WO2019039390A1 - Juvenile myelomonocytic leukemia therapeutic agent - Google Patents

Juvenile myelomonocytic leukemia therapeutic agent Download PDF

Info

Publication number
WO2019039390A1
WO2019039390A1 PCT/JP2018/030471 JP2018030471W WO2019039390A1 WO 2019039390 A1 WO2019039390 A1 WO 2019039390A1 JP 2018030471 W JP2018030471 W JP 2018030471W WO 2019039390 A1 WO2019039390 A1 WO 2019039390A1
Authority
WO
WIPO (PCT)
Prior art keywords
alk
tyrosine kinase
myelomonocytic leukemia
juvenile myelomonocytic
fusion gene
Prior art date
Application number
PCT/JP2018/030471
Other languages
French (fr)
Japanese (ja)
Inventor
秀城 村松
友介 奥野
典寛 村上
Original Assignee
国立大学法人名古屋大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人名古屋大学 filed Critical 国立大学法人名古屋大学
Priority to JP2019537597A priority Critical patent/JPWO2019039390A1/en
Publication of WO2019039390A1 publication Critical patent/WO2019039390A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/44Non condensed pyridines; Hydrogenated derivatives thereof
    • A61K31/445Non condensed piperidines, e.g. piperocaine
    • A61K31/4523Non condensed piperidines, e.g. piperocaine containing further heterocyclic ring systems
    • A61K31/4545Non condensed piperidines, e.g. piperocaine containing further heterocyclic ring systems containing a six-membered ring with nitrogen as a ring hetero atom, e.g. pipamperone, anabasine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • A61K31/506Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim not condensed and containing further heterocyclic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • A61K31/519Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim ortho- or peri-condensed with heterocyclic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/535Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with at least one nitrogen and one oxygen as the ring hetero atoms, e.g. 1,2-oxazines
    • A61K31/53751,4-Oxazines, e.g. morpholine
    • A61K31/53771,4-Oxazines, e.g. morpholine not condensed and containing further heterocyclic rings, e.g. timolol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/02Antineoplastic agents specific for leukemia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/02Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/15Medicinal preparations ; Physical properties thereof, e.g. dissolubility
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids

Definitions

  • the present invention relates to means useful for the treatment, diagnosis and the like of juvenile myelomonocytic leukemia (JMML). More specifically, it relates to a JMML therapeutic agent, a novel fusion gene involved in JMML, and its use.
  • JMML juvenile myelomonocytic leukemia
  • Juvenile myelomonocytic leukemia is a rare myelodysplasia of the infancy and childhood characterized by proliferation of myelomonocytic cells and hypersensitivity to granulocyte-macrophage colony stimulating factor (GM-CSF). / Myeloproliferative disease (MDS / MPD) (Non-patent Document 1). More than 80% of JMML cases are characterized as having mutually exclusive somatic / germline mutations in classical RAS pathway related genes such as PTPN11, NF1, NRAS, KRAS, CBL (non-patent literature) 2, 3).
  • Second hit mutations of SETBP 1 (Non-patent documents 4 and 5) and other genes (Non-patent documents 6 and 7), gene expression profiles (Non-patent documents 8 and 9), and methylation profiles of promoter regions of several genes (Non-patent documents 10 and 11) are identified as prognostic factors.
  • SETBP 1 Non-patent documents 4 and 5
  • other genes Non-patent documents 6 and 7
  • gene expression profiles Non-patent documents 8 and 9
  • methylation profiles of promoter regions of several genes (Non-patent documents 10 and 11) are identified as prognostic factors.
  • the interrelationship between these biomarkers has not yet been clarified.
  • Helsmoortel, H. H. et al. LIN28B overexpressions define a novel fetal-like subgroup of juvenile myelomonocytic leukemia. Blood 127, 1163-72 (2016). Bresolin, S. et al. Gene expression-based classification as an independent predictor of clinical outcome in juvenile myelomonocytic leukemia. J Clin Oncol 28, 1919-27 (2010). Olk-Batz, C. et al. Aberrant DNA methylation characterization juvenile myelomonocytic leukemia with poor outcome. Blood 117, 4871-80 (2011). Sakaguchi, H. et al. Aberrant DNA Methylation Is Associated with a Poor Outcome in Juvenile Myelomonocytic Leukemia. PLoS One 10, e0145394 (2015).
  • JMML cases are generally resistant to conventional chemotherapy, and allogeneic hematopoietic stem cell transplantation is the only definitive treatment, but overall survival at 5 years is poor at around 50%, and new molecules Targeted treatment is required.
  • JMML is known to have somatic or germline gene mutations (formation of fusion genes) of RAS pathway related genes such as PTPN11, NF1, NRAS, KRAS, CBL in 70% or more cases of JMML.
  • the three types of fusion genes identified are those with mutations in receptor tyrosine kinase genes and are extremely characteristic.
  • the three types of fusion genes are new therapeutic targets for JMML, and their utility or significance is great.
  • the existence of a fusion gene accompanied by a mutation in receptor tyrosine kinase gene can be evaluated as an extremely important finding in developing a future therapeutic strategy for JMML.
  • crizotinib which is an ALK tyrosine kinase inhibitor and is used for the treatment of non-small cell lung cancer, suppressed the growth of newly identified fusion gene positive cells in vitro. Moreover, crizotinib also improved the patient prognosis clinically. Intriguingly, crizotinib also showed antiproliferative effects in fusion gene negative JMML as well. As a result of further examination, tumor growth inhibitory effect was also recognized by ALK tyrosine kinase inhibitors other than crizotinib. These experimental results show that an agent called ALK tyrosine kinase inhibitor, which is a line with a known therapeutic agent for JMML, can be an effective molecular-targeted therapeutic agent for JMML.
  • JAK2 tyrosine kinase inhibitors can also be molecular targeted therapeutic agents for JMML, and have important implications for therapeutic strategies.
  • a therapeutic agent for juvenile myelomonocytic leukemia which comprises an ALK tyrosine kinase inhibitor or a JAK2 tyrosine kinase inhibitor.
  • ALK tyrosine kinase inhibitor is a tyrosine kinase inhibitor for ALK and ROS1.
  • a test method for juvenile myelomonocytic leukemia which comprises the following steps (1) to (3): (1) preparing a sample containing leukemia cells isolated from a patient with juvenile myelomonocytic leukemia; (2) detecting the presence or absence of a fusion gene of ALK or ROS1 or a fusion protein encoded by the fusion gene in the sample; (3) determining that the fusion gene or the fusion protein is detected to be compatible with treatment with an ALK tyrosine kinase inhibitor. [9] A fusion gene of ALK or ROS1 as a cause of juvenile myelomonocytic leukemia.
  • a method of screening a substance effective for the treatment of juvenile myelomonocytic leukemia which comprises the following steps (i) to (iii): (i) preparing a cell that expresses a fusion gene of ALK or ROS1; (ii) culturing the cells in the presence of a test substance; (iii) measuring the number of viable cells or the number of colonies to determine the efficacy of the test substance.
  • a method for treating juvenile myelomonocytic leukemia comprising administering a therapeutically effective amount of an ALK tyrosine kinase inhibitor or a JAK2 tyrosine kinase inhibitor to a patient with juvenile myelomonocytic leukemia.
  • JMML juvenile myelomonocytic leukemia
  • NS / MPD Noonan syndrome-related myeloproliferative disorder
  • LOH loss of heterozygosity.
  • A-c Structure of the detected fusion protein.
  • TBL1XR1-ROS1 identified by UPN106.
  • MAM MAM domain
  • LDL-R low density lipoprotein receptor class A domain
  • TM transmembrane domain
  • TPR tetratricopeptide repeat domain
  • RanBD1 Ran binding domain
  • LisH lis homologous domain
  • F-box like F-box like domain
  • FN Type III Fibronectin type III domain.
  • CD34 + cells (1 ⁇ 10 3 per culture) from each mutation positive patient, 0 , 200, 500 nM crizotinib was added to the medium of cytokine (+) or ( ⁇ ) and cultured for 2 weeks.
  • CFU-GM Granulocyte macrophage colony forming unit. *, p ⁇ 0.05; ,, p ⁇ 0.01.
  • Correlation between established risk factors in JMML Co-occurrence and exclusivity between clinical features, genetic changes, expression and methylation profiles, and outcomes. Gray lines indicate each factor associated with JMML, and circles indicate that the two crossed factors occur statistically simultaneously or exclusively.
  • the first aspect of the present invention relates to a therapeutic agent for juvenile myelomonocytic leukemia (JMML) and its use.
  • “Therapeutic agent” refers to a drug that exhibits a therapeutic or prophylactic effect on a target disease or condition (ie, JMML).
  • Therapeutic effects include alleviation of symptoms or concomitant symptoms characteristic of the target disease / pathology (reduction of symptoms), prevention or delay of deterioration of symptoms, and the like. The latter can be regarded as one of the preventive effects in terms of preventing the aggravation.
  • a typical preventive effect is to prevent or delay the recurrence of symptoms characteristic of the target disease / pathology. As long as it exhibits some therapeutic effect or preventive effect or both for the target disease / pathology, it is a therapeutic agent for the target disease / pathology.
  • ALK Advanced Lymphoma Kinase
  • ALK tyrosine kinase inhibitors have shown efficacy against JMML in vitro and in vivo.
  • ALK Anaplastic Lymphoma Kinase
  • An ALK fusion gene (EML4-ALK, TFG-ALK, KIF5B-ALK, etc.) in which the ALK gene and other genes are fused is found in some cases of non-small cell lung cancer, etc.
  • ALK tyrosine kinase is constitutively aberrantly activated to cause canceration.
  • Several therapeutic agents (ALK tyrosine kinase inhibitors) that target the ALK fusion gene have been developed and are clinically applied (for example, application of crizotinib to treatment of non-small cell lung cancer).
  • ALK tyrosine kinase inhibitors include crizotinib (Crizotinib), alectinib (Alectinib), ceritinib (Ceritinib), and TAE684. It is preferable based on the fact that a ROS1 (c-ros on cogene 1) fusion gene (TBL1XR1-ROS1) positive was found in cases of JMML and the fact that crizotinib, which is an inhibitor for ALK and ROS1, showed efficacy for JMML. Uses an ALK tyrosine kinase inhibitor that also exhibits an inhibitory effect on ROS1.
  • tyrosine kinase inhibitors against ALK and ROS1 are employed as ALK tyrosine kinase inhibitors.
  • the “tyrosine kinase inhibitors against ALK and ROS1” show at least an inhibitory activity against ALK and ROS1, and the presence or absence of the inhibitory activity against other tyrosine kinases is not particularly limited.
  • Examples of ALK tyrosine kinase inhibitors falling under “tyrosine kinase inhibitors against ALK and ROS1” include crizotinib, seritinib and lolatinib.
  • ROS1 is a type of receptor tyrosine kinase and, like ALK, belongs to the insulin receptor family.
  • ROS1 fusion genes CD74-ROS1, SLC34A2-ROS1, etc.
  • the tyrosine kinase domain of ROS1 shows high homology to the tyrosine kinase domain of ALK.
  • crizotinib which is an ALK tyrosine kinase inhibitor, exhibited a growth inhibitory action, ie, a drug effect not only on novel fusion gene-positive JMML cells, but also on novel fusion gene-negative JMML cells.
  • the subject (JMML patient) of the therapeutic agent of the present invention is not particularly limited, and the therapeutic agent of the present invention can be widely used for the treatment of JMML.
  • ALK fusion gene for example, DCTN1-ALK fusion gene, RANBP2-ALK fusion gene
  • ROS1 fusion gene for example, TBL1XR1-ROS1 fusion gene
  • a JAK2 tyrosine kinase inhibitor is used based on the fact that the JAK2 tyrosine kinase inhibitor, Luxolitinib (Ruxolitinib) has shown efficacy against JMML in vitro.
  • Luxoritinib selectively acts on JAK1 and JAK2 subtypes.
  • JAK2 tyrosine kinase inhibitors are luxoritinib, pacritinib (Pacritinib), varisitinib (Baricitinib).
  • pharmacologically acceptable salts of ALK tyrosine kinase inhibitors or JAK2 tyrosine kinase inhibitors may be used.
  • “Pharmaceutically acceptable salt” is not particularly limited, and use of various salts, for example, acid addition salts, metal salts, ammonium salts, organic amine addition salts, amino acid addition salts and the like is conceivable. .
  • Examples of acid addition salts include mineral acid salts such as hydrochlorides, sulfates, nitrates, phosphates, hydrobromides, acetates, maleates, fumarates, citrates, benzenesulfonates, Organic acid salts such as benzoate, malate, oxalate, methanesulfonate, tartrate and the like can be mentioned.
  • Examples of metal salts include alkali metal salts such as sodium salts, potassium salts and lithium salts, alkaline earth metal salts such as magnesium salts and calcium salts, aluminum salts and zinc salts.
  • Examples of ammonium salts include salts such as ammonium and tetramethyl ammonium.
  • organic amine addition salts include morpholine addition salts and piperidine addition salts.
  • amino acid addition salts include glycine addition salts, phenylalanine addition salts, lysine addition salts, aspartic acid addition salts and glutamic acid addition salts.
  • Two or more active ingredients may be used in combination.
  • other active ingredients are mixed. May be
  • any component that can usually be used in medicine may be appropriately blended with the therapeutic agent of the present invention, as long as the effects and pharmaceutical stability of the present invention are not impaired.
  • Ingredients which can be compounded are not particularly limited, and include, for example, carrier components or additives, and as carrier components or additives in a solid preparation, for example, excipients, disintegrants, binders, lubricants, antioxidants , Coating agents, coloring agents, flavoring agents, surfactants, plasticizers, sweeteners, flavoring agents, disintegrating aids, foaming agents, adsorbents, preservatives, preservatives, wetting agents, antistatic agents, etc. .
  • a carrier component or additive in the liquid preparation for example, a solvent, a pH adjuster, a refreshing agent, a suspending agent, an antifoamer, a thickener, a solubilizer, a surfactant, an antioxidant, a coloring agent Agents, sweeteners, flavoring agents, preservatives / antimicrobial agents, chelating agents, solubilizers or solubilizers, stabilizers, fluidizers, emulsifiers, thickeners, buffers, isotonic agents, dispersions Agents and the like.
  • a solvent for example, a solvent, a pH adjuster, a refreshing agent, a suspending agent, an antifoamer, a thickener, a solubilizer, a surfactant, an antioxidant, a coloring agent Agents, sweeteners, flavoring agents, preservatives / antimicrobial agents, chelating agents, solubilizers or solubilizers, stabilizers, fluidizers, e
  • the dosage form for formulation is also not particularly limited.
  • dosage forms include tablets (including uncoated tablets, sugar-coated tablets, intraoral fast disintegrating tablets, intraoral fast dissolving tablets, chewable tablets, effervescent tablets, troches, drops, film-coated tablets, etc.), pills, granules, Fine granules, powders, hard capsules, soft capsules, syrups, injections, external preparations and suppositories.
  • it may be any of a solid preparation, a semi-solid preparation, and a liquid preparation (for example, a decoction or a dip).
  • dosage form is a tablet.
  • dosage forms such as intraoral fast disintegrating tablets, intraoral fast dissolving tablets and chewable tablets, which can be easily taken without water when feeling symptoms of diarrhea, and block off unpleasant taste
  • Dosage forms such as sugar-coated tablets and film-coated tablets may be particularly preferred.
  • the therapeutic agents of the present invention can be manufactured by or in a manner conventional in the art.
  • it can be prepared by mixing the powdery active ingredient with a pharmaceutically acceptable carrier component (excipient etc.) and compression molding (direct compression method), and the drop agent is a mold
  • a pharmaceutically acceptable carrier component excipient etc.
  • compression molding direct compression method
  • the drop agent is a mold
  • powder granules such as granules, various granulation methods (extrusion granulation method, pulverization granulation method, dry consolidation granulation method, fluidized bed granulation method, rolling granulation method, high speed stirring It can be prepared by granulation method etc.).
  • Tablets can also be prepared by combining the above granulation method and tableting method (wet tableting method etc.) as appropriate (indirect compression method).
  • capsules can be prepared by filling powders (powders, granules, etc.) into capsules (soft or hard capsules) by a conventional method.
  • the tablets may be coated and formed into sugar-coated tablets or film-coated tablets.
  • the tablet may be a single layer tablet or a laminated tablet such as a double layer tablet.
  • the solution is prepared by dissolving or dispersing each component in a carrier component such as an aqueous medium (purified water, purified hot water, purified water containing ethanol, etc.), heating, filtering, clothing or sterilizing as necessary, and placing in a predetermined container It can be prepared by filling and sterilizing.
  • the amount of active ingredient in the therapeutic agent of the present invention generally varies depending on the dosage form, the amount of active ingredient is set, for example, within the range of about 0.01% by weight to about 95% by weight so as to achieve the desired dose.
  • the therapeutic agent of the present invention can be administered orally or parenterally (intravenous, intraarterial, subcutaneous, intradermal, intramuscular, or intraperitoneal injection, transdermal, transnasal, transmucosal, etc.) depending on its dosage form. Applies to Also, systemic and local administration may be employed. These administration routes are not mutually exclusive, and two or more optionally selected can be used in combination (for example, intravenous injection or the like simultaneously with oral administration or after a predetermined time has elapsed).
  • the therapeutic agent of the present invention contains the active ingredient in an amount necessary to obtain the expected therapeutic effect (ie, a therapeutically effective amount). Although the amount of the active ingredient in the therapeutic agent of the present invention generally varies depending on the dosage form, the amount of the active ingredient is set, for example, within the range of about 0.1% by weight to about 99% by weight so as to achieve the desired dose.
  • the dose of the therapeutic agent of the present invention is set so as to obtain the expected therapeutic effect.
  • the condition, age, sex, and weight of the patient, etc. are generally considered. Those skilled in the art can set appropriate dosages in consideration of these matters.
  • the dosage for crizotinib, 500 mg per day for adults and 280 mg / m 2 per child can be mentioned.
  • the administration schedule for example, once to several times a day, once every two days, or once every three days can be adopted. In preparation of the administration schedule, the patient's medical condition, the duration of the effect of the active ingredient and the like can be considered.
  • the therapeutic agent of the present invention may be used in combination with other agents.
  • the therapeutic agent of the present invention is added to standard chemotherapy for JMML to exert additive or synergistic effects.
  • Various combination modes are assumed, and the type and number of drugs used in combination, the administration schedule and the like are not particularly limited.
  • a representative example of the drug used in combination is an anticancer drug, a molecule-targeted therapeutic drug, cell therapy and the like may be used in combination.
  • anti-cancer agents examples include alkylating agents (eg cyclophosphamide, ifosfamide, melphalan), anti-metabolites (eg methotrexate, 6-mercaptopurine, cytarabine, fludarabine, clofarabine), anti-cancer antibiotics (eg Daunorubicin, doxorubicin, pirarubicin, idarubicin, mitoxantrone, plant alkaloids (eg vincristine, vinblastine, vindesine, etoposide), demethylating agents (eg azacitidine).
  • molecule-targeted therapeutic agents include MEK inhibitors, JAK inhibitors, GM-CSF inhibitors and the like.
  • CAR-T therapy and the like can be mentioned.
  • the present application also provides a method of treating JMML, which comprises administering a therapeutically effective amount of an ALK tyrosine kinase inhibitor or a JAK2 tyrosine kinase inhibitor to a JMML patient.
  • a JMML inspection method which includes the following steps (1) to (3). (1) preparing a sample containing leukemia cells isolated from a patient with juvenile myelomonocytic leukemia (2) in the sample, the presence or absence of a fusion gene of ALK or ROS1 or a fusion protein encoded by the fusion gene Detecting (3) determining that the fusion gene or the fusion protein is detected as compatible with treatment with an ALK tyrosine kinase inhibitor
  • a sample to be used for the test is prepared.
  • a sample containing leukemia cells isolated from JMML patients is used.
  • the type and origin of the sample are not particularly limited as long as they contain leukemia cells.
  • a cell fraction (bone marrow cells) prepared from bone marrow or a cell fraction (blood cells) prepared from blood such as peripheral blood is used as a sample.
  • Samples are prepared prior to the practice of the present invention. That is, the test method of the present invention does not include the step of isolating (collecting) bone marrow and the like for preparing a sample from a patient.
  • step (2) the ALK fusion gene (eg, DCTN1-ALK fusion gene or RANBP2-ALK fusion gene) or ROS1 fusion gene (eg, TBL1XR1-ROS1 fusion gene) in the sample, or the fusion gene (eg, DCTN1-ALK fusion gene)
  • the fusion gene eg, DCTN1-ALK fusion gene
  • genomic DNA or mRNA is to be detected.
  • telomere sequence analysis is not particularly limited.
  • RT-PCR reverse transcription-polymerase chain reaction
  • PCR method PCR method
  • PCR-RFLP restriction fragment length polymorphism
  • PCR-SSCP single strand conformation polymorphism
  • RNA sequence analysis target sequence analysis
  • FISH Fluorescence in situ hybridization, whole genome analysis, Invader (registered trademark, Third Wave Technologies) method
  • LAMP Loop-Mediated Isothermal Amplification
  • CGH Comparative Genomic Hybridization
  • dot hybridization Northern hybridization, etc.
  • Means of detection can be used. Extraction and purification of genomic DNA and mRNA can be performed by known methods. A variety of kits for preparation are also commercially available, and they may be used.
  • the DCTN1-ALK fusion gene, the TBL1XR1-ROS1 fusion gene and the RANBP2-ALK fusion gene are novel fusion genes derived from JMML patients, which were found by the present inventors.
  • the breakpoints and structures of these fusion genes are shown in FIG. Based on the information, primers and probes to be used for detection of each fusion gene can be designed and prepared. In addition, specific examples of primers that can be used for detection means (RT-PCR method and PCR method described above) utilizing nucleic acid amplification reaction will be described later.
  • the fusion protein can be detected by immunoassay.
  • Immunological assays allow for rapid and sensitive detection. Also, the operation is simple.
  • an antibody against a fusion protein is used, and the fusion protein is detected with the binding ability (binding amount) of the antibody as an index.
  • immunoassays include Western blotting, immunohistochemistry, fluorescence immunoassay (FIA), enzyme immunoassay (EIA), radioimmunoassay (RIA), flow cytometry (FCM) Immunoprecipitation, immunochromatography, ELISA, etc.
  • step (3) based on the detection results of step (2), the suitability for treatment with ALK tyrosine kinase inhibitor (that is, whether or not it is a patient to be treated) is evaluated. Specifically, when a fusion gene or fusion protein to be detected in step (2) is detected, it is determined as "compatible with treatment with an ALK tyrosine kinase inhibitor".
  • a genetic abnormality characterized by the formation of the above-mentioned fusion gene hereinafter referred to as "the genetic abnormality of the present invention” and the like as an index for determining a therapeutic course or obtaining supplementary information or basis therefor. Is sometimes used).
  • the determination here can be performed automatically / mechanically without depending on the judgment of a person having expert knowledge such as a doctor or a laboratory technician, as is clear from the determination criteria.
  • the examination method of the present invention is carried out before or after the start of treatment. If the test method of the present invention is performed before the start of treatment and the results are used, more appropriate treatment becomes possible. That is, the present invention can be used as a means for formulating and determining a treatment plan. On the other hand, if the test method of the present invention is performed after the start of treatment, for example, the present invention can be used to change the treatment policy. That is, the present invention is also useful as a means to provide a scientific basis for reviewing a treatment plan. The test method of the present invention may be carried out several times sequentially to monitor the treatment effect and revise / revision the treatment policy.
  • the present invention further provides a method of screening for a substance effective for the treatment of JMML, based on the results of identification of a fusion gene as a new therapeutic target in JMML.
  • the substance identified by the screening method of the present invention is particularly a therapeutic agent for patients who are positive for ALK fusion gene (eg, DCTN-ALK fusion gene, RANBP2-ALK fusion gene) or ROS1 fusion gene (eg, TBL1XR1-ROS1 fusion gene) or It is promising as a therapeutic drug candidate.
  • ALK fusion gene eg, DCTN-ALK fusion gene, RANBP2-ALK fusion gene
  • ROS1 fusion gene eg, TBL1XR1-ROS1 fusion gene
  • the following steps (i) to (iii) are performed.
  • (ii) culturing the cell in the presence of a test substance culturing the cell in the presence of a test substance;
  • cells expressing an ALK fusion gene for example, DCTN1-ALK fusion gene, RANBP2-ALK fusion gene
  • a ROS1 fusion gene for example, TBL1XR1-ROS1 fusion gene
  • the prepared cells are cultured in the presence of the test substance.
  • the number of cells to be used is not particularly limited, and can be determined in consideration of detection sensitivity, experimental equipment, and the like. For example, 1 ⁇ 10 2 to 1 ⁇ 10 6 cells can be used in one screening operation.
  • the amount (addition amount) of the test substance in the culture solution can be set arbitrarily, but the addition amount may be set within a range that does not have a fatal effect when normal cells are cultured under the same conditions. Those skilled in the art can set appropriate addition amounts by preliminary experiments.
  • the culture time is set so that the action and effect of the test substance can be sufficiently evaluated, but is not particularly limited.
  • the culture time can be set in the range of 10 minutes to January.
  • the culture time in the subsequent screening can be set based on the time required for the substance to exhibit the action / effect.
  • organic compounds or inorganic compounds of various molecular sizes can be used as the test substance.
  • organic compounds include nucleic acids, peptides, proteins, lipids (simple lipids, complex lipids (phosphoglycerides, sphingolipids, glycosylglycerides, cerebrosides, etc.), prostaglandins, isoprenoids, terpenes, steroids, polyphenols, catechins, vitamins
  • the test substance may be derived from natural products or synthetically, In the latter case, an efficient screening system can be constructed using, for example, a combinatorial synthesis technique. Extracts, culture supernatants, etc. may be used as a test substance, and existing drugs, nutritional foods, food additives, etc. may be used as test substances etc. Testing by simultaneously adding two or more types of test substances Interactions between substances, synergy, etc. may be examined.
  • step (iii) following step (ii) the number of viable cells or the number of colonies after culture is measured to determine the cell growth inhibitory activity (cytotoxic activity) of the test substance, that is, the effectiveness.
  • the cell growth inhibitory activity cytotoxic activity
  • cells cultured in the presence of the test substance (test group) and cells cultured in the absence of the test substance (control group) are prepared, and the number of surviving cells or the number of colonies is measured for each group and compared. Do. From the comparison results, the extent to which the cell viability / number of colonies has changed as a result of the presence of the test substance is determined.
  • the test substance is effective against JMML when the number of living cells / colony number in the test group is small (cell viability is low) as compared to the control group, ie, when the test substance shows cell growth inhibitory activity. It can be determined that there is. In one aspect, in this case, it is determined that the test substance is effective against a novel fusion gene positive case. If a significant decrease in the survival rate is observed in the test group, it can be determined that the efficacy of the test substance is particularly high. It is also possible to determine the efficacy of the test substance by comparing the number of cells before and after culture in the test group, instead of setting a control group. However, setting the control group as described above can give more reliable results.
  • a test group in which cells are cultured in the presence of a cytokine (for example, GM-CSF can be used) and a test (cultured with no cytokine) group in which cells are cultured in the absence And determine based on the number of viable cells / number of colonies in both test groups.
  • a control group in which the cells are cultured in the absence of the test substance for each, and to make a judgment after comparing and evaluating the test group and the control group.
  • the substance (screening product) selected by the screening method of the present invention is a strong candidate (lead compound) as an active ingredient of a medicine for JMML (particularly, a case where a novel fusion gene is positive).
  • a medicine for JMML particularly, a case where a novel fusion gene is positive.
  • the selected substance has sufficient medicinal effects, it can be used as it is as an active ingredient of a medicine.
  • the drug does not have sufficient medicinal effects, it can be used as an active ingredient of a medicine after being modified such as chemical modification to enhance its medicinal effects.
  • similar modifications may be made for the purpose of further enhancing the efficacy.
  • the present invention further provides three novel fusion genes responsible for the onset of JMML, ie, a DCTN1-ALK fusion gene, a TBL1XR1-ROS1 fusion gene, and a RANBP2-ALK fusion gene.
  • the DCTN1-ALK fusion gene is A breakpoint is present in exon 28, a breakpoint is present in intron 19 in the ALK gene, and has a structure in which up to exon 26 of the DCTN gene and exon 20 or later of the ALK gene are linked.
  • the TBL1XR1-ROS1 fusion gene has a breakpoint in intron 12 in the TBL1XR1 gene, a breakpoint in exon 36 in the ROS1 gene, and a portion of the intron 12 of the TBL1XR1 gene and the ROS1 gene It has a structure in which exons 36 and beyond are linked.
  • the RANBP2-ALK fusion gene has a breakpoint at intron 18 in the RANBP2 gene, a breakpoint at intron 19 in the ALK gene, and the exon 18 of the RANBP2 gene is linked to the exon 20 and beyond of the ALK gene It has the following structure.
  • a typical genomic nucleotide sequence of a DCTN1-ALK fusion gene is a cDNA nucleotide sequence as SEQ ID NO: 1, a typical genomic nucleotide sequence of a TBL1XR1-ROS1 fusion gene as SEQ ID NO: 2, and a cDNA nucleotide sequence as SEQ ID NO: 3.
  • the typical genomic nucleotide sequence of the RANBP2-ALK fusion gene is shown in SEQ ID NO: 5
  • the cDNA nucleotide sequence is shown in SEQ ID NO: 6, respectively.
  • the present invention also provides a fusion protein which is the expression product of a novel fusion gene.
  • a DCTN-ALK fusion protein encoded by a DCTN1-ALK fusion gene a DCTN1-ALK fusion gene
  • a TBL1XR1-ROS1 fusion protein encoded by a TBL1XR1-ROS1 fusion gene and a RANBP2-ALK fusion protein encoded by a RANBP2-ALK fusion gene
  • the DCTN1-ALK fusion protein comprises a coiled coil domain from RANBP2, a kinase domain from ALK.
  • the TBL1XR1-ROS1 fusion protein contains an FN type III domain from TBL1XR1, a kinase domain from ROS1.
  • the RANBP2-ALK fusion protein contains a TRP domain derived from RANBP2, a kinase domain derived from ALK.
  • a typical amino acid sequence of a DCTN1-ALK fusion protein is shown in SEQ ID NO: 7
  • a typical amino acid sequence of a TBL1XR1-ROS1 fusion protein is shown in SEQ ID NO: 8
  • a typical amino acid sequence of a RANBP2-ALK fusion protein is shown in SEQ ID NO: 9 It shows each.
  • the fusion gene and fusion protein of the present invention are useful, for example, as a therapeutic target or a diagnostic marker, or as an indicator for judging the suitability of a therapeutic agent.
  • the fusion gene and fusion protein of the present invention can be prepared in an isolated state, for example, by separating and purifying from a patient who is positive for the corresponding fusion gene. Alternatively, they may be prepared by chemical synthesis, genetic engineering techniques, etc. based on the sequence information disclosed herein.
  • ⁇ PCR based target deep sequence analysis Gene regions of PTP N11, NRAS, KRAS, CBL, NF1, SETBP1, JAK3, SH3BP1 using Quick Taq HS DyeMix (TOYOBO) from DNA obtained from 86 JMML patients and 6 NS / MPD patients Is amplified and purified using QIAquick PCR Purification Kit (QIAGEN), NotI (Fermentas), T4 DNA ligase (Takara Bio), and then analyzed for analysis using Illumina pair-end library protocol (Illumina) I created a rally. After that, sequencing and analysis were performed in the same procedure as exome analysis.
  • QIAGEN QIAquick PCR Purification Kit
  • NotI Fermentas
  • T4 DNA ligase Takara Bio
  • RNA sequence analysis> From RNA obtained from 117 JMML patients and 12 NS / MPD patients, a library for RNA sequence analysis was created using NEBNext Ultra RNA Prep Kit for Illumina (New England Biolabs). Next generation sequencing was performed using HiSeq 2500 (Illumina), and the resulting sequence data was analyzed using Tophat-fusion software to detect fusion genes.
  • LIN28B was most significantly upregulated in hypermethyl profile Identified.
  • a fusion gene related to receptor tyrosine kinase is reported to be a fusion of a kinase domain of tyrosine kinase and a domain related to dimer formation of a fusion partner, which is expected to lead to gain of function
  • the TBL1XR1-ROS1 fusion protein also retains the kinase domain of ROS1 and the domain associated with dimerization of TBL1XR1, strongly suggesting that this fusion leads to gain of function.
  • RanBP2-ALK tumor growth inhibition in vitro effect of crizotinib in positive patients (1) a method RanBP2-ALK fusion gene positive patients (UPN168) of CD34-positive cells extracted from the bone marrow (1 ⁇ 10 3 cells) were MethoCult TM H4434 classic (cytokines (+)) or MethoCult TM H4230 (cytokines (-)) (STEMCELL Technologies Inc.) crizotinib diluted in DMSO (Sigma-Aldrich, Inc.) to (ALK / ROS1 / MET inhibitor Pfizer) to 0,20, The cells were cultured for 2 weeks in a medium supplemented with 80, 200 and 500 nM. Two weeks later, the number of colony forming unit-granulocyte macrophage (CFU-GM) and burst-forming unit-erythroid (BFU-E) in each medium was counted.
  • CFU-GM colony forming unit-granulocyte macrophage
  • BFU-E
  • RANBP2-ALK cDNA primer set (design position RANBP2 exon 15, ALK exon 20, product size 671 bp)> Forward (RANBP2-ALK forward primer): ATTTTTCACAGAGAGGCAGAAAGACATTGA (SEQ ID NO: 10) Reverse (RANBP2-ALK reverse primer): GTCTTGCCAGCAAAGCAGTAG (SEQ ID NO: 11)
  • crizotinib exhibited a tumor suppressor effect in vitro, suggesting that it may be effective in this case.
  • crizotinib 280 mg / m 2 / day
  • the dose of crizotinib was determined based on the results of a phase I trial of crizotinib for pediatric patients with refractory solid tumors and anaplastic large cell lymphoma (Mosse, YP et al. Safety and activity of crizotinib for paediatric patients with refractory Lancet Oncol 14, 472-80 (2013)) solid tumours or anaplastic large-cell lymphoma: a Children's Oncology Group phase 1 consortium study.
  • RNA extracted from peripheral blood mononuclear cells collected on the 135th day was negative.
  • ALK break apart FISH and monosomy 7 FISH were similarly confirmed to be negative, and it was judged that molecular biological solution was achieved.
  • bone marrow transplantation was performed from HLA-matched siblings, and disease-free survival was confirmed 11 months after transplantation.
  • crizotinib was clinically useful in RANBP2-ALK positive JMML cases. The remaining two cases with the ALK-ROS1 fusion gene did not receive crizotinib and died of tumor progression.
  • crizotinib inhibited JMML colony formation in a concentration-dependent manner. This effect was stronger in the KRAS and PTPN11 gene mutation positive cases than in the CBL mutation cases. Crizotinib is negative for ALK fusion gene, suggesting that classical RAS gene mutation-positive cases may suppress tumor growth.
  • the hypermethylation profile group showed an "AML-type" methylation and expression profile with poor prognosis, even though blasts did not increase to the level of AML at diagnosis.
  • the various clinical biomarkers reported so far may reflect different aspects of the same poor prognosis group of JMML patients; clinical features (age, HbF levels, platelet count) and LIN28B expression It suggests the possibility that it can be used as a surrogate marker for this poor prognosis group.
  • ALK tyrosine kinase inhibitor other than crizotinib and luxoritinib JK2 tyrosine kinase inhibitor
  • method PTPN11 p.D61 V mutation positive and CD34 positive cells (1 ⁇ 10 3 ) as MethoCult TM H4434 classic (cytokine (+)) or Metho Cult TM H4230 (cytokine (-)) (STEMCELL Technologies) in a medium supplemented with alectinib, seritinib or TAE 684 or luxolitinib diluted with DMSO (Sigma-Aldrich) at a predetermined concentration Incubated for 2 weeks. As a control, a test group to which crizotinib was added was provided. Two weeks later, the number of colony forming unit-granulocyte macrophage (CFU-GM) in each medium was counted.
  • CFU-GM colony forming unit-granulocyte macrophage
  • the therapeutic agents of the present invention provide new therapeutic strategies for JMML.
  • the present invention can contribute to the improvement of the treatment result of JMML, the improvement of prognosis and the like.
  • New fusion genes identified from JMML cases are useful not only as therapeutic targets but also as test / diagnostic markers for JMML.
  • SEQ ID NO: 10 Description of artificial sequences: RANBP2-ALK forward primer
  • SEQ ID NO: 11 Description of artificial sequences: RANBP2-ALK reverse primer

Abstract

The problem addressed by the present invention is to provide a new molecularly-targeted therapeutic agent for juvenile myelomonocytic leukemia and the use thereof. Provided is a juvenile myelomonocytic leukemia therapeutic agent containing an ALK tyrosine kinase inhibitor or a JAK2 tyrosine kinase inhibitor. Also disclosed is a new fusion gene that regulates juvenile myelomonocytic leukemia.

Description

若年性骨髄単球性白血病治療薬Juvenile myelomonocytic leukemia therapeutic drug
 本発明は若年性骨髄単球性白血病(JMML)の治療や診断等に有用な手段に関する。詳しくはJMML治療薬、JMMLに関わる新規融合遺伝子及びその用途等に関する。本出願は、2017年8月25日に出願された日本国特許出願第2017-162389号に基づく優先権を主張するものであり、当該特許出願の全内容は参照により援用される。 The present invention relates to means useful for the treatment, diagnosis and the like of juvenile myelomonocytic leukemia (JMML). More specifically, it relates to a JMML therapeutic agent, a novel fusion gene involved in JMML, and its use. This application claims priority based on Japanese Patent Application No. 2017-162389 filed on Aug. 25, 2017, the entire contents of which are incorporated by reference.
 若年性骨髄単球性白血病(JMML)は、骨髄単球系細胞の増殖、及び顆粒球-マクロファージコロニー刺激因子(GM-CSF)に対する高感受性を特徴とする乳幼児及び小児期の稀な骨髄異形成/骨髄増殖性疾患(MDS/MPD)である(非特許文献1)。JMML症例の80%以上がPTPN11、NF1、NRAS、KRAS、CBLなどの古典的RAS経路関連遺伝子に、相互排他的に体細胞/生殖細胞系列変異を有することが特徴とされている(非特許文献2、3)。SETBP1(非特許文献4、5)及び他の遺伝子(非特許文献6、7)のセカンドヒット変異、遺伝子発現プロファイル(非特許文献8、9)、及びいくつかの遺伝子のプロモーター領域のメチル化プロファイル(非特許文献10、11)などが予後不良因子として同定されている。しかしながら、これらのバイオマーカー間の相互関係はいまだ明らかになっていない。 Juvenile myelomonocytic leukemia (JMML) is a rare myelodysplasia of the infancy and childhood characterized by proliferation of myelomonocytic cells and hypersensitivity to granulocyte-macrophage colony stimulating factor (GM-CSF). / Myeloproliferative disease (MDS / MPD) (Non-patent Document 1). More than 80% of JMML cases are characterized as having mutually exclusive somatic / germline mutations in classical RAS pathway related genes such as PTPN11, NF1, NRAS, KRAS, CBL (non-patent literature) 2, 3). Second hit mutations of SETBP 1 (Non-patent documents 4 and 5) and other genes (Non-patent documents 6 and 7), gene expression profiles (Non-patent documents 8 and 9), and methylation profiles of promoter regions of several genes (Non-patent documents 10 and 11) are identified as prognostic factors. However, the interrelationship between these biomarkers has not yet been clarified.
 JMMLの症例は、一般に、通常の化学療法に対して抵抗性であり、同種造血幹細胞移植が唯一の根治的治療であるが、5年全生存率は約50%と不良であり、新たな分子標的治療が求められている。 JMML cases are generally resistant to conventional chemotherapy, and allogeneic hematopoietic stem cell transplantation is the only definitive treatment, but overall survival at 5 years is poor at around 50%, and new molecules Targeted treatment is required.
 上記課題を解決すべく本発明者らは、150症例の検体(非常に稀な疾患であるJMMLの検体数としては世界的にも極めて多い)を収集し、全エキソームシークエンス、メチル化アレイ解析、RNAシークエンスを用いて包括的遺伝子解析を施行し、JMMLの新たな治療標的となる遺伝子変異の同定を目指した。その結果、3種類の融合遺伝子を同定することに成功した。JMMLでは70%以上の症例でPTPN11、NF1、NRAS、KRAS、CBLといったRAS経路関連遺伝子の体細胞あるいは生殖細胞系列の遺伝子変異(融合遺伝子の形成)を有することが知られているが、新たに同定された3種類の融合遺伝子は受容体型チロシンキナーゼ遺伝子の変異を伴うものであり、極めて特徴的である。この点において、当該3種類の融合遺伝子はJMMLの新たな治療標的となるものであり、その有用性ないし意義は大きい。また、受容体型チロシンキナーゼ遺伝子の変異を伴う融合遺伝子の存在を明らかにしたことは、JMMLに対する今後の治療戦略を立てる上で極めて重要な知見と評価できる。 In order to solve the above-mentioned problems, the present inventors collect samples of 150 cases (the number of samples of JMML which is very rare disease is extremely large in the world), and complete exome sequencing, methylation array analysis Conducted comprehensive gene analysis using RNA sequences, and aimed to identify gene mutations that would be new therapeutic targets for JMML. As a result, they succeeded in identifying three types of fusion genes. JMML is known to have somatic or germline gene mutations (formation of fusion genes) of RAS pathway related genes such as PTPN11, NF1, NRAS, KRAS, CBL in 70% or more cases of JMML. The three types of fusion genes identified are those with mutations in receptor tyrosine kinase genes and are extremely characteristic. In this regard, the three types of fusion genes are new therapeutic targets for JMML, and their utility or significance is great. In addition, the existence of a fusion gene accompanied by a mutation in receptor tyrosine kinase gene can be evaluated as an extremely important finding in developing a future therapeutic strategy for JMML.
 一方、ALKチロシンキナーゼ阻害剤であり、非小細胞肺がんの治療に使用されるクリゾチニブが、新たに同定された融合遺伝子陽性細胞の増殖をin vitroで抑制した。しかも、クリゾチニブは臨床的にも患者予後を改善した。極めて興味深いことに、クリゾチニブは融合遺伝子陰性のJMMLにおいても、同様に増殖抑制効果を示した。更なる検討の結果、クリゾチニブ以外のALKチロシンキナーゼ阻害剤にも腫瘍増殖抑制効果が認められた。これらの実験結果は、ALKチロシンキナーゼ阻害剤という、JMMLに対する既知の治療薬とは一線を画する薬剤がJMMLの有効な分子標的治療薬になり得ることを示す。 On the other hand, crizotinib, which is an ALK tyrosine kinase inhibitor and is used for the treatment of non-small cell lung cancer, suppressed the growth of newly identified fusion gene positive cells in vitro. Moreover, crizotinib also improved the patient prognosis clinically. Intriguingly, crizotinib also showed antiproliferative effects in fusion gene negative JMML as well. As a result of further examination, tumor growth inhibitory effect was also recognized by ALK tyrosine kinase inhibitors other than crizotinib. These experimental results show that an agent called ALK tyrosine kinase inhibitor, which is a line with a known therapeutic agent for JMML, can be an effective molecular-targeted therapeutic agent for JMML.
 更に検討を進める中、クリゾチニブがJAK2チロシンキナーゼに対しても阻害活性を示すことに注目し、JAK2チロシンキナーゼ阻害剤であるルクソリチニブの効果を調べた。その結果、ルクソリチニブにも腫瘍増殖抑制効果が認められた。この事実は、ALKチロシンキナーゼ阻害剤に加え、JAK2チロシンキナーゼ阻害剤もJMMLの分子標的治療薬になり得ることを示すものであり、治療戦略上、重要な意味をもつ。 During further study, it was noted that crizotinib also exhibited inhibitory activity against JAK2 tyrosine kinase, and the effect of the JAK2 tyrosine kinase inhibitor, luxoritinib, was investigated. As a result, it was found that luxoritinib has a tumor growth inhibitory effect. This fact indicates that, in addition to ALK tyrosine kinase inhibitors, JAK2 tyrosine kinase inhibitors can also be molecular targeted therapeutic agents for JMML, and have important implications for therapeutic strategies.
 以下の発明は主として以上の知見及び考察に基づく。
 [1]ALKチロシンキナーゼ阻害剤又はJAK2チロシンキナーゼ阻害剤を含む、若年性骨髄単球性白血病治療薬。
 [2]前記ALKチロシンキナーゼ阻害剤がALK及びROS1に対するチロシンキナーゼ阻害剤である、[1]に記載の若年性骨髄単球性白血病治療薬。
 [3]前記ALKチロシンキナーゼ阻害剤がクリゾチニブ、アレクチニブ、セリチニブ又はTAE684である、[1]に記載の若年性骨髄単球性白血病治療薬。
 [4]前記JAK2チロシンキナーゼ阻害剤がルクソリチニブである、[1]に記載の若年性骨髄単球性白血病治療薬。
 [5]ALK又はROS1の融合遺伝子が陽性の患者に投与される、[1]~[4]のいずれか一項に記載の若年性骨髄単球性白血病治療薬。
 [6]他の薬剤と併用される、[1]~[5]のいずれか一項に記載の若年性骨髄単球性白血病治療薬。
 [7]前記他の薬剤が抗がん剤である、[6]に記載の若年性骨髄単球性白血病治療薬。
 [8]以下のステップ(1)~(3)を含む、若年性骨髄単球性白血病の検査方法:
 (1)若年性骨髄単球性白血病患者から単離した白血病細胞を含む検体を用意するステップ;
 (2)前記検体において、ALK又はROS1の融合遺伝子、又は該融合遺伝子がコードする融合タンパク質の存否を検出するステップ;
 (3)前記融合遺伝子又は前記融合タンパク質が検出された場合、ALKチロシンキナーゼ阻害剤による治療に適合すると判定するステップ。
 [9]若年性骨髄単球性白血病の原因としての、ALK又はROS1の融合遺伝子。
 [10]以下のステップ(i)~(iii)を含む、若年性骨髄単球性白血病の治療に有効な物質のスクリーニング方法:
 (i)ALK又はROS1の融合遺伝子を発現する細胞を用意するステップ;
 (ii)試験物質の存在下、前記細胞を培養するステップ;
 (iii)細胞の生存数又はコロニー数を測定し、前記試験物質の有効性を判定するステップ。
 [11]若年性骨髄単球性白血病の患者に対して、ALKチロシンキナーゼ阻害剤又はJAK2チロシンキナーゼ阻害剤を治療上有効量投与することを含む、若年性骨髄単球性白血病の治療方法。
The following invention is mainly based on the above knowledge and consideration.
[1] A therapeutic agent for juvenile myelomonocytic leukemia, which comprises an ALK tyrosine kinase inhibitor or a JAK2 tyrosine kinase inhibitor.
[2] The juvenile myelomonocytic leukemia therapeutic drug according to [1], wherein the ALK tyrosine kinase inhibitor is a tyrosine kinase inhibitor for ALK and ROS1.
[3] The juvenile myelomonocytic leukemia therapeutic drug according to [1], wherein the ALK tyrosine kinase inhibitor is crizotinib, alectinib, seritinib or TAE684.
[4] The juvenile myelomonocytic leukemia therapeutic drug according to [1], wherein the JAK2 tyrosine kinase inhibitor is luxolitinib.
[5] The juvenile myelomonocytic leukemia therapeutic drug according to any one of [1] to [4], which is administered to a patient who is positive for a fusion gene of ALK or ROS1.
[6] The juvenile myelomonocytic leukemia therapeutic drug according to any one of [1] to [5], which is used in combination with another drug.
[7] The juvenile myelomonocytic leukemia therapeutic drug according to [6], wherein the other drug is an anticancer drug.
[8] A test method for juvenile myelomonocytic leukemia, which comprises the following steps (1) to (3):
(1) preparing a sample containing leukemia cells isolated from a patient with juvenile myelomonocytic leukemia;
(2) detecting the presence or absence of a fusion gene of ALK or ROS1 or a fusion protein encoded by the fusion gene in the sample;
(3) determining that the fusion gene or the fusion protein is detected to be compatible with treatment with an ALK tyrosine kinase inhibitor.
[9] A fusion gene of ALK or ROS1 as a cause of juvenile myelomonocytic leukemia.
[10] A method of screening a substance effective for the treatment of juvenile myelomonocytic leukemia, which comprises the following steps (i) to (iii):
(i) preparing a cell that expresses a fusion gene of ALK or ROS1;
(ii) culturing the cells in the presence of a test substance;
(iii) measuring the number of viable cells or the number of colonies to determine the efficacy of the test substance.
[11] A method for treating juvenile myelomonocytic leukemia, comprising administering a therapeutically effective amount of an ALK tyrosine kinase inhibitor or a JAK2 tyrosine kinase inhibitor to a patient with juvenile myelomonocytic leukemia.
150人の患者の臨床及び遺伝子プロファイル。各列は1人の患者を示しており、メチル化分析は150例中106例(71%)で施行された。JMML; 若年性骨髄単球性白血病、NS/MPD; ヌーナン症候群関連骨髄増殖性障害、LOH; ヘテロ接合性の喪失。Clinical and genetic profiles of 150 patients. Each row represents one patient, and methylation analysis was performed in 106 out of 150 (71%). JMML; juvenile myelomonocytic leukemia, NS / MPD; Noonan syndrome-related myeloproliferative disorder, LOH; loss of heterozygosity. 若年性骨髄単球性白血病(JMML)におけるチロシンキナーゼ融合遺伝子。(a-c)検出された融合タンパク質の構造。(a)UPN5で同定されたDCTN1-ALK、(b)UPN168で同定されたRANBP2-ALK、(c)UPN106で同定されたTBL1XR1-ROS1。MAM:MAMドメイン、LDL-R:低密度リポタンパク質受容体クラスAドメイン、TM:膜貫通ドメイン、TPR:テトラトリコペプチドリピートドメイン、RanBD1: Ran結合ドメイン、LisH:lis相同ドメイン、F-box like:F-box様ドメイン、FN TypeIII:フィブロネクチンIII型ドメイン。Tyrosine kinase fusion gene in juvenile myelomonocytic leukemia (JMML). (A-c) Structure of the detected fusion protein. (A) DCTN1-ALK identified by UPN5, (b) RANBP2-ALK identified by UPN168, (c) TBL1XR1-ROS1 identified by UPN106. MAM: MAM domain, LDL-R: low density lipoprotein receptor class A domain, TM: transmembrane domain, TPR: tetratricopeptide repeat domain, RanBD1: Ran binding domain, LisH: lis homologous domain, F-box like: F-box like domain, FN Type III: Fibronectin type III domain. RANBP2-ALK+CD34+細胞コロニー形成に対するクリゾチニブ(ALK/ROS1/MET阻害剤)の効果。RANBP2-ALKを有する患者由来の1×103個のCD34+細胞を、サイトカイン(+)または(-)の培地にクリゾチニブを0、20、80、200、500nM添加して、2週間培養した。(a)CFU-GMコロニーの顕微鏡的所見。(b、c)サイトカインを含む(b)、又は含まない(c)培地でのコロニーの数。CFU-GM:顆粒球マクロファージコロニー形成ユニット、BFU-E:赤芽球バースト形成ユニット。Effect of crizotinib (ALK / ROS1 / MET inhibitor) on RANBP2-ALK + CD34 + cell colony formation. 1 × 10 3 CD34 + cells from patients with RANBP2-ALK were cultured for 2 weeks with 0, 20, 80, 200, 500 nM of crizotinib added to the medium of cytokine (+) or (−). (A) Microscopic findings of CFU-GM colonies. (B, c) The number of colonies in the medium (b) with or without the cytokine (c). CFU-GM: granulocyte macrophage colony forming unit, BFU-E: erythroblast burst forming unit. RANBP2-ALK陽性患者へのクリゾチニブ投与と臨床経過。Clinical course and crizotinib administration to RANBP2-ALK positive patients. コロニー形成に対するクリゾチニブの効果。(a)KRAS, p.G12A変異、(b)PTPN11, p.E76K突然変異、(c)CBLスプライス部位変異、(d)CBL, p.Y371H.変異。各変異陽性患者由来のCD34+細胞(培養あたり1×103)を用いて、サイトカイン(+)又は(-)の培地にクリゾチニブを0、200、500nM添加して2週間培養した。CFU-GM:顆粒球マクロファージコロニー形成ユニット。*, p <0.05; †, p <0.01。Effect of crizotinib on colony formation. (a) KRAS, p. G12A mutation, (b) PTP N11, p. E76 K mutation, (c) CBL splice site mutation, (d) CBL, p. Y 371 H. mutation. Using CD34 + cells (1 × 10 3 per culture) from each mutation positive patient, 0 , 200, 500 nM crizotinib was added to the medium of cytokine (+) or (−) and cultured for 2 weeks. CFU-GM: Granulocyte macrophage colony forming unit. *, p <0.05; ,, p <0.01. JMMLの確立されたリスク因子間の相関。臨床的特徴、遺伝的変化、発現・メチル化プロファイル、並びに転帰の間の共起性及び排他性。灰色の線は、JMMLに関連する各要因を示し、丸は、交差した2つの因子が統計的有意に同時に起こる、あるいは排他的に起こることを示す。Correlation between established risk factors in JMML. Co-occurrence and exclusivity between clinical features, genetic changes, expression and methylation profiles, and outcomes. Gray lines indicate each factor associated with JMML, and circles indicate that the two crossed factors occur statistically simultaneously or exclusively. PTPN11 p.D61V変異陽性且つCD34陽性細胞のコロニー形成に対する各種ALKチロシンキナーゼ阻害剤及びJAK2チロシンキナーゼ阻害剤の効果。PTPN11 p.D61V変異陽性且つCD34陽性細胞(1×103個)を、サイトカイン(+)または(-)の培地に各種ALKチロシンキナーゼ阻害剤(アレクチニブ、セリチニブ又はTAE684)又はJAK2チロシンキナーゼ阻害剤(ルクソリチニブ)を所定濃度で添加して、2週間培養した。(a)クリゾチニブ添加培地でのコロニー数、(b)アレクチニブ添加培地でのコロニー数、(c)セリチニブ添加培地でのコロニー数、(d)TAE684添加培地でのコロニー数、(e)ルクソリチニブ添加培地でのコロニー数。*, p <0.05; †, p <0.01Effects of various ALK tyrosine kinase inhibitors and JAK2 tyrosine kinase inhibitors on colony formation of PTPN11 p.D61V mutation-positive and CD34-positive cells. PTPN11 p.D61V mutation-positive and CD34-positive cells (1 × 10 3 ) in the cytokine (+) or (-) medium, various ALK tyrosine kinase inhibitors (Alectinib, seritinib or TAE684) or JAK2 tyrosine kinase inhibitors ( Luxoritinib) was added at a predetermined concentration and cultured for 2 weeks. (A) colony number in crizotinib-supplemented medium, (b) colony number in alectinib-supplemented medium, (c) colony number in ceritinib-supplemented medium, (d) colony number in TAE684-supplemented medium, (e) lucsolitinib-supplemented medium Number of colonies at. *, p <0.05; ,, p <0.01
1.若年性骨髄単球性白血病(JMML)の治療
 本発明の第1の局面は若年性骨髄単球性白血病(JMML)の治療薬及びその用途に関する。「治療薬」とは、標的の疾病ないし病態(即ちJMML)に対する治療的又は予防的効果を示す医薬のことをいう。治療的効果には、標的疾患/病態に特徴的な症状又は随伴症状を緩和すること(軽症化)、症状の悪化を阻止ないし遅延すること等が含まれる。後者については、重症化を予防するという点において予防的効果の一つと捉えることができる。このように、治療的効果と予防的効果は一部において重複する概念であり、明確に区別して捉えることは困難であり、またそうすることの実益は少ない。尚、予防的効果の典型的なものは、標的疾患/病態に特徴的な症状の再発を阻止ないし遅延することである。標的疾患/病態に対して何らかの治療的効果又は予防的効果、或いはこの両者を示す限り、標的疾患/病態に対する治療薬に該当する。
1. Treatment of Juvenile Myelomonocytic Leukemia (JMML) The first aspect of the present invention relates to a therapeutic agent for juvenile myelomonocytic leukemia (JMML) and its use. "Therapeutic agent" refers to a drug that exhibits a therapeutic or prophylactic effect on a target disease or condition (ie, JMML). Therapeutic effects include alleviation of symptoms or concomitant symptoms characteristic of the target disease / pathology (reduction of symptoms), prevention or delay of deterioration of symptoms, and the like. The latter can be regarded as one of the preventive effects in terms of preventing the aggravation. Thus, therapeutic effects and preventive effects are partially overlapping concepts, so it is difficult to distinguish them clearly, and there are few benefits to doing so. A typical preventive effect is to prevent or delay the recurrence of symptoms characteristic of the target disease / pathology. As long as it exhibits some therapeutic effect or preventive effect or both for the target disease / pathology, it is a therapeutic agent for the target disease / pathology.
 本発明はALKチロシンキナーゼ阻害剤がin vitro及びin vivoでJMMLに対して薬効を示したという、驚くべき事実に基づく。ALK(Anaplastic Lymphoma Kinase)は受容体型チロシンキナーゼであり、CD246とも呼ばれる。ALK遺伝子と他の遺伝子が融合したALK融合遺伝子(EML4-ALK、TFG-ALK、KIF5B-ALK等)は、非小細胞肺がんの一部の症例等に認められる。ALK融合遺伝子ではALKチロシンキナーゼが恒常的に異常活性化し、がん化を引き起こす。ALK融合遺伝子を治療標的とした治療薬(ALKチロシンキナーゼ阻害剤)がいくつか開発されており、臨床応用されている(例えば非小細胞性肺がんの治療へのクリゾチニブの適用)。 The present invention is based on the surprising fact that ALK tyrosine kinase inhibitors have shown efficacy against JMML in vitro and in vivo. ALK (Anaplastic Lymphoma Kinase) is a receptor-type tyrosine kinase, also called CD246. An ALK fusion gene (EML4-ALK, TFG-ALK, KIF5B-ALK, etc.) in which the ALK gene and other genes are fused is found in some cases of non-small cell lung cancer, etc. In the ALK fusion gene, ALK tyrosine kinase is constitutively aberrantly activated to cause canceration. Several therapeutic agents (ALK tyrosine kinase inhibitors) that target the ALK fusion gene have been developed and are clinically applied (for example, application of crizotinib to treatment of non-small cell lung cancer).
 ALKチロシンキナーゼ阻害剤の例を挙げるとクリゾチニブ(Crizotinib)、アレクチニブ(Alectinib)、セリチニブ(Ceritinib)、及びTAE684である。JMMLの症例の中にROS1(c-ros oncogene 1)融合遺伝子(TBL1XR1-ROS1)陽性が認められた事実と、ALK及びROS1に対する阻害剤であるクリゾチニブがJMMLに薬効を示した事実に基づき、好ましくはROS1に対しても阻害効果を示すALKチロシンキナーゼ阻害剤を用いる。即ち、好ましい態様では、ALKチロシンキナーゼ阻害剤として、ALK及びROS1に対するチロシンキナーゼ阻害剤が採用される。「ALK及びROS1に対するチロシンキナーゼ阻害剤」とは、少なくともALKとROS1に対して阻害活性を示すものであり、他のチロシンキナーゼに対する阻害活性の有無は特に問わない。「ALK及びROS1に対するチロシンキナーゼ阻害剤」に該当するALKチロシンキナーゼ阻害剤としては、クリゾチニブ、セリチニブ及びロラチニブを例示できる。 Examples of ALK tyrosine kinase inhibitors include crizotinib (Crizotinib), alectinib (Alectinib), ceritinib (Ceritinib), and TAE684. It is preferable based on the fact that a ROS1 (c-ros on cogene 1) fusion gene (TBL1XR1-ROS1) positive was found in cases of JMML and the fact that crizotinib, which is an inhibitor for ALK and ROS1, showed efficacy for JMML. Uses an ALK tyrosine kinase inhibitor that also exhibits an inhibitory effect on ROS1. That is, in a preferred embodiment, tyrosine kinase inhibitors against ALK and ROS1 are employed as ALK tyrosine kinase inhibitors. The “tyrosine kinase inhibitors against ALK and ROS1” show at least an inhibitory activity against ALK and ROS1, and the presence or absence of the inhibitory activity against other tyrosine kinases is not particularly limited. Examples of ALK tyrosine kinase inhibitors falling under “tyrosine kinase inhibitors against ALK and ROS1” include crizotinib, seritinib and lolatinib.
 ROS1は受容体型チロシンキナーゼの一種であり、ALKと同様にインスリン受容体ファミリーに属する。非小細胞性肺がんの症例においてROS1融合遺伝子(CD74-ROS1、SLC34A2-ROS1等)が同定されており、治療標的とされている。ROS1のチロシンキナーゼドメインは、ALKのチロシンキナーゼドメインに対して高い相同性を示す。 ROS1 is a type of receptor tyrosine kinase and, like ALK, belongs to the insulin receptor family. ROS1 fusion genes (CD74-ROS1, SLC34A2-ROS1, etc.) have been identified and targeted as therapeutic targets in cases of non-small cell lung cancer. The tyrosine kinase domain of ROS1 shows high homology to the tyrosine kinase domain of ALK.
 後述の実施例に示すようにALKチロシンキナーゼ阻害剤であるクリゾチニブは、新規融合遺伝子陽性のJMML細胞のみならず、新規融合遺伝子陰性のJMML細胞に対しても増殖抑制作用、即ち薬効を示した。この事実を考慮すれば、本発明の治療薬の対象(JMML患者)は特に限定されるものではなく、本発明の治療薬はJMMLの治療に広く利用され得る。但し、好ましい治療対象の例として、ALK融合遺伝子(例えばDCTN1-ALK融合遺伝子、RANBP2-ALK融合遺伝子)又はROS1融合遺伝子(例えばTBL1XR1-ROS1融合遺伝子)陽性の症例を挙げることができる。 As shown in Examples described later, crizotinib, which is an ALK tyrosine kinase inhibitor, exhibited a growth inhibitory action, ie, a drug effect not only on novel fusion gene-positive JMML cells, but also on novel fusion gene-negative JMML cells. In light of this fact, the subject (JMML patient) of the therapeutic agent of the present invention is not particularly limited, and the therapeutic agent of the present invention can be widely used for the treatment of JMML. However, as an example of a preferable treatment subject, a case that is positive for ALK fusion gene (for example, DCTN1-ALK fusion gene, RANBP2-ALK fusion gene) or ROS1 fusion gene (for example, TBL1XR1-ROS1 fusion gene) can be mentioned.
 本発明の一態様では、JAK2チロシンキナーゼ阻害剤であるルクソリチニブ(Ruxolitinib)がin vitroでJMMLに対して薬効を示したという事実に基づき、JAK2チロシンキナーゼ阻害剤を用いる。ルクソリチニブはJAK1及びJAK2サブタイプに選択的に作用する。JAK2チロシンキナーゼ阻害剤の具体例は、ルクソリチニブ、パクリチニブ(Pacritinib)、バリシチニブ(Baricitinib)である。 In one aspect of the present invention, a JAK2 tyrosine kinase inhibitor is used based on the fact that the JAK2 tyrosine kinase inhibitor, Luxolitinib (Ruxolitinib) has shown efficacy against JMML in vitro. Luxoritinib selectively acts on JAK1 and JAK2 subtypes. Specific examples of JAK2 tyrosine kinase inhibitors are luxoritinib, pacritinib (Pacritinib), varisitinib (Baricitinib).
 本発明の治療薬の有効成分として、ALKチロシンキナーゼ阻害剤又はJAK2チロシンキナーゼ阻害剤の薬理学的に許容される塩を用いても良い。「薬理学的に許容される塩」は特に限定されるものではなく、様々な塩、例えば、酸付加塩、金属塩、アンモニウム塩、有機アミン付加塩、アミノ酸付加塩等の利用が想定される。酸付加塩の例としては塩酸塩、硫酸塩、硝酸塩、リン酸塩、臭化水素酸塩などの無機酸塩、酢酸塩、マレイン酸塩、フマル酸塩、クエン酸塩、ベンゼンスルホン酸塩、安息香酸塩、リンゴ酸塩、シュウ酸塩、メタンスルホン酸塩、酒石酸塩などの有機酸塩が挙げられる。金属塩の例としてはナトリウム塩、カリウム塩、リチウム塩などのアルカリ金属塩、マグネシウム塩、カルシウム塩などのアルカリ土類金属塩、アルミニウム塩、亜鉛塩が挙げられる。アンモニウム塩の例としてはアンモニウム、テトラメチルアンモニウムなどの塩が挙げられる。有機アミン付加塩の例としてはモルホリン付加塩、ピペリジン付加塩が挙げられる。アミノ酸付加塩の例としてはグリシン付加塩、フェニルアラニン付加塩、リジン付加塩、アスパラギン酸付加塩、グルタミン酸付加塩が挙げられる。 As an active ingredient of the therapeutic agent of the present invention, pharmacologically acceptable salts of ALK tyrosine kinase inhibitors or JAK2 tyrosine kinase inhibitors may be used. "Pharmaceutically acceptable salt" is not particularly limited, and use of various salts, for example, acid addition salts, metal salts, ammonium salts, organic amine addition salts, amino acid addition salts and the like is conceivable. . Examples of acid addition salts include mineral acid salts such as hydrochlorides, sulfates, nitrates, phosphates, hydrobromides, acetates, maleates, fumarates, citrates, benzenesulfonates, Organic acid salts such as benzoate, malate, oxalate, methanesulfonate, tartrate and the like can be mentioned. Examples of metal salts include alkali metal salts such as sodium salts, potassium salts and lithium salts, alkaline earth metal salts such as magnesium salts and calcium salts, aluminum salts and zinc salts. Examples of ammonium salts include salts such as ammonium and tetramethyl ammonium. Examples of organic amine addition salts include morpholine addition salts and piperidine addition salts. Examples of amino acid addition salts include glycine addition salts, phenylalanine addition salts, lysine addition salts, aspartic acid addition salts and glutamic acid addition salts.
 2種類以上の有効成分(ALKチロシンキナーゼ阻害剤若しくはその薬理学的に許容される塩、又はJAK2チロシンキナーゼ阻害剤若しくはその薬学的に許容される塩)を併用してもよい。また、上記の有効成分(ALKチロシンキナーゼ阻害剤若しくはその薬理学的に許容される塩、又はJAK2チロシンキナーゼ阻害剤若しくはその薬学的に許容される塩)に加えて、他の有効成分を混合してもよい。 Two or more active ingredients (ALK tyrosine kinase inhibitors or pharmacologically acceptable salts thereof, or JAK2 tyrosine kinase inhibitors or pharmaceutically acceptable salts thereof) may be used in combination. In addition to the above-mentioned active ingredients (ALK tyrosine kinase inhibitor or pharmacologically acceptable salt thereof, or JAK2 tyrosine kinase inhibitor or pharmaceutically acceptable salt thereof), other active ingredients are mixed. May be
 本発明の効果及び製剤的な安定性などを損なわない限り、用途又は剤形などに応じて、医薬品に通常使用され得る任意の成分を本発明の治療薬に適宜配合してもよい。配合できる成分は特に制限されないが、例えば、担体成分または添加剤などが挙げられ、固形剤における担体成分又は添加剤としては、例えば、賦形剤、崩壊剤、結合剤、滑沢剤、抗酸化剤、コーティング剤、着色剤、矯味剤、界面活性剤、可塑剤、甘味剤、着香剤の他、崩壊補助剤、発泡剤、吸着剤、防腐剤、湿潤剤、帯電防止剤などが例示できる。また、液剤における担体成分又は添加剤としては、例えば、溶剤、pH調整剤、清涼化剤、懸濁化剤、消泡剤、粘稠剤、溶解補助剤、界面活性剤、抗酸化剤、着色剤、甘味剤、着香剤の他、防腐・抗菌剤、キレート剤、可溶化剤若しくは溶解補助剤、安定化剤、流動化剤、乳化剤、増粘剤、緩衝剤、等張化剤、分散剤などが例示できる。 Depending on the use or dosage form, any component that can usually be used in medicine may be appropriately blended with the therapeutic agent of the present invention, as long as the effects and pharmaceutical stability of the present invention are not impaired. Ingredients which can be compounded are not particularly limited, and include, for example, carrier components or additives, and as carrier components or additives in a solid preparation, for example, excipients, disintegrants, binders, lubricants, antioxidants , Coating agents, coloring agents, flavoring agents, surfactants, plasticizers, sweeteners, flavoring agents, disintegrating aids, foaming agents, adsorbents, preservatives, preservatives, wetting agents, antistatic agents, etc. . Moreover, as a carrier component or additive in the liquid preparation, for example, a solvent, a pH adjuster, a refreshing agent, a suspending agent, an antifoamer, a thickener, a solubilizer, a surfactant, an antioxidant, a coloring agent Agents, sweeteners, flavoring agents, preservatives / antimicrobial agents, chelating agents, solubilizers or solubilizers, stabilizers, fluidizers, emulsifiers, thickeners, buffers, isotonic agents, dispersions Agents and the like.
 製剤化する場合の剤形も特に限定されない。剤形の例は錠剤(素錠、糖衣錠、口腔内速崩壊錠、口腔内速溶解錠、チュアブル錠、発泡錠、トローチ剤、ドロップ剤、フィルムコーティング錠などを含む)、丸剤、顆粒剤、細粒剤、散剤、硬カプセル剤、軟カプセル剤、シロップ剤、注射剤、外用剤、及び座剤である。ゼリー状で嚥下しやすく成形したり(例えばゼリー状)、消化管での吸収性を改善したりすることも可能である。また、固形剤、半固形剤、液剤(例えば、煎剤や浸剤など)のいずれであってもよい。好ましい剤形の一つは錠剤である。錠剤の中でも、下痢の症状を感じたときに水無しでも手軽に服用することのできる口腔内速崩壊錠、口腔内速溶解錠、チュアブル錠などのような剤形や、不快な味を遮断することができる糖衣錠やフィルムコーティング錠などのような剤形は特に好ましいといえる。 The dosage form for formulation is also not particularly limited. Examples of dosage forms include tablets (including uncoated tablets, sugar-coated tablets, intraoral fast disintegrating tablets, intraoral fast dissolving tablets, chewable tablets, effervescent tablets, troches, drops, film-coated tablets, etc.), pills, granules, Fine granules, powders, hard capsules, soft capsules, syrups, injections, external preparations and suppositories. It is also possible to shape in a jelly form so as to be easy to swallow (eg, jelly form) or to improve the absorbability in the digestive tract. In addition, it may be any of a solid preparation, a semi-solid preparation, and a liquid preparation (for example, a decoction or a dip). One preferred dosage form is a tablet. Among tablets, dosage forms such as intraoral fast disintegrating tablets, intraoral fast dissolving tablets and chewable tablets, which can be easily taken without water when feeling symptoms of diarrhea, and block off unpleasant taste Dosage forms such as sugar-coated tablets and film-coated tablets may be particularly preferred.
 本発明の治療薬は、当該技術分野における慣用の方法で或いはそれを応用して製造することができる。例えば、錠剤であれば、粉末状の活性成分と製薬上許容される担体成分(賦形剤など)とを混合し、圧縮成形することにより調製でき(直打法)、また、ドロップ剤は型に注入する方法で調製することができる。固形剤の内、顆粒剤などの粉粒剤は、種々の造粒法(押出造粒法、粉砕造粒法、乾式圧密造粒法、流動層造粒法、転動造粒法、高速攪拌造粒法など)により調製することができる。また、錠剤は、上記の造粒法と打錠法(湿式打錠法など)等を適宜組み合わせても調製できる(間接圧縮法)。更に、カプセル剤は、慣用の方法により、カプセル(軟質または硬質カプセル)内に粉粒剤(粉剤、顆粒剤など)を充填することにより調製できる。錠剤は、コーティングを施し、糖衣錠やフィルムコーティング錠としてもよい。更に、錠剤は単層錠であっても、二層錠などの積層錠であってもよい。液剤は、各成分を担体成分である水性媒体(精製水、熱精製水、エタノール含有精製水など)に溶解または分散させ、必要により加熱、濾過、布ごしまたは滅菌処理し、所定の容器に充填し、滅菌処理することなどにより調製できる。本発明の治療薬中の有効成分量は一般に剤形によって異なるが、所望の投与量を達成できるように有効成分量を例えば約0.01重量%~約95重量%の範囲内で設定する。 The therapeutic agents of the present invention can be manufactured by or in a manner conventional in the art. For example, if it is a tablet, it can be prepared by mixing the powdery active ingredient with a pharmaceutically acceptable carrier component (excipient etc.) and compression molding (direct compression method), and the drop agent is a mold Can be prepared by Among solid agents, powder granules such as granules, various granulation methods (extrusion granulation method, pulverization granulation method, dry consolidation granulation method, fluidized bed granulation method, rolling granulation method, high speed stirring It can be prepared by granulation method etc.). Tablets can also be prepared by combining the above granulation method and tableting method (wet tableting method etc.) as appropriate (indirect compression method). Furthermore, capsules can be prepared by filling powders (powders, granules, etc.) into capsules (soft or hard capsules) by a conventional method. The tablets may be coated and formed into sugar-coated tablets or film-coated tablets. Furthermore, the tablet may be a single layer tablet or a laminated tablet such as a double layer tablet. The solution is prepared by dissolving or dispersing each component in a carrier component such as an aqueous medium (purified water, purified hot water, purified water containing ethanol, etc.), heating, filtering, clothing or sterilizing as necessary, and placing in a predetermined container It can be prepared by filling and sterilizing. Although the amount of active ingredient in the therapeutic agent of the present invention generally varies depending on the dosage form, the amount of active ingredient is set, for example, within the range of about 0.01% by weight to about 95% by weight so as to achieve the desired dose.
 本発明の治療薬はその剤形に応じて経口投与又は非経口投与(静脈内、動脈内、皮下、皮内、筋肉内、又は腹腔内注射、経皮、経鼻、経粘膜など)によって患者に適用される。また、全身的な投与と局所的な投与のいずれも採用し得る。これらの投与経路は互いに排他的なものではなく、任意に選択される二つ以上を併用することもできる(例えば、経口投与と同時に又は所定時間経過後に静脈注射等を行う等)。本発明の治療薬には、期待される治療効果を得るために必要な量(即ち治療上有効量)の有効成分が含有される。本発明の治療薬中の有効成分量は一般に剤形によって異なるが、所望の投与量を達成できるように有効成分量を例えば約0.1重量%~約99重量%の範囲内で設定する。 The therapeutic agent of the present invention can be administered orally or parenterally (intravenous, intraarterial, subcutaneous, intradermal, intramuscular, or intraperitoneal injection, transdermal, transnasal, transmucosal, etc.) depending on its dosage form. Applies to Also, systemic and local administration may be employed. These administration routes are not mutually exclusive, and two or more optionally selected can be used in combination (for example, intravenous injection or the like simultaneously with oral administration or after a predetermined time has elapsed). The therapeutic agent of the present invention contains the active ingredient in an amount necessary to obtain the expected therapeutic effect (ie, a therapeutically effective amount). Although the amount of the active ingredient in the therapeutic agent of the present invention generally varies depending on the dosage form, the amount of the active ingredient is set, for example, within the range of about 0.1% by weight to about 99% by weight so as to achieve the desired dose.
 本発明の治療薬の投与量は、期待される治療効果が得られるように設定される。治療上有効な投与量の設定においては一般に症状、患者の年齢、性別、及び体重などが考慮される。当業者であればこれらの事項を考慮して適当な投与量を設定することが可能である。投与量の一例として、クリゾチニブであれば、成人では1日当たり500mg、小児では1日当たり280mg/m2を挙げることができる。投与スケジュールとしては例えば1日1回~数回、2日に1回、或いは3日に1回などを採用できる。投与スケジュールの作成においては、患者の病状や有効成分の効果持続時間などを考慮することができる。 The dose of the therapeutic agent of the present invention is set so as to obtain the expected therapeutic effect. In setting a therapeutically effective dose, the condition, age, sex, and weight of the patient, etc. are generally considered. Those skilled in the art can set appropriate dosages in consideration of these matters. As an example of the dosage, for crizotinib, 500 mg per day for adults and 280 mg / m 2 per child can be mentioned. As the administration schedule, for example, once to several times a day, once every two days, or once every three days can be adopted. In preparation of the administration schedule, the patient's medical condition, the duration of the effect of the active ingredient and the like can be considered.
 本発明の治療薬と他の薬剤を併用することにしてもよい。例えば、JMMLに対する標準的な化学療法に本発明の治療薬を追加し、相加的ないし相乗的効果の発揮を図る。様々な併用態様が想定され、併用される薬剤の種類や数、投与スケジュール等は特に限定されない。併用される薬剤の代表例は抗がん剤であるが、分子標的治療薬、細胞療法等を併用することにしてもよい。抗がん剤の例は、アルキル化剤(例えばシクロフォスファミド、イホスファミド、メルファラン)、代謝拮抗剤(例えばメトトレキサート、6-メルカプトプリン、シタラビン、フルダラビン、クロファラビン)、抗がん抗生物質(例えばダウノルビシン、ドキソルビシン、ピラルビシン、イダルビシン、ミトキサントロン)、植物アルカロイド(例えばビンクリスチン、ビンブラスチン、ビンデシン、エトポシド)、脱メチル化剤(例えばアザシチジン)である。尚、化学療法では、作用機序や副作用が異なる数種類の治療薬を組み合わせる多剤併用療法を行うのが基本となる。分子標的治療薬の例は、MEK阻害薬、JAK阻害薬、GM-CSF阻害薬等が挙げられる。また細胞療法の例としては、CAR-T療法等が挙げられる。 The therapeutic agent of the present invention may be used in combination with other agents. For example, the therapeutic agent of the present invention is added to standard chemotherapy for JMML to exert additive or synergistic effects. Various combination modes are assumed, and the type and number of drugs used in combination, the administration schedule and the like are not particularly limited. Although a representative example of the drug used in combination is an anticancer drug, a molecule-targeted therapeutic drug, cell therapy and the like may be used in combination. Examples of anti-cancer agents are alkylating agents (eg cyclophosphamide, ifosfamide, melphalan), anti-metabolites (eg methotrexate, 6-mercaptopurine, cytarabine, fludarabine, clofarabine), anti-cancer antibiotics (eg Daunorubicin, doxorubicin, pirarubicin, idarubicin, mitoxantrone, plant alkaloids (eg vincristine, vinblastine, vindesine, etoposide), demethylating agents (eg azacitidine). In addition, in the case of chemotherapy, it is basic to perform multidrug therapy combining several kinds of therapeutic agents having different action mechanisms and side effects. Examples of molecule-targeted therapeutic agents include MEK inhibitors, JAK inhibitors, GM-CSF inhibitors and the like. As an example of cell therapy, CAR-T therapy and the like can be mentioned.
 以上の記述から明らかな通り、本出願は、JMMLの患者に対してALKチロシンキナーゼ阻害剤又はJAK2チロシンキナーゼ阻害剤を治療上有効量投与することを特徴とする、JMMLの治療法も提供する。 As apparent from the above description, the present application also provides a method of treating JMML, which comprises administering a therapeutically effective amount of an ALK tyrosine kinase inhibitor or a JAK2 tyrosine kinase inhibitor to a JMML patient.
2.JMMLの検査
 本発明の第2の局面はJMMLの検査に関する。具体的には、以下のステップ(1)~(3)を含む、JMMLの検査方法が提供される。
 (1)若年性骨髄単球性白血病患者から単離した白血病細胞を含む検体を用意するステップ
 (2)前記検体において、ALK又はROS1の融合遺伝子、又は該融合遺伝子がコードする融合タンパク質の存否を検出するステップ
 (3)前記融合遺伝子又は前記融合タンパク質が検出された場合、ALKチロシンキナーゼ阻害剤による治療に適合すると判定するステップ
2. Inspection of JMML The second aspect of the present invention relates to inspection of JMML. Specifically, a JMML inspection method is provided, which includes the following steps (1) to (3).
(1) preparing a sample containing leukemia cells isolated from a patient with juvenile myelomonocytic leukemia (2) in the sample, the presence or absence of a fusion gene of ALK or ROS1 or a fusion protein encoded by the fusion gene Detecting (3) determining that the fusion gene or the fusion protein is detected as compatible with treatment with an ALK tyrosine kinase inhibitor
 ステップ(1)では、検査に使用する検体を用意する。JMML患者から単離した白血病細胞を含む検体が用いられる。白血病細胞を含む限り、検体の種類や由来などは特に限定されない。例えば、骨髄から調製した細胞画分(骨髄細胞)や末梢血などの血液から調製した細胞画分(血液細胞)を検体として用いる。検体は、本発明の実施に先立って調製される。即ち、本発明の検査方法は、検体を調製するための骨髄等を患者から単離(採取)するステップを含むものではない。 In step (1), a sample to be used for the test is prepared. A sample containing leukemia cells isolated from JMML patients is used. The type and origin of the sample are not particularly limited as long as they contain leukemia cells. For example, a cell fraction (bone marrow cells) prepared from bone marrow or a cell fraction (blood cells) prepared from blood such as peripheral blood is used as a sample. Samples are prepared prior to the practice of the present invention. That is, the test method of the present invention does not include the step of isolating (collecting) bone marrow and the like for preparing a sample from a patient.
 ステップ(2)では、検体におけるALK融合遺伝子(例えばDCTN1-ALK融合遺伝子又はRANBP2-ALK融合遺伝子)又はROS1融合遺伝子(例えばTBL1XR1-ROS1融合遺伝子)、或いは当該融合遺伝子(例えばDCTN1-ALK融合遺伝子、TBL1XR1-ROS1融合遺伝子又はRANBP2-ALK融合遺伝子のいずれか)をコードする融合タンパク質の存否を検出する。前者の態様(融合遺伝子を検出)ではゲノムDNA又はmRNAが検出対象となる。ゲノムDNAを検出対象とした場合には、融合遺伝子の形成の有無が検出されることになる。他方、mRNAを検出対象とした場合には、融合遺伝子の形成の有無又は発現の有無、或いはこの両者が検出されることになる。融合遺伝子の検出手段は特に限定されない。例えば、RT-PCR(reverse transcription-polymerase chain reaction)法、PCR法、PCR-RFLP(restriction fragment length polymorphism)法、PCR-SSCP(single strand conformation polymorphism)法、RNAシーケンス解析、ターゲットシーケンス解析、FISH(Fluorescence in situ hybridization)法、全ゲノム解析、Invader(登録商標、Third Wave Technologies社)法、LAMP(Loop-Mediated Isothermal Amplification)、CGH(Comparative Genomic Hybridization)法、ドットハイブリダイゼーション法、ノーザンハイブリダイゼーション法等の検出手段を利用できる。ゲノムDNA及びmRNAの抽出、精製などは公知の方法で行うことができる。調製用のキットも各種市販されており、それらを利用することにしてもよい。 In step (2), the ALK fusion gene (eg, DCTN1-ALK fusion gene or RANBP2-ALK fusion gene) or ROS1 fusion gene (eg, TBL1XR1-ROS1 fusion gene) in the sample, or the fusion gene (eg, DCTN1-ALK fusion gene) The presence or absence of a fusion protein encoding either TBL1XR1-ROS1 fusion gene or RANBP2-ALK fusion gene) is detected. In the former embodiment (detection of fusion gene), genomic DNA or mRNA is to be detected. When genomic DNA is to be detected, the presence or absence of the formation of a fusion gene is detected. On the other hand, when mRNA is to be detected, the presence or absence of formation of the fusion gene, the presence or absence of expression, or both of them will be detected. The means for detecting the fusion gene is not particularly limited. For example, RT-PCR (reverse transcription-polymerase chain reaction) method, PCR method, PCR-RFLP (restriction fragment length polymorphism) method, PCR-SSCP (single strand conformation polymorphism) method, RNA sequence analysis, target sequence analysis, FISH ( Fluorescence in situ hybridization, whole genome analysis, Invader (registered trademark, Third Wave Technologies) method, LAMP (Loop-Mediated Isothermal Amplification), CGH (Comparative Genomic Hybridization), dot hybridization, Northern hybridization, etc. Means of detection can be used. Extraction and purification of genomic DNA and mRNA can be performed by known methods. A variety of kits for preparation are also commercially available, and they may be used.
 DCTN1-ALK融合遺伝子、TBL1XR1-ROS1融合遺伝子及びRANBP2-ALK融合遺伝子は、本発明者らの検討によって見出された、JMML患者由来の新規な融合遺伝子である。図2にこれらの融合遺伝子の切断点及び構造を示した。当該情報に基づき、各融合遺伝子の検出に使用するプライマーやプローブを設計・調製することができる。尚、核酸増幅反応を利用した検出手段(上掲のRT-PCR法やPCR法)に利用可能なプライマーの具体例は後述する。 The DCTN1-ALK fusion gene, the TBL1XR1-ROS1 fusion gene and the RANBP2-ALK fusion gene are novel fusion genes derived from JMML patients, which were found by the present inventors. The breakpoints and structures of these fusion genes are shown in FIG. Based on the information, primers and probes to be used for detection of each fusion gene can be designed and prepared. In addition, specific examples of primers that can be used for detection means (RT-PCR method and PCR method described above) utilizing nucleic acid amplification reaction will be described later.
 後者の態様(融合タンパク質の検出)の場合、例えば、免疫学的測定法によって融合タンパク質を検出することができる。免疫学的測定法によれば迅速で感度のよい検出が可能となる。また、操作も簡便である。免疫学的測定法では、融合タンパク質に対する抗体が使用され、当該抗体の結合性(結合量)を指標として融合タンパク質が検出される。免疫学的測定法の例は、ウエスタンブロット法、免疫組織化学、蛍光免疫測定法(FIA法)、酵素免疫測定法(EIA法)、放射免疫測定法(RIA法)、フローサイトメトリー(FCM)、免疫沈降法、イムノクロマト法、ELISA法等である。 In the latter case (fusion protein detection), for example, the fusion protein can be detected by immunoassay. Immunological assays allow for rapid and sensitive detection. Also, the operation is simple. In the immunological assay, an antibody against a fusion protein is used, and the fusion protein is detected with the binding ability (binding amount) of the antibody as an index. Examples of immunoassays include Western blotting, immunohistochemistry, fluorescence immunoassay (FIA), enzyme immunoassay (EIA), radioimmunoassay (RIA), flow cytometry (FCM) Immunoprecipitation, immunochromatography, ELISA, etc.
 ステップ(3)では、ステップ(2)の検出結果に基づき、ALKチロシンキナーゼ阻害剤による治療への適合性(即ち、治療すべき患者であるか否か)を評価する。具体的には、ステップ(2)における検出対象である融合遺伝子又は融合タンパク質が検出された場合に「ALKチロシンキナーゼ阻害剤による治療に適合する」と判定する。このように、治療方針の決定又はそのための補助的情報ないし根拠を得るための指標として、上記融合遺伝子の形成で特徴付けられる遺伝学的異常(以下では、「本発明の遺伝学的異常」と呼ぶことがある)が用いられる。ここでの判定は、その判定基準から明らかな通り、医師や検査技師など専門知識を有する者の判断によらずとも自動的/機械的に行うことができる。 In step (3), based on the detection results of step (2), the suitability for treatment with ALK tyrosine kinase inhibitor (that is, whether or not it is a patient to be treated) is evaluated. Specifically, when a fusion gene or fusion protein to be detected in step (2) is detected, it is determined as "compatible with treatment with an ALK tyrosine kinase inhibitor". Thus, a genetic abnormality characterized by the formation of the above-mentioned fusion gene (hereinafter referred to as "the genetic abnormality of the present invention" and the like as an index for determining a therapeutic course or obtaining supplementary information or basis therefor. Is sometimes used). The determination here can be performed automatically / mechanically without depending on the judgment of a person having expert knowledge such as a doctor or a laboratory technician, as is clear from the determination criteria.
 本発明の検査方法は治療開始前又は治療開始後に実施される。本発明の検査方法を治療開始前に実施し、その結果を利用すれば、より適切な処置が可能になる。即ち、治療方針を策定及び決定するための手段として本発明を利用できる。一方、治療開始後に本発明の検査方法を実施すれば、例えば、治療方針の変更に本発明を利用できる。即ち本発明は、治療方針を見直す際の科学的根拠を与える手段としても有用である。本発明の検査方法を経時的に複数回実施し、治療効果のモニターや治療方針の改訂/見直しを図ることにしてもよい。 The examination method of the present invention is carried out before or after the start of treatment. If the test method of the present invention is performed before the start of treatment and the results are used, more appropriate treatment becomes possible. That is, the present invention can be used as a means for formulating and determining a treatment plan. On the other hand, if the test method of the present invention is performed after the start of treatment, for example, the present invention can be used to change the treatment policy. That is, the present invention is also useful as a means to provide a scientific basis for reviewing a treatment plan. The test method of the present invention may be carried out several times sequentially to monitor the treatment effect and revise / revision the treatment policy.
3.薬剤のスクリーニング方法
 本発明は更に、JMMLにおいて新たな治療標的となる融合遺伝子を同定した成果に基づき、JMMLの治療に有効な物質のスクリーニング方法を提供する。本発明のスクリーニング方法で同定された物質は、特に、ALK融合遺伝子(例えばDCTN1-ALK融合遺伝子、RANBP2-ALK融合遺伝子)又はROS1融合遺伝子(例えばTBL1XR1-ROS1融合遺伝子)陽性の患者に対する治療薬又は治療薬候補として有望といえる。
3. Method of Screening for Drug The present invention further provides a method of screening for a substance effective for the treatment of JMML, based on the results of identification of a fusion gene as a new therapeutic target in JMML. The substance identified by the screening method of the present invention is particularly a therapeutic agent for patients who are positive for ALK fusion gene (eg, DCTN-ALK fusion gene, RANBP2-ALK fusion gene) or ROS1 fusion gene (eg, TBL1XR1-ROS1 fusion gene) or It is promising as a therapeutic drug candidate.
 本発明のスクリーニング方法では以下のステップ(i)~(iii)を行う。
 (i)ALK又はROS1の融合遺伝子を発現する細胞を用意するステップ
 (ii)試験物質の存在下、前記細胞を培養するステップ;
 (iii)細胞の生存数又はコロニー数を測定し、前記試験物質の有効性を判定するステップ。
In the screening method of the present invention, the following steps (i) to (iii) are performed.
(i) preparing a cell expressing a fusion gene of ALK or ROS1 (ii) culturing the cell in the presence of a test substance;
(iii) measuring the number of viable cells or the number of colonies to determine the efficacy of the test substance.
 本発明のスクリーニング方法では、まず、ALK融合遺伝子(例えばDCTN1-ALK融合遺伝子、RANBP2-ALK融合遺伝子)又はROS1融合遺伝子(例えばTBL1XR1-ROS1融合遺伝子)を発現する細胞を用意する(ステップ(i))。換言すれば、新規融合遺伝子陽性の細胞を用意する。例えば、樹立された血液細胞株(具体的には、NALM6、HEK293T等)に新規融合遺伝子を導入して強制発現させたものを、ここでの細胞として使用することができる。新規融合遺伝子陽性の患者から単離した細胞、当該細胞の継代細胞、又は当該細胞から樹立した細胞株を使用することも可能である。 In the screening method of the present invention, first, cells expressing an ALK fusion gene (for example, DCTN1-ALK fusion gene, RANBP2-ALK fusion gene) or a ROS1 fusion gene (for example, TBL1XR1-ROS1 fusion gene) are prepared (Step (i) ). In other words, new fusion gene positive cells are prepared. For example, those obtained by introducing a novel fusion gene into an established blood cell line (specifically, NALM6, HEK293T, etc.) and forcibly expressing them can be used as the cells here. It is also possible to use cells isolated from a patient who is positive for the novel fusion gene, passage cells of the cells, or cell lines established from the cells.
 ステップ(ii)では、試験物質の存在下、用意した細胞を培養する。使用する細胞の数は特に限定されず、検出感度、実験設備等を考慮して定めることができる。例えば、1回のスクリーニング操作に1×102個~1×106個の細胞を用いることができる。 In step (ii), the prepared cells are cultured in the presence of the test substance. The number of cells to be used is not particularly limited, and can be determined in consideration of detection sensitivity, experimental equipment, and the like. For example, 1 × 10 2 to 1 × 10 6 cells can be used in one screening operation.
 培養液中の試験物質の存在量(添加量)は任意に設定可能であるが、正常細胞を同様の条件で培養した際に致命的な影響を与えない範囲で添加量を設定するとよい。当業者であれば予備実験によって適切な添加量を設定可能である。 The amount (addition amount) of the test substance in the culture solution can be set arbitrarily, but the addition amount may be set within a range that does not have a fatal effect when normal cells are cultured under the same conditions. Those skilled in the art can set appropriate addition amounts by preliminary experiments.
 培養時間は、試験物質の作用・効果が十分に評価できるように設定されるものであるが、特に限定されない。例えば、培養時間を10分~1月の範囲内で設定することができる。尚、目的の作用・効果を示す物質が見出された場合には、その物質が作用・効果を示すまでに要する時間を基に、以降のスクリーニングにおける培養時間を設定することができる。 The culture time is set so that the action and effect of the test substance can be sufficiently evaluated, but is not particularly limited. For example, the culture time can be set in the range of 10 minutes to January. When a substance exhibiting a desired action / effect is found, the culture time in the subsequent screening can be set based on the time required for the substance to exhibit the action / effect.
 試験物質としては様々な分子サイズの有機化合物又は無機化合物を用いることができる。有機化合物の例として、核酸、ペプチド、タンパク質、脂質(単純脂質、複合脂質(ホスホグリセリド、スフィンゴ脂質、グリコシルグリセリド、セレブロシド等)、プロスタグランジン、イソプレノイド、テルペン、ステロイド、ポリフェノール、カテキン、ビタミンを例示できる。試験物質は天然物由来であっても、或いは合成によるものであってもよい。後者の場合には例えばコンビナトリアル合成の手法を利用して効率的なスクリーニング系を構築することができる。細胞抽出液、培養上清などを試験物質として用いてもよい。また、既存の薬剤、栄養食品、食品添加物等を試験物質としてもよい。2種類以上の試験物質を同時に添加することにより、試験物質間の相互作用、相乗作用などを調べることにしてもよい。 As the test substance, organic compounds or inorganic compounds of various molecular sizes can be used. Examples of organic compounds include nucleic acids, peptides, proteins, lipids (simple lipids, complex lipids (phosphoglycerides, sphingolipids, glycosylglycerides, cerebrosides, etc.), prostaglandins, isoprenoids, terpenes, steroids, polyphenols, catechins, vitamins The test substance may be derived from natural products or synthetically, In the latter case, an efficient screening system can be constructed using, for example, a combinatorial synthesis technique. Extracts, culture supernatants, etc. may be used as a test substance, and existing drugs, nutritional foods, food additives, etc. may be used as test substances etc. Testing by simultaneously adding two or more types of test substances Interactions between substances, synergy, etc. may be examined.
 ステップ(ii)に続くステップ(iii)では、培養後の細胞の生存数又はコロニー数を測定し、試験物質の細胞増殖阻害活性(細胞傷害活性)、即ち有効性を判定する。例えば、試験物質の存在下で培養する細胞(試験群)と、試験物質の非存在下で培養する細胞(対照群)とを用意し、各群について細胞生存数又はコロニー数を測定し、比較する。比較結果から、試験物質が存在した結果として細胞生存率/コロニー数が変化した程度が求められる。対照群に比較して試験群の生細胞数/コロニー数が少ない(細胞生存率が低い)場合、即ち試験物質に細胞増殖阻害活性が認められた場合、当該試験物質がJMMLに対して有効であると判定できる。一態様では、当該場合において、当該試験物質が新規融合遺伝子陽性の症例に対して有効であると判定する。試験群において生存率の顕著な低下が認められた場合、当該試験物質の有効性は特に高いと判定できる。対照群を設定するのではなく、試験群における培養前後の細胞数を比較することによっても、試験物質の有効性を判定することが可能である。但し、上記の如き対照群を設定した方が信頼性の高い結果を得ることができる。 In step (iii) following step (ii), the number of viable cells or the number of colonies after culture is measured to determine the cell growth inhibitory activity (cytotoxic activity) of the test substance, that is, the effectiveness. For example, cells cultured in the presence of the test substance (test group) and cells cultured in the absence of the test substance (control group) are prepared, and the number of surviving cells or the number of colonies is measured for each group and compared. Do. From the comparison results, the extent to which the cell viability / number of colonies has changed as a result of the presence of the test substance is determined. The test substance is effective against JMML when the number of living cells / colony number in the test group is small (cell viability is low) as compared to the control group, ie, when the test substance shows cell growth inhibitory activity. It can be determined that there is. In one aspect, in this case, it is determined that the test substance is effective against a novel fusion gene positive case. If a significant decrease in the survival rate is observed in the test group, it can be determined that the efficacy of the test substance is particularly high. It is also possible to determine the efficacy of the test substance by comparing the number of cells before and after culture in the test group, instead of setting a control group. However, setting the control group as described above can give more reliable results.
 好ましい一態様では、サイトカイン(例えばGM-CSFを使用することができる)の存在下で細胞を培養する試験群(サイトカイン添加群)と非存在下で細胞を培養する試験群(サイトカイン非添加群)を設け、両試験群の生細胞数/コロニー数に基づき判定する。このようにすれば、サイトカインが豊富に存在する生体内に近い環境での評価が可能である。尚、この態様においても、各々について対照群(試験物質の非存在下で細胞を培養)を設け、試験群と対照群を比較評価した上で判定することが好ましい。 In a preferred embodiment, a test group (cultured with cytokine) in which cells are cultured in the presence of a cytokine (for example, GM-CSF can be used) and a test (cultured with no cytokine) group in which cells are cultured in the absence And determine based on the number of viable cells / number of colonies in both test groups. In this way, it is possible to evaluate in an environment close to in vivo where cytokines are abundant. Also in this embodiment, it is preferable to provide a control group (in which the cells are cultured in the absence of the test substance) for each, and to make a judgment after comparing and evaluating the test group and the control group.
 本発明のスクリーニング方法で選抜された物質(スクリーニング結果物)は、JMML(特に新規融合遺伝子陽性の症例)に対する医薬の有効成分として有力な候補(リード化合物)となる。選抜された物質が十分な薬効を有する場合にはそのまま医薬の有効成分として使用することができる。一方で十分な薬効を有しない場合であっても化学的修飾などの改変を施してその薬効を高めた上で医薬の有効成分としての使用に供することができる。勿論、十分な薬効を有する場合であっても、更なる薬効の増大を目的として同様の改変を施してもよい。 The substance (screening product) selected by the screening method of the present invention is a strong candidate (lead compound) as an active ingredient of a medicine for JMML (particularly, a case where a novel fusion gene is positive). When the selected substance has sufficient medicinal effects, it can be used as it is as an active ingredient of a medicine. On the other hand, even if the drug does not have sufficient medicinal effects, it can be used as an active ingredient of a medicine after being modified such as chemical modification to enhance its medicinal effects. Of course, even in the case of having sufficient efficacy, similar modifications may be made for the purpose of further enhancing the efficacy.
4.融合遺伝子、融合タンパク質
 本発明は更に、JMMLの発症原因となる、3種類の新規融合遺伝子、即ち、DCTN1-ALK融合遺伝子、TBL1XR1-ROS1融合遺伝子、及びRANBP2-ALK融合遺伝子も提供する。DCTN1-ALK融合遺伝子は、DCTN1遺伝子では エクソン28に切断点が存在し、ALK遺伝子ではイントロン19に切断点が存在しており、DCTN1遺伝子のエクソン26までと、ALK遺伝子のエクソン20以降が連結された構造を有する。同様に、TBL1XR1-ROS1融合遺伝子は、TBL1XR1遺伝子ではイントロン12に切断点が存在し、ROS1遺伝子ではエクソン36に切断点が存在しており、TBL1XR1遺伝子のイントロン12の一部までと、ROS1遺伝子のエクソン36以降が連結された構造を有する。また、RANBP2-ALK融合遺伝子は、RANBP2遺伝子ではイントロン18に切断点が存在し、ALK遺伝子ではイントロン19   に切断点が存在し、RANBP2遺伝子のエクソン18までと、ALK遺伝子のエクソン20以降が連結された構造を有する。
4. Fusion Gene, Fusion Protein The present invention further provides three novel fusion genes responsible for the onset of JMML, ie, a DCTN1-ALK fusion gene, a TBL1XR1-ROS1 fusion gene, and a RANBP2-ALK fusion gene. The DCTN1-ALK fusion gene is   A breakpoint is present in exon 28, a breakpoint is present in intron 19 in the ALK gene, and has a structure in which up to exon 26 of the DCTN gene and exon 20 or later of the ALK gene are linked. Similarly, the TBL1XR1-ROS1 fusion gene has a breakpoint in intron 12 in the TBL1XR1 gene, a breakpoint in exon 36 in the ROS1 gene, and a portion of the intron 12 of the TBL1XR1 gene and the ROS1 gene It has a structure in which exons 36 and beyond are linked. The RANBP2-ALK fusion gene has a breakpoint at intron 18 in the RANBP2 gene, a breakpoint at intron 19 in the ALK gene, and the exon 18 of the RANBP2 gene is linked to the exon 20 and beyond of the ALK gene It has the following structure.
 DCTN1-ALK融合遺伝子の典型的なゲノム塩基配列を配列番号1にcDNA塩基配列を配列番号2に、TBL1XR1-ROS1融合遺伝子の典型的なゲノム塩基配列を配列番号3にcDNA塩基配列を配列番号4に、RANBP2-ALK融合遺伝子の典型的なゲノム塩基配列を配列番号5にcDNA塩基配列を配列番号6にそれぞれ示す。 A typical genomic nucleotide sequence of a DCTN1-ALK fusion gene is a cDNA nucleotide sequence as SEQ ID NO: 1, a typical genomic nucleotide sequence of a TBL1XR1-ROS1 fusion gene as SEQ ID NO: 2, and a cDNA nucleotide sequence as SEQ ID NO: 3. The typical genomic nucleotide sequence of the RANBP2-ALK fusion gene is shown in SEQ ID NO: 5, and the cDNA nucleotide sequence is shown in SEQ ID NO: 6, respectively.
 本発明は新規融合遺伝子の発現産物である融合タンパク質も提供する。具体的にはDCTN1-ALK融合遺伝子によってコードされるDCTN1-ALK融合タンパク質、TBL1XR1-ROS1融合遺伝子によってコードされるTBL1XR1-ROS1融合タンパク質、及びRANBP2-ALK融合遺伝子によってコードされるRANBP2-ALK融合タンパク質が提供される。DCTN1-ALK融合タンパク質は、RANBP2由来のcoiled coilドメイン、ALK由来のキナーゼドメインを含む。同様に、TBL1XR1-ROS1融合タンパク質はTBL1XR1由来のFN typeIIIドメイン、ROS1由来のキナーゼドメインを含む。また、RANBP2-ALK融合タンパク質は、RANBP2由来のTPRドメイン、ALK由来のキナーゼドメインを含む。DCTN1-ALK融合タンパク質の典型的なアミノ酸配列を配列番号7に、TBL1XR1-ROS1融合タンパク質の典型的なアミノ酸配列を配列番号8に、RANBP2-ALK融合タンパク質の典型的なアミノ酸配列を配列番号9にそれぞれ示す。 The present invention also provides a fusion protein which is the expression product of a novel fusion gene. Specifically, a DCTN-ALK fusion protein encoded by a DCTN1-ALK fusion gene, a TBL1XR1-ROS1 fusion protein encoded by a TBL1XR1-ROS1 fusion gene, and a RANBP2-ALK fusion protein encoded by a RANBP2-ALK fusion gene Provided. The DCTN1-ALK fusion protein comprises a coiled coil domain from RANBP2, a kinase domain from ALK. Similarly, the TBL1XR1-ROS1 fusion protein contains an FN type III domain from TBL1XR1, a kinase domain from ROS1. In addition, the RANBP2-ALK fusion protein contains a TRP domain derived from RANBP2, a kinase domain derived from ALK. A typical amino acid sequence of a DCTN1-ALK fusion protein is shown in SEQ ID NO: 7, a typical amino acid sequence of a TBL1XR1-ROS1 fusion protein is shown in SEQ ID NO: 8, and a typical amino acid sequence of a RANBP2-ALK fusion protein is shown in SEQ ID NO: 9 It shows each.
 本発明の融合遺伝子及び融合タンパク質は、例えば、治療標的や診断マーカーとして、或いは治療剤の適合性判断の指標などとして有用である。 The fusion gene and fusion protein of the present invention are useful, for example, as a therapeutic target or a diagnostic marker, or as an indicator for judging the suitability of a therapeutic agent.
 本発明の融合遺伝子及び融合タンパク質は、例えば、該当する融合遺伝子陽性の患者から分離、精製することによって、単離された状態に調製することができる。また、本明細書が開示する配列情報に基づき、化学合成、遺伝子工学的手法などによって調製してもよい。 The fusion gene and fusion protein of the present invention can be prepared in an isolated state, for example, by separating and purifying from a patient who is positive for the corresponding fusion gene. Alternatively, they may be prepared by chemical synthesis, genetic engineering techniques, etc. based on the sequence information disclosed herein.
 尚、本明細書で特に言及しない事項(条件、操作方法など)については常法に従えばよく、例えばMolecular Cloning(Third Edition, Cold Spring Harbor Laboratory Press, New York)、Current protocols in molecular biology(edited by Frederick M. Ausubel et al., 1987)、Current protocols in Immunology, John Wiley& Sons Inc等を参考にすることができる。 Incidentally, matters not specifically mentioned in the present specification (conditions, operation methods, etc.) may be in accordance with ordinary methods, for example, Molecular Cloning (Third Edition, Cold Spring Harbor Laboratory Press, New York), Current protocols in molecular biology (edited) by Frederick M. Ausubel et al., 1987), Current protocols in Immunology, John Wiley & Sons Inc, etc. can be referred to.
 JMMLに対する新たな分子標的治療の創出を目指し、以下の検討を行った。
1.包括的遺伝子解析
(1)方法
 135例のJMML患者、及び15例のヌーナン症候群関連骨髄増殖性疾患(NS/MPD)患者の白血病細胞を含む骨髄、又は末梢血中の単核球から、QIAamp DNA Blood Mini Kit(キアゲン社)を用いてDNA、RNeasy Mini Kit(キアゲン社)を用いてRNAをそれぞれ抽出した。Agilent 2200 TapeStationとRNA ScreenTape(アジレント社)を用いてRNAの分解度を確認した。
In order to create a new molecular targeted therapy for JMML, we examined the following.
1. Comprehensive gene analysis (1) Method QIAamp DNA from bone marrow containing leukemia cells of 135 JMML patients and 15 Nounan syndrome related myeloproliferative disease (NS / MPD) patients, or peripheral blood mononuclear cells DNA was extracted using Blood Mini Kit (Qiagen) and RNA was extracted using RNeasy Mini Kit (Qiagen). The degree of RNA degradation was confirmed using an Agilent 2200 TapeStation and RNA ScreenTape (Agilent).
<全エキソーム解析>
 60例のJMML患者、9例のNS/MPD患者から得られたDNAから、SureSelect XT target enrichment system及びSureSelect Human All Exon v3 or v5 bait(アジレント社)を用いて全エキソーム解析用のライブラリーを作成した。HiSeq 2500(イルミナ社)を用いて次世代シーケンスを行い、得られたシーケンスデータをGenomon(http://genomon.hgc.jp/exome/) を用いて解析し、遺伝子変異を同定した。
<All exome analysis>
From the DNA obtained from 60 JMML patients and 9 NS / MPD patients, using SureSelect XT target enrichment system and SureSelect Human All Exon v3 or v5 bait (Agilent) creates a library for whole exome analysis did. Next-generation sequencing was performed using HiSeq 2500 (Illumina), and the obtained sequence data was analyzed using Genomon (http://genomon.hgc.jp/exome/) to identify gene mutations.
<PCRベース ターゲットディープシーケンス解析>
 86例のJMML患者、及び6例のNS/MPD患者から得られたDNAから、Quick Taq HS DyeMix(TOYOBO社)を用いてPTPN11、NRAS、KRAS、CBL、NF1、SETBP1、JAK3、SH3BP1の遺伝子領域を増幅し、QIAquick PCR Purification Kit(QIAGEN社)、NotI(Fermentas社)、T4 DNA ligase(Takara Bio社)を用いて精製した後、Illumina pair-end library protocol(イルミナ社)を用いて解析用ライブラリーを作成した。その後、エキソーム解析と同様の手順でシーケンス、解析を行った。
<PCR based target deep sequence analysis>
Gene regions of PTP N11, NRAS, KRAS, CBL, NF1, SETBP1, JAK3, SH3BP1 using Quick Taq HS DyeMix (TOYOBO) from DNA obtained from 86 JMML patients and 6 NS / MPD patients Is amplified and purified using QIAquick PCR Purification Kit (QIAGEN), NotI (Fermentas), T4 DNA ligase (Takara Bio), and then analyzed for analysis using Illumina pair-end library protocol (Illumina) I created a rally. After that, sequencing and analysis were performed in the same procedure as exome analysis.
<captureベース ターゲットディープシーケンス解析>
 12例のJMML患者、及び2例のNS/MPD患者から得られたDNAから、184遺伝子をターゲットとしたSureSelect custom bait(アジレント社 Muramatsu, H. et al. Clinical utility of next-generation sequencing for inherited bone marrow failure syndromes. Genet Med (2017).)及びSureSelect XT target enrichment system(アジレント社)を用いて解析用ライブラリーを作成した。その後、エキソーム解析と同様の手順でシーケンス、解析を行った。
<Capture based target deep sequence analysis>
SureSelect custom bait (Agilent Muramatsu, H. et al. Clinical utility of next-generation sequencing for inherited bone) targeted at 184 genes from DNA obtained from 12 JMML patients and 2 NS / MPD patients A library for analysis was created using marrow failure syndromes. Genet Med (2017). and SureSelect XT target enrichment system (Agilent). After that, sequencing and analysis were performed in the same procedure as exome analysis.
<RNAシーケンス解析>
 117例のJMML患者、及び12例のNS/MPD患者から得られたRNAから、NEBNext Ultra RNA Prep Kit for Illumina(New England Biolabs社)を用いてRNAシーケンス解析用のライブラリーを作成した。HiSeq 2500(イルミナ社)を用いて次世代シーケンスを行い、得られたシーケンスデータをTophat-fusionソフトウェアを用いて解析し、融合遺伝子を検出した。
<ゲノムワイドDNAメチル化解析>
 95例のJMML患者、11例のNS/MPD患者から得られたDNAからInfinium HumanMethylation450 BeadChip(イルミナ社)を用いて解析を行いβ値を計算した。
<RNA sequence analysis>
From RNA obtained from 117 JMML patients and 12 NS / MPD patients, a library for RNA sequence analysis was created using NEBNext Ultra RNA Prep Kit for Illumina (New England Biolabs). Next generation sequencing was performed using HiSeq 2500 (Illumina), and the resulting sequence data was analyzed using Tophat-fusion software to detect fusion genes.
<Genome-wide DNA methylation analysis>
Analysis was performed using Infinium HumanMethylation 450 BeadChip (Illumina) from the DNA obtained from 95 JMML patients and 11 NS / MPD patients, and the β value was calculated.
(2)結果・考察
 各症例の臨床所見、検査所見、遺伝子解析結果の概要を図1に示す。過去の報告と同様、89%の症例でRAS経路関連遺伝子変異を認めた。またDNAのメチル化解析の結果、高メチル化プロファイルと低メチル化プロファイルの2群に大別された。
(2) Results and Discussion The clinical findings, laboratory findings and genetic analysis results of each case are shown in FIG. As in previous reports, 89% of cases identified RAS pathway related gene mutations. Moreover, as a result of DNA methylation analysis, it was roughly divided into two groups of hypermethylation profile and hypomethylation profile.
2.発現解析
 105例でRNA-seqのデータを基に遺伝子発現プロファイルの解析を行った。全遺伝子ベースの階層的クラスタリングの結果、4群のクラスターが同定された。クラスターA1はPTPN11変異と有意に相関し、予後不良であった。さらに、骨髄異形成症候群(MDS)及び白血病の分類のためにデザインされたdiagnostic classification model (DC model)に関連した435遺伝子を用いた階層的クラスタリングも同様に施行したところ、3つのクラスター(クラスター1-3)が同定された。クラスター1は先行研究(非特許文献9)におけるAML-typeの発現プロファイルに対応しており、また高メチル化プロファイル、PTPN11・NF1変異、2つ以上の変異、クラスターA1と相関し、予後不良であった[5年全生存率(5-year OS)(95%CI):47.2%(28.2%~64.1%) 対 61.4%(47.2%~72.7%)、p = 0.20、5年無移植生存率(5-year TFS)(95%CI):0% 対 28.5%(17.3%~40.7%)、p = 2.6×10-6]。それに加え、differential expression analysisの手法を用いて、高メチル化プロファイルと低メチル化プロファイルの2群間で発現の異なる遺伝子を解析したところ、LIN28Bが高メチルプロファイルにおいて最も有意に発現が亢進していることを同定した。LIN28Bの高発現は、先行研究においてJMMLの不良予後マーカーとして同定されており(非特許文献8)、高メチル化プロフィールを有する患者において、LIN28B高発現が高頻度に認められた(p = 2.1×10-13)。
2. Expression analysis We analyzed gene expression profiles based on RNA-seq data in 105 cases. As a result of all gene based hierarchical clustering, 4 groups of clusters were identified. Cluster A1 was significantly correlated with PTPN11 mutations and had a poor prognosis. Furthermore, hierarchical clustering using 435 genes related to diagnostic classification model (DC model) designed for classification of myelodysplastic syndrome (MDS) and leukemia was similarly performed, and three clusters (cluster 1 -3) was identified. Cluster 1 corresponds to the expression profile of AML-type in previous studies (Non-Patent Document 9), and also correlates with hypermethylation profile, PTPN11 / NF1 mutation, two or more mutations, cluster A1, with poor prognosis 5-year overall survival rate (5-year OS) (95% CI): 47.2% (28.2% to 64.1%) vs. 61.4% (47.2% to 72.7%), p = 0.20, 5-year graft survival rate for 5 years (5-year TFS) (95% CI): 0% to 28.5% (17.3% to 40.7%), p = 2.6 × 10 -6 ]. In addition, when differentially expressed genes were analyzed between the two groups of hypermethylation profile and hypomethylation profile using the technique of differential expression analysis, LIN28B was most significantly upregulated in hypermethyl profile Identified. High expression of LIN28B was identified as a poor prognostic marker of JMML in previous studies (Non-patent Document 8), and high expression of LIN28B was frequently observed in patients with hypermethylation profile (p = 2.1 × 10-13 ).
3.JMMLにおける受容体型チロシンキナーゼ融合遺伝子の発見
(1)方法
 105人のJMML患者の、白血病細胞を含む骨髄から、RNeasy Mini Kit(キアゲン社)を用いてRNAを抽出した。Agilent 2200 TapeStationとRNA ScreenTape(アジレント社)を用いてRNAの分解度を確認した後、NEBNext Ultra RNA Prep Kit for Illumina(New England Biolabs社)を用いてRNAシーケンス解析用のライブラリーを作成した。HiSeq 2500(イルミナ社)を用いて次世代シーケンスを行い、得られたシーケンスデータをTophat-fusionソフトウェアを用いて解析し、融合遺伝子を検出した。
3. Discovery of receptor-type tyrosine kinase fusion gene in JMML (1) Method RNA was extracted from bone marrow containing leukemia cells of 105 JMML patients using RNeasy Mini Kit (QIAGEN). After checking the degree of degradation of RNA using Agilent 2200 TapeStation and RNA ScreenTape (Agilent), a library for RNA sequence analysis was created using NEBNext Ultra RNA Prep Kit for Illumina (New England Biolabs). Next generation sequencing was performed using HiSeq 2500 (Illumina), and the resulting sequence data was analyzed using Tophat-fusion software to detect fusion genes.
(2)結果・考察
 3例について、受容体型チロシンキナーゼに関連した融合遺伝子が検出された(図2)。検出された融合遺伝子はいずれもin-frameで融合していた。古典的RAS経路変異を有さない16例中3例(19%)でチロシンキナーゼ関連融合遺伝子が検出された。このうちDCTN1-ALK、RANBP2-ALKは非小細胞性肺がんなどで機能獲得型の変異として報告されている。残るTBL1XR1-ROS1も、TBL1XR1、ROS1はどちらも別の遺伝子と融合し、腫瘍形成に関連することが報告されている遺伝子であった。一般的に受容体型チロシンキナーゼに関連した融合遺伝子は、チロシンキナーゼのキナーゼドメインと、融合パートナーの二量体形成に関連するドメインが融合することが機能獲得につながると報告されており、予測されるTBL1XR1-ROS1融合タンパク質も、ROS1のキナーゼドメイン、及びTBL1XR1の二量体形成に関連するドメインを保持していることから、この融合が機能獲得につながることが強く示唆された。ALK、ROS1はともに融合遺伝子形成により、RAS経路を強く活性化して腫瘍形成に関与することが報告されており、古典的RAS経路遺伝子変異とは別の機序でRAS経路を活性化し、JMMLの発症に関連することが示唆された。
(2) Results and Discussion In 3 cases, a fusion gene related to receptor tyrosine kinase was detected (FIG. 2). All detected fusion genes were fused in-frame. Tyrosine kinase-related fusion genes were detected in 3 out of 16 cases (19%) without classical RAS pathway mutations. Among them, DCTN1-ALK and RANBP2-ALK have been reported as gain-of-function mutations in non-small cell lung cancer and the like. The remaining TBL1XR1-ROS1 was also a gene that TBL1XR1 and ROS1 were both fused to other genes and reported to be associated with tumorigenesis. In general, a fusion gene related to receptor tyrosine kinase is reported to be a fusion of a kinase domain of tyrosine kinase and a domain related to dimer formation of a fusion partner, which is expected to lead to gain of function The TBL1XR1-ROS1 fusion protein also retains the kinase domain of ROS1 and the domain associated with dimerization of TBL1XR1, strongly suggesting that this fusion leads to gain of function. It has been reported that both ALK and ROS1 strongly activate the RAS pathway through fusion gene formation to be involved in tumorigenesis, and activate the RAS pathway by a mechanism different from classical RAS pathway gene mutation, thereby causing JMML to It is suggested that it is related to the onset.
4.RANBP2-ALK陽性例におけるクリゾチニブのin vitroでの腫瘍増殖抑制効果
(1)方法
 RANBP2-ALK融合遺伝子陽性患者(UPN168)の骨髄から抽出されたCD34陽性細胞(1×103個)をMethoCultTM H4434 classic(サイトカイン(+))又はMethoCultTM H4230(サイトカイン(-))(STEMCELL Technologies社)にDMSO(Sigma-Aldrich社)で希釈したクリゾチニブ(ALK/ROS1/MET阻害薬 ファイザー社)を0、20、80、200、500nM添加した培地で2週間培養した。2週間後にそれぞれの培地でのcolony forming unit-granulocyte macrophage(CFU-GM)、burst-forming unit-erythroid (BFU-E)の数をカウントした。
4. RanBP2-ALK tumor growth inhibition in vitro effect of crizotinib in positive patients (1) a method RanBP2-ALK fusion gene positive patients (UPN168) of CD34-positive cells extracted from the bone marrow (1 × 10 3 cells) were MethoCult TM H4434 classic (cytokines (+)) or MethoCult TM H4230 (cytokines (-)) (STEMCELL Technologies Inc.) crizotinib diluted in DMSO (Sigma-Aldrich, Inc.) to (ALK / ROS1 / MET inhibitor Pfizer) to 0,20, The cells were cultured for 2 weeks in a medium supplemented with 80, 200 and 500 nM. Two weeks later, the number of colony forming unit-granulocyte macrophage (CFU-GM) and burst-forming unit-erythroid (BFU-E) in each medium was counted.
(2)結果・考察
 結果を図3に示す。サイトカイン(+)、サイトカイン(-)いずれの培地においても、クリゾチニブは濃度依存的にJMMLのコロニー形成を阻害した。クリゾチニブはRANBP2-ALK陽性JMML症例においてin vitroで増殖抑制効果を示し、臨床的にも有用である可能性が示唆された。
(2) Results and discussion The results are shown in FIG. In any of the cytokines (+) and cytokines (-), crizotinib inhibited JMML colony formation in a concentration-dependent manner. Crizotinib has an antiproliferative effect in vitro in RANBP2-ALK positive JMML cases, suggesting that it may also be useful clinically.
5.RANBP2-ALK陽性患者へのクリゾチニブ投与
(1)方法及び臨床経過(図4)
 UPN168(RANBP2-ALK陽性)は、従来のAML型化学療法に対して抵抗性で、経過中にblast crisisを発症し、急激な腫瘍細胞の増加を認めた。通常の化学療法、造血幹細胞移植治療では根治が非常に困難であると考えられた。診断時及び91日目の骨髄単核球から抽出したRNAを鋳型として、ThermoScript RT-PCRシステム(Thermo社)を用いてcDNAを合成した。RANBP2とALKの配列に対応する以下のプライマーセットを用いて、PrimeSTAR GXL DNAポリメラーゼを用いたRT-PCRを行った。
<RANBP2-ALK cDNAプライマーセット(設計位置RANBP2 exon15, ALK exon20、プロダクトサイズ671 bp)>
 フォワード(RANBP2-ALK forward primer):ATTTTTCACAGGAAGGCAGAAGACATTGA(配列番号10)
 リバース(RANBP2-ALK reverse primer):GTCTTGCCAGCAAAGCAGTAG(配列番号11)
5. Administration of crizotinib to RANBP2-ALK positive patients (1) Methods and clinical course (Figure 4)
UPN168 (RANBP2-ALK positive) was resistant to conventional AML-type chemotherapy, developed blast crisis over time, and showed a rapid increase in tumor cells. It is thought that radical cure is very difficult by conventional chemotherapy and hematopoietic stem cell transplantation treatment. CDNA was synthesized using ThermoScript RT-PCR system (Thermo) with RNA extracted from bone marrow mononuclear cells at diagnosis and at day 91 as a template. RT-PCR using PrimeSTAR GXL DNA polymerase was performed using the following primer set corresponding to the sequences of RANBP2 and ALK.
<RANBP2-ALK cDNA primer set (design position RANBP2 exon 15, ALK exon 20, product size 671 bp)>
Forward (RANBP2-ALK forward primer): ATTTTTCACAGAGAGGCAGAAAGACATTGA (SEQ ID NO: 10)
Reverse (RANBP2-ALK reverse primer): GTCTTGCCAGCAAAGCAGTAG (SEQ ID NO: 11)
 RT-PCRの結果、いずれの検体からもRANBP2-ALKが検出された。前述したように、クリゾチニブ(ファイザー社)はin vitroで腫瘍抑制効果を示し、本症例において有効である可能性が示唆された。 As a result of RT-PCR, RANBP2-ALK was detected from all samples. As described above, crizotinib (Pfizer) exhibited a tumor suppressor effect in vitro, suggesting that it may be effective in this case.
 以上の内容を患者及び患者両親に説明し、同意を得た上で、従来の化学療法に加えて104日目よりクリゾチニブ(280mg/m2/day)の経口投与を開始した。クリゾチニブの投与量は、難治性固形腫瘍・未分化大細胞リンパ腫の小児患者に対するクリゾチニブの第I相試験の結果に基づいて決定した(Mosse, Y.P. et al. Safety and activity of crizotinib for paediatric patients with refractory solid tumours or anaplastic large-cell lymphoma: a Children's Oncology Group phase 1 consortium study. Lancet Oncol 14, 472-80 (2013))。その後、135日目に採取した末梢血単核球から抽出したRNAを用いて同様の評価を行ったところ陰性となった。ALK break apart FISH及びモノソミー7 FISHも同様に陰性化が確認され、分子生物学的完解が達成されたと判断した。その後、HLA一致同胞より、骨髄移植が施行され、移植後11か月で無病生存が確認されている。 The contents of the above were explained to the patient and the patient's parents, and after obtaining consent, oral administration of crizotinib (280 mg / m 2 / day) was started from the 104th day in addition to conventional chemotherapy. The dose of crizotinib was determined based on the results of a phase I trial of crizotinib for pediatric patients with refractory solid tumors and anaplastic large cell lymphoma (Mosse, YP et al. Safety and activity of crizotinib for paediatric patients with refractory Lancet Oncol 14, 472-80 (2013)) solid tumours or anaplastic large-cell lymphoma: a Children's Oncology Group phase 1 consortium study. Thereafter, the same evaluation was made using RNA extracted from peripheral blood mononuclear cells collected on the 135th day, and it became negative. ALK break apart FISH and monosomy 7 FISH were similarly confirmed to be negative, and it was judged that molecular biological solution was achieved. Thereafter, bone marrow transplantation was performed from HLA-matched siblings, and disease-free survival was confirmed 11 months after transplantation.
(2)考察
 クリゾチニブはRANBP2-ALK陽性JMML症例において、臨床的に有用であった。尚、ALK-ROS1融合遺伝子を有する残りの2例は、クリゾチニブの投与は行われておらず、腫瘍の進行で亡くなっていた。
(2) Discussion crizotinib was clinically useful in RANBP2-ALK positive JMML cases. The remaining two cases with the ALK-ROS1 fusion gene did not receive crizotinib and died of tumor progression.
6.古典的RAS経路変異陽性JMML検体でのクリゾチニブの腫瘍増殖抑制効果の確認
(1)方法
 既存のRAS経路遺伝子変異陽性の4人のJMML患者の骨髄から抽出された、CD34陽性細胞(1×103個)をMethoCultTM H4434 classic(サイトカイン(+))又はMethoCultTM H4230 (サイトカイン(-))(STEMCELL Technologies社)にDMSO(Sigma-Aldrich社)で希釈したクリゾチニブ(ファイザー社)を0、200、500nM添加した培地で2週間培養した。2週間後にそれぞれの培地でのcolony forming unit-granulocyte macrophage(CFU-GM)の数をカウントした。
(2)結果・考察
 4例全例でクリゾチニブは濃度依存的に、JMMLのコロニー形成を阻害した。この効果はCBL変異症例と比較し、KRAS、PTPN11遺伝子変異陽性症例で強くみられた。クリゾチニブはALK融合遺伝子陰性で、古典的RAS遺伝子変異陽性例でも腫瘍の増殖を抑制する可能性が示唆された。
6. Confirmation of the tumor growth inhibitory effect of crizotinib in classical RAS pathway mutation positive JMML samples (1) method CD34 positive cells (1 × 10 3) extracted from the bone marrow of four JMML patients positive for existing RAS pathway gene mutations ) (0, 200, 500 nM of crizotinib (Pfizer) diluted with Metho CultTM H 4434 classic (cytokine (+)) or Metho CultTM H 4 230 (cytokine (-)) (STEMCELL Technologies) in DMSO (Sigma-Aldrich) The cultures were cultured for 2 weeks. Two weeks later, the number of colony forming unit-granulocyte macrophage (CFU-GM) in each medium was counted.
(2) Results and Discussion In all four cases crizotinib inhibited JMML colony formation in a concentration-dependent manner. This effect was stronger in the KRAS and PTPN11 gene mutation positive cases than in the CBL mutation cases. Crizotinib is negative for ALK fusion gene, suggesting that classical RAS gene mutation-positive cases may suppress tumor growth.
7.統合遺伝子解析
 本研究は、ゲノムワイドメチル化プロファイリング、RNA-seq、及びリシークエンシングデータを含むJMMLの最初の統合遺伝子解析であり、メチル化と遺伝子発現プロファイル、遺伝子変化、臨床検査及び他の検査所見との間の相互関係の評価を行った。高メチル化プロファイルは、診断時高年齢、HbF高値、血小板数低下、PTPN11及び2つ以上の遺伝子変異、LIN28B過剰発現、及びAML様発現プロファイルを含む、JMMLの確立された危険因子と高度に一致し、予後不良な群であることを同定した(図6)。高メチル化プロファイル群は、診断時に芽球がAMLのレベルまで増加していなくとも、「AML型」のメチル化及び発現プロファイルを示し、予後不良であった。これまでに報告されている種々の臨床バイオマーカーは、JMML患者の同じ予後不良群の異なる面を反映している可能性があり、臨床特徴(年齢、HbFレベル、血小板数)及びLIN28B発現は、この予後不良群のサロゲートマーカーとして使用できる可能性を示唆している。
7. Integrated genetic analysis This study is the first integrated genetic analysis of JMML, including genome-wide methylation profiling, RNA-seq, and resequencing data; methylation and gene expression profiles, genetic alterations, clinical testing and other tests An evaluation of the correlation between the findings was made. Hypermethylation profiles are highly correlated with established risk factors of JMML, including high age at diagnosis, elevated HbF, decreased platelet count, PTPN11 and two or more gene mutations, LIN28B overexpression, and AML-like expression profile The group was identified as having a poor prognosis (FIG. 6). The hypermethylation profile group showed an "AML-type" methylation and expression profile with poor prognosis, even though blasts did not increase to the level of AML at diagnosis. The various clinical biomarkers reported so far may reflect different aspects of the same poor prognosis group of JMML patients; clinical features (age, HbF levels, platelet count) and LIN28B expression It suggests the possibility that it can be used as a surrogate marker for this poor prognosis group.
8.クリゾチニブ以外のALKチロシンキナーゼ阻害剤、及びルクソリチニブ(JAK2チロシンキナーゼ阻害剤)のin vitroでの腫瘍増殖抑制効果
(1)方法
 PTPN11 p.D61V変異陽性且つCD34陽性細胞(1×103個)をMethoCultTM H4434 classic(サイトカイン(+))又はMethoCultTM H4230(サイトカイン(-))(STEMCELL Technologies社)にDMSO(Sigma-Aldrich社)で希釈したアレクチニブ、セリチニブ又はTAE684又はルクソリチニブを所定濃度で添加した培地で2週間培養した。コントロールとして、クリゾチニブを添加した試験群を設けた。2週間後にそれぞれの培地でのcolony forming unit-granulocyte macrophage(CFU-GM)の数をカウントした。
8. Tumor growth inhibitory effect of ALK tyrosine kinase inhibitor other than crizotinib and luxoritinib (JAK2 tyrosine kinase inhibitor) in vitro (1) method PTPN11 p.D61 V mutation positive and CD34 positive cells (1 × 10 3 ) as MethoCult TM H4434 classic (cytokine (+)) or Metho Cult TM H4230 (cytokine (-)) (STEMCELL Technologies) in a medium supplemented with alectinib, seritinib or TAE 684 or luxolitinib diluted with DMSO (Sigma-Aldrich) at a predetermined concentration Incubated for 2 weeks. As a control, a test group to which crizotinib was added was provided. Two weeks later, the number of colony forming unit-granulocyte macrophage (CFU-GM) in each medium was counted.
(2)結果・考察
 結果を図7に示す。サイトカイン(+)、サイトカイン(-)いずれの培地においても、アレクチニブ、セリチニブ及びTAE684は濃度依存的にJMMLのコロニー形成を阻害した。また、ルクソリチニブにも濃度依存的なコロニー形成の阻害を認めた。
(2) Results and discussion The results are shown in FIG. In any of the cytokines (+) and cytokines (-), alectinib, seritinib and TAE684 inhibited JMML colony formation in a concentration-dependent manner. In addition, luxoritinib also showed concentration-dependent inhibition of colony formation.
9.まとめ
 高メチル化プロファイル、AML型発現プロファイル、2つ以上の遺伝子変異を有し、予後不良なJMMLのサブグループを同定することに成功し、臨床的・生物学的予後不良因子が相互に関連していることが明らかとなった。また、受容体型チロシンキナーゼに関連した新たな融合遺伝子(DCTN1-ALK、RANBP2-ALK、及びTBL1XR1-ROS1)が同定された。更には、ALK/ROS1/MET阻害剤であるクリゾチニブ等のALKチロシンキナーゼ阻害剤がJMMLの有望な分子標的薬となり得ることが明らかとなった。一方、JAK2チロシンキナーゼ阻害剤もJMMLの分子標的治療薬になり得ることが示された。
9. Summary We have successfully identified subgroups of JMML with a poor prognosis, with hypermethylation profiles, AML-type expression profiles, and two or more gene mutations, and clinical and biological poor prognostic factors are related to each other. It became clear that In addition, novel fusion genes (DCTN1-ALK, RANBP2-ALK, and TBL1XR1-ROS1) related to receptor tyrosine kinases have been identified. Furthermore, it became clear that an ALK tyrosine kinase inhibitor such as crizotinib, which is an ALK / ROS1 / MET inhibitor, could be a promising molecular target drug for JMML. On the other hand, it has been shown that JAK2 tyrosine kinase inhibitors can also be molecular targeted therapeutic agents for JMML.
 本発明の治療薬はJMMLに対する新たな治療戦略を提供する。本発明はJMMLの治療成績の向上、予後改善などに貢献し得る。JMMLの症例から同定された新たな融合遺伝子は治療標的として有用であることはもとより、JMMLの検査/診断マーカーとしても有用である。 The therapeutic agents of the present invention provide new therapeutic strategies for JMML. The present invention can contribute to the improvement of the treatment result of JMML, the improvement of prognosis and the like. New fusion genes identified from JMML cases are useful not only as therapeutic targets but also as test / diagnostic markers for JMML.
 この発明は、上記発明の実施の形態及び実施例の説明に何ら限定されるものではない。特許請求の範囲の記載を逸脱せず、当業者が容易に想到できる範囲で種々の変形態様もこの発明に含まれる。本明細書の中で明示した論文、公開特許公報、及び特許公報などの内容は、その全ての内容を援用によって引用することとする。 The present invention is not limited to the description of the embodiments and examples of the above-mentioned invention. Various modifications are also included in the present invention as long as those skilled in the art can easily conceive of the claims without departing from the scope of the claims. The contents of articles, published patent publications, patent publications, etc. specified in the present specification are incorporated by reference in their entirety.
 配列番号10:人工配列の説明:RANBP2-ALK forward primer
 配列番号11:人工配列の説明:RANBP2-ALK reverse primer
SEQ ID NO: 10: Description of artificial sequences: RANBP2-ALK forward primer
SEQ ID NO: 11: Description of artificial sequences: RANBP2-ALK reverse primer

Claims (11)

  1.  ALKチロシンキナーゼ阻害剤又はJAK2チロシンキナーゼ阻害剤を含む、若年性骨髄単球性白血病治療薬。 A therapeutic agent for juvenile myelomonocytic leukemia, comprising an ALK tyrosine kinase inhibitor or a JAK2 tyrosine kinase inhibitor.
  2.  前記ALKチロシンキナーゼ阻害剤がALK及びROS1に対するチロシンキナーゼ阻害剤である、請求項1に記載の若年性骨髄単球性白血病治療薬。 The juvenile myelomonocytic leukemia therapeutic agent according to claim 1, wherein the ALK tyrosine kinase inhibitor is a tyrosine kinase inhibitor against ALK and ROS1.
  3.  前記ALKチロシンキナーゼ阻害剤がクリゾチニブ、アレクチニブ、セリチニブ又はTAE684である、請求項1に記載の若年性骨髄単球性白血病治療薬。 The juvenile myelomonocytic leukemia therapeutic agent according to claim 1, wherein the ALK tyrosine kinase inhibitor is crizotinib, alectinib, seritinib or TAE684.
  4.  前記JAK2チロシンキナーゼ阻害剤がルクソリチニブである、請求項1に記載の若年性骨髄単球性白血病治療薬。 The juvenile myelomonocytic leukemia therapeutic drug according to claim 1, wherein the JAK2 tyrosine kinase inhibitor is luxolitinib.
  5.  ALK又はROS1の融合遺伝子が陽性の患者に投与される、請求項1~4のいずれか一項に記載の若年性骨髄単球性白血病治療薬。 The therapeutic agent for juvenile myelomonocytic leukemia according to any one of claims 1 to 4, wherein the fusion gene of ALK or ROS1 is administered to a patient who is positive.
  6.  他の薬剤と併用される、請求項1~5のいずれか一項に記載の若年性骨髄単球性白血病治療薬。 The juvenile myelomonocytic leukemia therapeutic drug according to any one of claims 1 to 5, which is used in combination with another drug.
  7.  前記他の薬剤が抗がん剤である、請求項6に記載の若年性骨髄単球性白血病治療薬。 The juvenile myelomonocytic leukemia therapeutic drug according to claim 6, wherein the other drug is an anticancer drug.
  8.  以下のステップ(1)~(3)を含む、若年性骨髄単球性白血病の検査方法:
     (1)若年性骨髄単球性白血病患者から単離した白血病細胞を含む検体を用意するステップ;
     (2)前記検体において、ALK又はROS1の融合遺伝子、又は該融合遺伝子がコードする融合タンパク質の存否を検出するステップ;
     (3)前記融合遺伝子又は前記融合タンパク質が検出された場合、ALKチロシンキナーゼ阻害剤による治療に適合すると判定するステップ。
    Testing methods for juvenile myelomonocytic leukemia, including the following steps (1) to (3):
    (1) preparing a sample containing leukemia cells isolated from a patient with juvenile myelomonocytic leukemia;
    (2) detecting the presence or absence of a fusion gene of ALK or ROS1 or a fusion protein encoded by the fusion gene in the sample;
    (3) determining that the fusion gene or the fusion protein is detected to be compatible with treatment with an ALK tyrosine kinase inhibitor.
  9.  若年性骨髄単球性白血病の原因としての、ALK又はROS1の融合遺伝子。 ALK or ROS1 fusion gene as a cause of juvenile myelomonocytic leukemia.
  10.  以下のステップ(i)~(iii)を含む、若年性骨髄単球性白血病の治療に有効な物質のスクリーニング方法:
     (i)ALK又はROS1の融合遺伝子を発現する細胞を用意するステップ;
     (ii)試験物質の存在下、前記細胞を培養するステップ;
     (iii)細胞の生存数又はコロニー数を測定し、前記試験物質の有効性を判定するステップ。
    Method of screening for substances effective for the treatment of juvenile myelomonocytic leukemia, comprising the following steps (i) to (iii):
    (i) preparing a cell that expresses a fusion gene of ALK or ROS1;
    (ii) culturing the cells in the presence of a test substance;
    (iii) measuring the number of viable cells or the number of colonies to determine the efficacy of the test substance.
  11.  若年性骨髄単球性白血病の患者に対して、ALKチロシンキナーゼ阻害剤又はJAK2チロシンキナーゼ阻害剤を治療上有効量投与することを含む、若年性骨髄単球性白血病の治療方法。 A method for treating juvenile myelomonocytic leukemia, comprising administering a therapeutically effective amount of an ALK tyrosine kinase inhibitor or a JAK2 tyrosine kinase inhibitor to a patient with juvenile myelomonocytic leukemia.
PCT/JP2018/030471 2017-08-25 2018-08-17 Juvenile myelomonocytic leukemia therapeutic agent WO2019039390A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019537597A JPWO2019039390A1 (en) 2017-08-25 2018-08-17 Juvenile myelomonocytic leukemia drug

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017162389 2017-08-25
JP2017-162389 2017-08-25

Publications (1)

Publication Number Publication Date
WO2019039390A1 true WO2019039390A1 (en) 2019-02-28

Family

ID=65438724

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/030471 WO2019039390A1 (en) 2017-08-25 2018-08-17 Juvenile myelomonocytic leukemia therapeutic agent

Country Status (2)

Country Link
JP (1) JPWO2019039390A1 (en)
WO (1) WO2019039390A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111411157A (en) * 2020-04-29 2020-07-14 中国医学科学院血液病医院(中国医学科学院血液学研究所) Whole genome DNA methylation detection method for evaluating prognosis of juvenile myelomonocytic leukemia

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017502994A (en) * 2014-01-17 2017-01-26 ノバルティス アーゲー 1- (Triazin-3-yl / pyridazin-3-yl) -piperidine / piperazine derivatives and compositions thereof for inhibiting the activity of SHP2

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017502994A (en) * 2014-01-17 2017-01-26 ノバルティス アーゲー 1- (Triazin-3-yl / pyridazin-3-yl) -piperidine / piperazine derivatives and compositions thereof for inhibiting the activity of SHP2

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
CAYE A ET AL.: "Juvenile myelomonocytic leukemia displays mutations in components of the RAS pathway and the PRC2 network", NAT GENET., vol. 47, no. 11, 2015, pages 1334 - 1340, XP055577900, ISSN: 1061-4036 *
HAYASHI A ET AL., CRIZOTINIB TREATMENT FOR PEDIATRIC ACUTE MYELOBLASTIC LEUKEMIA WITH RANBP2-ALK FUSION GENE, vol. 56, no. 9, 2015, pages 1694, ISSN: 0485-1439 *
MAESAKO Y ET AL., MAJOR CYTOGENETIC RESPONSE AT 3 MONTHS OF CRIZOTINIB TREATMENT IN RANBP-ALK ACUTE MYELOID LEUKEMIA, vol. 55, no. 9, pages 1551, ISSN: 0485-1439 *
SALETTA ET AL.: "Molecular profiling of childhood cancer : Biomarkers and novel therapies", BBA CLINICAL, vol. 1, 2014, pages 59 - 77, XP055501424, ISSN: 2214-6474 *
TENRI MED BULL., vol. 18, no. 2, 2015, pages 80 - 85, ISSN: 1344-1817 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111411157A (en) * 2020-04-29 2020-07-14 中国医学科学院血液病医院(中国医学科学院血液学研究所) Whole genome DNA methylation detection method for evaluating prognosis of juvenile myelomonocytic leukemia

Also Published As

Publication number Publication date
JPWO2019039390A1 (en) 2020-07-30

Similar Documents

Publication Publication Date Title
JP7323393B2 (en) Methods of treating cancer patients with farnesyltransferase inhibitors
US20220090205A1 (en) Methods for diagnosing and treating cancer by means of the expression status and mutational status of nrf2 and downstream target genes of said gene
JP2019507754A (en) Dietary products lacking at least two nonessential amino acids
JP2013543008A (en) Treatment method with BRAF inhibitor
AU2017306588B2 (en) Use of mitochondrial activity inhibitors for the treatment of poor prognosis acute myeloid leukemia
EP3436601B1 (en) Cytidine deaminase expression level in cancer as a new therapeutic target
US20230000856A1 (en) Novel uses of crenolanib
JP5948332B2 (en) Treatment of MLL reconstituted leukemia
WO2019039390A1 (en) Juvenile myelomonocytic leukemia therapeutic agent
US20150119446A1 (en) Cul4b as predictive biomarker for cancer treatment
CA2855356A1 (en) Biomarkers of response to proteasome inhibitors
US20220002396A1 (en) Methods of treating cancer with farnesyltransferase inhibitors
Reuther Myeloproliferative neoplasms: Molecular drivers and therapeutics
US20220218694A1 (en) Crenolanib for treating flt3 mutated proliferative disorders associated mutations
US20210251980A1 (en) Crenolanib for treating flt3 mutated proliferative disorders associated mutations
WO2023002983A1 (en) Method for determining sensitivity to fgfr inhibitor
WO2017139470A1 (en) Classification and treatment of gastric cancer
US20210145823A1 (en) Crenolanib for treating flt3 mutated proliferative disorders associated mutations
WO2021255518A1 (en) Compositions and methods for treating acute myeloid leukemia
Zlobine Host immunity determines outcome of eukaryotic initiation factor-4A inhibition in breast cancer
LYMPHOCYTIC PROTEOMIC EXPLORATION OF CELL SURFACE LANDSCAPE REVEALS NEW LEUKEMIA ASSOCIATED FEATURES
Sammarelli et al. Stem Cells and Growth Factors
Ullrich et al. Freie Vorträge
TW201030338A (en) Method for predicting therapeutic effect of combination chemotherapy

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18847950

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019537597

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18847950

Country of ref document: EP

Kind code of ref document: A1