WO2019035355A1 - Hydraulic rotary machine - Google Patents

Hydraulic rotary machine Download PDF

Info

Publication number
WO2019035355A1
WO2019035355A1 PCT/JP2018/028699 JP2018028699W WO2019035355A1 WO 2019035355 A1 WO2019035355 A1 WO 2019035355A1 JP 2018028699 W JP2018028699 W JP 2018028699W WO 2019035355 A1 WO2019035355 A1 WO 2019035355A1
Authority
WO
WIPO (PCT)
Prior art keywords
wave spring
cylinder block
piston
shoe
rotating machine
Prior art date
Application number
PCT/JP2018/028699
Other languages
French (fr)
Japanese (ja)
Inventor
竜乃介 石川
義博 大林
Original Assignee
Kyb株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyb株式会社 filed Critical Kyb株式会社
Publication of WO2019035355A1 publication Critical patent/WO2019035355A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B1/00Multi-cylinder machines or pumps characterised by number or arrangement of cylinders
    • F04B1/12Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinder axes coaxial with, or parallel or inclined to, main shaft axis
    • F04B1/20Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinder axes coaxial with, or parallel or inclined to, main shaft axis having rotary cylinder block
    • F04B1/22Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinder axes coaxial with, or parallel or inclined to, main shaft axis having rotary cylinder block having two or more sets of cylinders or pistons

Definitions

  • the present invention relates to a hydraulic rotary machine used as a piston pump or a piston motor.
  • JP2015-71978A discloses a hydraulic rotating machine including a swash plate for reciprocating a piston accommodated in a cylinder and a biasing member for biasing a shoe connected to the piston toward the swash plate. ing.
  • a compression coil spring is generally used as a biasing member for biasing the shoe toward the swash plate as described in JP2015-71978A.
  • the compression coil spring needs to be used so as not to have a close contact height, it is necessary to secure a space having a certain axial length to accommodate the compression coil spring.
  • it is necessary to increase the outer diameter of the compression coil spring. For this reason, when a compression coil spring is used as a biasing member that biases the shoe toward the swash plate, there is a possibility that the hydraulic rotating machine becomes larger in the radial direction and the axial direction.
  • An object of the present invention is to make a hydraulic rotary machine compact.
  • a hydraulic rotating machine is rotatably coupled to a plurality of pistons and a cylinder block provided with a plurality of cylinders that are coupled to a rotation shaft and that accommodates the pistons, It comprises: a shoe to be connected; a swash plate which slides with the shoe and causes the piston to reciprocate as the cylinder block rotates; and a biasing member which biases the shoe toward the swash plate.
  • the biasing member is a wave spring in which a corrugated strip is spirally formed.
  • FIG. 1 is a cross-sectional view of a hydraulic rotating machine according to a first embodiment of the present invention.
  • FIG. 2 is a plan view showing a schematic shape of the wave spring.
  • FIG. 3 is a side view showing a schematic shape of the wave spring.
  • FIG. 4 is a cross-sectional view taken along the line IV-IV in FIG. 1 and is a view showing a restricting portion of the hydraulic rotating machine according to the first embodiment of the present invention.
  • FIG. 5 is a view showing a restricting portion of a hydraulic rotating machine according to a second embodiment of the present invention, and is an enlarged view of a portion corresponding to a portion shown by a V portion in FIG.
  • FIGS. 1 and 2 A hydraulic rotating machine 100 according to a first embodiment of the present invention will be described with reference to FIGS. 1 and 2.
  • the hydraulic pressure rotary machine is a hydraulic piston pump motor 100 that uses water as a working fluid
  • the hydraulic piston pump motor 100 functions as a pump for supplying water which is a working fluid by the shaft 1 being rotated by the power from the outside and the piston 6 reciprocating, and supplied from the outside
  • the piston 6 reciprocates by the fluid pressure of the water to rotate the shaft 1, thereby functioning as a motor for outputting a rotational driving force.
  • hydraulic piston pump motor 100 is used as a piston pump
  • hydraulic piston pump motor 100 is simply referred to as a “piston pump 100”.
  • the piston pump 100 is a hydraulic piston pump that uses water as a working fluid.
  • the piston pump 100 includes a shaft 1 as a rotating shaft rotated by a power source, a cylinder block 2 coupled to the shaft 1 and rotated as the shaft 1 rotates, and a casing 3 accommodating the cylinder block 2.
  • the casing 3 has a case body 3a having both ends open, an end cover 5 supporting one end of the shaft 1 and closing one open end of the case body 3a, and the other end of the shaft 1 being inserted through the other of the case body 3a And a front cover 4 for closing the open end of the cover.
  • the case body 3a and the end cover 5 are formed as separate members, they may be integrally formed.
  • the shaft 1 is a rod-like member, and is rotationally driven by the power of a power source such as an engine or an electric motor.
  • the shaft 1 is provided such that one end 1 a protrudes from the front cover 4 to the outside, and the other end 1 b of the shaft 1 is accommodated in an accommodation recess 5 a formed in the end cover 5.
  • a power source (not shown) is connected to one end 1 a of the shaft 1 protruding from the casing 3.
  • the cylinder block 2 has a through hole 2 a through which the shaft 1 passes, and is splined to the shaft 1 at a connecting portion 22. Thus, the cylinder block 2 rotates with the rotation of the shaft 1.
  • a plurality of cylinders 2 b having openings at one end face 2 d are formed in parallel with the shaft 1.
  • the plurality of cylinders 2 b are formed at equal intervals in the circumferential direction of the cylinder block 2.
  • a cylindrical piston 6 that divides the volume chamber 7 is inserted in the cylinder 2 b so as to freely move back and forth.
  • the tip end side of the piston 6 protrudes from the opening of the cylinder 2b, and a spherical seat 6a is formed at the tip end.
  • the front cover 4 is formed with a through hole 4 a through which the shaft 1 is inserted.
  • a bearing 19 rotatably supporting the shaft 1 is fitted in the through hole 4a.
  • the front cover 4 is provided with a seal 24 so that water does not leak to the outside from between the shaft 1 and the front cover 4.
  • the front cover 4 is further formed with a cylindrical extension 4 b extending along the shaft 1 toward the cylinder block 2.
  • the bearing 20 is press-fitted to the outer peripheral surface of the extension 4 b.
  • a cylindrical sliding contact portion 2c in sliding contact with the bearing 20 is formed on the cylinder block 2 positioned opposite to the outer peripheral surface of the extension portion 4b.
  • the cylinder block 2 is rotatably supported by the front cover 4 because the inner peripheral surface of the sliding contact portion 2 c is in sliding contact with the outer peripheral surface of the bearing 20.
  • the end cover 5 is formed with a supply passage 8 for guiding the water sucked into the volume chamber 7 and a discharge passage 9 for the water discharged from the volume chamber 7.
  • the end cover 5 further has a bearing 18 fitted on the inner peripheral surface of the housing recess 5a.
  • the end cover 5 rotatably supports the other end 1 b of the shaft 1 accommodated in the accommodation recess 5 a via the bearing 18.
  • the bearings 18 to 20 are formed of resin, ceramic, DLC (Diamond Like Carbon) or the like.
  • the material of the bearings 18 to 20 may be any material which can ensure the slidability even if the working fluid is water in particular.
  • the piston pump 100 further includes a valve plate 17 interposed between the cylinder block 2 and the end cover 5.
  • the valve plate 17 is a disk member in sliding contact with the base end surface of the cylinder block 2, and is fixed to the end cover 5.
  • the valve plate 17 is formed with a supply port 17 a connecting the supply passage 8 and the volume chamber 7, and a discharge port 17 b connecting the discharge passage 9 and the volume chamber 7.
  • the piston pump 100 includes a shoe 10 rotatably connected to a spherical seat 6 a of the piston 6, a swash plate 13 in sliding contact with the shoe 10 as the cylinder block 2 rotates, and a retainer plate 11 for holding the shoe 10. And a retainer holder 12 in sliding contact with the retainer plate 11.
  • the shoe 10 has a receiving portion 10 a for receiving a spherical seat 6 a formed at the tip of each piston 6 and a circular flat plate portion 10 b in sliding contact with the swash plate 13.
  • the inner surface of the receiving portion 10a is formed in a spherical shape and is in sliding contact with the outer surface of the received spherical seat 6a.
  • the shoe 10 can be angularly displaced in any direction with respect to the spherical seat 6a.
  • the swash plate 13 is fixed to the inner wall of the front cover 4 and has a sliding contact surface 13 a inclined from the direction perpendicular to the axis of the shaft 1.
  • the flat plate portion 10b of the shoe 10 makes surface contact with the sliding contact surface 13a.
  • the retainer plate 11 is an annular flat plate member, and has a plurality of insertion holes 11 a formed at predetermined intervals in the circumferential direction.
  • the retainer plate 11 holds the shoe 10 in a state where the receiving portion 10 a of the shoe 10 is inserted through the insertion hole 11 a.
  • the retainer holder 12 is a tubular member mounted on the outer periphery of the sliding contact portion 2 c of the cylinder block 2 and slidable along the axial direction of the shaft 1. The tip of the retainer holder 12 is in sliding contact with the central portion of the retainer plate 11.
  • the piston pump 100 further includes a wave spring 30 as a biasing member that biases the shoe 10 toward the swash plate 13 via the retainer holder 12 and the retainer plate 11.
  • the schematic shape of the wave spring 30 is shown in FIG. 2 and FIG. FIG. 2 is a plan view of the wave spring 30, and FIG. 3 is a side view of the wave spring 30. As shown in FIG.
  • the wave spring 30 is formed by spirally winding a corrugated strip.
  • the wire has a rectangular cross section, and as shown in FIG. 2, the wire has a ridge 30 a and a valley 30 b formed by bending in the thickness direction of the wire along the circumferential direction. Are provided at predetermined intervals. Then, as shown in FIG. 3, the wire is spirally wound so that the ridges 30 a and the valleys 30 b of the wire adjacent in the vertical direction abut on each other.
  • the wave spring 30 shown in figure by FIG.2 and FIG.3, and as a wave spring 30, what kind of structure will be formed if the wave-shaped strip
  • the wave spring 30 is mounted on the outer periphery of the sliding contact portion 2c of the cylinder block 2, and between the bottom surface 12a of the retainer holder 12 and the end face 2d of the cylinder block 2 where the cylinder 2b opens. Is inserted in a compressed state. Therefore, the inner diameter d1 of the wave spring 30 is set larger than the outer diameter of the sliding contact portion 2c of the cylinder block 2, and the outer diameter D1 of the wave spring 30 is set smaller than the outer diameter of the retainer holder 12.
  • the biasing force of the wave spring 30 acts on the shoe 10 via the retainer holder 12 and the retainer plate 11, resulting in a pressing force that presses the shoe 10 against the swash plate 13.
  • the biasing force of the wave spring 30 also acts as a pressing force that presses the cylinder block 2 against the valve plate 17. For this reason, leakage of water from between the cylinder block 2 and the valve plate 17 is suppressed.
  • the biasing force of the general compression coil spring is generated due to the twisting stress of the wire, while the biasing force of the wave spring 30 is generated due to the bending stress of the wire.
  • the biasing force of the wave spring 30 is larger than that of the compression coil spring. That is, in order to obtain the same biasing force, the wave spring 30 can shorten the length in the compression direction and can reduce the outer diameter. Therefore, by adopting the wave spring 30 as a biasing member for biasing the shoe 10 toward the swash plate 13, the space for housing the biasing member is reduced, so the entire piston pump 100 can be made compact. Is possible.
  • the wave spring 30 since the wave spring 30 expands its outer diameter when compressed, the wave spring 30 may come in contact with the piston 6 disposed radially outward with respect to the wave spring 30.
  • the piston pump 100 further includes a pin member 32 as a restricting portion that restricts the radial expansion of the wave spring 30.
  • FIG. 4 is a partial cross-sectional view taken along the line IV-IV of FIG. 1, in which the arrangement of the pin members 32 is shown.
  • the pin member 32 is a cylindrical member, and is fixed to the end face 2 d of the cylinder block 2 along the axial direction of the shaft 1 by press fitting or the like.
  • a plurality of pin members 32 are disposed between the cylinder 2 b and the cylinder 2 b and radially outward of the wave spring 30.
  • the arrangement of the pin members 32 is the most in each pin member 32 indicated by a dot and dash line than the diameter of a first virtual circle 34 connecting the most point on the shaft 1 side of each cylinder 2 b indicated in FIG.
  • the diameter of the second virtual circle 33 connecting the points on the shaft 1 side is set to be smaller.
  • the pin member 32 is disposed closer to the wave spring 30 than the piston 6, the wave spring 30 is not the piston 6 even if the outer diameter of the wave spring 30 is expanded by being compressed. , And the pin member 32. Therefore, the radial expansion of the wave spring 30 is restricted by the pin member 32, and the piston 6 and the wave spring 30 are prevented from contacting with each other.
  • the pin members 32 do not have to be provided between all the cylinders 2b, and a plurality, preferably three or more, may be provided.
  • each shoe 10 When the shaft 1 is driven to rotate by external power and the cylinder block 2 is rotated accordingly, the flat plate portion 10b of each shoe 10 is in sliding contact with the swash plate 13 and each piston 6 corresponds to the inclination angle of the swash plate 13 Reciprocate in the cylinder 2b by the stroke amount. Then, as the pistons 6 reciprocate, the volume of each volume chamber 7 increases or decreases.
  • Water is introduced into the volume chamber 7 expanded by the rotation of the cylinder block 2 through the supply passage 8 and the supply port 17a.
  • the water sucked into the volume chamber 7 is pressurized by the contraction of the volume chamber 7 by the rotation of the cylinder block 2 and is discharged through the discharge port 17 b and the discharge passage 9.
  • suction and discharge of water are continuously performed as the cylinder block 2 rotates.
  • the shoe 10 is always pressed against the swash plate 13 by the biasing force of the wave spring 30, and the shoe 10 may be separated from the swash plate 13. It is prevented.
  • the piston pump 100 includes a wave spring 30 as a biasing member that biases the shoe 10 toward the swash plate 13. Comparing the wave spring 30 with a general compression coil spring, the wave spring 30 can shorten the length in the compression direction and reduce the outer diameter in order to obtain the same biasing force. Is possible. For this reason, by adopting the wave spring 30, the space for accommodating the biasing member can be reduced, and as a result, the outer shape of the piston pump 100 can be made compact.
  • the piston pump 100 is provided with a pin member 32 as a restricting portion that restricts the radial expansion of the wave spring 30. Since the pin member 32 is disposed closer to the wave spring 30 than the piston 6, the wave spring 30 is not the piston 6 but the pin member 32 even if the outer diameter of the wave spring 30 is expanded by compression. Will abut. Therefore, it can prevent that piston 6 and wave spring 30 contact.
  • the basic configuration of the piston pump 200 according to the second embodiment is the same as that of the piston pump 100 according to the first embodiment shown in FIG.
  • the piston pump 200 according to the second embodiment differs from the piston pump 200 according to the first embodiment in that the configuration of the regulation portions 2e and 12b for regulating the radial expansion of the wave spring 30 differs from the configuration of the regulation portion 32 of the piston pump 100 according to the first embodiment.
  • FIG. 5 is a view for explaining the restricting portions 2e and 12b of the piston pump 200 according to the second embodiment, and shows a portion corresponding to a portion shown by a V portion in FIG. 1 in an enlarged manner.
  • the structure except the part shown by FIG. 5 is the same as that of the piston pump 100 which concerns on 1st Embodiment, those illustration and description are abbreviate
  • the piston pump 200 includes an annular convex portion 2 e as a first restricting portion that restricts the radial spread of the wave spring 30 and an annular wall portion 12 b as a second restricting portion.
  • the annular convex portion 2 e protrudes from the end face 2 d of the cylinder block 2 along the axial direction of the shaft 1 and is annularly formed so as to surround the outer periphery of the wave spring 30.
  • the wave spring 30 can be compressed even if the outer diameter of the wave spring 30 is expanded by being compressed. , Not the piston 6 but the annular convex portion 2e. Therefore, the radial expansion of the wave spring 30 is restricted by the annular convex portion 2e, and the piston 6 and the wave spring 30 are prevented from contacting with each other.
  • the annular convex part 2e does not need to be continuously provided in the circumferential direction, and may be partially provided. Further, instead of the configuration in which the annular convex portion 2e is protruded from the end face 2d, a groove capable of accommodating the wave spring 30 is processed on the end face 2d of the portion where the wave spring 30 is disposed, and the wave spring 30 is disposed in the groove. Thus, the radial spread of the wave spring 30 may be restricted.
  • the annular wall portion 12 b protrudes from the bottom surface 12 a of the retainer holder 12 along the axial direction of the shaft 1 and is annularly formed so as to surround the outer periphery of the wave spring 30.
  • the wave spring 30 can be compressed even if the outer diameter of the wave spring 30 is expanded by being compressed. , Not the piston 6 but the annular wall 12b. Therefore, the radial expansion of the wave spring 30 is restricted by the annular wall 12b, and the piston 6 and the wave spring 30 are prevented from contacting with each other.
  • the annular wall portion 12 b does not have to be continuously provided in the circumferential direction, and may be partially provided.
  • Both the annular convex portion 2 e and the annular wall portion 12 b may be provided, or only one may be provided. By arranging both the annular convex portion 2 e and the annular wall portion 12 b, the contact between the piston 6 and the wave spring 30 can be reliably prevented.
  • the piston pump 200 includes an annular convex portion 2 e and an annular wall portion 12 b as a regulating portion that regulates the radial expansion of the wave spring 30. Since the annular convex portion 2 e and the annular wall portion 12 b are provided between the wave spring 30 and the piston 6, the wave spring 30 can be compressed by the piston 6 even if the outer diameter of the wave spring 30 is expanded by compression. Instead, it comes in contact with the annular convex portion 2e and the annular wall 12b. Therefore, it can prevent that piston 6 and wave spring 30 contact.
  • the piston pumps 100 and 200 have a plurality of pistons 6, a cylinder block 2 provided with a plurality of cylinders 2 b coupled to the shaft 1 and accommodating the pistons 6, and a shoe 10 rotatably coupled to the tip of the pistons 6.
  • a swash plate 13 which reciprocates the piston 6 in accordance with the rotation of the cylinder block 2 as the shoe 10 slides, and as a biasing member which biases the shoe 10 toward the swash plate 13, the corrugated strip is helical.
  • a wave spring 30 formed on the
  • the piston pumps 100 and 200 include the wave spring 30 as a biasing member that biases the shoe 10 toward the swash plate 13.
  • the wave spring 30 can shorten the length in the compression direction and reduce the outer diameter in order to obtain the same biasing force. Is possible. For this reason, by adopting the wave spring 30, the space for housing the biasing member can be reduced, and as a result, the external shape of the piston pump 100, 200 can be made compact.
  • the piston pumps 100 and 200 further include restricting portions 32 and 2e and 12b that restrict the radial spread of the wave spring 30, respectively.
  • the piston pumps 100 and 200 further include a retainer holder 12 for transmitting the biasing force of the wave spring 30 to the shoe 10, and the wave spring 30 is interposed between the cylinder block 2 and the retainer holder 12 in a compressed state.
  • the restriction portions 32, 2e, 12b are mounted on at least one of the cylinder block 2 and the retainer holder 12 on the radially outer side of the wave spring 30.
  • restricting portions 32, 2e and 12b are provided on at least one of the cylinder block 2 and the retainer holder 12.
  • the restricting portions 32, 2e and 12b are provided near the portion where the wave spring 30 is mounted, the wave spring 30 is a piston even if the outside diameter of the wave spring 30 is expanded by being compressed. It comes in contact with the restricting portions 32, 2e, 12b instead of 6. Therefore, it can prevent that piston 6 and wave spring 30 contact.
  • the restricting portion is a plurality of pin members 32 provided in the cylinder block 2, and the pin members 32 are disposed closer to the wave spring 30 than the piston 6 in the radial direction of the cylinder block 2.
  • a pin member 32 is provided on the cylinder block 2 to restrict the radial expansion of the wave spring 30. Further, since the pin member 32 is disposed closer to the wave spring 30 than the piston 6, even if the outer diameter of the wave spring 30 is expanded by being compressed, the wave spring 30 is not the piston 6 but a pin member It will contact 32. Therefore, it can prevent that piston 6 and wave spring 30 contact. Further, since the restricting portion is configured only by attaching the pin member 32 to the cylinder block 2 and a large-scale additional processing to the cylinder block 2 etc. is unnecessary, it is possible to suppress an increase in the manufacturing cost of the piston pump 100.
  • water is used as the working fluid, but instead, a working fluid such as a working oil or a water-soluble alternative liquid may be used.
  • a working fluid such as a working oil or a water-soluble alternative liquid
  • the piston pump motor 100 has a fixed angle of the swash plate 13, it may be a variable displacement piston pump motor capable of changing the tilt angle of the swash plate.

Abstract

A piston pump (100, 200) comprises: a plurality of pistons (6); a cylinder block (2) having provided therein a plurality of cylinders (2a) coupled to a shaft (1) and housing the pistons (6); a shoe (10) rotatably coupled to the tip of the pistons (6); a swash plate (13) that reciprocally moves the pistons (6) in conjunction with the sliding contact of the shoe (10) and the rotation of the cylinder block (2); and a wave spring (30) that, as an impelling member that impels the shoe (10) towards the swash plate (13), has a wave-shaped belt material formed in a spiral.

Description

液圧回転機Hydraulic rotary machine
 本発明は、ピストンポンプやピストンモータとして使用される液圧回転機に関するものである。 The present invention relates to a hydraulic rotary machine used as a piston pump or a piston motor.
 JP2015-71978Aには、シリンダに収容されるピストンを往復動させる斜板と、ピストンに連結されるシューを斜板に向けて付勢する付勢部材と、を備えた液圧回転機が開示されている。 JP2015-71978A discloses a hydraulic rotating machine including a swash plate for reciprocating a piston accommodated in a cylinder and a biasing member for biasing a shoe connected to the piston toward the swash plate. ing.
 JP2015-71978Aに記載されるような、シューを斜板に向けて付勢する付勢部材としては、一般的に、圧縮コイルスプリングが用いられる。しかしながら、圧縮コイルスプリングは、密着高さとならないように使用する必要があるため、圧縮コイルスプリングを収容するために、ある程度の軸方向の長さを有するスペースを確保する必要がある。また、軸方向長さが制限される状態で所望の荷重を確保するには、圧縮コイルスプリングの外径を大きくする必要がある。このため、シューを斜板に向けて付勢する付勢部材として圧縮コイルスプリングを用いた場合、液圧回転機が径方向および軸方向に大型化するおそれがある。 A compression coil spring is generally used as a biasing member for biasing the shoe toward the swash plate as described in JP2015-71978A. However, since the compression coil spring needs to be used so as not to have a close contact height, it is necessary to secure a space having a certain axial length to accommodate the compression coil spring. Moreover, in order to secure a desired load in a state where the axial length is limited, it is necessary to increase the outer diameter of the compression coil spring. For this reason, when a compression coil spring is used as a biasing member that biases the shoe toward the swash plate, there is a possibility that the hydraulic rotating machine becomes larger in the radial direction and the axial direction.
 本発明は、液圧回転機のコンパクト化を図ることを目的とする。 An object of the present invention is to make a hydraulic rotary machine compact.
 本発明のある態様によれば、液圧回転機は、複数のピストンと、回転軸に結合され、前記ピストンを収容する複数のシリンダが設けられるシリンダブロックと、前記ピストンの先端に回動自在に連結されるシューと、前記シューが摺接し、前記シリンダブロックの回転に伴って前記ピストンを往復動させる斜板と、前記シューを前記斜板に向けて付勢する付勢部材と、を備え、前記付勢部材は、波型の帯状線材が螺旋状に形成されたウェーブスプリングである。 According to an aspect of the present invention, a hydraulic rotating machine is rotatably coupled to a plurality of pistons and a cylinder block provided with a plurality of cylinders that are coupled to a rotation shaft and that accommodates the pistons, It comprises: a shoe to be connected; a swash plate which slides with the shoe and causes the piston to reciprocate as the cylinder block rotates; and a biasing member which biases the shoe toward the swash plate. The biasing member is a wave spring in which a corrugated strip is spirally formed.
図1は、本発明の第1実施形態に係る液圧回転機の断面図である。FIG. 1 is a cross-sectional view of a hydraulic rotating machine according to a first embodiment of the present invention. 図2は、ウェーブスプリングの概略形状を示す平面図である。FIG. 2 is a plan view showing a schematic shape of the wave spring. 図3は、ウェーブスプリングの概略形状を示す側面図である。FIG. 3 is a side view showing a schematic shape of the wave spring. 図4は、図1のIV-IV線に沿う断面図であり、本発明の第1実施形態に係る液圧回転機の規制部を示す図である。FIG. 4 is a cross-sectional view taken along the line IV-IV in FIG. 1 and is a view showing a restricting portion of the hydraulic rotating machine according to the first embodiment of the present invention. 図5は、本発明の第2実施形態に係る液圧回転機の規制部を示す図であり、図1においてV部で示される部分に相当する部分の拡大図である。FIG. 5 is a view showing a restricting portion of a hydraulic rotating machine according to a second embodiment of the present invention, and is an enlarged view of a portion corresponding to a portion shown by a V portion in FIG.
 以下、図面を参照して、本発明の実施形態について説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 <第1実施形態>
 図1及び図2を参照して、本発明の第1実施形態に係る液圧回転機100について説明する。
First Embodiment
A hydraulic rotating machine 100 according to a first embodiment of the present invention will be described with reference to FIGS. 1 and 2.
 本実施形態では、液圧回転機が、水を作動流体とする水圧ピストンポンプモータ100である場合について説明する。図1に示すように、水圧ピストンポンプモータ100は、外部からの動力によりシャフト1が回転してピストン6が往復動することで、作動流体である水を供給するポンプとして機能し、外部から供給される水の流体圧によりピストン6が往復動してシャフト1が回転することにより、回転駆動力を出力するモータとして機能する。 In the present embodiment, the case where the hydraulic pressure rotary machine is a hydraulic piston pump motor 100 that uses water as a working fluid will be described. As shown in FIG. 1, the hydraulic piston pump motor 100 functions as a pump for supplying water which is a working fluid by the shaft 1 being rotated by the power from the outside and the piston 6 reciprocating, and supplied from the outside The piston 6 reciprocates by the fluid pressure of the water to rotate the shaft 1, thereby functioning as a motor for outputting a rotational driving force.
 以下の説明では、水圧ピストンポンプモータ100をピストンポンプとして使用した場合について例示し、水圧ピストンポンプモータ100を単に「ピストンポンプ100」と称する。 In the following description, the case where the hydraulic piston pump motor 100 is used as a piston pump is exemplified, and the hydraulic piston pump motor 100 is simply referred to as a “piston pump 100”.
 ピストンポンプ100は、水を作動流体とする水圧ピストンポンプである。ピストンポンプ100は、動力源によって回転する回転軸としてのシャフト1と、シャフト1に連結されシャフト1の回転に伴って回転するシリンダブロック2と、シリンダブロック2を収容するケーシング3と、を備える。 The piston pump 100 is a hydraulic piston pump that uses water as a working fluid. The piston pump 100 includes a shaft 1 as a rotating shaft rotated by a power source, a cylinder block 2 coupled to the shaft 1 and rotated as the shaft 1 rotates, and a casing 3 accommodating the cylinder block 2.
 ケーシング3は、両端が開口するケース本体3aと、シャフト1の一端を支持するとともにケース本体3aの一方の開口端を塞ぐエンドカバー5と、シャフト1の他端が挿通するとともにケース本体3aの他方の開口端を塞ぐフロントカバー4と、を有する。ケース本体3aとエンドカバー5とは別部材で形成されているが、これらは一体的に形成されていてもよい。 The casing 3 has a case body 3a having both ends open, an end cover 5 supporting one end of the shaft 1 and closing one open end of the case body 3a, and the other end of the shaft 1 being inserted through the other of the case body 3a And a front cover 4 for closing the open end of the cover. Although the case body 3a and the end cover 5 are formed as separate members, they may be integrally formed.
 シャフト1は、棒状部材であり、エンジンや電動モータといった動力源の動力によって回転駆動される。シャフト1はフロントカバー4から一端部1aが外部に突出するように設けられ、シャフト1の他端部1bは、エンドカバー5に形成された収容凹部5a内に収容される。ケーシング3から突出したシャフト1の一端部1aには、図示しない動力源が連結される。 The shaft 1 is a rod-like member, and is rotationally driven by the power of a power source such as an engine or an electric motor. The shaft 1 is provided such that one end 1 a protrudes from the front cover 4 to the outside, and the other end 1 b of the shaft 1 is accommodated in an accommodation recess 5 a formed in the end cover 5. A power source (not shown) is connected to one end 1 a of the shaft 1 protruding from the casing 3.
 シリンダブロック2は、シャフト1が貫通する貫通孔2aを有し、連結部22においてシャフト1とスプライン結合される。これにより、シリンダブロック2はシャフト1の回転に伴って回転する。 The cylinder block 2 has a through hole 2 a through which the shaft 1 passes, and is splined to the shaft 1 at a connecting portion 22. Thus, the cylinder block 2 rotates with the rotation of the shaft 1.
 シリンダブロック2には、一方の端面2dに開口部を有する複数のシリンダ2bがシャフト1と平行に形成される。複数のシリンダ2bは、シリンダブロック2の周方向に等間隔で形成される。シリンダ2bには、容積室7を区画する円柱状のピストン6が往復動自在に挿入される。ピストン6の先端側は、シリンダ2bの開口部から突出し、その先端部には球面座6aが形成される。 In the cylinder block 2, a plurality of cylinders 2 b having openings at one end face 2 d are formed in parallel with the shaft 1. The plurality of cylinders 2 b are formed at equal intervals in the circumferential direction of the cylinder block 2. A cylindrical piston 6 that divides the volume chamber 7 is inserted in the cylinder 2 b so as to freely move back and forth. The tip end side of the piston 6 protrudes from the opening of the cylinder 2b, and a spherical seat 6a is formed at the tip end.
 フロントカバー4には、シャフト1が挿通する貫通孔4aが形成される。貫通孔4aには、シャフト1を回転自在に支持する軸受19が嵌合される。また、フロントカバー4には、シャフト1とフロントカバー4との間から水が外部へ洩れないようにシール24が設けられる。 The front cover 4 is formed with a through hole 4 a through which the shaft 1 is inserted. A bearing 19 rotatably supporting the shaft 1 is fitted in the through hole 4a. Further, the front cover 4 is provided with a seal 24 so that water does not leak to the outside from between the shaft 1 and the front cover 4.
 フロントカバー4には、さらに、シャフト1に沿ってシリンダブロック2側に延出する筒状の延出部4bが形成される。延出部4bの外周面には軸受20が圧入される。延出部4bの外周面に対向して位置するシリンダブロック2には、軸受20に摺接する筒状の摺接部2cが形成される。摺接部2cの内周面が軸受20の外周面に摺接するため、シリンダブロック2はフロントカバー4により回転自在に支持されることになる。 The front cover 4 is further formed with a cylindrical extension 4 b extending along the shaft 1 toward the cylinder block 2. The bearing 20 is press-fitted to the outer peripheral surface of the extension 4 b. A cylindrical sliding contact portion 2c in sliding contact with the bearing 20 is formed on the cylinder block 2 positioned opposite to the outer peripheral surface of the extension portion 4b. The cylinder block 2 is rotatably supported by the front cover 4 because the inner peripheral surface of the sliding contact portion 2 c is in sliding contact with the outer peripheral surface of the bearing 20.
 エンドカバー5には、容積室7に吸い込まれる水を導く供給通路8と、容積室7から吐出される水が導かれる排出通路9と、が形成される。エンドカバー5は、さらに、収容凹部5aの内周面に嵌合された軸受18を有する。エンドカバー5は、軸受18を介して収容凹部5aに収容されるシャフト1の他端部1bを回転自在に支持する。 The end cover 5 is formed with a supply passage 8 for guiding the water sucked into the volume chamber 7 and a discharge passage 9 for the water discharged from the volume chamber 7. The end cover 5 further has a bearing 18 fitted on the inner peripheral surface of the housing recess 5a. The end cover 5 rotatably supports the other end 1 b of the shaft 1 accommodated in the accommodation recess 5 a via the bearing 18.
 軸受18~20は、樹脂,セラミック,DLC(Diamond Like Carbon)等により形成される。軸受18~20の材質は、特に作動流体が水であっても摺動性が確保できる材質であればどのような材質でもよい。 The bearings 18 to 20 are formed of resin, ceramic, DLC (Diamond Like Carbon) or the like. The material of the bearings 18 to 20 may be any material which can ensure the slidability even if the working fluid is water in particular.
 ピストンポンプ100は、シリンダブロック2とエンドカバー5との間に介在されるバルブプレート17をさらに備える。 The piston pump 100 further includes a valve plate 17 interposed between the cylinder block 2 and the end cover 5.
 バルブプレート17は、シリンダブロック2の基端面が摺接する円板部材であり、エンドカバー5に固定される。バルブプレート17には、供給通路8と容積室7を接続する供給ポート17aと、排出通路9と容積室7を接続する排出ポート17bと、が形成される。 The valve plate 17 is a disk member in sliding contact with the base end surface of the cylinder block 2, and is fixed to the end cover 5. The valve plate 17 is formed with a supply port 17 a connecting the supply passage 8 and the volume chamber 7, and a discharge port 17 b connecting the discharge passage 9 and the volume chamber 7.
 ピストンポンプ100は、ピストン6の球面座6aに回転自在に連結されるシュー10と、シリンダブロック2の回転に伴ってシュー10が摺接する斜板13と、シュー10を保持するリテーナプレート11と、リテーナプレート11に摺接するリテーナホルダ12と、をさらに備える。 The piston pump 100 includes a shoe 10 rotatably connected to a spherical seat 6 a of the piston 6, a swash plate 13 in sliding contact with the shoe 10 as the cylinder block 2 rotates, and a retainer plate 11 for holding the shoe 10. And a retainer holder 12 in sliding contact with the retainer plate 11.
 シュー10は、各ピストン6の先端に形成される球面座6aを受容する受容部10aと、斜板13に摺接する円形の平板部10bと、を有する。受容部10aの内面は球面状に形成され、受容した球面座6aの外面と摺接する。シュー10は球面座6aに対してあらゆる方向に角度変位可能である。 The shoe 10 has a receiving portion 10 a for receiving a spherical seat 6 a formed at the tip of each piston 6 and a circular flat plate portion 10 b in sliding contact with the swash plate 13. The inner surface of the receiving portion 10a is formed in a spherical shape and is in sliding contact with the outer surface of the received spherical seat 6a. The shoe 10 can be angularly displaced in any direction with respect to the spherical seat 6a.
 斜板13は、フロントカバー4の内壁に固定され、シャフト1の軸に垂直な方向から傾斜した摺接面13aを有する。シュー10の平板部10bは、摺接面13aに対して面接触する。 The swash plate 13 is fixed to the inner wall of the front cover 4 and has a sliding contact surface 13 a inclined from the direction perpendicular to the axis of the shaft 1. The flat plate portion 10b of the shoe 10 makes surface contact with the sliding contact surface 13a.
 リテーナプレート11は、円環状の平板部材であり、周方向に所定の間隔をあけて形成される複数の挿通穴11aを有する。リテーナプレート11は、シュー10の受容部10aを挿通穴11aに挿通させた状態で、シュー10を保持している。 The retainer plate 11 is an annular flat plate member, and has a plurality of insertion holes 11 a formed at predetermined intervals in the circumferential direction. The retainer plate 11 holds the shoe 10 in a state where the receiving portion 10 a of the shoe 10 is inserted through the insertion hole 11 a.
 リテーナホルダ12は、シリンダブロック2の摺接部2cの外周に装着され、シャフト1の軸方向に沿って摺動可能な筒状部材である。リテーナホルダ12は、その先端がリテーナプレート11の中心部に摺接する。 The retainer holder 12 is a tubular member mounted on the outer periphery of the sliding contact portion 2 c of the cylinder block 2 and slidable along the axial direction of the shaft 1. The tip of the retainer holder 12 is in sliding contact with the central portion of the retainer plate 11.
 ピストンポンプ100は、リテーナホルダ12及びリテーナプレート11を介してシュー10を斜板13に向けて付勢する付勢部材としてのウェーブスプリング30をさらに備える。図2及び図3にウェーブスプリング30の概略形状を示す。図2は、ウェーブスプリング30の平面図であり、図3は、ウェーブスプリング30の側面図である。 The piston pump 100 further includes a wave spring 30 as a biasing member that biases the shoe 10 toward the swash plate 13 via the retainer holder 12 and the retainer plate 11. The schematic shape of the wave spring 30 is shown in FIG. 2 and FIG. FIG. 2 is a plan view of the wave spring 30, and FIG. 3 is a side view of the wave spring 30. As shown in FIG.
 ウェーブスプリング30は、波型の帯状線材が螺旋状に巻き回されて形成されたものである。具体的には、線材は、断面が矩形状であり、図2に示すように、線材には、線材の厚さ方向に折り曲げて形成される山部30aと谷部30bとが周方向に沿って所定の間隔で設けられる。そして、図3に示すように、線材は、上下方向に隣接する線材の山部30aと谷部30bとが当接するように螺旋状に巻き回される。なお、図2及び図3に図示されるウェーブスプリング30の一例であり、ウェーブスプリング30としては、波型の帯状線材が螺旋状に巻き回されて形成されたものであればどのような構成のものであってもよい。 The wave spring 30 is formed by spirally winding a corrugated strip. Specifically, the wire has a rectangular cross section, and as shown in FIG. 2, the wire has a ridge 30 a and a valley 30 b formed by bending in the thickness direction of the wire along the circumferential direction. Are provided at predetermined intervals. Then, as shown in FIG. 3, the wire is spirally wound so that the ridges 30 a and the valleys 30 b of the wire adjacent in the vertical direction abut on each other. In addition, it is an example of the wave spring 30 shown in figure by FIG.2 and FIG.3, and as a wave spring 30, what kind of structure will be formed if the wave-shaped strip | belt-shaped wire is wound and formed helically. It may be one.
 ウェーブスプリング30は、図1に示すように、シリンダブロック2の摺接部2cの外周に装着されており、リテーナホルダ12の底面12aと、シリンダ2bが開口するシリンダブロック2の端面2dとの間に圧縮された状態で介装される。このため、ウェーブスプリング30の内径d1は、シリンダブロック2の摺接部2cの外径よりも大きく設定され、ウェーブスプリング30の外径D1は、リテーナホルダ12の外径よりも小さく設定される。 As shown in FIG. 1, the wave spring 30 is mounted on the outer periphery of the sliding contact portion 2c of the cylinder block 2, and between the bottom surface 12a of the retainer holder 12 and the end face 2d of the cylinder block 2 where the cylinder 2b opens. Is inserted in a compressed state. Therefore, the inner diameter d1 of the wave spring 30 is set larger than the outer diameter of the sliding contact portion 2c of the cylinder block 2, and the outer diameter D1 of the wave spring 30 is set smaller than the outer diameter of the retainer holder 12.
 ウェーブスプリング30の付勢力は、リテーナホルダ12及びリテーナプレート11を介してシュー10に作用し、シュー10を斜板13に押し付ける押圧力となる。また、ウェーブスプリング30の付勢力は、シリンダブロック2をバルブプレート17に押し付ける押圧力としても作用する。このため、シリンダブロック2とバルブプレート17との間から水が漏れることが抑制される。 The biasing force of the wave spring 30 acts on the shoe 10 via the retainer holder 12 and the retainer plate 11, resulting in a pressing force that presses the shoe 10 against the swash plate 13. The biasing force of the wave spring 30 also acts as a pressing force that presses the cylinder block 2 against the valve plate 17. For this reason, leakage of water from between the cylinder block 2 and the valve plate 17 is suppressed.
 ここで、一般的な圧縮コイルスプリングの付勢力は、線材の捻り応力に起因して生じるのに対して、ウェーブスプリング30の付勢力は、線材の曲げ応力に起因して生じる。このため、外形寸法がほぼ同じである場合、圧縮コイルスプリングよりもウェーブスプリング30の付勢力の方が大きくなる。つまり、同じ付勢力を得ようとした場合、ウェーブスプリング30の方が圧縮方向長さを短くすることができるとともに外径を小さくすることができる。したがって、シュー10を斜板13に向けて付勢する付勢部材としてウェーブスプリング30を採用することによって、付勢部材を収容するためのスペースが小さくなるため、ピストンポンプ100全体をコンパクト化することが可能となる。 Here, the biasing force of the general compression coil spring is generated due to the twisting stress of the wire, while the biasing force of the wave spring 30 is generated due to the bending stress of the wire. For this reason, when the outer dimensions are substantially the same, the biasing force of the wave spring 30 is larger than that of the compression coil spring. That is, in order to obtain the same biasing force, the wave spring 30 can shorten the length in the compression direction and can reduce the outer diameter. Therefore, by adopting the wave spring 30 as a biasing member for biasing the shoe 10 toward the swash plate 13, the space for housing the biasing member is reduced, so the entire piston pump 100 can be made compact. Is possible.
 一方で、ウェーブスプリング30は、圧縮されると外径が拡がるため、ウェーブスプリング30に対して径方向外側に配置されるピストン6にウェーブスプリング30が接触するおそれがある。 On the other hand, since the wave spring 30 expands its outer diameter when compressed, the wave spring 30 may come in contact with the piston 6 disposed radially outward with respect to the wave spring 30.
 このため、ピストンポンプ100は、ウェーブスプリング30の径方向における拡がりを規制する規制部としてのピン部材32をさらに備える。図4は、図1のIV-IV線に沿う部分断面図であり、この図にはピン部材32の配置が示される。 Therefore, the piston pump 100 further includes a pin member 32 as a restricting portion that restricts the radial expansion of the wave spring 30. FIG. 4 is a partial cross-sectional view taken along the line IV-IV of FIG. 1, in which the arrangement of the pin members 32 is shown.
 ピン部材32は、円柱状部材であり、シャフト1の軸方向に沿ってシリンダブロック2の端面2dに圧入等により固定される。ピン部材32は、シリンダ2bとシリンダ2bとの間であって、ウェーブスプリング30の径方向外側に複数配置される。ピン部材32の配置は、図4に二点鎖線で示される各シリンダ2bの最もシャフト1側の点を結んだ第1仮想円34の直径よりも、一点鎖線で示される各ピン部材32の最もシャフト1側の点を結んだ第2仮想円33の直径の方が小さくなるように設定される。 The pin member 32 is a cylindrical member, and is fixed to the end face 2 d of the cylinder block 2 along the axial direction of the shaft 1 by press fitting or the like. A plurality of pin members 32 are disposed between the cylinder 2 b and the cylinder 2 b and radially outward of the wave spring 30. The arrangement of the pin members 32 is the most in each pin member 32 indicated by a dot and dash line than the diameter of a first virtual circle 34 connecting the most point on the shaft 1 side of each cylinder 2 b indicated in FIG. The diameter of the second virtual circle 33 connecting the points on the shaft 1 side is set to be smaller.
 このように、ピン部材32は、ピストン6よりもウェーブスプリング30の近くに配置されるため、圧縮されることでウェーブスプリング30の外径が拡がったとしても、ウェーブスプリング30は、ピストン6ではなく、ピン部材32に当接することになる。したがって、ウェーブスプリング30の径方向における拡がりはピン部材32によって規制され、ピストン6とウェーブスプリング30とが接触することが防止される。なお、ピン部材32は、すべてのシリンダ2b間に設けられる必要はなく、複数、好ましくは3つ以上設けられていればよい。 As described above, since the pin member 32 is disposed closer to the wave spring 30 than the piston 6, the wave spring 30 is not the piston 6 even if the outer diameter of the wave spring 30 is expanded by being compressed. , And the pin member 32. Therefore, the radial expansion of the wave spring 30 is restricted by the pin member 32, and the piston 6 and the wave spring 30 are prevented from contacting with each other. The pin members 32 do not have to be provided between all the cylinders 2b, and a plurality, preferably three or more, may be provided.
 次に、ピストンポンプ100の作動について説明する。 Next, the operation of the piston pump 100 will be described.
 外部からの動力によりシャフト1が回転駆動され、それに伴いシリンダブロック2が回転すると、各シュー10の平板部10bが斜板13に対して摺接し、各ピストン6が斜板13の傾斜角度に応じたストローク量でシリンダ2b内を往復動する。そして、各ピストン6が往復動することにより、各容積室7の容積が増減する。 When the shaft 1 is driven to rotate by external power and the cylinder block 2 is rotated accordingly, the flat plate portion 10b of each shoe 10 is in sliding contact with the swash plate 13 and each piston 6 corresponds to the inclination angle of the swash plate 13 Reciprocate in the cylinder 2b by the stroke amount. Then, as the pistons 6 reciprocate, the volume of each volume chamber 7 increases or decreases.
 シリンダブロック2の回転により拡大する容積室7には供給通路8及び供給ポート17aを通じて水が導かれる。容積室7内に吸い込まれた水は、シリンダブロック2の回転による容積室7の縮小によって加圧され、排出ポート17b及び排出通路9を通じて吐出される。このように、ピストンポンプ100では、シリンダブロック2の回転に伴って、水の吸込と吐出とが連続的に行われる。 Water is introduced into the volume chamber 7 expanded by the rotation of the cylinder block 2 through the supply passage 8 and the supply port 17a. The water sucked into the volume chamber 7 is pressurized by the contraction of the volume chamber 7 by the rotation of the cylinder block 2 and is discharged through the discharge port 17 b and the discharge passage 9. Thus, in the piston pump 100, suction and discharge of water are continuously performed as the cylinder block 2 rotates.
 このように、ピストンポンプ100において水の吸込と吐出とが行われている間、シュー10は、ウェーブスプリング30の付勢力によって常に斜板13に押し付けられ、シュー10が斜板13から離れることが防止される。 Thus, while the suction and discharge of water are performed in the piston pump 100, the shoe 10 is always pressed against the swash plate 13 by the biasing force of the wave spring 30, and the shoe 10 may be separated from the swash plate 13. It is prevented.
 以上の第1実施形態によれば、以下に示す効果を奏する。 According to the first embodiment described above, the following effects can be obtained.
 ピストンポンプ100は、シュー10を斜板13に向けて付勢する付勢部材としてウェーブスプリング30を備えている。ウェーブスプリング30と一般的な圧縮コイルスプリングとを比較すると、同じ付勢力を得ようとした場合、ウェーブスプリング30の方が圧縮方向長さを短くすることが可能であるとともに外径を小さくすることが可能である。このため、ウェーブスプリング30を採用することによって、付勢部材を収容するためのスペースが小さくなり、結果としてピストンポンプ100の外形をコンパクト化することができる。 The piston pump 100 includes a wave spring 30 as a biasing member that biases the shoe 10 toward the swash plate 13. Comparing the wave spring 30 with a general compression coil spring, the wave spring 30 can shorten the length in the compression direction and reduce the outer diameter in order to obtain the same biasing force. Is possible. For this reason, by adopting the wave spring 30, the space for accommodating the biasing member can be reduced, and as a result, the outer shape of the piston pump 100 can be made compact.
 また、ピストンポンプ100は、ウェーブスプリング30の径方向における拡がりを規制する規制部としてピン部材32を備えている。ピン部材32は、ピストン6よりもウェーブスプリング30の近くに配置されるため、圧縮されることでウェーブスプリング30の外径が拡がったとしても、ウェーブスプリング30は、ピストン6ではなく、ピン部材32に当接することになる。したがって、ピストン6とウェーブスプリング30とが接触することを防止することができる。 Further, the piston pump 100 is provided with a pin member 32 as a restricting portion that restricts the radial expansion of the wave spring 30. Since the pin member 32 is disposed closer to the wave spring 30 than the piston 6, the wave spring 30 is not the piston 6 but the pin member 32 even if the outer diameter of the wave spring 30 is expanded by compression. Will abut. Therefore, it can prevent that piston 6 and wave spring 30 contact.
 <第2実施形態>
 次に、本発明の第2実施形態に係るピストンポンプ200について説明する。以下では、第1実施形態と異なる点を中心に説明し、第1実施形態と同様の構成には、同一の符号を付し説明を省略する。
Second Embodiment
Next, a piston pump 200 according to a second embodiment of the present invention will be described. Hereinafter, differences from the first embodiment will be mainly described, and the same configuration as the first embodiment is denoted by the same reference numeral, and the description thereof will be omitted.
 第2実施形態に係るピストンポンプ200の基本的な構成は、図1に示される第1実施形態に係るピストンポンプ100と同様である。第2実施形態に係るピストンポンプ200は、ウェーブスプリング30の径方向における拡がりを規制する規制部2e,12bの構成が第1実施形態に係るピストンポンプ100の規制部32の構成と異なる点で第1実施形態に係るピストンポンプ100と相違する。図5は、第2実施形態に係るピストンポンプ200の規制部2e,12bについて説明するための図であり、図1においてV部で示される部分に相当する部分を拡大して示している。なお、図5で示される部分以外の構成は第1実施形態に係るピストンポンプ100と同様であるため、それらの図示及び説明は省略する。 The basic configuration of the piston pump 200 according to the second embodiment is the same as that of the piston pump 100 according to the first embodiment shown in FIG. The piston pump 200 according to the second embodiment differs from the piston pump 200 according to the first embodiment in that the configuration of the regulation portions 2e and 12b for regulating the radial expansion of the wave spring 30 differs from the configuration of the regulation portion 32 of the piston pump 100 according to the first embodiment. This differs from the piston pump 100 according to one embodiment. FIG. 5 is a view for explaining the restricting portions 2e and 12b of the piston pump 200 according to the second embodiment, and shows a portion corresponding to a portion shown by a V portion in FIG. 1 in an enlarged manner. In addition, since the structure except the part shown by FIG. 5 is the same as that of the piston pump 100 which concerns on 1st Embodiment, those illustration and description are abbreviate | omitted.
 ピストンポンプ200は、ウェーブスプリング30の径方向における拡がりを規制する第1規制部としての環状凸部2eと、第2規制部としての環状壁部12bと、を備える。 The piston pump 200 includes an annular convex portion 2 e as a first restricting portion that restricts the radial spread of the wave spring 30 and an annular wall portion 12 b as a second restricting portion.
 環状凸部2eは、シリンダブロック2の端面2dからシャフト1の軸方向に沿って突出し、ウェーブスプリング30の外周を取り囲むように環状に形成される。図5に示されるように、環状凸部2eは、ウェーブスプリング30とピストン6との間に配置されるため、圧縮されることでウェーブスプリング30の外径が拡がったとしても、ウェーブスプリング30は、ピストン6ではなく、環状凸部2eに当接することになる。したがって、ウェーブスプリング30の径方向における拡がりは環状凸部2eによって規制され、ピストン6とウェーブスプリング30とが接触することが防止される。 The annular convex portion 2 e protrudes from the end face 2 d of the cylinder block 2 along the axial direction of the shaft 1 and is annularly formed so as to surround the outer periphery of the wave spring 30. As shown in FIG. 5, since the annular convex portion 2 e is disposed between the wave spring 30 and the piston 6, the wave spring 30 can be compressed even if the outer diameter of the wave spring 30 is expanded by being compressed. , Not the piston 6 but the annular convex portion 2e. Therefore, the radial expansion of the wave spring 30 is restricted by the annular convex portion 2e, and the piston 6 and the wave spring 30 are prevented from contacting with each other.
 なお、環状凸部2eは、周方向において連続して設けられる必要はなく、部分的に設けられていてもよい。また、端面2dから環状凸部2eを突出させる構成に代えて、ウェーブスプリング30が配置される部分の端面2dにウェーブスプリング30を収容可能な溝を加工し、溝内にウェーブスプリング30を配置することでウェーブスプリング30の径方向における拡がりを規制する構成としてもよい。 In addition, the annular convex part 2e does not need to be continuously provided in the circumferential direction, and may be partially provided. Further, instead of the configuration in which the annular convex portion 2e is protruded from the end face 2d, a groove capable of accommodating the wave spring 30 is processed on the end face 2d of the portion where the wave spring 30 is disposed, and the wave spring 30 is disposed in the groove. Thus, the radial spread of the wave spring 30 may be restricted.
 一方、環状壁部12bは、リテーナホルダ12の底面12aからシャフト1の軸方向に沿って突出し、ウェーブスプリング30の外周を取り囲むように環状に形成される。図5に示されるように、環状壁部12bは、ウェーブスプリング30とピストン6との間に配置されるため、圧縮されることでウェーブスプリング30の外径が拡がったとしても、ウェーブスプリング30は、ピストン6ではなく、環状壁部12bに当接することになる。したがって、ウェーブスプリング30の径方向における拡がりは環状壁部12bによって規制され、ピストン6とウェーブスプリング30とが接触することが防止される。なお、環状壁部12bは、周方向において連続して設けられる必要はなく、部分的に設けられていてもよい。 On the other hand, the annular wall portion 12 b protrudes from the bottom surface 12 a of the retainer holder 12 along the axial direction of the shaft 1 and is annularly formed so as to surround the outer periphery of the wave spring 30. As shown in FIG. 5, since the annular wall portion 12 b is disposed between the wave spring 30 and the piston 6, the wave spring 30 can be compressed even if the outer diameter of the wave spring 30 is expanded by being compressed. , Not the piston 6 but the annular wall 12b. Therefore, the radial expansion of the wave spring 30 is restricted by the annular wall 12b, and the piston 6 and the wave spring 30 are prevented from contacting with each other. The annular wall portion 12 b does not have to be continuously provided in the circumferential direction, and may be partially provided.
 環状凸部2eと環状壁部12bとは、両方設けられていてもよいし、一方のみ設けられていてもよい。環状凸部2eと環状壁部12bとの両方を配置することでピストン6とウェーブスプリング30との接触を確実に防止することができる。 Both the annular convex portion 2 e and the annular wall portion 12 b may be provided, or only one may be provided. By arranging both the annular convex portion 2 e and the annular wall portion 12 b, the contact between the piston 6 and the wave spring 30 can be reliably prevented.
 以上の第2実施形態によれば、以下に示す効果を奏する。 According to the above second embodiment, the following effects can be obtained.
 ピストンポンプ200は、ウェーブスプリング30の径方向における拡がりを規制する規制部として環状凸部2eと環状壁部12bとを備えている。環状凸部2e及び環状壁部12bは、ウェーブスプリング30とピストン6との間に設けられるため、圧縮されることでウェーブスプリング30の外径が拡がったとしても、ウェーブスプリング30は、ピストン6ではなく、環状凸部2e及び環状壁部12bに当接することになる。したがって、ピストン6とウェーブスプリング30とが接触することを防止することができる。 The piston pump 200 includes an annular convex portion 2 e and an annular wall portion 12 b as a regulating portion that regulates the radial expansion of the wave spring 30. Since the annular convex portion 2 e and the annular wall portion 12 b are provided between the wave spring 30 and the piston 6, the wave spring 30 can be compressed by the piston 6 even if the outer diameter of the wave spring 30 is expanded by compression. Instead, it comes in contact with the annular convex portion 2e and the annular wall 12b. Therefore, it can prevent that piston 6 and wave spring 30 contact.
 なお、第2実施形態に係るピストンポンプ200の規制部である環状凸部2e及び環状壁部12bの両方または何れか一方と、第1実施形態に係るピストンポンプ100の規制部であるピン部材32と、を組み合わせても用いてもよい。複数の規制部を配置することでピストン6とウェーブスプリング30とが接触することを確実に防止することができる。 Note that both or any one of the annular convex portion 2e and the annular wall portion 12b, which are the restricting portions of the piston pump 200 according to the second embodiment, and the pin member 32 which is the restricting portion of the piston pump 100 according to the first embodiment. And may be used in combination. By arranging the plurality of restricting portions, contact between the piston 6 and the wave spring 30 can be reliably prevented.
 以上のように構成された本発明の実施形態の構成、作用、及び効果をまとめて説明する。 The configuration, operation, and effects of the embodiment of the present invention configured as described above will be collectively described.
 ピストンポンプ100,200は、複数のピストン6と、シャフト1に結合されピストン6を収容する複数のシリンダ2bが設けられるシリンダブロック2と、ピストン6の先端に回動自在に連結されるシュー10と、シュー10が摺接しシリンダブロック2の回転に伴ってピストン6を往復動させる斜板13と、シュー10を斜板13に向けて付勢する付勢部材として、波型の帯状線材が螺旋状に形成されたウェーブスプリング30と、を備える。 The piston pumps 100 and 200 have a plurality of pistons 6, a cylinder block 2 provided with a plurality of cylinders 2 b coupled to the shaft 1 and accommodating the pistons 6, and a shoe 10 rotatably coupled to the tip of the pistons 6. As a swash plate 13 which reciprocates the piston 6 in accordance with the rotation of the cylinder block 2 as the shoe 10 slides, and as a biasing member which biases the shoe 10 toward the swash plate 13, the corrugated strip is helical. And a wave spring 30 formed on the
 この構成によれば、ピストンポンプ100,200は、シュー10を斜板13に向けて付勢する付勢部材としてウェーブスプリング30を備えている。ウェーブスプリング30と一般的な圧縮コイルスプリングとを比較すると、同じ付勢力を得ようとした場合、ウェーブスプリング30の方が圧縮方向長さを短くすることが可能であるとともに外径を小さくすることが可能である。このため、ウェーブスプリング30を採用することによって、付勢部材を収容するためのスペースが小さくなり、結果としてピストンポンプ100,200の外形をコンパクト化することができる。 According to this configuration, the piston pumps 100 and 200 include the wave spring 30 as a biasing member that biases the shoe 10 toward the swash plate 13. Comparing the wave spring 30 with a general compression coil spring, the wave spring 30 can shorten the length in the compression direction and reduce the outer diameter in order to obtain the same biasing force. Is possible. For this reason, by adopting the wave spring 30, the space for housing the biasing member can be reduced, and as a result, the external shape of the piston pump 100, 200 can be made compact.
 また、ピストンポンプ100,200は、ウェーブスプリング30の径方向における拡がりを規制する規制部32,2e,12bをさらに備える。 The piston pumps 100 and 200 further include restricting portions 32 and 2e and 12b that restrict the radial spread of the wave spring 30, respectively.
 この構成では、ウェーブスプリング30の径方向における拡がりを規制するために規制部32,2e,12bが設けられる。このため、圧縮されることでウェーブスプリング30の外径が拡がったとしても、ウェーブスプリング30は、ピストン6ではなく規制部32,2e,12bに当接することになる。したがって、ピストン6とウェーブスプリング30とが接触することを防止することができる。 In this configuration, in order to restrict the radial spread of the wave spring 30, restricting portions 32, 2e and 12b are provided. For this reason, even if the outer diameter of the wave spring 30 is expanded by being compressed, the wave spring 30 abuts not on the piston 6 but on the restriction portions 32, 2e and 12b. Therefore, it can prevent that piston 6 and wave spring 30 contact.
 また、ピストンポンプ100,200は、ウェーブスプリング30の付勢力をシュー10に伝達するリテーナホルダ12をさらに備え、ウェーブスプリング30は、シリンダブロック2とリテーナホルダ12との間に圧縮された状態で介装され、規制部32,2e,12bは、ウェーブスプリング30の径方向外側において、シリンダブロック2及びリテーナホルダ12の少なくとも一方に設けられる。 The piston pumps 100 and 200 further include a retainer holder 12 for transmitting the biasing force of the wave spring 30 to the shoe 10, and the wave spring 30 is interposed between the cylinder block 2 and the retainer holder 12 in a compressed state. The restriction portions 32, 2e, 12b are mounted on at least one of the cylinder block 2 and the retainer holder 12 on the radially outer side of the wave spring 30.
 この構成では、ウェーブスプリング30の径方向における拡がりを規制するために規制部32,2e,12bがシリンダブロック2及びリテーナホルダ12の少なくとも一方に設けられる。このように、ウェーブスプリング30が装着される部位の近くに規制部32,2e,12bが設けられるため、圧縮されることでウェーブスプリング30の外径が拡がったとしても、ウェーブスプリング30は、ピストン6ではなく規制部32,2e,12bに当接することになる。したがって、ピストン6とウェーブスプリング30とが接触することを防止することができる。 In this configuration, in order to restrict the radial expansion of the wave spring 30, restricting portions 32, 2e and 12b are provided on at least one of the cylinder block 2 and the retainer holder 12. As described above, since the restricting portions 32, 2e and 12b are provided near the portion where the wave spring 30 is mounted, the wave spring 30 is a piston even if the outside diameter of the wave spring 30 is expanded by being compressed. It comes in contact with the restricting portions 32, 2e, 12b instead of 6. Therefore, it can prevent that piston 6 and wave spring 30 contact.
 また、規制部は、シリンダブロック2に設けられた複数のピン部材32であり、ピン部材32は、シリンダブロック2の径方向においてピストン6よりもウェーブスプリング30の近くに配置される。 The restricting portion is a plurality of pin members 32 provided in the cylinder block 2, and the pin members 32 are disposed closer to the wave spring 30 than the piston 6 in the radial direction of the cylinder block 2.
 この構成では、ウェーブスプリング30の径方向における拡がりを規制するためにピン部材32がシリンダブロック2に設けられる。また、ピン部材32は、ピストン6よりもウェーブスプリング30の近くに配置されるため、圧縮されることでウェーブスプリング30の外径が拡がったとしても、ウェーブスプリング30は、ピストン6ではなくピン部材32に当接することになる。したがって、ピストン6とウェーブスプリング30とが接触することを防止することができる。また、シリンダブロック2にピン部材32を組み付けるだけで規制部が構成され、シリンダブロック2等への大掛かりな追加工が不要であるため、ピストンポンプ100の製造コストの上昇を抑制することができる。 In this configuration, a pin member 32 is provided on the cylinder block 2 to restrict the radial expansion of the wave spring 30. Further, since the pin member 32 is disposed closer to the wave spring 30 than the piston 6, even if the outer diameter of the wave spring 30 is expanded by being compressed, the wave spring 30 is not the piston 6 but a pin member It will contact 32. Therefore, it can prevent that piston 6 and wave spring 30 contact. Further, since the restricting portion is configured only by attaching the pin member 32 to the cylinder block 2 and a large-scale additional processing to the cylinder block 2 etc. is unnecessary, it is possible to suppress an increase in the manufacturing cost of the piston pump 100.
 以上、本発明の実施形態について説明したが、上記実施形態は本発明の適用例の一部を示したに過ぎず、本発明の技術的範囲を上記実施形態の具体的構成に限定する趣旨ではない。 As mentioned above, although the embodiment of the present invention was described, the above-mentioned embodiment showed only a part of application example of the present invention, and in the meaning of limiting the technical scope of the present invention to the concrete composition of the above-mentioned embodiment. Absent.
 本実施形態では、作動流体として水を用いているが、これに代えて、作動油や水溶性代替液等の作動流体を用いてもよい。また、ピストンポンプモータ100は、斜板13の角度が固定式のものであるが、斜板の傾転角度を変更可能な可変容量型ピストンポンプモータであってもよい。 In the present embodiment, water is used as the working fluid, but instead, a working fluid such as a working oil or a water-soluble alternative liquid may be used. In addition, although the piston pump motor 100 has a fixed angle of the swash plate 13, it may be a variable displacement piston pump motor capable of changing the tilt angle of the swash plate.
 本願は2017年8月14日に日本国特許庁に出願された特願2017-156662に基づく優先権を主張し、この出願の全ての内容は参照により本明細書に組み込まれる。 This application claims the priority based on Japanese Patent Application No. 2017-156666 filed on Aug. 14, 2017 to the Japan Patent Office, and the entire contents of this application are incorporated herein by reference.

Claims (4)

  1.  液圧回転機であって、
     複数のピストンと、
     回転軸に結合され、前記ピストンを収容する複数のシリンダが設けられるシリンダブロックと、
     前記ピストンの先端に回動自在に連結されるシューと、
     前記シューが摺接し、前記シリンダブロックの回転に伴って前記ピストンを往復動させる斜板と、
     前記シューを前記斜板に向けて付勢する付勢部材と、を備え、
     前記付勢部材は、波型の帯状線材が螺旋状に形成されたウェーブスプリングである液圧回転機。
    A hydraulic rotating machine,
    With multiple pistons,
    A cylinder block coupled to the rotation shaft and provided with a plurality of cylinders accommodating the pistons;
    A shoe rotatably connected to a tip of the piston;
    A swash plate which is in sliding contact with the shoes and causes the piston to reciprocate as the cylinder block rotates;
    A biasing member for biasing the shoe toward the swash plate;
    The fluid pressure rotating machine according to the present invention, wherein the biasing member is a wave spring in which a corrugated strip is spirally formed.
  2.  請求項1に記載の液圧回転機であって、
     前記ウェーブスプリングの径方向における拡がりを規制する規制部をさらに備える液圧回転機。
    A hydraulic rotating machine according to claim 1, wherein
    The hydraulic rotating machine further comprising a restricting portion that restricts the radial spread of the wave spring.
  3.  請求項2に記載の液圧回転機であって、
     前記ウェーブスプリングの付勢力を前記シューに伝達するリテーナホルダをさらに備え、
     前記ウェーブスプリングは、前記シリンダブロックと前記リテーナホルダとの間に圧縮された状態で介装され、
     前記規制部は、前記ウェーブスプリングの径方向外側において、前記シリンダブロック及び前記リテーナホルダの少なくとも一方に設けられる液圧回転機。
    The hydraulic rotating machine according to claim 2, wherein
    It further comprises a retainer holder for transmitting the biasing force of the wave spring to the shoe,
    The wave spring is interposed between the cylinder block and the retainer holder in a compressed state.
    The hydraulic restrictor is provided on at least one of the cylinder block and the retainer holder on the radially outer side of the wave spring.
  4.  請求項3に記載の液圧回転機であって、
     前記規制部は、前記シリンダブロックに設けられた複数のピン部材であり、
     前記ピン部材は、前記シリンダブロックの径方向において前記ピストンよりも前記ウェーブスプリングの近くに配置される液圧回転機。
    A hydraulic rotating machine according to claim 3, wherein
    The restriction portion is a plurality of pin members provided on the cylinder block,
    The hydraulic rotating machine wherein the pin member is disposed closer to the wave spring than the piston in a radial direction of the cylinder block.
PCT/JP2018/028699 2017-08-14 2018-07-31 Hydraulic rotary machine WO2019035355A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017156662A JP2019035363A (en) 2017-08-14 2017-08-14 Liquid pressure rotary machine
JP2017-156662 2017-08-14

Publications (1)

Publication Number Publication Date
WO2019035355A1 true WO2019035355A1 (en) 2019-02-21

Family

ID=65362230

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/028699 WO2019035355A1 (en) 2017-08-14 2018-07-31 Hydraulic rotary machine

Country Status (2)

Country Link
JP (1) JP2019035363A (en)
WO (1) WO2019035355A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5768569A (en) * 1980-10-15 1982-04-26 Honda Motor Co Ltd Swash plate type hydraulic apparatus
JPH109132A (en) * 1996-06-24 1998-01-13 Denso Corp Swash plate type compressor
JP2000213447A (en) * 1999-01-25 2000-08-02 Kawasaki Heavy Ind Ltd Piston motor
WO2011152025A1 (en) * 2010-05-31 2011-12-08 株式会社パイオラックス Wave coil spring

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5768569A (en) * 1980-10-15 1982-04-26 Honda Motor Co Ltd Swash plate type hydraulic apparatus
JPH109132A (en) * 1996-06-24 1998-01-13 Denso Corp Swash plate type compressor
JP2000213447A (en) * 1999-01-25 2000-08-02 Kawasaki Heavy Ind Ltd Piston motor
WO2011152025A1 (en) * 2010-05-31 2011-12-08 株式会社パイオラックス Wave coil spring

Also Published As

Publication number Publication date
JP2019035363A (en) 2019-03-07

Similar Documents

Publication Publication Date Title
JP2009257421A (en) Shaft seal structure of fluid machine
US20110192276A1 (en) Axial piston machine of swashplate design
WO2019035355A1 (en) Hydraulic rotary machine
JP3651044B2 (en) Bellows pump
JP3719990B2 (en) Compressor
KR101836241B1 (en) Variable oil pump
WO2016006466A1 (en) Hydraulic rotary machine
EP1030057B1 (en) Hydraulic pump or motor
JP2021188532A (en) Hydraulic rotary machine
JP2005233054A (en) Compressor
JP6368517B2 (en) Hydraulic rotating machine
KR20010042800A (en) A hydraulic rotating axial piston engine
JP2005201175A (en) Variable displacement swash plate type hydraulic rotating machine
US20210301806A1 (en) Hydraulic piston with a depressurized groove
CN112761943A (en) Scroll compressor including crank pin having upper recess
JP6360701B2 (en) Hydraulic rotating machine
KR20210074864A (en) Swash plate compressor
JP2554942Y2 (en) Radial piston pump
US9909420B2 (en) Axial piston machine
KR101453103B1 (en) Compressor
JP5117971B2 (en) Variable capacity compressor
KR20000052578A (en) Swash Plate Type Piston Motor
JP2015178808A (en) Liquid pressure rotary machine
KR101348838B1 (en) Variable displacement swash plate type compressor
JPH0219682A (en) Fluid compressor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18846615

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18846615

Country of ref document: EP

Kind code of ref document: A1