calculated. In the contrast of the TEM image of CNT, the boundary between the relatively dark portion corresponding to the tube wall and the relatively bright portion corresponding to the hollow portion is not necessarily clear.
- the peak of the bright part between the set of points (a1, b1) corresponding to the innermost tube wall and closest to the set of points is The region between maximum points of about 1.6 nm and about 3.3 nm) is conveniently determined to be the portion corresponding to the hollow portion of the CNT, and the gradation profile closest to the baseline is one set of these Measured between the maxima of
- Test Example 3 [Carbin formation 3, Calvin containing composites: SWNT] Then, after causing a plasma generated by a high frequency voltage to act on the CNT sheet of Example 1, under the vacuum condition of about 1 ⁇ 10 -5 Pa, a voltage is applied similarly to the above-mentioned Test example 1 to perform FE discharge. It was generated. More specifically, after applying a mask having a predetermined opening to the CNT sheet, plasma was applied to the CNT sheet in the vicinity of the opening of the mask by performing reactive ion etching (RIE).
- RIE reactive ion etching
- the conditions of the RIE are activating a reactive gas by applying a high frequency electric field of 200 W to a reactive gas consisting of oxygen (O 2 ) and argon (Ar) in a reduced pressure atmosphere of 100 Pa, and radical ions generated thereby
- the surface of the CNT sheet was etched using the particles as etching particles.
- all the CNT sheets in the mask opening disappear by etching, and reactive plasma can be applied to the CNT sheet in the vicinity of the opening of the mask. Then, with respect to the CNT sheet after RIE, the same FE discharge as in Test Example 1 was caused.
- FIGS. 7A and 7B TEM observation was performed on SWNTs in the CNT sheet after RIE and FE discharge, and the results are shown in FIGS. 7A and 7B. Further, line scan analysis was performed in the direction orthogonal to the SWNT in the regions shown by squares in FIGS. 7A and 7B, and the results are shown in FIGS. 8A and 8B.
- the ratio ( ⁇ C H / ⁇ C) calculated as the contrast change of the hollow portion to the TEM contrast difference of the whole SWNT based on (A) in FIG. 8 is about 0.34, and based on (B) The calculated ratio ( ⁇ C H / ⁇ C) was about 0.35. It can be seen that, due to the presence of Calvin, for example, the contrast of the hollow portion of the CNT in the TEM image changes in a distinctly dark manner.
- FIG. 9A the inner tube wall of DWNT is indicated by arrows a1 and b1.
- a dark contrast extending streaky near the center of the tube wall was confirmed though it was faint.
- the gradation profile of DWNT in FIG. 10 (A) double tube walls corresponding to two layers of CNTs were clearly observed as two pairs of deep valleys. Then, it was confirmed that one valley was formed in the vicinity of the center of the inner pair of tube walls indicated by arrows a1 and b1. From the gray scale profile, it was confirmed that the diameter of the inner tube of DWNT was about 1.2 nm, and the middle valley was located approximately at the center.
- the ratio ( ⁇ C H / ⁇ C) calculated as the contrast change of the hollow portion to the TEM contrast difference of the whole DWNT based on (A) of FIG. 10 is about 0.19, and based on (B) The calculated ratio ( ⁇ C H / ⁇ C) was about 0.17.
- the ratio ( ⁇ C H / ⁇ C) became a rather small value due to the fact that the wall contrast was observed to be high due to the double wall of DWNT, for example, the hollow of the CNT in the TEM image due to the presence of Calvin
- the contrast ratio ( ⁇ C H / ⁇ C) of the portion is, for example, 0.16 or more, typically 0.17 or more.
- FIG. 12 (A) shows the result of similar TEM observation of DWNT found in the CNT sheet after RIE and FE discharge. Moreover, the result of having performed line scan analysis in the direction orthogonal to CNT in the area
- carbyne content composite material concerning one embodiment of the present invention was explained, the carbyne content composite material concerning the present invention is not limited to the embodiment mentioned above, and various change is possible.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Nanotechnology (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Inorganic Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Manufacturing & Machinery (AREA)
- Composite Materials (AREA)
- Carbon And Carbon Compounds (AREA)
Abstract
Provided is a carbyne-containing composite material which is a carbon nanotube aggregate which contains carbyne therein at a higher filling rate. The provided carbyne-containing composite material contains carbyne and a CNT aggregate obtained by aggregating a plurality of carbon nanotubes. Carbyne is filled to at least 30% of the plurality of carbon nanotubes. The carbyne filling rate F is calculated, for example, on the basis of the subsequent formula from: the relative intensity ILCC/G * of the LCC band relative to the G band in carbon nanotubes filled with carbyne at a filling rate of 100%, and the relative intensity ILCC/G of the LCC band relative to the G band in a carbyne-containing composite material. F(%)=ILCC/G/ILCC/G*×100
Description
本発明は、カルビン含有複合材料に関する。
本出願は2017年8月25日に出願された日本国特許出願2017-162599号に基づく優先権を主張しており、その出願の全内容は本明細書中に参照として組み入れられている。 The present invention relates to carbin-containing composites.
This application claims priority based on Japanese Patent Application No. 2017-162599 filed on Aug. 25, 2017, the entire contents of which are incorporated herein by reference.
本出願は2017年8月25日に出願された日本国特許出願2017-162599号に基づく優先権を主張しており、その出願の全内容は本明細書中に参照として組み入れられている。 The present invention relates to carbin-containing composites.
This application claims priority based on Japanese Patent Application No. 2017-162599 filed on Aug. 25, 2017, the entire contents of which are incorporated herein by reference.
カルビン(carbyne)は、炭素原子(C)が一次元で結合した炭素同素体である。カルビンは、1885年にその存在が指摘されたものの、大気中で不安定であるため、その同定が為されたのは1960年代になってからであった。そして昨年、二層カーボンナノチューブ(Double-walled carbon nanotube:DWNT)をナノリアクターとして利用することで、DWNTの内部空間に非常に長いカルビンを安定的に生成できることが報告された(非特許文献1参照)。
Carbin (carbyne) is a carbon allotrope in which carbon atoms (C) are bonded in one dimension. Calvin was identified in 1885, but because it is unstable in the atmosphere, its identification was made in the 1960s. Then, last year, it was reported that by using double-walled carbon nanotubes (DWNT) as a nanoreactor, it is possible to stably generate very long calvin in the internal space of DWNT (see Non-Patent Document 1) ).
非特許文献1には、DWNTを8×10-5Paの高真空、かつ、1460℃の高温で加熱することで、DWNTの内部に好適にカルビンを形成できることが開示されている。また、内側のチューブ径が0.62~0.85nmの範囲のDWNTのみでカルビンを成長させることができ、当該内径のDWNTの90%以上にカルビンが充填されると記載されている。しかしながら、非特許文献1の著者によると、たとえDWNTの調製条件を最適化したとしても、上記のチューブ径を有するDWNTは、調製したDWNTの集合のうちの25%程度にしか得ることができていない。そしてまた、調製したDWNTの集合のうち、24%のDWNTsにしかカルビンが充填されていないことが報告されている。
Non-Patent Document 1 discloses that Calvin can be suitably formed inside DWNT by heating DWNT at a high vacuum of 8 × 10 −5 Pa and a high temperature of 1460 ° C. In addition, it is described that carbine can be grown only with DWNT having an inner tube diameter in the range of 0.62 to 0.85 nm, and 90% or more of DWNT of the inner diameter is filled with carbine. However, according to the author of Non-Patent Document 1, even if the preparation conditions of DWNT are optimized, DWNT having the above-mentioned tube diameter can be obtained to only about 25% of the prepared DWNT set. Absent. Also, it is reported that only 24% of DWNTs in the prepared DWNTs are filled with calvin.
本発明はかかる点に鑑みてなされたものであり、その主な目的は、より高い充填率でカルビンを内包したカーボンナノチューブの集合体であるカルビン含有複合材料を提供することである。
The present invention has been made in view of the above-mentioned point, and its main object is to provide a carbyne-containing composite material which is an aggregate of carbene-containing carbon nanotubes with a higher filling rate.
本発明によって提供されるカルビン含有複合材料は、複数のカーボンナノチューブ(carbon nanotube:CNT、以下単に「CNT」と記す場合がある。)が集合されてなるCNT集合体と、カルビンと、を含む。そして上記カルビンは、上記複数のCNTの30%以上に充填されている。
The carbyne-containing composite material provided by the present invention includes a CNT aggregate in which a plurality of carbon nanotubes (carbon nanotubes: CNT, hereinafter may be simply referred to as “CNT”) are assembled, and carbine. And, the above-mentioned calvin is filled in 30% or more of the above-mentioned plurality of CNTs.
すなわち、ここに開示されるカルビン含有複合材料は、これまでに知られているよりも高い充填率でCNT内にカルビンを含んでいる。CNTがその結晶構造に基づいて本来は半導体的性質を有する場合であっても、当該CNT内にカルビンが導入されることで、CNTに金属的特性を付与しうることが報告されている。このことから、例えばCNT集合体が半導体的特性を示すCNTを多く含むものであっても、カルビンが高い充填率で導入されることにより、全体として高い金属的特性(例えば、高い電気伝導率)を備えるものとなり得る。このように、カルビン含有複合材料は、従来のCNTやカルビンを含むCNTと比較して、カルビンの有する特性がより強く反映された材料を実現することができる。カルビン含有複合材料に備えられるカルビンの特性は、電気伝導率に限られることなく、各種の特性であり得る。
That is, the carbyne-containing composite material disclosed herein contains carbyne in CNT at a higher filling rate than heretofore known. It has been reported that, even when CNT has intrinsically semiconductive properties based on its crystal structure, it is possible to impart metallic properties to CNT by introducing carbin into the CNT. From this, for example, even if the CNT assembly contains a large amount of CNTs exhibiting semiconductive properties, by introducing calvin at a high filling rate, overall high metallic properties (for example, high electrical conductivity) Can be provided. Thus, the carbyne-containing composite material can realize a material in which the characteristics possessed by carbine are more strongly reflected as compared with conventional CNTs and CNTs containing carbine. The characteristics of the carbine provided in the carbyne-containing composite material may be various characteristics without being limited to the electrical conductivity.
ここに開示されるカルビン含有複合材料の好ましい一態様では、ラマン分光分析によって測定されるラマンスペクトルにおいて、Gバンドに基づくピークの強度を1としたときの、LCCバンドに基づくピークの相対強度が0.4以上である。このような構成によっても、多量のカルビンが導入されたカルビン含有複合材料が実現される。
In a preferred embodiment of the carbyne-containing composite material disclosed herein, the relative intensity of the peak based on LCC band is 0 when the intensity of the peak based on G band is 1 in the Raman spectrum measured by Raman spectroscopy. .4 or more. Such a configuration also realizes a carbin-containing composite material in which a large amount of carbin is introduced.
ここに開示されるカルビン含有複合材料の好ましい一態様では、上記カルビンを内包する上記カーボンナノチューブは、少なくとも一部に単層カーボンナノチューブ(Single-walled carbon nanotube:SWNT、以下、単に「SWNT」と示す場合がある。)を含む。より好適には、上記カルビンを内包する上記CNTは、SWNTを10本数%以上含む。上記非特許文献1においては、SWNTはDWNT等と比較して熱安定性が相対的に低いことから、内部にカルビンを形成できないことが開示されている。しかしながら、ここに開示されるカルビン含有複合材料においては、SWNT内にも安定してカルビンを内包することができる。換言すると、ここに開示されるカルビン含有複合材料は、新規なカルビン内包SWNT(カルビン@SWNT)を含むものであり得る。このようなカルビン含有複合材料は、複合材料の全体に占めるカルビンの割合をより効果的に高めることができるために好ましい。これにより、SWNTとカルビンとの特性が強く反映された材料となり得る点においても有用である。
In a preferred embodiment of the carbyne-containing composite material disclosed herein, the carbon nanotube encapsulating the carbyne is at least partially represented as single-walled carbon nanotube (SWNT), hereinafter simply referred to as “SWNT”. There is a case. More preferably, the above-mentioned CNT containing the above-mentioned carbine contains 10 or more% of SWNTs. Non-Patent Document 1 discloses that SWNT has relatively low thermal stability as compared to DWNT and the like, and therefore it can not form carbin therein. However, in the carbyne-containing composite material disclosed herein, carbyne can be stably contained in SWNTs. In other words, the calvin-containing composite material disclosed herein can be a novel calvin-containing SWNT (calvin @ SWNT). Such a carbyne-containing composite material is preferable because it can more effectively increase the proportion of carbine in the entire composite material. This is also useful in that it can be a material in which the properties of SWNT and Calvin are strongly reflected.
なお、CNT集合体において特定の構造を備えるCNTの割合は、たとえば、透過型電子顕微鏡(Transmission Electron Microscope:TEM)観察により把握することができる。具体的には、例えば、CNT集合体におけるSWNTの割合は、TEM観察において視野内に観察されるCNTの総本数のうち、SWNTの総本数の割合(本数%)を算出することで求めることができる。なお、CNTの本数は、例えば観察像内にて確認できる500nm以上の長さのCNTについて計測するとよい。CNTの本数は、例えば、5万倍~50万倍程度の倍率の観察像をもとに計測した値を好ましく採用することができる。
The proportion of CNTs having a specific structure in the CNT assembly can be grasped, for example, by observation with a transmission electron microscope (TEM). Specifically, for example, the proportion of SWNTs in a CNT assembly can be obtained by calculating the proportion (several%) of the total number of SWNTs in the total number of CNTs observed in the field of view in TEM observation. it can. The number of CNTs may be measured, for example, for CNTs having a length of 500 nm or more, which can be confirmed in an observation image. As the number of CNTs, for example, a value measured based on an observation image at a magnification of about 50,000 to 500,000 can be preferably employed.
ここに開示されるカルビン含有複合材料の好ましい一態様において、上記CNTの少なくとも一部は、当該CNTの軸方向に直交する方向において2以上のカルビンを内包する。すなわち、CNTは、短手方向に並んだ2本以上のカルビンを内包することができる。CNTの内部に、長手方向(軸方向)に沿って断続的にカルビンが形成されることは知られている。つまり複数のカルビンが長手方向に沿ってCNT内に内包され得る。しかしながら、2本のカルビンを束ねたような状態で内包するCNTについては報告されていない。ここに開示されるカルビン含有複合材料は、このような新規なカルビン内包CNT(カルビン@CNT)を含むものであり得る。
In a preferred embodiment of the carbyne-containing composite material disclosed herein, at least a portion of the CNTs encapsulates two or more carbins in a direction orthogonal to the axial direction of the CNTs. That is, CNT can contain two or more calvins arranged in the short direction. It is known that Calvin is formed intermittently along the longitudinal direction (axial direction) inside the CNT. That is, a plurality of calvins can be included in the CNT along the longitudinal direction. However, there has been no report on CNTs encapsulated in a state of bundling two carbins. The calvin-containing composite material disclosed herein can include such novel calvin-containing CNTs (calvin @ CNT).
以上のとおり、ここに開示される技術によって、これまでにない新規なカルビン含有複合材料が提供される。このカルビン含有複合材料は、CNT集合体とカルビンとの特性を併せ持つものとなり得る。例えば、カルビンは、理論的には、グラフェンに対して2倍の抗張力を有し、剛性はグラフェンとCNTの2倍でダイヤモンドの3倍程度になると報告されている。したがって、例えば、カルビン含有複合材料は、抗張力および剛性がCNT集合体に対して著しく向上されたものとなり得る。
As described above, the technology disclosed herein provides an unprecedented novel carbin-containing composite material. This carbin containing composite material can have the characteristics of the CNT assembly and the carbin together. For example, Calvin is theoretically reported to have twice the tensile strength with respect to graphene, and the stiffness is reported to be about twice as high as that of graphene and CNT and about three times that of diamond. Thus, for example, a carbyne-containing composite material can be of significantly improved tensile strength and stiffness relative to the CNT assembly.
また一方で、上述のとおり、カルビンは、半導体的性質のCNTを金属的性質に変換する機能を備え得る。したがって、例えば、カルビン含有複合材料は、CNT集合体の電気伝導性を高めたものとなり得る。このように、ここに開示されるカルビン含有複合材は、CNT集合体の特性を向上させたり改変させたりした新しい材料を提供する。この新規な材料は、従来のCNTと同様の用途で使用したり、これまでにない新しい用途で使用したりすることができる。このことから、ここに開示される技術は、カルビン含有複合材料を含む各種の物品を提供することができる。
On the other hand, as described above, Calvin may have the function of converting semiconducting CNTs into metallic properties. Thus, for example, a carbyne-containing composite material can be one that enhances the electrical conductivity of the CNT assembly. Thus, the carbyne-containing composites disclosed herein provide new materials that enhance or modify the properties of the CNT assembly. This novel material can be used in applications similar to conventional CNTs, or in new and unprecedented applications. From this, the technology disclosed herein can provide various articles including a carbine-containing composite material.
また他の側面において、ここで開示される技術は、カルビン含有複合材料の製造方法をも提供する。この製造方法は、複数のカーボンナノチューブが集合されてなり、G/D比が25以上のカーボンナノチューブ集合体を用意すること、上記カーボンナノチューブ集合体に、少なくとも電界電子放出が生じる電圧を印加すること、を含む。これにより、例えば、非特許文献1に開示されるよりも大幅に低い温度および低い真空度の緩和された条件において、上記カルビン含有複合材料を製造することができる。これにより、上記カルビン含有複合材料を簡便に製造することができる。
In still another aspect, the technology disclosed herein also provides a method of producing a carbine-containing composite material. In this manufacturing method, a plurality of carbon nanotubes are collected, and a carbon nanotube assembly having a G / D ratio of 25 or more is prepared, and a voltage at least at which electric field electron emission occurs is applied to the carbon nanotube assembly. ,including. This allows, for example, the above-mentioned carbyne-containing composite material to be manufactured under the relaxed conditions of temperature and lower degree of vacuum significantly lower than those disclosed in Non-Patent Document 1. Thereby, the said carbin containing composite material can be manufactured simply.
以下、本発明の好適な実施形態を説明する。なお、本明細書において特に言及している事項(例えば、カルビン含有複合材料の構成)以外であって、本発明の実施に必要な事柄(例えば、出発材料であるCNT集合体の作製方法など)は、当該分野における従来技術に基づく当業者の設計事項として把握され得る。本発明は、本明細書及び図面に開示されている内容と、当該分野における技術常識とに基づいて実施することができる。なお、本明細書において、数値範囲を示す「X~Y」との標記は、特にことわりのない限り、「X以上Y以下」を意味する。
Hereinafter, preferred embodiments of the present invention will be described. In addition, matters other than matters particularly mentioned in the specification (for example, the constitution of a calvin-containing composite material) and matters necessary for the practice of the present invention (for example, a method for producing a CNT aggregate as a starting material) Can be understood as design matter of those skilled in the art based on prior art in the field. The present invention can be implemented based on the contents disclosed in the specification and the drawings and technical common knowledge in the field. In the present specification, the notation “X to Y” indicating a numerical range means “X or more and Y or less” unless otherwise specified.
[カルビン含有複合材料]
ここに開示されるカルビン含有複合材料は、複数のCNTが集合されてなるCNT集合体と、カルビンと、を含む。そしてカルビンは、CNTに充填(内包)されている。以下、カルビン含有複合材料の各構成要素について説明する。 [Carbin containing composite material]
The carbyne-containing composite material disclosed herein includes a CNT assembly in which a plurality of CNTs are assembled, and carbyne. And, calvin is filled (included) in CNT. Hereinafter, each component of a calvin containing composite material is demonstrated.
ここに開示されるカルビン含有複合材料は、複数のCNTが集合されてなるCNT集合体と、カルビンと、を含む。そしてカルビンは、CNTに充填(内包)されている。以下、カルビン含有複合材料の各構成要素について説明する。 [Carbin containing composite material]
The carbyne-containing composite material disclosed herein includes a CNT assembly in which a plurality of CNTs are assembled, and carbyne. And, calvin is filled (included) in CNT. Hereinafter, each component of a calvin containing composite material is demonstrated.
[CNT集合体]
CNT集合体は、ここに開示されるカルビン含有複合材料の主体となる要素である。そしてカルビンを安定的に保持する保護ケースとしての役割を有する。また、CNT集合体は、後述のカルビン含有複合材料の製造に際しては、カルビンのリアクターとしての機能をも有する。CNT集合体としては、その構成等は特に制限されず、複数のCNTが別個にあるいは一体的に集合されてなる各種のCNT集合体を考慮することができる。取り扱いの容易性の観点から、複数のCNTが一体的に集合されていてもよい。またCNT集合体は、例えば、基板に垂直な方向に配向して成長された複数のCNTの群れにより構成されていてもよい。ここで「CNT集合体」を構成するCNTの数は厳密には制限されず、一例として、多数(例えば10本程度以上、好ましくは50本程度以上、より好ましくは100本程度以上)のCNTの集合からなるものとして考慮することができる。しかしながら、CNT集合体について、これを構成するCNTの数によって規定することは現実的ではないとも言える。必ずしもこれに限定されるものではないが、例えば、工業的な取り扱いが容易になるとの観点から、例えば、「CNT集合体」は、1μg以上のCNTの集合として把握してもよい。CNT集合体は、10μg以上のCNTの集合であってよく、100μg以上であってよく、例えば1000μg以上であり得る。CNT集合体を構成するCNTの質量の上限については何ら制限はない。 [CNT assembly]
The CNT assembly is a main component of the carbyne-containing composite material disclosed herein. And it has a role as a protective case which holds Calvin stably. In addition, the CNT assembly also has a function as a reactor of Calvin in the production of a Calvin-containing composite material described later. The configuration and the like of the CNT assembly are not particularly limited, and various CNT assemblies in which a plurality of CNTs are separately or integrally assembled can be considered. From the viewpoint of ease of handling, a plurality of CNTs may be integrated together. In addition, the CNT assembly may be constituted, for example, by a plurality of CNTs grown oriented in a direction perpendicular to the substrate. Here, the number of CNTs constituting the “CNT assembly” is not strictly limited, and one example is a large number (for example, about 10 or more, preferably about 50 or more, more preferably about 100 or more) of CNTs. It can be considered as one consisting of a set. However, it can be said that it is not realistic to define the CNT assembly by the number of CNTs constituting it. Although not necessarily limited to this, for example, in terms of facilitating industrial handling, for example, “CNT aggregate” may be grasped as a set of 1 μg or more of CNTs. The CNT assembly may be an assembly of 10 μg or more of CNTs, may be 100 μg or more, for example, 1000 μg or more. There is no limitation on the upper limit of the mass of CNTs constituting the CNT assembly.
CNT集合体は、ここに開示されるカルビン含有複合材料の主体となる要素である。そしてカルビンを安定的に保持する保護ケースとしての役割を有する。また、CNT集合体は、後述のカルビン含有複合材料の製造に際しては、カルビンのリアクターとしての機能をも有する。CNT集合体としては、その構成等は特に制限されず、複数のCNTが別個にあるいは一体的に集合されてなる各種のCNT集合体を考慮することができる。取り扱いの容易性の観点から、複数のCNTが一体的に集合されていてもよい。またCNT集合体は、例えば、基板に垂直な方向に配向して成長された複数のCNTの群れにより構成されていてもよい。ここで「CNT集合体」を構成するCNTの数は厳密には制限されず、一例として、多数(例えば10本程度以上、好ましくは50本程度以上、より好ましくは100本程度以上)のCNTの集合からなるものとして考慮することができる。しかしながら、CNT集合体について、これを構成するCNTの数によって規定することは現実的ではないとも言える。必ずしもこれに限定されるものではないが、例えば、工業的な取り扱いが容易になるとの観点から、例えば、「CNT集合体」は、1μg以上のCNTの集合として把握してもよい。CNT集合体は、10μg以上のCNTの集合であってよく、100μg以上であってよく、例えば1000μg以上であり得る。CNT集合体を構成するCNTの質量の上限については何ら制限はない。 [CNT assembly]
The CNT assembly is a main component of the carbyne-containing composite material disclosed herein. And it has a role as a protective case which holds Calvin stably. In addition, the CNT assembly also has a function as a reactor of Calvin in the production of a Calvin-containing composite material described later. The configuration and the like of the CNT assembly are not particularly limited, and various CNT assemblies in which a plurality of CNTs are separately or integrally assembled can be considered. From the viewpoint of ease of handling, a plurality of CNTs may be integrated together. In addition, the CNT assembly may be constituted, for example, by a plurality of CNTs grown oriented in a direction perpendicular to the substrate. Here, the number of CNTs constituting the “CNT assembly” is not strictly limited, and one example is a large number (for example, about 10 or more, preferably about 50 or more, more preferably about 100 or more) of CNTs. It can be considered as one consisting of a set. However, it can be said that it is not realistic to define the CNT assembly by the number of CNTs constituting it. Although not necessarily limited to this, for example, in terms of facilitating industrial handling, for example, “CNT aggregate” may be grasped as a set of 1 μg or more of CNTs. The CNT assembly may be an assembly of 10 μg or more of CNTs, may be 100 μg or more, for example, 1000 μg or more. There is no limitation on the upper limit of the mass of CNTs constituting the CNT assembly.
CNT集合体は、一枚のグラフェンシートが筒状に丸まった形態のSWNTによって構成されていてもよいし、2つの異径のSWNTが入れ子状になった形態のDWNTによって構成されていてもよいし、3つ以上の複数の異径のSWNTが入れ子状になった形態の多層カーボンナノチューブ(Multi-walled carbon nanotube:MWNT)によって構成されていてもよい。また、CNT集合体は、これらのSWNT、DWNTおよびMWNTのうちの2種以上が混在して構成されていてもよい。なお本明細書においては、三層以上のCNTをMWNTと総称し、その割合等についても特にことわりのない限り、MWNTの全体についての値を意味するものとする。MWNTとしては、例えば、3~200層程度のCNTが一般的であり、典型的には3~60層程度のCNTであり得る。またCNTは、一つのチューブにおいても、部分的に一層であったり、二層であったり、三層であったりと、異なる層構造を備え得る。このような場合は、そのCNTにおいて最も占める割合の多い層の数を、当該CNTの層の数として採用してもよい。
The CNT assembly may be formed of SWNT in a form in which one graphene sheet is rolled in a cylindrical shape, or may be formed of DWNT in a form in which two different diameter SWNTs are nested. Alternatively, three or more different diameter SWNTs may be constituted by multi-walled carbon nanotubes (MWNT) in a nested form. In addition, the CNT assembly may be formed by mixing two or more of these SWNTs, DWNTs, and MWNTs. In the present specification, three or more layers of CNTs are collectively referred to as MWNT, and unless otherwise specified, the ratio etc. shall mean the value for the entire MWNT. As MWNT, for example, about 3 to 200 layers of CNTs are common, and typically about 3 to 60 layers of CNTs. In addition, CNTs can have different layer structures, such as one layer, two layers, and three layers in one tube. In such a case, the number of layers with the highest proportion in the CNT may be adopted as the number of layers of the CNT.
CNT集合体は、必ずしもこれに限定されるものではないが、SWNT、DWNTおよびMWNTの合計に占めるSWNTの割合が、10本数%以上(本数基準で10%以上)であることが好ましい。CNT集合体を構成するSWNTの割合が多くなることにより、CNT集合体の単位重量あたりに含まれるカルビンの量を増大させることができるために好ましい。CNT集合体に占めるSWNTの割合は、20本数%以上がより好ましく、30本数%以上がさらに好ましく、40本数%以上が特に好ましく、例えば50本数%以上であってよい。なお、SWNTの割合は、60本数%以上であってよく、70本数%以上であってよく、80本数%以上であってよく、90本数%以上であってよく、実質的に100本数%であってもよい。
The CNT aggregate is not necessarily limited to this, but the ratio of SWNT to the total of SWNT, DWNT and MWNT is preferably 10% or more (10% or more based on the number). It is preferable to increase the amount of carbin contained per unit weight of the CNT assembly by increasing the proportion of SWNTs constituting the CNT assembly. The percentage of SWNTs in the CNT aggregate is more preferably 20 numbers% or more, still more preferably 30 numbers% or more, particularly preferably 40 numbers% or more, for example, 50 numbers% or more. The ratio of SWNTs may be 60 lines% or more, 70 lines% or more, 80 lines% or more, 90 lines% or more, and substantially 100 lines%. It may be.
なお、近年ではSWNTの合成方法が大幅に改良されており、純度やグラファイト化度の面においてより高品質なSWNTの合成方法が提案されている。またこのようなSWNTを含むCNT集合体においては、SWNTの含有割合を質量基準で評価することがあり得る。したがって、例えば、CNT集合体は、必ずしもこれに限定されるものではないが、SWNT、DWNTおよびMWNTの合計に占めるSWNTの割合が、30質量%以上であることが好ましく、40質量%以上がより好ましく、50質量%以上がさらに好ましく、60質量%以上が特に好ましく、例えば70質量%以上とすることができる。このことによっても、例えば、カルビン含有複合材料の全体に占めるCNTの質量割合を効果的に削減することができる。SWNTの割合の上限は特に制限されず、例えば、実質的に100質量%(例えば95質量%以下)であってもよい。
In recent years, the method of synthesizing SWNT has been greatly improved, and a method of synthesizing SWNT of higher quality in terms of purity and degree of graphitization has been proposed. In addition, in a CNT assembly including such SWNTs, the content ratio of SWNTs may be evaluated on a mass basis. Therefore, for example, the CNT aggregate is not necessarily limited to this, but the ratio of SWNT in the total of SWNT, DWNT and MWNT is preferably 30% by mass or more, and 40% by mass or more is more Preferably, it is 50% by mass or more, more preferably 60% by mass or more, and for example, 70% by mass or more. Also by this, for example, the mass ratio of CNTs occupying in the entire of the carbyne-containing composite material can be effectively reduced. The upper limit of the proportion of SWNT is not particularly limited, and may be, for example, substantially 100% by mass (for example, 95% by mass or less).
一方で、DWNTは、その内部にカルビンを安定的に形成しやすいことが知られている。かかる観点から、CNT集合体において、SWNT、DWNTおよびMWNTの合計に占めるDWNTの割合は、10質量%以上であってよく、15質量%以上であってよく、例えば、20質量%以上であってもよい。しかしながら、ここに開示されるカルビン含有複合材料において、高い割合でカルビンをCNTに内包させるために、必ずしもDWNTの割合を高める必要はない。かかる観点から、CNT集合体は、必ずしもこれに限定されるものではないが、例えば、SWNT、DWNTおよびMWNTの合計に占めるDWNTの割合が、70質量%以下であってよく、60質量%以下以上であってよく、例えば50質量%以下であってよい。なお、CNTの合計に占めるMWNTの割合は、例えば30質量%以下が好ましく、20質量%以下がより好ましく、例えば、10質量%以下であってよい。
On the other hand, it is known that DWNT can easily form Calvin therein. From this point of view, in the CNT assembly, the ratio of DWNT in the total of SWNT, DWNT and MWNT may be 10% by mass or more, 15% by mass or more, for example, 20% by mass or more. It is also good. However, in the carbin-containing composite material disclosed herein, it is not necessary to increase the proportion of DWNT in order to convolute the calvin in the CNT at a high proportion. From this point of view, the CNT assembly is not necessarily limited to this, but for example, the proportion of DWNT in the total of SWNT, DWNT and MWNT may be 70% by mass or less, 60% by mass or more For example, 50 mass% or less may be sufficient. In addition, 30 mass% or less is preferable, for example, 20 mass% or less is more preferable, for example, 10 mass% or less may be sufficient as the ratio of MWNT to the sum total of CNT.
また、CNT集合体におけるCNTの平均直径については厳密には制限されず、例えば、0.43nm以上100nm以下であってよく、典型的には0.5nm以上50nm以下であり、好ましくは0.6nm以上10nm以下である。なお、CNT集合体の直径とは、SWNTについてはチューブ径(直径)を、2層以上のCNTについては最も内側のCNTについてのチューブ系(直径)を意味する。ここに開示されるカルビン含有複合材料においては、必ずしもこれに限定されるものではないが、直径が0.6nm以上、例えば0.7nm以上のCNTにおいて、カルビンを好適に内包し得ることが確認されている。したがって、CNT集合体におけるCNTの平均内径は、0.6nm以上が好ましく、0.7nm以上がより好ましく、例えば0.8nm以上とすることができる。カルビンを内包するCNTについては、カルビンがより安定に存在し得るとの観点から、例えばCNTの平均内径は、5nm以下、より好適には2nm以下とすることが好ましい。
Also, the average diameter of the CNTs in the CNT aggregate is not strictly limited, and may be, for example, 0.43 nm or more and 100 nm or less, and typically 0.5 nm or more and 50 nm or less, preferably 0.6 nm. The thickness is 10 nm or less. The diameter of the CNT aggregate means a tube diameter (diameter) for SWNT and a tube system (diameter) for the innermost CNT for two or more CNT layers. In the carbyne-containing composite material disclosed herein, although not necessarily limited thereto, it is confirmed that carbyne can be suitably contained in CNTs having a diameter of 0.6 nm or more, for example, 0.7 nm or more. ing. Therefore, the average inner diameter of the CNTs in the CNT aggregate is preferably 0.6 nm or more, more preferably 0.7 nm or more, and can be, for example, 0.8 nm or more. For CNTs containing carbin, for example, the average inside diameter of the CNTs is preferably 5 nm or less, more preferably 2 nm or less, from the viewpoint that carbin can be present more stably.
CNTの平均長さは、典型的には1μm以上であることが適当である。低抵抗や膜強度を高める等の観点から、CNTの長さの平均値は、好ましくは3μm以上、より好ましくは5μm以上、さらに好ましくは8μm以上、特に好ましくは10μm以上、例えば10μm超である。CNTの平均長さの上限は特に限定されないが、概ね30μm以下にすることが適当であり、例えば25μm以下、典型的には20μm以下、例えば15μm以下であってもよい。例えば、CNTの平均長さが5μm以上30μm以下、好ましくは10μm超25μm以下、典型的には12μm以上20μm以下であるCNTが好適である。
It is appropriate that the average length of the CNTs is typically 1 μm or more. From the viewpoint of lowering the resistance and increasing the film strength, the average length of the CNTs is preferably 3 μm or more, more preferably 5 μm or more, still more preferably 8 μm or more, particularly preferably 10 μm or more, for example, 10 μm or more. The upper limit of the average length of the CNTs is not particularly limited, but is preferably about 30 μm or less, and may be, for example, 25 μm or less, typically 20 μm or less, for example 15 μm or less. For example, a CNT having an average length of 5 μm to 30 μm, preferably 10 μm to 25 μm, and typically 12 μm to 20 μm is suitable.
CNT集合体におけるCNTのアスペクト比(CNTの長さ/直径)の平均値は特に制限されないが、典型的には100以上である。CNTのアスペクト比が大きいほど、CNT同士が機械的に絡み合い易く、一体的な集合体を形成し易くなるために好ましい。さらには、バインダを含むことなく所望の形状の集合体を形成しうる点においても好ましい。CNTの平均アスペクト比は、CNT集合体の低抵抗特性や強度を高める等の観点から、好ましくは250以上、より好ましくは500以上、さらに好ましくは800以上、特に好ましくは1000以上である。CNTの平均アスペクト比の上限は特に限定されないが、取扱性や製造容易性等の観点からは、概ね25000以下にすることが適当であり、好ましくは20000以下、より好ましくは15000以下、さらに好ましくは12000以下、特に好ましくは10000以下である。例えば、CNTの平均アスペクト比が100~10000であるCNTが好適である。なお、CNTの平均アスペクト比(CNTの長さ/直径)、平均長さおよび平均直径は、典型的には電子顕微鏡観察に基づく測定で得られた値を採用することができる。
The average value of the aspect ratio of CNT (CNT length / diameter) in the CNT assembly is not particularly limited, but is typically 100 or more. The larger the aspect ratio of the CNTs, the easier it is for the CNTs to be mechanically entangled with each other and to form an integral assembly. Furthermore, it is preferable also in the point which can form the aggregate | assembly of a desired shape, without including a binder. The average aspect ratio of the CNTs is preferably 250 or more, more preferably 500 or more, still more preferably 800 or more, particularly preferably 1000 or more, from the viewpoint of, for example, enhancing the low resistance properties and strength of the CNT assembly. The upper limit of the average aspect ratio of the CNTs is not particularly limited, but from the viewpoint of handleability, easiness of production, etc., approximately 25000 or less is suitable, preferably 20000 or less, more preferably 15000 or less, still more preferably It is 12000 or less, particularly preferably 10000 or less. For example, CNTs having an average aspect ratio of 100 to 10000 are preferable. In addition, the average aspect ratio (CNT length / diameter), average length, and average diameter of CNT can employ | adopt the value typically acquired by the measurement based on an electron microscope observation.
[カルビン]
ここに開示されるカルビン含有複合材料において、カルビンは、例えば図1に示すように、CNTに内包されている。カルビンとCNTとは、長手方向(軸方向)が同一である。カルビンは、上述のように、炭素の同素体の一つであり、炭素原子が一次元で直鎖状にsp結合した構造を有する。具体的には、カルビンは、下式(1)(2)で示すように、隣り合う炭素原子が三重結合と単結合とで交互に結合されたポリイン型構造(1)と、連続する二重結合で結合されたクムレン型構造(2)と、の共鳴構造により表すことができる。したがって、カルビンは、厚み(直径)が炭素原子1個分であり、この厚みに対して長さが十分に長い(例えば、凡そ9nm以上)ことから、カルビンは究極の一次元物質であるといえる。 Calvin
In the carbyne-containing composite material disclosed herein, carbyne is contained in CNT, as shown in FIG. 1, for example. Calvin and CNT have the same longitudinal direction (axial direction). As described above, carbin is one of allotropes of carbon, and has a structure in which carbon atoms are linearly and sp-bonded in one dimension. Specifically, as shown in the following formulas (1) and (2), carbyne has a polyyne structure (1) in which adjacent carbon atoms are alternately bonded by a triple bond and a single bond, and a continuous double It can be represented by the resonance structure of the bonded cumulene structure (2). Therefore, Calvin has a thickness (diameter) of one carbon atom, and the length is sufficiently long with respect to this thickness (for example, about 9 nm or more), so Calvin is an ultimate one-dimensional substance. .
ここに開示されるカルビン含有複合材料において、カルビンは、例えば図1に示すように、CNTに内包されている。カルビンとCNTとは、長手方向(軸方向)が同一である。カルビンは、上述のように、炭素の同素体の一つであり、炭素原子が一次元で直鎖状にsp結合した構造を有する。具体的には、カルビンは、下式(1)(2)で示すように、隣り合う炭素原子が三重結合と単結合とで交互に結合されたポリイン型構造(1)と、連続する二重結合で結合されたクムレン型構造(2)と、の共鳴構造により表すことができる。したがって、カルビンは、厚み(直径)が炭素原子1個分であり、この厚みに対して長さが十分に長い(例えば、凡そ9nm以上)ことから、カルビンは究極の一次元物質であるといえる。 Calvin
In the carbyne-containing composite material disclosed herein, carbyne is contained in CNT, as shown in FIG. 1, for example. Calvin and CNT have the same longitudinal direction (axial direction). As described above, carbin is one of allotropes of carbon, and has a structure in which carbon atoms are linearly and sp-bonded in one dimension. Specifically, as shown in the following formulas (1) and (2), carbyne has a polyyne structure (1) in which adjacent carbon atoms are alternately bonded by a triple bond and a single bond, and a continuous double It can be represented by the resonance structure of the bonded cumulene structure (2). Therefore, Calvin has a thickness (diameter) of one carbon atom, and the length is sufficiently long with respect to this thickness (for example, about 9 nm or more), so Calvin is an ultimate one-dimensional substance. .
-C≡C-C≡C-C≡C-C≡C-C≡C- …(1)
=C=C=C=C=C=C=C=C=C=C= …(2)
-C≡C-C≡C-C≡C-C-C≡C-C≡C- ... (1)
= C = C = C = C = C = C = C = C = C = C = C = C = (2)
=C=C=C=C=C=C=C=C=C=C= …(2)
-C≡C-C≡C-C≡C-C-C≡C-C≡C- ... (1)
= C = C = C = C = C = C = C = C = C = C = C = C = (2)
非特許文献2では、式(1)(2)で示されるカルビンについて、コンピュータを用いた精密なシミュレーションを行い、カルビンがこの世に存在するどの物質よりも固いことを予測している。具体的には、抗張力がグラフェンの約2倍であり、剛性はグラフェンとナノチューブの約2倍でダイヤモンドの約3倍に達するとしている。また、カルビンは、その結合方向を回転軸として90°捻ると、磁性半導体になる他、エネルギーを貯蔵して常温でも安定することが予想されている。カルビンの相図は、気相、液相、ダイヤモンド、グラファイトに囲まれた狭い領域に存在すると言われているが、実際のカルビンは単体では常圧下で非常に不安定な物質であることから、その詳細は明らかにされていない。
In Non-Patent Document 2, precise simulation using a computer is performed on Calvin represented by the formulas (1) and (2) to predict that Calvin is harder than any substance existing in the world. Specifically, the tensile strength is about twice that of graphene, and the stiffness is about twice that of graphene and nanotubes, and about three times that of diamond. In addition, Calvin turns into a magnetic semiconductor when it is twisted by 90 ° with its coupling direction as the axis of rotation, and it is expected that energy will be stored and it will be stable even at room temperature. The phase diagram of Calvin is said to exist in a narrow region surrounded by gas phase, liquid phase, diamond and graphite, but since actual Calvin is a very unstable substance under normal pressure, The details are not disclosed.
しかし、このようなカルビンであっても、CNTに内包されることによって、常温常圧下で安定に存在することができる。ここに開示されるカルビン含有複合材料がカルビンを含んでいることは、ラマン分光分析によって得られるラマンスペクトルにおいて、凡そ1850cm-1から1865cm-1の範囲に、直鎖炭素鎖(linear carbon chains:LCC)バンドに基づくピークが見られることにより、カルビンの存在を確認することができる。換言すると、LCCバンドの検出により、カルビンがCNTに内包されていることを確認することができる。
However, even such carvin can be stably present at normal temperature and pressure by being contained in CNT. The Calvin-containing composite material disclosed herein contains a Calvin, in the Raman spectrum obtained by Raman spectroscopic analysis, approximately from 1850 cm -1 in the range of 1865cm -1, a linear carbon chain (linear carbon chains: LCC The presence of calvin can be confirmed by the fact that a band-based peak is observed. In other words, detection of the LCC band makes it possible to confirm that calvin is contained in the CNT.
なお、本明細書において、ラマンスペクトルは、特にことわりのない限り、励起光として波長532nmのレーザを使用したラマン分光分析によって得られるスペクトルを意味する。また、かかるカルビン含有複合材料のラマンスペクトルには、CNTのグラファイト構造に由来して1590cm-1付近にGバンドに基づくピークが観察される。また、かかるカルビン含有複合材料のラマンスペクトルには、グラファイト構造の欠陥に由来して1350cm-1付近にDバンドに基づくピークが観察され得る。
In the present specification, unless otherwise specified, a Raman spectrum means a spectrum obtained by Raman spectroscopy using a laser with a wavelength of 532 nm as excitation light. In addition, in the Raman spectrum of such a carbyne-containing composite material, a peak based on a G band is observed around 1590 cm −1 derived from the graphite structure of CNT. In addition, in the Raman spectrum of such a carbyne-containing composite material, a peak based on D band can be observed around 1350 cm −1 due to the defect of the graphite structure.
なお、ここに開示されるカルビン含有複合材料は、従来よりもたくさんの割合でCNT内にカルビンを含んでいる。その結果、ラマンスペクトルにおいて、Gバンドに基づくピークの強度IGを「1」(基準)としたときの、LCCバンドに基づくピークの相対強度ILCC、すなわち相対強度ILCC/IG、が0.4以上となり得る。相対強度ILCC/IGは0.8以上が好ましく、1.0以上がより好ましく、1.2以上がさらに好ましく、1.5以上が特に好ましい。また、相対強度ILCC/IGは、2以上とすることができ、2.5以上がより好ましく、3.0以上が特に好ましい。相対強度ILCC/IGの上限は厳密には限定されない。例えば、後述するように、非特許文献1に開示されたCNTのカルビン内包部分(局所)についての相対強度ILCC/IGが6.1であることから、相対強度ILCC/IGの上限は6.1程度とすることができる。
In addition, the carbin containing composite material indicated here contains carbin in CNT in many ratios rather than before. As a result, in the Raman spectrum, the relative intensity I LCC of the peak based on the LCC band, ie, the relative intensity I LCC / I G , is 0, where the intensity I G of the peak based on the G band is “1” (reference). .4 or higher. The relative intensity I LCC / I G is preferably 0.8 or more, more preferably 1.0 or more, more preferably 1.2 or more, particularly preferably 1.5 or more. The relative intensity I LCC / I G can be 2 or more, more preferably 2.5 or more, 3.0 or more is particularly preferable. The upper limit of the relative intensity I LCC / I G is not strictly limited. For example, as described below, since the relative intensity I LCC / I G for Calvin encapsulated portion of CNT disclosed in Non-Patent Document 1 (local) it is 6.1, the upper limit of the relative intensity I LCC / I G Can be about 6.1.
ここに開示されるカルビン含有複合材料において、CNTに内包されるカルビンの量は、カルビンの充填率によっても評価することができる。ここに開示されるカルビン含有複合材料において、カルビンの充填率は30%以上が好適である。このような高い充填率でカルビンを含むCNT集合体は、これまでに知られていない。カルビンの充填率は、後述のカルビン含有複合材料の製造方法や出発材料を調整することで、さらに高めることができる。例えば、カルビンの充填率は32%以上であってよく、33%以上がより好ましく、35%以上が特に好ましく、37%以上がさらに好ましく、例えば40%以上であってよい。
In the carbin-containing composite material disclosed herein, the amount of carbin contained in the CNTs can also be evaluated by the filling rate of carbin. In the carbin containing composite material disclosed herein, the filling rate of carbin is preferably 30% or more. CNT assemblies containing carbin at such high filling rates have not been known so far. The filling rate of carbin can be further increased by adjusting the method for producing a carbin-containing composite material described later and the starting material. For example, the filling rate of calvin may be 32% or more, more preferably 33% or more, particularly preferably 35% or more, and still more preferably 37% or more, for example, 40% or more.
なお、本明細書において、CNTへのカルビンの充填率は、以下のように定義される。すなわち、まず、1本の長尺のカルビンを長さ方向で間欠することなく内包している1本のCNTのカルビン内包部分について、カルビンの充填率が100%であると定義する。そしてこの充填率100%のカルビン内包部分のラマンスペクトルにおいて、Gバンドに基づくピークの強度IG*を「1」としたときの、LCCバンドに基づくピークの強度ILCC*、すなわちILCC*/IG*をもって、充填率100%のときのGバンドに対するLCCバンドの相対強度ILCC/G*(基準)とする。また、カルビン含有複合材料のラマンスペクトルにおいて、Gバンドに基づくピークの強度IGを「1」としたときの、LCCバンドに基づくピークの強度ILCCを、カルビン含有複合材料のGバンドに対するLCCバンドの相対強度ILCC/Gとする。このとき、カルビン含有複合材料におけるCNTのカルビン充填率Fは、次式で表される。
F(%)=ILCC/G/ILCC/G*×100 In the present specification, the filling rate of carbin to CNTs is defined as follows. That is, first, the filling ratio of the carbin is defined as 100% with respect to the calvin-containing portion of one CNT which contains one long carbin without intermittent in the length direction. Then, in the Raman spectrum of the 100% packing ratio of the calvin, when the peak intensity I G * based on G band is “1”, the peak intensity I LCC * based on LCC band, ie, I LCC * / The relative intensity I LCC / G * (reference) of the LCC band to the G band at 100% filling rate is defined as I G * . Further, in the Raman spectrum of the Calvin-containing composite material, the intensity I G of the peak based on the G bands when a "1", the intensity I LCC of peaks based on LCC band, LCC band for G bands of Calvin-containing composite material Relative strength I LCC / G. At this time, the Calvin filling factor F of CNT in the Calvin containing composite material is represented by the following formula.
F (%) = I LCC / G / I LCC / G * x 100
F(%)=ILCC/G/ILCC/G*×100 In the present specification, the filling rate of carbin to CNTs is defined as follows. That is, first, the filling ratio of the carbin is defined as 100% with respect to the calvin-containing portion of one CNT which contains one long carbin without intermittent in the length direction. Then, in the Raman spectrum of the 100% packing ratio of the calvin, when the peak intensity I G * based on G band is “1”, the peak intensity I LCC * based on LCC band, ie, I LCC * / The relative intensity I LCC / G * (reference) of the LCC band to the G band at 100% filling rate is defined as I G * . Further, in the Raman spectrum of the Calvin-containing composite material, the intensity I G of the peak based on the G bands when a "1", the intensity I LCC of peaks based on LCC band, LCC band for G bands of Calvin-containing composite material Relative strength I LCC / G. At this time, the Calvin filling factor F of CNT in the Calvin containing composite material is represented by the following formula.
F (%) = I LCC / G / I LCC / G * x 100
充填率が100%のときのGバンドに対するLCCバンドの相対強度ILCC/G*は、充填率100%のカルビン内包CNTを用いて測定により求めた値を採用してもよいし、例えば、非特許文献1に開示されたラマンスペクトルに基づいて算出された値である「6.1」を用いてもよい。図2に、非特許文献1に開示されたラマンスペクトルを示した。
The relative intensity I LCC / G * of the LCC band to the G band when the filling rate is 100% may adopt a value obtained by measurement using a calvin-containing CNT having a filling rate of 100%, for example, non You may use "6.1" which is a value calculated based on the Raman spectrum disclosed by patent document 1. FIG. The Raman spectrum disclosed in Non-Patent Document 1 is shown in FIG.
また、カルビン含有複合材料は、CNT集合体部分に表面欠陥が少ないほど、それぞれのCNT間の分子間力が効果的に高められるために好ましい。また、CNTが金属的性質を示す場合は、表面欠陥が少ない方が導電率が上昇し得る。したがって、CNT集合体は表面欠陥が少ないほうが好ましい。かかる観点において、ここに開示されるカルビン含有複合材料は、Dバンドに基づくピークの強度IDに対する、Gバンドに基づくピークの強度IGの比(IG/ID:G/D比)が高いことが好ましい。カルビン含有複合材料のG/D比は、例えば6以上であることが好ましく、7以上がより好ましく、8以上がさらに好ましく、10以上が特に好ましい。
In addition, the less the surface defects in the CNT aggregate portion, the more the carbin-containing composite material is, because the intermolecular force between the respective CNTs is effectively enhanced. In addition, in the case where the CNTs exhibit metallic properties, the conductivity may increase as the surface defects decrease. Therefore, it is preferable that the CNT assembly has less surface defects. In this respect, the calbin-containing composite material disclosed herein has a ratio ( IG / ID : G / D ratio) of peak intensity I G based on G band to intensity I D of peak based on D band. High is preferred. The G / D ratio of the carbin-containing composite material is, for example, preferably 6 or more, more preferably 7 or more, still more preferably 8 or more, and particularly preferably 10 or more.
[用途]
以上のカルビン含有複合材料は、CNT集合体にカルビンがこれまでにない高い割合で内包されている。したがって、カルビン含有複合材料は、CNTの本来有する特性に加えて、カルビンに由来する特性をも備え得る。例えば、従来のCNTシートなどと比較して高い強度を備える物品を提供することができる。また一方で、カルビンは、カルビンを内包するCNTの性状に変化をもたらし得る。例えば、SWNTはカイラリティによって金属的性質を示すか半導体的性質を示すかが分かれるが、DWNTおよびMWNTについては一層でも金属的性質のCNTを含むことで全体として金属的性質を示すことから、現実的にはほぼ全てDWNTおよびMWNTが金属的性質を示し得ることが知られている。ここに開示されるカルビン含有複合材料はSWNTを好適に含みうることから、SWNTが半導体的性質を示すとき、カルビン含有複合材料とすることで、SWNTは金属的性質を示すように改質され得る。このことにより、例えば金属/半導体の作り分けが完全でないCNT集合体におけるCNTの性状を、金属的特性に揃えることができる。このようなカルビン含有複合材料を備える物品は、従来のCNTを使用した製品のほぼ全てに置き換えて用いることができる。例えば、カルビン含有複合材料を含む物品は、機械的用途または導電材用途の軽量材料等として特に有用であり得る。かかる物品の好適例としては、例えば、透明電極、透明導電膜などが挙げられる。 [Use]
In the above-described carbin-containing composite material, carbin is contained at a higher rate than ever in the CNT assembly. Thus, in addition to the intrinsic properties of CNTs, the calvin-containing composite material can also possess properties derived from calvin. For example, an article can be provided that has high strength as compared to conventional CNT sheets and the like. On the other hand, calvin can cause changes in the properties of CNTs containing calvin. For example, although SWNTs differ in whether they exhibit metallic properties or semiconducting properties depending on chirality, they are practical because DWNT and MWNT exhibit metallic properties as a whole by including even more metallic properties of CNTs. It is known that almost all DWNTs and MWNTs can exhibit metallic properties. Since the carbyne-containing composite material disclosed herein can suitably contain SWNT, when the SWNT exhibits semiconductive properties, the carbyne-containing composite material can be modified to exhibit metallic properties by being made into a carbyne-containing composite material. . By this, for example, it is possible to make the properties of the CNT in the CNT aggregate in which the formation of the metal / semiconductor is not complete is uniform to the metallic property. An article comprising such a carbyne-containing composite material can be used in place of almost all conventional CNT-based products. For example, an article comprising a carbyne-containing composite material may be particularly useful as a lightweight material for mechanical or conductive material applications, and the like. As a suitable example of such an article, for example, a transparent electrode, a transparent conductive film and the like can be mentioned.
以上のカルビン含有複合材料は、CNT集合体にカルビンがこれまでにない高い割合で内包されている。したがって、カルビン含有複合材料は、CNTの本来有する特性に加えて、カルビンに由来する特性をも備え得る。例えば、従来のCNTシートなどと比較して高い強度を備える物品を提供することができる。また一方で、カルビンは、カルビンを内包するCNTの性状に変化をもたらし得る。例えば、SWNTはカイラリティによって金属的性質を示すか半導体的性質を示すかが分かれるが、DWNTおよびMWNTについては一層でも金属的性質のCNTを含むことで全体として金属的性質を示すことから、現実的にはほぼ全てDWNTおよびMWNTが金属的性質を示し得ることが知られている。ここに開示されるカルビン含有複合材料はSWNTを好適に含みうることから、SWNTが半導体的性質を示すとき、カルビン含有複合材料とすることで、SWNTは金属的性質を示すように改質され得る。このことにより、例えば金属/半導体の作り分けが完全でないCNT集合体におけるCNTの性状を、金属的特性に揃えることができる。このようなカルビン含有複合材料を備える物品は、従来のCNTを使用した製品のほぼ全てに置き換えて用いることができる。例えば、カルビン含有複合材料を含む物品は、機械的用途または導電材用途の軽量材料等として特に有用であり得る。かかる物品の好適例としては、例えば、透明電極、透明導電膜などが挙げられる。 [Use]
In the above-described carbin-containing composite material, carbin is contained at a higher rate than ever in the CNT assembly. Thus, in addition to the intrinsic properties of CNTs, the calvin-containing composite material can also possess properties derived from calvin. For example, an article can be provided that has high strength as compared to conventional CNT sheets and the like. On the other hand, calvin can cause changes in the properties of CNTs containing calvin. For example, although SWNTs differ in whether they exhibit metallic properties or semiconducting properties depending on chirality, they are practical because DWNT and MWNT exhibit metallic properties as a whole by including even more metallic properties of CNTs. It is known that almost all DWNTs and MWNTs can exhibit metallic properties. Since the carbyne-containing composite material disclosed herein can suitably contain SWNT, when the SWNT exhibits semiconductive properties, the carbyne-containing composite material can be modified to exhibit metallic properties by being made into a carbyne-containing composite material. . By this, for example, it is possible to make the properties of the CNT in the CNT aggregate in which the formation of the metal / semiconductor is not complete is uniform to the metallic property. An article comprising such a carbyne-containing composite material can be used in place of almost all conventional CNT-based products. For example, an article comprising a carbyne-containing composite material may be particularly useful as a lightweight material for mechanical or conductive material applications, and the like. As a suitable example of such an article, for example, a transparent electrode, a transparent conductive film and the like can be mentioned.
[カルビン含有複合材料の製造方法]
またここに開示される技術によると、上記のカルビン含有複合材料の好適な製造方法が提供される。この製造方法は、以下の工程(1)~(2)を含む。以下、各工程について説明する。
(1)出発材料として、複数のCNTが集合されてなり、G/D比が25以上のCNT集合体を用意する。
(2)CNT集合体に、少なくとも電界電子放出(Field Emission:FE)が生じる電圧を印加する。 [Method for producing carbin-containing composite material]
Also, according to the technology disclosed herein, a suitable method for producing the above-mentioned carbine-containing composite material is provided. This manufacturing method includes the following steps (1) to (2). Each step will be described below.
(1) A plurality of CNTs are assembled as a starting material, and a CNT assembly having a G / D ratio of 25 or more is prepared.
(2) A voltage at which at least Field Electron Emission (FE) occurs is applied to the CNT assembly.
またここに開示される技術によると、上記のカルビン含有複合材料の好適な製造方法が提供される。この製造方法は、以下の工程(1)~(2)を含む。以下、各工程について説明する。
(1)出発材料として、複数のCNTが集合されてなり、G/D比が25以上のCNT集合体を用意する。
(2)CNT集合体に、少なくとも電界電子放出(Field Emission:FE)が生じる電圧を印加する。 [Method for producing carbin-containing composite material]
Also, according to the technology disclosed herein, a suitable method for producing the above-mentioned carbine-containing composite material is provided. This manufacturing method includes the following steps (1) to (2). Each step will be described below.
(1) A plurality of CNTs are assembled as a starting material, and a CNT assembly having a G / D ratio of 25 or more is prepared.
(2) A voltage at which at least Field Electron Emission (FE) occurs is applied to the CNT assembly.
[1.出発材料の用意]
カルビン含有複合材料は、出発材料として、CNT集合体を用いる。このCNT集合体は、目的のカルビン含有複合材料とほぼ同じ構成を有するものを用意すればよい。例えば、カルビン含有複合材料のCNT集合体におけるSWNT、DWNT、MWNTの各割合や形状および集合形態等は、出発材料の段階で所望の態様を備えるCNT集合体を用意するとよい。なお、次工程のFEを生じさせ易くなるとの観点からは、概ね表面形態が平坦なシート状のCNT集合体を使用することが好ましい。CNT集合体は、任意の基材に保持されていてもよいし、CNT集合体のみの独立体として用意されてもよい。 [1. Preparation of starting material]
The carbin containing composite material uses CNT aggregates as a starting material. The CNT aggregate may be prepared to have substantially the same configuration as the intended carbin-containing composite material. For example, SWNT, DWNT, and MWNT proportions, shapes, and aggregation forms in the CNT assembly of a carbin-containing composite material may provide a CNT assembly having a desired aspect at the stage of the starting material. From the viewpoint of facilitating the generation of FE in the next step, it is preferable to use a sheet-like CNT aggregate having a substantially flat surface shape. The CNT assembly may be held by any base material, or may be prepared as an independent body of only the CNT assembly.
カルビン含有複合材料は、出発材料として、CNT集合体を用いる。このCNT集合体は、目的のカルビン含有複合材料とほぼ同じ構成を有するものを用意すればよい。例えば、カルビン含有複合材料のCNT集合体におけるSWNT、DWNT、MWNTの各割合や形状および集合形態等は、出発材料の段階で所望の態様を備えるCNT集合体を用意するとよい。なお、次工程のFEを生じさせ易くなるとの観点からは、概ね表面形態が平坦なシート状のCNT集合体を使用することが好ましい。CNT集合体は、任意の基材に保持されていてもよいし、CNT集合体のみの独立体として用意されてもよい。 [1. Preparation of starting material]
The carbin containing composite material uses CNT aggregates as a starting material. The CNT aggregate may be prepared to have substantially the same configuration as the intended carbin-containing composite material. For example, SWNT, DWNT, and MWNT proportions, shapes, and aggregation forms in the CNT assembly of a carbin-containing composite material may provide a CNT assembly having a desired aspect at the stage of the starting material. From the viewpoint of facilitating the generation of FE in the next step, it is preferable to use a sheet-like CNT aggregate having a substantially flat surface shape. The CNT assembly may be held by any base material, or may be prepared as an independent body of only the CNT assembly.
上記CNT集合体としては、FEを好適に生じさせるとの観点から、ラマン分光分析によって測定されるG/D比が25以上のものを好ましく採用することができる。G/D比が大きいCNT集合体ほど、CNTの表面欠陥が少なく、結晶性が高いと評価することができる。このことにより、次工程でFEを好適な状態で生じさせることができる。また、CNTは表面欠陥が少ないことで、各CNT間の分子間力が効果的に高められている。そのため、CNT集合体の形成において、例えばバインダを必要とせずに高い膜強度を実現しうる点においても好適である。CNTのG/D比は、好ましくは28以上、より好ましくは30以上、特に好ましくは35以上である。例えば、CNTのG/D比は、50以上であってもよく、典型的には100以上であってもよい。上記CNTのG/D比の上限は特に限定されないが、製造容易性等の観点からは、例えば200以下、典型的には150以下、例えば120以下であってもよい。このCNT集合体の製造方法は特に限定されない。例えば、アーク放電法や、CVD法などにより製造されたCNT集合体であってよい。しかしながら、上記のような高いG/D比を備えるCNT集合体は、例えば、CVD法により好ましく作製される。
As the above-mentioned CNT assembly, from the viewpoint of suitably generating FE, one having a G / D ratio of 25 or more measured by Raman spectroscopic analysis can be preferably employed. It can be evaluated that the larger the G / D ratio is, the smaller the number of surface defects of the CNT and the higher the crystallinity. This makes it possible to generate FE in a suitable state in the next step. In addition, since the number of surface defects of the CNTs is small, the intermolecular force between the CNTs is effectively enhanced. Therefore, in formation of a CNT aggregate, it is suitable also in the point which can realize high film intensity, for example, without requiring a binder. The G / D ratio of CNTs is preferably 28 or more, more preferably 30 or more, and particularly preferably 35 or more. For example, the G / D ratio of CNT may be 50 or more, and typically 100 or more. The upper limit of the G / D ratio of the CNT is not particularly limited, but may be, for example, 200 or less, typically 150 or less, for example 120 or less, from the viewpoint of ease of production and the like. The method for producing this CNT assembly is not particularly limited. For example, it may be a CNT aggregate manufactured by an arc discharge method, a CVD method or the like. However, a CNT assembly having a high G / D ratio as described above is preferably produced, for example, by the CVD method.
また、CNT集合体の純度は特に制限されないが、典型的には85%以上である。ここでいう純度とは、CNT集合体に占める炭素質材料(CNTおよびアモルファスカーボン)の割合である。FEのばらつきの抑制や、低抵抗化、膜強度向上等の観点から、CNT集合体の純度は、好ましくは90%以上、より好ましくは95%以上である。CNT集合体の純度の上限は特に限定されず、製造容易性等の観点からは、典型的には99%以下、例えば98%以下であってもよい。ここに開示される技術は、例えば、CNT集合体の純度が85%以上100%以下(典型的には95%以上99%以下)である態様で好ましく実施され得る。なお、本明細書において、CNTの純度は、示差熱重量分析(TG-DTA)装置による測定で得られた値を採用することができる。例えば一例として、TG/DTAチャートにおいて、683℃付近におけるSWNTの燃焼と、322℃付近のアモルファスカーボンの燃焼とによる重量減少率から、SWNTとアモルファスカーボンの合計であるCNTの含有量を算出することができる。CNT集合体がDWNTやMWNTを含む場合は、それらの燃焼に伴う重量減少を加味すればよい。
Also, the purity of the CNT assembly is not particularly limited, but typically 85% or more. The purity as used herein is the ratio of the carbonaceous material (CNT and amorphous carbon) in the CNT aggregate. The purity of the CNT aggregate is preferably 90% or more, more preferably 95% or more, from the viewpoints of suppression of variation in FE, reduction in resistance, improvement in film strength, and the like. The upper limit of the purity of the CNT assembly is not particularly limited, and may be typically 99% or less, for example, 98% or less from the viewpoint of ease of production and the like. The technology disclosed herein can be preferably practiced, for example, in a mode in which the purity of the CNT assembly is 85% or more and 100% or less (typically, 95% or more and 99% or less). In the present specification, as the purity of CNT, a value obtained by measurement with a differential thermal gravimetric analysis (TG-DTA) apparatus can be adopted. For example, as an example, in the TG / DTA chart, the content of CNT, which is the sum of SWNT and amorphous carbon, is calculated from the weight loss ratio due to combustion of SWNT at around 683 ° C and combustion of amorphous carbon at around 322 ° C. Can. When the CNT assembly contains DWNT or MWNT, the weight loss associated with their combustion may be taken into consideration.
さらに、CNT集合体のかさ密度は特に制限されない。カルビンをより高濃度に含むカルビン含有複合材料を得るとの目的からは、例えば、CNT集合体のかさ密度は、0.1g/cm3以上であることが好ましく、0.3g/cm3以上がより好ましく、0.5g/cm3以上が特に好ましい。CNT集合体のかさ密度の上限は特に限定されず、例えば過度に密度の高いCNT集合体はCNTがMWNTで構成される割合が高まったり、圧密によりCNTが折れる割合が高まったりし得る。かかる不都合を避けやすいなどといった観点から、CNT集合体のかさ密度が典型的には1g/cm3以下とすることができる。なお、このかさ密度は、後述の触媒金属やアモルファス金属等を含まないCNTについての値であることがより一層好ましい。
Furthermore, the bulk density of the CNT assembly is not particularly limited. For the purpose of obtaining a carbyne-containing composite material containing a higher concentration of carbine, for example, the bulk density of the CNT assembly is preferably 0.1 g / cm 3 or more, and 0.3 g / cm 3 or more. More preferably, 0.5 g / cm 3 or more is particularly preferable. The upper limit of the bulk density of the CNT aggregate is not particularly limited. For example, an excessively dense CNT aggregate may increase the proportion of CNTs composed of MWNTs or increase the proportion of CNTs broken due to consolidation. The bulk density of the CNT aggregate can be typically 1 g / cm 3 or less from the viewpoint of easily avoiding such inconvenience. The bulk density is more preferably a value for CNTs that do not contain a catalyst metal, an amorphous metal, etc. described later.
さらに、CNT集合体は、例えば、CNTの合成等に用いられた触媒金属などの含有が許容される。触媒金属は、例えば、Fe,Coおよび白金族元素(Ru,Rh,Pd,Os,Ir,Pt)からなる群から選ばれる少なくとも一種の金属または該金属を主体とする合金であり得る。このような触媒金属は、典型的には微粒子(例えば、平均粒子径が3nm~100nm程度)の形態でCNT集合体中に含まれ得る。出発材料としてのCNT集合体の好ましい一態様では、炭素質材料の85atom%以上(より好ましくは90atom%以上)が炭素原子(C)である。該炭素質材料の95atom%以上が炭素原子であってもよく、99atom%以上が炭素原子であってもよく、実質的に炭素原子のみからなるCNTであってもよい。後述するCNT製造方法により得られた生成物に任意の後処理(例えば、アモルファスカーボンの除去、触媒金属の除去等の精製処理)を施したものを上記CNTとして使用してもよい。
Furthermore, the CNT assembly can be allowed to contain, for example, a catalyst metal used for synthesis of CNT and the like. The catalyst metal may be, for example, at least one metal selected from the group consisting of Fe, Co and platinum group elements (Ru, Rh, Pd, Os, Ir, Pt) or an alloy containing such a metal. Such catalytic metals can be included in the CNT aggregate typically in the form of fine particles (eg, about 3 nm to 100 nm in average particle size). In a preferred embodiment of the CNT assembly as a starting material, 85 atom% or more (more preferably 90 atom% or more) of the carbonaceous material is a carbon atom (C). 95 atomic% or more of the carbonaceous material may be a carbon atom, 99 atomic% or more may be a carbon atom, or a CNT substantially consisting of only carbon atoms may be used. A product obtained by any post-treatment (for example, purification treatment such as removal of amorphous carbon, removal of catalyst metal, etc.) may be used as the above-mentioned CNT.
なお、CNT集合体は、次工程のFEの発生を著しく妨げない範囲において、上述した炭素質材料および触媒金属以外の材料(以下、添加材料ともいう。)を含有してもよい。そのような添加材料の例として、樹脂バインダ、導電材、増粘剤などが挙げられる。しかしながら、これらの添加材料の含有量は、CNT集合体の全質量のうち、例えば10質量%以下とすることが適当であり、好ましくは7質量%以下、より好ましくは5質量%以下、特に好ましくは3質量%以下である。CNT集合体は、中でも、絶縁作用を有する樹脂バインダを実質的に含まないことが好ましい態様であり得る。
In addition, the CNT aggregate may contain materials other than the above-mentioned carbonaceous material and catalyst metal (hereinafter, also referred to as an additive material) within a range not significantly preventing the occurrence of FE in the next step. Examples of such additive materials include resin binders, conductive materials, thickeners and the like. However, the content of these additive materials is, for example, 10% by mass or less, preferably 7% by mass or less, more preferably 5% by mass or less, based on the total mass of the CNT aggregate. Is 3% by mass or less. Among them, a preferred embodiment is that the CNT assembly is substantially free of a resin binder having an insulating function.
[2.CNT集合体のFE処理]
ここに開示されるカルビン含有複合材料は、上記で用意したCNT集合体に電圧を印加して、FEを生じさせるか、これに等しい状態に置くことで得ることができる。印加する電圧および雰囲気条件等は、CNT集合体の性状(結晶性や形状、延いては電界放出特性)によって異なるために一概にはいえない。CNT集合体が電界の作用によって電子を放出していることは、例えば、CNT集合体への電界の印加によって印加電極間に微弱な電流(FE電流)が流れることで、確認することができる。一般に、金属性材料についての電界放出は、超高真空雰囲気下(典型的には、10-8Pa以下の雰囲気)でないと安定して生じさせることができない。しかしながら、出発材料として上記の高い結晶性を備えるCNT集合体を用いることで、従来よりも緩い減圧環境および/または従来よりも低い電圧でFEを生じさせることができる。そしてこのような高い結晶性を備えるCNT集合体においてFE環境を創り出すことで、カルビンの形成により適した環境が整えられると考えられる。 [2. FE processing of CNT aggregate]
The carbyne-containing composite material disclosed herein can be obtained by applying a voltage to the above-prepared CNT assembly to generate or equalize FE. The voltage to be applied, the atmosphere conditions, and the like can not be generally mentioned because they differ depending on the properties (crystallinity and shape, and in turn, field emission characteristics) of the CNT assembly. The fact that the CNT assembly emits electrons by the action of the electric field can be confirmed, for example, by the flow of a weak current (FE current) between the applied electrodes by the application of the electric field to the CNT assembly. In general, field emission for metallic materials can not be stably generated unless under an ultra-high vacuum atmosphere (typically, an atmosphere of 10 -8 Pa or less). However, by using a CNT assembly having the above-mentioned high crystallinity as a starting material, it is possible to generate FE at a looser reduced pressure environment and / or at a lower voltage than before. And by creating an FE environment in a CNT assembly having such high crystallinity, it is considered that an environment more suitable for the formation of calvin is prepared.
ここに開示されるカルビン含有複合材料は、上記で用意したCNT集合体に電圧を印加して、FEを生じさせるか、これに等しい状態に置くことで得ることができる。印加する電圧および雰囲気条件等は、CNT集合体の性状(結晶性や形状、延いては電界放出特性)によって異なるために一概にはいえない。CNT集合体が電界の作用によって電子を放出していることは、例えば、CNT集合体への電界の印加によって印加電極間に微弱な電流(FE電流)が流れることで、確認することができる。一般に、金属性材料についての電界放出は、超高真空雰囲気下(典型的には、10-8Pa以下の雰囲気)でないと安定して生じさせることができない。しかしながら、出発材料として上記の高い結晶性を備えるCNT集合体を用いることで、従来よりも緩い減圧環境および/または従来よりも低い電圧でFEを生じさせることができる。そしてこのような高い結晶性を備えるCNT集合体においてFE環境を創り出すことで、カルビンの形成により適した環境が整えられると考えられる。 [2. FE processing of CNT aggregate]
The carbyne-containing composite material disclosed herein can be obtained by applying a voltage to the above-prepared CNT assembly to generate or equalize FE. The voltage to be applied, the atmosphere conditions, and the like can not be generally mentioned because they differ depending on the properties (crystallinity and shape, and in turn, field emission characteristics) of the CNT assembly. The fact that the CNT assembly emits electrons by the action of the electric field can be confirmed, for example, by the flow of a weak current (FE current) between the applied electrodes by the application of the electric field to the CNT assembly. In general, field emission for metallic materials can not be stably generated unless under an ultra-high vacuum atmosphere (typically, an atmosphere of 10 -8 Pa or less). However, by using a CNT assembly having the above-mentioned high crystallinity as a starting material, it is possible to generate FE at a looser reduced pressure environment and / or at a lower voltage than before. And by creating an FE environment in a CNT assembly having such high crystallinity, it is considered that an environment more suitable for the formation of calvin is prepared.
かかる減圧環境としては、例えば、10-5Paを超える圧力(例えば、10-5Pa超過10Pa以下程度)とすることができる。JIS Z8126-1:1999によると、10-5Pa以下の真空を「超高真空」と定義していることから、ここに開示される技術によると、FEのための減圧環境は、例えば10-5Pa超過0.1Pa-1以下の「高真空」や、0.1Pa-1超過10Pa以下の「中真空」とすることができる。なお、より常圧に近い環境においてFEを発生させるとの観点からは、減圧環境は10-4Pa以上が好ましく、10-3Pa以上がより好ましく、10-2Pa以上が特に好ましく、10-1Pa以上がさらに好ましく、例えば、100Pa以上としてもよい。
Such a reduced pressure environment can be, for example, a pressure exceeding 10 -5 Pa (eg, 10 -5 Pa or more and about 10 Pa or less). JIS Z8126-1: According to 1999, the following vacuum 10 -5 Pa since it is defined as "ultra high vacuum", according to the art disclosed herein, a reduced pressure environment for the FE, for example 10 - The “high vacuum” exceeding 5 Pa and 0.1 Pa −1 or less or the “medium vacuum” exceeding 0.1 Pa −1 and 10 Pa or less can be used. A more in terms of the generating the FE in an environment close to the atmospheric pressure, reduced pressure environment is preferably at least 10 -4 Pa, more preferably at least 10 -3 Pa, particularly preferably at least 10 -2 Pa, 10 - 1 Pa or more is more preferable, for example, it is good also as 10 0 Pa or more.
また、電界発生のための電圧条件は、CNT集合体の結晶性や表面形態、電極間距離等に大きく依存するために一概にはいえない。例えば、電極間距離が1.6mmの場合、おおよその目安として、0Vを超えて、例えば、0.5kV以上程度が好ましく、1kV以上程度がより好ましい。また、電界発生のための電圧条件は、例えば、3kV以下程度であってよく、より好ましくは2.8kV以下程度、例えば2.5kV以下程度とすることが例示される。電界の方向に厳密な制限はない。しかしながら、FEを生じ得るような状態にCNTをより好適に晒すとの観点からは、CNTのチューブ軸に対して交わる方向に電界を印加することが好ましいといえる。これにより、CNT集合体に対して高電界によるエネルギーを好適に供給するとともに、かかるエネルギーをFEによって過剰に消失することなく、カルビンの形成に利用できると考えられる。電界の方向は、例えば、CNT集合体がシート状である場合は、その表面に対して平行な方向よりは、表面に交わる方向であることが好ましく、表面に対して垂直な方向に近づけば近づくほどより好ましい。これにより、CNT集合体の全体に有効に電界を印加することができる。
In addition, voltage conditions for generating an electric field largely depend on the crystallinity and surface morphology of the CNT assembly, the distance between electrodes, etc. For example, in the case where the distance between electrodes is 1.6 mm, as a rough guide, it is preferable to exceed 0 V, for example, about 0.5 kV or more, and more preferably about 1 kV or more. The voltage condition for generating the electric field may be, for example, about 3 kV or less, more preferably about 2.8 kV or less, for example, about 2.5 kV or less. There is no strict restriction on the direction of the electric field. However, it is preferable to apply an electric field in the direction intersecting with the tube axis of CNT from the viewpoint of more suitably exposing the CNT to a state in which FE can be generated. Thus, it is considered that energy from a high electric field can be suitably supplied to the CNT assembly, and such energy can be used for formation of carbin without excessive loss by FE. For example, when the CNT assembly is sheet-like, the direction of the electric field is preferably a direction intersecting the surface rather than a direction parallel to the surface, and approaches the direction perpendicular to the surface. Is more preferable. Thereby, an electric field can be effectively applied to the entire CNT assembly.
詳細は明らかではないが、電界の作用によって、CNT内の電子はチューブ壁(グラフェンシート)をスムーズかつ低抵抗で移動することができる。そしてCNT集合体のうちの、電界が集中される部位において電子の引き出し作用が発現される。これによって当該部位においてCNTを構成する炭素原子の結合に乱れが生じ、CNTの内部空間の中心に炭素原子が一次元状に配列されて、sp結合することで、カルビンを形成すると考えられる。あるいは、CNT集合体に含まれるアモルファスカーボンが揮発することで、CNTの内部空間の中心に、同様にカルビンを形成するものと考えられる。なお、電界放出に際し、放電現象(絶縁破壊)は必要ではない。換言すると、非破壊電圧によって電界を印加してもよい。しかしながら、カルビンの形成には、CNT集合体に比較的高い電圧を印加することが好ましい。かかる観点から、カルビン含有複合材料により多くのカルビンを含有させるために、電界放出に際して放電を生じさせることは許容される。この場合、放電に伴い、カルビン含有複合材料中のCNTのG/D比は上述のとおり低下し得る。このようにしてCNT集合体の電界放出が行われた付近には、CNTの内部にカルビンが形成され得る。カルビンは、例えば充填率が30%以上の比較的高い割合で、CNT内に充填されている。これによって、ここに開示されるカルビン含有複合材料を製造することができる。
Although the details are not clear, the action of the electric field allows electrons in the CNT to move smoothly and at low resistance through the tube wall (graphene sheet). And in the part of the CNT assembly where the electric field is concentrated, the electron extracting action is expressed. It is considered that this causes disorder in bonding of carbon atoms constituting the CNT at the site, and carbon atoms are arranged in a one-dimensional manner at the center of the inner space of the CNT to form carbine by sp bonding. Alternatively, volatilization of the amorphous carbon contained in the CNT aggregate is considered to similarly form carbine in the center of the inner space of the CNT. A discharge phenomenon (insulation breakdown) is not necessary at the time of field emission. In other words, an electric field may be applied by a nondestructive voltage. However, for the formation of calvin, it is preferable to apply a relatively high voltage to the CNT assembly. From this point of view, it is acceptable to generate a discharge upon field emission in order to contain more carbine in the carbine-containing composite material. In this case, with discharge, the G / D ratio of CNTs in the carbyne-containing composite material may decrease as described above. Thus, in the vicinity of the field emission of the CNT assembly, carbine may be formed inside the CNT. Carbin is filled in the CNT at a relatively high rate of, for example, a filling rate of 30% or more. This makes it possible to produce the carbyne-containing composite disclosed herein.
以下、本発明に関する具体的な実施例につき説明するが、本発明をかかる具体例に示すものに限定することを意図したものではない。
EXAMPLES Specific examples of the present invention will be described below, but the present invention is not intended to be limited to those shown in the specific examples.
[試験例1]
G/D比が異なる3種のシート状のCNT集合体(以下、単に「CNTシート」という。)を用意した。具体的には、例1のCNTシートは、株式会社名城ナノカーボン製のSWNT「EC1.5」からなるシートである。このEC1.5は、CVD法により作製された主としてSWNTにより構成される。例2のCNTシートは、株式会社名城ナノカーボン製のアーク放電法により作製された、主としてSWNTからなるシートである。例3のCNTシートは、JFEエンジニアリング株式会社製の「高純度CNTテープ」である。例3のCNTシートは、アーク放電法により作製されたMWNTからなるシートである。これらのCNTシートは、いずれもCNTのバッキーペーパーをシート状に成形したものであり、いずれのシートにもバインダは含まれていない。 [Test Example 1]
Three sheet-like CNT aggregates having different G / D ratios (hereinafter, simply referred to as "CNT sheet") were prepared. Specifically, the CNT sheet of Example 1 is a sheet made of SWNT "EC 1.5" manufactured by Meijo Nano Carbon Co., Ltd. The EC 1.5 is mainly composed of SWNTs produced by the CVD method. The CNT sheet of Example 2 is a sheet mainly made of SWNT manufactured by the arc discharge method manufactured by Meijo Nano Carbon Co., Ltd. The CNT sheet of Example 3 is a "high purity CNT tape" manufactured by JFE Engineering Corporation. The CNT sheet of Example 3 is a sheet made of MWNT produced by an arc discharge method. Each of these CNT sheets is a CNT-shaped bucky paper molded into a sheet, and no binder is contained in any of the sheets.
G/D比が異なる3種のシート状のCNT集合体(以下、単に「CNTシート」という。)を用意した。具体的には、例1のCNTシートは、株式会社名城ナノカーボン製のSWNT「EC1.5」からなるシートである。このEC1.5は、CVD法により作製された主としてSWNTにより構成される。例2のCNTシートは、株式会社名城ナノカーボン製のアーク放電法により作製された、主としてSWNTからなるシートである。例3のCNTシートは、JFEエンジニアリング株式会社製の「高純度CNTテープ」である。例3のCNTシートは、アーク放電法により作製されたMWNTからなるシートである。これらのCNTシートは、いずれもCNTのバッキーペーパーをシート状に成形したものであり、いずれのシートにもバインダは含まれていない。 [Test Example 1]
Three sheet-like CNT aggregates having different G / D ratios (hereinafter, simply referred to as "CNT sheet") were prepared. Specifically, the CNT sheet of Example 1 is a sheet made of SWNT "EC 1.5" manufactured by Meijo Nano Carbon Co., Ltd. The EC 1.5 is mainly composed of SWNTs produced by the CVD method. The CNT sheet of Example 2 is a sheet mainly made of SWNT manufactured by the arc discharge method manufactured by Meijo Nano Carbon Co., Ltd. The CNT sheet of Example 3 is a "high purity CNT tape" manufactured by JFE Engineering Corporation. The CNT sheet of Example 3 is a sheet made of MWNT produced by an arc discharge method. Each of these CNT sheets is a CNT-shaped bucky paper molded into a sheet, and no binder is contained in any of the sheets.
用意した例1~3のCNTシートについてラマン分光分析を行い、得られたラマンスペクトルからG/D比を算出して表1に示した。ラマン分光分析には、顕微ラマン分光装置(Renishaw社製、inVia Reflex)を用い、励起光として波長532nmのレーザを使用した。また、各例のCNTシートのかさ密度と、シートを構成するCNTの平均直径と、シートの厚みとを測定し、併せて示した。なお、CNTの平均直径は、走査型電子顕微鏡(Scanning Electron Microscope:SEM)とTEMとを用いた観察により測定された10点のCNTの直径の算術平均値である。直径の測定に際し、例1および2のシートではSWNTを測定対象とし、例3のシートでは任意のMWNTを測定対象とした。また、シート厚みは、SEMを用いた断面観察により測定した各CNTシートの3点以上の厚みの算術平均値である。
Raman spectroscopic analysis was performed on the prepared CNT sheets of Examples 1 to 3, and the G / D ratio was calculated from the obtained Raman spectrum and is shown in Table 1. For Raman spectroscopy, a laser with a wavelength of 532 nm was used as excitation light, using a microscopic Raman spectrometer (inVia Reflex, manufactured by Renishaw). Further, the bulk density of the CNT sheet of each example, the average diameter of the CNTs constituting the sheet, and the thickness of the sheet were measured and shown together. In addition, the average diameter of CNT is an arithmetic mean value of the diameter of 10 points | pieces of CNT measured by observation using a scanning electron microscope (Scanning Electron Microscope: SEM) and TEM. In the measurement of the diameter, SWNT was a measurement target in the sheets of Examples 1 and 2, and an arbitrary MWNT was a measurement target in the sheet of Example 3. Moreover, sheet | seat thickness is an arithmetic mean value of the thickness of three or more points of each CNT sheet | seat measured by cross-sectional observation using SEM.
[カルビン形成1]
次に、上記で用意した例1~3のCNTシートのCNTを、5mm角の正方形に切り出して測定用サンプルとした。そして例1~3のサンプルを真空チャンバ内設置し、電界を印加することで電界電子放出(Field Enission:FE)を生じさせた。具体的には、まず、例1~3のサンプルをアルミニウム製ホルダに銀ペーストで固定してカソードユニットを構築し、チャンバ内のアースされたステンレス製ステージに載置した。また、チャンバ内のアルミニウム製ホルダにアノードを平行に対面させて、両電極間に電圧を印加した。すなわち、CNTシートに対して垂直な方向に電界を印加した。印加電圧は0~2.5kVの間で放電が起こるまで変化させた。チャンバ内圧力は、(a)約1×10-5Paと(b)約1×10-1Paの二通りに設定した。また、電極間には絶縁性のセラミックガラスをスペーサとして挿入し、電極間距離を約1.6mmに調整した。 [Carbin formation 1]
Next, the CNTs of the CNT sheets of Examples 1 to 3 prepared above were cut into squares of 5 mm square and used as measurement samples. Then, the samples of Examples 1 to 3 were placed in a vacuum chamber, and application of an electric field caused field electron emission (FE). Specifically, first, the samples of Examples 1 to 3 were fixed to an aluminum holder with silver paste to construct a cathode unit, and the cathode unit was mounted on a grounded stainless steel stage in a chamber. Further, the anode was made to face in parallel with the aluminum holder in the chamber, and a voltage was applied between both electrodes. That is, an electric field was applied in the direction perpendicular to the CNT sheet. The applied voltage was varied between 0 and 2.5 kV until discharge occurred. The pressure in the chamber was set to (a) approximately 1 × 10 −5 Pa and (b) approximately 1 × 10 −1 Pa. Further, an insulating ceramic glass was inserted as a spacer between the electrodes, and the distance between the electrodes was adjusted to about 1.6 mm.
次に、上記で用意した例1~3のCNTシートのCNTを、5mm角の正方形に切り出して測定用サンプルとした。そして例1~3のサンプルを真空チャンバ内設置し、電界を印加することで電界電子放出(Field Enission:FE)を生じさせた。具体的には、まず、例1~3のサンプルをアルミニウム製ホルダに銀ペーストで固定してカソードユニットを構築し、チャンバ内のアースされたステンレス製ステージに載置した。また、チャンバ内のアルミニウム製ホルダにアノードを平行に対面させて、両電極間に電圧を印加した。すなわち、CNTシートに対して垂直な方向に電界を印加した。印加電圧は0~2.5kVの間で放電が起こるまで変化させた。チャンバ内圧力は、(a)約1×10-5Paと(b)約1×10-1Paの二通りに設定した。また、電極間には絶縁性のセラミックガラスをスペーサとして挿入し、電極間距離を約1.6mmに調整した。 [Carbin formation 1]
Next, the CNTs of the CNT sheets of Examples 1 to 3 prepared above were cut into squares of 5 mm square and used as measurement samples. Then, the samples of Examples 1 to 3 were placed in a vacuum chamber, and application of an electric field caused field electron emission (FE). Specifically, first, the samples of Examples 1 to 3 were fixed to an aluminum holder with silver paste to construct a cathode unit, and the cathode unit was mounted on a grounded stainless steel stage in a chamber. Further, the anode was made to face in parallel with the aluminum holder in the chamber, and a voltage was applied between both electrodes. That is, an electric field was applied in the direction perpendicular to the CNT sheet. The applied voltage was varied between 0 and 2.5 kV until discharge occurred. The pressure in the chamber was set to (a) approximately 1 × 10 −5 Pa and (b) approximately 1 × 10 −1 Pa. Further, an insulating ceramic glass was inserted as a spacer between the electrodes, and the distance between the electrodes was adjusted to about 1.6 mm.
[ラマン分光分析]
FE後の各例のサンプルについて、上記と同様にラマン分光分析を行った。なお、ラマンスペクトルは、各例のサンプルのうち、放電が生じた箇所ないしはその近辺について測定した。得られたラマンスペクトルからG/D比を算出し、下記の表2に示した。表2には、参考のために、FE前の初期のG/D比も併せて示している。また、1860cm-1近傍にLCCバンドに帰属されるピークが見られた場合は、Gバンドのピーク強度に対するLCCバンドのピーク相対強度(LCC/G比)を算出して表2に記載した。また、このLCC/G比に基づき、カルビンの充填率を算出して表2に記載した。ただし、例3のサンプルについては、チャンバ内圧力を約1×10-1Paと常圧に近い条件とした場合にFE電流自体が観測されなかったため、ラマン分光分析を省略した。ラマン分析の結果、得られた例1のサンプルのラマンスペクトルを図3に、例2および例3のサンプルのラマンスペクトルを図4に示した。なお、各ラマンスペクトルは、Gバンドのピーク強度が1となるように、縦軸のピーク強度を調整して示している。 [Raman spectroscopy]
The Raman spectroscopy analysis was performed about the sample of each example after FE similarly to the above. In addition, the Raman spectrum was measured about the location which discharge generate | occur | produced among the samples of each case, or its vicinity. The G / D ratio was calculated from the obtained Raman spectrum and is shown in Table 2 below. Table 2 also shows the initial G / D ratio before FE together for reference. In addition, when a peak attributed to the LCC band was observed in the vicinity of 1860 cm -1 , the peak relative intensity (LCC / G ratio) of the LCC band to the peak intensity of the G band was calculated and listed in Table 2. Also, based on this LCC / G ratio, the filling rate of Calvin was calculated and listed in Table 2. However, for the sample of Example 3, the Raman spectroscopic analysis was omitted because the FE current itself was not observed when the pressure inside the chamber was set to a pressure close to about 1 × 10 −1 Pa. As a result of Raman analysis, the Raman spectrum of the obtained sample of Example 1 is shown in FIG. 3, and the Raman spectra of the samples of Example 2 and Example 3 are shown in FIG. Each Raman spectrum is shown by adjusting the peak intensity of the vertical axis so that the peak intensity of the G band is 1.
FE後の各例のサンプルについて、上記と同様にラマン分光分析を行った。なお、ラマンスペクトルは、各例のサンプルのうち、放電が生じた箇所ないしはその近辺について測定した。得られたラマンスペクトルからG/D比を算出し、下記の表2に示した。表2には、参考のために、FE前の初期のG/D比も併せて示している。また、1860cm-1近傍にLCCバンドに帰属されるピークが見られた場合は、Gバンドのピーク強度に対するLCCバンドのピーク相対強度(LCC/G比)を算出して表2に記載した。また、このLCC/G比に基づき、カルビンの充填率を算出して表2に記載した。ただし、例3のサンプルについては、チャンバ内圧力を約1×10-1Paと常圧に近い条件とした場合にFE電流自体が観測されなかったため、ラマン分光分析を省略した。ラマン分析の結果、得られた例1のサンプルのラマンスペクトルを図3に、例2および例3のサンプルのラマンスペクトルを図4に示した。なお、各ラマンスペクトルは、Gバンドのピーク強度が1となるように、縦軸のピーク強度を調整して示している。 [Raman spectroscopy]
The Raman spectroscopy analysis was performed about the sample of each example after FE similarly to the above. In addition, the Raman spectrum was measured about the location which discharge generate | occur | produced among the samples of each case, or its vicinity. The G / D ratio was calculated from the obtained Raman spectrum and is shown in Table 2 below. Table 2 also shows the initial G / D ratio before FE together for reference. In addition, when a peak attributed to the LCC band was observed in the vicinity of 1860 cm -1 , the peak relative intensity (LCC / G ratio) of the LCC band to the peak intensity of the G band was calculated and listed in Table 2. Also, based on this LCC / G ratio, the filling rate of Calvin was calculated and listed in Table 2. However, for the sample of Example 3, the Raman spectroscopic analysis was omitted because the FE current itself was not observed when the pressure inside the chamber was set to a pressure close to about 1 × 10 −1 Pa. As a result of Raman analysis, the Raman spectrum of the obtained sample of Example 1 is shown in FIG. 3, and the Raman spectra of the samples of Example 2 and Example 3 are shown in FIG. Each Raman spectrum is shown by adjusting the peak intensity of the vertical axis so that the peak intensity of the G band is 1.
[評価]
表1に示すように、初期のCNTシートのラマンスペクトルには、CNT特有のDバンドおよびGバンドが観測され、そのG/D比は、高い順に並べると、例1、例2、例3であることが確認できた。このことから、CNTシートを構成するCNTの結晶性は、例1、例2、例3の順に高いことが確認できた。
また、表2に示すように、FEに伴う放電によって、例1,2のCNTシートのG/D比は大きく低下することがわかった。DバンドはCNTの結晶構造の欠陥周辺の特殊な振動に起因することから、例1,2のCNTシートは放電によってCNTに欠陥が導入されたことがわかった。一方の、もともと結晶性が相対的に低かった例3のCNTシートでは、放電によってG/D比が上昇する結果となったが、G/D比自体が1に近い値であり、顕著な結晶性の変化は見られないといえる。 [Evaluation]
As shown in Table 1, D-band and G-band specific to CNT are observed in the Raman spectrum of the initial CNT sheet, and their G / D ratios are arranged in descending order in Example 1, Example 2, and Example 3 It has been confirmed that there is. From this, it was confirmed that the crystallinity of the CNTs constituting the CNT sheet was higher in the order of Example 1, Example 2, and Example 3.
Further, as shown in Table 2, it was found that the G / D ratio of the CNT sheet of Examples 1 and 2 was greatly reduced by the discharge accompanying FE. Since the D band is caused by a special vibration around defects of the crystal structure of the CNT, it was found that the CNT sheet of Examples 1 and 2 had the defect introduced into the CNT by the discharge. On the other hand, in the CNT sheet of Example 3 in which the crystallinity was originally relatively low, the G / D ratio increased as a result of the discharge, but the G / D ratio itself is a value close to 1 and a remarkable crystal It can be said that no change in sex is seen.
表1に示すように、初期のCNTシートのラマンスペクトルには、CNT特有のDバンドおよびGバンドが観測され、そのG/D比は、高い順に並べると、例1、例2、例3であることが確認できた。このことから、CNTシートを構成するCNTの結晶性は、例1、例2、例3の順に高いことが確認できた。
また、表2に示すように、FEに伴う放電によって、例1,2のCNTシートのG/D比は大きく低下することがわかった。DバンドはCNTの結晶構造の欠陥周辺の特殊な振動に起因することから、例1,2のCNTシートは放電によってCNTに欠陥が導入されたことがわかった。一方の、もともと結晶性が相対的に低かった例3のCNTシートでは、放電によってG/D比が上昇する結果となったが、G/D比自体が1に近い値であり、顕著な結晶性の変化は見られないといえる。 [Evaluation]
As shown in Table 1, D-band and G-band specific to CNT are observed in the Raman spectrum of the initial CNT sheet, and their G / D ratios are arranged in descending order in Example 1, Example 2, and Example 3 It has been confirmed that there is. From this, it was confirmed that the crystallinity of the CNTs constituting the CNT sheet was higher in the order of Example 1, Example 2, and Example 3.
Further, as shown in Table 2, it was found that the G / D ratio of the CNT sheet of Examples 1 and 2 was greatly reduced by the discharge accompanying FE. Since the D band is caused by a special vibration around defects of the crystal structure of the CNT, it was found that the CNT sheet of Examples 1 and 2 had the defect introduced into the CNT by the discharge. On the other hand, in the CNT sheet of Example 3 in which the crystallinity was originally relatively low, the G / D ratio increased as a result of the discharge, but the G / D ratio itself is a value close to 1 and a remarkable crystal It can be said that no change in sex is seen.
そして、G/D比の最も高い例1のCNTシートについては、FEにより放電させることで、ラマンスペクトルにLCCバンドに基づくピークが出現し、その他のCNTシートについてはLCCバンドに基づくピークが出現しないことが確認された。このことにより、例1のSWNTからなるCNT内にカルビンが形成されたことがわかった。例1のCNTシートについては、チャンバ内圧力が(a)約1×10-5Paの高真空でも、(b)約1×10-1Paの低真空でもLCCバンドが出現した。図3に示すように、Gバンドのピークに対するLCCバンドのピークの高さ(LCC/G比)は、(b)低真空でFE放電させたサンプルのほうが高いという結果になった。これまで、カルビンはDWNTを10-5Pa~10-6Paオーダーの高真空で高温に加熱することで生成できるといわれていた。しかしながら、本試験例では、約1×10-1Paのほぼ常圧においてもカルビンが生成されることが確認された。また、これまでカルビンは、2層以上のMWNT内でないと安定性が保てずに生成されないといわれていた。しかしながら、本実施形態では、SWNT内においてもカルビンが生成されることが確認された。
Then, for the CNT sheet of Example 1 having the highest G / D ratio, a peak based on the LCC band appears in the Raman spectrum by discharging with FE, and a peak based on the LCC band does not appear for the other CNT sheets. That was confirmed. This indicates that carbin was formed in the SWNTs of Example 1. For the CNT sheet of Example 1, the LCC band appeared even when the pressure in the chamber was (a) a high vacuum of about 1 × 10 -5 Pa and (b) a low vacuum of about 1 × 10 -1 Pa. As shown in FIG. 3, the peak height (LCC / G ratio) of the LCC band to the peak of the G band resulted in (b) being higher in the sample subjected to the FE discharge at a low vacuum. So far, it has been said that Calvin can be produced by heating DWNT to a high temperature under high vacuum of 10 -5 Pa to 10 -6 Pa order. However, in this test example, it was confirmed that calbin was produced even at about normal pressure of about 1 × 10 −1 Pa. Also, it has been said that, until now, calvin can not be produced without maintaining stability within MWNTs of two or more layers. However, in the present embodiment, it has been confirmed that calbin is also generated in the SWNT.
[試験例2]
[カルビン形成2]
上記で用意した例1のCNTシートについて、(a)約1×10-5Paの真空条件下、上記試験例1と同様に電圧を印加してFEを生じさせ、放電が起こる前にFEを終了させることで、放電なしのFE-CNTシートを用意した。そして用意したFE-CNTシートのうち、図5Aに示す測定位置a~cの3箇所について、上記と同様の条件によってラマン分光法によりラマンスペクトルを得た。測定位置a~cはいずれも、測定用サンプルの端部においてCNTシートの一部がめくれ上がった部分に位置している。本試験例の測定用サンプルでは放電は生じなかったものの、高電界エネルギーの供給によって加熱された不純物(例えばアモルファスカーボン)が溶融・気化し、発生した蒸気等によってシートの表面の一部がめくれ上がったものと考えられる。測定位置aは、その中でも比較的一様で、表面形態が平らな領域である。測定位置bおよびcは、山の尾根または壁のように立ち上がった部位であり、SEM像でbよりもcのほうが明るく見えるため、cのほうがシート表面からより高い場所に位置していると考えられる。得られたラマンスペクトルを図5Bに示した。各測定位置についてのラマンスペクトルは、Gバンドのピーク強度が1となるように、縦軸のピーク強度を調整して示している。 [Test Example 2]
[Carbin formation 2]
With respect to the CNT sheet of Example 1 prepared above, (a) applying a voltage to generate FE in the same manner as in Test Example 1 under a vacuum condition of about 1 × 10 −5 Pa, to generate FE before discharge occurs. By finishing, an FE-CNT sheet without discharge was prepared. Then, among the prepared FE-CNT sheets, a Raman spectrum was obtained by Raman spectroscopy under the same conditions as above for three points at measurement positions a to c shown in FIG. 5A. The measurement positions a to c are all located at the end of the measurement sample at a portion where the CNT sheet is partially turned up. In the measurement sample of this test example, although discharge did not occur, impurities (for example, amorphous carbon) heated by the supply of high electric field energy are melted and vaporized, and part of the surface of the sheet is curled up by the generated vapor and the like. It is thought that The measurement position a is an area which is relatively uniform among them and has a flat surface morphology. Measurement positions b and c are raised up like a mountain ridge or a wall, and c looks brighter than b in the SEM image, so c is considered to be located higher from the sheet surface Be The obtained Raman spectrum is shown in FIG. 5B. The Raman spectrum at each measurement position is shown by adjusting the peak intensity on the vertical axis so that the peak intensity of the G band is 1.
[カルビン形成2]
上記で用意した例1のCNTシートについて、(a)約1×10-5Paの真空条件下、上記試験例1と同様に電圧を印加してFEを生じさせ、放電が起こる前にFEを終了させることで、放電なしのFE-CNTシートを用意した。そして用意したFE-CNTシートのうち、図5Aに示す測定位置a~cの3箇所について、上記と同様の条件によってラマン分光法によりラマンスペクトルを得た。測定位置a~cはいずれも、測定用サンプルの端部においてCNTシートの一部がめくれ上がった部分に位置している。本試験例の測定用サンプルでは放電は生じなかったものの、高電界エネルギーの供給によって加熱された不純物(例えばアモルファスカーボン)が溶融・気化し、発生した蒸気等によってシートの表面の一部がめくれ上がったものと考えられる。測定位置aは、その中でも比較的一様で、表面形態が平らな領域である。測定位置bおよびcは、山の尾根または壁のように立ち上がった部位であり、SEM像でbよりもcのほうが明るく見えるため、cのほうがシート表面からより高い場所に位置していると考えられる。得られたラマンスペクトルを図5Bに示した。各測定位置についてのラマンスペクトルは、Gバンドのピーク強度が1となるように、縦軸のピーク強度を調整して示している。 [Test Example 2]
[Carbin formation 2]
With respect to the CNT sheet of Example 1 prepared above, (a) applying a voltage to generate FE in the same manner as in Test Example 1 under a vacuum condition of about 1 × 10 −5 Pa, to generate FE before discharge occurs. By finishing, an FE-CNT sheet without discharge was prepared. Then, among the prepared FE-CNT sheets, a Raman spectrum was obtained by Raman spectroscopy under the same conditions as above for three points at measurement positions a to c shown in FIG. 5A. The measurement positions a to c are all located at the end of the measurement sample at a portion where the CNT sheet is partially turned up. In the measurement sample of this test example, although discharge did not occur, impurities (for example, amorphous carbon) heated by the supply of high electric field energy are melted and vaporized, and part of the surface of the sheet is curled up by the generated vapor and the like. It is thought that The measurement position a is an area which is relatively uniform among them and has a flat surface morphology. Measurement positions b and c are raised up like a mountain ridge or a wall, and c looks brighter than b in the SEM image, so c is considered to be located higher from the sheet surface Be The obtained Raman spectrum is shown in FIG. 5B. The Raman spectrum at each measurement position is shown by adjusting the peak intensity on the vertical axis so that the peak intensity of the G band is 1.
図5Bに示すように、FEはしているものの放電はしていないCNTシートについても、ラマン分析した3箇所の全てにおいて、LCCバンドに基づくピークが観測されることがわかった。換言すると、カルビンの形成は、必ずしも放電がトリガーではないことがわかった。ただし、LCC/D比の値は、上記試験例1よりも大幅に低くなり、またばらつきも大きく、本試験例ではLCC/D比は0.47~1.2の範囲であった。すなわち、カルビンの形成には必ずしも放電は必要ではないが、放電に伴ってカルビンが形成されやすい状況が作られることがわかった。LCC/D比は、測定位置a、b、cの順に高くなることから、高電界エネルギーの供給によるCNTシートの変動が大きい位置ほどカルビンが形成され易かったといる。3つのラマンスペクトルはLCCバンドに基づくピーク高さの他には目立った相違がなく、例えばG/D比も大きく変わらない。このことから、必ずしも放電に伴うCNTの破壊(欠陥の増加)のみがカルビンの形成に影響を与えているわけではないことが予想される。換言すると、カルビンは、CNTの欠陥部分(崩壊部分)の炭素原子のみを炭素源として形成されているわけではなく、高電界エネルギーの影響による部分があることが予想される。
As shown in FIG. 5B, it was found that a peak based on the LCC band was observed in all of the three Raman-analyzed sites, even for the CNT sheet that had been subjected to FE but not discharged. In other words, it was found that the formation of calvin was not necessarily triggered by the discharge. However, the value of the LCC / D ratio was significantly lower than that of Test Example 1 and the variation was also large. In this test example, the LCC / D ratio was in the range of 0.47 to 1.2. That is, it was found that although the formation of calvin does not necessarily require discharge, a situation is created in which calvin is likely to be formed along with the discharge. Since the LCC / D ratio increases in the order of the measurement positions a, b, and c, it is said that the position where the fluctuation of the CNT sheet due to the supply of the high electric field energy is large causes the formation of carbin. The three Raman spectra have no noticeable difference other than the peak height based on the LCC band, for example, the G / D ratio does not change significantly. From this, it is expected that not only the destruction (increase in defects) of the CNTs associated with the discharge does not necessarily affect the formation of calvin. In other words, Calvin is not formed using only carbon atoms of the defect portion (decay portion) of CNT as a carbon source, and it is expected that there is a portion due to the influence of high electric field energy.
[参考例]
[出発材料]
上記試験例1で用いた例1のCNTシートを、TEM(PHILIPS社製、CM120)にて観察した。TEMの加速電圧は80kVとした。その結果得られたTEM像を図6(A)~(C)に示した。また、図6(A)に示されたCNTについて、図中の四角で囲んだ領域においてCNTに直交する方向にラインスキャンを行い、TEM像の白黒の階調(コントラスト)を数値化して階調プロファイルへ加工するラインスキャン解析を行った。その結果を図6(D)に示した。 [Reference example]
[Starting material]
The CNT sheet of Example 1 used in Test Example 1 was observed by TEM (manufactured by PHILIPS, CM120). The acceleration voltage of TEM was 80 kV. The TEM images obtained as a result are shown in FIGS. 6 (A) to (C). Further, with regard to the CNT shown in FIG. 6A, line scanning is performed in a direction orthogonal to the CNT in the region surrounded by a square in the figure, and the gray scale (contrast) of the TEM image is digitized to obtain a gray scale. We performed line scan analysis to process into a profile. The results are shown in FIG. 6 (D).
[出発材料]
上記試験例1で用いた例1のCNTシートを、TEM(PHILIPS社製、CM120)にて観察した。TEMの加速電圧は80kVとした。その結果得られたTEM像を図6(A)~(C)に示した。また、図6(A)に示されたCNTについて、図中の四角で囲んだ領域においてCNTに直交する方向にラインスキャンを行い、TEM像の白黒の階調(コントラスト)を数値化して階調プロファイルへ加工するラインスキャン解析を行った。その結果を図6(D)に示した。 [Reference example]
[Starting material]
The CNT sheet of Example 1 used in Test Example 1 was observed by TEM (manufactured by PHILIPS, CM120). The acceleration voltage of TEM was 80 kV. The TEM images obtained as a result are shown in FIGS. 6 (A) to (C). Further, with regard to the CNT shown in FIG. 6A, line scanning is performed in a direction orthogonal to the CNT in the region surrounded by a square in the figure, and the gray scale (contrast) of the TEM image is digitized to obtain a gray scale. We performed line scan analysis to process into a profile. The results are shown in FIG. 6 (D).
その結果、図6の(A)に示されたCNTは、一層のCNTからなるSWNTであった。(B)に示されたCNTは、二つの異径のSWNTが入れ子状になったDWNTであった。(C)に示されたCNTは、三つの異径のSWNTが入れ子状になった3層のMWNTであった。これら図6(A)~(C)に示したように、例1のCNTシートは、(A)SWNTを主体(おおよそ70本数%以上)としつつ、一部に(B)DWNTや(C)3層のMWNTを含むことが確認された。
As a result, the CNTs shown in FIG. 6A were SWNTs composed of one layer of CNTs. The CNT shown in (B) was DWNT in which two different diameter SWNTs were nested. The CNT shown in (C) was a three-layer MWNT in which three different diameter SWNTs were nested. As shown in FIGS. 6 (A) to 6 (C), the CNT sheet of Example 1 is mainly (A) mainly composed of SWNTs (approximately 70 several% or more), and partially (B) DWNT or (C) It was confirmed to contain 3 layers of MWNT.
図6(D)のラインスキャン結果は、縦軸がTEM像のコントラストに対応している。縦軸は、上に行くほどTEM像の対応位置が明るいことを意味し、下に行くほどTEM像の対応位置が暗いことを意味する。図6(D)に示されるように、このラインスキャンによって、図6(A)中に矢印で示したSWNTのウォールに対応する暗い位置が深い谷状に、その他の何も観察されない明るい領域が山状(丘状)に表されることが確認できた。SWNTのウォールの間では、階調プロファイルは概ね平坦になることが確認できた。なお、SWNTのTEM像のコントラストの階調プロファイルにおいて、例えば、SWNTのウォール(チューブ壁)に対応する部分の階調と、ウォールに挟まれた中空部のうちの最も明るい階調との差ΔCに対する、中空部の階調の最大ばらつきΔCHの比(ΔCH/ΔC)、換言すると、SWNT全体のTEMコントラスト差に対する中空部のコントラスト変化の割合は、おおよそ0.15程度であった。なお、ウォール部と中空部との階調の差ΔCとしては、最も内側のウォールに対応するコントラストが最も暗い一組の点(図6(D)のa1,b1)を繋ぐ線をベースラインとして、この一組の点(a1,b1)の間の領域であって、ベースラインからの階調プロファイルの距離が最大となる最大コントラストΔCを採用した。また、中空部の階調の最大ばらつきΔCHとしては、一組の点(a1,b1)の間の領域における、ベースラインからの階調プロファイルの距離が最大となる最大コントラストと、ベースラインからの階調プロファイルの距離が最小となる最小コントラストと、の差を採用した。図6(D)の場合、ウォールに対応する一組の点(a1,b1)は、スキャン地点が約1.1nm、約3.8nmの地点である。これらの点を結ぶベースラインからの距離が最も遠い階調プロファイルは、スキャン地点が約1.6nmと約3.3nmの地点(最大コントラストΔCは何れも約8.6目盛)であり、距離が最も近い階調プロファイルは、スキャン地点が約2.75nmの地点(最小コントラストは約7.3目盛)であり、これらの差ΔCHは約1.3目盛であった。これらの情報から、上記比(ΔCH/ΔC)が算出される。なお、CNTのTEM像のコントラストにおいて、チューブ壁に対応する相対的に暗い部分と、中空部に対応する相対的に明るい部分と、の境界は必ずしも明確ではない。そのため、最も内側のチューブ壁に対応する上記一組の点(a1,b1)の間であって、当該一組の点に最近接する明るい部分のピーク(図6(D)については、スキャン地点が約1.6nmと約3.3nmの極大点)に挟まれた領域を、便宜的にCNTの中空部に対応する部分と判断し、ベースラインからの距離が最も近い階調プロファイルはこれら一組の極大点の間で計測される。
In the line scan result of FIG. 6D, the vertical axis corresponds to the contrast of the TEM image. The vertical axis means that the higher the position, the brighter the corresponding position of the TEM image, and the lower the value, the darker the corresponding position of the TEM image. As shown in FIG. 6 (D), this line scan makes the dark position corresponding to the SWNT wall shown by the arrow in FIG. 6 (A) into a deep valley, and other bright areas where nothing is observed. It can be confirmed that it appears in a mountain shape (hill shape). It has been confirmed that the gradation profile is substantially flat between the SWNT walls. In the gradation profile of the contrast of the TEM image of SWNT, for example, the difference ΔC between the gradation of a portion corresponding to the wall of SWNT (tube wall) and the brightest gradation among hollow portions sandwiched by the wall. The ratio (ΔC H / ΔC) of the maximum variation ΔC H of the gradation of the hollow portion to that of, in other words, the ratio of the contrast change of the hollow portion to the TEM contrast difference of the whole SWNT was about 0.15. As a tone difference ΔC between the wall portion and the hollow portion, a line connecting a pair of darkest contrast points (a1 and b1 in FIG. 6D) corresponding to the innermost wall is used as a baseline. The maximum contrast ΔC, which is an area between the pair of points (a1, b1) and in which the distance of the gray scale profile from the base line is maximum, is adopted. In addition, as the maximum variation ΔC H of the gradation of the hollow portion, the maximum contrast at which the distance of the gradation profile from the base line is maximum in the region between the pair of points (a1, b1) The difference between the gray scale and the minimum contrast at which the distance of the gray scale profile is minimized was adopted. In the case of FIG. 6D, a set of points (a1, b1) corresponding to the wall is a point at which the scan point is about 1.1 nm and about 3.8 nm. The gray scale profile with the longest distance from the baseline connecting these points is the point where the scan point is about 1.6 nm and about 3.3 nm (the maximum contrast ΔC is about 8.6 scale each), and the distance is nearest tone profile, scan point is a point of about 2.75 nm (minimum contrast of about 7.3 scale), these differences [Delta] C H was about 1.3 scale. From these pieces of information, the ratio (ΔC H / ΔC) is calculated. In the contrast of the TEM image of CNT, the boundary between the relatively dark portion corresponding to the tube wall and the relatively bright portion corresponding to the hollow portion is not necessarily clear. Therefore, the peak of the bright part between the set of points (a1, b1) corresponding to the innermost tube wall and closest to the set of points (see FIG. 6D, the scan point is The region between maximum points of about 1.6 nm and about 3.3 nm) is conveniently determined to be the portion corresponding to the hollow portion of the CNT, and the gradation profile closest to the baseline is one set of these Measured between the maxima of
[試験例3]
[カルビン形成3、カルビン含有複合材料:SWNT]
次いで、例1のCNTシートに対し、高周波電圧によって発生させたプラズマを作用させた後に、約1×10-5Paの真空条件下で上記試験例1と同様に電圧を印加してFE放電を生じさせた。より具体的には、CNTシートに対して所定の開口を備えるマスクを付した後、反応性イオンエッチング(RIE)を施すことで、マスクの開口近傍のCNTシートに対してプラズマを作用させた。RIEの条件は、100Paの減圧雰囲気下、酸素(O2)およびアルゴン(Ar)とからなる反応性ガスに200Wの高周波電界を印加することで反応性ガスを活性化し、これにより生じたラジカルイオンをエッチング用粒子としてCNTシート表面をエッチングした。上記RIE条件によると、エッチングによりマスク開口部のCNTシートは全て消失し、マスクの開口近傍のCNTシートに対して反応性プラズマを作用させることができる。そしてRIE後のCNTシートについて、試験例1と同様のFE放電を生じさせた。 [Test Example 3]
[Carbin formation 3, Calvin containing composites: SWNT]
Then, after causing a plasma generated by a high frequency voltage to act on the CNT sheet of Example 1, under the vacuum condition of about 1 × 10 -5 Pa, a voltage is applied similarly to the above-mentioned Test example 1 to perform FE discharge. It was generated. More specifically, after applying a mask having a predetermined opening to the CNT sheet, plasma was applied to the CNT sheet in the vicinity of the opening of the mask by performing reactive ion etching (RIE). The conditions of the RIE are activating a reactive gas by applying a high frequency electric field of 200 W to a reactive gas consisting of oxygen (O 2 ) and argon (Ar) in a reduced pressure atmosphere of 100 Pa, and radical ions generated thereby The surface of the CNT sheet was etched using the particles as etching particles. According to the above RIE conditions, all the CNT sheets in the mask opening disappear by etching, and reactive plasma can be applied to the CNT sheet in the vicinity of the opening of the mask. Then, with respect to the CNT sheet after RIE, the same FE discharge as in Test Example 1 was caused.
[カルビン形成3、カルビン含有複合材料:SWNT]
次いで、例1のCNTシートに対し、高周波電圧によって発生させたプラズマを作用させた後に、約1×10-5Paの真空条件下で上記試験例1と同様に電圧を印加してFE放電を生じさせた。より具体的には、CNTシートに対して所定の開口を備えるマスクを付した後、反応性イオンエッチング(RIE)を施すことで、マスクの開口近傍のCNTシートに対してプラズマを作用させた。RIEの条件は、100Paの減圧雰囲気下、酸素(O2)およびアルゴン(Ar)とからなる反応性ガスに200Wの高周波電界を印加することで反応性ガスを活性化し、これにより生じたラジカルイオンをエッチング用粒子としてCNTシート表面をエッチングした。上記RIE条件によると、エッチングによりマスク開口部のCNTシートは全て消失し、マスクの開口近傍のCNTシートに対して反応性プラズマを作用させることができる。そしてRIE後のCNTシートについて、試験例1と同様のFE放電を生じさせた。 [Test Example 3]
[Carbin formation 3, Calvin containing composites: SWNT]
Then, after causing a plasma generated by a high frequency voltage to act on the CNT sheet of Example 1, under the vacuum condition of about 1 × 10 -5 Pa, a voltage is applied similarly to the above-mentioned Test example 1 to perform FE discharge. It was generated. More specifically, after applying a mask having a predetermined opening to the CNT sheet, plasma was applied to the CNT sheet in the vicinity of the opening of the mask by performing reactive ion etching (RIE). The conditions of the RIE are activating a reactive gas by applying a high frequency electric field of 200 W to a reactive gas consisting of oxygen (O 2 ) and argon (Ar) in a reduced pressure atmosphere of 100 Pa, and radical ions generated thereby The surface of the CNT sheet was etched using the particles as etching particles. According to the above RIE conditions, all the CNT sheets in the mask opening disappear by etching, and reactive plasma can be applied to the CNT sheet in the vicinity of the opening of the mask. Then, with respect to the CNT sheet after RIE, the same FE discharge as in Test Example 1 was caused.
RIEおよびFE放電後のCNTシート中のSWNTについてTEM観察を行い、その結果を図7A、7Bに示した。また、図7A、7B中にそれぞれ四角で示した領域においてSWNTと直交する方向でラインスキャン解析を行い、その結果を図8(A)(B)にそれぞれ示した。
TEM observation was performed on SWNTs in the CNT sheet after RIE and FE discharge, and the results are shown in FIGS. 7A and 7B. Further, line scan analysis was performed in the direction orthogonal to the SWNT in the regions shown by squares in FIGS. 7A and 7B, and the results are shown in FIGS. 8A and 8B.
図7AのSWNTを観察すると、矢印a1、b1で示したチューブ壁の中心に、うっすらとではあるが、チューブ軸に沿って筋状に延びる濃いコントラストが確認された。図8(A)の階調プロファイルを見ると、一対のチューブ壁に対応する位置a1、b1の真ん中に、一つの谷が形成されていることが確認できた。階調プロファイルから、SWNTの直径は約1.9nm程度であり、真ん中の谷はSWNTのほぼ中心(軸)に位置していることが確認された。また、図7BのSWNTについては、矢印a2、b2で示した一対のチューブ壁の中心に、軸に沿って断続的に濃いコントラストが確認された。そして図8(B)の階調プロファイルにおいても、チューブ壁に対応する位置a2、b2の真ん中に、一つの谷が形成されていることが確認できた。階調プロファイルから、SWNTの直径は約1.4nm程度であり、真ん中の谷はSWNTのほぼ中心(軸)に位置していることが確認された。TEMのコントラストから、SWNTの中心に存在するものは軽元素からなる物質である。またそのコントラストは、SWNTのチューブ壁よりも十分に細い。以上の結果を総合すると、SWNTの中心に、線状カーボン同素体であるカルビンが形成されていると結論づけることができる。カルビンは、これまで二層以上のMWNT内にしか安定に形成されないといわれてきた。しかしながら、ここに開示されるカルビン含有複合材料においては、SWNTの内部にカルビンが形成されることが初めて確認された。
When the SWNT in FIG. 7A was observed, a faint contrast was observed at the center of the tube wall indicated by arrows a1 and b1, but extending slightly along the tube axis. Looking at the gray scale profile of FIG. 8A, it can be confirmed that one valley is formed in the middle of the positions a1 and b1 corresponding to the pair of tube walls. From the gray scale profile, it was confirmed that the diameter of the SWNT was about 1.9 nm, and the valley in the middle was located approximately at the center (axis) of the SWNT. Further, in the SWNT in FIG. 7B, a dark contrast was intermittently confirmed along the axis at the center of the pair of tube walls indicated by arrows a2 and b2. And also in the gradation profile of FIG. 8 (B), it has been confirmed that one valley is formed in the middle of the positions a2 and b2 corresponding to the tube wall. From the gray scale profile, it was confirmed that the diameter of the SWNT was about 1.4 nm, and the valley in the middle was located approximately at the center (axis) of the SWNT. From the contrast of TEM, what exists at the center of SWNT is a substance consisting of light elements. Also the contrast is much thinner than the tube wall of SWNT. From the above results, it can be concluded that a linear carbon allotrope, carbin, is formed at the center of SWNT. Calvin has been said to be stably formed only in two or more MWNTs. However, in the carbyne-containing composite material disclosed herein, it was confirmed for the first time that carbyne is formed inside the SWNT.
なお、図8の(A)を基に、SWNT全体のTEMコントラスト差に対する中空部のコントラスト変化として算出される、比(ΔCH/ΔC)は約0.34であり、(B)を基に算出される比(ΔCH/ΔC)は約0.35であった。カルビンの存在により、例えば、TEM像におけるCNTの中空部のコントラストは明らかに暗く変化することがわかる。
Note that the ratio (ΔC H / ΔC) calculated as the contrast change of the hollow portion to the TEM contrast difference of the whole SWNT based on (A) in FIG. 8 is about 0.34, and based on (B) The calculated ratio (ΔC H / ΔC) was about 0.35. It can be seen that, due to the presence of Calvin, for example, the contrast of the hollow portion of the CNT in the TEM image changes in a distinctly dark manner.
[カルビン含有複合材料:DWNT]
用意したRIEおよびFE放電後のCNTシート中に見られた2つのDWNTについて、同様にTEM観察を行い、その結果を図9(A)(B)に示した。また、図9(A)(B)中にそれぞれ四角で示した領域においてDWNTと直交する方向でラインスキャン解析を行い、その結果を図10(A)(B)にそれぞれ示した。 [Carbin Containing Composite Material: DWNT]
TEM observation was similarly performed about two DWNTs seen in the prepared CNT sheet after RIE and FE discharge, The result was shown to FIG. 9 (A) (B). Further, line scan analysis was performed in the direction orthogonal to the DWNT in the regions shown by squares in FIGS. 9A and 9B, and the results are shown in FIGS. 10A and 10B.
用意したRIEおよびFE放電後のCNTシート中に見られた2つのDWNTについて、同様にTEM観察を行い、その結果を図9(A)(B)に示した。また、図9(A)(B)中にそれぞれ四角で示した領域においてDWNTと直交する方向でラインスキャン解析を行い、その結果を図10(A)(B)にそれぞれ示した。 [Carbin Containing Composite Material: DWNT]
TEM observation was similarly performed about two DWNTs seen in the prepared CNT sheet after RIE and FE discharge, The result was shown to FIG. 9 (A) (B). Further, line scan analysis was performed in the direction orthogonal to the DWNT in the regions shown by squares in FIGS. 9A and 9B, and the results are shown in FIGS. 10A and 10B.
図9(A)では、DWNTの内側のチューブ壁を矢印a1、b1で示した。図9(A)を観察すると、やはりうっすらとではあるが、チューブ壁の中心付近に筋状に延びる濃いコントラストが確認された。図10(A)のDWNTの階調プロファイルでは、2層のCNTに対応する二重のチューブ壁が、二対の深い谷として明瞭に観察された。そして矢印a1、b1で示した内側の一対のチューブ壁の中央付近に、一つの谷が形成されていることが確認できた。階調プロファイルから、DWNTの内側のチューブの直径は約1.2nm程度であり、真ん中の谷はそのほぼ中心に位置していることが確認された。また、図9(B)のDWNTについては、矢印a2、b2で示した内側の一対のチューブ壁の中心に、軸方向に沿って断続的に濃いコントラストが確認された。そして図10(B)の階調プロファイルにおいても、内側のチューブ壁に対応する位置a2、b2の真ん中に、一つの谷が形成されていることが確認できた。階調プロファイルから、DWNTの内側のチューブの直径は約1.4nm程度であり、真ん中の谷はその中心からややずれた位置に現れたことが確認された。TEMのコントラストから、DWNTのチューブ内に存在する物質は軽元素から構成されていると考えられる。またそのコントラストは、TEM像の同視野に観察されるSWNTのチューブ壁よりも十分に細い。以上の結果を総合すると、ここに開示されるカルビン含有複合材料においては、DWNTのチューブ内にも、線状カーボン同素体であるカルビンが形成されていると結論づけることができる。
In FIG. 9A, the inner tube wall of DWNT is indicated by arrows a1 and b1. When observing FIG. 9 (A), a dark contrast extending streaky near the center of the tube wall was confirmed though it was faint. In the gradation profile of DWNT in FIG. 10 (A), double tube walls corresponding to two layers of CNTs were clearly observed as two pairs of deep valleys. Then, it was confirmed that one valley was formed in the vicinity of the center of the inner pair of tube walls indicated by arrows a1 and b1. From the gray scale profile, it was confirmed that the diameter of the inner tube of DWNT was about 1.2 nm, and the middle valley was located approximately at the center. In the DWNT of FIG. 9B, dark contrast was intermittently confirmed along the axial direction at the center of the inner pair of tube walls indicated by arrows a2 and b2. And also in the gradation profile of FIG. 10 (B), it has been confirmed that one valley is formed in the middle of the positions a2 and b2 corresponding to the inner tube wall. From the tone profile, it was confirmed that the diameter of the inner tube of DWNT was about 1.4 nm, and the valley in the middle appeared at a position slightly offset from the center. From the contrast of the TEM, it is considered that the substance present in the tube of DWNT is composed of light elements. Also, the contrast is sufficiently thinner than the SWNT tube wall observed in the same field of the TEM image. From the above results, it can be concluded that, in the carbyne-containing composite material disclosed herein, carbyne which is a linear carbon allotrope is also formed in the tube of DWNT.
なお、図10の(A)を基に、DWNT全体のTEMコントラスト差に対する中空部のコントラスト変化として算出される、比(ΔCH/ΔC)は約0.19であり、(B)を基に算出される比(ΔCH/ΔC)は約0.17であった。DWNTの二重壁に起因してウォールのコントラストが濃く観察されたことにより、比(ΔCH/ΔC)はやや小さめの値となったが、カルビンの存在により、例えば、TEM像におけるCNTの中空部のコントラスト比(ΔCH/ΔC)は例えば0.16以上、典型的には0.17以上となるといえる。
Note that the ratio (ΔC H / ΔC) calculated as the contrast change of the hollow portion to the TEM contrast difference of the whole DWNT based on (A) of FIG. 10 is about 0.19, and based on (B) The calculated ratio (ΔC H / ΔC) was about 0.17. Although the ratio (ΔC H / ΔC) became a rather small value due to the fact that the wall contrast was observed to be high due to the double wall of DWNT, for example, the hollow of the CNT in the TEM image due to the presence of Calvin The contrast ratio (ΔC H / ΔC) of the portion is, for example, 0.16 or more, typically 0.17 or more.
[カルビン含有複合材料:MWNT]
さらに、用意したRIEおよびFE放電後のCNTシート中に見られた三層のMWNTについて、同様にTEM観察した結果を図11(A)に、また、図11(B)中に四角で示した領域においてCNTと直交する方向でラインスキャン解析を行った結果を図11(B)にそれぞれ示した。
図11(A)には、三層CNTが示されており、最も内側のチューブ壁を矢印a1、b1で示した。図11(A)には、三対のチューブ壁の真ん中に、筋状に延びる濃いコントラストが明瞭に確認された。図11(B)のMWNTの階調プロファイルでは、三層のCNTに対応する三重のチューブ壁が、概ね三対の谷として確認できた。そして矢印a1、b1で示した最も内側の一対のチューブ壁の中央付近に、一つの谷が深く形成されていることが確認できた。階調プロファイルから、三層CNTの内側のチューブの直径は約0.8nm程度であり、真ん中の谷はそのほぼ中心に位置していることが確認された。以上の結果から、ここに開示されるカルビン含有複合材料においては、三層CNTのチューブ内にも、線状カーボン同素体であるカルビンが形成されるといえる。なお、図11(B)を基に算出される比(ΔCH/ΔC)は約0.63であった。 [Carbin Containing Composite Material: MWNT]
Furthermore, the results of TEM observation of the three-layered MWNT found in the prepared CNT sheet after RIE and FE discharge are shown by squares in FIG. 11 (A) and in FIG. 11 (B). The results of line scan analysis in the direction perpendicular to the CNTs in the region are shown in FIG.
A three-layered CNT is shown in FIG. 11 (A), and the innermost tube wall is shown by arrows a1 and b1. In FIG. 11 (A), the streaky dark contrast was clearly confirmed in the middle of the three pairs of tube walls. In the gradation profile of MWNT in FIG. 11 (B), the triple tube wall corresponding to the three-layered CNT could be confirmed as roughly three pairs of valleys. And it has confirmed that one valley was deeply formed near the center of a pair of innermost tube walls shown by arrow a1 and b1. From the gray scale profile, it was confirmed that the diameter of the inner tube of the three-layer CNT was about 0.8 nm, and the middle valley was located approximately at the center. From the above results, it can be said that, in the carbyne-containing composite material disclosed herein, carbyne which is a linear carbon allotrope is formed also in the tube of the three-layered CNT. Note that the ratio (ΔC H / ΔC) calculated based on FIG. 11 (B) was about 0.63.
さらに、用意したRIEおよびFE放電後のCNTシート中に見られた三層のMWNTについて、同様にTEM観察した結果を図11(A)に、また、図11(B)中に四角で示した領域においてCNTと直交する方向でラインスキャン解析を行った結果を図11(B)にそれぞれ示した。
図11(A)には、三層CNTが示されており、最も内側のチューブ壁を矢印a1、b1で示した。図11(A)には、三対のチューブ壁の真ん中に、筋状に延びる濃いコントラストが明瞭に確認された。図11(B)のMWNTの階調プロファイルでは、三層のCNTに対応する三重のチューブ壁が、概ね三対の谷として確認できた。そして矢印a1、b1で示した最も内側の一対のチューブ壁の中央付近に、一つの谷が深く形成されていることが確認できた。階調プロファイルから、三層CNTの内側のチューブの直径は約0.8nm程度であり、真ん中の谷はそのほぼ中心に位置していることが確認された。以上の結果から、ここに開示されるカルビン含有複合材料においては、三層CNTのチューブ内にも、線状カーボン同素体であるカルビンが形成されるといえる。なお、図11(B)を基に算出される比(ΔCH/ΔC)は約0.63であった。 [Carbin Containing Composite Material: MWNT]
Furthermore, the results of TEM observation of the three-layered MWNT found in the prepared CNT sheet after RIE and FE discharge are shown by squares in FIG. 11 (A) and in FIG. 11 (B). The results of line scan analysis in the direction perpendicular to the CNTs in the region are shown in FIG.
A three-layered CNT is shown in FIG. 11 (A), and the innermost tube wall is shown by arrows a1 and b1. In FIG. 11 (A), the streaky dark contrast was clearly confirmed in the middle of the three pairs of tube walls. In the gradation profile of MWNT in FIG. 11 (B), the triple tube wall corresponding to the three-layered CNT could be confirmed as roughly three pairs of valleys. And it has confirmed that one valley was deeply formed near the center of a pair of innermost tube walls shown by arrow a1 and b1. From the gray scale profile, it was confirmed that the diameter of the inner tube of the three-layer CNT was about 0.8 nm, and the middle valley was located approximately at the center. From the above results, it can be said that, in the carbyne-containing composite material disclosed herein, carbyne which is a linear carbon allotrope is formed also in the tube of the three-layered CNT. Note that the ratio (ΔC H / ΔC) calculated based on FIG. 11 (B) was about 0.63.
[カルビン含有複合材料:複数のカルビン]
さらに、RIEおよびFE放電後のCNTシート中に見られたDWNTについて、同様にTEM観察した結果を図12(A)に示した。また、図12(A)中に四角で示した領域においてCNTと直交する方向でラインスキャン解析を行った結果を図12(B)に示した。
図12(A)には、折れ曲がったDWNTが示されており、内側の一対のチューブ壁を矢印a1、b1で示した。このDWNTでは、内側の一対のチューブ壁の間に、筋状に明るいコントラストが三本ほど確認できた。そこで図12(B)の階調プロファイルを確認したところ、内側のチューブ壁に対応する位置a1、b1の間に、二つの谷が形成されていることが確認できた。すなわち、TEM像における明るい三本のコントラストは、2本の暗いコントラストの形成により現れたものと考えられる。階調プロファイルから、DWNTの内側のチューブの直径は約1.5nm程度であり、その内側の二つの谷は間隔が約0.43nmで、内側チューブのほぼ中央の位置に現れていることが確認された。TEMのコントラストから、DWNTのチューブ内に存在する物質は軽元素から構成されていると考えられる。またそのコントラストは、TEM像の同視野に観察されるSWNTのチューブ壁よりも十分に細い。これらのことから、ここに開示されるカルビン含有複合材料においては、CNT内に、線状カーボン同素体であるカルビンが複数安定に形成され得ることが確認された。また、この結果から、カルビンの配置が最も内側のCNTの中心からずれている場合は、TEMでは観察され難いものの、CNT内に複数のカルビンが形成されていることが予想される。 [Carbin containing composites: multiple calvins]
Further, FIG. 12 (A) shows the result of similar TEM observation of DWNT found in the CNT sheet after RIE and FE discharge. Moreover, the result of having performed line scan analysis in the direction orthogonal to CNT in the area | region shown with the square in FIG. 12 (A) was shown in FIG. 12 (B).
The bent DWNT is shown in FIG. 12 (A), and the inner pair of tube walls are shown by arrows a1, b1. In this DWNT, about three streaks of bright contrast could be confirmed between the inner pair of tube walls. Then, when the gradation profile of FIG. 12B was confirmed, it could be confirmed that two valleys were formed between the positions a1 and b1 corresponding to the inner tube wall. That is, it is considered that the bright three contrasts in the TEM image appear due to the formation of two dark contrasts. From the tone profile, it is confirmed that the diameter of the inner tube of DWNT is about 1.5 nm, and the inner two valleys appear at the approximate center position of the inner tube with a distance of about 0.43 nm. It was done. From the contrast of the TEM, it is considered that the substance present in the tube of DWNT is composed of light elements. Also, the contrast is sufficiently thinner than the SWNT tube wall observed in the same field of the TEM image. From these facts, it has been confirmed that, in the carbin-containing composite material disclosed herein, a plurality of carbines which are linear carbon allotropes can be stably formed in the CNT. Further, from this result, it is expected that a plurality of calvins are formed in the CNT, although it is difficult to be observed by the TEM when the arrangement of the calvins is deviated from the center of the innermost CNT.
さらに、RIEおよびFE放電後のCNTシート中に見られたDWNTについて、同様にTEM観察した結果を図12(A)に示した。また、図12(A)中に四角で示した領域においてCNTと直交する方向でラインスキャン解析を行った結果を図12(B)に示した。
図12(A)には、折れ曲がったDWNTが示されており、内側の一対のチューブ壁を矢印a1、b1で示した。このDWNTでは、内側の一対のチューブ壁の間に、筋状に明るいコントラストが三本ほど確認できた。そこで図12(B)の階調プロファイルを確認したところ、内側のチューブ壁に対応する位置a1、b1の間に、二つの谷が形成されていることが確認できた。すなわち、TEM像における明るい三本のコントラストは、2本の暗いコントラストの形成により現れたものと考えられる。階調プロファイルから、DWNTの内側のチューブの直径は約1.5nm程度であり、その内側の二つの谷は間隔が約0.43nmで、内側チューブのほぼ中央の位置に現れていることが確認された。TEMのコントラストから、DWNTのチューブ内に存在する物質は軽元素から構成されていると考えられる。またそのコントラストは、TEM像の同視野に観察されるSWNTのチューブ壁よりも十分に細い。これらのことから、ここに開示されるカルビン含有複合材料においては、CNT内に、線状カーボン同素体であるカルビンが複数安定に形成され得ることが確認された。また、この結果から、カルビンの配置が最も内側のCNTの中心からずれている場合は、TEMでは観察され難いものの、CNT内に複数のカルビンが形成されていることが予想される。 [Carbin containing composites: multiple calvins]
Further, FIG. 12 (A) shows the result of similar TEM observation of DWNT found in the CNT sheet after RIE and FE discharge. Moreover, the result of having performed line scan analysis in the direction orthogonal to CNT in the area | region shown with the square in FIG. 12 (A) was shown in FIG. 12 (B).
The bent DWNT is shown in FIG. 12 (A), and the inner pair of tube walls are shown by arrows a1, b1. In this DWNT, about three streaks of bright contrast could be confirmed between the inner pair of tube walls. Then, when the gradation profile of FIG. 12B was confirmed, it could be confirmed that two valleys were formed between the positions a1 and b1 corresponding to the inner tube wall. That is, it is considered that the bright three contrasts in the TEM image appear due to the formation of two dark contrasts. From the tone profile, it is confirmed that the diameter of the inner tube of DWNT is about 1.5 nm, and the inner two valleys appear at the approximate center position of the inner tube with a distance of about 0.43 nm. It was done. From the contrast of the TEM, it is considered that the substance present in the tube of DWNT is composed of light elements. Also, the contrast is sufficiently thinner than the SWNT tube wall observed in the same field of the TEM image. From these facts, it has been confirmed that, in the carbin-containing composite material disclosed herein, a plurality of carbines which are linear carbon allotropes can be stably formed in the CNT. Further, from this result, it is expected that a plurality of calvins are formed in the CNT, although it is difficult to be observed by the TEM when the arrangement of the calvins is deviated from the center of the innermost CNT.
以上、本発明の一実施形態に係るカルビン含有複合材料について説明したが、本発明に係るカルビン含有複合材料は、上述した実施形態に限定されず、種々の変更が可能である。
As mentioned above, although the carbyne content composite material concerning one embodiment of the present invention was explained, the carbyne content composite material concerning the present invention is not limited to the embodiment mentioned above, and various change is possible.
Claims (7)
- 複数のカーボンナノチューブが集合されてなるカーボンナノチューブ集合体と、
カルビンと、
を含み、
前記カルビンは、前記複数のカーボンナノチューブの30%以上に充填されている、カルビン含有複合材料。 An aggregate of carbon nanotubes in which a plurality of carbon nanotubes are assembled;
With Calvin,
Including
A carbyne-containing composite material, wherein the carbyne is filled in 30% or more of the plurality of carbon nanotubes. - ラマン分光分析によって測定されるラマンスペクトルにおいて、
Gバンドに基づくピークの強度を1としたときの、
LCCバンドに基づくピークの相対強度が0.4以上である、請求項1に記載のカルビン含有複合材料。 In the Raman spectrum measured by Raman spectroscopy:
Assuming that the peak intensity based on the G band is 1,
The carbine containing composite material of Claim 1 whose relative intensity of the peak based on LCC band is 0.4 or more. - 前記カルビンを内包する前記カーボンナノチューブは、単層カーボンナノチューブを含む、請求項1または2に記載のカルビン含有複合材料。 The carbyne content composite material according to claim 1 or 2 in which said carbon nanotube which includes said carbine contains a single-walled carbon nanotube.
- 前記カルビンを内包する前記カーボンナノチューブは、単層カーボンナノチューブを10本数%以上含む、請求項3に記載のカルビン含有複合材料。 The calvin containing composite material according to claim 3 in which said carbon nanotube which encloses said calvin contains ten single-walled carbon nanotubes several 10% or more.
- 前記カーボンナノチューブの少なくとも一部は、当該カーボンナノチューブの軸方向に直交する方向において2以上の前記カルビンを内包する、請求項1~4のいずれか1項に記載のカルビン含有複合材料。 The carbyne-containing composite material according to any one of claims 1 to 4, wherein at least a part of the carbon nanotubes includes two or more carbines in a direction orthogonal to the axial direction of the carbon nanotubes.
- 請求項1~5のいずれか1項に記載のカルビン含有複合材料を備える物品。 An article comprising the carbyne-containing composite material according to any one of claims 1 to 5.
- 複数のカーボンナノチューブが集合されてなり、G/D比が25以上のカーボンナノチューブ集合体を用意すること、
前記カーボンナノチューブ集合体に、少なくとも電界電子放出が生じる電圧を印加すること、
を含む、カルビン含有複合材料の製造方法。 Preparing a carbon nanotube aggregate in which a plurality of carbon nanotubes are assembled and the G / D ratio is 25 or more,
Applying a voltage at which at least electric field electron emission occurs to the carbon nanotube aggregate;
A method of producing a carbin containing composite material, comprising:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019537660A JP7168570B2 (en) | 2017-08-25 | 2018-08-22 | Carbyne-containing composite material |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017-162599 | 2017-08-25 | ||
JP2017162599 | 2017-08-25 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019039516A1 true WO2019039516A1 (en) | 2019-02-28 |
Family
ID=65439095
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/031025 WO2019039516A1 (en) | 2017-08-25 | 2018-08-22 | Carbyne-containing composite material |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP7168570B2 (en) |
WO (1) | WO2019039516A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111470492A (en) * | 2019-11-21 | 2020-07-31 | 中山大学 | A kind of preparation method of one-dimensional carbon chain |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008029695A (en) | 2006-07-31 | 2008-02-14 | Shimadzu Corp | Ultrasonic diagnostic equipment |
-
2018
- 2018-08-22 JP JP2019537660A patent/JP7168570B2/en active Active
- 2018-08-22 WO PCT/JP2018/031025 patent/WO2019039516A1/en active Application Filing
Non-Patent Citations (6)
Title |
---|
ANDRADE, N. F. ET AL.: "Linear carbon chains encapsulated in multiwall carbon nanotubes: Resonance Raman spectroscopy and transmission electron microscopy studies", CARBON, vol. 90, 8 April 2015 (2015-04-08), pages 172 - 180, XP029169386, ISSN: 0008-6223, DOI: doi:10.1016/j.carbon.2015.04.001 * |
KANQ CHEON-SOO ET AL.: "Linear carbon chains inside multi-walled carbon nanotubes: Growth mechanism, thermal stability and electrical properties", CARBON, vol. 107, 30 May 2016 (2016-05-30), pages 217 - 224, XP029644347, ISSN: 0008-6223, DOI: doi:10.1016/j.carbon.2016.05.069 * |
MALARD, L. M. ET AL.: "Resonance Raman study of polyynes encapsulated in single-wall carbon nanotubes", PHYSICAL REVIEW B, vol. 76, no. 23, 233412, 2007, XP055578661, ISSN: 1098-0121 * |
SCUDERI, V ET AL.: "Direct observation of the formation of linear C chain/carbon nanotube hybrid systems", CARBON, vol. 47, 10 April 2009 (2009-04-10), pages 2134 - 2137, XP026104624, ISSN: 0008-6223, DOI: doi:10.1016/j.carbon.2009.04.010 * |
SHI, LEI ET AL.: "Carbon nanotubes from enhanced direct injection pyrolytic synthesis as templates for long linear carbon chain formation", PHYSICA STATUS SOLIDI B, vol. 250, no. 12, 12 November 2013 (2013-11-12), pages 2611 - 2615, XP055578631, ISSN: 0370-1972 * |
ZHAO, C. ET AL.: "Growth of Linear Carbon Chains inside Thin Double-Wall Carbon Nanotubes", THE JOURNAL OF PHYSICAL CHEMISTRY C, vol. 115, no. 27, 7 June 2011 (2011-06-07), pages 13166 - 13170, XP055578655, ISSN: 1932-7447 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111470492A (en) * | 2019-11-21 | 2020-07-31 | 中山大学 | A kind of preparation method of one-dimensional carbon chain |
Also Published As
Publication number | Publication date |
---|---|
JPWO2019039516A1 (en) | 2020-10-15 |
JP7168570B2 (en) | 2022-11-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Zhang et al. | Controllable synthesis of carbon nanomaterials by direct current arc discharge from the inner wall of the chamber | |
Sankaran et al. | Self-organized multi-layered graphene–boron-doped diamond hybrid nanowalls for high-performance electron emission devices | |
Dillon et al. | Employing Raman spectroscopy to qualitatively evaluate the purity of carbon single-wall nanotube materials | |
Behler et al. | Effect of thermal treatment on the structure of multi-walled carbon nanotubes | |
Ando et al. | Synthesis of carbon nanotubes by arc-discharge method | |
Kim et al. | Fabrication of high‐purity, double‐walled carbon nanotube buckypaper | |
US8858909B2 (en) | Carbon nanotube and method for producing same | |
Špitalský et al. | The effect of oxidation treatment on the properties of multi-walled carbon nanotube thin films | |
JP3657574B2 (en) | Manufacturing method of carbon nanowire | |
KR100935867B1 (en) | Method for producing a multi-layered carbon nanotube radial aggregate | |
JP2019099989A (en) | Production method of carbon nano structure, and carbon nano structure | |
Kaufmann Jr et al. | Production of Multi-wall Carbon Nanotubes Starting from a Commercial Graphite Pencil using an Electric Arc Discharge in Aqueous Medium. | |
Sahu et al. | Carbon allotropes: Fundamental, synthesis, characterization, and properties functionalization | |
Laurent et al. | Mesoporous binder-free monoliths of few-walled carbon nanotubes by spark plasma sintering | |
Zanin et al. | Field emission properties of the graphenated carbon nanotube electrode | |
JP7168570B2 (en) | Carbyne-containing composite material | |
US20090142251A1 (en) | Method for treating carbon nanotubes, carbon nanotubes and carbon nanotube devices | |
JP4761346B2 (en) | Double-walled carbon nanotube-containing composition | |
Ryu et al. | Synthesis and Optimization of MWCNTs on Co‐Ni/MgO by Thermal CVD | |
Hayashi et al. | Corn-shape carbon nanofibers with dense graphite synthesized by microwave plasma-enhanced chemical vapor deposition | |
Sreekanth et al. | Field emission from carbon nanotube systems: material properties to device applications | |
Tsai et al. | Fabrication of flat capped carbon nanotubes using an arc-discharge method assisted with a Sm-Co catalyst | |
Harris | Ultrathin graphitic structures and carbon nanotubes in a purified synthetic graphite | |
Tripathi et al. | Graphene nanosheets assisted carbon hollow cylinder for high-performance field emission applications | |
Lin et al. | Characteristic of field emission from carbon nanotubes synthesized from different sources |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18847316 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2019537660 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18847316 Country of ref document: EP Kind code of ref document: A1 |