WO2019037419A1 - 卫星通信信道资源分配方法 - Google Patents

卫星通信信道资源分配方法 Download PDF

Info

Publication number
WO2019037419A1
WO2019037419A1 PCT/CN2018/079967 CN2018079967W WO2019037419A1 WO 2019037419 A1 WO2019037419 A1 WO 2019037419A1 CN 2018079967 W CN2018079967 W CN 2018079967W WO 2019037419 A1 WO2019037419 A1 WO 2019037419A1
Authority
WO
WIPO (PCT)
Prior art keywords
channel resource
satellite
earth station
noise temperature
communication link
Prior art date
Application number
PCT/CN2018/079967
Other languages
English (en)
French (fr)
Inventor
樊鹏程
刘冰
冯艺芝
吴晓文
Original Assignee
深圳市华讯方舟空间信息产业科技有限公司
华讯方舟科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华讯方舟空间信息产业科技有限公司, 华讯方舟科技有限公司 filed Critical 深圳市华讯方舟空间信息产业科技有限公司
Publication of WO2019037419A1 publication Critical patent/WO2019037419A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/1851Systems using a satellite or space-based relay
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/541Allocation or scheduling criteria for wireless resources based on quality criteria using the level of interference

Definitions

  • the present invention relates to the field of satellite communication technologies, and in particular, to a satellite communication channel resource allocation method.
  • Satellite communication refers to the communication between radiocommunication stations on the Earth (including the ground and the lower atmosphere) using satellites as relays.
  • the satellite communication system consists of two parts, a satellite and an earth station. Satellite communication has the advantages of large communication range, high reliability, fast opening circuit, multiple access communication, and multiple access.
  • the communication capability of the satellite link and the carrier parameters of the earth station (such as modulation mode, coding mode, demodulation threshold, etc.), antenna parameters (antenna aperture, upconverter amplifier power, etc.), satellite transponder parameters (effective omnidirectional of the transponder) Radiation power, reception quality factors, etc. are closely related. Due to the particularity of satellite communication, the carrier parameters and antenna parameters of the earth station may be different.
  • the parameters of the satellite transponders at the locations of the earth stations may also be different, which may cause differences in the communication capabilities of the links of the earth stations.
  • the traditional satellite communication channel resource allocation method only considers the success rate of resource allocation or resource utilization, and does not consider the communication capability of the actual communication link. If the communication capability of the communication link is insufficient, the communication will fail even if the channel resource allocation is successful. Even if the communication capability of each earth station at a fixed location is considered and configured in advance, for the earth stations on mobile carriers such as airplanes, high-speed rails, ships, etc., the satellite transponder parameters at various locations in the motion area (such as the effective omnidirectional radiated power of the satellite transponder) There may be differences between the quality factor and the receiving quality factor, and even a large change may occur, causing a change in the communication capability of the communication link. The channel resource allocation may be successful and the communication may fail. The channel resource allocation is successful, and the communication failure condition may cause invalid use of resources, reduce allocation efficiency, and even affect system stability and practicability.
  • a satellite communication channel resource allocation method based on a satellite and an earth station in communication with the satellite comprising:
  • the maximum communicable channel resource is a channel resource when the signal strength received by the earth station is a demodulation threshold
  • the required channel resource is allocated from the idle channel resource to the communication link.
  • the above method for allocating satellite communication channel resources can acquire required channel resources, maximum communicable channel resources and idle channel resources of the communication link, and comprehensively analyze the maximum communicable channel resources, idle channel resources, and required channel resources of the current communication link.
  • the relationship between the sizes and the allocation of appropriate allocation strategies can ensure the validity of channel resource allocation, effectively avoid the problem of successful channel resource allocation but communication failure, improve the efficiency of resource allocation, system reliability and practicability.
  • the required channel resources for the communication link between the satellite and the earth station are obtained, including:
  • the acquiring the maximum communicable channel resource of the communication link includes:
  • carrier parameters of the earth station include earth station quality factors, modulation factors, coding rates, and demodulation thresholds;
  • the satellite transponder parameters include saturation flux density, linearity Input fallback value, satellite transponder channel resource, satellite transponder quality factor, effective isotropic radiated power, linear output backoff value;
  • the equal amount relationship is:
  • BW Xpd is the largest communicable channel resource;
  • is the modulation factor;
  • is the coding rate;
  • a is the first coefficient;
  • b is the second coefficient;
  • the uplink and downlink integrated carrier power to noise temperature ratio is obtained according to a first preset formula:
  • the uplink and downlink integrated carrier power to noise temperature ratio is obtained according to a second preset formula:
  • the first correspondence between the uplink carrier power to noise temperature ratio and the maximum communicable channel resource is obtained according to a carrier parameter of the earth station and a satellite transponder parameter:
  • [SFD] is the saturation flux density of the satellite transponder
  • [IBO Xpd ] is the linear input backoff value of the satellite transponder
  • BW C is the channel resource of the satellite transponder
  • is the optical wavelength
  • [EIRP S ] is the effective omnidirectional radiated power of the satellite transponder
  • [OBO Xpd ] is the linear output backoff value of the satellite transponder
  • [LD] is the downlink transmission loss
  • the quality factor for the earth station is the saturation flux density of the satellite transponder
  • [IBO Xpd ] is the linear input backoff value of the satellite transponder
  • BW C is the channel resource of the satellite transponder
  • is the optical wavelength
  • [EIRP S ] is the effective omnidirectional radiated power of the satellite transponder
  • [OBO Xpd ] is the linear output backoff value of the
  • the method further includes:
  • the required channel resource is allocated from the idle channel resource to the earth station.
  • the method further includes:
  • the communication link After the communication link allocates the required channel resources, the communication link is marked as an allocated state.
  • the method further includes:
  • 1 is a flow chart of a satellite communication channel resource allocation method in an embodiment
  • FIG. 2 is a flow diagram of obtaining a maximum communicable channel resource for the communication link in one embodiment.
  • a satellite communication channel resource allocation method based on a satellite and an earth station communicating with the satellite comprising:
  • Step S102 Acquire a required channel resource of a communication link between the satellite and the earth station.
  • the required channel resources for the communication link between the satellite and the earth station are obtained, wherein the required channel resources can also be understood as occupying the bandwidth.
  • the required channel resource may be obtained by a preset algorithm, or may be obtained by a resource allocation request sent by the earth station.
  • the required channel resources may be obtained based on a data communication rate, a coding rate, a modulation factor, and a roll-off factor of the communication link.
  • the required channel resources can be obtained according to the following formula:
  • the data communication rate is the amount of information (bits) transmitted per second in the channel is bit/s.
  • the coding rate is the efficiency of channel coding; the coding rate is equal to the number of useful bits divided by the total number of bits.
  • the modulation factor is the amount of information for each symbol load; it can be obtained according to the parameter modulation mode set by the earth station equipment (satellite modem), that is, the modulation factors of BPSK, QPSK, 8PSK, 16QAM, 32APSK and 64QAM are 1, 2, 3, respectively. 4, 5, 6.
  • the data communication rate, coding rate, and modulation factor are all parameters set by the earth station equipment (satellite modem). That is, the required channel resources can be directly obtained through the parameters of the satellite modem of the earth station equipment.
  • the required channel resources may also be obtained by allocating resource request information.
  • the earth station requests communication, that is, when the resource allocation request information including the field of the channel resource required for the current communication is transmitted to the satellite communication network management software (the main function is to manage and configure the entire system of satellite communication, including the work of channel resource allocation)
  • the earth station equipment directly calculates the required channel resources by the above formula and fills in the field.
  • all the above parameters can also be sent to the network management software as a field, which is calculated by the network management software.
  • Step S104 Acquire a maximum communicable channel resource of the communication link, where the maximum communicable channel resource is a channel resource when the signal strength received by the earth station is a demodulation threshold.
  • the maximum communicable channel resource of the communication link is derived through a preset algorithm of the communication link.
  • the maximum communicable channel resource is the maximum communication capability of the communication link, that is, the maximum communicable channel resource is the channel resource when the signal strength received by the earth receiving station is equal to the demodulation threshold.
  • the carrier parameters of the earth station include earth station quality factors, modulation factors, coding rates, and demodulation thresholds.
  • the satellite transponder parameters include saturation flux density, linear input backoff value, satellite transponder channel resource, satellite transponder quality factor, effective isotropic radiated power, linear output backoff value, and the like.
  • Step S106 Acquire idle channel resources of the communication link.
  • the satellite network management software is responsible for allocating communication resources. After each successful allocation of the communication link, it is marked as allocated channel resources, and then the idle channel resources can be directly obtained according to the allocated channel resources.
  • Step S108 When the required channel resource is less than or equal to the maximum communicable channel resource, allocate the required channel resource from the idle channel resource to the communication link.
  • the above method for allocating satellite communication channel resources can acquire required channel resources, maximum communicable channel resources and idle channel resources of the communication link, and comprehensively analyze the maximum communicable channel resources, idle channel resources, and required channel resources of the current communication link.
  • the relationship between the sizes and the allocation of appropriate allocation strategies can ensure the validity of channel resource allocation, effectively avoid the problem of successful channel resource allocation but communication failure, improve the efficiency of resource allocation, system reliability and practicability.
  • the acquiring the maximum communicable channel resource of the communication link includes the following steps:
  • Step S202 Acquire carrier parameters and satellite transponder parameters of the earth station.
  • the carrier parameters of the earth station include quality factors, modulation factors, coding rates, and demodulation thresholds of the earth station;
  • the satellite transponder parameters include saturation flux density, linear input backoff value, satellite transponder channel resources, and satellite forwarding.
  • Quality factor effective isotropic radiation power, linear output back-off value.
  • Step S204 Establish an equal relationship between the system margin and the carrier parameters and satellite transponder parameters.
  • BW Xpd is the largest communicable channel resource;
  • is the modulation factor;
  • is the coding rate;
  • a is the first coefficient;
  • b is the second coefficient;
  • the first coefficient a is 228.6 and the second coefficient b is 1.2, ie,
  • Step S206 When the system margin is equal to zero, the maximum communicable channel resource is obtained according to the equal relationship.
  • the maximum communicable channel resource is the channel resource when the signal strength received by the earth receiving station is equal to the demodulation threshold.
  • the maximum communicable channel resource BW Xpd can be obtained.
  • the uplink and downlink integrated carrier power to noise temperature ratio may be obtained according to the first preset formula:
  • the uplink and downlink integrated carrier power to noise temperature ratio may also be obtained according to a second preset formula:
  • uplink carrier power to noise temperature ratio Due to uplink carrier power to noise temperature ratio And downlink carrier power to noise temperature ratio It can be represented by the carrier parameters of the earth station, the satellite transponder parameters, and the maximum communicable channel resource BW Xpd .
  • the first correspondence between the uplink carrier power to noise temperature ratio and the maximum communicable channel resource is obtained according to the carrier parameter of the earth station and the satellite transponder parameter:
  • [SFD] is the saturation flux density of the satellite transponder
  • [IBO Xpd ] is the linear input backoff value of the satellite transponder
  • BW C is the channel resource of the satellite transponder
  • is the optical wavelength
  • [EIRP S ] is the effective omnidirectional radiated power of the satellite transponder
  • [OBO Xpd ] is the linear output backoff value of the satellite transponder
  • [LD] is the downlink transmission loss
  • the quality factor for the earth station That is, the uplink carrier power to noise temperature ratio And downlink carrier power to noise temperature ratio Both can be represented by an unknown amount containing the maximum communicable channel resource BW Xpd .
  • the maximum communicable channel resource BW Xpd can also be made into the required channel resource BW C through an equal relationship.
  • the system margin is directly calculated. When the system margin is greater than or equal to zero, the required channel resources are directly allocated from the idle channel resources to the communication link.
  • the satellite communication frequency band is a rainband-sensitive communication frequency band such as a Ku-band or a Ka-band
  • the uplink carrier power-to-noise temperature ratio is obtained.
  • downlink carrier power to noise temperature ratio In the process, it is necessary to consider the rain attenuation. Since the rain attenuation will increase the noise temperature variation of the receiving antenna, G RS /T S , G RE /T E may also change.
  • rain attenuation refers to the attenuation caused by electric waves entering the rain layer. It includes the attenuation caused by the absorption of rain particles and the attenuation caused by the scattering of rain particles. The attenuation caused by the absorption of rain particles is caused by the dielectric loss of the rain particles. The attenuation caused by the scattering of rain particles is It is caused by the reflection of the rain particles when the electric wave hits the rain particles.
  • the method for allocating a satellite communication channel resource further includes the step of determining whether the required channel resource is smaller than the idle channel resource.
  • the required channel resource is allocated from the idle channel resource to the earth station.
  • the required channel resource is larger than the idle channel resource, the idle channel resource is insufficient, and the information that the allocation fails is fed back.
  • the satellite communication channel resource allocation method further includes the step of changing a resource allocation policy and allocating resources according to the maximum communicable channel resource when the required channel resource is greater than a maximum communicable channel resource.
  • the method for allocating a satellite communication channel resource further includes the step of marking the communication link as an allocated state after the communication link allocates the required channel resource.

Abstract

本发明涉及一种卫星通信信道资源分配方法。分配方法包括:获取所述卫星与地球站之间通信链路的所需信道资源;获取所述通信链路的最大可通信信道资源,所述最大可通信信道资源为所述地球站接收的信号强度为解调门限时的信道资源;获取所述通信链路的空闲信道资源;当所述所需信道资源小于等于最大可通信信道资源时,从所述空闲信道资源中分配所述所需信道资源给所述通信链路。该分配方法综合分析当前通信链路的最大可通信信道资源、空闲信道资源、所需信道资源之间的大小关系,选择合适的分配策略对其进行分配,能够保证信道资源分配的有效性,有效避免信道资源分配成功但通信失败的问题,提高资源分配的效率和系统可靠性、实用性。

Description

卫星通信信道资源分配方法 技术领域
本发明涉及卫星通信技术领域,特别是涉及卫星通信信道资源分配方法。
背景技术
卫星通信是指地球上(包括地面和低层大气中)的无线电通信站间利用卫星作为中继而进行的通信。卫星通信系统由卫星和地球站两部分组成。卫星通信具有通信范围大、可靠性高、开通电路迅速、多址通信、多址联接等优势。卫星链路的通信能力与地球站的载波参数(如调制方式、编码方式、解调门限等)、天线参数(天线口径、上变频放大器功率等)、卫星转发器参数(转发器的有效全向辐射功率、接收品质因素)等紧密相关。由于卫星通信的特殊性,地球站的载波参数、天线参数可能不同,各地球站所处位置卫星转发器参数也可能不同,使得各地球站链路通信能力存在差异。
传统的卫星通信信道资源分配方法,只考虑资源分配的成功率或资源利用率,都未考虑实际通信链路的通信能力。若通信链路的通信能力不足,即使信道资源分配成功,通信仍会失败。即使预先考虑和配置各地球站在固定地点的通信能力,对于飞机、高铁、船舶等移动载体上的地球站,运动区域内各位置的卫星转发器参数(如卫星转发器的有效全向辐射功率和接收品质因素等)可能有差异,甚至会发生较大变化,造成通信链路通信能力发生变化,仍然可能会出现信道资源分配成功,通信失败的情况。信道资源分配成功,通信失败的情况会造成资源的无效占用、降低分配效率,甚至影响系统稳定性和实用性。
发明内容
基于此,有必要针对信道资源分配成功但通信失败的问题,提供一种能够提高信道资源分配的效率和可靠性的卫星通信信道资源分配方法。
一种卫星通信信道资源分配方法,基于卫星和与所述卫星进行通信的地球 站,包括:
获取所述卫星与地球站之间通信链路的所需信道资源;
获取所述通信链路的最大可通信信道资源,所述最大可通信信道资源为所述地球站接收的信号强度为解调门限时的信道资源;
获取所述通信链路的空闲信道资源;
当所述所需信道资源小于等于最大可通信信道资源时,从所述空闲信道资源中分配所述所需信道资源给所述通信链路。
上述卫星通信信道资源分配方法,可以获取通信链路的所需信道资源、最大可通信信道资源以及空闲信道资源,综合分析当前通信链路的最大可通信信道资源、空闲信道资源、所需信道资源之间的大小关系,选择合适的分配策略对其进行分配,能够保证信道资源分配的有效性,有效避免信道资源分配成功但通信失败的问题,提高资源分配的效率和系统可靠性、实用性。
在其中一个实施例中,获取所述卫星与地球站之间通信链路的所需信道资源,包括:
根据通信链路的数据通信速率、编码率、调制因子和滚降系数,获取所述所需信道资源,其中,
Figure PCTCN2018079967-appb-000001
在其中一个实施例中,所述获取所述通信链路的最大可通信信道资源,包括:
获取所述地球站的载波参数和卫星转发器参数;其中,地球站的载波参数包括地球站品质因素、调制因子、编码率和解调门限;所述卫星转发器参数包括饱和通量密度、线性输入回退值、卫星转发器信道资源、卫星转发器品质因素、有效全向辐射功率、线性输出回退值;
建立系统余量与所述载波参数和卫星转发器参数之间的等量关系,
当系统余量等于零时,根据所述等量关系获取所述最大可通信信道资源。
在其中一个实施例中,所述等量关系为:
Figure PCTCN2018079967-appb-000002
其中,BW Xpd为最大可通信信道资源;
Figure PCTCN2018079967-appb-000003
为解调门限;α为调制因子;β为编码率;a为第一系数;b为第二系数;
Figure PCTCN2018079967-appb-000004
为上下行链路综合载波功率对噪声温度比;其中,所述上下行链路综合载波功率对噪声温度比与所述最大可通信信道资源、地球站的载波参数和卫星转发器参数有关。
在其中一个实施例中,根据第一预设公式获取所述上下行链路综合载波功率对噪声温度比:
Figure PCTCN2018079967-appb-000005
其中,
Figure PCTCN2018079967-appb-000006
为上行链路载波功率对噪声温度比;
Figure PCTCN2018079967-appb-000007
为下行链路载波功率对噪声温度比;
Figure PCTCN2018079967-appb-000008
为载波功率对邻星干扰噪声温度比;
Figure PCTCN2018079967-appb-000009
为载波功率对邻道干扰噪声温度比;
Figure PCTCN2018079967-appb-000010
为载波功率对交叉极化干扰噪声温度比;
Figure PCTCN2018079967-appb-000011
为载波功率对多载波交调干扰噪声温度比。
在其中一个实施例中,根据第二预设公式获取所述上下行链路综合载波功率对噪声温度比:
Figure PCTCN2018079967-appb-000012
其中,
Figure PCTCN2018079967-appb-000013
为上行链路载波功率对噪声温度比,
Figure PCTCN2018079967-appb-000014
为下行链路载波功率对噪声温度比。
在其中一个实施例中,根据所述地球站的载波参数和卫星转发器参数获取所述上行链路载波功率对噪声温度比与所述最大可通信信道资源的第一对应关系:
Figure PCTCN2018079967-appb-000015
根据所述地球站的载波参数和卫星转发器参数获取所述下行链路载波功率对噪声温度比与所述最大可通信信道资源的第二对应关系:
Figure PCTCN2018079967-appb-000016
其中,[SFD]为卫星转发器的饱和通量密度;[IBO Xpd]为卫星转发器的线性输入回退值;BW C为卫星转发器的信道资源;λ为光波长;
Figure PCTCN2018079967-appb-000017
为卫星转发器的品质因素;[EIRP S]为卫星转发器的有效全向辐射功率;[OBO Xpd]为卫星转发器的线性输出回退值;[LD]为下行链路传输损耗;
Figure PCTCN2018079967-appb-000018
为地球站的品质因素。
在其中一个实施例中,还包括:
判断所述所需信道资源是否小于所述空闲信道资源;
当所述所需信道资源小于所述空闲信道资源,且所述所需信道资源小于等于最大可通信信道资源时,从所述空闲信道资源中分配所述所需信道资源给所述地球站。
在其中一个实施例中,还包括:
所述通信链路分配所述所需信道资源后,将所述通信链路标记为已分配状态。
在其中一个实施例中,还包括:
当所述所需信道资源大于最大可通信信道资源时,并按所述最大可通信信道资源分配资源。
附图说明
图1为一个实施例中卫星通信信道资源分配方法的流程图;
图2为一个实施例中获取所述通信链路的最大可通信信道资源的流程图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
一种卫星通信信道资源分配方法,基于卫星和与所述卫星进行通信的地球站,包括:
步骤S102:获取所述卫星与地球站之间通信链路的所需信道资源。
获取卫星与地球站之间的通信链路的所需信道资源,其中,所需信道资源也可以理解为占用带宽。可以通过预设算法获取所需信道资源,也可以通过地球站发出的资源分配请求中获取该所需信道资源。
在一个实施例中,可以根据通信链路的数据通信速率、编码率、调制因子和滚降系数获取所述所需信道资源。可以根据以下公式获取所需信道资源:
Figure PCTCN2018079967-appb-000019
其中,数据通信速率为信道中每秒传送的信息量(比特数)单位为bit/s。编码率为信道编码的效率;编码率等于有用比特数除以总比特数。调制因子为每个符号负载的信息量;可根据地球站设备(卫星调制解调器)设置的参数调制方式得到,即BPSK、QPSK、8PSK、16QAM、32APSK及64QAM的调制因子分别为1、2、3、4、5、6。其中,数据通信速率、编码率、调制因子均为地球站设备(卫星调制解调器)设置的参数。也即,可以通过地球站设备的卫星调制解调器的参数直接获取所需信道资源。
在一个实施例中,所需信道资源还可以通过分配资源请求信息获取。地球站请求通信时,即发送包含“本次通信所需信道资源”的字段的资源分配请求信息给卫星通信网管软件(主要作用是管理、配置卫星通信整个系统,包含信道资源分配的工作)时,地球站设备通过上述公式直接计算出所需信道资源,填入该字段。当然也可以把上述参数全部作为字段发送给网管软件,由网管软件计算得到。
步骤S104:获取所述通信链路的最大可通信信道资源,所述最大可通信信道资源为所述地球站接收的信号强度为解调门限时的信道资源。
通过获取地球站的载波参数和卫星转发器参数,通过通信链路的预设算法推导出该通信链路的最大可通信信道资源。其中,最大可通信信道资源为通信链路的最大通信能力,即最大可通信信道资源为地球接收站接收的信号强度等于解调门限时的信道资源。
具体地,地球站的载波参数包括地球站品质因素、调制因子、编码率和解调门限等。所述卫星转发器参数包括饱和通量密度、线性输入回退值、卫星转 发器信道资源、卫星转发器品质因素、有效全向辐射功率、线性输出回退值等。
步骤S106:获取所述通信链路的空闲信道资源。
如前所说卫星网管软件负责分配通信资源,通信链路每次分配成功后,就标记为已分配信道资源,继而可以根据已分配信道资源直接获取空闲信道资源。
步骤S108:当所述所需信道资源小于等于最大可通信信道资源时,从所述空闲信道资源中分配所述所需信道资源给所述通信链路。
综合分析当前通信链路的最大可通信信道资源、空闲信道资源、所需信道资源之间的大小关系,当所述所需信道资源小于等于最大可通信信道资源时,选择合适的分配策略从所述空闲信道资源中分配所述所需信道资源给所述通信链路。
上述卫星通信信道资源分配方法,可以获取通信链路的所需信道资源、最大可通信信道资源以及空闲信道资源,综合分析当前通信链路的最大可通信信道资源、空闲信道资源、所需信道资源之间的大小关系,选择合适的分配策略对其进行分配,能够保证信道资源分配的有效性,有效避免信道资源分配成功但通信失败的问题,提高资源分配的效率和系统可靠性、实用性。
在一个实施例中,所述获取所述通信链路的最大可通信信道资源,具体包括以下步骤:
步骤S202:获取所述地球站的载波参数和卫星转发器参数。其中,地球站的载波参数包括地球站的品质因素、调制因子、编码率和解调门限;所述卫星转发器参数包括饱和通量密度、线性输入回退值、卫星转发器信道资源、卫星转发器品质因素、有效全向辐射功率、线性输出回退值。
步骤S204:建立系统余量与所述载波参数和卫星转发器参数之间的等量关系。
所述等量关系可以表示为:
Figure PCTCN2018079967-appb-000020
其中,BW Xpd为最大可通信信道资源;
Figure PCTCN2018079967-appb-000021
为解调门限;α为调制因子;β为编码率;a为第一系数;b为第二系数;
Figure PCTCN2018079967-appb-000022
为上下行链路综合载波功率对噪 声温度比;其中,所述上下行链路综合载波功率对噪声温度比与所述最大可通信信道资源、地球站的载波参数和卫星转发器参数有关。
在一个实施例中,第一系数a为228.6,第二系数b为1.2,也即,
Figure PCTCN2018079967-appb-000023
步骤S206:当系统余量等于零时,根据所述等量关系获取所述最大可通信信道资源。
当系统余量等于零时,即地球站接收的信号强度达到解调门限,进而可以理解为,最大可通信信道资源为地球接收站接收的信号强度等于解调门限时的信道资源。其中,
Figure PCTCN2018079967-appb-000024
当第一系数a为228.6,第二系数b为1.2时,
Figure PCTCN2018079967-appb-000025
通过获取上下行链路综合载波功率对噪声温度比
Figure PCTCN2018079967-appb-000026
即可以获取最大可通信信道资源BW Xpd
在一个实施例中,可以根据第一预设公式获取上下行链路综合载波功率对噪声温度比:
Figure PCTCN2018079967-appb-000027
其中,
Figure PCTCN2018079967-appb-000028
为上行链路载波功率对噪声温度比;
Figure PCTCN2018079967-appb-000029
为下行链路载波功率对噪声温度比;
Figure PCTCN2018079967-appb-000030
为载波功率对邻星干扰噪声温度比;
Figure PCTCN2018079967-appb-000031
为载波功率对邻道干扰噪声温度比;
Figure PCTCN2018079967-appb-000032
为载波功率对交叉极化干扰噪声温度比;
Figure PCTCN2018079967-appb-000033
为载波功率对多载波交调干扰噪声温度比。其中,
Figure PCTCN2018079967-appb-000034
这四项干扰因素均为卫星转发器参数,对通信链路预算结果的影响很有限。
为此,通常采用简化的估算方法,只计算上下行链路的综合C/T,然后减去 1dB的干扰因素。在一个实施例中,还可以根据第二预设公式获取所述上下行链路综合载波功率对噪声温度比:
Figure PCTCN2018079967-appb-000035
其中,
Figure PCTCN2018079967-appb-000036
为上行链路载波功率对噪声温度比,
Figure PCTCN2018079967-appb-000037
为下行链路载波功率对噪声温度比。
由于上行链路载波功率对噪声温度比
Figure PCTCN2018079967-appb-000038
和下行链路载波功率对噪声温度比
Figure PCTCN2018079967-appb-000039
可以用地球站的载波参数、卫星转发器参数、最大可通信信道资源BW Xpd来表示。其中,根据所述地球站的载波参数和卫星转发器参数获取所述上行链路载波功率对噪声温度比与所述最大可通信信道资源的第一对应关系:
Figure PCTCN2018079967-appb-000040
根据所述地球站的载波参数和卫星转发器参数获取所述下行链路载波功率对噪声温度比与所述最大可通信信道资源的第二对应关系:
Figure PCTCN2018079967-appb-000041
其中,[SFD]为卫星转发器的饱和通量密度;[IBO Xpd]为卫星转发器的线性输入回退值;BW C为卫星转发器的信道资源;λ为光波长;
Figure PCTCN2018079967-appb-000042
为卫星转发器的品质因素;[EIRP S]为卫星转发器的有效全向辐射功率;[OBO Xpd]为卫星转发器的线性输出回退值;[LD]为下行链路传输损耗;
Figure PCTCN2018079967-appb-000043
为地球站的品质因素。也即,上行链路载波功率对噪声温度比
Figure PCTCN2018079967-appb-000044
和下行链路载波功率对噪声温度比
Figure PCTCN2018079967-appb-000045
均可以用含有最大可通信信道资源BW Xpd这一未知量来表示。
在一个实施例中,还可以令最大可通信信道资源BW Xpd为所需信道资源BW C,通过等量关系式
Figure PCTCN2018079967-appb-000046
直接计算其系统余量,当系统余量大于等于零时,直接从所述空闲信道资源中分配所述所需信道资源给所述通信链路。
在一个实施例中,若卫星通讯频段为Ku频段、Ka频段等对雨衰敏感的通信频段,在获取上行链路载波功率对噪声温度比
Figure PCTCN2018079967-appb-000047
和下行链路载波功率对噪声温度比
Figure PCTCN2018079967-appb-000048
的过程中,需要考虑雨衰,由于雨衰会造成增加了接收天线的噪声温度变化,所以G RS/T S,G RE/T E也可能会变化。其中,雨衰,是指电波进入雨层中引起的衰减,它包括雨粒吸收引起的衰减和雨粒散射引起的衰减;雨粒吸收引起的衰减是由于雨粒具有介质损耗引起的,雨粒散射引起的衰减是由于电波碰到雨粒时被雨粒反射而再反射引起的。
可以理解为,在获取最大可通信信道资源BW Xpd时,通过公式
Figure PCTCN2018079967-appb-000049
Figure PCTCN2018079967-appb-000050
其中,
Figure PCTCN2018079967-appb-000051
可以含有获取最大可通信信道资源BW Xpd来表示,也即,公式
Figure PCTCN2018079967-appb-000052
中仅含有最大可通信信道资源BW Xpd之一未知量,其他参数均为已知量,通过该式,即可计算出最大可通信信道资源BW Xpd
在一个实施例中,卫星通信信道资源分配方法,还包括判断所述所需信道资源是否小于所述空闲信道资源的步骤。
当所述所需信道资源小于所述空闲信道资源,且所述所需信道资源小于等于最大可通信信道资源时,从所述空闲信道资源中分配所述所需信道资源给所述地球站。当所述所需信道资源大于所述空闲信道资源,空闲信道资源不足,反馈分配失败的信息。
在一个实施例中,卫星通信信道资源分配方法,还包括当所述所需信道资源大于最大可通信信道资源时,改变资源分配策略,并按所述最大可通信信道资源分配资源的步骤。
在一个实施例中,卫星通信信道资源分配方法,还包括:所述通信链路分配所述所需信道资源后,将所述通信链路标记为已分配状态的步骤。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技 术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (10)

  1. 一种卫星通信信道资源分配方法,基于卫星和与所述卫星进行通信的地球站,其特征在于,包括:
    获取所述卫星与地球站之间通信链路的所需信道资源;
    获取所述通信链路的最大可通信信道资源,所述最大可通信信道资源为所述地球站接收的信号强度为解调门限时的信道资源;
    获取所述通信链路的空闲信道资源;
    当所述所需信道资源小于等于最大可通信信道资源时,从所述空闲信道资源中分配所述所需信道资源给所述通信链路。
  2. 根据权利要求1所述的卫星通信信道资源分配方法,其特征在于,获取所述卫星与地球站之间通信链路的所需信道资源,包括:
    根据通信链路的数据通信速率、编码率、调制因子和滚降系数,获取所述所需信道资源,其中,
    Figure PCTCN2018079967-appb-100001
  3. 根据权利要求1所述的卫星通信信道资源分配方法,其特征在于,所述获取所述通信链路的最大可通信信道资源,包括:
    获取所述地球站的载波参数和卫星转发器参数;其中,地球站的载波参数包括地球站品质因素、调制因子、编码率和解调门限;所述卫星转发器参数包括饱和通量密度、线性输入回退值、卫星转发器信道资源、卫星转发器品质因素、有效全向辐射功率、线性输出回退值;
    建立系统余量与所述载波参数和卫星转发器参数之间的等量关系,
    当系统余量等于零时,根据所述等量关系获取所述最大可通信信道资源。
  4. 根据权利要求3所述的卫星通信信道资源分配方法,其特征在于,所述等量关系为:
    Figure PCTCN2018079967-appb-100002
    其中,BW Xpd为最大可通信信道资源;
    Figure PCTCN2018079967-appb-100003
    为解调门限;α为调制因子;β为编码率;a为第一系数;b为第二系数;
    Figure PCTCN2018079967-appb-100004
    为上下行链路综合载波功率对噪 声温度比;其中,所述上下行链路综合载波功率对噪声温度比与所述最大可通信信道资源、地球站的载波参数和卫星转发器参数有关。
  5. 根据权利要求4所述的卫星通信信道资源分配方法,其特征在于,根据第一预设公式获取所述上下行链路综合载波功率对噪声温度比:
    Figure PCTCN2018079967-appb-100005
    其中,
    Figure PCTCN2018079967-appb-100006
    为上行链路载波功率对噪声温度比;
    Figure PCTCN2018079967-appb-100007
    为下行链路载波功率对噪声温度比;
    Figure PCTCN2018079967-appb-100008
    为载波功率对邻星干扰噪声温度比;
    Figure PCTCN2018079967-appb-100009
    为载波功率对邻道干扰噪声温度比;
    Figure PCTCN2018079967-appb-100010
    为载波功率对交叉极化干扰噪声温度比;
    Figure PCTCN2018079967-appb-100011
    为载波功率对多载波交调干扰噪声温度比。
  6. 根据权利要求4所述的卫星通信信道资源分配方法,其特征在于,根据第二预设公式获取所述上下行链路综合载波功率对噪声温度比:
    Figure PCTCN2018079967-appb-100012
    其中,
    Figure PCTCN2018079967-appb-100013
    为上行链路载波功率对噪声温度比,
    Figure PCTCN2018079967-appb-100014
    为下行链路载波功率对噪声温度比。
  7. 根据权利要求5或6所述的卫星通信信道资源分配方法,其特征在于,根据所述地球站的载波参数和卫星转发器参数获取所述上行链路载波功率对噪声温度比与所述最大可通信信道资源的第一对应关系:
    Figure PCTCN2018079967-appb-100015
    根据所述地球站的载波参数和卫星转发器参数获取所述下行链路载波功率对噪声温度比与所述最大可通信信道资源的第二对应关系:
    Figure PCTCN2018079967-appb-100016
    其中,[SFD]为卫星转发器的饱和通量密度;[IBO Xpd]为卫星转发器的线性输入回退值;BW C为卫星转发器的信道资源;λ为光波长;
    Figure PCTCN2018079967-appb-100017
    为卫星转发器 的品质因素;[EIRP S]为卫星转发器的有效全向辐射功率;[OBO Xpd]为卫星转发器的线性输出回退值;[LD]为下行链路传输损耗;
    Figure PCTCN2018079967-appb-100018
    为地球站的品质因素。
  8. 根据权利要求1所述的卫星通信信道资源分配方法,其特征在于,还包括:
    判断所述所需信道资源是否小于所述空闲信道资源;
    当所述所需信道资源小于所述空闲信道资源,且所述所需信道资源小于等于最大可通信信道资源时,从所述空闲信道资源中分配所述所需信道资源给所述地球站。
  9. 根据权利要求1所述的卫星通信信道资源分配方法,其特征在于,还包括:
    所述通信链路分配所述所需信道资源后,将所述通信链路标记为已分配状态。
  10. 根据权利要求1所述的卫星通信信道资源分配方法,其特征在于,还包括:
    当所述所需信道资源大于最大可通信信道资源时,并按所述最大可通信信道资源分配资源。
PCT/CN2018/079967 2017-08-25 2018-03-22 卫星通信信道资源分配方法 WO2019037419A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710742946.9 2017-08-25
CN201710742946.9A CN107454674B (zh) 2017-08-25 2017-08-25 卫星通信信道资源分配方法

Publications (1)

Publication Number Publication Date
WO2019037419A1 true WO2019037419A1 (zh) 2019-02-28

Family

ID=60494039

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/079967 WO2019037419A1 (zh) 2017-08-25 2018-03-22 卫星通信信道资源分配方法

Country Status (2)

Country Link
CN (1) CN107454674B (zh)
WO (1) WO2019037419A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114665950A (zh) * 2022-03-16 2022-06-24 军事科学院系统工程研究院系统总体研究所 空间频谱资源对卫星通信系统上行链路的支持度计算方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107454674B (zh) * 2017-08-25 2018-10-12 深圳市华讯方舟空间信息产业科技有限公司 卫星通信信道资源分配方法
CN108631859B (zh) * 2018-07-20 2020-11-20 中国空间技术研究院 一种通信卫星星表设备场强预估方法及系统
US11356901B2 (en) * 2018-12-18 2022-06-07 Aero5G, Inc. In-flight communication and method for improved quality of service for 5G network
CN111163520A (zh) * 2019-12-27 2020-05-15 东方红卫星移动通信有限公司 一种低轨卫星通信系统的动态资源分配方法
CN111245503B (zh) * 2020-01-17 2020-11-03 东南大学 一种卫星通信与地面通信的频谱共享方法
CN111294109B (zh) * 2020-02-07 2021-01-15 军事科学院系统工程研究院网络信息研究所 一种卫星通信信道资源分配方法
CN111953406B (zh) * 2020-08-20 2022-04-15 中国电子科技集团公司第五十四研究所 一种星地一体跳频卫星系统中跨平台融合通信方法
CN117294341B (zh) * 2023-09-21 2024-04-30 中国人民解放军军事科学院系统工程研究院 一种卫星宽带通信链路可靠性保障方法及装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6157812A (en) * 1997-10-06 2000-12-05 Hughes Electronics Corporation System and method for enhanced satellite payload power utilization
US20060126576A1 (en) * 2004-12-09 2006-06-15 Mark Dale Partial mesh communication in hub based system
CN103916963A (zh) * 2014-03-19 2014-07-09 北京科技大学 移动卫星系统的动态信道资源分配方法和装置
CN105846885A (zh) * 2016-03-21 2016-08-10 南京邮电大学 基于流量预测的geo卫星信道分配策略
CN107454674A (zh) * 2017-08-25 2017-12-08 深圳市华讯方舟空间信息产业科技有限公司 卫星通信信道资源分配方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1283114C (zh) * 2003-02-28 2006-11-01 华为技术有限公司 一种通信系统中的资源分配方法
US7769863B2 (en) * 2004-11-19 2010-08-03 Viasat, Inc. Network accelerator for controlled long delay links
CN101488888B (zh) * 2009-02-27 2011-10-05 中国电子科技集团公司第五十四研究所 无人值守卫星通信地球站远程网络管理系统的设计方法
CN101835163A (zh) * 2010-02-10 2010-09-15 华为技术有限公司 信道分配方法、装置和基站控制设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6157812A (en) * 1997-10-06 2000-12-05 Hughes Electronics Corporation System and method for enhanced satellite payload power utilization
US20060126576A1 (en) * 2004-12-09 2006-06-15 Mark Dale Partial mesh communication in hub based system
CN103916963A (zh) * 2014-03-19 2014-07-09 北京科技大学 移动卫星系统的动态信道资源分配方法和装置
CN105846885A (zh) * 2016-03-21 2016-08-10 南京邮电大学 基于流量预测的geo卫星信道分配策略
CN107454674A (zh) * 2017-08-25 2017-12-08 深圳市华讯方舟空间信息产业科技有限公司 卫星通信信道资源分配方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114665950A (zh) * 2022-03-16 2022-06-24 军事科学院系统工程研究院系统总体研究所 空间频谱资源对卫星通信系统上行链路的支持度计算方法
CN114665950B (zh) * 2022-03-16 2024-03-26 军事科学院系统工程研究院系统总体研究所 空间频谱资源对卫星通信系统上行链路的支持度计算方法

Also Published As

Publication number Publication date
CN107454674B (zh) 2018-10-12
CN107454674A (zh) 2017-12-08

Similar Documents

Publication Publication Date Title
WO2019037419A1 (zh) 卫星通信信道资源分配方法
KR100927031B1 (ko) 통신 시스템에서 데이터 송수신 방법 및 시스템
US10103804B2 (en) Apparatus and method for optimizing the power utilization of a satellite spot beam transponder for a multicarrier transmission
US9930621B2 (en) Transmit power control in a spread-spectrum unslotted random access communication system
US9432161B2 (en) Shared channel resource allocation
US9356684B2 (en) Uplink power control method and apparatus for satellite communications networks
US20120009965A1 (en) Wireless communication method, mobile station, and base station
Shi et al. Optimal power control in cognitive satellite terrestrial networks with imperfect channel state information
US11223418B2 (en) Multi-band satellite terminal estimating a second band based on first band link conditions
Alberty et al. Adaptive coding and modulation for the DVB-S2 standard interactive applications: capacity assessment and key system issues
Lagunas et al. Power control for satellite uplink and terrestrial fixed-service co-existence in Ka-band
Tian et al. Joint transmission power control in transponded SATCOM systems
Kang et al. Analysis of interference and availability between satellite and ground components in an integrated mobile‐satellite service system
JP2022107198A (ja) リソース決定装置、リソース決定方法及びリソース決定プログラム
Muller et al. Dynamic subcarrier, bit and power allocation in OFDMA-based relay networks
Knab Optimization of commercial satellite transponders and terminals
Sah et al. Performance analysis of LTE system for 2x2 rayleigh and rician fading channel
Angelone et al. System performance of an advanced multi-user detection technique for high throughput satellite systems
De Gaudenzi et al. Adaptive coding and modulation for next generation broadband multimedia systems
Sacchi The new frontier of EHF for broadcast and multimedia satellite services
Beigi et al. Increasing bandwidth efficiency in multibeam satellite systems under interference limited condition using overlay coding
CN113810093A (zh) 载波调整方法、装置、终端、网络设备和存储介质
Nguyen et al. Power allocation for shared and frequency hopped transponder
Angelone et al. Advanced physical layer techniques: Performance limits within future multi-spot Ka-band networks
Axford Margin and Availability in Transponded SATCOM

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18847450

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18847450

Country of ref document: EP

Kind code of ref document: A1