WO2019037473A1 - 一种实现无线定位的方法、装置及窄带物联网终端 - Google Patents

一种实现无线定位的方法、装置及窄带物联网终端 Download PDF

Info

Publication number
WO2019037473A1
WO2019037473A1 PCT/CN2018/086361 CN2018086361W WO2019037473A1 WO 2019037473 A1 WO2019037473 A1 WO 2019037473A1 CN 2018086361 W CN2018086361 W CN 2018086361W WO 2019037473 A1 WO2019037473 A1 WO 2019037473A1
Authority
WO
WIPO (PCT)
Prior art keywords
positioning
terminal
iot
positioning information
iot terminal
Prior art date
Application number
PCT/CN2018/086361
Other languages
English (en)
French (fr)
Inventor
李强
Original Assignee
西安中兴新软件有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西安中兴新软件有限责任公司 filed Critical 西安中兴新软件有限责任公司
Publication of WO2019037473A1 publication Critical patent/WO2019037473A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/023Services making use of location information using mutual or relative location information between multiple location based services [LBS] targets or of distance thresholds
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information

Definitions

  • the present disclosure relates to, but is not limited to, a positioning technology, and more particularly to a method, an apparatus, and a narrowband Internet of Things terminal for implementing wireless positioning.
  • the main method of providing positioning/navigation is to realize the method of finding a reference object on the basis of satellite positioning, that is, if the positioning terminal is positioned by the Global Navigation Satellite System (GNSS), if the positioning accuracy is improved or verified.
  • the positioning terminal should scan the surrounding wireless fidelity (WiFi) or Bluetooth as a hotspot signal sent by the hotspot. Since the location of the WiFi or Bluetooth as a hotspot is relatively stable, theoretically, as long as the surrounding WiFi and Bluetooth are scanned, the positioning can be performed. The location where the positioning terminal is located. In theory, by measuring the signal strength, the approximate distance between the positioning terminal and the hot spot can be estimated, and the positioning accuracy is further improved.
  • the embodiments of the present disclosure provide a method, a device, and a narrowband Internet of Things terminal for implementing wireless positioning, which can improve the positioning effect of the wireless positioning technology.
  • Embodiments of the present disclosure provide a method for implementing wireless positioning, including:
  • the location of the positioning terminal is determined according to the received positioning information.
  • the NB-IOT terminal includes:
  • Two or more NB-IOT terminals set according to a preset geometrical distribution
  • the distribution density of the two or more NB-IOT terminals is greater than or equal to a preset density.
  • the method further includes:
  • the NB-IOT terminal that meets the preset density is selected from all the set NB-IOT terminals in a polling manner to receive the selected positioning information sent by the NB-IOT terminal.
  • the receiving the positioning information sent by the NB-IOT terminal includes:
  • the instantaneous wireless communication distance of the NB-IOT terminal is determined according to a preset transmission power of the NB-IOT terminal.
  • determining, according to the positioning information sent by the received NB-IOT terminal, the location of the positioning terminal includes :
  • the location of the positioning terminal is determined according to the minimum instantaneous wireless communication distance in the positioning information sent by the NB-IOT terminal.
  • determining the location of the positioning terminal according to the positioning information sent by the received NB-IOT terminal includes:
  • the coordinates of the NB-IOT terminal in the positioning information are used as the location of the positioning terminal;
  • the determined positioning period when receiving the positioning information sent by the two NB-IOT terminals, determining two NBs according to the coordinates of each NB-IOT terminal included in the positioning information and the instantaneous wireless communication distance. An intersection of signal coverage areas of the IOT terminal to determine a geometric center of the intersection as a location of the positioning terminal;
  • the determined positioning period when receiving the positioning information sent by the three NB-IOT terminals, determining three NBs according to the coordinates of each NB-IOT terminal included in the positioning information and the instantaneous wireless communication distance. The intersection of the signal coverage areas of the IOT terminal, the geometric center of the determined intersection as the location of the positioning terminal.
  • the method further includes: distinguishing each of the NB-IOT terminals according to pre-established discrimination information, and recording coordinates of each of the NB-IOT terminals.
  • an embodiment of the present disclosure further provides a computer storage medium, where the computer storage medium stores computer executable instructions, and the computer executable instructions are used to perform the foregoing method for implementing wireless positioning.
  • an embodiment of the present disclosure further provides a method for implementing wireless positioning, including:
  • the narrowband Internet of Things NB-IOT terminal sends positioning information.
  • the method before the NB-IOT terminal sends the location information, the method further includes:
  • the sending location information includes:
  • the positioning information is transmitted at different transmission powers according to a preset transmission period.
  • the sending location information includes:
  • the positioning information is sent in a polling manner according to a preset transmission period.
  • an embodiment of the present disclosure further provides a computer storage medium, where the computer storage medium stores computer executable instructions, and the computer executable instructions are used to perform the foregoing method for implementing wireless positioning.
  • an embodiment of the present disclosure further provides an apparatus for implementing wireless positioning, including: a receiving unit and a positioning unit;
  • the receiving unit is configured to: receive positioning information sent by the narrowband Internet of Things NB-IOT terminal;
  • the positioning unit is configured to: determine the location of the positioning terminal according to the received positioning information.
  • the NB-IOT terminal includes:
  • Two or more NB-IOT terminals set according to a preset geometrical distribution
  • the distribution density of the two or more NB-IOT terminals is greater than or equal to a preset density.
  • the receiving unit is configured to: receive, by each NB-IOT terminal that can perform wireless communication with the positioning terminal, according to a preset sending period: coordinates of the NB-IOT terminal, and instant wireless communication At least one of a distance, a set of communicable wireless communication distances;
  • the instantaneous wireless communication distance of the NB-IOT terminal is determined according to a preset transmission power of the NB-IOT terminal.
  • the positioning unit is configured to:
  • the coordinates of the NB-IOT terminal in the positioning information are used as the location of the positioning terminal;
  • the determined positioning period when receiving the positioning information sent by the two NB-IOT terminals, determining two NBs according to the coordinates of each NB-IOT terminal included in the positioning information and the instantaneous wireless communication distance. An intersection of signal coverage areas of the IOT terminal to determine a geometric center of the intersection as a location of the positioning terminal;
  • the determined positioning period when receiving the positioning information sent by the three NB-IOT terminals, determining three NBs according to the coordinates of each NB-IOT terminal included in the positioning information and the instantaneous wireless communication distance. The intersection of the signal coverage areas of the IOT terminal, the geometric center of the determined intersection as the location of the positioning terminal.
  • the apparatus further includes a recording unit configured to distinguish each of the NB-IOT terminals based on pre-established discrimination information, and record coordinates of each of the NB-IOT terminals.
  • an embodiment of the present disclosure further provides an NB-IOT terminal that implements wireless positioning, including: a sending unit, configured to: send positioning information.
  • the NB-IOT terminal further includes a determining unit configured to determine coordinates of the NB-IOT terminal and transmit power of transmitting positioning information, and determine coordinates of the determined NB-IOT terminal, corresponding to the transmitting At least one of a set of instantaneous wireless communication distances of power and a set of communicable wireless communication distances is used as the positioning information.
  • the sending unit is configured to: send the positioning information at different transmission powers according to a preset transmission period.
  • an embodiment of the present disclosure further provides a terminal, including: a memory and a processor; wherein
  • the processor is configured to execute program instructions in the memory
  • the location of the positioning terminal is determined according to the received positioning information.
  • the solution of the present disclosure includes: receiving positioning information sent by a narrowband Internet of Things NB-IOT terminal; determining a location of the positioning terminal according to the received positioning information.
  • the embodiments of the present disclosure improve the positioning effect of wireless positioning, and avoid the hot spot information problem that occurs when using WiFi and Bluetooth as hotspots.
  • FIG. 1 is a flowchart of a method for implementing wireless positioning according to an embodiment of the present disclosure
  • FIG. 2 is a schematic diagram of determining a location of a positioning terminal according to an embodiment of the present disclosure
  • FIG. 3 is a schematic diagram of determining a location of a positioning terminal according to another embodiment of the present disclosure.
  • FIG. 4 is a schematic diagram of determining a location of a positioning terminal according to still another embodiment of the present disclosure.
  • FIG. 5 is a flowchart of a method for implementing wireless positioning according to another embodiment of the present disclosure.
  • FIG. 6 is a structural block diagram of an apparatus for implementing wireless positioning according to an embodiment of the present disclosure
  • FIG. 7 is a structural block diagram of an NB-IOT terminal implementing wireless positioning according to an embodiment of the present disclosure
  • Figure 8 is a flow chart of a method of an application example of the present disclosure.
  • the positioning/navigation of the positioning terminal through WiFi and Bluetooth as hotspots can improve the positioning accuracy and even reduce the GNSS system error, but the above methods have the following problems:
  • Positioning accuracy problem The effective communication distance between Bluetooth and WiFi is generally about 10 meters; and affected by user demand, users increase their communication distance to 100 meters or more by increasing the WiFi signal strength. In the method of assisting positioning through WiFi and Bluetooth, most of the calculations are based on the effective communication distance between home WiFi and Bluetooth (10 meters). When the positioning terminal searches for a hot spot, the transmission power cannot be determined, and the coverage is not known. Positioning based on the range does not guarantee the accuracy of positioning/navigation.
  • hot information problem If you want to assist positioning through WiFi and Bluetooth as a hot spot, the first point is to determine the coordinates of the hot spot. The cost of manpower and material resources to collect these coordinates is huge; most of the hotspots collected are used by private households or a certain unit, and the coordinate collection of these hot spots is necessary for authorization, and the processing is complicated; in addition, if the hot spot changes The update is not performed, such as the user moving, or the hotspot is provided through the user-friendly interface (uFi) product. If the hotspot is used for positioning, it will inevitably affect the positioning accuracy.
  • uFi user-friendly interface
  • both the positioning accuracy problem and the hot information problem affect the wireless positioning effect and affect the application of wireless positioning technology.
  • FIG. 1 is a flowchart of a method for implementing wireless positioning according to an embodiment of the present disclosure. As shown in FIG. 1 , the method includes:
  • Step 101 Receive positioning information sent by a narrowband Internet of Things (NB-IOT) terminal.
  • NB-IOT narrowband Internet of Things
  • the NB-IOT terminal distribution is fixed, and the number of NB-IOT terminals that can be accommodated in one sector can be used to achieve positioning with a precision of meters; therefore, the NB-IOT terminal can be used as a reference node. A certain precision positioning requirement.
  • the NB-IOT terminal may include:
  • Two or more NB-IOT terminals set according to a preset geometrical distribution
  • the distribution density of the two or more NB-IOT terminals is greater than or equal to a preset density.
  • the preset density can be set according to the positioning accuracy requirement; in theory, the higher the positioning accuracy requirement, the larger the value of the preset density, that is, the more the number of NB-IOT terminals in the fixed area.
  • the method of the embodiment of the present disclosure may further include:
  • the NB-IOT terminal that meets the preset density is selected from all the set NB-IOT terminals in a polling manner to receive the selected positioning information sent by the NB-IOT terminal.
  • the polling period of the polling mode can be determined according to the distribution density of the NB-IOT terminals in the network. The larger the distribution density of the NB-IOT terminals, the larger the polling period.
  • receiving the location information sent by the NB-IOT terminal may include:
  • each NB-IOT terminal that can perform wireless communication with the positioning terminal, a coordinate of a NB-IOT terminal, an instantaneous wireless communication distance, and/or a communicable wireless communication distance set according to a preset transmission period;
  • the instantaneous wireless communication distance of the NB-IOT terminal is determined according to a preset transmission power of the NB-IOT terminal.
  • the instantaneous wireless communication distance is the wireless communication distance at which the NB-IOT terminal currently transmits the positioning information
  • the set of the communicable wireless communication distance includes: after setting the NB-IOT terminal, the minimum wireless communication of the positioning terminal at the NB-IOT terminal is assumed Within the coverage formed by the distance, the NB-IOT terminal can realize all wireless communication distances for positioning information transmission.
  • the set of communicable wireless communication distances of different NB-IOT terminals may be the same or different.
  • the embodiment of the present disclosure may determine the mapping relationship between the instantaneous wireless communication distance and the transmission power according to the existing signal attenuation model or the method of the field measurement, and set the NB-IOT terminal to send the positioning information according to different transmission power according to the mapping relationship.
  • the information includes an instantaneous wireless communication distance corresponding to the transmission power.
  • Step 102 Determine a location of the positioning terminal according to the received positioning information.
  • the embodiment of the present disclosure may determine the location of the positioning terminal by using the positioning information received within a certain period of time, for example, determining the location of the positioning terminal by using the positioning information sent by the NB-IOT terminal for three consecutive transmission periods.
  • determining the location of the positioning terminal according to the positioning information sent by the received NB-IOT terminal may include:
  • the location of the positioning terminal is determined according to the minimum instantaneous wireless communication distance in the NB-IOT terminal transmitting the positioning information.
  • determining the location of the positioning terminal according to the positioning information sent by the received NB-IOT terminal may include:
  • the positioning terminal receives positioning information transmitted by the NB-IOT terminal that can communicate with the positioning terminal in three transmission periods; wherein, in the first transmission period, three NB-IOT terminals are The positioning information is transmitted at a preset maximum transmission power, and the positioning terminal receives three pieces of positioning information from three NB-IOT terminals; in the second transmission period, the three NB-IOT terminals each have a preset medium transmission power.
  • the positioning terminal receives two pieces of positioning information from two NB-IOT terminals; in the third sending period, the three NB-IOT terminals send the positioning information with a preset minimum transmitting power, and the positioning terminal does not Receiving the positioning information; the minimum instantaneous wireless communication distance of the NB-IOT terminal included in the positioning information is in the second transmission period, and the second transmission period is used as the positioning period.
  • the positioning terminal receives the positioning information of the NB-IOT terminal 1 whose instantaneous wireless communication distance is D11, and the NB whose instantaneous wireless communication distance is D21.
  • the positioning information of the IOT terminal 2 is the positioning information of the NB-IOT terminal 3 of D31; in the second transmission period, only the instantaneous wireless communication distance is received as D12 (D12 is smaller than D11, D21 and D31)
  • the embodiment of the present disclosure may further determine an intersection of signal coverage areas of the three NB-IOT terminals according to the positioning information of the first transmission period, and determine a sector 1 formed by the coordinates of the NB-IOT terminal 1 and the intersection position according to the intersection, Setting the center of the NB-IOT terminal 1 as the center of the circle, the circle with the radius D12 as the overlapping area with the determined sector 1; the center of the overlapping area or one point of the overlapping area determined otherwise as the present disclosure Embodiments locate the location of the terminal.
  • the application example may also perform positioning of the positioning terminal according to the instantaneous wireless communication distance and the set of communicable wireless communication distances; for example, the communicable wireless communication distance set of the NB-IOT terminal includes D1, D2, and D3;
  • the obtained positioning information determines that only one NB-IOT terminal receives the positioning information sent by the instant wireless communication distances D1 and D2, and does not receive the positioning information sent by the NB-IOT terminal to D3, then it can be determined that the positioning terminal is located at D2 and D3 is made in the circle of concentric circles.
  • FIG. 3 is a schematic diagram of determining the position of the positioning terminal according to another embodiment of the present disclosure, as shown in FIG.
  • the positioning terminal receives the positioning information of the NB-IOT terminal 1 whose instantaneous wireless communication distance is D11, the positioning information of the NB-IOT terminal 2 whose instantaneous wireless communication distance is D21, and the NB whose instantaneous wireless communication distance is D31.
  • the NB-IOT terminal 1 receiving the instantaneous wireless communication distance D12 (D12 is less than D11, D21 and D31) and the instantaneous wireless communication distance is D22 (D22 is less than D11, D21 and D31) NB-IOT terminal 2 positioning information; in the third transmission cycle, no positioning information is received, at this time, according to the instant wireless communication distance D12 NB-IOT terminal 1 and the instant wireless communication distance is D22 N
  • the positioning information of the B-IOT terminal 2 determines the location of the positioning terminal.
  • the determined positioning period when receiving the positioning information sent by the three NB-IOT terminals, determining three NBs according to the coordinates of each NB-IOT terminal included in the positioning information and the instantaneous wireless communication distance. The intersection of the signal coverage areas of the IOT terminal, the geometric center of the determined intersection as the location of the positioning terminal.
  • 4 is a schematic diagram of determining a location of a positioning terminal according to still another embodiment of the present disclosure. As shown in FIG.
  • a positioning terminal in a first transmission period, receives positioning information of an NB-IOT terminal 1 with an instantaneous wireless communication distance of D11,
  • the instantaneous wireless communication distance is the positioning information of the NB-IOT terminal 2 of the D21, the positioning information of the NB-IOT terminal 3 whose instantaneous wireless communication distance is D31, and the positioning is not received in the second transmission period and the third transmission period.
  • the positioning information determines the location of the positioning terminal. For example, the position of the positioning terminal is calculated by the three-point method.
  • the method for determining the location of the locating terminal is an exemplary method of the embodiment of the present disclosure.
  • the embodiment of the present disclosure may also adopt other methods to determine the location of the locating terminal according to the received positioning information.
  • the method of the embodiment of the present disclosure may further include: distinguishing each of the NB-IOT terminals according to the pre-established distinguishing information, and recording coordinates of each of the NB-IOT terminals.
  • the embodiment of the present disclosure may record the coordinates of each NB-IOT terminal by using a positioning terminal or a preset server.
  • the coordinates of the NB-IOT terminal in the positioning information are pre-stored in the positioning.
  • the apparatus for determining the location of the terminal includes the positioning terminal itself or a preset server.
  • the positioning information may be adjusted to include the distinguishing information of the NB-IOT terminal and the instantaneous wireless communication distance.
  • the embodiment of the present disclosure further provides a computer storage medium, where the computer storage medium stores computer executable instructions, and the computer executable instructions are used to perform the foregoing method for implementing wireless positioning.
  • the embodiment of the present disclosure further provides a terminal, including: a memory and a processor; wherein
  • the processor is configured to execute program instructions in the memory
  • the location of the positioning terminal is determined according to the received positioning information.
  • FIG. 5 is a flowchart of a method for implementing wireless positioning according to another embodiment of the present disclosure. As shown in FIG. 5, the method includes:
  • Step 501 The narrowband Internet of Things NB-IOT terminal sends positioning information.
  • the method may further include:
  • Step 500 Determine coordinates of the NB-IOT terminal and transmit power of the transmission positioning information, determine coordinates of the NB-IOT terminal, an instantaneous wireless communication distance corresponding to the transmit power, and/or a set of communicable wireless communication distances. As positioning information.
  • sending the location information may include:
  • the positioning information is transmitted at different transmission powers according to a preset transmission period.
  • sending the location information may include:
  • the locating information is sent in a polling manner according to a preset sending period, which includes: when the distribution density of the NB-IOT terminal is greater than the preset density, all NB-IOT terminals refer to the preset density, and adopt a polling manner.
  • the NB-IOT terminal sends the positioning information according to the preset transmission period without waiting for a certain period of time, and then goes to sleep after being sent for a certain period of time.
  • the embodiment of the present disclosure further provides a computer storage medium, where the computer storage medium stores computer executable instructions, and the computer executable instructions are used to perform the foregoing method for implementing wireless positioning.
  • FIG. 6 is a structural block diagram of an apparatus for implementing wireless positioning according to an embodiment of the present disclosure. As shown in FIG. 6, the method includes: a receiving unit and a positioning unit;
  • the receiving unit is configured to: receive positioning information sent by the narrowband Internet of Things NB-IOT terminal;
  • the NB-IOT terminal may include:
  • Two or more NB-IOT terminals set according to a preset geometrical distribution
  • the distribution density of the two or more NB-IOT terminals is greater than or equal to a preset density.
  • the receiving unit may be configured to: receive, according to a preset sending period, each NB-IOT terminal that can perform wireless communication with the positioning terminal, the coordinates of the NB-IOT terminal, and the instantaneous wireless communication distance. And/or a set of wireless communication distances that are communicable;
  • the instantaneous wireless communication distance of the NB-IOT terminal is determined according to a preset transmission power of the NB-IOT terminal.
  • the positioning unit is configured to: determine the location of the positioning terminal according to the received positioning information.
  • the apparatus of the embodiment of the present disclosure may be disposed on the positioning terminal to be located, and the location of the positioning terminal may be determined by the positioning terminal itself. After the positioning unit establishes communication with the preset server, the positioning information is sent to the server, and the server calculates and determines. After locating the location of the terminal, it is fed back to the positioning terminal.
  • the positioning unit may be configured to:
  • the coordinates of the NB-IOT terminal in the positioning information are used as the location of the positioning terminal;
  • the determined positioning period when receiving the positioning information sent by the two NB-IOT terminals, determining two NBs according to the coordinates of each NB-IOT terminal included in the positioning information and the instantaneous wireless communication distance. An intersection of signal coverage areas of the IOT terminal to determine a geometric center of the intersection as a location of the positioning terminal;
  • the determined positioning period when receiving the positioning information sent by the three NB-IOT terminals, determining three NBs according to the coordinates of each NB-IOT terminal included in the positioning information and the instantaneous wireless communication distance. The intersection of the signal coverage areas of the IOT terminal, the geometric center of the determined intersection as the location of the positioning terminal.
  • the apparatus of the embodiment of the present disclosure may further include a recording unit configured to distinguish each of the NB-IOT terminals according to pre-established discrimination information, and record coordinates of each of the NB-IOT terminals.
  • FIG. 7 is a structural block diagram of an NB-IOT terminal for implementing wireless positioning according to an embodiment of the present disclosure. As shown in FIG. 7, the method includes: a sending unit, configured to: send positioning information.
  • the NB-IOT terminal may further include a determining unit configured to determine a coordinate of the NB-IOT terminal and a transmit power for transmitting the positioning information, a coordinate of the determined NB-IOT terminal, and an instantaneous wireless communication distance corresponding to the transmit power. And/or a set of communicable wireless communication distances as positioning information.
  • the sending unit may be configured to: send the positioning information by using different transmit powers according to a preset sending period.
  • FIG. 8 is a flowchart of a method for applying an example of the present disclosure. As shown in FIG. 8, the method includes:
  • Step 800 Deploying an NB-IOT terminal; deploying the NB-IOT terminal includes setting an NB-IOT terminal according to a preset geometric distribution according to different scenarios, and determining coordinates of the set NB-IOT terminal.
  • the application example deploys the NB-IOT terminal as a hotspot for wireless positioning; when deploying a hotspot, the coordinates of the hotspot can be uploaded to the positioning terminal or a preset server; to distinguish each hotspot, set corresponding points for each hotspot.
  • the application example may also not upload the coordinates, and use the coordinates as part of the positioning information, and when the communication with the positioning terminal is possible, the positioning information including the coordinates is directly sent to the positioning terminal. Since the location of the NB-IOT terminal is generally unchanged, the application example does not have the problem of affecting the accuracy due to the change of the hotspot location.
  • a person skilled in the art can set the spacing between the NB-IOT terminals according to different analysis of the scenario.
  • the spacing of the NB-IOT terminals that can be set in the tunnel for wireless positioning is smaller than the tunnel width; more NB-IOT terminals can be set in the building density area to ensure the positioning accuracy of the positioning terminal;
  • the area of precision positioning is set to a NB-IOT terminal with a low density distribution.
  • the application example can determine the distribution density of the NB-IOT terminal according to the accuracy requirement, and assume that the distribution density of the NB-IOT terminal to reach the positioning accuracy requirement is the preset density, and the distribution density of the NB-IOT terminal is equal to the pre-predetermined density.
  • the radio positioning technology may be used to determine the frequency at which the NB-IOT terminal sends the positioning information, that is, the NB-IOT terminal sets the positioning information according to the sending period; when the distribution density of the NB-IOT terminal is greater than the preset density, according to The polling mode selects some NB-IOT terminals from all NB-IOT terminals to transmit positioning information, and the distribution density of the NB-IOT terminals that send the positioning information is equal to the preset density; that is, according to a preset selection strategy, each selection Some NB-IOT terminals transmit location information.
  • the NB-IOT terminal When the NB-IOT terminal works according to the selection policy, it can avoid the NB-IOT terminal in the network working for a long time and improve the usage time of the wireless positioning system. In addition, the NB-IOT terminal is used. The choice can avoid signal interference when too many NB-IOT terminals work at the same time, and improve the positioning quality.
  • Step 801 Set an instantaneous wireless communication distance of the NB-IOT terminal.
  • This application example sets a minimum instantaneous wireless communication distance and a maximum instantaneous wireless communication distance of the NB-IOT terminal according to the power, power consumption, and the like of the NB-IOT terminal; Setting the transmission distance of the NB-IOT terminal to set the instantaneous wireless communication distance of the NB-IOT terminal; referring to the techniques known in the art and the positioning accuracy requirements, the transmission distance of the NB-IOT terminal can be set to 3 to 5 meters; This application example can also be analyzed and adjusted according to the actual application scenario.
  • the NB-IOT terminal in the sector can cover the entire Sector.
  • the application example determines the relationship between the transmission power of the NB-IOT terminal and the instantaneous wireless communication distance according to the signal attenuation model or the field measurement in the prior art; and may include: according to downtown areas, residential areas, building dense areas, suburbs, The signal attenuation model of scenes such as highways and tunnels determines the relationship between the transmit power of the NB-IOT terminal and the instantaneous wireless communication distance.
  • Step 802 The NB-IOT terminal sends the positioning information.
  • the positioning information may include: coordinates of the NB-IOT terminal, an instantaneous wireless communication distance, and/or a communicable wireless communication distance set instant wireless communication distance.
  • the NB-IOT terminal can be configured to send positioning information according to a preset sending period; the positioning information can be periodically sent according to different transmitting powers, and different transmitting powers are set according to the requirements of the instantaneous wireless communication distance, and the instantaneous wireless communication distance is set. It is set to reduce the positioning range of the positioning terminal and improve the positioning accuracy.
  • This application example can control the instantaneous wireless communication distance of the NB-IOT terminal by controlling the transmission power, assuming that the maximum instantaneous wireless communication distance D of the NB-IOT terminal is set.
  • the meter is reduced by d meters every T seconds (T seconds can be equal to the transmission period) to achieve the purpose of narrowing the positioning range; in the positioning information sent by the first transmission period, the instantaneous wireless communication distance of the NB-IOT terminal is D meters. In the positioning information sent by the second sending period, the instantaneous wireless communication distance of the NB-IOT terminal is (Dd) meters; in the positioning information sent by the third sending period, the instantaneous wireless communication distance of the NB-IOT terminal is (D) -2d) meters; instant wireless communication distance. For example, in the order of 5 meters, 4 meters, and 3 meters of the instantaneous wireless communication distance of the NB-IOT terminal, the positioning information is transmitted according to a preset transmission period.
  • the instant wireless communication distance reduced by each T seconds in this application example may also be different.
  • the second transmission period is shorter than the first transmission period, and the instantaneous wireless communication distance is reduced by d1 meters; the third transmission period is smaller than the second one.
  • the transmission period, the instantaneous wireless communication distance is reduced by d2 meters; the fourth transmission period is shorter than the third transmission period, and the instantaneous wireless communication distance is reduced by d3 meters; d1>d2>d3.
  • the transmission period of the NB-IOT terminal can be implemented by referring to a known wireless positioning technology, that is, the frequency at which the NB-IOT terminal transmits the positioning information can be set by referring to the frequency of the positioning information required in the wireless positioning technology; During positioning, the positioning information of how many transmission periods are received may also be set by referring to techniques known in the art. This application example may be adjusted by referring to the period of sending positioning information according to different transmission powers, for example, by using an NB-IOT terminal. Different transmission powers The total duration of transmission of positioning information for one cycle is used as a unit duration for positioning the positioning terminal.
  • Step 803 Perform positioning of the positioning terminal according to the received positioning information.
  • the application example may be implemented by the positioning terminal itself according to the positioning information, or may be determined by the server after the positioning terminal sends the positioning information to a preset server. After the location, feedback to the positioning terminal.
  • the NB-IOT terminal When the NB-IOT terminal is used only for wireless positioning, the NB-IOT terminal can be set to perform only one-way broadcast communication. This setting can prevent the NB-IOT terminal from linking with other communication devices.
  • the NB-IOT terminal can be an omnidirectional antenna or a directional antenna. If it is a directional antenna, the transmission angle of its antenna can be written into the positioning information to narrow the positioning range and improve the positioning accuracy.
  • This application example can be applied to different positioning scenarios, for example, to navigation on a highway.
  • a part of the positioning information can be pre-packaged and stored on the positioning terminal.
  • each NB deployed by distinguishing information can be distinguished.
  • the IOT terminal After the IOT terminal establishes the correspondence between the distinguishing information of the NB-IOT terminal and the coordinates of the NB-IOT terminal, the partial positioning information is pre-stored to the positioning terminal, and when the positioning terminal performs positioning, the NB- establishing the communication connection is directly determined.
  • the IOT terminal performs positioning according to the NB-IOT terminal that determines the establishment of the communication connection.
  • the method for realizing the positioning can be distinguished for different scenarios.
  • the NB-IOT terminal can only use a fixed transmission power, that is, fixed.
  • the instantaneous wireless communication distance is used for transmitting the positioning information; in a city building or a pedestrian area, the NB-IOT terminal can be set to transmit positioning information according to multiple transmission powers to narrow the positioning range and improve the positioning accuracy.
  • computer storage medium includes volatile and nonvolatile, implemented in any method or technology for storing information, such as computer readable instructions, data structures, program modules or other data. Sex, removable and non-removable media.
  • Computer storage media includes, but is not limited to, RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, digital versatile disc (DVD) or other optical disc storage, magnetic cartridge, magnetic tape, magnetic disk storage or other magnetic storage device, or may Any other medium used to store the desired information and that can be accessed by the computer.
  • communication media typically includes computer readable instructions, data structures, program modules or other data in a modulated data signal, such as a carrier wave or other transport mechanism, and can include any information delivery media. .
  • the solution of the present disclosure includes: receiving positioning information sent by a narrowband Internet of Things NB-IOT terminal; determining a location of the positioning terminal according to the received positioning information.
  • the embodiments of the present disclosure improve the positioning effect of wireless positioning, and avoid the hot spot information problem that occurs when using WiFi and Bluetooth as hotspots.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

一种实现无线定位的方法、装置和窄带物联网终端,包括:接收窄带物联网(NB-IOT)终端发送的定位信息;根据接收到的定位信息确定定位终端的位置。

Description

一种实现无线定位的方法、装置及窄带物联网终端 技术领域
本公开涉及但不限于定位技术,尤指一种实现无线定位的方法、装置及窄带物联网终端。
背景技术
目前,提供定位/导航的主要办法是在卫星定位的基础上通过寻找参照物的方法实现,即定位终端通过全球卫星导航系统(GNSS,Global Navigation Satellite System)进行定位以后,如果提高或者验证定位精度,则定位终端要扫描周围的无线保真(WiFi)或者蓝牙作为热点发出的热点信号,由于WiFi或蓝牙作为热点时的位置相对稳定,所以理论上只要扫描到周围的WiFi和蓝牙,就能定位出该定位终端所在的位置。理论上,通过对信号强度的测量可以估算出定位终端与热点的大概距离,进一步提升定位的精度。
发明内容
以下是对本公开详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本公开实施例提供一种实现无线定位的方法、装置及窄带物联网终端,能够提升无线定位技术的定位效果。
本公开实施例提供了一种实现无线定位的方法,包括:
接收窄带物联网NB-IOT终端发送的定位信息;
根据接收到的定位信息确定定位终端的位置。
在示例性实施例中,所述NB-IOT终端包括:
按照预设的几何分布设置的两个或两个以上NB-IOT终端;
其中,设置的所述两个或两个以上NB-IOT终端的分布密度大于或等于预设密度。
在示例性实施例中,设置的所述两个或两个以上NB-IOT终端的分布密度大于所述预设密度时,所述方法还包括:
以轮询方式从设置的所有NB-IOT终端中选择满足所述预设密度的NB-IOT终端,以接收选择的所述NB-IOT终端发送的所述定位信息。
在示例性实施例中,所述接收NB-IOT终端发送的定位信息包括:
接收与所述定位终端进行无线通信的各NB-IOT终端,按照预设的发送周期发送的:NB-IOT终端的坐标和即时无线通信距离;
其中,所述NB-IOT终端的即时无线通信距离根据预先设定的NB-IOT终端的发射功率确定。
在示例性实施例中,当接收到的定位信息中包含同一个NB-IOT终端的不同的即时无线通信距离时,所述根据接收到的NB-IOT终端发送的定位信息确定定位终端的位置包括:
根据NB-IOT终端发送的定位信息中的最小的即时无线通信距离确定定位终端的位置。
在示例性实施例中,所述根据接收到的NB-IOT终端发送的定位信息确定定位终端的位置包括:
确定接收到的所有定位信息中包含的NB-IOT终端的最小的即时无线通信距离,并确定发送包含所述最小的即时无线通信距离的定位信息的发送周期为定位周期;
在确定的所述定位周期中,仅接收到一个NB-IOT终端发送的定位信息时,以所述定位信息中的NB-IOT终端的坐标作为所述定位终端的位置;
在确定的所述定位周期中,接收到两个NB-IOT终端发送的定位信息时,根据所述定位信息中包含的每一个NB-IOT终端的坐标和即时无线通信距离,确定两个NB-IOT终端的信号覆盖区域的交集,以确定的所述交集的几何中心作为所述定位终端的位置;
在确定的所述定位周期中,接收到三个NB-IOT终端发送的定位信息时,根据所述定位信息中包含的每一个NB-IOT终端的坐标和即时无线通信距离,确定三个NB-IOT终端的信号覆盖区域的交集,以确定的交集的几何中 心作为所述定位终端的位置。
在示例性实施例中,所述方法还包括:根据预先建立的区分信息区分每一个所述NB-IOT终端,并记录每一个所述NB-IOT终端的坐标。
另一方面,本公开实施例还提供一种计算机存储介质,计算机存储介质中存储有计算机可执行指令,计算机可执行指令用于执行上述实现无线定位的方法。
再一方面,本公开实施例还提供一种实现无线定位的方法,包括:
窄带物联网NB-IOT终端发送定位信息。
在示例性实施例中,在所述NB-IOT终端发送定位信息之前,该方法还包括:
确定NB-IOT终端的坐标和发送定位信息的发射功率,将确定的NB-IOT终端的坐标、对应于所述发射功率的即时无线通信距离、可通信的无线通信距离集合中的至少一项作为所述定位信息。
在示例性实施例中,所述发送定位信息包括:
按照预设的发送周期以不同发射功率发送所述定位信息。
在示例性实施例中,所述发送定位信息包括:
以轮询的方式,按照预设的发送周期发送所述定位信息。
还一方面,本公开实施例还提供一种计算机存储介质,计算机存储介质中存储有计算机可执行指令,计算机可执行指令用于执行上述实现无线定位的方法。
还一方面,本公开实施例还提供一种实现无线定位的装置,包括:接收单元和定位单元;其中,
接收单元设置为:接收窄带物联网NB-IOT终端发送的定位信息;
定位单元设置为:根据接收到的定位信息确定定位终端的位置。
在示例性实施例中,所述NB-IOT终端包括:
按照预设的几何分布设置的两个或两个以上NB-IOT终端;
其中,设置的所述两个或两个以上NB-IOT终端的分布密度大于或等于 预设密度。
在示例性实施例中,所述接收单元设置为:接收可与所述定位终端进行无线通信的各NB-IOT终端,按照预设的发送周期发送的:NB-IOT终端的坐标、即时无线通信距离、可通信的无线通信距离集合中的至少一项;
其中,所述NB-IOT终端的即时无线通信距离根据预先设定的NB-IOT终端的发射功率确定。
在示例性实施例中,所述定位单元设置为:
确定接收到的所有定位信息中包含的NB-IOT终端的最小的即时无线通信距离,并确定发送包含所述最小的即时无线通信距离的定位信息的发送周期为定位周期;
在确定的所述定位周期中,仅接收到一个NB-IOT终端发送的定位信息时,以所述定位信息中的NB-IOT终端的坐标作为所述定位终端的位置;
在确定的所述定位周期中,接收到两个NB-IOT终端发送的定位信息时,根据所述定位信息中包含的每一个NB-IOT终端的坐标和即时无线通信距离,确定两个NB-IOT终端的信号覆盖区域的交集,以确定的所述交集的几何中心作为所述定位终端的位置;
在确定的所述定位周期中,接收到三个NB-IOT终端发送的定位信息时,根据所述定位信息中包含的每一个NB-IOT终端的坐标和即时无线通信距离,确定三个NB-IOT终端的信号覆盖区域的交集,以确定的交集的几何中心作为所述定位终端的位置。
在示例性实施例中,所述装置还包括记录单元,设置为根据预先建立的区分信息区分每一个所述NB-IOT终端,并记录每一个所述NB-IOT终端的坐标。
还一方面,本公开实施例还提供一种实现无线定位的NB-IOT终端,包括:发送单元,设置为:发送定位信息。
在示例性实施例中,所述NB-IOT终端还包括确定单元,设置为确定NB-IOT终端的坐标和发送定位信息的发射功率,将确定的NB-IOT终端的坐标、对应于所述发射功率的即时无线通信距离、可通信的无线通信距离集 合中的至少一项作为所述定位信息。
在示例性实施例中,所述发送单元具设置为:按照预设的发送周期以不同发射功率发送所述定位信息。
还一方面,本公开实施例还提供一种终端,包括:存储器和处理器;其中,
处理器被配置为执行存储器中的程序指令;
程序指令在处理器读取执行以下操作:
接收窄带物联网NB-IOT终端发送的定位信息;
根据接收到的定位信息确定定位终端的位置。
本公开的方案包括:接收窄带物联网NB-IOT终端发送的定位信息;根据接收到的定位信息确定定位终端的位置。本公开实施例提升了无线定位的定位效果,避免了出现使用WiFi和蓝牙作为热点出现的热点信息问题。
在阅读并理解了附图和详细描述后,可以明白其他方面。
附图说明
图1为本公开实施例实现无线定位的方法的流程图;
图2为本公开实施例确定定位终端的位置的示意图;
图3为本公开另一实施例确定定位终端的位置的示意图;
图4为本公开再一实施例确定定位终端的位置的示意图;
图5为本公开另一实施例实现无线定位的方法的流程图;
图6为本公开实施例实现无线定位的装置的结构框图;
图7为本公开实施例实现无线定位的NB-IOT终端的结构框图;
图8为本公开应用示例的方法流程图。
具体实施方式
通过WiFi和蓝牙作为热点进行定位终端的定位/导航可以起到提升定位 精度,甚至降低GNSS系统误差的目的,但上述方法存在以下问题:
1、定位精度问题:蓝牙和WiFi的有效通信距离一般是10米左右;而受用户需求的影响,用户通过增大WiFi信号强度,增强其通信距离至100米甚至更远。而通过WiFi和蓝牙进行辅助定位的方法中,大多以家用WiFi和蓝牙的有效通信距离进行计算(10米),当定位终端在搜索到热点的时候,无法确定其发射功率,在不知道其覆盖范围的基础上进行定位,无法保证定位/导航的精度。
2、热点信息问题:如果想通过WiFi和蓝牙作为热点进行辅助定位,首要的一点是要确定热点的坐标。而收集这些坐标要投入的人力物力成本巨大;所收集的热点大多数都是私人家庭或者某个单位使用的,对这些热点的坐标收集势必要授权,处理过程繁杂;另外,如果热点位置发生变化而未进行更新,比如用户搬家,或者热点通过用户方便接口(uFi)产品提供,如果通过这些热点进行定位,势必也将影响定位精度。
综上,无论是定位精度问题,还是热点信息问题,都影响无线定位效果,影响无线定位技术的应用。
下文中将结合附图对本公开的实施例进行详细说明。
在附图的流程图示出的步骤可以在诸如一组计算机可执行指令的计算机系统中执行。并且,虽然在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤。
图1为本公开实施例实现无线定位的方法的流程图,如图1所示,包括:
步骤101、接收窄带物联网(NB-IOT)终端发送的定位信息;
目前,NB-IOT终端分布是固定的,并且在一个扇区内可以容纳的NB-IOT终端的数量可以用于实现精度为米级的定位;因此,以NB-IOT终端作为参考节点,可以实现一定精度的定位要求。
在本公开实施例中,NB-IOT终端可以包括:
按照预设的几何分布设置的两个或两个以上NB-IOT终端;
其中,设置的所述两个或两个以上NB-IOT终端的分布密度大于或等于预设密度。
预设密度可以根据定位精度要求进行设置;理论上,定位精度要求越高,预设密度的取值越大,即固定区域内NB-IOT终端的数量越多。
在设置的所述两个或两个以上NB-IOT终端的分布密度大于所述预设密度时,本公开实施例方法还可以包括:
以轮询方式从设置的所有NB-IOT终端中选择满足所述预设密度的NB-IOT终端,以接收选择的所述NB-IOT终端发送的所述定位信息。
轮询方式的轮询周期可以根据网络中NB-IOT终端的分布密度进行确定,NB-IOT终端的分布密度越大,轮询周期约大。
在本公开实施例中,接收NB-IOT终端发送的定位信息可以包括:
接收可与所述定位终端进行无线通信的各NB-IOT终端,按照预设的发送周期发送的:NB-IOT终端的坐标、即时无线通信距离、和/或可通信的无线通信距离集合;
其中,所述NB-IOT终端的即时无线通信距离根据预先设定的NB-IOT终端的发射功率确定。
这里,即时无线通信距离为NB-IOT终端当前发送定位信息的无线通信距离,可通信的无线通信距离集合包括:对NB-IOT终端进行设置后,假设定位终端在NB-IOT终端的最小无线通信距离所形成的覆盖范围内,NB-IOT终端可以实现定位信息发送的所有无线通信距离。不同的NB-IOT终端的可通信的无线通信距离集合可以相同,也可以不同。
本公开实施例可以根据目前已有的信号衰减模型或以实地测量的方式确定即时无线通信距离与发射功率的映射关系,并根据映射关系设置NB-IOT终端根据不同的发射功率发送定位信息,定位信息中包含对应于发射功率的即时无线通信距离。
步骤102、根据接收到的定位信息确定定位终端的位置。
本公开实施例可以采用一定时长内接收到的定位信息确定定位终端的位置,例如、以NB-IOT终端三个连续的发送周期发送的定位信息确定定位终端的位置。
在本公开实施例中,当接收到的定位信息中包含同一个NB-IOT终端的 不同的即时无线通信距离时,根据接收到的NB-IOT终端发送的定位信息确定定位终端的位置可以包括:
根据NB-IOT终端发送定位信息中的最小的即时无线通信距离确定定位终端的位置。
在本公开实施例中,根据接收到的NB-IOT终端发送的定位信息确定定位终端的位置可以包括:
确定接收到的所有定位信息中包含的NB-IOT终端的最小的即时无线通信距离,并确定发送包含所述最小的即时无线通信距离的定位信息的发送周期为定位周期;
这里,假设在三个发送周期内,定位终端接收到三个发送周期内可以和定位终端进行通信的NB-IOT终端发送的定位信息;其中,第一个发送周期,三个NB-IOT终端均以预先设定的最大发射功率发送定位信息,定位终端接收到来自三个NB-IOT终端的三份定位信息;第二个发送周期,三个NB-IOT终端均以预先设定的中等发射功率发送定位信息,定位终端接收到来自两个个NB-IOT终端的两份定位信息;第三个发送周期,三个NB-IOT终端均以预先设定的最小发射功率发送定位信息,定位终端未接收到定位信息;则定位信息中包含的NB-IOT终端的最小的即时无线通信距离在第二个发送周期,以第二个发送周期作为定位周期。
在确定的所述定位周期中,仅接收到一个NB-IOT终端发送的定位信息时,以所述定位信息中的NB-IOT终端的坐标作为所述定位终端的位置;图2为本公开实施例确定定位终端的位置的示意图,如图2所示,在第一个发送周期,定位终端接收到即时无线通信距离为D11的NB-IOT终端1的定位信息、即时无线通信距离为D21的NB-IOT终端2的定位信息、即时无线通信距离为D31的NB-IOT终端3的定位信息;在第二个发送周期,仅接收到即时无线通信距离为D12(D12小于D11、D21和D31)的NB-IOT终端1的定位信息;在第三个发送周期,未接收到定位信息,此时,将NB-IOT终端1的坐标确定为定位终端的位置。这里,本公开实施例还可以根据第一个发送周期的定位信息,确定三个NB-IOT终端的信号覆盖区域的交集,根据交集确定NB-IOT终端1的坐标与交点位置构成的扇形1,设定以NB-IOT 终端1的坐标为圆心,以D12为半径的圆中,与确定的扇形1的重叠区域;将重叠区域的中心,或以其他方式确定的重叠区域的一个点作为本公开实施例定位终端的位置。
本应用示例还可以根据即时无线通信距离和可通信的无线通信距离集合进行定位终端的定位;例如、NB-IOT终端的可通信的无线通信距离集合包括D1、D2和D3;假设定位终端根据接收到的定位信息确定仅接收到一个NB-IOT终端以即时无线通信距离D1和D2发送的定位信息,未接收到NB-IOT终端以D3发送的定位信息,则可以判断出定位终端位于以D2和D3作同心圆的圆环内。
在确定的所述定位周期中,接收到两个NB-IOT终端发送的定位信息时,根据所述定位信息中包含的每一个NB-IOT终端的坐标和即时无线通信距离,确定两个NB-IOT终端的信号覆盖区域的交集,以确定的所述交集的几何中心作为所述定位终端的位置;图3为本公开另一实施例确定定位终端的位置的示意图,如图3所示,在第一个发送周期,定位终端接收到即时无线通信距离为D11的NB-IOT终端1的定位信息、即时无线通信距离为D21的NB-IOT终端2的定位信息、即时无线通信距离为D31的NB-IOT终端3的定位信息;在第二个发送周期,接收到即时无线通信距离为D12(D12小于D11、D21和D31)的NB-IOT终端1和即时无线通信距离为D22(D22小于D11、D21和D31)的NB-IOT终端2的定位信息;在第三个发送周期,未接收到定位信息,此时,根据即时无线通信距离为D12的NB-IOT终端1和即时无线通信距离为D22的NB-IOT终端2的定位信息确定定位终端的位置。
在确定的所述定位周期中,接收到三个NB-IOT终端发送的定位信息时,根据所述定位信息中包含的每一个NB-IOT终端的坐标和即时无线通信距离,确定三个NB-IOT终端的信号覆盖区域的交集,以确定的交集的几何中心作为所述定位终端的位置。图4为本公开再一实施例确定定位终端的位置的示意图,如图4所示,在第一个发送周期,定位终端接收到即时无线通信距离为D11的NB-IOT终端1的定位信息、即时无线通信距离为D21的NB-IOT终端2的定位信息、即时无线通信距离为D31的NB-IOT终端3的 定位信息;在第二个发送周期和第三个发送周期,均未接收到定位信息,此时,根据即时无线通信距离为D11的NB-IOT终端1的定位信息、即时无线通信距离为D21的NB-IOT终端2的定位信息、即时无线通信距离为D31的NB-IOT终端3的定位信息确定定位终端的位置。例如、以三点法计算定位终端的位置。
上述确定定位终端的位置的方法为本公开实施例的示例性方法,本公开实施例还可以采用其他的方法,根据接收到的定位信息进行定位终端的位置的确定。
本公开实施例方法还可以包括:根据预先建立的区分信息区分每一个所述NB-IOT终端,并记录每一个所述NB-IOT终端的坐标。
本公开实施例可以定位终端或预先设置的服务器记录各NB-IOT终端的坐标,当对NB-IOT终端的坐标进行记录时,相当于将定位信息中NB-IOT终端的坐标预先存储在进行定位终端位置确定的装置上,包括定位终端自身或预先设置的服务器,当发送定位信息时,定位信息可以调整为包含NB-IOT终端的区分信息和即时无线通信距离。
本公开实施例还提供一种计算机存储介质,计算机存储介质中存储有计算机可执行指令,计算机可执行指令用于执行上述实现无线定位的方法。
本公开实施例还提供一种终端,包括:存储器和处理器;其中,
处理器被配置为执行存储器中的程序指令;
程序指令在处理器读取执行以下操作:
接收窄带物联网NB-IOT终端发送的定位信息;
根据接收到的定位信息确定定位终端的位置。
图5为本公开另一实施例实现无线定位的方法的流程图,如图5所示,包括:
步骤501、窄带物联网NB-IOT终端发送定位信息。
在本公开实施例中,在步骤501之前,还可以包括:
步骤500、确定NB-IOT终端的坐标和发送定位信息的发射功率,将确定的NB-IOT终端的坐标、对应于所述发射功率的即时无线通信距离、和/或可通信的无线通信距离集合作为定位信息。
在本公开实施例中,发送定位信息可以包括:
按照预设的发送周期以不同发射功率发送所述定位信息。
在本公开实施例中,发送定位信息可以包括:
以轮询的方式,按照预设的发送周期发送所述定位信息,具体包括:当NB-IOT终端的分布密度大于预设密度时,所有NB-IOT终端参照预设密度,采用轮询的方式发送定位信息,即NB-IOT终端没隔一段时间按照预设的发送周期进行定位信息的发送,发送一定时长后进入休眠。
本公开实施例还提供一种计算机存储介质,计算机存储介质中存储有计算机可执行指令,计算机可执行指令用于执行上述实现无线定位的方法。
图6为本公开实施例实现无线定位的装置的结构框图,如图6所示,包括:接收单元和定位单元;其中,
接收单元设置为:接收窄带物联网NB-IOT终端发送的定位信息;
在本公开实施例中,NB-IOT终端可以包括:
按照预设的几何分布设置的两个或两个以上NB-IOT终端;
其中,设置的所述两个或两个以上NB-IOT终端的分布密度大于或等于预设密度。
在本公开实施例中,接收单元可以设置为:接收可与所述定位终端进行无线通信的各NB-IOT终端,按照预设的发送周期发送的:NB-IOT终端的坐标、即时无线通信距离、和/或可通信的无线通信距离集合;
其中,所述NB-IOT终端的即时无线通信距离根据预先设定的NB-IOT终端的发射功率确定。
定位单元设置为:根据接收到的定位信息确定定位终端的位置。
本公开实施例装置可以设置在要定位的定位终端上,可以由定位终端自身实现位置的确定,也可以由定位单元与预先设定的服务器建立通信后,将定位信息发往服务器,服务器计算确定定位终端的位置后,再反馈给定位终端。
在本公开实施例中,定位单元可以设置为:
确定接收到的所有定位信息中包含的NB-IOT终端的最小的即时无线通信距离,并确定发送包含所述最小的即时无线通信距离的定位信息的发送周期为定位周期;
在确定的所述定位周期中,仅接收到一个NB-IOT终端发送的定位信息时,以所述定位信息中的NB-IOT终端的坐标作为所述定位终端的位置;
在确定的所述定位周期中,接收到两个NB-IOT终端发送的定位信息时,根据所述定位信息中包含的每一个NB-IOT终端的坐标和即时无线通信距离,确定两个NB-IOT终端的信号覆盖区域的交集,以确定的所述交集的几何中心作为所述定位终端的位置;
在确定的所述定位周期中,接收到三个NB-IOT终端发送的定位信息时,根据所述定位信息中包含的每一个NB-IOT终端的坐标和即时无线通信距离,确定三个NB-IOT终端的信号覆盖区域的交集,以确定的交集的几何中心作为所述定位终端的位置。
本公开实施例装置还可以包括记录单元,设置为根据预先建立的区分信息区分每一个所述NB-IOT终端,并记录每一个所述NB-IOT终端的坐标。
图7为本公开实施例实现无线定位的NB-IOT终端的结构框图,如图7所示,包括:发送单元,设置为:发送定位信息。
所述NB-IOT终端还可以包括确定单元,设置为确定NB-IOT终端的坐标和发送定位信息的发射功率,将确定的NB-IOT终端的坐标、对应于所述发射功率的即时无线通信距离、和/或可通信的无线通信距离集合作为定位信息。
在本公开实施例中,发送单元可以设置为:按照预设的发送周期以不同发射功率发送所述定位信息。
以下通过应用示例对本公开实施例方法进行清楚详细的说明,应用示例仅用于陈述本公开,并不用于限定本公开的保护范围。
应用示例
图8为本公开应用示例的方法流程图,如图8所示,包括:
步骤800、部署NB-IOT终端;部署NB-IOT终端包括根据场景不同按照预设的几何分布设置NB-IOT终端,并确定设置的NB-IOT终端的坐标。例如,本应用示例将NB-IOT终端部署为进行无线定位的热点;在部署热点时,可以将热点的坐标上传到定位终端或预先设定的服务器;为区分各个热点,为各个热点设置相应的区分标识或编码作为区分信息;本应用示例也可以不上传坐标,将坐标作为定位信息的一部分,在可以与定位终端通信时,将包含坐标的定位信息直接发送给定位终端。由于NB-IOT终端一旦部署,位置一般不变,所以本应用示例不存在由于热点位置变化而影响准确度的问题。当NB-IOT终端被部署用于不同场景内定位终端的定位时,本领域技术人员可以根据场景的不同分析设置NB-IOT终端之间的间距。例如、可以设置在隧道中用于无线定位的NB-IOT终端的间距小于隧道宽度;可以在建筑物密度区域设置较多的NB-IOT终端,以保证定位终端的定位精度;对部分仅要低精度定位的区域设置分布密度较低的NB-IOT终端。本应用示例可以根据精度要求可以由本领域技术人员确定NB-IOT终端的分布密度,假设要达到定位精度要求的NB-IOT终端的分布密度为预设密度,当NB-IOT终端的分布密度等于预设密度时,可以参照无线定位技术,确定NB-IOT终端发送定位信息的频率,即设定NB-IOT终端按照发送周期发送定位信息;当NB-IOT终端的分布密度大于预设密度时,按照轮询方式从所有NB-IOT终端中选择部分NB-IOT终端进行定位信息的发送,发送定位信息的NB-IOT终端的分布密度等于预设密度;即按照预先设定的选择策略,每一次选择一部分NB-IOT终端进行定位信息的发送,NB-IOT终端按照选择策略进行工作时,可以避免网络中的NB-IOT终端长时间工作,提升无线定位系统的使用时长;此外,通过NB-IOT终端的选择可以避免过多NB-IOT终端同时工作时出现信号干扰,提高定位质量。
步骤801、设定NB-IOT终端的即时无线通信距离;本应用示例根据NB-IOT终端的电量、功耗等设定NB-IOT终端的最小即时无线通信距离和最大即时无线通信距离;即通过设定NB-IOT终端的发射距离对NB-IOT终端的即时无线通信距离进行设定;参照本领域已知技术及定位精度需求,可以设置NB-IOT终端的发射距离为3~5米;另外,本应用示例还可以根据实际应用场景进行分析调整。由于一个NB-IOT网络的扇区能够容纳10万个NB-IOT终端,因此,即便每个NB-IOT终端只有3~5米的发射距离,其扇区内的NB-IOT终端也能够覆盖整个扇区。当NB-IOT终端部署量越大,可以实现的定位精度越高。本应用示例根据本领域已知技术中的信号衰减模型或实地测量确定NB-IOT终端的发射功率与即时无线通信距离的关系;可以包括:根据闹市区、居民区、建筑物密集区、郊外、高速公路和隧道等场景的信号衰减模型确定NB-IOT终端的发射功率与即时无线通信距离的关系。
步骤802、NB-IOT终端发送定位信息;其中,定位信息可以包括:NB-IOT终端的坐标、即时无线通信距离、和/或可通信的无线通信距离集合即时无线通信距离。
本应用实施例可以设置NB-IOT终端按照预设的发送周期发送定位信息;可以周期性地按照不同的发射功率发送定位信息,不同发射功率根据即时无线通信距离要求设定,即时无线通信距离的设定用于缩小定位终端的定位范围,提高定位精度;本应用示例可以通过控制发射功率实现对NB-IOT终端的即时无线通信距离的控制,假设设置NB-IOT终端最大的即时无线通信距离D米,为每隔T秒(T秒可以等于发送周期)缩小d米,达到缩小定位范围的目的;则第一个发送周期发送的定位信息中,NB-IOT终端的即时无线通信距离为D米;第二个发送周期发送的定位信息中,NB-IOT终端的即时无线通信距离为(D-d)米;第三个发送周期发送的定位信息中,NB-IOT终端的即时无线通信距离为(D-2d)米;即时无线通信距离。例如、以NB-IOT终端即时无线通信距离为5米、4米、3米的顺序,按照预设的发送周期发送定位信息。当然,本应用示例每个T秒缩小的即时无线通信距离也可以不同,例如、第二个发送周期较第一个发送周期,即时无线通信距离缩小d1米;第三个发送周期较第二个发送周期,即时无线通信距离缩小d2米;第 四个发送周期较第三个发送周期,即时无线通信距离缩小d3米;d1>d2>d3。
NB-IOT终端的发送周期可以参照已知的无线定位技术实现,即NB-IOT终端发送定位信息的频率可以参照无线定位技术中设定的需要定位信息的频率大小进行设定;进行定位终端的定位时,接收多少个发送周期的定位信息也可以参照本领域已知技术进行设定;本应用示例可以参照按照不同的发射功率发送定位信息的周期大小进行调整,例如,以NB-IOT终端按照不同的发射功率进行一个周期的定位信息的发送的总时长,作为对定位终端进行定位的一个单位时长。
步骤803、根据接收到的定位信息进行定位终端的定位;本应用示例可以由定位终端自身根据定位信息实现定位,也可以由定位终端将定位信息发送预先设定的服务器后,由服务器确定定位终端的位置后,再反馈给定位终端。
本应用示例NB-IOT终端仅用于实现无线定位时,可以设定NB-IOT终端仅进行单向广播通信,通过该设定可以避免NB-IOT终端与其他通信设备进行链接。本应用示例,NB-IOT终端可以采用全向型天线,也可以是定向型天线。如果是定向型天线,可以将其天线的发射角度写入定位信息,以缩小定位范围,提高定位精度。
本应用示例可以应用于不同的定位场景,例如、应用于高速公路的导航,为了保证定位质量,可以将一部分定位信息作为预先打包存储到定位终端上,例如、通过区分信息区分部署的每一个NB-IOT终端后,建立NB-IOT终端的区分信息和NB-IOT终端的坐标的对应关系后,将该部分定位信息预先保存到定位终端,定位终端进行定位时,直接确定建立通信连接的NB-IOT终端,根据确定建立通信连接的NB-IOT终端进行定位;另外,针对不同场景,实现定位的方法可以区分,例如、在高速公路,NB-IOT终端可以只采用固定的发送功率,即以固定的即时无线通信距离进行定位信息的发送;在市内建筑物或行人较多区域,可以设置NB-IOT终端按照多种发射功率发送定位信息,以缩小定位范围,提高定位精度。
本领域普通技术人员可以理解,上文中所公开方法中的全部或某些步 骤、系统、装置中的功能模块/单元可以被实施为软件、固件、硬件及其适当的组合。在硬件实施方式中,在以上描述中提及的功能模块/单元之间的划分不一定对应于物理组件的划分;例如,一个物理组件可以具有多个功能,或者一个功能或步骤可以由若干物理组件合作执行。某些组件或所有组件可以被实施为由处理器,如数字信号处理器或微处理器执行的软件,或者被实施为硬件,或者被实施为集成电路,如专用集成电路。这样的软件可以分布在计算机可读介质上,计算机可读介质可以包括计算机存储介质(或非暂时性介质)和通信介质(或暂时性介质)。如本领域普通技术人员公知的,术语计算机存储介质包括在用于存储信息(诸如计算机可读指令、数据结构、程序模块或其他数据)的任何方法或技术中实施的易失性和非易失性、可移除和不可移除介质。计算机存储介质包括但不限于RAM、ROM、EEPROM、闪存或其他存储器技术、CD-ROM、数字多功能盘(DVD)或其他光盘存储、磁盒、磁带、磁盘存储或其他磁存储装置、或者可以用于存储期望的信息并且可以被计算机访问的任何其他的介质。此外,本领域普通技术人员公知的是,通信介质通常包含计算机可读指令、数据结构、程序模块或者诸如载波或其他传输机制之类的调制数据信号中的其他数据,并且可包括任何信息递送介质。
虽然本公开所揭露的实施方式如上,但所述的内容仅为便于理解本公开而采用的实施方式,并非用以限定本公开。任何本公开所属领域内的技术人员,在不脱离本公开所揭露的精神和范围的前提下,可以在实施的形式及细节上进行任何的修改与变化,但本公开的专利保护范围,仍须以所附的权利要求书所界定的范围为准。
工业实用性
本公开的方案包括:接收窄带物联网NB-IOT终端发送的定位信息;根据接收到的定位信息确定定位终端的位置。本公开实施例提升了无线定位的定位效果,避免了出现使用WiFi和蓝牙作为热点出现的热点信息问题。

Claims (22)

  1. 一种实现无线定位的方法,包括:
    接收窄带物联网NB-IOT终端发送的定位信息;
    根据接收到的定位信息确定定位终端的位置。
  2. 根据权利要求1所述的方法,其中,所述NB-IOT终端包括:
    按照预设的几何分布设置的两个或两个以上NB-IOT终端;
    其中,设置的所述两个或两个以上NB-IOT终端的分布密度大于或等于预设密度。
  3. 根据权利要求2所述的方法,其中,设置的所述两个或两个以上NB-IOT终端的分布密度大于所述预设密度时,所述方法还包括:
    以轮询方式从设置的所有NB-IOT终端中选择满足所述预设密度的NB-IOT终端,以接收选择的所述NB-IOT终端发送的所述定位信息。
  4. 根据权利要求1~3任一项所述的方法,其中,所述接收NB-IOT终端发送的定位信息包括:
    接收与所述定位终端进行无线通信的各NB-IOT终端,按照预设的发送周期发送的:NB-IOT终端的坐标、即时无线通信距离、可通信的无线通信距离集合中的至少一项;
    其中,所述NB-IOT终端的即时无线通信距离根据预先设定的NB-IOT终端的发射功率确定。
  5. 根据权利要求4所述的方法,其中,当接收到的定位信息中包含同一个NB-IOT终端的不同的即时无线通信距离时,所述根据接收到的NB-IOT终端发送的定位信息确定定位终端的位置包括:
    根据NB-IOT终端发送的定位信息中的最小的即时无线通信距离确定定位终端的位置。
  6. 根据权利要求4所述的方法,其中,所述根据接收到的NB-IOT终端发送的定位信息确定定位终端的位置包括:
    确定接收到的所有定位信息中包含的NB-IOT终端的最小的即时无线通 信距离,并确定发送包含所述最小的即时无线通信距离的定位信息的发送周期为定位周期;
    在确定的所述定位周期中,仅接收到一个NB-IOT终端发送的定位信息时,以所述定位信息中的NB-IOT终端的坐标作为所述定位终端的位置;在确定的所述定位周期中,接收到两个NB-IOT终端发送的定位信息时,根据所述定位信息中包含的每一个NB-IOT终端的坐标和即时无线通信距离,确定两个NB-IOT终端的信号覆盖区域的交集,以确定的所述交集的几何中心作为所述定位终端的位置;
    在确定的所述定位周期中,接收到三个NB-IOT终端发送的定位信息时,根据所述定位信息中包含的每一个NB-IOT终端的坐标和即时无线通信距离,确定三个NB-IOT终端的信号覆盖区域的交集,以确定的交集的几何中心作为所述定位终端的位置。
  7. 根据权利要求1~3任一项所述的方法,其中,所述方法还包括:根据预先建立的区分信息区分每一个所述NB-IOT终端,并记录每一个所述NB-IOT终端的坐标。
  8. 一种实现无线定位的方法,包括:
    窄带物联网NB-IOT终端发送定位信息。
  9. 根据权利要求8所述的方法,其中,在所述NB-IOT终端发送定位信息之前,该方法还包括:
    确定NB-IOT终端的坐标和发送定位信息的发射功率,将确定的NB-IOT终端的坐标、对应于所述发射功率的即时无线通信距离、可通信的无线通信距离集合中的至少一项作为定位信息。
  10. 根据权利要求8或9所述的方法,其中,所述发送定位信息包括:
    按照预设的发送周期以不同发射功率发送所述定位信息。
  11. 根据权利要求8或9所述的方法,其中,所述发送定位信息包括:
    以轮询的方式,按照预设的发送周期发送所述定位信息。
  12. 一种实现无线定位的装置,包括:接收单元和定位单元;其中,
    所述接收单元设置为:接收窄带物联网NB-IOT终端发送的定位信息;
    所述定位单元设置为:根据接收到的定位信息确定定位终端的位置。
  13. 根据权利要求12所述的装置,其中,所述NB-IOT终端包括:
    按照预设的几何分布设置的两个或两个以上NB-IOT终端;
    其中,设置的所述两个或两个以上NB-IOT终端的分布密度大于或等于预设密度。
  14. 根据权利要求12或13所述的装置,其中,所述接收单元设置为:接收与所述定位终端进行无线通信的各NB-IOT终端,按照预设的发送周期发送的:NB-IOT终端的坐标、即时无线通信距离、可通信的无线通信距离集合中的至少一项;
    其中,所述NB-IOT终端的即时无线通信距离根据预先设定的NB-IOT终端的发射功率确定。
  15. 根据权利要求14所述的装置,其中,所述定位单元设置为:
    确定接收到的所有定位信息中包含的NB-IOT终端的最小的即时无线通信距离,并确定发送包含所述最小的即时无线通信距离的定位信息的发送周期为定位周期;
    在确定的所述定位周期中,仅接收到一个NB-IOT终端发送的定位信息时,以所述定位信息中的NB-IOT终端的坐标作为所述定位终端的位置;
    在确定的所述定位周期中,接收到两个NB-IOT终端发送的定位信息时,根据所述定位信息中包含的每一个NB-IOT终端的坐标和即时无线通信距离,确定两个NB-IOT终端的信号覆盖区域的交集,以确定的所述交集的几何中心作为所述定位终端的位置;
    在确定的所述定位周期中,接收到三个NB-IOT终端发送的定位信息时,根据所述定位信息中包含的每一个NB-IOT终端的坐标和即时无线通信距离,确定三个NB-IOT终端的信号覆盖区域的交集,以确定的交集的几何中心作为所述定位终端的位置。
  16. 根据权利要求12或13所述的装置,其中,所述装置还包括记录单元,设置为根据预先建立的区分信息区分每一个所述NB-IOT终端,并记录 每一个所述NB-IOT终端的坐标。
  17. 一种实现无线定位的窄带物联网NB-IOT终端,包括:发送单元,设置为:发送定位信息。
  18. 根据权利要求17所述的NB-IOT终端,其中,所述NB-IOT终端还包括确定单元,设置为确定NB-IOT终端的坐标和发送定位信息的发射功率,将确定的NB-IOT终端的坐标、对应于所述发射功率的即时无线通信距离、可通信的无线通信距离集合中的至少一项作为所述定位信息。
  19. 根据权利要求18或19所述的NB-IOT终端,其中,所述发送单元设置为:按照预设的发送周期以不同发射功率发送所述定位信息。
  20. 一种计算机存储介质,计算机存储介质中存储有计算机可执行指令,计算机可执行指令用于执行如权利要求1~7任一项所述实现无线定位的方法。
  21. 一种计算机存储介质,计算机存储介质中存储有计算机可执行指令,计算机可执行指令用于执行如权利要求8~11任一项所述实现无线定位的方法。
  22. 一种终端,包括:存储器和处理器;其中,
    处理器被配置为执行存储器中的程序指令;
    程序指令在处理器读取执行以下操作:
    接收窄带物联网NB-IOT终端发送的定位信息;
    根据接收到的定位信息确定定位终端的位置。
PCT/CN2018/086361 2017-08-21 2018-05-10 一种实现无线定位的方法、装置及窄带物联网终端 WO2019037473A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710718946.5A CN109429169A (zh) 2017-08-21 2017-08-21 一种实现无线定位的方法、装置及窄带物联网终端
CN201710718946.5 2017-08-21

Publications (1)

Publication Number Publication Date
WO2019037473A1 true WO2019037473A1 (zh) 2019-02-28

Family

ID=65439934

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/086361 WO2019037473A1 (zh) 2017-08-21 2018-05-10 一种实现无线定位的方法、装置及窄带物联网终端

Country Status (2)

Country Link
CN (1) CN109429169A (zh)
WO (1) WO2019037473A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101364915A (zh) * 2008-09-04 2009-02-11 南昌大学 一种基于三跳环带的传感器网络定位方法
US20090128412A1 (en) * 2007-11-15 2009-05-21 Ryu Je Hyok Method and system for locating sensor node in sensor network using distance determining algorithm
CN101477187A (zh) * 2009-01-15 2009-07-08 山东大学 一种三维空间无线传感器网络非测距定位系统和方法
CN102164408A (zh) * 2011-03-16 2011-08-24 河海大学常州校区 一种基于传输延迟的无线传感器网络环形定位方法及其改进方法
CN102685676A (zh) * 2012-03-26 2012-09-19 河海大学 一种无线传感器网络节点三维定位方法
CN202602702U (zh) * 2012-03-15 2012-12-12 上海亿道信息技术有限公司 带gps定位功能的物联网终端节点装置
CN105635974A (zh) * 2016-03-17 2016-06-01 南京邮电大学 一种基于方向决策的动态路径节点定位方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101795466A (zh) * 2006-11-02 2010-08-04 西安西谷微功率数据技术有限责任公司 无线微功率网络定位系统及其定位方法
CN102638762B (zh) * 2012-05-10 2015-01-28 南京邮电大学 一种群移动通信系统中的节点定位及拓扑更新方法
CN103517406B (zh) * 2012-06-27 2016-09-28 华为技术有限公司 一种目标物地理位置的计算方法及设备
CN103338514B (zh) * 2013-07-02 2016-06-29 东南大学 大规模分布式无线传感器网络的分级几何约束定位方法
CN103607770B (zh) * 2013-11-14 2016-08-17 南京邮电大学 一种无线传感器网络定位中高精度距离估计方法
CN108370501B (zh) * 2015-12-15 2021-06-04 索尼公司 用于查找rfid标签的方法、装置和系统
CN107645771B (zh) * 2016-07-22 2020-08-14 电信科学技术研究院 一种定位方法及装置
CN106408836A (zh) * 2016-10-21 2017-02-15 上海斐讯数据通信技术有限公司 森林火警报警终端及系统
CN106683240A (zh) * 2016-12-01 2017-05-17 珠海晶通科技有限公司 基于低功耗广域网lpwan的人员定位安全管理系统
CN106650847B (zh) * 2016-12-07 2023-10-13 厦门汇博龙芯电子科技有限公司 窄带物联网智慧iot标签数据采集及定位综合管理系统
CN206292824U (zh) * 2016-12-07 2017-06-30 福建汇博物联科技有限公司 禽畜放养环境下的数据采集与定位iot锚点装置
CN106714300A (zh) * 2016-12-16 2017-05-24 青岛安然物联网科技有限公司 UWB和ZigBee综合精确定位系统及其工作方法
CN106658712B (zh) * 2017-01-17 2020-11-10 深圳市亿兆互联技术有限公司 一种通信终端定位方法及系统
CN106595775A (zh) * 2017-02-23 2017-04-26 福建强闽信息科技有限公司 海岸带生态环境动态监测与预警系统的实现方法及其装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090128412A1 (en) * 2007-11-15 2009-05-21 Ryu Je Hyok Method and system for locating sensor node in sensor network using distance determining algorithm
CN101364915A (zh) * 2008-09-04 2009-02-11 南昌大学 一种基于三跳环带的传感器网络定位方法
CN101477187A (zh) * 2009-01-15 2009-07-08 山东大学 一种三维空间无线传感器网络非测距定位系统和方法
CN102164408A (zh) * 2011-03-16 2011-08-24 河海大学常州校区 一种基于传输延迟的无线传感器网络环形定位方法及其改进方法
CN202602702U (zh) * 2012-03-15 2012-12-12 上海亿道信息技术有限公司 带gps定位功能的物联网终端节点装置
CN102685676A (zh) * 2012-03-26 2012-09-19 河海大学 一种无线传感器网络节点三维定位方法
CN105635974A (zh) * 2016-03-17 2016-06-01 南京邮电大学 一种基于方向决策的动态路径节点定位方法

Also Published As

Publication number Publication date
CN109429169A (zh) 2019-03-05

Similar Documents

Publication Publication Date Title
EP3033632B9 (en) 3d sectorized path-loss models for 3d positioning of mobile terminals
US9506761B2 (en) Method and apparatus for indoor position tagging
JP5890584B2 (ja) モバイル機器の位置決めのためのピア機器の使用
CN103188791B (zh) 一种定位方法、客户端及定位系统
US20180091939A1 (en) Geofenced access point measurement data collection
US20160139236A1 (en) Differentiated station location
JP5816305B2 (ja) 将来のナビゲーション動作への予想寄与に基づく、移動局へのワイヤレス送信機アルマナック情報の提供
KR100848139B1 (ko) 근접한 무선 단말 간의 네트워크 자동 설정 장치 및 그 방법
TW201635730A (zh) 分配及利用用於位置判定操作之天線資訊
KR20090034711A (ko) 무선 개인영역 네트워크의 mac 계층을 이용한 노드의위치측정 방법
CN105052215A (zh) 移动装置功率管理同时提供位置服务
CN103517204A (zh) 一种移动终端的定位方法和设备
CN109073731A (zh) 自动地确定有限的卫星覆盖的区域中的信号源的位置
JP7288589B2 (ja) 協調測位
US20230319504A1 (en) Indoor map generation using radio frequency sensing
WO2015150344A1 (en) A wireless access point, a transmitter-implemented method, a mobile user device and a user-implemented method for localization
US20160313448A1 (en) In-band pseudolite wireless positioning method, system and device
US9237544B2 (en) Methods and arrangements to communicate environmental information for localization
CN103763731B (zh) 定位检测方法及装置
Achroufene RSSI-based geometric localization in wireless sensor networks
US20220322276A1 (en) Autonomous geographical location determination using mesh network
KR102052519B1 (ko) 저전력 블루투스 기반의 실내 측위 방법 및 장치
KR102518422B1 (ko) 위치 측정 방법, 장치 및 시스템
WO2019037473A1 (zh) 一种实现无线定位的方法、装置及窄带物联网终端
US20220070688A1 (en) Adaptation of a beam sweep in a communications network

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18847840

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18847840

Country of ref document: EP

Kind code of ref document: A1