WO2019039268A1 - Dynamoelectric machine control device - Google Patents

Dynamoelectric machine control device Download PDF

Info

Publication number
WO2019039268A1
WO2019039268A1 PCT/JP2018/029653 JP2018029653W WO2019039268A1 WO 2019039268 A1 WO2019039268 A1 WO 2019039268A1 JP 2018029653 W JP2018029653 W JP 2018029653W WO 2019039268 A1 WO2019039268 A1 WO 2019039268A1
Authority
WO
WIPO (PCT)
Prior art keywords
arm switch
phase
winding
lower arm
control device
Prior art date
Application number
PCT/JP2018/029653
Other languages
French (fr)
Japanese (ja)
Inventor
藤井 淳
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2019039268A1 publication Critical patent/WO2019039268A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/16Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the circuit arrangement or by the kind of wiring
    • H02P25/22Multiple windings; Windings for more than three phases
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/10Arrangements for controlling torque ripple, e.g. providing reduced torque ripple

Definitions

  • the present disclosure relates to a control device of a rotating electrical machine.
  • Patent Document 1 As a control device of this type, as disclosed in Patent Document 1, there is known one in which the upper and lower arm switches of the power conversion circuit are alternately turned on by 180-degree conduction control.
  • the controller applies the voltage applied to the winding of the rotating electrical machine connected to the power conversion circuit to the upper and lower arm switches in a cycle sufficiently shorter than the electrical angle half cycle of the rotating electrical machine during the ON operation period of the upper arm switch. Adjust by alternately turning on.
  • An object of the present disclosure is to provide a control device of a rotating electrical machine capable of reducing electromagnetic noise and switching loss.
  • the first disclosure has a series connection of a rotating electric machine having multi-phase winding groups and an upper arm switch and a lower arm switch, and the upper arm switch and the lower arm switch are alternately turned on. And a power conversion circuit that applies a voltage to the winding group.
  • an adjustment unit that adjusts a pulse width which is an on operation period of each of the upper arm switch and the lower arm switch in one electrical angle cycle of the rotating electric machine, and the upper arm switch corresponding to each phase Under the first condition that the on operation period is not overlapped, and the second condition that the on operation period of the lower arm switch corresponding to each phase is not overlapped, the upper arm switch and the above in one electrical angle cycle are
  • the applied voltage of the winding can be adjusted by adjusting the pulse width. Therefore, electromagnetic noise and switching loss can be reduced.
  • the rotating electrical machine includes a plurality of winding groups, and the power conversion circuit applies a voltage to each of the plurality of winding groups, and each of the plurality of winding groups forms one another.
  • the electrical angle is shifted, and the operation unit imposes the first condition and the second condition in each of the plurality of winding groups, and the upper arm switch and the lower arm switch in one electrical angle cycle
  • the upper arm switch and the lower arm switch are each turned on once in one electrical angle cycle so that each on operation period has the pulse width adjusted by the adjustment unit.
  • the control device of the comparative example is applied to a system including a rotating electrical machine having one multi-phase winding group.
  • the control device of the comparative example has a configuration in which the upper arm switch and the lower arm switch are turned on once each in one electrical angle cycle, under the first condition and the second condition.
  • the torque ripple of the rotating electrical machine increases. .
  • the first and second conditions are imposed, when the on-operation period is shortened, the non-energization period to the winding appears. As a result, torque ripple of the rotating electrical machine is increased.
  • the second disclosure is applied to a system including a rotating electrical machine having a plurality of multi-phase winding groups. And the electrical angle which each of a plurality of winding groups makes mutually is shifted. For this reason, even if the torque ripple corresponding to each of the plurality of winding groups is large, the torque ripple can be reduced by synthesizing the torque corresponding to each of the plurality of winding groups.
  • FIG. 1 is an overall configuration diagram of a control system of a rotating electrical machine
  • FIG. 2 is a diagram showing the spatial phase difference between the first winding group and the second winding group
  • FIG. 3 is a block diagram showing the processing of the control device
  • FIG. 4 is a diagram showing voltage vectors in the dq coordinate system
  • FIG. 6 is a time chart showing the operation mode of the switch (60 degrees ⁇ W ⁇ 120 degrees)
  • FIG. 1 is an overall configuration diagram of a control system of a rotating electrical machine
  • FIG. 2 is a diagram showing the spatial phase difference between the first winding group and the second winding group
  • FIG. 3 is a block diagram showing the processing of the control device
  • FIG. 4 is a diagram showing voltage vectors in the dq coordinate system
  • FIG. 5 is a time chart showing the operation mode
  • FIG. 8 is a time chart showing phase voltages etc. before and after the filter
  • FIG. 9 is a time chart showing the electrical angle before and after phase compensation
  • FIG. 10 is a diagram showing the relationship between the phase compensation amount and the electrical angular velocity
  • FIG. 11 is a diagram showing the effect of the present embodiment on angle estimation
  • FIG. 12 is a diagram showing the reduction effect of torque ripple
  • FIG. 13 is a diagram showing the reduction effect of the ripple of direct current
  • FIG. 14 is a diagram showing the noise reduction effect.
  • control device is mounted on a vehicle equipped with an engine as a vehicle-mounted main device.
  • the control system includes a rotating electrical machine 10.
  • the rotary electric machine 10 is a synchronous machine having a multiphase multi-winding, specifically, a three-phase double winding.
  • the rotary electric machine 10 is an ISG (Integrated Starter Generator) in which functions of a motor and a generator are integrated.
  • the rotor 11 of the rotary electric machine 10 can transmit power to the crankshaft 20 a of the engine 20.
  • the rotor 11 is mechanically connected to the crankshaft 20 a via, for example, a belt.
  • the rotor 11 is provided with a magnetic pole portion 12.
  • the magnetic pole portion 12 is a field winding.
  • the first winding group 14 and the second winding group 15 are wound around the stator 13 of the rotary electric machine 10.
  • the rotor 11 is made common to the first and second winding groups 14 and 15.
  • Each of the first winding group 14 and the second winding group 15 consists of three-phase windings having different neutral points.
  • the first winding group 14 has U, V, W phase windings 14U, 14V, 14W mutually offset by 120 ° in electrical angle
  • the second winding group 15 is U offset from each other by 120 ° in electrical angle , V, W phase windings 15U, 15V, 15W.
  • the spatial phase difference ⁇ which is an electrical angle between the first winding group 14 and the second winding group 15, is 30 °. That is, the electrical angle formed between the U-phase winding 14U of the first winding group 14 and the U-phase winding 15U of the second winding group 15 is 30 °.
  • the second winding group 15 is deviated from the first winding group 14 by the spatial phase difference ⁇ on the advance side.
  • the first winding group 14 and the second winding group 15 have the same configuration. Specifically, the number of turns of each phase winding 14U to 14W constituting first winding group 14 and the number of turns of each phase winding 15U to 15W constituting second winding group 15 are set equal. ing.
  • the control system includes a first inverter INV1, a second inverter INV2, and a DC power supply 21.
  • the first winding group 14 is connected to the first inverter INV1
  • the second winding group 15 is connected to the second inverter INV2.
  • a common DC power supply 21 is connected to each of the first inverter INV1 and the second inverter INV2.
  • the DC power supply 21 is, for example, a secondary battery.
  • the first inverter INV1 includes three series connected bodies of first U, V, W phase upper arm switches SUp1, SVp1, SWp1 and first U, V, W phase lower arm switches SUn1, SVn1, SWn1.
  • the connection point of the series connection in the U, V, W phases is connected to the first end of the U, V, W phase windings 14U, 14V, 14W.
  • the second ends of the U, V, W phase windings 14U, 14V, 14W are connected to one another at a neutral point.
  • N-channel MOSFETs are used as the switches SUp1 to SWn1.
  • the diodes DUp1, DVp1, DWp1, DUn1, DVn1, DWn1 are connected in anti-parallel to the switches SUp1, SVp1, SWp1, SUn1, SVn1, SWn1.
  • Each of the diodes DUp1 to DWn1 may be a body diode of each of the switches SUp1 to SWn1.
  • the switches SUp1 to SWn1 are not limited to N-channel MOSFETs, and may be, for example, IGBTs.
  • the second inverter INV2 is a series connection of the second U, V, W-phase upper arm switches SUp2, SVp2, SWp2 and the second U, V, W-phase lower arm switches SUn2, SVn2, SWn2. It has three sets of bodies.
  • the connection point of the series connection in the U, V, W phases is connected to the first end of the U, V, W phase windings 15U, 15V, 15W.
  • the second ends of the U, V, W phase windings 15U, 15V, 15W are connected to each other at a neutral point.
  • N-channel MOSFETs are used as the switches SUp2 to SWn2.
  • the diodes DUp2, DVp2, DWp2, DUn2, DVn2, and DWn2 are connected in reverse parallel to the switches SUp2, SVp2, SWp2, SUn2, SVn2, and SWn2, respectively.
  • the diodes DUp2-DWn2 may be body diodes of the switches SUp2-SWn2.
  • the switches SUp2 to SWn2 are not limited to N-channel MOSFETs, and may be, for example, IGBTs.
  • the positive electrode terminal of the DC power supply 21 is connected to the drain which is the high potential side terminal of the upper arm switch of each of the first and second inverters INV1 and INV2.
  • the negative terminal of the DC power supply 21 is connected to the source which is the low potential side terminal of each lower arm switch.
  • the first and second inverters INV1 and INV2 convert a DC voltage output from the DC power supply 21 into an AC voltage during powering drive for driving the rotary electric machine 10 as a motor, to convert the first and second winding groups 14, It has a function to apply to 15.
  • the engine 20 can be started, or torque assist can be performed to transmit the generated torque of the electric motor to the drive wheels when the vehicle is traveling.
  • the first and second inverters INV1 and INV2 convert alternating current voltages output from the first and second winding groups 14 and 15 into direct current voltage during regenerative drive for driving the rotary electric machine 10 as a generator. It has a function of applying to the DC power supply 21. Thereby, for example, the DC power supply 21 can be charged.
  • the control system comprises a controller 30.
  • the control device 30 includes a CPU and a memory, and the CPU executes a program stored in the memory.
  • Control device 30 operates the switches constituting first inverter INV1 and second inverter INV2 in order to control the control amount of rotary electric machine 10 to the command value.
  • the control amount is torque
  • the command value is command torque Trq *.
  • the functions provided by the control device 30 can be provided, for example, by software stored in a tangible memory device and a computer that executes the software, hardware, or a combination thereof.
  • the control device 30 performs position sensorless control that does not use the detection value of the angle detector that directly detects the rotation angle of the rotary electric machine 10.
  • the control system is provided with a configuration for detecting the fundamental wave component of the induced voltage generated in the winding.
  • the control system comprises a series connection of a first resistor 22a and a second resistor 22b.
  • the series connected body of the resistors 22 a and 22 b is connected in parallel to the DC power supply 21.
  • the resistance values of the resistors 22a and 22b are the same.
  • the output voltage VDC of the DC power supply 21 divided by the resistors 22 a and 22 b is input to the control device 30.
  • the voltage at the first end of U-phase winding 14U is also input to control device 30.
  • Control device 30 determines the U-phase voltage in first winding group 14 based on the voltage at the first end side of U-phase winding 14 U based on the voltage division value “VDC / 2” by each of the resistors 22 a and 22 b. Get VU1.
  • the acquired phase voltage is not limited to the phase voltage of the U-phase winding 14U of the first winding group 14.
  • FIG. 3 is a block diagram of the torque control process performed by the control device 30.
  • setting unit 31 sets voltage amplitude Vamp, which is the magnitude of voltage vector Vn, and voltage phase ⁇ , which is the phase of voltage vector Vn.
  • the voltage vector Vn is a vector consisting of d-axis voltage and q-axis voltage in the dq coordinate system.
  • FIG. 4 shows that the positive direction of the q axis is a reference, and the counterclockwise direction from this reference is the positive direction (advance side) of the voltage phase ⁇ .
  • the lead angle of the d axis of the dq coordinate system corresponding to each of the winding groups 14 and 15 is defined based on the U-phase windings 14U and 15U of each of the winding groups 14 and 15.
  • the setting unit 31 may set the voltage amplitude Vamp and the voltage phase ⁇ based on map information in which the command torque Trq * is related to the voltage amplitude Vamp and the voltage phase ⁇ .
  • the pulse width adjustment unit 32 adjusts the pulse width W indicating the length of the conduction period based on the voltage amplitude Vamp.
  • the pulse width W is made larger as the voltage amplitude Vamp is larger.
  • the pulse width W is set to 120 degrees or less. Further, in the present embodiment, when the rotary electric machine 10 is driven as an electric motor, the pulse width W is set to be greater than 60 degrees and equal to or less than 120 degrees.
  • the first operation unit 33 is configured as shown in FIG. 5 based on the pulse width W, the voltage phase ⁇ , and the estimated electrical angle ⁇ est corresponding to rotational position information output from the phase compensation unit 38 described later.
  • 1) Generate and output operation signals of the switches SUp to SWn1 of the inverter INV1.
  • 1 indicates that the upper arm switch is turned on and the lower arm switch is turned off.
  • 0 indicates a dead time in which both the upper and lower arm switches are turned off.
  • -1 indicates that the upper arm switch is turned off and the lower arm switch is turned on.
  • 1 in FIG. 5A indicates that the first U-phase upper arm switch SUp1 is turned on and the first U-phase lower arm switch SUn1 is turned off.
  • FIG. 5 shows the case where the pulse width W is set to 120 degrees
  • FIG. 6 shows the case where the pulse width W is set to a value larger than 60 degrees and smaller than 120 degrees.
  • FIGS. 6 (a) to 6 (c) correspond to FIGS. 5 (a) to 5 (c).
  • the switching timing to the on operation of the upper arm switch of each of the U, V, and W phases is shifted by 120 degrees. Further, the switching timing of the lower arm switch of each of the U, V, and W phases to the on operation is also shifted by 120 degrees. It is assumed that the ON operation periods of the upper arm switches of the U, V, and W phases do not overlap due to such timing deviation and that the pulse width W is made larger than 60 degrees and smaller than 120 degrees.
  • the first condition is imposed, which is the condition of Further, a second condition is imposed, which is a condition that the ON operation periods of the lower arm switches of the U, V, and W phases do not overlap.
  • the pulse width W is set to 120 degrees
  • the non-conducting periods of the phase windings 14U to 14W in the first winding group 14 do not overlap with each other.
  • the non-energization period of each phase is 60 degrees in electrical angle.
  • the pulse width W is set to a value larger than 60 degrees. This setting is to prevent the occurrence of a situation where power can not be supplied from the DC power supply 21 to the inverters INV1 and INV2.
  • FIG. 7 shows the case where the pulse width W is set to 60 degrees.
  • FIGS. 7A to 7C correspond to FIGS. 5A to 5C.
  • the pulse width W is 60 degrees, the upper arm switch and the lower arm switch of different phases are not simultaneously turned on. Therefore, power can not be supplied from the DC power supply 21 to the first inverter INV1.
  • the second operation unit 34 switches the respective switches SUp2 to SWn2 of the second inverter INV2 based on the pulse width W, the voltage phase ⁇ , and the output value “ ⁇ est + ⁇ ” of the addition unit 35 described later.
  • Generate and output the operation signal of The operation modes of the switches SUp2 to SWn2 of the second inverter INV2 are obtained by advancing the operation modes shown in FIGS. 5 and 6 by the space phase difference ⁇ .
  • the filter unit 36 performs low-pass filter processing on the acquired phase voltage VU1 to extract the fundamental wave component of the induced voltage of the U-phase winding 14U.
  • the extracted fundamental wave component is referred to as a post-filter voltage VF.
  • the fundamental wave component EU1 of the actual induced voltage of the U-phase winding 14U is indicated by a broken line
  • the acquired phase voltage VU1 is indicated by a solid line.
  • the period from time t2 to t3 is a period in which the first U-phase upper arm switch SUp1 is turned on and the first U-phase lower arm switch SUn1 is turned off.
  • the phase voltage VU1 in this period is clamped at a value corresponding to the voltage on the positive electrode side of the DC power supply 21.
  • a period from time t4 to t5 is a period in which the first U-phase upper arm switch SUp1 is turned off and the first U-phase lower arm switch SUn1 is turned on. Phase voltage VU1 in this period is clamped to a value corresponding to the voltage on the negative electrode side of DC power supply 21.
  • the period from time t1 to t2 and t3 to t4 is a dead time.
  • two noises are superimposed on the phase voltage VU1.
  • These noises are the switching noise corresponding to the phase other than the U phase in the first winding group 14 and the switching noise corresponding to any phase in the second winding group 15. Since the spatial phase difference ⁇ is 30 °, for example, the generation interval of these noises is 30 ° in electrical angle. These noises can be removed by the low pass filter processing of the filter unit 36.
  • the estimation unit 37 calculates the uncompensated electrical angle ⁇ p based on the filtered voltage VF output from the filter unit 36. Specifically, as shown in FIG. 8B, the estimation unit 37 first compares the after-filter voltage VF with the threshold, and calculates the timing at which the after-filter voltage VF crosses the threshold. In the present embodiment, the threshold is set to zero. Therefore, the timing at which the filtered voltage VF crosses the threshold is the zero cross timing. Then, the estimation unit 37 calculates the precompensation electrical angle ⁇ p, as shown in FIG. 9A, based on the calculated zero cross timing.
  • the electrical angle can be estimated based on the zero cross timing because, for example, the zero cross timing of the fundamental wave component EU1 of the actual induced voltage can be used as a reference timing for estimating the electrical angle.
  • FIG. 9 shows the transition of the pre-compensation electrical angle ⁇ p when the electrical angular velocity of the rotary electric machine 10 is constant.
  • the estimation unit 37 further calculates the electric angular velocity ⁇ est of the rotary electric machine 10 based on the calculated time interval of the zero cross timing.
  • the phase compensation unit 38 calculates the estimated electrical angle ⁇ est by correcting the precompensation electrical angle ⁇ p on the phase advancing side.
  • the correction on the phase advancing side is performed by low-pass filter processing, and as shown in FIG. 8B, the phase of the filtered voltage VF is delayed with respect to the fundamental wave component EU1 of the actual induced voltage. It is for.
  • the phase compensation can improve the estimation accuracy of the electrical angle.
  • the phase compensation unit 38 calculates the phase compensation value ⁇ ( ⁇ 0) shown in FIG. 10 based on the electrical angular velocity ⁇ est, and adds the calculated phase compensation value ⁇ to the pre-compensation electrical angle ⁇ p to estimate the electrical angle Calculate ⁇ est.
  • the phase compensation unit 38 may calculate the phase compensation value ⁇ based on the map information in which the electrical angular velocity ⁇ est and the phase compensation value ⁇ are related. Thus, the phase delay of the precompensation electrical angle ⁇ p can be compensated with a simple configuration.
  • the addition unit 35 adds the spatial phase difference ⁇ to the estimated electrical angle ⁇ est output from the phase compensation unit 38 and outputs the result.
  • FIG. 11A shows the transition of the U-phase voltage VU1 and the after-filter voltage VF of this embodiment
  • FIG. 11B shows the transition of the U-phase voltage VU1 and the after-filter voltage VF of the comparative example.
  • the comparative example of FIG. 11B has a configuration in which the upper and lower arm switches are alternately turned on during the on operation period of the upper arm switch as described in Patent Document 1 above.
  • the filtered voltage VF is not offset from 0 V. Therefore, the estimation accuracy of the electrical angle can be improved.
  • the symmetry of the phase voltage VU1 is not ensured with respect to 0 V, so the filtered voltage VF is offset from 0 V by a predetermined amount ⁇ V. As a result, the reference timing for estimating the electrical angle can not be properly grasped, and the estimation accuracy of the electrical angle decreases.
  • the reference voltage in acquiring phase voltage VU1 is replaced with the divided voltage value “VDC / 2” of the output voltage of DC power supply 21 to be virtual. It is also conceivable to use a neutral point voltage. However, in this case, the number of components increases and the cost of the control system increases.
  • FIG. 11A shows the transition of the torque Trq1 of the rotary electric machine 10 corresponding to the first winding group 14, and
  • FIG. 11B shows the torque Trq2 of the rotary electric machine 10 corresponding to the second winding group 15.
  • FIG. 11C shows transition of combined torque Ttotal which is a total value of each of the torques Trq1 and Trq2.
  • the space phase difference ⁇ is not limited to 30 degrees, and the torque ripple reduction effect can be obtained even when it is set to a value close to 30 degrees.
  • FIG. 13 (a) shows the transition of the first DC current IDC1 flowing between the DC power supply 21 and the first inverter INV1
  • FIG. 13 (b) shows the transition between the DC power supply 21 and the second inverter INV2.
  • the transition of 2nd DC current IDC2 is shown.
  • FIG. 13C shows the transition of the combined current Itotal which is the total value of the direct current IDC1 and IDC2.
  • the smoothing capacitor is not included in the control system by reducing the ripple of the direct current.
  • the comparative example shown in FIG. 14 is the same as the comparative example of FIG.11 (b).
  • the pulse width W is adjusted. Therefore, the electromagnetic noise can be reduced more than in the comparative example.
  • the switching loss generated in each of the inverters INV1 and INV2 can be reduced as compared with the comparative example.
  • the reference voltage for acquiring the phase voltage is not limited to the voltage division value "VDC / 2" of each of the resistors 22a and 22b, and may be, for example, a ground voltage (0 V) which is a voltage on the negative electrode side of the DC power supply 21. It may be.
  • the threshold used by the estimation unit 37 is not limited to zero, and may be a value other than zero.
  • the method of estimating the electrical angle is not limited to that using a low pass filter.
  • the electrical angle may be estimated based on the comparison between the phase voltage and the threshold in the non-energized period of the winding.
  • the electrical angle is not limited to one estimated by position sensorless control.
  • an electrical angle detected by an angle detector such as a resolver may be used for torque control.
  • the rotating electric machine is not limited to the one having two winding groups, and may have three or more winding groups.
  • the spatial phase difference ⁇ between the first to third winding groups is set to 20 degrees.
  • the control amount of the rotating electrical machine is not limited to the torque, and may be, for example, a rotational speed.
  • the rotating electrical machine is not limited to the winding field type, and may be, for example, a permanent magnet field type.
  • the magnetic pole portion is a permanent magnet.

Abstract

A control device (30) to be used in a system equipped with a dynamoelectric machine (10) having multi-phase winding groups (14, 15), and power inverter circuits (INV1, INV2) for applying a voltage to the winding groups by alternatingly turning on upper and lower arm switches (SUp1-SWp2, SUn1-SWn2). The control device is equipped with: an adjustment unit (32) for adjusting the pulse width, which is the on-operation interval of each of the upper and lower arm switches in one electrical angle cycle of the dynamoelectric machine; and operation units (33, 34) for turning the upper and lower arm switches on one at a time during one electrical angle cycle in a manner such that the on-operation interval of each of the upper and lower arm switches during one electrical angle cycle equals the adjusted pulse width set by the adjustment unit, while satisfying a first condition that there is no overlap in the on-operation intervals of the upper arm switches corresponding to each phase, and a second condition that there is no overlap in the on-operation intervals of the lower arm switches corresponding to each phase.

Description

回転電機の制御装置Control device of rotating electric machine 関連出願の相互参照Cross-reference to related applications
 本出願は、2017年8月21日に出願された日本出願番号2017-158828号に基づくもので、ここにその記載内容を援用する。 This application is based on Japanese Patent Application No. 2017-158828 filed on Aug. 21, 2017, the contents of which are incorporated herein by reference.
 本開示は、回転電機の制御装置に関する。 The present disclosure relates to a control device of a rotating electrical machine.
 この種の制御装置としては、特許文献1に見られるように、180度通電制御により、電力変換回路の上,下アームスイッチを交互にオン操作するものが知られている。制御装置は、電力変換回路に接続された回転電機の巻線に印加する電圧を、上アームスイッチのオン操作期間において、回転電機の電気角半周期よりも十分短い周期で上,下アームスイッチを交互にオン操作することで調整する。 As a control device of this type, as disclosed in Patent Document 1, there is known one in which the upper and lower arm switches of the power conversion circuit are alternately turned on by 180-degree conduction control. The controller applies the voltage applied to the winding of the rotating electrical machine connected to the power conversion circuit to the upper and lower arm switches in a cycle sufficiently shorter than the electrical angle half cycle of the rotating electrical machine during the ON operation period of the upper arm switch. Adjust by alternately turning on.
特開2017-17867号公報JP, 2017-17867, A
 しかしながた、電気角半周期よりも十分短い周期で上,下アームスイッチが交互にオン操作されると、電磁ノイズ及びスイッチング損失が増加するおそれがある。 However, if the upper and lower arm switches are alternately turned on with a cycle sufficiently shorter than the electrical angle half cycle, electromagnetic noise and switching loss may increase.
 本開示は、電磁ノイズ及びスイッチング損失を低減できる回転電機の制御装置を提供することを主たる目的とする。 An object of the present disclosure is to provide a control device of a rotating electrical machine capable of reducing electromagnetic noise and switching loss.
 第1の開示は、多相の巻線群を有する回転電機と、上アームスイッチ及び下アームスイッチの直列接続体を有し、前記上アームスイッチ及び前記下アームスイッチが交互にオン操作されることにより、前記巻線群に電圧を印加する電力変換回路と、を備えるシステムに適用される。第1の開示は、前記回転電機の1電気角周期における前記上アームスイッチ及び前記下アームスイッチそれぞれのオン操作期間であるパルス幅を調整する調整部と、各相に対応する前記上アームスイッチのオン操作期間を重複させないとの第1条件、及び各相に対応する前記下アームスイッチのオン操作期間を重複させないとの第2条件を課して、1電気角周期における前記上アームスイッチ及び前記下アームスイッチそれぞれのオン操作期間を前記調整部により調整された前記パルス幅とすべく、1電気角周期において前記上アームスイッチ及び前記下アームスイッチをそれぞれ1回ずつオン操作する操作部と、を備える。 The first disclosure has a series connection of a rotating electric machine having multi-phase winding groups and an upper arm switch and a lower arm switch, and the upper arm switch and the lower arm switch are alternately turned on. And a power conversion circuit that applies a voltage to the winding group. According to a first disclosure, an adjustment unit that adjusts a pulse width which is an on operation period of each of the upper arm switch and the lower arm switch in one electrical angle cycle of the rotating electric machine, and the upper arm switch corresponding to each phase Under the first condition that the on operation period is not overlapped, and the second condition that the on operation period of the lower arm switch corresponding to each phase is not overlapped, the upper arm switch and the above in one electrical angle cycle are An operation unit for turning on the upper arm switch and the lower arm switch once each in one electrical angle cycle so that the on-operation period of each lower arm switch is the pulse width adjusted by the adjustment unit; Prepare.
 第1の開示によれば、巻線の印加電圧を、パルス幅を調整することにより調整できる。このため、電磁ノイズ及びスイッチング損失を低減することができる。 According to the first disclosure, the applied voltage of the winding can be adjusted by adjusting the pulse width. Therefore, electromagnetic noise and switching loss can be reduced.
 第2の開示では、前記回転電機は、前記巻線群を複数有し、前記電力変換回路は、複数の前記巻線群それぞれに電圧を印加し、複数の前記巻線群のそれぞれが互いになす電気角がずらされており、前記操作部は、複数の前記巻線群それぞれにおいて、前記第1条件及び前記第2条件を課して、1電気角周期における前記上アームスイッチ及び前記下アームスイッチそれぞれのオン操作期間を前記調整部により調整された前記パルス幅とすべく、1電気角周期において前記上アームスイッチ及び前記下アームスイッチをそれぞれ1回ずつオン操作する。 In a second disclosure, the rotating electrical machine includes a plurality of winding groups, and the power conversion circuit applies a voltage to each of the plurality of winding groups, and each of the plurality of winding groups forms one another. The electrical angle is shifted, and the operation unit imposes the first condition and the second condition in each of the plurality of winding groups, and the upper arm switch and the lower arm switch in one electrical angle cycle The upper arm switch and the lower arm switch are each turned on once in one electrical angle cycle so that each on operation period has the pulse width adjusted by the adjustment unit.
 第2の開示の制御装置について説明する前に、比較例の制御装置について説明する。比較例の制御装置は、多相の巻線群を1つ有する回転電機を備えるシステムに適用される。比較例の制御装置は、第1条件及び第2条件を課して、1電気角周期において上アームスイッチ及び下アームスイッチをそれぞれ1回ずつオン操作する構成を備えている。この構成において、1電気角周期における上アームスイッチ及び下アームスイッチそれぞれのオン操作期間であるパルス幅を調整することにより、巻線の印加電圧を調整しようとすると、回転電機のトルクリップルが増加する。詳しくは、第1,第2条件が課されているため、オン操作期間を短くすると、巻線への無通電期間が出現する。その結果、回転電機のトルクリップルが増加する。 Before describing the control device of the second disclosure, a control device of a comparative example will be described. The control device of the comparative example is applied to a system including a rotating electrical machine having one multi-phase winding group. The control device of the comparative example has a configuration in which the upper arm switch and the lower arm switch are turned on once each in one electrical angle cycle, under the first condition and the second condition. In this configuration, if it is attempted to adjust the voltage applied to the winding by adjusting the pulse width which is the on operation period of each of the upper arm switch and the lower arm switch in one electrical angle cycle, the torque ripple of the rotating electrical machine increases. . Specifically, since the first and second conditions are imposed, when the on-operation period is shortened, the non-energization period to the winding appears. As a result, torque ripple of the rotating electrical machine is increased.
 そこで、第2の開示は、多相の巻線群を複数有する回転電機を備えるシステムに適用される。そして、複数の巻線群のそれぞれが互いになす電気角がずらされている。このため、複数の巻線群それぞれに対応するトルクリップルが大きかったとしても、複数の巻線群それぞれに対応するトルクが合成されることにより、トルクリップルを低減することができる。 Therefore, the second disclosure is applied to a system including a rotating electrical machine having a plurality of multi-phase winding groups. And the electrical angle which each of a plurality of winding groups makes mutually is shifted. For this reason, even if the torque ripple corresponding to each of the plurality of winding groups is large, the torque ripple can be reduced by synthesizing the torque corresponding to each of the plurality of winding groups.
 本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
図1は、回転電機の制御システムの全体構成図であり、 図2は、第1巻線群と第2巻線群との空間位相差を示す図であり、 図3は、制御装置の処理を示すブロック図であり、 図4は、dq座標系における電圧ベクトルを示す図であり、 図5は、スイッチの操作態様(W=120度)を示すタイムチャートであり、 図6は、スイッチの操作態様(60度<W<120度)を示すタイムチャートであり、 図7は、スイッチの操作態様(W=60度)を示すタイムチャートであり、 図8は、フィルタ前後の相電圧等を示すタイムチャートであり、 図9は、位相補償前後の電気角を示すタイムチャートであり、 図10は、位相補償量と電気角速度との関係を示す図であり、 図11は、角度推定に関する本実施形態の効果を示す図であり、 図12は、トルクリップルの低減効果を示す図であり、 図13は、直流電流のリップルの低減効果を示す図であり、 図14は、ノイズの低減効果を示す図である。
The above object and other objects, features and advantages of the present disclosure will become more apparent from the following detailed description with reference to the attached drawings. The drawing is
Fig. 1 is an overall configuration diagram of a control system of a rotating electrical machine, FIG. 2 is a diagram showing the spatial phase difference between the first winding group and the second winding group, FIG. 3 is a block diagram showing the processing of the control device; FIG. 4 is a diagram showing voltage vectors in the dq coordinate system; FIG. 5 is a time chart showing the operation mode (W = 120 degrees) of the switch, FIG. 6 is a time chart showing the operation mode of the switch (60 degrees <W <120 degrees), FIG. 7 is a time chart showing the operation mode (W = 60 degrees) of the switch, FIG. 8 is a time chart showing phase voltages etc. before and after the filter, FIG. 9 is a time chart showing the electrical angle before and after phase compensation, FIG. 10 is a diagram showing the relationship between the phase compensation amount and the electrical angular velocity, FIG. 11 is a diagram showing the effect of the present embodiment on angle estimation, FIG. 12 is a diagram showing the reduction effect of torque ripple, FIG. 13 is a diagram showing the reduction effect of the ripple of direct current, FIG. 14 is a diagram showing the noise reduction effect.
 以下、本開示に係る制御装置を具体化した一実施形態について、図面を参照しつつ説明する。本実施形態では、車載主機としてエンジンを備える車両に制御装置が搭載されている。 Hereinafter, an embodiment of a control device according to the present disclosure will be described with reference to the drawings. In the present embodiment, the control device is mounted on a vehicle equipped with an engine as a vehicle-mounted main device.
 図1に示すように、制御システムは、回転電機10を備えている。回転電機10は、多相多重巻線を有し、具体的には、3相2重巻線を有する同期機である。本実施形態において、回転電機10は、電動機及び発電機の機能を統合したISG(Integrated Starter Generator)である。回転電機10のロータ11は、エンジン20のクランク軸20aと動力伝達可能とされている。本実施形態において、ロータ11は、例えばベルトを介してクランク軸20aに機械的に接続されている。 As shown in FIG. 1, the control system includes a rotating electrical machine 10. The rotary electric machine 10 is a synchronous machine having a multiphase multi-winding, specifically, a three-phase double winding. In the present embodiment, the rotary electric machine 10 is an ISG (Integrated Starter Generator) in which functions of a motor and a generator are integrated. The rotor 11 of the rotary electric machine 10 can transmit power to the crankshaft 20 a of the engine 20. In the present embodiment, the rotor 11 is mechanically connected to the crankshaft 20 a via, for example, a belt.
 ロータ11には、磁極部12が設けられている。本実施形態では、回転電機10が巻線界磁型であるため、磁極部12は界磁巻線である。回転電機10のステータ13には、第1巻線群14,第2巻線群15が巻回されている。第1,第2巻線群14,15に対して、ロータ11が共通化されている。第1巻線群14及び第2巻線群15のそれぞれは、異なる中性点を有する3相巻線からなる。第1巻線群14は、電気角で互いに120°ずれたU,V,W相巻線14U,14V,14Wを有し、第2巻線群15は、電気角で互いに120°ずれたU,V,W相巻線15U,15V,15Wを有している。本実施形態では、図2に示すように、第1巻線群14と第2巻線群15とのなす電気角である空間位相差Δθが30°である。すなわち、第1巻線群14のU相巻線14Uと第2巻線群15のU相巻線15Uとのなす電気角が30°とされている。本実施形態では、説明の便宜上、第2巻線群15が、第1巻線群14に対して進角側に空間位相差Δθだけずれているものとする。なお、本実施形態では、第1巻線群14と第2巻線群15とが同じ構成とされている。具体的には、第1巻線群14を構成する各相巻線14U~14Wそれぞれの巻数と、第2巻線群15を構成する各相巻線15U~15Wそれぞれの巻数とが等しく設定されている。 The rotor 11 is provided with a magnetic pole portion 12. In the present embodiment, since the rotary electric machine 10 is a winding field type, the magnetic pole portion 12 is a field winding. The first winding group 14 and the second winding group 15 are wound around the stator 13 of the rotary electric machine 10. The rotor 11 is made common to the first and second winding groups 14 and 15. Each of the first winding group 14 and the second winding group 15 consists of three-phase windings having different neutral points. The first winding group 14 has U, V, W phase windings 14U, 14V, 14W mutually offset by 120 ° in electrical angle, and the second winding group 15 is U offset from each other by 120 ° in electrical angle , V, W phase windings 15U, 15V, 15W. In the present embodiment, as shown in FIG. 2, the spatial phase difference Δθ, which is an electrical angle between the first winding group 14 and the second winding group 15, is 30 °. That is, the electrical angle formed between the U-phase winding 14U of the first winding group 14 and the U-phase winding 15U of the second winding group 15 is 30 °. In the present embodiment, for convenience of explanation, it is assumed that the second winding group 15 is deviated from the first winding group 14 by the spatial phase difference Δθ on the advance side. In the present embodiment, the first winding group 14 and the second winding group 15 have the same configuration. Specifically, the number of turns of each phase winding 14U to 14W constituting first winding group 14 and the number of turns of each phase winding 15U to 15W constituting second winding group 15 are set equal. ing.
 制御システムは、第1インバータINV1、第2インバータINV2及び直流電源21を備えている。第1インバータINV1には第1巻線群14が接続され、第2インバータINV2には第2巻線群15が接続されている。第1インバータINV1及び第2インバータINV2のそれぞれには、共通の直流電源21が接続されている。直流電源21は、例えば2次電池である。 The control system includes a first inverter INV1, a second inverter INV2, and a DC power supply 21. The first winding group 14 is connected to the first inverter INV1, and the second winding group 15 is connected to the second inverter INV2. A common DC power supply 21 is connected to each of the first inverter INV1 and the second inverter INV2. The DC power supply 21 is, for example, a secondary battery.
 第1インバータINV1は、第1U,V,W相上アームスイッチSUp1,SVp1,SWp1と、第1U,V,W相下アームスイッチSUn1,SVn1,SWn1との直列接続体を3組備えている。U,V,W相における上記直列接続体の接続点は、U,V,W相巻線14U,14V,14Wの第1端に接続されている。U,V,W相巻線14U,14V,14Wの第2端は、中性点で互いに接続されている。本実施形態では、各スイッチSUp1~SWn1として、NチャネルMOSFETを用いている。そして、各スイッチSUp1,SVp1,SWp1,SUn1,SVn1,SWn1には、各ダイオードDUp1,DVp1,DWp1,DUn1,DVn1,DWn1が逆並列に接続されている。なお、各ダイオードDUp1~DWn1は、各スイッチSUp1~SWn1のボディーダイオードであってもよい。また、各スイッチSUp1~SWn1としては、NチャネルMOSFETに限らず、例えばIGBTであってもよい。 The first inverter INV1 includes three series connected bodies of first U, V, W phase upper arm switches SUp1, SVp1, SWp1 and first U, V, W phase lower arm switches SUn1, SVn1, SWn1. The connection point of the series connection in the U, V, W phases is connected to the first end of the U, V, W phase windings 14U, 14V, 14W. The second ends of the U, V, W phase windings 14U, 14V, 14W are connected to one another at a neutral point. In the present embodiment, N-channel MOSFETs are used as the switches SUp1 to SWn1. The diodes DUp1, DVp1, DWp1, DUn1, DVn1, DWn1 are connected in anti-parallel to the switches SUp1, SVp1, SWp1, SUn1, SVn1, SWn1. Each of the diodes DUp1 to DWn1 may be a body diode of each of the switches SUp1 to SWn1. The switches SUp1 to SWn1 are not limited to N-channel MOSFETs, and may be, for example, IGBTs.
 第2インバータINV2は、第1インバータINV1と同様に、第2U,V,W相上アームスイッチSUp2,SVp2,SWp2と、第2U,V,W相下アームスイッチSUn2,SVn2,SWn2との直列接続体を3組備えている。U,V,W相における上記直列接続体の接続点は、U,V,W相巻線15U,15V,15Wの第1端に接続されている。U,V,W相巻線15U,15V,15Wの第2端は、中性点で互いに接続されている。本実施形態では、各スイッチSUp2~SWn2として、NチャネルMOSFETを用いている。そして、各スイッチSUp2,SVp2,SWp2,SUn2,SVn2,SWn2には、各ダイオードDUp2,DVp2,DWp2,DUn2,DVn2,DWn2が逆並列に接続されている。なお、各ダイオードDUp2~DWn2は、各スイッチSUp2~SWn2のボディーダイオードであってもよい。また、各スイッチSUp2~SWn2しては、NチャネルMOSFETに限らず、例えばIGBTであってもよい。 Similar to the first inverter INV1, the second inverter INV2 is a series connection of the second U, V, W-phase upper arm switches SUp2, SVp2, SWp2 and the second U, V, W-phase lower arm switches SUn2, SVn2, SWn2. It has three sets of bodies. The connection point of the series connection in the U, V, W phases is connected to the first end of the U, V, W phase windings 15U, 15V, 15W. The second ends of the U, V, W phase windings 15U, 15V, 15W are connected to each other at a neutral point. In the present embodiment, N-channel MOSFETs are used as the switches SUp2 to SWn2. The diodes DUp2, DVp2, DWp2, DUn2, DVn2, and DWn2 are connected in reverse parallel to the switches SUp2, SVp2, SWp2, SUn2, SVn2, and SWn2, respectively. The diodes DUp2-DWn2 may be body diodes of the switches SUp2-SWn2. The switches SUp2 to SWn2 are not limited to N-channel MOSFETs, and may be, for example, IGBTs.
 第1,第2インバータINV1,INV2の各上アームスイッチの高電位側端子であるドレインには、直流電源21の正極端子が接続されている。各下アームスイッチの低電位側端子であるソースには、直流電源21の負極端子が接続されている。 The positive electrode terminal of the DC power supply 21 is connected to the drain which is the high potential side terminal of the upper arm switch of each of the first and second inverters INV1 and INV2. The negative terminal of the DC power supply 21 is connected to the source which is the low potential side terminal of each lower arm switch.
 第1,第2インバータINV1,INV2は、回転電機10を電動機として駆動させる力行駆動時において、直流電源21から出力された直流電圧を交流電圧に変換して第1,第2巻線群14,15に印加する機能を有する。これにより、例えば、エンジン20を始動させたり、車両走行時に電動機の発生トルクを駆動輪に伝えるトルクアシストを実施したりすることができる。また、第1,第2インバータINV1,INV2は、回転電機10を発電機として駆動させる回生駆動時において、第1,第2巻線群14,15から出力された交流電圧を直流電圧に変換して直流電源21に印加する機能を有する。これにより、例えば、直流電源21を充電することができる。 The first and second inverters INV1 and INV2 convert a DC voltage output from the DC power supply 21 into an AC voltage during powering drive for driving the rotary electric machine 10 as a motor, to convert the first and second winding groups 14, It has a function to apply to 15. As a result, for example, the engine 20 can be started, or torque assist can be performed to transmit the generated torque of the electric motor to the drive wheels when the vehicle is traveling. The first and second inverters INV1 and INV2 convert alternating current voltages output from the first and second winding groups 14 and 15 into direct current voltage during regenerative drive for driving the rotary electric machine 10 as a generator. It has a function of applying to the DC power supply 21. Thereby, for example, the DC power supply 21 can be charged.
 制御システムは、制御装置30を備えている。制御装置30は、CPU及びメモリを備え、メモリに格納されたプログラムをCPUにて実行する。制御装置30は、回転電機10の制御量をその指令値に制御すべく、第1インバータINV1及び第2インバータINV2を構成する各スイッチを操作する。本実施形態において、制御量はトルクであり、指令値は指令トルクTrq*である。なお、制御装置30が提供する機能は、例えば、実体的なメモリ装置に記録されたソフトウェア及びそれを実行するコンピュータ、ハードウェア、又はそれらの組み合わせによって提供することができる。 The control system comprises a controller 30. The control device 30 includes a CPU and a memory, and the CPU executes a program stored in the memory. Control device 30 operates the switches constituting first inverter INV1 and second inverter INV2 in order to control the control amount of rotary electric machine 10 to the command value. In the present embodiment, the control amount is torque, and the command value is command torque Trq *. The functions provided by the control device 30 can be provided, for example, by software stored in a tangible memory device and a computer that executes the software, hardware, or a combination thereof.
 制御装置30は、回転電機10の回転角を直接検出する角度検出器の検出値を用いない位置センサレス制御を行う。位置センサレス制御を行うために、制御システムは、巻線に発生する誘起電圧の基本波成分を検出するための構成を備えている。詳しくは、制御システムは、第1抵抗体22a及び第2抵抗体22bの直列接続体を備えている。各抵抗体22a,22bの直列接続体は、直流電源21に並列接続されている。本実施形態において、各抵抗体22a,22bの抵抗値は同じ値である。各抵抗体22a,22bにより分圧された直流電源21の出力電圧VDCは、制御装置30に入力される。また、U相巻線14Uの第1端側の電圧も、制御装置30に入力される。制御装置30は、各抵抗体22a,22bによる分圧値「VDC/2」を基準として、U相巻線14Uの第1端側の電圧に基づいて、第1巻線群14におけるU相電圧VU1を取得する。なお、取得される相電圧は、第1巻線群14のU相巻線14Uの相電圧に限らない。 The control device 30 performs position sensorless control that does not use the detection value of the angle detector that directly detects the rotation angle of the rotary electric machine 10. In order to perform position sensorless control, the control system is provided with a configuration for detecting the fundamental wave component of the induced voltage generated in the winding. Specifically, the control system comprises a series connection of a first resistor 22a and a second resistor 22b. The series connected body of the resistors 22 a and 22 b is connected in parallel to the DC power supply 21. In the present embodiment, the resistance values of the resistors 22a and 22b are the same. The output voltage VDC of the DC power supply 21 divided by the resistors 22 a and 22 b is input to the control device 30. The voltage at the first end of U-phase winding 14U is also input to control device 30. Control device 30 determines the U-phase voltage in first winding group 14 based on the voltage at the first end side of U-phase winding 14 U based on the voltage division value “VDC / 2” by each of the resistors 22 a and 22 b. Get VU1. The acquired phase voltage is not limited to the phase voltage of the U-phase winding 14U of the first winding group 14.
 図3に、制御装置30が行うトルク制御処理のブロック図を示す。 FIG. 3 is a block diagram of the torque control process performed by the control device 30.
 設定部31は、指令トルクTrq*に基づいて、電圧ベクトルVnの大きさである電圧振幅Vampと、電圧ベクトルVnの位相である電圧位相δとを設定する。電圧ベクトルVnは、図4に示すように、dq座標系において、d軸電圧とq軸電圧とからなるベクトルのことである。なお、図4には、q軸の正方向を基準とし、この基準から反時計回りの方向が電圧位相δの正方向(進角側)とされていることを示す。各巻線群14,15に対応するdq座標系のd軸の進み角は、各巻線群14,15のU相巻線14U,15Uを基準に定義されている。なお、設定部31は、指令トルクTrq*と電圧振幅Vamp及び電圧位相δとが関係付けられたマップ情報に基づいて、電圧振幅Vamp及び電圧位相δを設定すればよい。 Based on command torque Trq *, setting unit 31 sets voltage amplitude Vamp, which is the magnitude of voltage vector Vn, and voltage phase δ, which is the phase of voltage vector Vn. The voltage vector Vn, as shown in FIG. 4, is a vector consisting of d-axis voltage and q-axis voltage in the dq coordinate system. FIG. 4 shows that the positive direction of the q axis is a reference, and the counterclockwise direction from this reference is the positive direction (advance side) of the voltage phase δ. The lead angle of the d axis of the dq coordinate system corresponding to each of the winding groups 14 and 15 is defined based on the U-phase windings 14U and 15U of each of the winding groups 14 and 15. The setting unit 31 may set the voltage amplitude Vamp and the voltage phase δ based on map information in which the command torque Trq * is related to the voltage amplitude Vamp and the voltage phase δ.
 パルス幅調整部32は、電圧振幅Vampに基づいて、通電期間の長さを示すパルス幅Wを調整する。パルス幅Wは、電圧振幅Vampが大きいほど大きくされる。本実施形態において、パルス幅Wは、120度以下とされる。また、本実施形態において、回転電機10が電動機として駆動される場合、パルス幅Wは、60度よりも大きくてかつ120度以下とされる。 The pulse width adjustment unit 32 adjusts the pulse width W indicating the length of the conduction period based on the voltage amplitude Vamp. The pulse width W is made larger as the voltage amplitude Vamp is larger. In the present embodiment, the pulse width W is set to 120 degrees or less. Further, in the present embodiment, when the rotary electric machine 10 is driven as an electric motor, the pulse width W is set to be greater than 60 degrees and equal to or less than 120 degrees.
 第1操作部33は、パルス幅Wと、電圧位相δと、後述する位相補償部38から出力された回転位置情報に相当する推定電気角θestとに基づいて、図5に示すように、第1インバータINV1の各スイッチSUp~SWn1の操作信号を生成して出力する。図5(a)~図5(c)において、1は、上アームスイッチがオン操作されて、かつ、下アームスイッチがオフ操作されることを示す。0は、上,下アームスイッチの双方がオフ操作されるデッドタイムを示す。-1は、上アームスイッチがオフ操作されて、かつ、下アームスイッチがオン操作されることを示す。例えば、図5(a)の1は、第1U相上アームスイッチSUp1がオン操作されて、かつ、第1U相下アームスイッチSUn1がオフ操作されることを示す。 As shown in FIG. 5, the first operation unit 33 is configured as shown in FIG. 5 based on the pulse width W, the voltage phase δ, and the estimated electrical angle θest corresponding to rotational position information output from the phase compensation unit 38 described later. 1) Generate and output operation signals of the switches SUp to SWn1 of the inverter INV1. In FIGS. 5A to 5C, 1 indicates that the upper arm switch is turned on and the lower arm switch is turned off. 0 indicates a dead time in which both the upper and lower arm switches are turned off. -1 indicates that the upper arm switch is turned off and the lower arm switch is turned on. For example, 1 in FIG. 5A indicates that the first U-phase upper arm switch SUp1 is turned on and the first U-phase lower arm switch SUn1 is turned off.
 図5は、パルス幅Wが120度に設定される場合を示し、図6は、パルス幅Wが60度よりも大きくてかつ120度よりも小さい値に設定される場合を示す。図6(a)~図6(c)は、図5(a)~図5(c)に対応している。 FIG. 5 shows the case where the pulse width W is set to 120 degrees, and FIG. 6 shows the case where the pulse width W is set to a value larger than 60 degrees and smaller than 120 degrees. FIGS. 6 (a) to 6 (c) correspond to FIGS. 5 (a) to 5 (c).
 図5及び図6に示すように、U,V,W相それぞれの上アームスイッチのオン操作への切り替えタイミングが120度ずれている。また、U,V,W相それぞれの下アームスイッチのオン操作への切り替えタイミングも120度ずれている。このようなタイミングのずれと、パルス幅Wが60度よりも大きくてかつ120度以下にされることとにより、U,V,W相それぞれの上アームスイッチのオン操作期間が重複していないとの条件である第1条件が課される。また、U,V,W相それぞれの下アームスイッチのオン操作期間が重複していないとの条件である第2条件が課される。 As shown in FIGS. 5 and 6, the switching timing to the on operation of the upper arm switch of each of the U, V, and W phases is shifted by 120 degrees. Further, the switching timing of the lower arm switch of each of the U, V, and W phases to the on operation is also shifted by 120 degrees. It is assumed that the ON operation periods of the upper arm switches of the U, V, and W phases do not overlap due to such timing deviation and that the pulse width W is made larger than 60 degrees and smaller than 120 degrees. The first condition is imposed, which is the condition of Further, a second condition is imposed, which is a condition that the ON operation periods of the lower arm switches of the U, V, and W phases do not overlap.
 なお、図5に示すように、パルス幅Wが120度に設定される場合、第1巻線群14において各相巻線14U~14Wの無通電期間が互いに重複しない。各相の無通電期間は、電気角で60度に渡る。 As shown in FIG. 5, when the pulse width W is set to 120 degrees, the non-conducting periods of the phase windings 14U to 14W in the first winding group 14 do not overlap with each other. The non-energization period of each phase is 60 degrees in electrical angle.
 本実施形態では、回転電機10が電動機として駆動される場合、パルス幅Wが60度よりも大きい値に設定される。この設定は、直流電源21から各インバータINV1,INV2に電力を供給できない事態の発生を防止するためである。図7に、パルス幅Wが60度に設定される場合を示す。図7(a)~図7(c)は、図5(a)~図5(c)に対応している。図7に示すように、パルス幅Wが60度とされる場合、互いに異なる相の上アームスイッチと下アームスイッチとが同時にオン操作されない。このため、直流電源21から第1インバータINV1に電力を供給できない。 In the present embodiment, when the rotary electric machine 10 is driven as an electric motor, the pulse width W is set to a value larger than 60 degrees. This setting is to prevent the occurrence of a situation where power can not be supplied from the DC power supply 21 to the inverters INV1 and INV2. FIG. 7 shows the case where the pulse width W is set to 60 degrees. FIGS. 7A to 7C correspond to FIGS. 5A to 5C. As shown in FIG. 7, when the pulse width W is 60 degrees, the upper arm switch and the lower arm switch of different phases are not simultaneously turned on. Therefore, power can not be supplied from the DC power supply 21 to the first inverter INV1.
 図3の説明に戻り、第2操作部34は、パルス幅Wと、電圧位相δと、後述する加算部35の出力値「θest+Δθ」とに基づいて、第2インバータINV2の各スイッチSUp2~SWn2の操作信号を生成して出力する。第2インバータINV2の各スイッチSUp2~SWn2の操作態様は、図5,図6に示した操作態様を空間位相差Δθだけ進ませたものとなる。 Returning to the explanation of FIG. 3, the second operation unit 34 switches the respective switches SUp2 to SWn2 of the second inverter INV2 based on the pulse width W, the voltage phase δ, and the output value “θest + Δθ” of the addition unit 35 described later. Generate and output the operation signal of The operation modes of the switches SUp2 to SWn2 of the second inverter INV2 are obtained by advancing the operation modes shown in FIGS. 5 and 6 by the space phase difference Δθ.
 続いて、推定電気角θestの算出方法について説明する。 Subsequently, a method of calculating the estimated electrical angle θest will be described.
 フィルタ部36は、取得した相電圧VU1にローパスフィルタ処理を施すことにより、U相巻線14Uの誘起電圧の基本波成分を抽出する。以下、抽出した基本波成分をフィルタ後電圧VFと称す。図8(a)には、U相巻線14Uの実際の誘起電圧の基本波成分EU1を破線で示し、取得される相電圧VU1を実線にて示す。図8(a)において、時刻t2~t3の期間は、第1U相上アームスイッチSUp1がオン操作されて、かつ、第1U相下アームスイッチSUn1がオフ操作される期間である。この期間における相電圧VU1は、直流電源21の正極側の電圧に対応した値にクランプされる。 The filter unit 36 performs low-pass filter processing on the acquired phase voltage VU1 to extract the fundamental wave component of the induced voltage of the U-phase winding 14U. Hereinafter, the extracted fundamental wave component is referred to as a post-filter voltage VF. In FIG. 8A, the fundamental wave component EU1 of the actual induced voltage of the U-phase winding 14U is indicated by a broken line, and the acquired phase voltage VU1 is indicated by a solid line. In FIG. 8A, the period from time t2 to t3 is a period in which the first U-phase upper arm switch SUp1 is turned on and the first U-phase lower arm switch SUn1 is turned off. The phase voltage VU1 in this period is clamped at a value corresponding to the voltage on the positive electrode side of the DC power supply 21.
 時刻t4~t5の期間は、第1U相上アームスイッチSUp1がオフ操作されて、かつ、第1U相下アームスイッチSUn1がオン操作される期間である。この期間における相電圧VU1は、直流電源21の負極側の電圧に対応した値にクランプされる。 A period from time t4 to t5 is a period in which the first U-phase upper arm switch SUp1 is turned off and the first U-phase lower arm switch SUn1 is turned on. Phase voltage VU1 in this period is clamped to a value corresponding to the voltage on the negative electrode side of DC power supply 21.
 時刻t1~t2,t3~t4の期間は、デッドタイムである。なお、デッドタイムにおいて、相電圧VU1に2つのノイズが重畳している。これらノイズは、第1巻線群14においてU相以外の相に対応するスイッチングノイズと、第2巻線群15におけるいずれかの相に対応するスイッチングノイズとである。空間位相差Δθが30°であるため、例えば、これらノイズの発生間隔は電気角で30°である。これらノイズは、フィルタ部36のローパスフィルタ処理により除去できる。 The period from time t1 to t2 and t3 to t4 is a dead time. In the dead time, two noises are superimposed on the phase voltage VU1. These noises are the switching noise corresponding to the phase other than the U phase in the first winding group 14 and the switching noise corresponding to any phase in the second winding group 15. Since the spatial phase difference Δθ is 30 °, for example, the generation interval of these noises is 30 ° in electrical angle. These noises can be removed by the low pass filter processing of the filter unit 36.
 図3の説明に戻り、推定部37は、フィルタ部36から出力されたフィルタ後電圧VFに基づいて、補償前電気角θpを算出する。詳しくは、推定部37は、まず、図8(b)に示すように、フィルタ後電圧VFと閾値とを比較し、フィルタ後電圧VFが閾値をクロスするタイミングを算出する。本実施形態では、閾値が0に設定されている。このため、フィルタ後電圧VFが閾値とクロスするタイミングは、ゼロクロスタイミングとなる。そして、推定部37は、算出したゼロクロスタイミングに基づいて、図9(a)に示すように、補償前電気角θpを算出する。ゼロクロスタイミングに基づいて電気角を推定できるのは、例えば、実際の誘起電圧の基本波成分EU1のゼロクロスタイミングを、電気角を推定するための基準となるタイミングとして用いることができるためである。なお、図9は、回転電機10の電気角速度が一定の場合の補償前電気角θpの推移を示す。 Returning to the description of FIG. 3, the estimation unit 37 calculates the uncompensated electrical angle θp based on the filtered voltage VF output from the filter unit 36. Specifically, as shown in FIG. 8B, the estimation unit 37 first compares the after-filter voltage VF with the threshold, and calculates the timing at which the after-filter voltage VF crosses the threshold. In the present embodiment, the threshold is set to zero. Therefore, the timing at which the filtered voltage VF crosses the threshold is the zero cross timing. Then, the estimation unit 37 calculates the precompensation electrical angle θp, as shown in FIG. 9A, based on the calculated zero cross timing. The electrical angle can be estimated based on the zero cross timing because, for example, the zero cross timing of the fundamental wave component EU1 of the actual induced voltage can be used as a reference timing for estimating the electrical angle. FIG. 9 shows the transition of the pre-compensation electrical angle θp when the electrical angular velocity of the rotary electric machine 10 is constant.
 推定部37は、さらに、算出したゼロクロスタイミングの時間間隔に基づいて、回転電機10の電気角速度ωestを算出する。 The estimation unit 37 further calculates the electric angular velocity ωest of the rotary electric machine 10 based on the calculated time interval of the zero cross timing.
 位相補償部38は、位相の進む側に補償前電気角θpを補正することにより、推定電気角θestを算出する。位相の進む側に補正するのは、ローパスフィルタ処理が施されることにより、図8(b)に示すように、実際の誘起電圧の基本波成分EU1に対してフィルタ後電圧VFの位相が遅れるためである。位相補償することにより、電気角の推定精度を高めることができる。 The phase compensation unit 38 calculates the estimated electrical angle θest by correcting the precompensation electrical angle θp on the phase advancing side. The correction on the phase advancing side is performed by low-pass filter processing, and as shown in FIG. 8B, the phase of the filtered voltage VF is delayed with respect to the fundamental wave component EU1 of the actual induced voltage. It is for. The phase compensation can improve the estimation accuracy of the electrical angle.
 位相補償部38は、電気角速度ωestに基づいて、図10に示す位相補償値β(<0)を算出し、算出した位相補償値βを補償前電気角θpに加算することにより、推定電気角θestを算出する。なお、位相補償部38は、電気角速度ωest及び位相補償値βが関係付けられたマップ情報に基づいて、位相補償値βを算出すればよい。これにより、補償前電気角θpの位相遅れを簡易な構成で補償できる。 The phase compensation unit 38 calculates the phase compensation value β (<0) shown in FIG. 10 based on the electrical angular velocity ωest, and adds the calculated phase compensation value β to the pre-compensation electrical angle θp to estimate the electrical angle Calculate θest. The phase compensation unit 38 may calculate the phase compensation value β based on the map information in which the electrical angular velocity ωest and the phase compensation value β are related. Thus, the phase delay of the precompensation electrical angle θp can be compensated with a simple configuration.
 加算部35は、位相補償部38から出力された推定電気角θestに空間位相差Δθを加算して出力する。 The addition unit 35 adds the spatial phase difference Δθ to the estimated electrical angle θest output from the phase compensation unit 38 and outputs the result.
 続いて、図11~図14を用いて、本実施形態の効果について説明する。 Subsequently, the effects of the present embodiment will be described using FIGS. 11 to 14.
 まず、図11を用いて、電気角の推定精度の向上効果について説明する。図11(a)は、本実施形態のU相電圧VU1及びフィルタ後電圧VFの推移を示し、図11(b)は、比較例のU相電圧VU1及びフィルタ後電圧VFの推移を示す。図11(b)の比較例は、上記特許文献1に記載されているように、上アームスイッチのオン操作期間において、上,下アームスイッチが交互にオンされる構成である。 First, the improvement effect of the estimation accuracy of the electrical angle will be described with reference to FIG. FIG. 11A shows the transition of the U-phase voltage VU1 and the after-filter voltage VF of this embodiment, and FIG. 11B shows the transition of the U-phase voltage VU1 and the after-filter voltage VF of the comparative example. The comparative example of FIG. 11B has a configuration in which the upper and lower arm switches are alternately turned on during the on operation period of the upper arm switch as described in Patent Document 1 above.
 本実施形態では、0Vに対して相電圧VU1の対称性がある程度確保されているため、フィルタ後電圧VFは、0Vからオフセットしない。このため、電気角の推定精度を向上できる。これに対し、比較例では、0Vに対して相電圧VU1の対称性が確保されていないため、フィルタ後電圧VFは、0Vから所定量ΔVオフセットする。その結果、電気角を推定するための基準となるタイミングを適正に把握できず、電気角の推定精度が低下する。なお、比較例において、電気角の推定精度の低下を防止すべく、相電圧VU1を取得する場合の基準電圧を、直流電源21の出力電圧の分圧値「VDC/2」に代えて、仮想中性点の電圧とすることも考えられる。ただし、この場合、構成部品数が増加し、制御システムのコストが増加してしまう。 In the present embodiment, since the symmetry of the phase voltage VU1 is secured to some extent with respect to 0 V, the filtered voltage VF is not offset from 0 V. Therefore, the estimation accuracy of the electrical angle can be improved. On the other hand, in the comparative example, the symmetry of the phase voltage VU1 is not ensured with respect to 0 V, so the filtered voltage VF is offset from 0 V by a predetermined amount ΔV. As a result, the reference timing for estimating the electrical angle can not be properly grasped, and the estimation accuracy of the electrical angle decreases. In the comparative example, in order to prevent a decrease in the estimation accuracy of the electrical angle, the reference voltage in acquiring phase voltage VU1 is replaced with the divided voltage value “VDC / 2” of the output voltage of DC power supply 21 to be virtual. It is also conceivable to use a neutral point voltage. However, in this case, the number of components increases and the cost of the control system increases.
 続いて、図12を用いて、トルクリップルの低減効果について説明する。図11(a)は、第1巻線群14に対応する回転電機10のトルクTrq1の推移を示し、図11(b)は、第2巻線群15に対応する回転電機10のトルクTrq2の推移を示す。図11(c)は、各トルクTrq1,Trq2の合計値である合成トルクTtotalの推移を示す。 Then, the reduction effect of a torque ripple is demonstrated using FIG. 11A shows the transition of the torque Trq1 of the rotary electric machine 10 corresponding to the first winding group 14, and FIG. 11B shows the torque Trq2 of the rotary electric machine 10 corresponding to the second winding group 15. Show the transition. FIG. 11C shows transition of combined torque Ttotal which is a total value of each of the torques Trq1 and Trq2.
 パルス幅Wが120よりも小さくなると、第1,第2巻線群14,15それぞれにおいて巻線に対する無通電期間が出現する。この場合、各トルクTrq1,Trq2に6次のトルクリップルが発生する。しかし、第1,第2巻線群14,15それぞれに対応するトルクリップルが大きかったとしても、各トルクTrq1,Trq2を合成することにより、図12(c)に示すように、トルクリップルを低減することができる。特に本実施形態では、空間位相差Δθが30度に設定されていることがトルクリップルの低減効果をより向上させている。 When the pulse width W is smaller than 120, a non-energization period for the windings appears in each of the first and second winding groups 14 and 15. In this case, sixth torque ripple occurs in each of the torques Trq1 and Trq2. However, even if the torque ripple corresponding to each of the first and second winding groups 14 and 15 is large, the torque ripple is reduced as shown in FIG. 12C by combining the respective torques Trq1 and Trq2. can do. In particular, in the present embodiment, setting the spatial phase difference Δθ to 30 degrees further improves the reduction effect of the torque ripple.
 なお、空間位相差Δθは、30度に限らず、30度に近い値に設定される場合であっても、トルクリップルの低減効果を得ることはできる。 The space phase difference Δθ is not limited to 30 degrees, and the torque ripple reduction effect can be obtained even when it is set to a value close to 30 degrees.
 続いて、図13を用いて、直流電流のリップルの低減効果について説明する。図13(a)は、直流電源21と第1インバータINV1との間に流れる第1直流電流IDC1の推移を示し、図13(b)は、直流電源21と第2インバータINV2との間に流れる第2直流電流IDC2の推移を示す。図13(c)は、各直流電流IDC1,IDC2の合計値である合成電流Itotalの推移を示す。 Subsequently, the ripple reduction effect of direct current will be described with reference to FIG. FIG. 13 (a) shows the transition of the first DC current IDC1 flowing between the DC power supply 21 and the first inverter INV1, and FIG. 13 (b) shows the transition between the DC power supply 21 and the second inverter INV2. The transition of 2nd DC current IDC2 is shown. FIG. 13C shows the transition of the combined current Itotal which is the total value of the direct current IDC1 and IDC2.
 本実施形態によれば、トルクリップルと同様に、直流電流のリップルを低減することができる。このため、各インバータINV1,INV2と直流電源21との間に設けられてかつ直流電源21に並列接続される平滑コンデンサの容量を低下させることができ、平滑コンデンサの体格を低減できる。特に本実施形態では、直流電流のリップルを低減させることにより、平滑コンデンサが制御システムに備えられない構成とされている。 According to the present embodiment, it is possible to reduce the ripple of the direct current as well as the torque ripple. Therefore, the capacity of the smoothing capacitor provided between each of the inverters INV1 and INV2 and the DC power supply 21 and connected in parallel to the DC power supply 21 can be reduced, and the size of the smoothing capacitor can be reduced. In particular, in the present embodiment, the smoothing capacitor is not included in the control system by reducing the ripple of the direct current.
 続いて、図14を用いて、電磁ノイズの低減効果について説明する。なお、図14に示す比較例は、図11(b)の比較例と同じである。 Subsequently, the reduction effect of the electromagnetic noise will be described with reference to FIG. In addition, the comparative example shown in FIG. 14 is the same as the comparative example of FIG.11 (b).
 本実施形態では、回転電機10のトルクを調整するために、パルス幅Wが調整される。このため、電磁ノイズを比較例よりも低減することができる。また、各インバータINV1,INV2で発生するスイッチング損失を比較例よりも低減することもできる。 In the present embodiment, in order to adjust the torque of the rotary electric machine 10, the pulse width W is adjusted. Therefore, the electromagnetic noise can be reduced more than in the comparative example. In addition, the switching loss generated in each of the inverters INV1 and INV2 can be reduced as compared with the comparative example.
 <その他の実施形態>
 なお、上記実施形態は、以下のように変更して実施してもよい。
<Other Embodiments>
The above embodiment may be modified as follows.
 ・相電圧を取得するための基準電圧としては、各抵抗体22a,22bの分圧値「VDC/2」に限らず、例えば、直流電源21の負極側の電圧であるグランド電圧(0V)であってもよい。 The reference voltage for acquiring the phase voltage is not limited to the voltage division value "VDC / 2" of each of the resistors 22a and 22b, and may be, for example, a ground voltage (0 V) which is a voltage on the negative electrode side of the DC power supply 21. It may be.
 ・推定部37で用いられる閾値は、0に限らず、0以外の値であってもよい。 The threshold used by the estimation unit 37 is not limited to zero, and may be a value other than zero.
 ・電気角の推定方法としては、ローパスフィルタが用いられるものに限らない。例えば、巻線の無通電期間における相電圧と閾値との比較に基づいて、電気角を推定する方法であってもよい。また、電気角としては、位置センサレス制御により推定されるものに限らない。例えば、レゾルバ等の角度検出器により検出された電気角がトルク制御に用いられてもよい。 The method of estimating the electrical angle is not limited to that using a low pass filter. For example, the electrical angle may be estimated based on the comparison between the phase voltage and the threshold in the non-energized period of the winding. Further, the electrical angle is not limited to one estimated by position sensorless control. For example, an electrical angle detected by an angle detector such as a resolver may be used for torque control.
 ・回転電機としては、巻線群を2つ備えるものに限らず、巻線群を3つ以上備えるものであってもよい。この場合、巻線群の数をNとすると、各巻線群の空間位相差Δθは、「Δθ=60度/N」とされればよい。例えば、巻線群の数が3つの場合、第1~第3巻線群の互いの空間位相差Δθは20度とされる。 The rotating electric machine is not limited to the one having two winding groups, and may have three or more winding groups. In this case, assuming that the number of winding groups is N, the spatial phase difference Δθ of each winding group may be “Δθ = 60 degrees / N”. For example, when the number of winding groups is three, the spatial phase difference Δθ between the first to third winding groups is set to 20 degrees.
 ・回転電機の制御量としては、トルクに限らず、例えば回転速度であってもよい。 The control amount of the rotating electrical machine is not limited to the torque, and may be, for example, a rotational speed.
 ・回転電機としては、3相以外の複数相のものであってもよい。また、回転電機としては、巻線界磁型のものに限らず、例えば、永久磁石界磁型のものであってもよい。この場合、磁極部は、永久磁石である。 -As a rotary electric machine, the thing of multiple phases other than three phases may be used. The rotating electrical machine is not limited to the winding field type, and may be, for example, a permanent magnet field type. In this case, the magnetic pole portion is a permanent magnet.
 本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。 Although the present disclosure has been described based on the examples, it is understood that the present disclosure is not limited to the examples and structures. The present disclosure also includes various modifications and variations within the equivalent range. In addition, various combinations and forms, and further, other combinations and forms including only one element, or more or less than these elements are also within the scope and the scope of the present disclosure.

Claims (7)

  1.  多相の巻線群(14,15)を有する回転電機(10)と、
     上アームスイッチ(SUp1~SWp2)及び下アームスイッチ(SUn1~SWn2)の直列接続体を有し、前記上アームスイッチ及び前記下アームスイッチが交互にオン操作されることにより、前記巻線群に電圧を印加する電力変換回路(INV1,INV2)と、を備えるシステムに適用される回転電機の制御装置(30)において、
     前記回転電機の1電気角周期における前記上アームスイッチ及び前記下アームスイッチそれぞれのオン操作期間であるパルス幅を調整する調整部(32)と、
     各相に対応する前記上アームスイッチのオン操作期間を重複させないとの第1条件、及び各相に対応する前記下アームスイッチのオン操作期間を重複させないとの第2条件を課して、1電気角周期における前記上アームスイッチ及び前記下アームスイッチそれぞれのオン操作期間を前記調整部により調整された前記パルス幅とすべく、1電気角周期において前記上アームスイッチ及び前記下アームスイッチをそれぞれ1回ずつオン操作する操作部(33,34)と、を備える回転電機の制御装置。
    A rotating electric machine (10) having multi-phase winding groups (14, 15);
    A series connection of upper arm switches (SUp1 to SWp2) and lower arm switches (SUn1 to SWn2) is provided, and the voltage is applied to the winding group by alternately turning on the upper arm switch and the lower arm switch. In a control device (30) of a rotating electrical machine applied to a system including a power conversion circuit (INV1, INV2) that applies
    An adjusting unit (32) for adjusting a pulse width which is an on operation period of each of the upper arm switch and the lower arm switch in one electrical angle cycle of the rotating electrical machine;
    The first condition that the ON operation period of the upper arm switch corresponding to each phase is not overlapped, and the second condition that the ON operation period of the lower arm switch corresponding to each phase is not overlapped, 1 The upper arm switch and the lower arm switch are set to 1 each in one electrical angle cycle in order to make the on-operation period of each of the upper arm switch and the lower arm switch in the electrical angle cycle be the pulse width adjusted by the adjustment unit. A control device for a rotating electrical machine, comprising: an operation unit (33, 34) which is turned on each time.
  2.  前記回転電機は、前記巻線群を複数有し、
     前記電力変換回路は、複数の前記巻線群それぞれに電圧を印加し、
     複数の前記巻線群のそれぞれが互いになす電気角がずらされており、
     前記操作部は、複数の前記巻線群それぞれにおいて、前記第1条件及び前記第2条件を課して、1電気角周期における前記上アームスイッチ及び前記下アームスイッチそれぞれのオン操作期間を前記調整部により調整された前記パルス幅とすべく、1電気角周期において前記上アームスイッチ及び前記下アームスイッチをそれぞれ1回ずつオン操作する請求項1に記載の回転電機の制御装置。
    The rotating electric machine has a plurality of winding groups,
    The power conversion circuit applies a voltage to each of the plurality of winding groups,
    The electrical angles that each of the plurality of winding groups make with each other are offset;
    The operation unit imposes the first condition and the second condition in each of the plurality of winding groups, and adjusts the on operation period of each of the upper arm switch and the lower arm switch in one electrical angle cycle. The control device for a rotating electrical machine according to claim 1, wherein the upper arm switch and the lower arm switch are each turned on once in one electrical angle cycle in order to obtain the pulse width adjusted by the unit.
  3.  前記巻線群は、3相のものであり、
     前記調整部は、前記パルス幅を電気角で120度以下に調整する請求項2に記載の回転電機の制御装置。
    The winding group is of three phases,
    The control device for a rotating electrical machine according to claim 2, wherein the adjustment unit adjusts the pulse width to 120 degrees or less in electrical angle.
  4.  前記調整部は、前記回転電機が電動機として駆動される場合、前記パルス幅を電気角で60度よりも大きくてかつ120度以下に調整する請求項3に記載の回転電機の制御装置。 The control device for a rotating electrical machine according to claim 3, wherein, when the rotating electrical machine is driven as a motor, the adjusting unit adjusts the pulse width to be greater than 60 degrees and 120 degrees or less in electrical angle.
  5.  前記巻線群を構成する巻線(14U)に発生する相電圧と閾値との比較に基づいて、前記回転電機のロータの回転位置情報を推定する推定部(37)を備える請求項1~4のいずれか1項に記載の回転電機の制御装置。 The estimation unit (37) for estimating the rotational position information of the rotor of the rotating electrical machine based on comparison between the phase voltage generated in the winding (14U) forming the winding group and the threshold value. The control device of the rotary electric machine according to any one of the above.
  6.  前記巻線に発生する相電圧にフィルタ処理を施すことにより、前記巻線に発生する誘起電圧の基本波成分を抽出するフィルタ部(36)を備え、
     前記推定部は、前記フィルタ部により抽出された基本波成分と前記閾値との比較に基づいて、前記回転位置情報を推定する請求項5に記載の回転電機の制御装置。
    A filter unit (36) for extracting a fundamental wave component of the induced voltage generated in the winding by filtering the phase voltage generated in the winding;
    The control device of a rotating electrical machine according to claim 5, wherein the estimation unit estimates the rotational position information based on comparison between the fundamental wave component extracted by the filter unit and the threshold value.
  7.  前記巻線に実際に発生する誘起電圧の基本波成分に対する前記フィルタ部により抽出された基本波成分の位相遅れを補償する補償部(38)を備え、
     前記推定部は、前記補償部により補償された基本波成分と前記閾値との比較に基づいて、前記回転位置情報を推定する請求項6に記載の回転電機の制御装置。
    The compensation unit (38) compensates for the phase delay of the fundamental wave component extracted by the filter unit with respect to the fundamental wave component of the induced voltage actually generated in the winding.
    The control device for a rotating electrical machine according to claim 6, wherein the estimation unit estimates the rotational position information based on comparison between the fundamental wave component compensated by the compensation unit and the threshold value.
PCT/JP2018/029653 2017-08-21 2018-08-07 Dynamoelectric machine control device WO2019039268A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017158828A JP2019037101A (en) 2017-08-21 2017-08-21 Control device of rotating electric machine
JP2017-158828 2017-08-21

Publications (1)

Publication Number Publication Date
WO2019039268A1 true WO2019039268A1 (en) 2019-02-28

Family

ID=65438761

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/029653 WO2019039268A1 (en) 2017-08-21 2018-08-07 Dynamoelectric machine control device

Country Status (2)

Country Link
JP (1) JP2019037101A (en)
WO (1) WO2019039268A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112810467A (en) * 2019-10-31 2021-05-18 比亚迪股份有限公司 Energy conversion device and vehicle

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011139573A (en) * 2009-12-28 2011-07-14 Panasonic Corp Motor drive device, compressor and refrigerator
JP2015073352A (en) * 2013-10-02 2015-04-16 株式会社デンソー Power conversion device and power conversion system
JP2017131045A (en) * 2016-01-21 2017-07-27 株式会社デンソー Rotary electric machine control device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011139573A (en) * 2009-12-28 2011-07-14 Panasonic Corp Motor drive device, compressor and refrigerator
JP2015073352A (en) * 2013-10-02 2015-04-16 株式会社デンソー Power conversion device and power conversion system
JP2017131045A (en) * 2016-01-21 2017-07-27 株式会社デンソー Rotary electric machine control device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112810467A (en) * 2019-10-31 2021-05-18 比亚迪股份有限公司 Energy conversion device and vehicle
CN112810467B (en) * 2019-10-31 2022-08-09 比亚迪股份有限公司 Energy conversion device and vehicle

Also Published As

Publication number Publication date
JP2019037101A (en) 2019-03-07

Similar Documents

Publication Publication Date Title
US8766577B2 (en) Three-phase rotary machine control apparatus
CN103684167B (en) Control device for three-phase rotary machine
US8829829B2 (en) Apparatus for calculating rotational position of rotary machine
US9112436B2 (en) System for controlling controlled variable of rotary machine
US9543868B2 (en) Apparatus for controlling rotary electric machine
US9553530B2 (en) Power converter
CN108156837B (en) Control device for AC rotating machine and electric power steering device
WO2018123291A1 (en) Inverter driving device and electric vehicle system in which same is used
JP6390489B2 (en) Inverter control device
US10715069B2 (en) Discharge control device
JP6173516B1 (en) Electric motor control apparatus and electric motor control method
US20230035063A1 (en) Inverter control device and electric vehicle system
JPH1169900A (en) Controller for electric rolling stock
WO2019039268A1 (en) Dynamoelectric machine control device
JP6358103B2 (en) Multi-winding rotating electrical machine control device
JP6700954B2 (en) Control device for rotating electric machine
EP4007159A1 (en) Control device for ac rotating electric machine, and electric power steering device
WO2020230339A1 (en) Rotating electrical machine control device
CN114731114A (en) Motor control device
JP6203318B1 (en) Electric motor control apparatus and electric motor control method
US9948220B2 (en) Rotation angle estimation apparatus for rotating electric machine
JP6839896B2 (en) Motor control device and electric vehicle
WO2020105106A1 (en) Alternating current rotating electrical machine control device
JP7439003B2 (en) Inverter control device, electric vehicle system
US20240042867A1 (en) Motor control device, electromechanical integrated unit, boost converter system, electric vehicle system, and motor control method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18847693

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18847693

Country of ref document: EP

Kind code of ref document: A1