WO2019039091A1 - Heat-shrinkable tube - Google Patents

Heat-shrinkable tube Download PDF

Info

Publication number
WO2019039091A1
WO2019039091A1 PCT/JP2018/024990 JP2018024990W WO2019039091A1 WO 2019039091 A1 WO2019039091 A1 WO 2019039091A1 JP 2018024990 W JP2018024990 W JP 2018024990W WO 2019039091 A1 WO2019039091 A1 WO 2019039091A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
tube
shrinkable tube
less
polyethylene
Prior art date
Application number
PCT/JP2018/024990
Other languages
French (fr)
Japanese (ja)
Inventor
遼太 福本
太郎 藤田
西川 信也
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to JP2019537961A priority Critical patent/JPWO2019039091A1/en
Publication of WO2019039091A1 publication Critical patent/WO2019039091A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L11/00Hoses, i.e. flexible pipes
    • F16L11/04Hoses, i.e. flexible pipes made of rubber or flexible plastics
    • F16L11/12Hoses, i.e. flexible pipes made of rubber or flexible plastics with arrangements for particular purposes, e.g. specially profiled, with protecting layer, heated, electrically conducting

Definitions

  • the present disclosure relates to a heat shrinkable tube.
  • This application claims the priority based on Japanese Patent Application No. 2017-159629 filed on Aug. 22, 2017, and incorporates all the contents described in the aforementioned Japanese application.
  • a heat shrinkable tube is a tube that contracts radially when heat is applied.
  • the heat-shrinkable tube is a member utilizing the shape-memory property of the crosslinked resin molded product, and the property of restoring the expanded tube to a shape stored in advance by heating.
  • Heat-shrinkable tubes are used, for example, for the protection and insulation of electrical wiring connections. An example of a heat-shrinkable tube and a method of manufacturing the same are described in Patent Document 1.
  • the heat-shrinkable tube of the present disclosure is made of a mixture containing polyethylene having a density of 0.915 g / cm 3 or less and an amorphous polymer having a glass transition temperature of 50 ° C. or more and 120 ° C. or less.
  • the content of polyethylene in 100% by mass of the mixture is 70% by mass or more and 97% by mass or less, and the content of non-crystalline polymer is 3% by mass or more and 30% by mass or less.
  • the contraction temperature is important. If the contraction temperature is too high or the heating time is too long, it may be a cause of thermal deterioration or deformation of other members disposed close to each other (for example, each member inside the electronic device). From the viewpoint of protection of other members, it is desirable to use a heat-shrinkable tube whose diameter shrinks efficiently in a short time without the shrinkage temperature being too high. As the heat-shrinkable tube, for example, it is desirable that the diameter shrinks efficiently in a short time at 100 ° C.
  • the contraction temperature is too low. If the shrinkage temperature is too low, shrinkage may occur even during storage of the heat-shrinkable tube, and a sufficient diameter may not be maintained at the time of use. As described above, if contraction not intended by the user during storage occurs, the heat-shrinkable tube can not be sufficiently functioned at the time of use. Therefore, it is also desirable that the heat-shrinkable tube has high shape retention during storage. In consideration of the fact that the temperature at the time of storage may reach up to about 50 ° C., for example, a heat-shrinkable tube having a small shrinkage rate at a temperature of 50 ° C. or less is desired.
  • the heat-shrinkable tube of the present disclosure is made of a mixture containing polyethylene having a density of 0.915 g / cm 3 or less and an amorphous polymer having a glass transition temperature of 50 ° C. or more and 120 ° C. or less.
  • the content of polyethylene in 100% by mass of the mixture is 70% by mass or more and 97% by mass or less, and the content of non-crystalline polymer is 3% by mass or more and 30% by mass or less.
  • a heat-shrinkable tube made of polyethylene with a density of 0.915 g / cm 3 or less exhibits excellent shape memory and shrinkability at the time of heating.
  • the heat-shrinkable tube containing polyethylene having a density of 0.915 g / cm 3 or less alone has a large shrinkage at 50 ° C.
  • a heat-shrinkable tube made of a mixture containing a non-crystalline polymer having a glass transition temperature of 50 ° C. or more and 120 ° C. or less, which is 30% by mass or less.
  • the contraction rate (%) of the heat-shrinkable tube is ⁇ [(tube inner diameter before contraction)-(tube inner diameter after contraction)] / [(tube inner diameter before contraction)-(tube inner diameter before expansion) ⁇ ⁇ It can be determined as 100.
  • the heat-shrinkable tube may have a shrinkage of 5% or less when held at 50 ° C. for 120 hours, and may have a shrinkage of 80% or more when held at 100 ° C. for 3 minutes. Such a heat-shrinkable tube has less shrinkage during storage. Further, when the heat-shrinkable tube is heated and shrunk, the heat-shrinkable tube can be shrunk at a relatively low temperature, so that the influence of the heating on the other members (for example, the respective members inside the electronic device) arranged close can be minimized.
  • the refractive index of the non-crystalline polymer may be 1.45 or more and 1.55 or less.
  • the amorphous polymer may have secondary carbon (carbon C in —CH 2 — group) in the molecule.
  • Secondary carbon can be a crosslinking point during crosslinking of the amorphous polymer.
  • the amorphous polymer may be cyclic polyolefin.
  • Cyclic polyolefins have a similar structure to polyethylene, and have high affinity to polyethylene. Therefore, it becomes easy to obtain a uniform and transparent heat-shrinkable tube.
  • the cyclic polyolefin may be a cycloolefin polymer (COP: cyclic olefin polymer) or a cycloolefin copolymer (COC: cyclic olefin copolymer).
  • COP cyclic olefin polymer
  • COC cycloolefin copolymer
  • the cycloolefin copolymer may be a cycloolefin copolymer comprising ethylene units and norbornene units.
  • the ethylene unit has a secondary carbon and contains many structures that can be crosslinking points.
  • the ethylene unit is also common to the structure of polyethylene. Therefore, such cycloolefin copolymers have high affinity with polyethylene. Therefore, it is suitable for obtaining a uniform heat-shrinkable tube.
  • the above mixture constituting the heat shrinkable tube may be electron beam crosslinked.
  • electron beam crosslinking the mixture it becomes easy to obtain a heat-shrinkable tube excellent in shape memory.
  • FIG. 1 is a perspective view showing an example of a heat-shrinkable tube according to the present embodiment.
  • the heat shrinkable tube 100 has a tubular shape with a hollow inside. By heating the heat-shrinkable tube 100 to a temperature of 100 ° C. or more, the diameter of the tube shrinks into the tube 110 as shown by the arrow R. The contraction rate in the longitudinal direction L of the heat-shrinkable tube 100 due to heating is small.
  • the heat-shrinkable tube 100 according to the present embodiment hardly shrinks in the longitudinal direction L even when heated to 100 ° C. or higher.
  • the contraction rate of the heat-shrinkable tube 100 in the longitudinal direction L is, for example, 5% or less.
  • the heat-shrinkable tube 100 has a density of 0.915 g / cm 3 or less of polyethylene 70% by mass to 97% by mass, and a glass transition temperature of 50 ° C. to 120 ° C. And a mixture containing The heat-shrinkable tube 100 may be made of an electron beam crosslinked body of the above mixture, which is formed by electron beam crosslinking of the above mixture.
  • polyethylene As the density of 0.915 g / cm 3 or less of polyethylene, low density polyethylene (LDPE: Low Density Polyethylene), and linear low density polyethylene (LLDPE: Linear Low Density Polyethylene) of a density of 0.915 g / cm 3 The following can be mentioned.
  • LDPE Low Density Polyethylene
  • LLDPE Linear Low Density Polyethylene
  • the glass transition temperature of the non-crystalline polymer is 50 ° C. or more and 120 ° C. or less.
  • a predetermined amount of an amorphous polymer having such a glass transition temperature it is possible to form a heat-shrinkable tube having a small shrinkage at 50 ° C. or less and a large shrinkage at 100 ° C.
  • the lower limit of the range of the glass transition temperature is more preferably 60 ° C.
  • the upper limit is more preferably 100 ° C.
  • the refractive index of the amorphous polymer is preferably 1.45 or more and 1.55 or less.
  • the lower limit of the range of the refractive index is more preferably 1.47.
  • the upper limit is more preferably 1.54.
  • the said refractive index means the refractive index with respect to the light of D line
  • a polymer having secondary carbon (carbon C in —CH 2 — group) in a molecule is preferable.
  • the secondary carbon in the molecule can be a crosslinking point at the time of crosslinking, particularly at the time of electron beam crosslinking. Therefore, crosslinking is promoted, and a heat-shrinkable tube having more excellent shape memory can be obtained.
  • non-crystalline polymer examples include cyclic polyolefins.
  • Cyclic polyolefins include cycloolefin polymers that are homopolymers of cyclic olefins, and cycloolefin copolymers that are copolymers of cyclic olefins with other types of cyclic or non-cyclic olefins. Among them, cycloolefin copolymers are preferable, and cycloolefin copolymers containing ethylene units and norbornene units are preferable. As such a cycloolefin copolymer, the cycloolefin copolymer which is a copolymer of ethylene and norbornene shown to following formula (1) is mentioned.
  • the heat-shrinkable tube 100 may contain other components other than the polyethylene and the non-crystalline polymer as long as the effects of the invention are not impaired.
  • Other components include, for example, resin components such as thermoplastic resins, polymer alloys, thermoplastic elastomers, or rubber components, or additives such as dyes, pigments, antioxidants, and crosslinking assistants.
  • FIG. 2 is a schematic view showing an example of a heat shrinkable tube manufacturing apparatus.
  • FIG. 3 is a flow chart showing an example of a procedure for manufacturing a heat-shrinkable tube.
  • the manufacturing apparatus and manufacturing method of the heat-shrinkable tube 100 demonstrated below are only an example, and the apparatus and manufacturing method for manufacturing the heat-shrinkable tube 100 are not limited to this.
  • the heat-shrinkable tube 100 includes a step of extruding the tube (S10), a step of electron beam crosslinking the material constituting the tube (S20), and a step of heating the tube (S30) It manufactures through the process (S40) of expanding a tube, and the process (S50) of cooling a tube.
  • step S20 it is also possible to abbreviate
  • an extruder (not shown) is firstly made of polyethylene having a density of 0.915 g / cm 3 or less and an amorphous polymer having a glass transition temperature of 50 ° C. or more and 120 ° C. or less. And push out the hollow tube. At this time, if necessary, other components such as additives may be introduced into the extruder.
  • the tube formed by the extruder is irradiated with an electron beam, and the material constituting the tube is subjected to electron beam crosslinking (S20).
  • the irradiation of the tube with the electron beam is performed, for example, by irradiating the tube with the electron beam while transporting the tube in an electron beam irradiation apparatus (not shown).
  • the irradiation of the electron beam is performed so as to form a partial crosslink sufficiently to make the material constituting the tube memorize the shape.
  • the irradiation dose of the electron beam is set, for example, in the range of 10 kGy or more and 250 kGy or less, and typically, the electron beam irradiation is performed in the irradiation dose range of 100 kGy or more and 200 kGy or less.
  • a step of heating the tube (S30), a step of expanding the tube (S40), and a step of cooling the tube (S50) are performed.
  • the tube expansion device 200 shown in FIG. 2 includes a supply roller 14, a heating unit 10, a tube diameter expansion unit 11, a cooling unit 12, and a take-off roller 34 in this order from the inlet along the transport direction.
  • the tube diameter expansion unit 11 and the cooling unit 12 partially overlap.
  • the heating unit 10 includes a heating tank 20 and a heater 16.
  • a heating medium 18 is accommodated in the heating tank 20.
  • the tube diameter expansion unit 11 includes a sizing tube 22.
  • the sizing tube 22 has a shape such that the diameter increases from the inlet to the outlet of the sizing tube 22 so that the diameter at the outlet is larger than the diameter at the inlet of the sizing tube 22, and the sizing tube 22
  • a precooling hole 22b and a through hole 22c are provided, which penetrate in the radial direction and communicate with the passage hole 22a.
  • the passage hole 22a includes an expanded portion 22d whose diameter increases from the diameter on the inlet side of the passage hole 22a toward the outlet side of the passage hole 22a.
  • the precooling holes 22b are provided at positions where the inner diameter d of the expanded portion 22d corresponds to 60 to 90% of the inner diameter D after expansion.
  • the precooling holes 22 b are connected to the cooling unit 12.
  • the through hole 22c is connected to an external pressure reducing device (not shown).
  • the tube A which has been electron beam crosslinked in the electron beam crosslinking step (S 20) is transported into the heating unit 10 by the supply roller 14 and the take-up roller 34.
  • the tube A is heated to a temperature above the softening point of the tube A while moving in the heating unit 10 (S30).
  • the temperature of the heat medium 18 accommodated in the heating tank 20 is appropriately adjusted in order to provide the tube with appropriate flexibility.
  • the temperature is adjusted to be 10 ° C. to 50 ° C. higher than the softening point of the tube A, preferably 20 ° C. to 35 ° C. higher.
  • the heating does not have to be wet heating using the heat medium 18, and may be dry heating using hot air or infrared rays.
  • the inner diameter d of the tube A by passing through the passing hole 22a of the sizing tube 22, from the inner diameter d 0 before passing through the sizing tube 22 is extended to a predetermined inside diameter D (S40).
  • D inside diameter
  • the tube A is expanded so as to be pressed against the wall surface of the expanded portion 22d by the internal pressure.
  • a decompression pump is connected to the through hole 22c, and the inside diameter of the tube A is expanded by sucking the tube A.
  • the value of D / d 0 is adjusted to a range of 1.5 to 5.0, preferably 1.8 to 3.0.
  • the heat-shrinkable tube 100 is obtained by cooling the tube A 'having the obtained inner diameter D (S50).
  • the cooling of the tube A ' is performed not only after completion of the step of expanding the tube (S40) but also partially overlapping with the step of expanding the tube (S40).
  • the pre-cooling holes 22b are provided in the expanded portion 22d at positions P where the inner diameter d corresponds to 60 to 90% of the inner diameter D after expansion.
  • the precooling holes 22 b are connected to the cooling unit 12. Due to the presence of the precooling holes 22b, the tube A 'is precooled before the step of expanding the tube (S40) is completely completed. This precooling can prevent the tube from being quenched in the subsequent steps, and can suppress the rapid progress of crystallization. The precooling can also prevent sticking of the tube A and the tube A 'to the wall surface of the sizing tube 22.
  • the precooled tube A ' is further cooled by the cooling unit 12 and its shape is fixed with the inner diameter expanded. Cooling may be performed by a wet method using a cooling medium, or may be performed by a dry method using cold air.
  • the heat-shrinkable tube 100 is obtained by cutting the cooled tube A 'into a predetermined size. By passing through such a series of steps S10 to S50, the heat-shrinkable tube 100 can be manufactured.
  • the obtained heat-shrinkable tube 100 is a tube having an inner diameter D.
  • the diameter of the heat shrinkable tube shrinks to the inner diameter d 0 before expansion. Accordingly, covered with heat shrinkable tube 100 having an inner diameter D at a location to be protected, heating the heat shrinkable tube 100 in this state more than 100 ° C., the inner diameter of the heat shrinkable tube is reduced to d 0, place is sealed to be protected As protected.
  • Tables 1 and 2 show the composition of the heat-shrinkable tube and the physical properties of each component.
  • Each component used in the Example and the comparative example is as follows.
  • the resin mixture of the composition shown in Table 1 and Table 2 was extrusion molded using an extruder, and a tube having an inner diameter of ⁇ 4.8 mm and a wall thickness of 0.6 mm was molded.
  • the resin component was crosslinked by irradiating the molded tube with an electron beam of 150 kGy.
  • the electron beam cross-linked tube is heated by a heater until the surface temperature reaches 140 ° C., and heat contraction is performed by expanding the inner diameter of the tube to ⁇ 12.5 mm using the tube expansion device 200 shown in FIG. Samples for tube evaluation were prepared.
  • the tube of the example can be used as a heat-shrinkable tube having a high shape retention during storage and a high shrinkage upon heating.
  • Experiment No. 1 not containing an amorphous polymer having a glass transition temperature of 50 ° C. or more and 120 ° C. or less.
  • the contraction rate after 120 hours at 50 ° C. exceeded 5%.
  • Such a tube may shrink in diameter during storage and may not be able to fully exhibit the function of the heat-shrinkable tube.
  • Experiment No. 14 to No. From the 16 experimental examples, it can be seen that an amorphous polymer having a glass transition temperature of 50 ° C. or more and 120 ° C. or less is essential to maintain the shape retention during storage.
  • experiment No. From the results of 17 experimental example, even when the even containing polyethylene, if the density contains polyethylene such, more than 0.915 g / cm 3 as 0.919 g / cm 3 of PE (4) It became clear that heating at 100 ° C. for 3 minutes did not shrink sufficiently. Thus, it is understood that the polyethylene contained in the heat-shrinkable tube needs to have a density of 0.915 g / cm 3 or less. Moreover, experiment No. 18 and Experiment No. As 19, a glass transition temperature of in place of the amorphous polymer of 50 ° C. or higher 120 ° C. or less, in the case including polyethylene exceeding density 0.915 g / cm 3 with a density 0.915 g / cm 3 or less of polyethylene Even the required contraction characteristics were not satisfied.
  • the combination of polyethylene having a density of 0.915 g / cm 3 or less and an amorphous polymer having a glass transition temperature of 50 ° C. or more and 120 ° C. or less can provide 120 at 50 ° C. It is possible to satisfy the criteria that the contraction rate after the passage of time is 5% or less and the contraction rate after heating at 100 ° C. for 3 minutes is 75% or more. As a result, it is possible to provide a heat-shrinkable tube having high shape retention during storage and high shrinkage during heating.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
  • Rigid Pipes And Flexible Pipes (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

A heat-shrinkable tube 100 comprises a mixture containing a polyethylene having a density of 0.915 g/cm3 or less and a noncrystalline polymer having a glass transition temperature of 50 to 120°C. The content of the polyethylene in 100 mass% of the mixture is 70 to 97 mass% and the content of the noncrystalline polymer therein is 3 to 30 mass%.

Description

熱収縮チューブHeat shrinkable tube
 本開示は、熱収縮チューブに関するものである。本出願は、2017年8月22日出願の日本出願第2017-159629号に基づく優先権を主張し、前記日本出願に記載された全ての記載内容を援用するものである。 The present disclosure relates to a heat shrinkable tube. This application claims the priority based on Japanese Patent Application No. 2017-159629 filed on Aug. 22, 2017, and incorporates all the contents described in the aforementioned Japanese application.
 熱収縮チューブは、熱が加わると径方向に収縮するチューブである。熱収縮チューブは、架橋させた樹脂成形物の形状記憶性を利用し、拡張加工されたチューブが加熱により予め記憶された形状に復元する特性を利用した部材である。熱収縮チューブは、例えば電気的配線の接続部の保護や絶縁のために用いられている。熱収縮チューブ、およびその製造方法の一例が特許文献1に記載されている。 A heat shrinkable tube is a tube that contracts radially when heat is applied. The heat-shrinkable tube is a member utilizing the shape-memory property of the crosslinked resin molded product, and the property of restoring the expanded tube to a shape stored in advance by heating. Heat-shrinkable tubes are used, for example, for the protection and insulation of electrical wiring connections. An example of a heat-shrinkable tube and a method of manufacturing the same are described in Patent Document 1.
特開2008-307823号公報JP 2008-307823 A
 本開示の熱収縮チューブは、密度0.915g/cm以下のポリエチレンと、ガラス転移点温度が50℃以上120℃以下の非晶性ポリマーと、を含有する混合物からなる。混合物100質量%中のポリエチレンの含有量は70質量%以上97質量%以下であり、非晶性ポリマーの含有量は3質量%以上30質量%以下である。 The heat-shrinkable tube of the present disclosure is made of a mixture containing polyethylene having a density of 0.915 g / cm 3 or less and an amorphous polymer having a glass transition temperature of 50 ° C. or more and 120 ° C. or less. The content of polyethylene in 100% by mass of the mixture is 70% by mass or more and 97% by mass or less, and the content of non-crystalline polymer is 3% by mass or more and 30% by mass or less.
熱収縮チューブの一例を示す斜視図である。It is a perspective view showing an example of a heat contraction tube. 熱収縮チューブの製造装置の一例を示す概略図である。It is the schematic which shows an example of the manufacturing apparatus of a heat contraction tube. 熱収縮チューブの製造するための手順の一例を示すフローチャートである。It is a flowchart which shows an example of the procedure for manufacturing a heat contraction tube.
[本開示が解決しようとする課題] [Problems to be solved by the present disclosure]
 熱収縮チューブとしては、加熱した際に充分な収縮性を発揮することが重要である。そのためには収縮温度が重要である。収縮温度が高すぎたり、加熱時間が長過ぎたりすると、近接して配置される他の部材(例えば電子機器内部の各部材)の熱劣化や変形の原因になり得る。他の部材の保護の観点からは、収縮温度が高すぎず、短時間で効率よく径が収縮する熱収縮チューブが望ましい。熱収縮チューブとしては、例えば100℃で短時間に効率よく径が収縮することが望まれる。 As a heat-shrinkable tube, it is important to exhibit sufficient shrinkage when heated. For that purpose, the contraction temperature is important. If the contraction temperature is too high or the heating time is too long, it may be a cause of thermal deterioration or deformation of other members disposed close to each other (for example, each member inside the electronic device). From the viewpoint of protection of other members, it is desirable to use a heat-shrinkable tube whose diameter shrinks efficiently in a short time without the shrinkage temperature being too high. As the heat-shrinkable tube, for example, it is desirable that the diameter shrinks efficiently in a short time at 100 ° C.
 一方、収縮温度が低すぎる場合にも問題が起こり得る。収縮温度が低すぎると、熱収縮チューブの保管時においても収縮が生じ、使用時に十分な径が維持されない場合がある。
このように保管時に使用者が意図していない収縮が起こると、使用時に熱収縮チューブとしての機能を充分に果たすことができない。そのため、保管時における形状保持性が高い熱収縮チューブであることも望まれる。保管時の温度が最高で50℃程度に達する場合があることを考慮すると、例えば50℃以下の温度での収縮率が小さい熱収縮チューブが望まれる。
On the other hand, problems may occur if the contraction temperature is too low. If the shrinkage temperature is too low, shrinkage may occur even during storage of the heat-shrinkable tube, and a sufficient diameter may not be maintained at the time of use.
As described above, if contraction not intended by the user during storage occurs, the heat-shrinkable tube can not be sufficiently functioned at the time of use. Therefore, it is also desirable that the heat-shrinkable tube has high shape retention during storage. In consideration of the fact that the temperature at the time of storage may reach up to about 50 ° C., for example, a heat-shrinkable tube having a small shrinkage rate at a temperature of 50 ° C. or less is desired.
 そこで、保管時における形状保持性が高く、かつ加熱時の収縮性が高い熱収縮チューブを提供することを目的の1つとする。
[本開示の効果]
Therefore, it is an object of the present invention to provide a heat-shrinkable tube having high shape retention during storage and high shrinkage during heating.
[Effect of the present disclosure]
 上記熱収縮チューブによれば、保管時における形状保持性が高く、かつ加熱時の収縮性が高い熱収縮チューブを提供することが可能となる。
 [本開示の実施形態の説明]
 最初に本開示の実施形態を列記して説明する。本開示の熱収縮チューブは、密度0.915g/cm以下のポリエチレンと、ガラス転移点温度が50℃以上120℃以下の非晶性ポリマーと、を含有する混合物からなる。混合物100質量%中のポリエチレンの含有量は70質量%以上97質量%以下であり、非晶性ポリマーの含有量は3質量%以上30質量%以下である。
According to the heat-shrinkable tube, it is possible to provide a heat-shrinkable tube having high shape retention during storage and high shrinkage during heating.
[Description of the embodiment of the present disclosure]
First, embodiments of the present disclosure will be listed and described. The heat-shrinkable tube of the present disclosure is made of a mixture containing polyethylene having a density of 0.915 g / cm 3 or less and an amorphous polymer having a glass transition temperature of 50 ° C. or more and 120 ° C. or less. The content of polyethylene in 100% by mass of the mixture is 70% by mass or more and 97% by mass or less, and the content of non-crystalline polymer is 3% by mass or more and 30% by mass or less.
 密度0.915g/cm以下のポリエチレンからなる熱収縮チューブは、加熱時における優れた形状記憶性及び収縮性を発揮する。一方、密度0.915g/cm以下のポリエチレンを単独で含む熱収縮チューブは50℃での収縮率が大きい。50℃以下の環境下において収縮率が小さく、100℃では収縮率が大きい熱収縮チューブとするには、混合物100質量%中に、70質量%以上97質量%以下の上記ポリエチレンと共に、3質量%以上30質量%以下の、ガラス転移点温度が50℃以上120℃以下の非晶性ポリマーを含む混合物から構成される熱収縮チューブとすることが重要である。このように、上記ポリエチレンと、上記非晶性ポリマーとを所定の割合で含有することにより、保管時における形状保持性が高く、かつ加熱時の収縮性が高い熱収縮チューブを得ることができる。なお熱収縮チューブの収縮率(%)は、{[(収縮前のチューブ内径)-(収縮後のチューブ内径)]/[(収縮前のチューブ内径)-(膨張前のチューブ内径)]}×100として求めることができる。 A heat-shrinkable tube made of polyethylene with a density of 0.915 g / cm 3 or less exhibits excellent shape memory and shrinkability at the time of heating. On the other hand, the heat-shrinkable tube containing polyethylene having a density of 0.915 g / cm 3 or less alone has a large shrinkage at 50 ° C. In order to form a heat-shrink tube having a small shrinkage at 50 ° C. or less and a large shrinkage at 100 ° C., 3% by mass together with the above-mentioned polyethylene of 70% by mass or more and 97% by mass or less It is important to use a heat-shrinkable tube made of a mixture containing a non-crystalline polymer having a glass transition temperature of 50 ° C. or more and 120 ° C. or less, which is 30% by mass or less. As described above, by containing the above-mentioned polyethylene and the above-mentioned non-crystalline polymer at a predetermined ratio, it is possible to obtain a heat-shrinkable tube having a high shape retention during storage and a high shrinkage upon heating. The contraction rate (%) of the heat-shrinkable tube is {[(tube inner diameter before contraction)-(tube inner diameter after contraction)] / [(tube inner diameter before contraction)-(tube inner diameter before expansion)} × It can be determined as 100.
 熱収縮チューブは、50℃で120時間保持した場合の収縮率が5%以下であり、100℃で3分間保持した場合の収縮率が80%以上であってもよい。このような熱収縮チューブは、保管時における収縮が少ない。また熱収縮チューブを加熱し収縮させる際、比較的低温で収縮できるため近接して配置される他の部材(例えば電子機器内部の各部材)に与える加熱による影響を最小限に留めることができる。 The heat-shrinkable tube may have a shrinkage of 5% or less when held at 50 ° C. for 120 hours, and may have a shrinkage of 80% or more when held at 100 ° C. for 3 minutes. Such a heat-shrinkable tube has less shrinkage during storage. Further, when the heat-shrinkable tube is heated and shrunk, the heat-shrinkable tube can be shrunk at a relatively low temperature, so that the influence of the heating on the other members (for example, the respective members inside the electronic device) arranged close can be minimized.
 上記非晶性ポリマーの屈折率は1.45以上1.55以下であってもよい。ポリエチレンの屈折率と近いこのような範囲の屈折率を有する非晶性ポリマーを用いることで、異種成分間の屈折率の差が大きいことによる透明性の低下が抑制される。その結果、透明性の高い熱収縮チューブとすることができる。 The refractive index of the non-crystalline polymer may be 1.45 or more and 1.55 or less. By using an amorphous polymer having a refractive index in this range close to the refractive index of polyethylene, the decrease in transparency due to the large difference in refractive index between different components is suppressed. As a result, the heat-shrinkable tube can be made highly transparent.
 上記非晶性ポリマーは、分子内に2級炭素(-CH-基における炭素C)を有していてもよい。2級炭素は非晶性ポリマーの架橋の際の架橋点となり得る。分子内に2級炭素を有することにより、架橋点を多く形成することができ、より形状記憶性に優れた熱収縮チューブを得ることができる。 The amorphous polymer may have secondary carbon (carbon C in —CH 2 — group) in the molecule. Secondary carbon can be a crosslinking point during crosslinking of the amorphous polymer. By having secondary carbon in the molecule, a large number of crosslinking points can be formed, and a heat-shrinkable tube having more excellent shape memory can be obtained.
 上記非晶性ポリマーは、環状ポリオレフィンであってもよい。環状ポリオレフィンはポリエチレンと類似の構造を有しており、ポリエチレンとの親和性が高い。そのため、均一で透明な熱収縮チューブを得ることが容易となる。 The amorphous polymer may be cyclic polyolefin. Cyclic polyolefins have a similar structure to polyethylene, and have high affinity to polyethylene. Therefore, it becomes easy to obtain a uniform and transparent heat-shrinkable tube.
 上記環状ポリオレフィンは、シクロオレフィンポリマー(COP:cyclic olefin polymer)又はシクロオレフィンコポリマー(COC:cyclic olefin copolymer)であってもよい。環状ポリオレフィンのなかでもシクロオレフィンポリマー又はシクロオレフィンコポリマーを選択することで、架橋点になり得る分子構造を形成しやすい。そのためより高い形状記憶性を有する、熱収縮チューブとして適したチューブを得ることが容易となる。 The cyclic polyolefin may be a cycloolefin polymer (COP: cyclic olefin polymer) or a cycloolefin copolymer (COC: cyclic olefin copolymer). By selecting a cycloolefin polymer or a cycloolefin copolymer among cyclic polyolefins, it is easy to form a molecular structure that can be a crosslinking point. Therefore, it becomes easy to obtain a tube suitable as a heat-shrinkable tube having higher shape memory.
 上記シクロオレフィンコポリマーは、エチレン単位と、ノルボルネン単位とを含むシクロオレフィンコポリマーであってもよい。エチレン単位は2級炭素を有しており、架橋点になり得る構造を多く含む。またエチレン単位はポリエチレンの構造にも共通する。そのためこのようなシクロオレフィンコポリマーは、ポリエチレンと親和性が高い。そのため、均一で熱収縮チューブを得るのに適している。 The cycloolefin copolymer may be a cycloolefin copolymer comprising ethylene units and norbornene units. The ethylene unit has a secondary carbon and contains many structures that can be crosslinking points. The ethylene unit is also common to the structure of polyethylene. Therefore, such cycloolefin copolymers have high affinity with polyethylene. Therefore, it is suitable for obtaining a uniform heat-shrinkable tube.
 熱収縮チューブを構成する上記混合物は電子線架橋されていてもよい。混合物が電子線架橋されることで、形状記憶性に優れた熱収縮チューブを得ることが容易となる。 The above mixture constituting the heat shrinkable tube may be electron beam crosslinked. By electron beam crosslinking the mixture, it becomes easy to obtain a heat-shrinkable tube excellent in shape memory.
 [本開示の実施形態の詳細]
 次に、本開示の熱収縮チューブの一実施の形態を、図面を参照しつつ説明する。以下の図面において同一又は相当する部分には同一の参照番号を付しその説明は繰り返さない。
Details of Embodiments of the Present Disclosure
Next, an embodiment of the heat-shrinkable tube of the present disclosure will be described with reference to the drawings. In the following drawings, the same or corresponding parts have the same reference characters allotted and description thereof will not be repeated.
 [熱収縮チューブの構成]
 図1は本実施の形態に係る熱収縮チューブの一例を示す斜視図である。熱収縮チューブ100は、内部が中空の管状の形状を有する。熱収縮チューブ100は、100℃以上の温度に加熱することにより、矢印Rに示すようにチューブ110へとチューブ径が収縮する。加熱による熱収縮チューブ100の長手方向Lの収縮率は小さい。本実施の形態に係る熱収縮チューブ100は、100℃以上に加熱しても長手方向Lにはほとんど収縮しない。長手方向Lにおける熱収縮チューブ100の収縮率は、例えば5%以下である。
[Composition of heat shrinkable tube]
FIG. 1 is a perspective view showing an example of a heat-shrinkable tube according to the present embodiment. The heat shrinkable tube 100 has a tubular shape with a hollow inside. By heating the heat-shrinkable tube 100 to a temperature of 100 ° C. or more, the diameter of the tube shrinks into the tube 110 as shown by the arrow R. The contraction rate in the longitudinal direction L of the heat-shrinkable tube 100 due to heating is small. The heat-shrinkable tube 100 according to the present embodiment hardly shrinks in the longitudinal direction L even when heated to 100 ° C. or higher. The contraction rate of the heat-shrinkable tube 100 in the longitudinal direction L is, for example, 5% or less.
 熱収縮チューブ100は、密度0.915g/cm以下のポリエチレン70質量%以上97質量%以下と、ガラス転移点温度が50℃以上120℃以下の非晶性ポリマー3質量%以上30質量%以下と、を含有する混合物からなる。なお熱収縮チューブ100は上記混合物を電子線架橋することにより形成される、上記混合物の電子線架橋体からなるものであってもよい。 The heat-shrinkable tube 100 has a density of 0.915 g / cm 3 or less of polyethylene 70% by mass to 97% by mass, and a glass transition temperature of 50 ° C. to 120 ° C. And a mixture containing The heat-shrinkable tube 100 may be made of an electron beam crosslinked body of the above mixture, which is formed by electron beam crosslinking of the above mixture.
 [ポリエチレン]
 上記密度0.915g/cm以下のポリエチレンとしては、低密度ポリエチレン(LDPE:Low Density Polyethylene)及び直鎖状低密度ポリエチレン(LLDPE:Linear Low Density Polyethylene)のうち、密度が0.915g/cm以下のものが挙げられる。
[polyethylene]
As the density of 0.915 g / cm 3 or less of polyethylene, low density polyethylene (LDPE: Low Density Polyethylene), and linear low density polyethylene (LLDPE: Linear Low Density Polyethylene) of a density of 0.915 g / cm 3 The following can be mentioned.
 [非晶性ポリマー]
 上記非晶性ポリマーのガラス転移点温度は50℃以上120℃以下である。このようなガラス転移点温度を有する非晶性ポリマーを所定量含有することにより、50℃以下の環境下において収縮率が小さく、100℃では収縮率が大きい熱収縮チューブを形成することができる。上記ガラス転移点温度の範囲の下限は、より好ましくは60℃である。また上限は、より好ましくは100℃である。
[Amorphous polymer]
The glass transition temperature of the non-crystalline polymer is 50 ° C. or more and 120 ° C. or less. By containing a predetermined amount of an amorphous polymer having such a glass transition temperature, it is possible to form a heat-shrinkable tube having a small shrinkage at 50 ° C. or less and a large shrinkage at 100 ° C. The lower limit of the range of the glass transition temperature is more preferably 60 ° C. The upper limit is more preferably 100 ° C.
 非晶性ポリマーの屈折率は1.45以上1.55以下であるのが好ましい。ポリエチレンの屈折率と近いこのような範囲の屈折率を有する非晶性ポリマーを用いることで、異種成分間の屈折率の差が大きいことによる透明性の低下が抑制される。その結果、透明性の高い熱収縮チューブとすることができる。上記屈折率の範囲の下限は、より好ましくは1.47である。また上限は、より好ましくは1.54である。なお、上記屈折率は、ナトリウムのD線(波長589.3nm)の光に対する屈折率を意味する。 The refractive index of the amorphous polymer is preferably 1.45 or more and 1.55 or less. By using an amorphous polymer having a refractive index in this range close to the refractive index of polyethylene, the decrease in transparency due to the large difference in refractive index between different components is suppressed. As a result, the heat-shrinkable tube can be made highly transparent. The lower limit of the range of the refractive index is more preferably 1.47. The upper limit is more preferably 1.54. In addition, the said refractive index means the refractive index with respect to the light of D line | wire (wavelength 589.3 nm) of sodium.
 非晶性ポリマーとしては、分子内に2級炭素(-CH-基における炭素C)を有するポリマーが好ましい。分子内の2級炭素は、架橋時、特に電子線架橋時における架橋点となり得る。そのため、架橋が促成され、より形状記憶性に優れた熱収縮チューブを得ることができる。 As the amorphous polymer, a polymer having secondary carbon (carbon C in —CH 2 — group) in a molecule is preferable. The secondary carbon in the molecule can be a crosslinking point at the time of crosslinking, particularly at the time of electron beam crosslinking. Therefore, crosslinking is promoted, and a heat-shrinkable tube having more excellent shape memory can be obtained.
 上記非晶性ポリマーの例としては、環状ポリオレフィンが挙げられる。環状ポリオレフィンとしては、環状オレフィンのホモポリマーであるシクロオレフィンポリマー、および環状オレフィンと、他の種類の環状オレフィン又は非環状オレフィンとの共重合体であるシクロオレフィンコポリマーが挙げられる。なかでもシクロオレフィンコポリマーが好ましく、エチレン単位と、ノルボルネン単位とを含むシクロオレフィンコポリマーが好ましい。そのようなシクロオレフィンコポリマーとしては、下記式(1)に示す、エチレンとノルボルネンの共重合体であるシクロオレフィンコポリマーが挙げられる。 Examples of the non-crystalline polymer include cyclic polyolefins. Cyclic polyolefins include cycloolefin polymers that are homopolymers of cyclic olefins, and cycloolefin copolymers that are copolymers of cyclic olefins with other types of cyclic or non-cyclic olefins. Among them, cycloolefin copolymers are preferable, and cycloolefin copolymers containing ethylene units and norbornene units are preferable. As such a cycloolefin copolymer, the cycloolefin copolymer which is a copolymer of ethylene and norbornene shown to following formula (1) is mentioned.
Figure JPOXMLDOC01-appb-C000001
(式中、m及びnは、それぞれ独立に1以上の整数である。)
Figure JPOXMLDOC01-appb-C000001
(Wherein, m and n are each independently an integer of 1 or more)
 なお、熱収縮チューブ100は、発明の効果を損なわない範囲において、上記ポリエチレンと上記非晶性ポリマー以外の他の成分を含んでもよい。他の成分としては、例えば、熱可塑性樹脂、ポリマーアロイ、熱可塑性エラストマー、またはゴム成分などの樹脂成分、あるいは染料や顔料、酸化防止剤、架橋助剤などの添加剤などが挙げられる。 The heat-shrinkable tube 100 may contain other components other than the polyethylene and the non-crystalline polymer as long as the effects of the invention are not impaired. Other components include, for example, resin components such as thermoplastic resins, polymer alloys, thermoplastic elastomers, or rubber components, or additives such as dyes, pigments, antioxidants, and crosslinking assistants.
 [熱収縮チューブ100の製造方法]
 次に熱収縮チューブ100の製造方法について説明する。図2は熱収縮チューブの製造装置の一例を示す概略図である。図3は熱収縮チューブを製造するための手順の一例を示すフローチャートである。なお、下記に説明する熱収縮チューブ100の製造装置および製法は一例に過ぎず、熱収縮チューブ100を製造するための装置及び製法はこれに限定されない。
[Method of Manufacturing Heat Shrinkable Tube 100]
Next, a method of manufacturing the heat shrinkable tube 100 will be described. FIG. 2 is a schematic view showing an example of a heat shrinkable tube manufacturing apparatus. FIG. 3 is a flow chart showing an example of a procedure for manufacturing a heat-shrinkable tube. In addition, the manufacturing apparatus and manufacturing method of the heat-shrinkable tube 100 demonstrated below are only an example, and the apparatus and manufacturing method for manufacturing the heat-shrinkable tube 100 are not limited to this.
 図3を参照して、熱収縮チューブ100は、チューブを押出成形する工程(S10)と、チューブを構成する材料を電子線架橋する工程(S20)と、チューブを加熱する工程(S30)と、チューブを拡張する工程(S40)と、チューブを冷却する工程(S50)とを経て製造される。以下に各工程について説明する。なお、ステップS20については省略することや、電子線架橋以外の方法で架橋を行うことも可能である。 Referring to FIG. 3, the heat-shrinkable tube 100 includes a step of extruding the tube (S10), a step of electron beam crosslinking the material constituting the tube (S20), and a step of heating the tube (S30) It manufactures through the process (S40) of expanding a tube, and the process (S50) of cooling a tube. Each process will be described below. In addition, about step S20, it is also possible to abbreviate | omit and to bridge | crosslink by methods other than electron beam crosslinking.
 チューブを押出成形する工程(S10)においては、まず密度0.915g/cm以下のポリエチレンと、ガラス転移点温度が50℃以上120℃以下の非晶性ポリマーとを押出機(図示せず)に投入し、中空状のチューブを押し出す。この時、必要に応じて押出機には添加剤等の他の成分を投入してもよい。 In the step of extruding the tube (S10), an extruder (not shown) is firstly made of polyethylene having a density of 0.915 g / cm 3 or less and an amorphous polymer having a glass transition temperature of 50 ° C. or more and 120 ° C. or less. And push out the hollow tube. At this time, if necessary, other components such as additives may be introduced into the extruder.
 次に、押出機にて成形されたチューブに電子線を照射して、チューブを構成する材料を電子線架橋する(S20)。チューブへの電子線の照射は、例えば電子線照射装置(図示せず)内で、チューブを搬送しながら、チューブに対し電子線を照射することにより行われる。電子線の照射は、チューブを構成する材料に形状を記憶させるのに充分な程度の部分的架橋が形成されるように行われる。電子線の照射量は、例えば10kGy以上250kGy以下の範囲内で設定され、代表的には100kGy以上200kGy以下の照射量の範囲内で電子線照射を行う。 Next, the tube formed by the extruder is irradiated with an electron beam, and the material constituting the tube is subjected to electron beam crosslinking (S20). The irradiation of the tube with the electron beam is performed, for example, by irradiating the tube with the electron beam while transporting the tube in an electron beam irradiation apparatus (not shown). The irradiation of the electron beam is performed so as to form a partial crosslink sufficiently to make the material constituting the tube memorize the shape. The irradiation dose of the electron beam is set, for example, in the range of 10 kGy or more and 250 kGy or less, and typically, the electron beam irradiation is performed in the irradiation dose range of 100 kGy or more and 200 kGy or less.
 次に図2に示すチューブ拡張装置200において、チューブを加熱する工程(S30)と、チューブを拡張する工程(S40)と、チューブを冷却する工程(S50)とを行う。 Next, in the tube expansion device 200 shown in FIG. 2, a step of heating the tube (S30), a step of expanding the tube (S40), and a step of cooling the tube (S50) are performed.
 図2に示すチューブ拡張装置200は、搬送方向に沿って入口から順に、サプライローラ14と、加熱ユニット10と、チューブ径拡張ユニット11と、冷却ユニット12と、引取ローラ34とを備える。チューブ径拡張ユニット11と、冷却ユニット12とは一部が重複している。 The tube expansion device 200 shown in FIG. 2 includes a supply roller 14, a heating unit 10, a tube diameter expansion unit 11, a cooling unit 12, and a take-off roller 34 in this order from the inlet along the transport direction. The tube diameter expansion unit 11 and the cooling unit 12 partially overlap.
 加熱ユニット10は、加熱槽20と、ヒータ16とを備える。加熱槽20には熱媒体18が収容されている。チューブ径拡張ユニット11は、サイジング管22を備える。サイジング管22は、サイジング管22の入り口の径よりも出口における径が大きくなるように、サイジング管22の入り口から出口に向けてその径が増大する形状を有する通過孔22aと、サイジング管22を径方向に貫通し、通過孔22aに連通する予冷孔22b及び貫通孔22cとを備える。通過孔22aは、通過孔22aの入り口側の径から通過孔22aの出口側に向けて径が大きくなる拡張部22dを備える。予冷孔22bは、拡張部22dの内径dが拡張後の内径Dの60~90%に相当する位置に設けられている。予冷孔22bは冷却ユニット12と接続されている。また貫通孔22cは外部の減圧装置(図示せず)と接続されている。 The heating unit 10 includes a heating tank 20 and a heater 16. A heating medium 18 is accommodated in the heating tank 20. The tube diameter expansion unit 11 includes a sizing tube 22. The sizing tube 22 has a shape such that the diameter increases from the inlet to the outlet of the sizing tube 22 so that the diameter at the outlet is larger than the diameter at the inlet of the sizing tube 22, and the sizing tube 22 A precooling hole 22b and a through hole 22c are provided, which penetrate in the radial direction and communicate with the passage hole 22a. The passage hole 22a includes an expanded portion 22d whose diameter increases from the diameter on the inlet side of the passage hole 22a toward the outlet side of the passage hole 22a. The precooling holes 22b are provided at positions where the inner diameter d of the expanded portion 22d corresponds to 60 to 90% of the inner diameter D after expansion. The precooling holes 22 b are connected to the cooling unit 12. The through hole 22c is connected to an external pressure reducing device (not shown).
 図2及び図3を参照して、電子線架橋する工程(S20)において電子線架橋されたチューブAは、サプライローラ14及び引取ローラ34により加熱ユニット10内へと搬送される。チューブAは加熱ユニット10内を移動しながら、上記チューブAの軟化点以上の温度に加熱される(S30)。加熱槽20に収容された熱媒体18の温度は、チューブに適度な柔軟性を付与するため適宜調整される。例えば上記チューブAの軟化点より10℃~50℃高い温度、好適には20℃~35℃高い温度になるように調整される。なお加熱は、熱媒体18を用いた湿式加熱である必要はなく、熱風あるいは赤外線などによる乾式加熱であってもよい。 Referring to FIGS. 2 and 3, the tube A which has been electron beam crosslinked in the electron beam crosslinking step (S 20) is transported into the heating unit 10 by the supply roller 14 and the take-up roller 34. The tube A is heated to a temperature above the softening point of the tube A while moving in the heating unit 10 (S30). The temperature of the heat medium 18 accommodated in the heating tank 20 is appropriately adjusted in order to provide the tube with appropriate flexibility. For example, the temperature is adjusted to be 10 ° C. to 50 ° C. higher than the softening point of the tube A, preferably 20 ° C. to 35 ° C. higher. The heating does not have to be wet heating using the heat medium 18, and may be dry heating using hot air or infrared rays.
 次に、チューブAの内径dは、サイジング管22の通過孔22aを通過することにより、サイジング管22を通過する前の内径dから、所定の内径Dへと拡張される(S40)。サイジング管22を通過する際、チューブAは内圧により拡張部22dの壁面に押し付けられるようにして拡張される。本実施の形態においては、貫通孔22cに減圧ポンプを接続し、チューブAを吸引することによりチューブAの内径を拡張する。D/dの値は、1.5~5.0、好ましくは1.8~3.0の範囲に調整される。 Then, the inner diameter d of the tube A, by passing through the passing hole 22a of the sizing tube 22, from the inner diameter d 0 before passing through the sizing tube 22 is extended to a predetermined inside diameter D (S40). When passing through the sizing tube 22, the tube A is expanded so as to be pressed against the wall surface of the expanded portion 22d by the internal pressure. In the present embodiment, a decompression pump is connected to the through hole 22c, and the inside diameter of the tube A is expanded by sucking the tube A. The value of D / d 0 is adjusted to a range of 1.5 to 5.0, preferably 1.8 to 3.0.
 最後に、得られた内径DのチューブA’を冷却することにより熱収縮チューブ100を得る(S50)。本実施の形態において、チューブA’の冷却は、チューブを拡張する工程(S40)の終了後のみならず、一部はチューブを拡張する工程(S40)と重複するように行われる。 Finally, the heat-shrinkable tube 100 is obtained by cooling the tube A 'having the obtained inner diameter D (S50). In the present embodiment, the cooling of the tube A 'is performed not only after completion of the step of expanding the tube (S40) but also partially overlapping with the step of expanding the tube (S40).
 図2を参照して、拡張部22dには、内径dが拡張後の内径Dの60~90%に相当する位置Pに予冷孔22bが設けられている。予冷孔22bは冷却ユニット12と接続されている。予冷孔22bの存在により、チューブA’は、チューブを拡張する工程(S40)が完全に終了する前に予備冷却される。この予備冷却により、以後の工程においてチューブが急冷されるのを防ぎ、結晶化の急激な進行を抑制することができる。また予備冷却により、チューブA及びチューブA’のサイジング管22の壁面への張りつきを防止することもできる。 Referring to FIG. 2, the pre-cooling holes 22b are provided in the expanded portion 22d at positions P where the inner diameter d corresponds to 60 to 90% of the inner diameter D after expansion. The precooling holes 22 b are connected to the cooling unit 12. Due to the presence of the precooling holes 22b, the tube A 'is precooled before the step of expanding the tube (S40) is completely completed. This precooling can prevent the tube from being quenched in the subsequent steps, and can suppress the rapid progress of crystallization. The precooling can also prevent sticking of the tube A and the tube A 'to the wall surface of the sizing tube 22.
 予備冷却されたチューブA’は、冷却ユニット12によりさらに冷却され、内径が拡張された状態で形状が固定される。冷却には冷却媒体を用いる湿式法で行ってもよく、冷風による乾式法で行ってもよい。冷却されたチューブA’を所定のサイズに切断することにより、熱収縮チューブ100が得られる。このような一連のステップS10~S50を経ることにより、熱収縮チューブ100を製造することができる。 The precooled tube A 'is further cooled by the cooling unit 12 and its shape is fixed with the inner diameter expanded. Cooling may be performed by a wet method using a cooling medium, or may be performed by a dry method using cold air. The heat-shrinkable tube 100 is obtained by cutting the cooled tube A 'into a predetermined size. By passing through such a series of steps S10 to S50, the heat-shrinkable tube 100 can be manufactured.
 得られた熱収縮チューブ100は、内径Dを有するチューブである。熱収縮チューブ100を100℃以上の温度に加熱すると、拡張前の内径dへと熱収縮チューブの径が収縮する。したがって、保護したい箇所に内径Dの熱収縮チューブ100をかぶせ、その状態で熱収縮チューブ100を100℃以上に加熱すると、熱収縮チューブの内径がdに縮小し、保護したい箇所が封鎖されるように保護される。 The obtained heat-shrinkable tube 100 is a tube having an inner diameter D. When the heat shrinkable tube 100 is heated to a temperature of 100 ° C. or more, the diameter of the heat shrinkable tube shrinks to the inner diameter d 0 before expansion. Accordingly, covered with heat shrinkable tube 100 having an inner diameter D at a location to be protected, heating the heat shrinkable tube 100 in this state more than 100 ° C., the inner diameter of the heat shrinkable tube is reduced to d 0, place is sealed to be protected As protected.
 以下において、実施例を参照して上記実施の形態をより具体的に説明する。下記表1及び表2に示すように、組成の異なる実験No.1~No.20の20種類の熱収縮チューブ100を作成し、特性を評価するための実験を行った。なお、下記表1に示す実験No.1~No.11は実施例を表す。また下記表2に示す実験No.12~No.20は比較例を表す。 In the following, the embodiment will be more specifically described with reference to examples. As shown in Tables 1 and 2 below, in the experiment No. 1 in which the composition was different. 1 to No. Twenty 20 heat-shrinkable tubes 100 were made and experiments were conducted to evaluate their properties. In addition, the experiment No. shown in Table 1 below. 1 to No. 11 represents an example. In addition, the experiment No. shown in Table 2 below. 12 to No. 20 represents a comparative example.
 表1及び表2に熱収縮チューブの配合及び各成分の物性を示す。実施例及び比較例において使用した各成分は以下の通りである。
PE(1):低密度ポリエチレン(融点66℃、密度0.870g/cm
PE(2):低密度ポリエチレン(融点77℃、密度0.893g/cm
PE(3):低密度ポリエチレン(融点94℃、密度0.905g/cm
PE(4):低密度ポリエチレン(融点107℃、密度0.919g/cm
PO(1):環状ポリオレフィン(エチレンとノルボルネンの共重合体であるシクロオレフィンコポリマー、ガラス転移点温度65℃、屈折率1.53(測定波長589.3nm)、密度1.01g/cm
PO(2):環状ポリオレフィン(エチレンとノルボルネンの共重合体であるシクロオレフィンコポリマー、ガラス転移点温度78℃、屈折率1.53(測定波長589.3nm)、密度1.01g/cm
PO(3):環状ポリオレフィン(エチレンとノルボルネンの共重合体であるシクロオレフィンコポリマー、ガラス転移点温度125℃、屈折率1.54(測定波長589.3nm)、密度1.04g/cm
PO(4):環状ポリオレフィン(ノルボルネン重合体、ガラス転移点温度102℃、屈折率1.53(測定波長589.3nm)、密度1.01g/cm
Tables 1 and 2 show the composition of the heat-shrinkable tube and the physical properties of each component. Each component used in the Example and the comparative example is as follows.
PE (1): low density polyethylene (melting point 66 ° C., density 0.870 g / cm 3 )
PE (2): low density polyethylene (melting point 77 ° C., density 0.893 g / cm 3 )
PE (3): low density polyethylene (melting point 94 ° C., density 0.905 g / cm 3 )
PE (4): low density polyethylene (melting point 107 ° C., density 0.919 g / cm 3 )
PO (1): cyclic polyolefin (cycloolefin copolymer which is a copolymer of ethylene and norbornene, glass transition temperature 65 ° C., refractive index 1.53 (measurement wavelength 589.3 nm), density 1.01 g / cm 3 )
PO (2): cyclic polyolefin (cycloolefin copolymer which is a copolymer of ethylene and norbornene, glass transition temperature 78 ° C., refractive index 1.53 (measurement wavelength 589.3 nm), density 1.01 g / cm 3 )
PO (3): cyclic polyolefin (cycloolefin copolymer which is a copolymer of ethylene and norbornene, glass transition temperature 125 ° C., refractive index 1.54 (measurement wavelength 589.3 nm), density 1.04 g / cm 3 )
PO (4): cyclic polyolefin (norbornene polymer, glass transition temperature 102 ° C., refractive index 1.53 (measurement wavelength 589.3 nm), density 1.01 g / cm 3 )
 押出成形機を用いて、表1及び表2に示す組成の樹脂混合物を押出成形し、内径がφ4.8mm、肉厚が0.6mmのチューブを成形した。成形されたチューブに対し150kGyの電子線を照射することにより、樹脂成分の架橋を行った。 The resin mixture of the composition shown in Table 1 and Table 2 was extrusion molded using an extruder, and a tube having an inner diameter of φ 4.8 mm and a wall thickness of 0.6 mm was molded. The resin component was crosslinked by irradiating the molded tube with an electron beam of 150 kGy.
 次に電子線架橋されたチューブを、表面温度が140℃になるまでヒータで加熱し、図2に示すチューブ拡張装置200を用いて、チューブの内径をφ12.5mmに拡張することにより、熱収縮チューブの評価用サンプルを作製した。 Next, the electron beam cross-linked tube is heated by a heater until the surface temperature reaches 140 ° C., and heat contraction is performed by expanding the inner diameter of the tube to φ12.5 mm using the tube expansion device 200 shown in FIG. Samples for tube evaluation were prepared.
<収縮率の評価>
 得られた各評価用サンプルを50℃の恒温条件下に保持し、120時間経過後の収縮率を測定した。さらに各評価用サンプルを、100℃で3分間加熱し、加熱後の収縮率を測定した。収縮率(%)は、{[(収縮前のチューブ内径)-(収縮後のチューブ内径)]/[(収縮前のチューブ内径)-(膨張前のチューブ内径)]}×100として求めた。
実施例の評価結果を表1に示す。また比較例の評価結果を表2に示す。50℃で120時間経過後の収縮率が5%以下で、かつ100℃で3分間加熱後の収縮率が75%以上であれば合格とする。
<Evaluation of contraction rate>
Each obtained sample for evaluation was kept at a constant temperature of 50 ° C., and the contraction rate after 120 hours was measured. Further, each evaluation sample was heated at 100 ° C. for 3 minutes, and the shrinkage rate after heating was measured. The shrinkage rate (%) was determined as {[(tube inner diameter before contraction) − (tube inner diameter after contraction)] / [(tube inner diameter before contraction) − (tube inner diameter before expansion)} × 100.
The evaluation results of the example are shown in Table 1. Moreover, the evaluation result of a comparative example is shown in Table 2. If the contraction rate after 120 hours at 50 ° C. is 5% or less and the contraction rate after heating at 100 ° C. for 3 minutes is 75% or more, it is judged as pass.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表1に示すように、実施例である実験No.1~No.11においては、いずれも50℃で120時間経過後の収縮率が5%以下で、かつ100℃で3分間加熱後の収縮率が75%以上という基準を満たしていた。このように、実施例のチューブは、保管時における形状保持性が高く、かつ加熱時の収縮性が高い熱収縮チューブとして使用可能である。 As shown in Table 1, Experiment No. 1 which is an example. 1 to No. In both cases, the shrinkage ratio after 120 hours at 50 ° C. was 5% or less, and the shrinkage ratio after heating at 100 ° C. for 3 minutes satisfied 75% or more. Thus, the tube of the example can be used as a heat-shrinkable tube having a high shape retention during storage and a high shrinkage upon heating.
 これに対し、表2に示す比較例の実験No.12~No.20は、50℃で120時間経過後の収縮率が5%以下、及び100℃で3分間加熱後の収縮率が75%以上という基準の少なくとも一方を満足しなかった。実験No.12のように、密度0.915g/cm以下のポリエチレンと、ガラス転移点温度が78℃の非晶性ポリマーとを50:50の質量比で含有するチューブは、100℃、3分間における収縮率が低かった。また、ガラス転移点温度が125℃の非晶性ポリマーを含む実験No.13の実験例においても同様であった。 On the other hand, in the experiment No. 1 of the comparative example shown in Table 2, 12 to No. No. 20 did not satisfy at least one of the criteria that the shrinkage ratio after 120 hours at 50 ° C. was 5% or less and the shrinkage ratio after heating at 100 ° C. for 3 minutes was 75% or more. Experiment No. 12, a tube containing a polyethylene having a density of 0.915 g / cm 3 or less and an amorphous polymer having a glass transition temperature of 78 ° C. in a 50:50 mass ratio shrinks at 100 ° C. for 3 minutes The rate was low. In addition, in the experiment No. 1 including an amorphous polymer having a glass transition temperature of 125 ° C. The same applies to the 13 experimental examples.
 ガラス転移点温度が50℃以上120℃以下の非晶性ポリマーを含まない実験No.14~No.16の実験例においては、50℃で120時間経過後の収縮率が5%を超えた。このようなチューブは、保管時に径が収縮し、熱収縮チューブの機能を充分に発揮できない場合がある。実験No.14~No.16の実験例から、保管時における形状保持性を維持するには、ガラス転移点温度が50℃以上120℃以下の非晶性ポリマーが必須であることがわかる。 Experiment No. 1 not containing an amorphous polymer having a glass transition temperature of 50 ° C. or more and 120 ° C. or less. 14 to No. In 16 experimental examples, the contraction rate after 120 hours at 50 ° C. exceeded 5%. Such a tube may shrink in diameter during storage and may not be able to fully exhibit the function of the heat-shrinkable tube. Experiment No. 14 to No. From the 16 experimental examples, it can be seen that an amorphous polymer having a glass transition temperature of 50 ° C. or more and 120 ° C. or less is essential to maintain the shape retention during storage.
 また実験No.17の実験例の結果から、たとえポリエチレンを含有する場合であっても、その密度が0.919g/cmのPE(4)のような、0.915g/cmを超えるポリエチレンを含有する場合には、100℃、3分間の加熱では充分に収縮しないことが明らかとなった。このように、熱収縮チューブに含まれるポリエチレンは、密度0.915g/cm以下であることが必要であることがわかる。また実験No.18および実験No.19のように、ガラス転移点温度が50℃以上120℃以下の非晶性ポリマーに代えて、密度0.915g/cmを超えるポリエチレンを密度0.915g/cm以下のポリエチレンと共に含む場合にも、求められる収縮特性を満足しなかった。 Moreover, experiment No. From the results of 17 experimental example, even when the even containing polyethylene, if the density contains polyethylene such, more than 0.915 g / cm 3 as 0.919 g / cm 3 of PE (4) It became clear that heating at 100 ° C. for 3 minutes did not shrink sufficiently. Thus, it is understood that the polyethylene contained in the heat-shrinkable tube needs to have a density of 0.915 g / cm 3 or less. Moreover, experiment No. 18 and Experiment No. As 19, a glass transition temperature of in place of the amorphous polymer of 50 ° C. or higher 120 ° C. or less, in the case including polyethylene exceeding density 0.915 g / cm 3 with a density 0.915 g / cm 3 or less of polyethylene Even the required contraction characteristics were not satisfied.
 ガラス転移点温度が78℃の非晶性ポリマーを単独で含む実験No.20においても、100℃、3分間の加熱では充分に収縮しないことが明らかとなった。上記比較例の結果から、密度0.915g/cm以下のポリエチレンと、ガラス転移点温度が50℃以上120℃以下の非晶性ポリマーと、をそれぞれ単独で用いても50℃で120時間経過後の収縮率が5%以下で、かつ100℃で3分間加熱後の収縮率が75%以上という基準を満足しないことが明らかとなった。 Experiment No. 1 containing only an amorphous polymer having a glass transition temperature of 78 ° C. At 20 ° C., it was revealed that heating at 100 ° C. for 3 minutes did not sufficiently shrink. From the results of the above-mentioned comparative example, even when polyethylene having a density of 0.915 g / cm 3 or less and an amorphous polymer having a glass transition temperature of 50 ° C. or more and 120 ° C. or less alone are used alone at 50 ° C. for 120 hours. It became clear that the subsequent shrinkage ratio was 5% or less, and the shrinkage ratio after heating for 3 minutes at 100 ° C. did not satisfy the criteria of 75% or more.
 これらの実施例及び比較例によれば、密度0.915g/cm以下のポリエチレンと、ガラス転移点温度が50℃以上120℃以下の非晶性ポリマーとを両方組み合わせることによって、50℃で120時間経過後の収縮率が5%以下で、かつ100℃で3分間加熱後の収縮率が75%以上という基準を満たすことができる。その結果、保管時における形状保持性が高く、かつ加熱時の収縮性が高い熱収縮チューブを提供することが可能となる。 According to these examples and comparative examples, the combination of polyethylene having a density of 0.915 g / cm 3 or less and an amorphous polymer having a glass transition temperature of 50 ° C. or more and 120 ° C. or less can provide 120 at 50 ° C. It is possible to satisfy the criteria that the contraction rate after the passage of time is 5% or less and the contraction rate after heating at 100 ° C. for 3 minutes is 75% or more. As a result, it is possible to provide a heat-shrinkable tube having high shape retention during storage and high shrinkage during heating.
 今回開示された実施の形態及び実施例はすべての点で例示であって、どのような面からも制限的なものではないと理解されるべきである。本発明の範囲は上記した意味ではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。 It should be understood that the embodiments and examples disclosed herein are illustrative in all respects and not restrictive in any respect. The scope of the present invention is not the meaning described above, but is indicated by the claims, and is intended to include all modifications within the meaning and scope equivalent to the claims.
10 加熱ユニット
11 チューブ径拡張ユニット
12 冷却ユニット
14 サプライローラ
18 熱媒体
22 サイジング管
22a 通過孔
22b 予冷孔
22c 貫通孔
22d 拡張部
34 引取ローラ
100 熱収縮チューブ
110 チューブ
200 チューブ拡張装置
DESCRIPTION OF SYMBOLS 10 heating unit 11 tube diameter expansion unit 12 cooling unit 14 supply roller 18 heat medium 22 sizing pipe 22a passage hole 22b precooling hole 22c through hole 22d expansion part 34 taking-out roller 100 heat contraction tube 110 tube 200 tube 200 tube expansion device

Claims (8)

  1.  密度0.915g/cm以下のポリエチレンと、
     ガラス転移点温度が50℃以上120℃以下の非晶性ポリマーと、を含有する混合物からなり、
     前記混合物100質量%中の前記ポリエチレンの含有量が70質量%以上97質量%以下であり、前記非晶性ポリマーの含有量が3質量%以上30質量%以下である、熱収縮チューブ。
    Polyethylene with a density of 0.915 g / cm 3 or less,
    A mixture containing an amorphous polymer having a glass transition temperature of 50 ° C. or more and 120 ° C. or less,
    The heat-shrinkable tube, wherein the content of the polyethylene in 100% by mass of the mixture is 70% by mass to 97% by mass, and the content of the non-crystalline polymer is 3% by mass to 30% by mass.
  2.  50℃で120時間保持した場合の収縮率が5%以下であり、100℃で3分間保持した場合の収縮率が75%以上である、請求項1に記載の熱収縮チューブ。 The heat-shrinkable tube according to claim 1, wherein the contraction rate when held at 50 ° C for 120 hours is 5% or less, and the contraction rate when held at 100 ° C for 3 minutes is 75% or more.
  3.  前記非晶性ポリマーの屈折率が1.45以上1.55以下である、請求項1又は請求項2に記載の熱収縮チューブ。 The heat-shrinkable tube according to claim 1 or 2, wherein the refractive index of the non-crystalline polymer is 1.45 or more and 1.55 or less.
  4.  前記非晶性ポリマーは、分子内に2級炭素を有する、請求項1~請求項3のいずれか1項に記載の熱収縮チューブ。 The heat-shrinkable tube according to any one of claims 1 to 3, wherein the amorphous polymer has secondary carbon in the molecule.
  5.  前記非晶性ポリマーは、環状ポリオレフィンである、請求項1~請求項4のいずれか1項に記載の熱収縮チューブ。 The heat shrinkable tube according to any one of claims 1 to 4, wherein the amorphous polymer is cyclic polyolefin.
  6.  前記環状ポリオレフィンは、シクロオレフィンポリマー又はシクロオレフィンコポリマーである、請求項5に記載の熱収縮チューブ。 The heat-shrinkable tube according to claim 5, wherein the cyclic polyolefin is a cycloolefin polymer or a cycloolefin copolymer.
  7.  前記シクロオレフィンコポリマーは、エチレン単位と、ノルボルネン単位とを含む、請求項6に記載の熱収縮チューブ。 7. The heat-shrinkable tube of claim 6, wherein the cycloolefin copolymer comprises ethylene units and norbornene units.
  8. 前記混合物が電子線架橋されている、請求項1~請求項7のいずれか1項に記載の熱収縮チューブ。 The heat-shrinkable tube according to any one of claims 1 to 7, wherein the mixture is electron beam crosslinked.
PCT/JP2018/024990 2017-08-22 2018-07-02 Heat-shrinkable tube WO2019039091A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019537961A JPWO2019039091A1 (en) 2017-08-22 2018-07-02 Heat shrink tube

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-159629 2017-08-22
JP2017159629 2017-08-22

Publications (1)

Publication Number Publication Date
WO2019039091A1 true WO2019039091A1 (en) 2019-02-28

Family

ID=65439406

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/024990 WO2019039091A1 (en) 2017-08-22 2018-07-02 Heat-shrinkable tube

Country Status (3)

Country Link
JP (1) JPWO2019039091A1 (en)
TW (1) TW201912699A (en)
WO (1) WO2019039091A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111022786A (en) * 2019-12-30 2020-04-17 安徽杰蓝特新材料有限公司 Glass fiber reinforced PE water supply pipe and preparation method thereof
JP2020531638A (en) * 2017-08-23 2020-11-05 ダウ グローバル テクノロジーズ エルエルシー A composition containing an ethylene polymer and a cycloolefin interpolymer, and a film formed from the composition.

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53114856A (en) * 1977-03-17 1978-10-06 Dainichi Nippon Cables Ltd Electrical insulating composition having excellent water-tree resistance
JPS646029A (en) * 1987-06-29 1989-01-10 Fujikura Ltd Heat-shrinkable crosslinked polyethylene tube
JPH02123145A (en) * 1988-11-01 1990-05-10 Sumitomo Chem Co Ltd Resin composition and molded body having shape memorizing property
JPH09278974A (en) * 1996-04-11 1997-10-28 Mitsubishi Plastics Ind Ltd Thermally shrinkable cyclic olefin-based polymer tube
JPH11189743A (en) * 1997-12-26 1999-07-13 Nippon Zeon Co Ltd Electric wire coating material of cyclic olefin-based resin

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53114856A (en) * 1977-03-17 1978-10-06 Dainichi Nippon Cables Ltd Electrical insulating composition having excellent water-tree resistance
JPS646029A (en) * 1987-06-29 1989-01-10 Fujikura Ltd Heat-shrinkable crosslinked polyethylene tube
JPH02123145A (en) * 1988-11-01 1990-05-10 Sumitomo Chem Co Ltd Resin composition and molded body having shape memorizing property
JPH09278974A (en) * 1996-04-11 1997-10-28 Mitsubishi Plastics Ind Ltd Thermally shrinkable cyclic olefin-based polymer tube
JPH11189743A (en) * 1997-12-26 1999-07-13 Nippon Zeon Co Ltd Electric wire coating material of cyclic olefin-based resin

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020531638A (en) * 2017-08-23 2020-11-05 ダウ グローバル テクノロジーズ エルエルシー A composition containing an ethylene polymer and a cycloolefin interpolymer, and a film formed from the composition.
CN111022786A (en) * 2019-12-30 2020-04-17 安徽杰蓝特新材料有限公司 Glass fiber reinforced PE water supply pipe and preparation method thereof

Also Published As

Publication number Publication date
JPWO2019039091A1 (en) 2020-08-06
TW201912699A (en) 2019-04-01

Similar Documents

Publication Publication Date Title
US3597372A (en) Products and process for production of the same
ES2355830T3 (en) COMPOSITIONS OF POLYOLEFINS RETICULATED BY RADIATION.
USRE28688E (en) Solid heat-flowable dispersed phase in a crosslinked elastomer
WO2019039091A1 (en) Heat-shrinkable tube
JPH02198843A (en) Stretched/shrinkable film having improved oxygen permeability
US4366107A (en) Making shrink-fit objects
US20150147500A1 (en) Heat shrinkable tube
JP2008307823A (en) Heat shrinkable tube manufacturing method and manufacturing apparatus
TW584648B (en) Polyethylene heat shrinkable tube
JPS59158254A (en) Improved linear polyethylene shrinkable films and manufacture thereof
US12005627B2 (en) Dual layer heat shrink tubing
JP5909106B2 (en) Method for producing transparent resin material, method for producing transparent resin tube, method for producing transparent heat-shrinkable tube, and method for producing crimp terminal with heat-shrinkable tube
JP5607496B2 (en) Biaxially stretched film
US20240326379A1 (en) Dual layer heat shrink tubing
JPS5971851A (en) Heat-shrinkable plastic tube
JPS5955712A (en) Preparation of thermally shrinkable tube
CN117362795A (en) Heat shrinkage tube and preparation method and application thereof
JPS59227437A (en) Heat-recoverable article
US20150147499A1 (en) Heat shrinkable tube and system including heat-recovered heat shrinkable tubing
Uenishi et al. Thin dense films from polymer blend of thermoplastic elastomer and polyolefin by uniaxial stretching
JPS5828354A (en) Manufacture of thermally shrinkable tube
JPS598541B2 (en) Netshi Yushi Yukusei Plastic Tube Oyobi Sono Seizouhouhou
JPH0259322A (en) Manufacture of heat pipe type heating mandrel and heat-shrinkable tube using mandrel
JP2013155316A (en) Transparent resin material, transparent heat-shrinkable tube, and solderless terminal with the heat-shrinkable tube
CN115806724A (en) PEEK heat-shrinkable tube with high shrinkage ratio and preparation method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18849388

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019537961

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18849388

Country of ref document: EP

Kind code of ref document: A1