WO2019039344A1 - Encoder - Google Patents

Encoder Download PDF

Info

Publication number
WO2019039344A1
WO2019039344A1 PCT/JP2018/030237 JP2018030237W WO2019039344A1 WO 2019039344 A1 WO2019039344 A1 WO 2019039344A1 JP 2018030237 W JP2018030237 W JP 2018030237W WO 2019039344 A1 WO2019039344 A1 WO 2019039344A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensors
signal
encoder
angle
mod
Prior art date
Application number
PCT/JP2018/030237
Other languages
French (fr)
Japanese (ja)
Inventor
渡部 司
Original Assignee
国立研究開発法人産業技術総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人産業技術総合研究所 filed Critical 国立研究開発法人産業技術総合研究所
Priority to CN201880040836.0A priority Critical patent/CN110785633B/en
Priority to JP2019537570A priority patent/JP6845517B2/en
Publication of WO2019039344A1 publication Critical patent/WO2019039344A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/244Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/244Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains
    • G01D5/245Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains using a variable number of pulses in a train

Definitions

  • the present invention relates to an encoder for detecting position and angle.
  • the encoder is a device that reads a scale of equal angular intervals written on a scale plate to measure a position such as a rotational angle or an absolute angular position. Since the interval of the scale is naturally limited by the accuracy of writing and the accuracy of the sensor that detects the scale, there is a limit to the improvement of the resolution by the scale. Therefore, two analog signals are generated by shifting the sine wave further dividing the minimum scale interval by 90 degrees from each other, and arctan calculation of the two analog signals is performed to determine the angle using the interpolation signal representing the angle To improve resolution.
  • An object of the present invention is to provide a new and useful encoder that is compatible with high resolution and high accuracy.
  • M sensors for detecting a plurality of elements indicating angles arranged at predetermined angular intervals on a substrate to generate a first signal having periodicity.
  • the sensor is disposed at a predetermined angle, and the predetermined angle is an angle combining 360 / M ⁇ (j ⁇ 1) (degrees) and 360 / N ⁇ MOD [(k j ⁇ 1) / D].
  • M is an integer of 2 or more
  • N is the number of elements
  • MOD is a function that outputs the decimal value of the input value
  • D is a divisor of M or M except for 1
  • J is an integer from 1 to M and takes different values for M sensors
  • k j is an integer from 1 to M, and for each of the M sensors and the M sensors
  • a generator generating a second signal that interpolates the predetermined angular interval based on the first signal;
  • An arithmetic unit that adds the second signal to the sensor to obtain an angular position or a rotational angle.
  • the M sensors are 360 / M ⁇ (j ⁇ 1) (degrees) and 360 / N ⁇ MOD [for a substrate on which a plurality of elements indicating angles at predetermined angular intervals are arranged.
  • K j -1) / D] (degrees) is arranged to interpolate the predetermined angular interval generated based on the first signal generated by the sensor.
  • the angular error of the encoder due to the angular error of the second signal can be reduced, as well as the error due to eccentricity due to the attachment of the substrate to the rotational axis and the error due to the formation position of multiple elements arranged at equal angular intervals
  • the angular error of the encoder can also be reduced, and as a result, an encoder having both high resolution and high accuracy can be provided.
  • M sensors for detecting a plurality of elements indicating positions arranged at predetermined intervals on a substrate to generate a first signal having periodicity. Sensors are spaced apart from each other by a predetermined distance, and the predetermined distance is an integer (m j ) times the predetermined interval (gl), gl ⁇ m j and gl ⁇ MOD [(k j ⁇ 1) Position where M is an integer greater than or equal to 2, MOD is a function that outputs the decimal value of the input value, and D is a divisor of M or M, 1 is excluded, k j is an integer from 1 to M, and for each of the M sensors and the M sensors, the elements at the predetermined intervals are interpolated based on the first signal.
  • a generator that generates a second signal to be generated, and the second signal for the M Or an arithmetic unit for determining a movement amount.
  • M sensors are integers (m j ) times the predetermined interval (gl) and gl ⁇ m j
  • gl predetermined interval
  • the position error of the encoder due to the position error of the signal can be reduced, and at the same time the position error due to the attachment of the substrate to the object and the error of the encoder due to the errors of formation positions of plural elements arranged at predetermined intervals As a result, an encoder having both high resolution and high accuracy can be provided.
  • FIG. 1 is a diagram showing a schematic configuration of an encoder according to a first embodiment of the present invention. It is a figure which shows the arrangement
  • the inventor of the present invention has been researching to achieve high resolution and high accuracy of a rotary encoder, and has encountered a problem described below and found a solution.
  • the rotary encoder In the rotary encoder, the sensor reads a graduated dial with a scale of 360 degrees, generates sine waves and cosine waves based on the scale, and generates a signal to interpolate between the scales (hereinafter referred to as interpolation). Called a signal). Then, an angle signal is generated based on the interpolation signal, and the current angle or rotation angle is detected from the angle signal. If multiple sensors are provided, the angle signal from each sensor is averaged to determine the angle. The interpolated signal is used to detect an angle smaller than the minimum scale, that is, to improve resolution.
  • the rotary encoder arranges a plurality of sensors at equal angular intervals with respect to the dial plate, and averages a plurality of output angle signals, so that the eccentricity error of the rotary encoder or the error of the angular position of each scale of the dial plate Reduce etc.
  • the inventor examined the angular error of a rotary encoder in which four sensors were arranged at equal angular intervals of 90 degrees.
  • the number of graduations N of the graduation plate is 360, that is, it is attached at equal intervals every other degree, and is multiplied by 32 by the interpolation signal.
  • Each of the four sensors detects a signal including an angular error generated by the basic scale and the interpolation division as the dial plate rotates.
  • FIG. 1 is a diagram showing an angle error of a rotary encoder, which is an angle error obtained by averaging angle signals from four sensors. Referring to FIG. 1, it can be seen that the angular error is up to ⁇ 30 seconds over 360 degrees (one round).
  • FIG. 2 shows a discrete Fourier transform (DFT) analysis of the angular error shown in FIG. 1 of the rotary encoder.
  • DFT discrete Fourier transform
  • the low order component is small and is effective in reducing eccentricity errors and scale angular errors.
  • the angular errors of the 360, 720, 1080, 1440 and 1800 order components are large, on the order of 2 seconds to 11 seconds.
  • These angular error components have a division number N of 360 for the sensor number M of 4, and the sensor number M is a divisor of the division number of 360.
  • the angular error of the next multiple of the division number is an interpolation signal This occurs as an angular error of For example, since the number of sensors is a divisor of the number of graduations 360 even if the number of sensors is not four but three, five, or six, an angle error of the interpolation signal will occur similarly.
  • the number of sensors may be seven or thirteen and arranged at equal angular intervals. Since 7 is not a divisor of the number of graduations 360, the angular error of the interpolation signal can be reduced.
  • FIG. 3 is a diagram showing an angular error of an interpolation signal included in FIG. 1 of the rotary encoder for each sensor.
  • FIG. 3 shows only the angular error of the interpolation signal among the angular errors, and is shown for each sensor, the horizontal axis is the angle (degrees), and the vertical axis is the angle error (seconds), and black
  • the triangle ( ⁇ ) position indicates the position of the scale on the dial.
  • an object of the present invention is to provide an encoder having both high resolution and high accuracy, in which the angular error of the interpolation signal is reduced by mutually shifting the positions of a plurality of sensors with respect to the graduation of the graduation plate. It is to be.
  • FIG. 4 is a diagram showing a schematic configuration of an encoder according to the first embodiment of the present invention.
  • the encoder 10 is disposed on a rotation shaft 15 which is an object of angle measurement, and has a scale plate 20 having graduations 21 formed at equal intervals in the circumferential direction;
  • the scale 21 is detected, and based on the detection, four sensors 31 to 34 that generate detection signals of sinusoidal waves that are 90 degrees out of phase with each other having a periodicity, and the scale based on the detection signals for each sensor 31 to 34
  • Interpolation signal generators 41 to 44 that generate interpolation signals (also referred to as angle signals) that interpolate the interval between the two, and add the interpolation signals for each of the sensors 31 to 34 based on the interpolation signals to obtain an angular position Or an arithmetic unit 50 for determining the rotation angle.
  • the scale plate 20 is attached to be concentric with the rotating shaft 15, and the scales 21 are provided at equal intervals in the circumferential direction, so that the portion of the scale 21 transmits light.
  • the sensors 31 to 34 each have a light emitting element 35, a slit 36, and a light receiving element 37.
  • the sensors 32 to 34 are described with details of the components omitted, but have the same components as the sensor 31.
  • the scale 21 transmits the light from the light emitting element 35, and the light receiving element 37 receives the light through the slit 36.
  • the sensors 31 to 34 generate sine wave electrical signals that are 90 degrees out of phase with each other according to the intensity of light received by the light receiving element 37, and output the signals as detection signals.
  • one of the two sine wave electrical signals that are 90 degrees out of phase with each other is a Sin voltage signal, and the other is a Cos voltage signal.
  • the interpolation signal generators 41 to 44 the input portions of which are electrically connected to the output portions of the sensors 31 to 34, generate interpolation signals based on the input detection signals. Specifically, an interpolation signal is generated by obtaining an angle from the Sin voltage signal of the detection signal and the arctan of the Cos voltage signal (voltage value of Sin voltage signal / voltage value of Cos voltage signal).
  • the interpolation signal is a digital signal.
  • the interpolation signal is a signal obtained by dividing a scale interval at equal intervals, and is, for example, a signal of several tens of multiplication to several hundreds of multiplication.
  • the computing unit 50 is electrically connected to the outputs of the interpolation signal generators 41 to 44, respectively, and adds up the interpolation signals from the interpolation signal generators 41 to 44. Specifically, for example, the number of pulses of the interpolation signal generated by the rotation of the rotation shaft 15 is counted, the number of pulses obtained is added, and the result is divided by the number of sensors to obtain the angular position or the rotational angle. Ask for The arithmetic unit 50 can cancel the angular error of each of the interpolation signals of the interpolation signal generators 41 to 44 by adding up, and can reduce the angular error and improve the accuracy.
  • FIG. 5 is a view showing the arrangement position of the sensor of the encoder according to the first embodiment of the present invention.
  • the sensors 31 to 34 are arranged at the detection positions of the angle ⁇ (j, k j ) (degrees) with respect to the dial plate 20.
  • the origin of the angle can be selected arbitrarily, for example, the position of the sensor 31 can be selected.
  • the angle ⁇ (degree) is expressed by Equation 1
  • ⁇ j (degree) is expressed by Equation 2
  • ⁇ k is expressed by Equation 3.
  • j is an integer of 1 to M assigned to the sensors 31 to 34.
  • D is a divisor of M or M (except 1).
  • M is the number of sensors, which is 4 in the first embodiment.
  • N is the number of graduations 21 over 360 degrees of the scale plate 20, and is 360 in the first embodiment.
  • MOD in the above equation 3 is a function that outputs the value after the decimal point of the input value.
  • ⁇ kj becomes smaller than 360 / N (degrees), that is, smaller than the minimum scale interval.
  • Equation 1 may be an angle obtained by combining ⁇ j of Equation 2 and ⁇ kj of Equation 3.
  • the sensors 31 to 34 are disposed at angles ⁇ (1, k 1 ), ⁇ (2, k 2 ), ⁇ (3, k 3 ), and ⁇ (4, k 4 ), respectively.
  • the vertex of the triangle mark ⁇ facing the scale plate indicates the detection position of the sensor.
  • FIG. 6 is a view showing an example of the arrangement position of each sensor in the first embodiment of the present invention, and shows the arrangement position of each sensor shown in FIG. 5 in an enlarged manner. 6 (a) to 6 (d) show the arrangement positions of the sensors 31 to 34, respectively.
  • ⁇ j is an angular position obtained by equally dividing 360 degrees into four
  • ⁇ kj is an angle in units of an angle formed by equally dividing the minimum angular interval of the scale 21 into four.
  • the sensors 31 to 34 are, for example, the following ⁇ (1, k 1 ), ⁇ (2, k 2 ), ⁇ (3, k 3 ) and ⁇ (4, k 4) It is arranged at the angle shown in).
  • FIG. 7 is a diagram showing an angular error of the interpolation signal of the encoder according to the first embodiment of the present invention.
  • the waveforms of the angular errors of the interpolation signals of the sensors 11 to 14 are out of phase with each other by 1 ⁇ 4 degrees (0.25 degrees), and ⁇ kj of the arrangement of the sensors 31 to 34 is It is understood that it is reflected.
  • FIG. 8 is a diagram showing an angular error of the encoder according to the first embodiment of the present invention.
  • the angular error of the encoder is at most ⁇ 16 seconds, which is approximately one half of the angular error of FIG. 1 shown above.
  • FIG. 9 is a diagram showing DFT analysis of the angular error of the encoder according to the first embodiment of the present invention, in which the angular error of FIG. 8 is DFT analyzed.
  • the angular errors of the 360th, 720th, 1080th and 1800th order components which are multiples of the scale number 360 are 2 seconds or less, and in particular, the 360th order component is 6% with respect to FIG. It can be seen that the 720th component significantly decreases to 9%. This clearly shows the effect of the present embodiment.
  • ⁇ j of Expression 1 is 0, 90, 180, and 270 according to Expression 2, respective positions with respect to the sensors 31 to 34 It is preferable to set ⁇ j at equal angular intervals because the error of the low-order component increases in this case, although the angle may be shifted by an integer multiple of 360 / N.
  • D is 4 and D is 2
  • ( ⁇ k1 , ⁇ k2 , ⁇ k3 , ⁇ k4 ) (0, 0.5, 0, 0.5).
  • the plurality of sensors 31 to 34 are the term 360 degrees / M ⁇ (j ⁇ 1) of the right side of Formula 2 and the term 360 degrees / N ⁇ of the right side of Formula 3.
  • N-order component of the angular error of the encoder due to the angular error of the interpolation signal (however, Error of N ⁇ D) except for the following components can be reduced, together with the error due to eccentricity due to the attachment of the dial 20 to the rotary shaft 15 and the angle error of the encoder due to the error of the forming position of the dial 21 of the dial 20 Can also be reduced. Therefore, according to the present embodiment, it is possible to provide an encoder having both high resolution and high accuracy.
  • a scale is shown on a scale plate, and optical contrast between the scale and other portions is shown.
  • the scale portion is a dial whose reflectance is higher or lower (that is, the absorption coefficient is higher) than other portions.
  • This embodiment is also applicable to a magnetic sensor and a magnetic encoder that is magnetically calibrated, instead of an optical sensor and a dial.
  • a plurality of magnetic sensors for detecting a magnetic scale may be arranged in the same manner as the optical sensor described above.
  • the encoder 10 of the present embodiment can be applied to an incremental encoder that detects the rotation angle and rotational speed of the rotation shaft 15, and can be applied to an absolute encoder that detects an absolute angular position.
  • FIG. 10 is a diagram showing a schematic configuration of an encoder according to a second embodiment of the present invention.
  • the encoder 100 is disposed on an object (not shown) for measuring the position or movement amount, and is equally spaced in the movement direction of the object (the direction indicated by the arrow MV).
  • a scale plate 120 having a scale 121 formed thereon, and three sensors 131 to 133 which detect the scale 121 and generate detection signals of sine waves having a phase shift of 90 degrees with each other based on the detection.
  • Interpolation signal generators 141 to 143 that generate interpolation signals that interpolate the scale intervals based on detection signals for the sensors 131 to 133, and interpolation signals for the sensors 131 to 133 based on the interpolation signals
  • a computing unit 150 for obtaining the position or the movement amount.
  • the scale plate 120 is attached along the moving direction of the object (the direction indicated by the arrow MV), and the scale 121 is provided at equal intervals.
  • the portion of the scale 121 is designed to reflect light.
  • the portion of the scale 121 may absorb light, and the surface of the graduation plate 120 therearound may reflect light.
  • the sensors 131 to 133 each have a light emitting element 135 and a light receiving element 137.
  • the scale 121 reflects the light from the light emitting element 135, and the light receiving element 137 receives the light.
  • the sensors 131 to 133 generate sine wave electrical signals that are 90 degrees out of phase with each other according to the intensity of the light received by the light receiving element 137, and output the signals as a detection signal.
  • one of the two sine wave electrical signals that are 90 degrees out of phase with each other is a Sin voltage signal, and the other is a Cos voltage signal.
  • the interpolation signal generators 141 to 143 and the calculator 150 have the same configuration and operation as the interpolation signal generators 41 to 44 and the calculator 50 in the first embodiment, respectively. Find the amount of movement.
  • the arithmetic unit 150 can cancel the position error of the interpolation signal of each of the interpolation signal generators 141 to 143, and can reduce the position error to improve the accuracy.
  • FIG. 11 is a diagram showing an example of the arrangement position of each sensor in the second embodiment of the present invention.
  • (A) to (c) show the arrangement positions of the sensors 131 to 133, respectively.
  • the sensors 131 to 133 are arranged at positions p (j, k j ) with respect to the dial plate 120 at their detection positions.
  • the position p is represented by equation 5
  • L j is represented by equation 6
  • ⁇ kj is represented by equation 7.
  • p (j, k j ) L j + ⁇ kj (5)
  • L j gl ⁇ m j (6)
  • j is an integer of 1 to M assigned to the sensors 131 to 133.
  • m j is an integer, and mutually different integers are selected for j.
  • D is a divisor of M or M (except 1).
  • gl is a scale interval.
  • M is the number of sensors, and is 3 by way of example in the second embodiment.
  • MOD is a function that outputs the value after the decimal point of the input value, and is the same as in the first embodiment.
  • p (j, k j ) it may be L j - ⁇ kj. That is, Equation 5 may be a position where L j in Equation 6 and ⁇ kj in Equation 7 are combined.
  • L j is an integral multiple (m j times) of the scale interval gl, and ⁇ kj is a distance obtained by equally dividing the scale interval gl into three.
  • the sensors 131 to 133 are disposed at positions indicated by p (1, k 1 ), p (2, k 2 ), and p (3, k 3 ) below, respectively.
  • the plurality of sensors 131 to 133 are the term gl ⁇ m j on the right side of Equation 6 and the term gl ⁇ MOD [(k j ⁇ 1) / D), which reduces the angular error of the encoder due to the angular error of the interpolated signal, together with the error due to the alignment of the attachment of the dial 120 to the object and the dial
  • the position error of the encoder 100 resulting from the error of the formation position of the scale 121 of 120 can also be reduced. Therefore, according to the present embodiment, it is possible to provide an encoder having both high resolution and high accuracy.
  • transmissive sensors and dial plates can be used in place of the reflective sensors 131 to 133 and the dial plate 120. Furthermore, the present embodiment can be applied to a magnetic encoder.
  • Reference Signs List 10 100 encoder 20, 120 graduation plate 21, 121 graduation 31 to 34, 131 to 133 sensors 41 to 44, 141 to 143 interpolation signal generator 50, 150 computing unit

Abstract

An encoder 10 is provided with: M sensors 31 to 34 which detect a plurality of elements indicating angles disposed at prescribed angle intervals on a substrate, generate first signals having periodicity, and are disposed at prescribed angles, wherein the prescribed angle is an angle obtained by combining 360/M×(j-1) (degrees) and 360/N×MOD[(kj-1)/D] (degrees), where M is an integer equal to or greater than 2, N is an element number, MOD is a function for outputting the value of the decimal places of an input value, D is M or a divisor of M, excluding 1, j is an integer from 1 to M having a different value for each of the M sensors, and kj is an integer from 1 to M; generators 41 to 44 which generate second signals interpolating the prescribed angle intervals on the basis of the first signals, for each of the M sensors; and a calculator 50 which adds together the second signals relating to the M sensors to obtain an angular position or an angle of rotation.

Description

エンコーダEncoder
 本発明は、位置や角度を検出するエンコーダに関する。 The present invention relates to an encoder for detecting position and angle.
 エンコーダは、目盛盤に書き込まれた等角度間隔の目盛りを読み取って回転角や絶対角度位置等の位置を測定する装置である。目盛りの間隔は、書込む精度や目盛りを検知するセンサの精度によっておのずと精度には限界があるため目盛りによる分解能の向上にも限界がある。そのため最小目盛り間隔をさらに分割する正弦波を互いに90度位相をずらした2つのアナログ信号を生成して、その2つのアナログ信号のarctan演算をして角度を表す内挿信号を用いて角度を決定して分解能を向上させている。 The encoder is a device that reads a scale of equal angular intervals written on a scale plate to measure a position such as a rotational angle or an absolute angular position. Since the interval of the scale is naturally limited by the accuracy of writing and the accuracy of the sensor that detects the scale, there is a limit to the improvement of the resolution by the scale. Therefore, two analog signals are generated by shifting the sine wave further dividing the minimum scale interval by 90 degrees from each other, and arctan calculation of the two analog signals is performed to determine the angle using the interpolation signal representing the angle To improve resolution.
 また、目盛りの書込み誤差やエンコーダの取り付け誤差等を低減するため、複数のセンサを配置し、それぞれのセンサから得られた内挿信号を平均化する手法が用いられている。また、校正用のセンサをさらに設けて角度誤差の自己校正を行う方法が提案されている(例えば、特許文献1参照。)。 In addition, in order to reduce writing errors on the scale, mounting errors of the encoder, and the like, a method of arranging a plurality of sensors and averaging the interpolation signals obtained from the respective sensors is used. Further, a method has been proposed in which a sensor for calibration is further provided to perform self-calibration of the angular error (for example, see Patent Document 1).
特開2011-99804号公報JP 2011-99804 A
 本発明の目的は、高分解能および高精度を両立可能な新規で有用なエンコーダを提供することである。 An object of the present invention is to provide a new and useful encoder that is compatible with high resolution and high accuracy.
 本発明の一態様によれば、基体に所定角度間隔に配置された角度を示す複数の要素を検知して周期性を有する第1の信号を生成するM個のセンサであって、このM個のセンサが所定角度に配置され、上記所定角度は、360/M×(j-1)(度)と、360/N×MOD[(k-1)/D]とを組み合わせた角度であり、ここで、Mは2以上の整数であり、Nは要素数であり、MODは入力値の小数点以下の値を出力する関数であり、DはMの約数またはMであり但し1は除き、jは1からMの整数でM個のセンサに対して互いに異なる値をとり、kは1からMの整数である、上記M個のセンサと、上記M個のセンサの各々に対して、上記第1の信号に基づいて上記所定角度間隔を内挿する第2の信号を生成する生成器と、上記M個のセンサに対する上記第2の信号を合算して角度位置または回転角を求める演算器と、を備えるエンコーダが提供される。 According to an aspect of the present invention, there are provided M sensors for detecting a plurality of elements indicating angles arranged at predetermined angular intervals on a substrate to generate a first signal having periodicity. The sensor is disposed at a predetermined angle, and the predetermined angle is an angle combining 360 / M × (j−1) (degrees) and 360 / N × MOD [(k j −1) / D]. Here, M is an integer of 2 or more, N is the number of elements, MOD is a function that outputs the decimal value of the input value, D is a divisor of M or M except for 1 , J is an integer from 1 to M and takes different values for M sensors, and k j is an integer from 1 to M, and for each of the M sensors and the M sensors A generator generating a second signal that interpolates the predetermined angular interval based on the first signal; An arithmetic unit that adds the second signal to the sensor to obtain an angular position or a rotational angle.
 上記態様によれば、M個のセンサが、所定角度間隔に角度を示す複数の要素が配置された基体に対して、360/M×(j-1)(度)と360/N×MOD[(k-1)/D](度)とを組み合わせた角度の位置に配置されていることにより、センサにより生成された第1の信号に基づいて生成された上記所定角度間隔を内挿する第2の信号の角度誤差に起因するエンコーダの角度誤差を低減でき、それとともに基体の回転軸への取り付けによる偏心による誤差および等角度間隔に配置された複数の要素の形成位置の誤差に起因するエンコーダの角度誤差も低減でき、その結果、高分解能と高精度を両立したエンコーダを提供できる。 According to the above aspect, the M sensors are 360 / M × (j−1) (degrees) and 360 / N × MOD [for a substrate on which a plurality of elements indicating angles at predetermined angular intervals are arranged. (K j -1) / D] (degrees) is arranged to interpolate the predetermined angular interval generated based on the first signal generated by the sensor The angular error of the encoder due to the angular error of the second signal can be reduced, as well as the error due to eccentricity due to the attachment of the substrate to the rotational axis and the error due to the formation position of multiple elements arranged at equal angular intervals The angular error of the encoder can also be reduced, and as a result, an encoder having both high resolution and high accuracy can be provided.
 本発明の他の態様によれば、基体に所定間隔に配置された位置を示す複数の要素を検知して周期性を有する第1の信号を生成するM個のセンサであって、このM個のセンサが、互いに所定距離だけ離隔して配置され、上記所定距離は、該所定間隔(gl)の整数(m)倍であるgl×mと、gl×MOD[(k-1)/D]とを組み合わせた位置であり、ここで、Mは2以上の整数であり、MODは入力値の小数点以下の値を出力する関数であり、DはMの約数またはMであり但し1は除き、kは1からMの整数であり、上記M個のセンサと、上記M個のセンサの各々に対して、上記第1の信号に基づいて上記所定間隔の要素間を内挿する第2の信号を生成する生成器と、上記M個のセンサに対する上記第2の信号を合算して位置または移動量を求める演算器と、を備えるエンコーダが提供される。 According to another aspect of the present invention, there are provided M sensors for detecting a plurality of elements indicating positions arranged at predetermined intervals on a substrate to generate a first signal having periodicity. Sensors are spaced apart from each other by a predetermined distance, and the predetermined distance is an integer (m j ) times the predetermined interval (gl), gl × m j and gl × MOD [(k j −1) Position where M is an integer greater than or equal to 2, MOD is a function that outputs the decimal value of the input value, and D is a divisor of M or M, 1 is excluded, k j is an integer from 1 to M, and for each of the M sensors and the M sensors, the elements at the predetermined intervals are interpolated based on the first signal. A generator that generates a second signal to be generated, and the second signal for the M Or an arithmetic unit for determining a movement amount.
 上記態様によれば、M個のセンサが、所定間隔に位置を示す複数の要素が配置された基体に対して、その所定間隔(gl)の整数(m)倍であるgl×mとgl×MOD[(k-1)/D]とを組み合わせた位置に配置されていることにより、センサにより生成された第1の信号に基づいて生成された上記所定間隔を内挿する第2の信号の位置誤差に起因するエンコーダの位置誤差を低減でき、それとともに基体の対象物への取り付けによる位置誤差および所定間隔に配置された複数の要素の形成位置の誤差に起因するエンコーダの誤差も低減でき、その結果、高分解能と高精度を両立したエンコーダを提供できる。 According to the above aspect, with respect to a base on which a plurality of elements indicating positions are disposed at predetermined intervals, M sensors are integers (m j ) times the predetermined interval (gl) and gl × m j By arranging at a position in combination with gl × MOD [(k j −1) / D], the second predetermined interval which is generated based on the first signal generated by the sensor is interpolated. The position error of the encoder due to the position error of the signal can be reduced, and at the same time the position error due to the attachment of the substrate to the object and the error of the encoder due to the errors of formation positions of plural elements arranged at predetermined intervals As a result, an encoder having both high resolution and high accuracy can be provided.
ロータリーエンコーダの角度誤差を示す図である。It is a figure which shows the angle error of a rotary encoder. ロータリーエンコーダの図1に示す角度誤差の離散フーリエ変換(DFT)解析を示す図である。FIG. 2 illustrates discrete Fourier transform (DFT) analysis of the angular error shown in FIG. 1 of a rotary encoder. ロータリーエンコーダの図1に含まれる内挿信号の角度誤差を示す図である。FIG. 5 shows the angular error of the interpolated signal contained in FIG. 1 of the rotary encoder. 本発明の第1の実施形態に係るエンコーダの概要構成を示す図である。FIG. 1 is a diagram showing a schematic configuration of an encoder according to a first embodiment of the present invention. 本発明の第1の実施形態に係るエンコーダのセンサの配置位置を示す図である。It is a figure which shows the arrangement | positioning position of the sensor of the encoder which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態における各センサの配置位置の一例を示す図である。It is a figure which shows an example of the arrangement | positioning position of each sensor in the 1st Embodiment of this invention. 本発明の第1の実施形態に係るエンコーダの内挿信号の角度誤差を示す図である。It is a figure which shows the angle error of the interpolation signal of the encoder which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係るエンコーダの角度誤差を示す図である。It is a figure which shows the angle error of the encoder which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係るエンコーダの角度誤差のDFT解析を示す図である。It is a figure which shows the DFT analysis of the angle error of the encoder which concerns on the 1st Embodiment of this invention. 本発明の第2の実施形態に係るエンコーダの概要構成を示す図である。It is a figure which shows schematic structure of the encoder which concerns on the 2nd Embodiment of this invention. 本発明の第2の実施形態における各センサの配置位置の一例を示す図である。It is a figure which shows an example of the arrangement | positioning position of each sensor in the 2nd Embodiment of this invention.
 本願発明者は、ロータリーエンコーダの高分解能および高精度化を図るため研究を行っていたところ、以下に説明する課題に直面し、その解決手段を見出した。 The inventor of the present invention has been researching to achieve high resolution and high accuracy of a rotary encoder, and has encountered a problem described below and found a solution.
 ロータリーエンコーダでは、360度に亘って目盛りが付された目盛盤をセンサで読み取り、その目盛りに基づいてサイン波およびコサイン波を生成して目盛り間を内挿する信号を生成する(以下、内挿信号と称する。)。そして、内挿信号に基づいて角度信号を生成し、角度信号から現在の角度あるいは回転角を検出する。複数のセンサが設けられている場合は、各々のセンサからの角度信号を平均化して角度を求める。内挿信号は、最小目盛よりも小さな角度を検出するため、つまり高分解能化のために用いられている。 In the rotary encoder, the sensor reads a graduated dial with a scale of 360 degrees, generates sine waves and cosine waves based on the scale, and generates a signal to interpolate between the scales (hereinafter referred to as interpolation). Called a signal). Then, an angle signal is generated based on the interpolation signal, and the current angle or rotation angle is detected from the angle signal. If multiple sensors are provided, the angle signal from each sensor is averaged to determine the angle. The interpolated signal is used to detect an angle smaller than the minimum scale, that is, to improve resolution.
 ロータリーエンコーダは、目盛盤に対して複数のセンサを等角度間隔に配置し、出力される複数の角度信号を平均化することで、ロータリーエンコーダの偏心誤差や目盛盤の各目盛りの角度位置の誤差等を低減する。しかしながら、ロータリーエンコーダの角度誤差を調べてみると依然角度誤差が残っており、高精度化の障害になり得る。本願発明者は、4個のセンサを90度の等角度間隔に配置したロータリーエンコーダの角度誤差を調べた。目盛り板の目盛り数Nは360個、つまり、1度おきに等間隔で付されており、内挿信号により32逓倍した。4つのセンサは各々目盛盤の回転に従い基本目盛と内挿分割によって発生した角度誤差を含んだ信号として検出する。 The rotary encoder arranges a plurality of sensors at equal angular intervals with respect to the dial plate, and averages a plurality of output angle signals, so that the eccentricity error of the rotary encoder or the error of the angular position of each scale of the dial plate Reduce etc. However, when the angle error of the rotary encoder is examined, the angle error still remains, which may become an obstacle to high precision. The inventor examined the angular error of a rotary encoder in which four sensors were arranged at equal angular intervals of 90 degrees. The number of graduations N of the graduation plate is 360, that is, it is attached at equal intervals every other degree, and is multiplied by 32 by the interpolation signal. Each of the four sensors detects a signal including an angular error generated by the basic scale and the interpolation division as the dial plate rotates.
 図1は、ロータリーエンコーダの角度誤差を示す図であり、4つのセンサからの角度信号を平均化したときの角度誤差である。図1を参照するに、角度誤差は、360度(1周)に亘って最大±30秒もあることが分かる。 FIG. 1 is a diagram showing an angle error of a rotary encoder, which is an angle error obtained by averaging angle signals from four sensors. Referring to FIG. 1, it can be seen that the angular error is up to ± 30 seconds over 360 degrees (one round).
 図2は、ロータリーエンコーダの図1に示す角度誤差の離散フーリエ変換(DFT)解析を示す図である。 FIG. 2 shows a discrete Fourier transform (DFT) analysis of the angular error shown in FIG. 1 of the rotary encoder.
 図2を参照するに、低次成分は小さく、偏心誤差および目盛りの角度誤差の低減に効果があることが分かる。しかし、360、720、1080、1440、および1800次成分の角度誤差が大きく、2秒から11秒程度あることが分かる。これらの角度誤差成分は、センサ数Mが4に対して目盛り数Nが360であり、センサ数Mが目盛り数360の約数になっているため目盛り数の倍数次の角度誤差が内挿信号の角度誤差として生じるものである。例えば、センサ数を4個ではなく、3個、5個、6個としても目盛り数360の約数であるので同様に内挿信号の角度誤差が生じてしまう。 Referring to FIG. 2, it can be seen that the low order component is small and is effective in reducing eccentricity errors and scale angular errors. However, it can be seen that the angular errors of the 360, 720, 1080, 1440 and 1800 order components are large, on the order of 2 seconds to 11 seconds. These angular error components have a division number N of 360 for the sensor number M of 4, and the sensor number M is a divisor of the division number of 360. Therefore, the angular error of the next multiple of the division number is an interpolation signal This occurs as an angular error of For example, since the number of sensors is a divisor of the number of graduations 360 even if the number of sensors is not four but three, five, or six, an angle error of the interpolation signal will occur similarly.
 このような内挿信号の角度誤差を低減する一つの手法としては、センサ数を7個または13個として等角度間隔に配置すればよい。7は目盛り数360の約数ではないので、内挿信号の角度誤差を低減することができる。 As a method of reducing such an angular error of the interpolation signal, the number of sensors may be seven or thirteen and arranged at equal angular intervals. Since 7 is not a divisor of the number of graduations 360, the angular error of the interpolation signal can be reduced.
 図3は、ロータリーエンコーダの図1に含まれる内挿信号の角度誤差をセンサ毎に示す図である。図3は、角度誤差のうち、内挿信号の角度誤差のみを分離して、各センサ毎に示したもので、横軸は角度(度)、縦軸は角度誤差(秒)であり、黒三角(▲)の位置が目盛盤の目盛りの位置を示している。 FIG. 3 is a diagram showing an angular error of an interpolation signal included in FIG. 1 of the rotary encoder for each sensor. FIG. 3 shows only the angular error of the interpolation signal among the angular errors, and is shown for each sensor, the horizontal axis is the angle (degrees), and the vertical axis is the angle error (seconds), and black The triangle (▲) position indicates the position of the scale on the dial.
 図3を参照するに、センサ1~センサ4のそれぞれの角度誤差の波形はほぼ同様であり、位相もほぼ一致していることが分かる。このことから、センサ1~センサ4の角度信号を平均化しても、センサ1~センサ4の角度誤差が互いに打ち消し合うことがなく、図2に示したように、内挿信号の角度誤差が残ってしまう。 Referring to FIG. 3, it can be seen that the waveforms of the angular errors of the sensors 1 to 4 are almost the same, and the phases are also substantially the same. From this, even if the angle signals of the sensor 1 to the sensor 4 are averaged, the angle errors of the sensor 1 to the sensor 4 do not mutually cancel each other, and as shown in FIG. It will
 そこで、本発明の目的は、目盛盤の目盛りに対して、複数のセンサの位置を互いにずらすことで、内挿信号の角度誤差を低減した、高分解能と高精度化とを両立したエンコーダを提供することである。 Therefore, an object of the present invention is to provide an encoder having both high resolution and high accuracy, in which the angular error of the interpolation signal is reduced by mutually shifting the positions of a plurality of sensors with respect to the graduation of the graduation plate. It is to be.
 以下、図面に基づいて本発明の一実施形態を説明する。なお、複数の図面間において共通する要素については同じ符号を付し、その要素の詳細な説明の繰り返しを省略する。 Hereinafter, an embodiment of the present invention will be described based on the drawings. Note that elements common to multiple drawings are given the same reference numerals, and repeated description of the elements is omitted.
[第1の実施形態]
 図4は、本発明の第1の実施形態に係るエンコーダの概要構成を示す図である。
First Embodiment
FIG. 4 is a diagram showing a schematic configuration of an encoder according to the first embodiment of the present invention.
 図4を参照するに、第1の実施形態に係るエンコーダ10は、角度の測定の対象となる回転軸15に配置され、周方向に等間隔に形成された目盛り21を有する目盛盤20と、目盛り21を検出し、その検出に基づいて周期性を有する互いに90度位相がずれた正弦波の検出信号を生成する4つのセンサ31~34と、各センサ31~34に対する検出信号に基づいて目盛りの間隔を内挿する内挿信号(角度信号とも称する。)を生成する内挿信号生成器41~44と、内挿信号に基づいて各センサ31~34に対する内挿信号を合算して角度位置または回転角を求める演算器50とを有する。 Referring to FIG. 4, the encoder 10 according to the first embodiment is disposed on a rotation shaft 15 which is an object of angle measurement, and has a scale plate 20 having graduations 21 formed at equal intervals in the circumferential direction; The scale 21 is detected, and based on the detection, four sensors 31 to 34 that generate detection signals of sinusoidal waves that are 90 degrees out of phase with each other having a periodicity, and the scale based on the detection signals for each sensor 31 to 34 Interpolation signal generators 41 to 44 that generate interpolation signals (also referred to as angle signals) that interpolate the interval between the two, and add the interpolation signals for each of the sensors 31 to 34 based on the interpolation signals to obtain an angular position Or an arithmetic unit 50 for determining the rotation angle.
 目盛盤20は、回転軸15に同心となるように取り付けられており、周方向に等間隔に目盛り21が設けられており、目盛り21の部分が光を透過するようになっている。 The scale plate 20 is attached to be concentric with the rotating shaft 15, and the scales 21 are provided at equal intervals in the circumferential direction, so that the portion of the scale 21 transmits light.
 センサ31~34は、各々、発光素子35と、スリット36と、受光素子37とを有する。図4では、センサ32~34は構成要素の詳細は省略して記載しているが、センサ31と同様の構成要素を有している。センサ31~34は、発光素子35からの光を目盛り21が透過しスリット36を介して受光素子37が受光する。センサ31~34は、受光素子37が受光した光の強度に応じて、互いに90度位相がずれた正弦波の電気信号を生成して検出信号として出力する。2つの互いに90度位相がずれた正弦波の電気信号は、例えば一方がSin電圧信号であり、他方がCos電圧信号である。 The sensors 31 to 34 each have a light emitting element 35, a slit 36, and a light receiving element 37. In FIG. 4, the sensors 32 to 34 are described with details of the components omitted, but have the same components as the sensor 31. In the sensors 31 to 34, the scale 21 transmits the light from the light emitting element 35, and the light receiving element 37 receives the light through the slit 36. The sensors 31 to 34 generate sine wave electrical signals that are 90 degrees out of phase with each other according to the intensity of light received by the light receiving element 37, and output the signals as detection signals. For example, one of the two sine wave electrical signals that are 90 degrees out of phase with each other is a Sin voltage signal, and the other is a Cos voltage signal.
 内挿信号生成器41~44は、その入力部がセンサ31~34の出力部と電気的に接続されており、入力された検出信号に基づいて内挿信号を生成する。具体的には、検出信号のSin電圧信号およびCos電圧信号のarctan(Sin電圧信号の電圧値/Cos電圧信号の電圧値)から角度を求めて内挿信号を生成する。内挿信号はデジタル信号である。内挿信号は目盛り間隔を等間隔に分割した信号であり、例えば数十逓倍~数百逓倍の信号である。 The interpolation signal generators 41 to 44, the input portions of which are electrically connected to the output portions of the sensors 31 to 34, generate interpolation signals based on the input detection signals. Specifically, an interpolation signal is generated by obtaining an angle from the Sin voltage signal of the detection signal and the arctan of the Cos voltage signal (voltage value of Sin voltage signal / voltage value of Cos voltage signal). The interpolation signal is a digital signal. The interpolation signal is a signal obtained by dividing a scale interval at equal intervals, and is, for example, a signal of several tens of multiplication to several hundreds of multiplication.
 演算器50は、内挿信号生成器41~44の出力部とそれぞれ電気的に接続されており、内挿信号生成器41~44からの内挿信号を合算する。具体的には、例えば、回転軸15の回転によって生成された内挿信号のパルスを計数し、得られたパルス数を合算し、その結果をセンサ数で除することにより、角度位置または回転角を求める。演算器50は、合算することで、内挿信号生成器41~44のそれぞれの内挿信号の角度誤差を打ち消すことができ、角度誤差を低減して精度を向上できる。 The computing unit 50 is electrically connected to the outputs of the interpolation signal generators 41 to 44, respectively, and adds up the interpolation signals from the interpolation signal generators 41 to 44. Specifically, for example, the number of pulses of the interpolation signal generated by the rotation of the rotation shaft 15 is counted, the number of pulses obtained is added, and the result is divided by the number of sensors to obtain the angular position or the rotational angle. Ask for The arithmetic unit 50 can cancel the angular error of each of the interpolation signals of the interpolation signal generators 41 to 44 by adding up, and can reduce the angular error and improve the accuracy.
 図5は、本発明の第1の実施形態に係るエンコーダのセンサの配置位置を示す図である。 FIG. 5 is a view showing the arrangement position of the sensor of the encoder according to the first embodiment of the present invention.
 図5を参照するに、センサ31~34は、その検出位置が目盛盤20に対して角度φ(j,k)(度)の位置に配置される。角度の基点は任意に選択できるが、例えば、センサ31の位置を選択することができる。角度φ(度)は式1で表され、θ(度)は式2、δは式3で表される。
φ(j,k)=θ+δkj   ・・・(1)
θ=360/M×(j-1)   (j=1,2,・・・,M) ・・・(2)
δkj=360/N×MOD[(k-1)/D]  (k=1,2,・・・,M) ・・・(3)
ここで、jはセンサ31~34に対して、1~Mの整数が割り当てられる。DはMの約数またはM(但し1は除く)である。Mはセンサの個数であり、第1の実施形態では4である。Nは目盛盤20の360度に亘る目盛り21の数であり、第1の実施形態では360である。
Referring to FIG. 5, the sensors 31 to 34 are arranged at the detection positions of the angle φ (j, k j ) (degrees) with respect to the dial plate 20. Although the origin of the angle can be selected arbitrarily, for example, the position of the sensor 31 can be selected. The angle φ (degree) is expressed by Equation 1, θ j (degree) is expressed by Equation 2, and δ k is expressed by Equation 3.
φ (j, k j ) = θ j + δ kj (1)
θ j = 360 / M × (j−1) (j = 1, 2,..., M) (2)
δ kj = 360 / N × MOD [(k j -1) / D] (k j = 1, 2,..., M) (3)
Here, j is an integer of 1 to M assigned to the sensors 31 to 34. D is a divisor of M or M (except 1). M is the number of sensors, which is 4 in the first embodiment. N is the number of graduations 21 over 360 degrees of the scale plate 20, and is 360 in the first embodiment.
上記式3のMODは入力値の小数点以下の値を出力する関数である。MOD[(k-1)/D]は、1よりも小さい値(小数)となり、例えば、MOD[3.75]=0.75、MOD[1.25]=0.25、MOD[0.25]=0.25となる。これにより、δkjは360/N(度)よりも小さくなり、つまり、最小目盛り間隔よりも小さくなる。 MOD in the above equation 3 is a function that outputs the value after the decimal point of the input value. MOD [(k j -1) / D] is a value (decimal fraction) smaller than 1 and, for example, MOD [3.75] = 0.75, MOD [1.25] = 0.25, MOD [0 .25] = 0.25. By this, δ kj becomes smaller than 360 / N (degrees), that is, smaller than the minimum scale interval.
なお、上記式1の変形例として、φ(j,k)=θ-δkjとしてもよい。すなわち、式1は、式2のθと式3のδkjとを組み合わせた角度であればよい。 As a modification of the above formula 1, φ (j, k j ) may be = θ jkj. That is, Equation 1 may be an angle obtained by combining θ j of Equation 2 and δ kj of Equation 3.
 図5では、4つのセンサ31~34が配置されている。これは、式1~3において、D=M=4の場合である。センサ31~34はそれぞれ、角度φ(1,k)、φ(2,k)、φ(3,k)、φ(4,k)に配置される。ここでkj=1~4=1,2,・・・,4である。なお、三角印△の目盛盤に対向する頂点はセンサの検出位置を示している。 In FIG. 5, four sensors 31 to 34 are arranged. This is the case where D = M = 4 in the equations 1 to 3. The sensors 31 to 34 are disposed at angles φ (1, k 1 ), φ (2, k 2 ), φ (3, k 3 ), and φ (4, k 4 ), respectively. Here, k j = 1 to 4 = 1, 2,... The vertex of the triangle mark Δ facing the scale plate indicates the detection position of the sensor.
 図6は、本発明の第1の実施形態における各センサの配置位置の一例を示す図であり、図5に示す各センサの配置位置を拡大して示している。図6(a)~(d)は、それぞれ、センサ31~34の配置位置を示している。 FIG. 6 is a view showing an example of the arrangement position of each sensor in the first embodiment of the present invention, and shows the arrangement position of each sensor shown in FIG. 5 in an enlarged manner. 6 (a) to 6 (d) show the arrangement positions of the sensors 31 to 34, respectively.
 図6(a)~(d)を参照するに、センサ31~34はφ(j,k)=θ+δkj(j=1~4の整数)の角度の位置に配置される。θは360度を4等分した角度位置であり、δkjは目盛り21の最小角度間隔を4等分した角度を単位とした角度である。目盛り数N=360の場合、センサ31~34は、それぞれ、例えば、以下のφ(1,k)、φ(2,k)、φ(3,k)およびφ(4,k)に示す角度に配置される。
センサ31:φ(1,k)=θ+δk1=0+0=0度
センサ32:φ(2,k)=θ+δk2=90+0.25=90.25度
センサ33:φ(3,k)=θ+δk3=180+0.50=180.50度
センサ34:φ(4,k)=θ+δk4=270+0.75=270.75度
Referring to FIG. 6 (a) ~ (d) , sensors 31-34 will be disposed in an angle of φ (j, k j) = θ j + δ kj (j = 1 ~ 4 integer). θ j is an angular position obtained by equally dividing 360 degrees into four, and δ kj is an angle in units of an angle formed by equally dividing the minimum angular interval of the scale 21 into four. In the case of the number of graduations N = 360, the sensors 31 to 34 are, for example, the following φ (1, k 1 ), φ (2, k 2 ), φ (3, k 3 ) and φ (4, k 4) It is arranged at the angle shown in).
Sensor 31: φ (1, k 1 ) = θ 1 + δ k 1 = 0 + 0 = 0 degree Sensor 32: φ (2, k 2 ) = θ 2 + δ k 2 = 90 + 0.25 = 90.25 degree Sensor 33: φ (3 , k 3) = θ 3 + δ k3 = 180 + 0.50 = 180.50 degrees sensor 34: φ (4, k 4 ) = θ 4 + δ k4 = 270 + 0.75 = 270.75 °
 図7は、本発明の第1の実施形態に係るエンコーダの内挿信号の角度誤差を示す図である。図7を参照するに、センサ11~14の内挿信号の角度誤差の波形は、互いに1/4度(0.25度)ずつ位相がずれており、センサ31~34の配置のδkjが反映されていることが分かる。 FIG. 7 is a diagram showing an angular error of the interpolation signal of the encoder according to the first embodiment of the present invention. Referring to FIG. 7, the waveforms of the angular errors of the interpolation signals of the sensors 11 to 14 are out of phase with each other by 1⁄4 degrees (0.25 degrees), and δ kj of the arrangement of the sensors 31 to 34 is It is understood that it is reflected.
 図8は、本発明の第1の実施形態に係るエンコーダの角度誤差を示す図である。 FIG. 8 is a diagram showing an angular error of the encoder according to the first embodiment of the present invention.
 図8を参照するに、エンコーダの角度誤差は、最大±16秒であり、先に示した図1の角度誤差に対して、ほぼ1/2になっていることが分かる。 Referring to FIG. 8, it can be seen that the angular error of the encoder is at most ± 16 seconds, which is approximately one half of the angular error of FIG. 1 shown above.
 図9は、本発明の第1の実施形態に係るエンコーダの角度誤差のDFT解析を示す図であり、図8の角度誤差をDFT解析したものである。 FIG. 9 is a diagram showing DFT analysis of the angular error of the encoder according to the first embodiment of the present invention, in which the angular error of FIG. 8 is DFT analyzed.
 図9を参照するに、目盛り数360の倍数次である360、720、1080、および1800次成分の角度誤差が2秒以下になっており、特に360次成分では図2に対して6%、720次成分では9%にまで大幅に減少していることが分かる。このことは、本実施形態の効果を明確に示している。 Referring to FIG. 9, the angular errors of the 360th, 720th, 1080th and 1800th order components which are multiples of the scale number 360 are 2 seconds or less, and in particular, the 360th order component is 6% with respect to FIG. It can be seen that the 720th component significantly decreases to 9%. This clearly shows the effect of the present embodiment.
 センサ31~34の配置位置の変形例(変形例1)としては、上記式1のδkjは式3により0、0.25、0.50、および0.75の値をとるが、センサ31~34に対して任意に割り当ててもよい。例えば、(δk1,δk2,δk3,δk4)=(0,0.50,0.25,0.75)、(0,0.75,0.25,0.50)、(0.25,0,0.50,0.75)等である。この変形例1によっても、上述した本実施形態の効果が同様に得られることは本発明の原理から明らかである。 As a modification (modification 1) of arrangement position of sensors 31-34, although δ kj of the above-mentioned formula 1 takes a value of 0, 0.25, 0.50, and 0.75 by formula 3, sensor 31 It may be arbitrarily assigned to. For example, (δ k1 , δ k2 , δ k3 , δ k4 ) = (0, 0.50, 0.25, 0.75), (0, 0.75, 0.25, 0.50), (0 .25, 0, 0.50, 0.75) and so on. It is also apparent from the principle of the present invention that the effects of the above-described embodiment can be obtained in the same manner as in the first modification.
 なお、センサの配置位置の別の変形例(変形例2)としては、式1のθは式2により0、90、180、270であるが、センサ31~34に対して、それぞれの位置から、360/Nの整数倍の角度だけずれて配置されてもよいが、この場合、低次成分の誤差が増加するので、θは等角度間隔に設定することが好ましい。 In addition, as another modification (modification 2) of the arrangement position of a sensor, although θ j of Expression 1 is 0, 90, 180, and 270 according to Expression 2, respective positions with respect to the sensors 31 to 34 It is preferable to set θ j at equal angular intervals because the error of the low-order component increases in this case, although the angle may be shifted by an integer multiple of 360 / N.
 さらに別の変形例(変形例3)として、式3のDがMの約数の場合、各センサは式3において、k=1~Mの整数のいずれかであるので、センサの数Mが4の場合でDが2のときは、(δk1,δk2,δk3,δk4)=(0,0.5,0,0.5)になる。この場合は、内挿信号の角度誤差に起因するエンコーダの角度誤差のうち、N倍次成分(ただし、(N×D)次成分を除く)の誤差を低減できる。 As yet another modification (Modification 3), when D in Equation 3 is a divisor of M, each sensor is any integer of k j = 1 to M in Equation 3, so the number M of sensors is M When D is 4 and D is 2, (δ k1 , δ k2 , δ k3 , δ k4 ) = (0, 0.5, 0, 0.5). In this case, among the angular errors of the encoder due to the angular error of the interpolation signal, it is possible to reduce the error of the N-th-order component (except for the (N × D) -order component).
 本実施形態によれば、複数のセンサ31~34が、目盛盤20に対して、式2の右辺の項360度/M×(j-1)と式3の右辺の項360度/N×MOD[(k-1)/D]とを組み合わせた角度の位置に配置されていることにより、内挿信号の角度誤差に起因するエンコーダの角度誤差のうち、N倍次成分(ただし、(N×D)次成分を除く)の誤差を低減でき、それとともに目盛盤20の回転軸15への取り付けによる偏心による誤差および目盛盤20の目盛り21の形成位置の誤差に起因するエンコーダの角度誤差も低減できる。したがって、本実施形態によれば、高分解能と高精度を両立したエンコーダを提供できる。 According to the present embodiment, with respect to the dial plate 20, the plurality of sensors 31 to 34 are the term 360 degrees / M × (j−1) of the right side of Formula 2 and the term 360 degrees / N × of the right side of Formula 3. By arranging at the position of the angle combined with MOD [(k j -1) / D], N-order component of the angular error of the encoder due to the angular error of the interpolation signal (however, Error of N × D) except for the following components can be reduced, together with the error due to eccentricity due to the attachment of the dial 20 to the rotary shaft 15 and the angle error of the encoder due to the error of the forming position of the dial 21 of the dial 20 Can also be reduced. Therefore, according to the present embodiment, it is possible to provide an encoder having both high resolution and high accuracy.
 本実施形態では、透過型の光学センサを用いた例を挙げたが、代替例としては、例えば、目盛盤に目盛りが示されており、その目盛りとそれ以外の部分とで光学的なコントラストを利用した反射式の光学センサを用いてもよい。例えば、目盛りの部分が他の部分よりも反射率が高い、あるいは低い(つまり吸収率が高い)目盛盤である。 In this embodiment, an example using a transmission type optical sensor has been described, but as an alternative example, for example, a scale is shown on a scale plate, and optical contrast between the scale and other portions is shown. You may use the reflective optical sensor utilized. For example, the scale portion is a dial whose reflectance is higher or lower (that is, the absorption coefficient is higher) than other portions.
 本実施形態は、光学センサおよび目盛盤の代わりに、磁気センサおよび磁気的に目盛りが与えられている磁気式エンコーダにも適用可能である。磁気的な目盛りを検知する複数の磁気センサを、上述した光学センサと同様に配置すればよい。 This embodiment is also applicable to a magnetic sensor and a magnetic encoder that is magnetically calibrated, instead of an optical sensor and a dial. A plurality of magnetic sensors for detecting a magnetic scale may be arranged in the same manner as the optical sensor described above.
 本実施形態のエンコーダ10は、回転軸15の回転角や回転速度を検出するインクリメンタルエンコーダに適用でき、また、絶対角度位置を検出するアブソリュートエンコーダに適用できる。 The encoder 10 of the present embodiment can be applied to an incremental encoder that detects the rotation angle and rotational speed of the rotation shaft 15, and can be applied to an absolute encoder that detects an absolute angular position.
[第2の実施形態]
 図10は、本発明の第2の実施形態に係るエンコーダの概要構成を示す図である。
Second Embodiment
FIG. 10 is a diagram showing a schematic configuration of an encoder according to a second embodiment of the present invention.
 図10を参照するに、第1の実施形態に係るエンコーダ100は、位置あるいは移動量の測定の対象物(不図示)に配置され、対象物の移動方向(矢印MVで示す方向)に等間隔に形成された目盛り121を有する目盛盤120と、目盛り121を検出し、その検出に基づいて周期性を有する互いに90度位相がずれた正弦波の検出信号を生成する3つのセンサ131~133と、各センサ131~133に対する検出信号に基づいて目盛りの間隔を内挿する内挿信号を生成する内挿信号生成器141~143と、内挿信号に基づいて各センサ131~133に対する内挿信号を合算して位置または移動量を求める演算器150と、を有する。 Referring to FIG. 10, the encoder 100 according to the first embodiment is disposed on an object (not shown) for measuring the position or movement amount, and is equally spaced in the movement direction of the object (the direction indicated by the arrow MV). A scale plate 120 having a scale 121 formed thereon, and three sensors 131 to 133 which detect the scale 121 and generate detection signals of sine waves having a phase shift of 90 degrees with each other based on the detection. Interpolation signal generators 141 to 143 that generate interpolation signals that interpolate the scale intervals based on detection signals for the sensors 131 to 133, and interpolation signals for the sensors 131 to 133 based on the interpolation signals And a computing unit 150 for obtaining the position or the movement amount.
 目盛盤120は、対象物の移動方向(矢印MVで示す方向)に沿って取り付けられており、等間隔に目盛り121が設けられている。目盛り121の部分が光を反射するようになっている。なお、目盛り121の部分が光を吸収しその周囲の目盛盤120の表面が光を反射するようにしてもよい。 The scale plate 120 is attached along the moving direction of the object (the direction indicated by the arrow MV), and the scale 121 is provided at equal intervals. The portion of the scale 121 is designed to reflect light. The portion of the scale 121 may absorb light, and the surface of the graduation plate 120 therearound may reflect light.
 センサ131~133は、各々、発光素子135と受光素子137とを有する。センサ131~133は、発光素子135からの光を目盛り121が反射し受光素子137が受光する。センサ131~133は、受光素子137が受光した光の強度に応じて、互いに90度位相がずれた正弦波の電気信号を生成して検出信号として出力する。2つの互いに90度位相がずれた正弦波の電気信号は、例えば一方がSin電圧信号であり、他方がCos電圧信号である。 The sensors 131 to 133 each have a light emitting element 135 and a light receiving element 137. In the sensors 131 to 133, the scale 121 reflects the light from the light emitting element 135, and the light receiving element 137 receives the light. The sensors 131 to 133 generate sine wave electrical signals that are 90 degrees out of phase with each other according to the intensity of the light received by the light receiving element 137, and output the signals as a detection signal. For example, one of the two sine wave electrical signals that are 90 degrees out of phase with each other is a Sin voltage signal, and the other is a Cos voltage signal.
 内挿信号生成器141~143および演算器150は、それぞれ、第1の実施形態における内挿信号生成器41~44、演算器50と同様の構成と動作を有し、目盛盤120の位置または移動量を求める。演算器150は、内挿信号生成器141~143のそれぞれの内挿信号の位置誤差を打ち消すことができ、位置誤差を低減して精度を向上できる。 The interpolation signal generators 141 to 143 and the calculator 150 have the same configuration and operation as the interpolation signal generators 41 to 44 and the calculator 50 in the first embodiment, respectively. Find the amount of movement. The arithmetic unit 150 can cancel the position error of the interpolation signal of each of the interpolation signal generators 141 to 143, and can reduce the position error to improve the accuracy.
 図11は、本発明の第2の実施形態における各センサの配置位置の一例を示す図である。(a)~(c)は、それぞれ、センサ131~133の配置位置を示している。 FIG. 11 is a diagram showing an example of the arrangement position of each sensor in the second embodiment of the present invention. (A) to (c) show the arrangement positions of the sensors 131 to 133, respectively.
 図11を参照するに、センサ131~133は、その検出位置が目盛盤120に対して位置p(j,k)に配置される。位置の基点は任意に選択できるが、例えば、センサ131の位置を選択することができる。位置pは式5で表され、Lは式6、δkjは式7で表される。
p(j,k)=L+δkj    ・・・(5)
=gl×m         ・・・(6)
δkj=gl×MOD[(k-1)/D]  (k=1,2,・・・,M)  ・・・(7)
ここで、jはセンサ131~133に対して、1~Mの整数が割り当てられる。mは整数であり、jに対して互いに異なる整数が選択される。DはMの約数またはM(但し1は除く)である。glは目盛り間隔である。Mはセンサの個数であり、第2の実施形態では一例として3である。MODは入力値の小数点以下の値を出力する関数であり、第1の実施形態と同様である。なお、上記式5の変形例として、p(j,k)=L-δkjとしてもよい。すなわち、式5は、式6のLと式7のδkjとを組み合わせた位置であればよい。
Referring to FIG. 11, the sensors 131 to 133 are arranged at positions p (j, k j ) with respect to the dial plate 120 at their detection positions. Although the origin of the position can be selected arbitrarily, for example, the position of the sensor 131 can be selected. The position p is represented by equation 5, L j is represented by equation 6, and δ kj is represented by equation 7.
p (j, k j ) = L j + δ kj (5)
L j = gl × m j (6)
δ kj = gl × MOD [(k j -1) / D] (k j = 1, 2,..., M) (7)
Here, j is an integer of 1 to M assigned to the sensors 131 to 133. m j is an integer, and mutually different integers are selected for j. D is a divisor of M or M (except 1). gl is a scale interval. M is the number of sensors, and is 3 by way of example in the second embodiment. MOD is a function that outputs the value after the decimal point of the input value, and is the same as in the first embodiment. As a modification of the above formula 5, p (j, k j ) = it may be L j kj. That is, Equation 5 may be a position where L j in Equation 6 and δ kj in Equation 7 are combined.
 図11の(a)~(c)に示すように、センサ131~133はp(j,k)=L+δkj(j=1~3の整数)の位置に配置される。Lは目盛り間隔glの整数倍(m倍)であり、δkjは目盛り間隔glを3等分した距離である。センサ131~133は、それぞれ、以下のp(1,k)、p(2,k)、p(3,k)に示す位置に配置される。
センサ131:p(1,k)=L+δk1=0+0=0
センサ132:p(2,k)=L+δk2=gl×10+gl×1/3=(10+1/3)×gl
センサ133:p(3,k)=L+δk3=gl×20+gl×2/3=(20+2/3)×gl
このように、センサ131~133を配置することで、内挿信号の位置誤差の位相は、互いに目盛り間隔glの1/3ずつ位相がずれるようになり、演算器150によってセンサ131~133に対する内挿信号を合算することで、内挿信号の位置誤差に起因する誤差が低減される。その結果、エンコーダ100の精度が向上する。
As shown in (a) ~ (c) of FIG. 11, sensors 131-133 are disposed at the position of p (j, k j) = L j + δ kj (j = 1 ~ 3 integer). L j is an integral multiple (m j times) of the scale interval gl, and δ kj is a distance obtained by equally dividing the scale interval gl into three. The sensors 131 to 133 are disposed at positions indicated by p (1, k 1 ), p (2, k 2 ), and p (3, k 3 ) below, respectively.
Sensor 131: p (1, k 1 ) = L 1 + δ k 1 = 0 + 0 = 0
Sensor 132: p (2, k 2 ) = L 2 + δ k 2 = gl × 10 + gl × 1/3 = (10 + 1/3) × gl
Sensor 133: p (3, k 3 ) = L 3 + δ k3 = gl × 20 + gl × 2/3 = (20 + 2/3) × gl
As described above, by disposing the sensors 131 to 133, the phases of the position errors of the interpolation signal become out of phase with each other by 1⁄3 of the scale interval gl. By summing the insertion signals, the error due to the position error of the interpolation signal is reduced. As a result, the accuracy of the encoder 100 is improved.
 センサ131~133の配置位置の変形例(変形例4)としては、式5のδkjは式7により0、1/3および2/3の値をとるが、センサ131~133に対して任意に割り当ててもよい。この変形例によっても、上述した本実施形態の効果が同様に得られることは本発明の原理から明らかである。 As a modification (modification 4) of the arrangement position of sensors 131-133 , although delta kj of formula 5 takes a value of 0, 1/3, and 2/3 by formula 7, it is arbitrary to sensors 131-133. May be assigned to It is apparent from the principle of the present invention that the effects of the present embodiment described above can be similarly obtained by this modification as well.
 本実施形態によれば、複数のセンサ131~133が、目盛盤120に対して、式6の右辺の項gl×mと式7の右辺の項gl×MOD[(k-1)/D]とを組み合わせた位置に配置されていることにより、内挿信号の角度誤差に起因するエンコーダの角度誤差を低減でき、それとともに目盛盤120の対象物への取り付けのアライメントによる誤差および目盛盤120の目盛り121の形成位置の誤差に起因するエンコーダ100の位置誤差も低減できる。したがって、本実施形態によれば、高分解能と高精度を両立したエンコーダを提供できる。 According to the present embodiment, with respect to the dial plate 120, the plurality of sensors 131 to 133 are the term gl × m j on the right side of Equation 6 and the term gl × MOD [(k j −1) / D), which reduces the angular error of the encoder due to the angular error of the interpolated signal, together with the error due to the alignment of the attachment of the dial 120 to the object and the dial The position error of the encoder 100 resulting from the error of the formation position of the scale 121 of 120 can also be reduced. Therefore, according to the present embodiment, it is possible to provide an encoder having both high resolution and high accuracy.
 なお、本実施形態において、反射式のセンサ131~133および目盛盤120の代わりに、透過式のセンサおよび目盛盤を用いることができる。さらに、本実施形態は、磁気式のエンコーダに適用できる。 In the present embodiment, in place of the reflective sensors 131 to 133 and the dial plate 120, transmissive sensors and dial plates can be used. Furthermore, the present embodiment can be applied to a magnetic encoder.
 以上、本発明の好ましい実施形態について詳述したが、本発明は係る特定の実施形態に限定されるものではなく、請求の範囲に記載された本発明の範囲内において、種々の変形・変更が可能である。例えば、第1の実施形態および第2の実施形態のうち、一方の実施形態で説明した技術的思想や変形例は、他方の実施形態に組み合わせてもよい。 Although the preferred embodiments of the present invention have been described above in detail, the present invention is not limited to the specific embodiments, and various changes and modifications may be made within the scope of the present invention as set forth in the claims. It is possible. For example, the technical ideas and modifications described in one of the first and second embodiments may be combined with the other embodiment.
10、100  エンコーダ
20、120  目盛盤
21、121  目盛り
31~34、131~133  センサ
41~44、141~143  内挿信号生成器
50、150  演算器

 
Reference Signs List 10, 100 encoder 20, 120 graduation plate 21, 121 graduation 31 to 34, 131 to 133 sensors 41 to 44, 141 to 143 interpolation signal generator 50, 150 computing unit

Claims (8)

  1.  基体に所定角度間隔に配置された角度を示す複数の要素を検知して周期性を有する第1の信号を生成するM個のセンサであって、該M個のセンサが所定角度に配置され、該所定角度は、360/M×(j-1)(度)と、360/N×MOD[(k-1)/D](度)とを組み合わせた角度であり、ここで、Mは2以上の整数であり、Nは要素数であり、MODは入力値の小数点以下の値を出力する関数であり、DはMの約数またはMであり但し1は除き、jは1からMの整数でM個のセンサに対して互いに異なる値をとり、kは1からMの整数である、該M個のセンサと、
     前記M個のセンサの各々に対して、前記第1の信号に基づいて前記所定角度間隔を内挿する第2の信号を生成する生成器と、
     前記M個のセンサに対する前記第2の信号を合算して角度位置または回転角を求める演算器と、
    を備えるエンコーダ。
    M sensors detecting a plurality of elements indicating angles arranged at predetermined angular intervals on a substrate to generate a first signal having periodicity, wherein the M sensors are arranged at predetermined angles, The predetermined angle is an angle combining 360 / M × (j−1) (degrees) and 360 / N × MOD [(k j −1) / D] (degrees), where M is N is an integer number of 2 or more, N is the number of elements, MOD is a function that outputs the value after the decimal point of the input value, D is a divisor of M or M except for 1 where j is 1 to M M sensors having different values for M sensors as integers of k and k j is an integer of 1 to M,
    A generator generating, for each of the M sensors, a second signal that interpolates the predetermined angular interval based on the first signal;
    An arithmetic unit that adds the second signals to the M sensors to obtain an angular position or a rotational angle;
    An encoder comprising:
  2.  前記基体は円盤状の目盛盤であり、前記要素が周方向に配列されてなる、請求項1記載のエンコーダ。 The encoder according to claim 1, wherein the base is a disc-shaped scale plate, and the elements are arranged circumferentially.
  3.  基体に所定間隔に配置された位置を示す複数の要素を検知して周期性を有する第1の信号を生成するM個のセンサであって、該M個のセンサが互いに所定距離だけ離隔して配置され、該所定距離は、該所定間隔(gl)の整数(m)倍であるgl×mと、gl×MOD[(k-1)/D]とを組み合わせた位置であり、ここで、Mは2以上の整数であり、MODは入力値の小数点以下の値を出力する関数であり、DはMの約数またはMであり但し1は除き、kは1からMの整数であり、該M個のセンサと、
     前記M個のセンサの各々に対して、前記第1の信号に基づいて前記所定間隔の要素間を内挿する第2の信号を生成する生成器と、
     前記M個のセンサに対する前記第2の信号を合算して位置または移動量を求める演算器と、
    を備えるエンコーダ。
    M sensors detecting a plurality of elements indicating positions arranged at predetermined intervals on a substrate to generate a first signal having periodicity, wherein the M sensors are separated from each other by a predetermined distance The predetermined distance is a position obtained by combining gl × m j which is an integer (m j ) times the predetermined interval (gl) and gl × MOD [(k j −1) / D], Here, M is an integer of 2 or more, MOD is a function that outputs the decimal value of the input value, D is a divisor of M or M except for 1 where k j is 1 to M. And the M sensors, which are integers,
    A generator generating, for each of the M sensors, a second signal that interpolates between elements of the predetermined interval based on the first signal;
    An arithmetic unit for summing the second signals for the M sensors to obtain a position or movement amount;
    An encoder comprising:
  4.  前記基体に前記複数の要素が一方向に配列されてなる、請求項3記載のエンコーダ。 The encoder according to claim 3, wherein the plurality of elements are arranged in one direction on the substrate.
  5.  前記kは、M個のセンサに対して互いに異なる値を有する、請求項1~4のいずれか一項記載のエンコーダ。 The encoder according to any one of the preceding claims, wherein the k j have different values for M sensors.
  6.  前記DはMである、請求項1~5のいずれか一項記載のエンコーダ。 The encoder according to any one of the preceding claims, wherein D is M.
  7.  前記要素は、光を透過するスリットまたは光を反射あるいは吸収する部材からなり、
     前記複数のセンサは、光学センサである、請求項1~6のいずれか一項記載のエンコーダ。
    The element comprises a slit that transmits light or a member that reflects or absorbs light,
    The encoder according to any one of claims 1 to 6, wherein the plurality of sensors are optical sensors.
  8.  前記要素は、強磁性体からなる凸状部材あるいは磁石部材であり、
     前記複数のセンサは、前記凸状部材あるいは磁石部材を磁気的に検知する近接センサである、請求項1~6のいずれか一項記載のエンコーダ。
    The element is a convex member or a magnet member made of a ferromagnetic material,
    The encoder according to any one of claims 1 to 6, wherein the plurality of sensors are proximity sensors that magnetically detect the convex member or the magnet member.
PCT/JP2018/030237 2017-08-22 2018-08-13 Encoder WO2019039344A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880040836.0A CN110785633B (en) 2017-08-22 2018-08-13 Encoder for encoding a video signal
JP2019537570A JP6845517B2 (en) 2017-08-22 2018-08-13 Encoder

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017159471 2017-08-22
JP2017-159471 2017-08-22

Publications (1)

Publication Number Publication Date
WO2019039344A1 true WO2019039344A1 (en) 2019-02-28

Family

ID=65440055

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/030237 WO2019039344A1 (en) 2017-08-22 2018-08-13 Encoder

Country Status (3)

Country Link
JP (1) JP6845517B2 (en)
CN (1) CN110785633B (en)
WO (1) WO2019039344A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03175319A (en) * 1989-12-01 1991-07-30 Nippon Seiko Kk Correcting method for error of linear encoder
JP2001012967A (en) * 1999-04-28 2001-01-19 Asahi Optical Co Ltd Encoder and surveying instrument carrying magnetic encoder
JP2010145203A (en) * 2008-12-18 2010-07-01 Yaskawa Electric Corp Linear encoder signal processing device and signal processing method
JP2011099804A (en) * 2009-11-09 2011-05-19 National Institute Of Advanced Industrial Science & Technology Angle detector with composite self-calibration function
US20170038228A1 (en) * 2015-08-06 2017-02-09 Wisys Technology Foundation, Inc. Devices, Systems and Methods for Shifted Delta Sum Angle Measurement

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2736428B1 (en) * 1995-07-04 1997-08-08 Schlumberger Ind Sa IMPULSE ENCODER FOR LIQUID DISPENSING APPARATUS
JPH1019602A (en) * 1996-07-01 1998-01-23 Yaskawa Electric Corp Magnetic encoder
DE19920596C2 (en) * 1999-05-05 2003-10-30 Maerzhaeuser Senso Tech Gmbh Method for measuring the relative position of two objects
CN100414255C (en) * 2004-12-16 2008-08-27 阿尔卑斯电气株式会社 Method of calculating compensation value for angle detecting sensor and angle detecting sensor using the method
GB0508325D0 (en) * 2005-04-26 2005-06-01 Renishaw Plc Rotary encoders
JP4854809B2 (en) * 2008-06-05 2012-01-18 三菱電機株式会社 Optical encoder
CN102132126B (en) * 2008-08-26 2015-04-08 株式会社尼康 Encoder system, signal processing method
DE102009040790B4 (en) * 2009-09-09 2012-10-25 Universität Stuttgart Method for optical compensation of the measuring track centering in rotary angle sensors
CA2780584C (en) * 2009-11-26 2016-01-05 Leica Geosystems Ag Calibration method and angle measuring method for an angle measuring device, and angle measuring device
WO2011074103A1 (en) * 2009-12-17 2011-06-23 キヤノン株式会社 Rotary encoder and rotation mechanism comprising same
TWI500907B (en) * 2011-01-07 2015-09-21 Oriental Motor Co Ltd Apparatus for detecting multi-turn absolute rotation angle and method for detecting the same
JP5545769B2 (en) * 2011-07-12 2014-07-09 オリエンタルモーター株式会社 Apparatus and method for calculating absolute displacement
JP5956207B2 (en) * 2012-03-19 2016-07-27 山洋電気株式会社 Encoder
EP2693221B1 (en) * 2012-07-30 2017-04-26 Nxp B.V. Magnetic Sensor Arrangement
EP2995910B1 (en) * 2014-09-11 2016-11-16 Baumüller Nürnberg GmbH Absolute position monitoring system and method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03175319A (en) * 1989-12-01 1991-07-30 Nippon Seiko Kk Correcting method for error of linear encoder
JP2001012967A (en) * 1999-04-28 2001-01-19 Asahi Optical Co Ltd Encoder and surveying instrument carrying magnetic encoder
JP2010145203A (en) * 2008-12-18 2010-07-01 Yaskawa Electric Corp Linear encoder signal processing device and signal processing method
JP2011099804A (en) * 2009-11-09 2011-05-19 National Institute Of Advanced Industrial Science & Technology Angle detector with composite self-calibration function
US20170038228A1 (en) * 2015-08-06 2017-02-09 Wisys Technology Foundation, Inc. Devices, Systems and Methods for Shifted Delta Sum Angle Measurement

Also Published As

Publication number Publication date
CN110785633A (en) 2020-02-11
JPWO2019039344A1 (en) 2020-03-26
JP6845517B2 (en) 2021-03-17
CN110785633B (en) 2022-03-11

Similar Documents

Publication Publication Date Title
JP3168451B2 (en) Rotary encoder
JP4142942B2 (en) Rotary encoder
JP5787513B2 (en) Absolute rotary encoder
JP4984269B2 (en) Angle detector with complex self-calibration function
EP0801724B1 (en) Opto-electronic rotary encoder
JP2011247747A (en) Encoder calibration device
EP2610592A2 (en) Encoder with error detection and error correction
JP2016014574A (en) Absolute encoder
US11573103B2 (en) Angle detector
JP6845517B2 (en) Encoder
JP6276074B2 (en) Position detection device
JP6507347B2 (en) Capacitance type angle detector
JP5902891B2 (en) Encoder and calibration method
JP3058406B2 (en) Rotation amount measuring device
JP2632534B2 (en) Rotary encoder
KR100487839B1 (en) position finder method of digital and analog hybrid type
SU773426A1 (en) Shaft-rotation angle sensor
JP3551380B2 (en) Rotary encoder
JP3438173B2 (en) Rotary encoder
JPS61102822A (en) Encoder
JPS61182521A (en) Detecting scale of absolute displacement
JPH0581845B2 (en)
JP2013036771A (en) Encoder

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18847294

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019537570

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18847294

Country of ref document: EP

Kind code of ref document: A1