WO2019035335A1 - Nucleic acid collection method, nucleic-acid-binding carrier, and nucleic acid collection kit - Google Patents

Nucleic acid collection method, nucleic-acid-binding carrier, and nucleic acid collection kit Download PDF

Info

Publication number
WO2019035335A1
WO2019035335A1 PCT/JP2018/028130 JP2018028130W WO2019035335A1 WO 2019035335 A1 WO2019035335 A1 WO 2019035335A1 JP 2018028130 W JP2018028130 W JP 2018028130W WO 2019035335 A1 WO2019035335 A1 WO 2019035335A1
Authority
WO
WIPO (PCT)
Prior art keywords
nucleic acid
porous silica
silica particles
binding
volume
Prior art date
Application number
PCT/JP2018/028130
Other languages
French (fr)
Japanese (ja)
Inventor
酒井 智弘
太志 原
哲也 小谷
信介 山▲崎▼
Original Assignee
Agc株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017157968A external-priority patent/JP2020191784A/en
Priority claimed from JP2017157978A external-priority patent/JP2020191785A/en
Application filed by Agc株式会社 filed Critical Agc株式会社
Publication of WO2019035335A1 publication Critical patent/WO2019035335A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • C12M1/26Inoculator or sampler
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/34Regenerating or reactivating
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid

Definitions

  • the present invention relates to a nucleic acid recovery method, a nucleic acid binding carrier and a nucleic acid recovery kit.
  • infectious disease diagnostic kit one intended for a protein (antigen, antibody, etc.) has been used.
  • the accuracy is low except for a part of infectious diseases such as influenza, and in the case of targeting an antibody, false positive due to past infection. Therefore, in recent years, infectious disease diagnostic kits for nucleic acids have been studied. By targeting nucleic acid, an improvement in accuracy is expected.
  • the sample which is a biological sample contains various components, and it is necessary to isolate the nucleic acid from the sample for diagnosis.
  • a method of isolating nucleic acid from a biological sample there is known a method of adsorbing or binding nucleic acid to a carrier containing silica, removing components other than nucleic acid by washing, and eluting nucleic acid from the carrier.
  • Nucleic acid purification kits using this method have already been put to practical use, and silica membranes are widely used as carriers (eg, non-patent documents 1 to 3).
  • nucleic acid isolation methods do not always have high extraction rates of nucleic acids, and in the case of nucleic acids having a length of 10 5 bp or more in particular, they can not be extracted or extraction is low even if extraction is possible. there were.
  • the extraction rate is low, it is necessary to perform an amplification process for a long time using an expensive apparatus, which limits the facilities that can be implemented and also takes a long time.
  • An object of the present invention is to provide a method for recovering nucleic acid with high recovery rate by a simple operation even when nucleic acid is long, a carrier for binding to nucleic acid and a nucleic acid recovery kit suitably used for the recovery method.
  • the present invention provides a nucleic acid recovery method, a nucleic acid binding carrier and a nucleic acid recovery kit, having the following aspects [1] to [16].
  • [1] is a D 50 of 6 ⁇ 50 [mu] m particle size distribution based on volume, the pore volume determined by the BJH method is the 0.3 ⁇ 5 cm 3 / g, an average pore diameter determined by BJH method from 60 to A nucleic acid is bound to porous silica particles (hereinafter also referred to as porous silica particles I) having a thickness of 500 ⁇ to form a complex, A method for recovering nucleic acid, which comprises eluting and recovering the nucleic acid from the complex.
  • porous silica particles I porous silica particles
  • a nucleic acid is bound to a porous silica particle (hereinafter, also referred to as porous silica particle II) which is 5000 ⁇ to form a complex
  • a method for recovering nucleic acid which comprises eluting and recovering the nucleic acid from the complex.
  • [8] The method for recovering nucleic acid according to any one of [1] to [7], wherein the complex is washed before eluting the nucleic acid from the complex.
  • [9] The method for recovering a nucleic acid according to any one of [1] to [8], wherein the length of the nucleic acid is 10 5 to 10 11 bp.
  • a carrier for nucleic acid binding comprising porous silica particles of 5000 ⁇ .
  • nucleic acid recovery kit [16] The nucleic acid recovery kit according to any one of [12] to [15], further comprising a fourth container containing a washing solution for washing the complex in which the porous silica particles and the nucleic acid are bound.
  • nucleic acid recovery method of the present invention even when the nucleic acid is long, the nucleic acid can be recovered at a high recovery rate by a simple operation.
  • the nucleic acid binding carrier and the nucleic acid recovery kit of the present invention can be suitably used for the above recovery method, respectively.
  • FIG. 16 is a graph showing the relationship between D 50 of the porous silica particles I and DNA recovery in Examples 1 to 10 of Example A.
  • FIG. FIG. 16 is a graph showing the relationship between D 90 / D 10 of the porous silica particles I and the DNA recovery in Examples 1 to 10 of Example A.
  • FIG. FIG. 16 is a graph showing the relationship between the pore volume of porous silica particles I and the DNA recovery in Examples 1 to 10 of Example A.
  • FIG. 7 is a graph showing the relationship between the average pore size of porous silica particles I and the DNA recovery in Examples 1 to 10 of Example A. 7 is a graph showing the relationship between the specific surface area (SSA) of porous silica particles I and the DNA recovery in Examples 1 to 10 of Example A.
  • FIG. SSA specific surface area
  • FIG. 16 is a graph showing the relationship between D 50 of the porous silica particles II and the DNA recovery in Examples 12 to 26 of Example B.
  • FIG. FIG. 16 is a graph showing the relationship between D 90 / D 10 of the porous silica particles II and the DNA recovery in Examples 12 to 26 of Example B.
  • FIG. FIG. 16 is a graph showing the relationship between the pore volume of porous silica particles II and the DNA recovery in Examples 12 to 26 of Example B.
  • FIG. FIG. 16 is a graph showing the relationship between the average pore size of porous silica particles II and the DNA recovery in Examples 12 to 26 of Example B.
  • FIG. FIG. 16 is a graph showing the relationship between the specific surface area (SSA) of porous silica particles II and the DNA recovery in Examples 12 to 26 of Example B.
  • SSA specific surface area
  • D 50 is a particle diameter at a point of 50% in a cumulative volume distribution curve where the total volume of particle size distribution on a volume basis is 100%, that is, a volume based cumulative 50% diameter.
  • D 10 is the particle diameter at a point of 10% in the cumulative volume distribution curve where the total volume of particle size distribution on a volume basis is 100%, that is, the volume based cumulative 10% diameter.
  • D 90 is a particle diameter at a point of 90% in the cumulative volume distribution curve where the total volume of particle size distribution on a volume basis is 100%, that is, a volume-based cumulative 90% diameter.
  • the “particle size distribution on a volume basis” is obtained from the frequency distribution and the cumulative volume distribution curve measured by a laser scattering particle size distribution measuring apparatus (for example, a laser diffraction / scattering type particle size distribution measuring apparatus etc.). The measurement is carried out by sufficiently dispersing the powder in an aqueous medium by ultrasonic treatment or the like.
  • the “pore volume determined by the BJH method” is a pore volume determined from the adsorption isotherm by the BJH method. In the measurement of the adsorption isotherm, nitrogen gas is used as the adsorption gas.
  • the "average pore size determined by the BJH method” is an average pore size determined from the adsorption isotherm by the BJH method.
  • the “BJH method” is a method of determining mesopore diameter distribution by Barrett, Joyner and Halenda, which is one of methods for determining pore diameter distribution from adsorption isotherm.
  • the "pore volume determined by mercury porosimetry” is a pore volume measured using a mercury porosimeter.
  • the "average pore size determined by mercury porosimetry” is an average pore size measured using a mercury porosimeter.
  • a physical property value of mercury is a contact angle of 140 °, a surface tension of 480 dynes / cm, and a density of 13.5335 g / mL. Measurement conditions are a pressure of 50 mm Hg, an evacuation time of 5 minutes, an injection pressure of 1.49 psi, and an equilibration time of 10 seconds.
  • the “specific surface area” is a specific surface area determined from an adsorption isotherm by a BET (Brunauer, Emmet, Teller) method. In the measurement of the adsorption isotherm, nitrogen gas is used as the adsorption gas.
  • Silica purity is the ratio of the mass of the silica (SiO 2) with respect to the total weight of the porous silica particles. Silica purity is measured by the quasi-drug raw material standard 2006 "anhydrous silicic acid” determination method. “-” Indicating a numerical range is used in the meaning including the numerical values described before and after that as the lower limit value and the upper limit value.
  • the nucleic acid recovery method of the present invention comprises the following binding and elution steps. After the binding step, the following washing step may be further included before the elution step. Bonding step: a step of binding a nucleic acid to porous silica particles I or porous silica particles II to form a complex. Washing step: a step of washing the complex. Elution step: a step of eluting and recovering nucleic acid from the complex.
  • porous silica particles are used as a carrier for binding nucleic acid. Porous silica particles have silica present on their surface. The porous silica particles may further contain components other than silica (hereinafter, also referred to as other components).
  • the silica purity of porous silica particle 95 mass% or more is more preferable, and 98 mass% or more is especially preferable.
  • the upper limit of the silica purity is not particularly limited, and may be 100% by mass.
  • the other components may be eluted from the porous silica particles at the time of recovery of the nucleic acid to adversely affect the measurement.
  • covered the surface of the magnetic body with porous silica is expensive for a raw material and manufacture, and is expensive.
  • the porous silica particles are preferably not magnetic silica particles in terms of cost and chemical resistance.
  • the whole particle may be a particle which consists of porous silica.
  • D 50 is 6 ⁇ 50 [mu] m, preferably 6 ⁇ 45 ⁇ m, 7 ⁇ 30 ⁇ m are particularly preferred. If D 50 is within the above range, the nucleic acid recovery rate is excellent.
  • D 90 / D 10 is preferably 10 or less, more preferably 8 or less, particularly preferably 6 or less. If D 90 / D 10 is less than the upper limit, the nucleic acid recovery more excellent.
  • the lower limit of D 90 / D 10 is not particularly limited, and may be 1, for example.
  • D 90 is, for example, 10 to 100 ⁇ m
  • D 10 is, for example, 1 to 50 ⁇ m.
  • Pore volume of porous silica particles I is a pore volume determined by the BJH method, the range is 0.3 ⁇ 5cm 3 / g, preferably 0.4 ⁇ 3cm 3 / g, 0.5 Particular preference is given to ⁇ 2.5 cm 3 / g.
  • the pore volume of the porous silica particles II is a pore volume determined by mercury porosimeter, the range is 0.6 ⁇ 5cm 3 / g, preferably 0.6 ⁇ 4cm 3 / g, 0 6 to 2.5 cm 3 / g are particularly preferred. If the pore volume is equal to or more than the lower limit value, the nucleic acid recovery rate is excellent. If the pore volume is equal to or less than the upper limit value, the washability is excellent.
  • the average pore size of the porous silica particles I is an average pore size determined by the BJH method, and the range is 60 to 500 ⁇ , preferably 60 to 450 ⁇ , and particularly preferably 90 to 450 ⁇ . If the average pore diameter of the porous silica particles I is not less than the above lower limit value, the nucleic acid recovery rate is excellent. If the average pore diameter is equal to or less than the upper limit value, the recovery rate is excellent even for short nucleic acids.
  • the average pore size of the porous silica particles II is an average pore size determined by a mercury porosimeter, and the range is 200 to 5000 ⁇ , preferably 200 to 4000 ⁇ , and particularly preferably 200 to 2500 ⁇ . If the average pore diameter of the porous silica particles II is not less than the lower limit value and not more than the upper limit value, the nucleic acid recovery efficiency is excellent.
  • the specific surface area of porous silica particles I is a specific surface area as determined by BET method is preferably 150 ⁇ 1000m 2 / g, more preferably 150 ⁇ 800m 2 / g, particularly preferably 170 ⁇ 650m 2 / g.
  • the specific surface area of porous silica particles II is a specific surface area as determined by the BET method, preferably 8 ⁇ 400m 2 / g, more preferably 8 ⁇ 350m 2 / g, particularly preferably 8 ⁇ 300m 2 / g .
  • the specific surface area is equal to or more than the lower limit value, the nucleic acid recovery rate is more excellent.
  • the specific surface area is equal to or less than the upper limit value, the washability is excellent.
  • porous silica particles those having desired properties (D 50 , pore volume, average pore diameter, etc.) can be appropriately selected and used from commercially available porous silica particles.
  • Nucleic acid is a generic term for DNA (deoxyribonucleic acid) and RNA (ribonucleic acid).
  • the type of nucleic acid to be bound to the porous silica particle is not particularly limited, and may be DNA, RNA, or a mixture thereof.
  • the type and structure of DNA and RNA are not particularly limited.
  • the DNA may be single stranded DNA or double stranded DNA.
  • the nucleic acid may be nucleic acid derived from a eukaryote (animal, plant, insect, nematode, yeast, mold etc.) or nucleic acid derived from a prokaryote (bacteria such as E. coli, Bacillus subtilis, cyanobacteria, mycoplasma etc.) It may be a nucleic acid derived from an inanimate substance (virus, chloroplast, mitochondria, etc.).
  • the length of the nucleic acids is preferably 10 ⁇ 10 11 bp, more preferably from 10 5 ⁇ 10 11 bp, particularly preferably 10 5 ⁇ 10 9 bp.
  • the length of the nucleic acid targeted by the nucleic acid purification kit using a conventional silica membrane is usually 10 6 bp or less. The longer the nucleic acid, the lower the recovery, especially at 10 5 bp or more, the lower the recovery. It is considered that this is because as the nucleic acid becomes longer, the nucleic acid becomes strongly bound to the carrier and becomes difficult to elute. According to the recovery method of the present invention, even a nucleic acid having a length of 10 5 bp or more can be recovered with an excellent recovery rate.
  • the utility of the present invention is particularly high when the length of the nucleic acid is 10 5 bp or more. If the length of the nucleic acid is 10 11 bp or less, the nucleic acid recovery rate is more excellent.
  • the naturally occurring nucleic acid of 10 5 to 10 11 bp in length is DNA.
  • nucleic acids are bound to the porous silica particles to form a complex.
  • the bonding step can be carried out using known methods, except that the porous silica particles are used as a carrier.
  • a method for binding nucleic acid to porous silica particles a sample containing nucleic acid and a binding solution are mixed to obtain a mixed solution (hereinafter also referred to as a first mixed solution), and the first mixed solution and the pores are obtained. And a method of contacting with the porous silica particles.
  • a biological sample is used as a sample containing nucleic acid.
  • biological samples include blood, serum, puncture fluid, airway wiping fluid, urine, feces, pus, hair, nails and the like.
  • the binding solution is a solution having an action of binding a nucleic acid to the porous silica particles.
  • the action of the binding solution causes the nucleic acids in the sample to bind to the porous silica particles.
  • a chaotropic substance solution is used as the binding solution.
  • the nucleic acids are bound to the porous silica particles in the presence of a chaotropic substance solution.
  • the chaotropic substance generates chaotropic ions in a solvent such as water.
  • the action of the chaotropic ion facilitates binding of the nucleic acid to the porous silica particle.
  • chaotropic ions can change the secondary, tertiary or quaternary structure without changing the primary structure of proteins or nucleic acids. Therefore, by mixing the biological sample and the chaotropic substance solution, cells or the like containing the nucleic acid in the biological sample can be destroyed and the nucleic acid can be eluted. Therefore, the chaotropic substance solution also functions as an eluent for eluting nucleic acids from cells or the like in a biological sample.
  • chaotropic substances examples include guanidine thiocyanate, guanidine hydrochloride, sodium iodide, potassium iodide, sodium perchlorate, urea and the like.
  • the chaotropic substances may be used alone or in combination of two or more.
  • guanidine thiocyanate or guanidine hydrochloride is preferable in view of the strength of the chaotropic effect and the magnitude of the inhibitory effect on nucleolytic enzymes such as ribonuclease.
  • the concentration of the chaotropic substance in the binding solution may be set appropriately depending on the chaotropic substance, as long as sufficient chaotropic effect can be obtained, preferably 1.0 to 8.0 M, and the chaotropic substance is guanidine hydrochloride. 4.0 to 7.5 M is preferable, and 3.0 to 5.5 M is preferable when the chaotropic substance is guanidine thiocyanate.
  • the binding solution preferably contains a buffer.
  • the buffer is not particularly limited as long as it is generally used, and is not particularly limited, but one having a buffer ability near neutral, ie, pH 5.0 to 9.0 is preferable, for example, Tris-HCl buffer, TE Buffers (containing Tris and ethylenediaminetetraacetic acid (EDTA)), sodium tetraborate-hydrochloric acid buffer, potassium dihydrogenphosphate-sodium tetraborate buffer and the like can be mentioned.
  • the buffer concentration of the binding solution is preferably 1 to 500 mM in terms of solid content.
  • the pH of the binding solution is preferably 6.0 to 9.0. The pH is the value at 25 ° C.
  • the binding solution may further contain a surfactant for the purpose of breaking down cell membranes and denatured proteins contained in the cells.
  • the surfactant is not particularly limited as long as it is generally used for nucleic acid extraction from cells and the like, and examples thereof include polyoxyethylene alkyl phenyl ether surfactant (for example, triton surfactant), poly Nonionic surfactants such as oxyethylene sorbitan fatty acid ester surfactants (for example, Tween surfactants), anionic surfactants such as N-lauroyl sarcosine sodium, and the like can be mentioned.
  • One surfactant may be used alone, or two or more surfactants may be used in combination.
  • the surfactant concentration of the binding solution is preferably 1 to 500 mM, for example, in the case of a nonionic surfactant.
  • the binding solution may further contain a reducing agent in order to denature and inactivate proteins contained in the sample, particularly ribonuclease.
  • the reducing agent is not particularly limited as long as it is generally used for nucleic acid extraction from cells and the like, and examples thereof include 2-mercaptoethanol, dithiothreitol and the like.
  • the alcohol may be further mixed when mixing the sample and the binding solution.
  • Alcohol can promote the insolubilization of nucleic acids.
  • examples of the alcohol include ethanol, propanol, isopropanol, butanol and the like.
  • the binding solution may contain an alcohol beforehand.
  • the amount of alcohol mixed with the sample and the binding solution is, for example, an amount such that the content of alcohol in the first mixture is 10 to 90% by mass with respect to the sample It is.
  • the temperature condition at the time of mixing is, for example, 4 to 80.degree.
  • the mixing time varies depending on the mixing method, but is, for example, 0.1 to 60 minutes.
  • the first mixed solution Before contacting the first mixed solution with the porous silica particles, the first mixed solution is subjected to pretreatment such as centrifugation for reduction of components other than nucleic acids (solid impurities and the like). It is also good.
  • pretreatment such as centrifugation for reduction of components other than nucleic acids (solid impurities and the like). It is also good.
  • the conditions for centrifugation are, for example, 100 to 20000 rpm and 0.1 to 60 minutes.
  • the first mixed solution and the porous silica particles are mixed to obtain a mixed solution (hereinafter also referred to as a second mixed solution).
  • a method of recovering porous silica particles (that is, composite) from the liquid mixture hereinafter, also referred to as method (1)), or a flowable container (for example, a porous member in which porous silica particles are retained so as not to flow out of the container)
  • a method (hereinafter, also referred to as method (2)) or the like in which the first mixed solution is passed through a column or the like can be mentioned.
  • the contact temperature at the time of contacting the first mixed solution with the porous silica particles is, for example, 4 to 80 ° C., and the contact time is, for example, 0.1 to 60 minutes.
  • the amount of porous silica particles mixed with the first liquid mixture is preferably 2 to 200 parts by mass with respect to 100 parts by mass of the first liquid mixture.
  • the time from when the first liquid mixture and the porous silica particles are mixed to when the porous silica particles are recovered from the second liquid mixture corresponds to the contact time.
  • the second mixed liquid may be stirred or the like.
  • various solid-liquid separation methods such as centrifugation and filtration can be used.
  • the second mixed solution is put in the upper part of the container divided up and down by a filter, and it is made to flow by centrifugation, suction or the like, and the porous silica particles remaining on the filter are recovered.
  • the method (2) may be, for example, a method in which the first mixed solution is put in the container, held for an arbitrary time (contact time), and then discharged from the container.
  • the amount of the first liquid mixture contained in the container is, for example, preferably 50 to 5000 parts by mass with respect to 100 parts by mass of the porous silica particles. While holding the first mixed solution in the container, stirring or the like may be performed.
  • the method for discharging the first mixed solution from the container is not particularly limited, and examples thereof include centrifugation and suction.
  • washing step the complex in which the porous silica particles and the nucleic acid are bound obtained in the binding step is washed.
  • Components other than nucleic acids proteins, saccharides, lipids, etc.
  • the washing may be performed once or twice or more.
  • the washing solution used for washing is not particularly limited as long as it does not elute nucleic acid from the complex and can promote the detachment of components other than nucleic acid.
  • cleaning liquid a chaotropic substance solution, alcohol, its aqueous solution etc. are mentioned, for example.
  • the chaotropic substance solution may be the same as that described above for the binding solution, and examples include 4.0 to 7.5 M guanidine hydrochloride solution.
  • the chaotropic substance solution may contain a buffer, a surfactant, a reducing agent and the like.
  • As the above-mentioned alcohol, ethanol, propanol, isopropanol, butanol and the like are preferable, and ethanol is particularly preferable.
  • the alcohol concentration of the alcohol or its aqueous solution is preferably 40 to 100% by mass, and more preferably 60 to 100% by mass. If the alcohol concentration is above the lower limit value, it is difficult for the nucleic acid to elute.
  • washing solution a chaotropic substance solution and an alcohol or an aqueous solution thereof may be used in combination.
  • washing with a chaotropic substance solution may be followed by washing with an alcohol or an aqueous solution thereof.
  • two or more kinds of alcohols having different alcohol concentrations or their aqueous solutions may be used in combination.
  • the method of washing the complex is not particularly limited.
  • a method of recovering a complex from a third liquid mixture by obtaining a mixed liquid (hereinafter also referred to as a third mixed liquid) by mixing the complex and the washing liquid recovered in the method (1) in the bonding step a method (hereinafter, also referred to as method (2 ′)), etc., in which a cleaning solution is passed through a container after the first mixed solution is discharged in the method (2) in the method (1 ′) Can be mentioned.
  • the temperature condition at the time of washing is preferably 4 to 80.degree.
  • the washing time per wash is preferably 0.1 to 60 minutes.
  • the amount of the washing solution mixed with the complex in one washing is preferably 10 to 10000 parts by mass with respect to 100 parts by mass of the complex.
  • the time from when the complex and the washing liquid are mixed to when the complex is recovered from the third mixed solution corresponds to the washing time. During this time, the second mixed liquid may be stirred or the like.
  • the same method as the method of recovering porous silica particles from the second mixed solution can be mentioned.
  • the method (2 ′) may be, for example, a method of putting a cleaning solution into the container, holding it for an arbitrary time (cleaning time), and then discharging it from the container.
  • the amount of the washing solution contained in the container is preferably 10 to 10000 parts by mass with respect to 100 parts by mass of the complex. While holding the cleaning solution in the container, stirring or the like may be performed.
  • a method of discharging the cleaning liquid from the container the same method as the method of discharging the first mixed liquid from the container may be mentioned.
  • the complex may be dried.
  • a drying method a thermostat etc. are mentioned, for example.
  • the drying temperature is 30 to 80 ° C.
  • the drying time is 0.1 to 3000 minutes.
  • the nucleic acid is eluted from the complex after the binding step or the washing step to recover the nucleic acid.
  • the elution may be performed once or twice or more.
  • the elution step can be carried out using a known method. For example, there is a method in which the complex is brought into contact with the eluate, and then the eluate is recovered.
  • the eluate is a solution having an action of eluting nucleic acids bound to the porous silica particles.
  • the action of the eluate elutes the nucleic acid from the complex to obtain an eluate containing the nucleic acid.
  • TE buffer 10 mM Tris-hydrochloride, 1.0 mM EDTA, pH 8.0
  • the method of bringing the complex into contact with the elution solution and then recovering the elution solution there is no particular limitation on the method of bringing the complex into contact with the elution solution and then recovering the elution solution.
  • the complex recovered in the method (1) in the binding step or the complex washed in the method (1 ′) in the washing step and the eluate are mixed and a mixed solution (hereinafter also referred to as a fourth mixed solution) ) And removing the complex (that is, porous silica particles) from which the nucleic acid is eluted from the fourth mixture (hereinafter, also referred to as method (1 ′ ′)), in the binding step in the method (2)
  • a method hereinafter, also referred to as method (2 ′ ′) in which the eluate is passed through a container after discharging the first liquid mixture or a container after discharging the washing liquid by the method (2 ′) in the washing step Can be mentioned.
  • the amount of eluate mixed with the complex is, for example, 10 to 10000 parts by mass with respect to 100 parts by mass of the complex.
  • the time from when the complex and the eluate are mixed to when the porous silica particles are recovered from the fourth mixture corresponds to the contact time. During this time, the fourth liquid mixture may be stirred or the like.
  • various solid-liquid separation methods such as centrifugation and filtration can be used.
  • Method (2 ′ ′) may be, for example, a method of putting the eluate into the container, holding it for an arbitrary time (contact time), and then discharging it from the container.
  • the amount of eluate contained in the container is, for example, 10 to 10000 parts by mass with respect to 100 parts by mass of the complex. While holding the eluate in the container, stirring or the like may be performed.
  • a method of discharging the eluate from the container the same method as the method of discharging the first mixed liquid from the container may be mentioned.
  • D 50 is 6 ⁇ 50 [mu] m
  • a pore volume determined by the BJH method is 0.3 ⁇ 5cm 3 / g
  • average pore diameter as determined by the BJH method Porous silica particles having a diameter of 60 to 500 ⁇ , or having a D 50 of 6 to 50 ⁇ m, a pore volume of 0.6 to 5 cm 3 / g as determined by mercury porosimetry, and an average pore diameter as determined by mercury porosimetry Since porous silica particles of 200 to 5000 ⁇ are used, nucleic acids can be recovered with high recovery rate even when the nucleic acids are long.
  • the nucleic acid can be recovered only by binding the nucleic acid to the porous silica particle and eluting it, and the operation is simple.
  • the binding efficiency of the nucleic acid to the porous silica particle in the binding step and the compounding in the elution step because the D 50 , the pore volume and the average pore diameter are in the above ranges
  • nucleic acid can be recovered with high recovery rate. As a reason for the high binding efficiency, it is considered that a part of the nucleic acid easily fits into the pores opened on the surface of the porous silica particle.
  • the reason why the elution efficiency is high is that the contact area with the nucleic acid is relatively reduced by the pores opened on the surface of the porous silica particles, and the individual pores are opened at a plurality of locations, When the nucleic acid fitted in the pore is detached, it is conceivable that the elution solution wraps around from inside the pore and the nucleic acid is easily detached.
  • the nucleic acid recovery kit of the present invention comprises a first container containing the porous silica particles described above, and a second container containing a binding solution for binding nucleic acids to the porous silica particles.
  • the nucleic acid recovery kit of the present invention may further include a third container containing an eluate for eluting the nucleic acid from the complex in which the porous silica particles and the nucleic acid are bound, as necessary.
  • the nucleic acid recovery kit of the present invention may further include a fourth container containing a washing solution for washing the complex in which the porous silica particles and the nucleic acid are bound, as necessary.
  • the nucleic acid recovery kit of the present invention can be used in the above-described method of recovering a nucleic acid of the present invention.
  • the bonding step can be carried out, for example, using porous silica particles contained in a first container and a binding liquid contained in a second container. If the third container is further provided, the elution step can be further performed using the eluate contained in the third container. When the fourth container is further provided, the washing step can be further performed using the washing liquid stored in the fourth container.
  • the porous silica particles contained in the first container When used in the bonding step, the porous silica particles may be removed from the first container, and the bonding step may be performed in another container. The bonding step may be performed in the first container while the particles are contained in the first container.
  • the binding solution contained in the second container includes the binding solution mentioned in the binding step, and a chaotropic substance solution is preferable.
  • a chaotropic substance solution is preferable.
  • the binding solution contained in the second container may be diluted with a solvent such as water.
  • Examples of the eluate contained in the third container include the eluate mentioned in the elution step.
  • it may be diluted with a solvent such as water.
  • the washing liquid contained in the fourth container includes the washing liquid mentioned in the washing step.
  • solvent such as water.
  • Example A With respect to the following porous silica particles 1 to 10, the particle size distribution, pore volume, average pore diameter and specific surface area were determined according to the following evaluation method, and nucleic acids (DNA) were further obtained based on Examples 1 to 11 below.
  • ⁇ Evaluation method ⁇ (Particle size distribution)
  • the porous silica particles are sufficiently dispersed in water by ultrasonication, and measurement is performed using a laser diffraction / scattering particle size distribution measuring device (MT-3300EX, manufactured by Nikkiso Co., Ltd.) to obtain frequency distribution and cumulative volume distribution curve. Volume-based particle size distribution was obtained. From the cumulative volume distribution curve obtained was determined D 10, D 50, D 90 , D 90 / D 10.
  • Porous silica particle 1 manufactured by AGC S.I. Tech., Model number: L-52.
  • Porous silica particle 2 manufactured by AGC S.I. Tech., Model number: L-203.
  • Porous silica particle 3 manufactured by AGC S.I. Tech., Model number: EP-DM-20-120A.
  • Porous silica particles 4 manufactured by Osaka Soda, model number: SP-120-20P.
  • Porous silica particles 5 manufactured by Osaka Soda, model number: IR-60-25 / 40.
  • Porous silica particles 6 manufactured by Fuji Silysia, model number: SMB100-20.
  • Porous silica particles 7 manufactured by AGC S.I. Tech., Model number: Sun Outdoor.
  • Porous silica particles 8 manufactured by AGC S.I. Tech., Model number: NP-200.
  • Porous silica particles 9 manufactured by Fuji Silysia, model number: BW-820MH.
  • Porous silica particles 10 manufactured by Fuji Silysia, model number: MB100-75 / 200.
  • Binding solution Adsorption buffer (Composition: 50 mM Tris-hydrochloride, 5.0 M guanidine thiocyanate, 20 mM EDTA, 1.2% by mass polyethylene) attached to the nucleic acid extraction kit (Qiagen, trade name: DNeasy Blood tisue kit) Glycol mono-p-isooctyl phenylene ether).
  • Washing solution 1 Washing buffer 1 attached to the nucleic acid extraction kit.
  • Washing solution 2 Washing buffer 2 attached to the nucleic acid extraction kit.
  • Eluent Elution buffer supplied with the above nucleic acid extraction kit.
  • Human genome solution manufactured by Promega, product name human genomic DNA G3041, containing DNA approximately 3 ⁇ 10 9 base pairs in length, DNA concentration 200 ⁇ g / mL.
  • E. coli genome solution prepared by treating a culture solution of E. coli DH5 ⁇ using Sigma-Aldrich, product name GenElute Plasmid Miniprep Kit, containing DNA of about 4.65 ⁇ 10 6 base pairs in length, 50 ⁇ g / DNA concentration mL.
  • Tip column Two pipette tips (manufactured by BioPointe Scientific, trade name: Pipette tip 1250 ⁇ l) are each cut into two along the circumferential direction, and the portion including the tip of the pipette tip (hereinafter also referred to as “part A”) And a portion including the rear end of the pipette tip (hereinafter, also referred to as “portion B”). At this time, the cutting position (the distance from the tip to the cutting position) of each of the two pipette tips was changed. Because the pipette tip has a smaller diameter toward the tip, the inner diameters at the cutting positions of the two pipette tips are different.
  • the opening at the rear end of the longer part of the two parts A obtained from each of the two pipette tips (the one with the larger internal diameter at the cutting position) was covered with a 1 ⁇ m pore size polytetrafluoroethylene (PTFE) filter .
  • PTFE polytetrafluoroethylene
  • Example 1 Using a human genome solution or an E. coli genome solution as a sample, the nucleic acid was recovered from the sample according to the following procedure, and the recovery rate of nucleic acid (DNA) was determined. The results are shown in Table 1. First, 220 ⁇ L of a sample, 200 ⁇ L of a binding solution and 200 ⁇ L of 100% by mass ethanol were added to a 1.5 mL Eppendorf tube, and mixed to obtain a first mixed solution. Next, 20 mg of porous silica particles shown in Table 1 were added to 620 ⁇ L of the first mixed solution, and mixed to obtain a second mixed solution.
  • the whole amount of the second mixed solution is transferred to the chip column, and the porous silica particles are collected on the filter of the chip column by centrifuging under the conditions of 20 ° C. for 2 minutes at 3500 rpm using a centrifuge.
  • the filtrate was discarded, 500 ⁇ L of washing solution 1 was added to the tip column, and centrifuged under the same conditions as described above.
  • the filtrate was discarded, 500 ⁇ L of washing solution 2 was added to the tip column, and centrifuged under the same conditions as described above. Thereafter, the filtrate was discarded and centrifuged at 3500 rpm for 7 minutes at 20 ° C.
  • 200 ⁇ L of the eluate was added to the chip column, allowed to stand for 1 minute, and centrifuged under conditions of 3500 rpm, 2 minutes, and 20 ° C.
  • the obtained filtrate was used as a nucleic acid extract.
  • Example 11 Using a commercially available nucleic acid extraction kit (manufactured by Qiagen, trade name: DNeasy Blood tisue kit) using a human genome solution or E. coli genome solution as a sample, the nucleic acid is extracted according to the protocol and a nucleic acid extract I got With respect to the obtained nucleic acid extract, in the same manner as in Examples 1 to 10, the nucleic acid was recovered from the sample by the following procedure, and the recovery rate of the nucleic acid (DNA) was determined. The results are shown in Table 1.
  • the D 10 , D 50 , D 90 , D 90 / D 10 , silica (SiO 2 ) purity, specific surface area, pore volume, and average pore diameter of the porous silica particles used in Examples 1 to 10 are shown in Table 1. .
  • the porous silica particles 3 and 8 were measured about the silica purity, the silica purity of the other porous silica particle is all considered to be 98 mass% or more.
  • taken ordinate DNA recovery rate when the human genome solution as a sample D 50 of the porous silica particles, D 90 / D 10 pore volume, average pore diameter or the specific surface area (SSA Figures 1 to 5 show graphs in which the horizontal axis is taken). In each graph, the results of Examples 1 to 6 are shown as Examples, and the results of Examples 7 to 10 are shown as Comparative Examples.
  • Example 1 the recovery of nucleic acid was high.
  • Example 7 since the porous silica particles had a D 50 of less than 6 ⁇ m and a pore volume of less than 0.3 cm 3 / g, the nucleic acid recovery rate was poor.
  • Example 8 since the pore volume of the porous silica particles was less than 0.3 cm 3 / g and the average pore diameter was less than 60 ⁇ , the recovery rate of nucleic acid was inferior.
  • Example 9 since the D50 of the porous silica particles is greater than 50 ⁇ m, the pore volume is less than 0.3 cm 3 / g, and the average pore diameter is less than 60 ⁇ , the nucleic acid recovery rate is poor.
  • Example 10 the recovery rate of the nucleic acid was poor because the D 50 of the porous silica particles was larger than 50 ⁇ m.
  • Example B The particle size distribution, pore volume, average pore diameter and specific surface area of the following porous silica particles 12 to 26 were determined according to the following evaluation method, and nucleic acids (DNA) were further obtained based on Examples 12 to 27 of Example B below.
  • the evaluation methods and materials used in each example are shown below.
  • Pore volume and average pore size were measured using a mercury porosimeter (manufactured by Mirometrics, AutoPore IV 9500).
  • the physical properties of mercury used were a contact angle of 140 °, a surface tension of 480 dynes / cm, and a density of 13.5335 g / mL.
  • the measurement conditions were a pressure of 50 mmHg, an evacuation time of 5 minutes, an injection pressure of 1.49 psi, and an equilibration time of 10 seconds.
  • Porous silica particles 12 manufactured by AGC S.I. Tech., Model number: L-52.
  • Porous silica particles 13 manufactured by AGC S.I. Tech., Model number: EP-DM-10-1000AW.
  • Porous silica particle 16 AG manufactured by SSI Tech, model number: L-203.
  • Porous silica particles 18 manufactured by Osaka Soda, model number: SP-1000-20.
  • Example A The same type as in Example A was used for the binding solution, washing solution 1, washing solution 2, eluate, human genome solution, E. coli genome solution and chip column.
  • Example 12 to 26 Using a human genome solution or E. coli genome solution as a sample, the nucleic acid was recovered from the sample in the same manner as in Examples 1 to 10 of Example A, and the recovery rate of nucleic acid (DNA) was determined. The results are shown in Table 2.
  • Example 27 shows the results of Example 11 in Table 1 of Example A. With respect to the obtained nucleic acid extract, in the same manner as in Examples 12 to 26, the nucleic acid was recovered from the sample by the following procedure, and the recovery rate of the nucleic acid (DNA) was determined. The results are shown in Table 2.
  • the D 10 , D 50 , D 90 , D 90 / D 10 , silica (SiO 2 ) purity, specific surface area, pore volume, and average pore diameter of the porous silica particles used in Examples 12 to 26 are shown in Table 2. . Although only the porous silica particles 13 to 15 and 22 to 23 were measured as to the silica purity, it is considered that the silica purity of the other porous silica particles is also 98 mass% or more.
  • the DNA recovery rate when using a human genome solution as a sample is indicated on the vertical axis as D 50 , D 90 / D 10 , pore volume, average pore diameter or specific surface area (SSA) of porous silica particles. 6 to 10 show graphs in which the abscissa axis is taken). In each graph, the results of Examples 12 to 21 are shown as Examples, and the results of Examples 22 to 27 are shown as Comparative examples.
  • Example 12-21 the recovery of nucleic acid was high.
  • Example 22 since the porous silica particles had a D 50 of less than 6 ⁇ m, the nucleic acid recovery rate was poor.
  • Example 23 since the pore volume of the porous silica particles is less than 0.6 cm 3 / g and the average pore diameter is less than 200 ⁇ , the recovery rate of the nucleic acid is poor.
  • Examples 24 to 26 since the porous silica particles had a D 50 of more than 50 ⁇ m, the recovery rate of nucleic acid was poor.

Abstract

Provided are: a method for collecting nucleic acid at a high rate of collection by means of a simple operation, even when the nucleic acid is long; a nucleic-acid-binding carrier that is suitable for use in the collection method; and a nucleic acid collection kit. A nucleic acid collection method that involves: forming composites by making nucleic acid bind to porous silica particles that have a D50 of 6–50 μm in a volume-based particle size distribution, a pore volume of 0.3–5 cm3/g as found by the BJH method, and an average pore diameter of 60–500 Å as found by the BJH method or porous silica particles that have a D50 of 6–50 μm in a volume-based particle size distribution, a pore volume of 0.6–5 cm3/g as found by mercury porosimetry, and an average pore diameter of 200–5,000 Å as found by mercury porosimetry; liquating the nucleic acid from the composites; and collecting the nucleic acid.

Description

核酸の回収方法、核酸結合用担体および核酸回収キットNucleic acid recovery method, nucleic acid binding carrier and nucleic acid recovery kit
 本発明は、核酸の回収方法、核酸結合用担体および核酸回収キットに関する。 The present invention relates to a nucleic acid recovery method, a nucleic acid binding carrier and a nucleic acid recovery kit.
 従来、感染症診断キットとしては、タンパク質(抗原、抗体等)を対象としたものが用いられている。しかし、インフルエンザ等の一部の感染症を除いて精度が低いこと、抗体を対象とする場合には過去の感染による偽陽性等の問題がある。そこで近年、核酸を対象とする感染症診断キットが検討されている。核酸を対象とすることで、精度の向上が期待される。 Conventionally, as an infectious disease diagnostic kit, one intended for a protein (antigen, antibody, etc.) has been used. However, there is a problem that the accuracy is low except for a part of infectious diseases such as influenza, and in the case of targeting an antibody, false positive due to past infection. Therefore, in recent years, infectious disease diagnostic kits for nucleic acids have been studied. By targeting nucleic acid, an improvement in accuracy is expected.
 生物試料である検体には種々の成分が含まれており、診断を行うには検体から核酸を単離する必要がある。
 生物試料から核酸を単離する方法として、シリカを含む担体に核酸を吸着または結合させ、洗浄により核酸以外の成分を除去した後、担体から核酸を溶出させる方法が知られている。この方法を使用した核酸精製キットは既に実用化されており、担体としてはシリカメンブレンが汎用されている(例えば、非特許文献1~3)。また、単離操作の簡便化、自動化のために、磁性体の表面を多孔質シリカで被覆した磁性シリカ粒子を担体として用いることが提案されている(例えば、特許文献1)。
The sample which is a biological sample contains various components, and it is necessary to isolate the nucleic acid from the sample for diagnosis.
As a method of isolating nucleic acid from a biological sample, there is known a method of adsorbing or binding nucleic acid to a carrier containing silica, removing components other than nucleic acid by washing, and eluting nucleic acid from the carrier. Nucleic acid purification kits using this method have already been put to practical use, and silica membranes are widely used as carriers (eg, non-patent documents 1 to 3). In addition, in order to simplify and automate the isolation operation, it has been proposed to use, as a carrier, magnetic silica particles in which the surface of a magnetic material is coated with porous silica (for example, Patent Document 1).
日本特開2000-300262号公報Japanese Patent Laid-Open No. 2000-300262
 しかし、従来の核酸の単離方法は、核酸の抽出率が必ずしも高くなく、特に10bp以上の長さの核酸の場合、抽出できないか、抽出できても抽出率が低い、などの課題があった。また、抽出率が低いと、高価な装置を用いて長時間の増幅処理を行う必要があり、実施できる施設が限定され、時間もかかるという課題もあった。 However, conventional nucleic acid isolation methods do not always have high extraction rates of nucleic acids, and in the case of nucleic acids having a length of 10 5 bp or more in particular, they can not be extracted or extraction is low even if extraction is possible. there were. In addition, when the extraction rate is low, it is necessary to perform an amplification process for a long time using an expensive apparatus, which limits the facilities that can be implemented and also takes a long time.
 本発明の目的は、核酸が長い場合でも、簡便な操作により高回収率で核酸を回収する方法、前記回収方法に好適に用いられる核酸結合用担体および核酸回収キットを提供することにある。 An object of the present invention is to provide a method for recovering nucleic acid with high recovery rate by a simple operation even when nucleic acid is long, a carrier for binding to nucleic acid and a nucleic acid recovery kit suitably used for the recovery method.
 本発明は、以下の〔1〕~〔16〕の態様を有する、核酸の回収方法、核酸結合用担体および核酸回収キットを提供する。
 〔1〕体積基準での粒度分布のD50が6~50μmであり、BJH法により求めた細孔容積が0.3~5cm/gであり、BJH法により求めた平均細孔径が60~500Åである多孔質シリカ粒子(以下、多孔質シリカ粒子Iともいう)に核酸を結合させて複合体を形成し、
 前記複合体から前記核酸を溶出させ、回収することを特徴とする、核酸の回収方法。
 〔2〕体積基準での粒度分布のD50が6~50μmであり、水銀ポロシメータにより求めた細孔容積が0.6~5cm/gであり、水銀ポロシメータにより求めた平均細孔径が200~5000Åである多孔質シリカ粒子(以下、多孔質シリカ粒子IIともいう)に核酸を結合させて複合体を形成し、
 前記複合体から前記核酸を溶出させ、回収することを特徴とする、核酸の回収方法。
 〔3〕前記多孔質シリカ粒子の体積基準での粒度分布のD90/D10が10以下である、〔1〕または〔2〕に記載の核酸の回収方法。
 〔4〕前記多孔質シリカ粒子の比表面積が150~1000m/gである、〔1〕または〔3〕に記載の核酸の回収方法。
 〔5〕前記多孔質シリカ粒子の比表面積が8~400m/gである、〔2〕または〔3〕に記載の核酸の回収方法。
 〔6〕前記多孔質シリカ粒子のシリカ純度が90質量%以上である、〔1〕~〔5〕のいずれか一項に記載の核酸の回収方法。
 〔7〕カオトロピック物質溶液の存在下で、前記多孔質シリカ粒子に前記核酸を結合させる、〔1〕~〔6〕のいずれか一項に記載の核酸の回収方法。
 〔8〕前記複合体から前記核酸を溶出させる前に、前記複合体を洗浄する、〔1〕~〔7〕のいずれか一項に記載の核酸の回収方法。
 〔9〕前記核酸の長さが10~1011bpである、〔1〕~〔8〕のいずれか一項に記載の核酸の回収方法。
 〔10〕体積基準での粒度分布のD50が6~50μmであり、BJH法により求めた細孔容積が0.3~5cm/gであり、BJH法により求めた平均細孔径が60~500Åである多孔質シリカ粒子を含有することを特徴とする核酸結合用担体。
 〔11〕体積基準での粒度分布のD50が6~50μmであり、水銀ポロシメータにより求めた細孔容積が0.6~5cm/gであり、水銀ポロシメータにより求めた平均細孔径が200~5000Åである多孔質シリカ粒子からなることを特徴とする核酸結合用担体。
 〔12〕体積基準での粒度分布のD50が6~50μmであり、BJH法により求めた細孔容積が0.3~5cm/gであり、BJH法により求めた平均細孔径が60~500Åである多孔質シリカ粒子を収容した第1の容器と、
 核酸を前記多孔質シリカ粒子に結合させる結合液を収容した第2の容器と、を備えることを特徴とする核酸回収キット。
 〔13〕体積基準での粒度分布のD50が6~50μmであり、水銀ポロシメータにより求めた細孔容積が0.6~5cm/gであり、水銀ポロシメータにより求めた平均細孔径が200~5000Åである多孔質シリカ粒子を収容した第1の容器と、
 核酸を前記多孔質シリカ粒子に結合させる結合液を収容した第2の容器と、を備えることを特徴とする核酸回収キット。
 〔14〕前記結合液がカオトロピック物質溶液である、〔12〕または〔13〕に記載の核酸回収キット。
 〔15〕前記多孔質シリカ粒子と前記核酸とが結合した複合体から前記核酸を溶出させる溶出液を収容した第3の容器をさらに備える、〔12〕~〔14〕のいずれか一項に記載の核酸回収キット。
 〔16〕前記多孔質シリカ粒子と前記核酸とが結合した複合体を洗浄する洗浄液を収容した第4の容器をさらに備える、〔12〕~〔15〕のいずれか一項に記載の核酸回収キット。
The present invention provides a nucleic acid recovery method, a nucleic acid binding carrier and a nucleic acid recovery kit, having the following aspects [1] to [16].
[1] is a D 50 of 6 ~ 50 [mu] m particle size distribution based on volume, the pore volume determined by the BJH method is the 0.3 ~ 5 cm 3 / g, an average pore diameter determined by BJH method from 60 to A nucleic acid is bound to porous silica particles (hereinafter also referred to as porous silica particles I) having a thickness of 500 Å to form a complex,
A method for recovering nucleic acid, which comprises eluting and recovering the nucleic acid from the complex.
[2] a D 50 of 6 ~ 50 [mu] m particle size distribution based on volume, the pore volume determined by mercury porosimetry is 0.6 ~ 5cm 3 / g, 200 average pore diameter determined by the mercury porosimeter is ~ A nucleic acid is bound to a porous silica particle (hereinafter, also referred to as porous silica particle II) which is 5000 Å to form a complex,
A method for recovering nucleic acid, which comprises eluting and recovering the nucleic acid from the complex.
[3] The method for recovering a nucleic acid according to [1] or [2], wherein D 90 / D 10 of the particle size distribution based on the volume of the porous silica particles is 10 or less.
[4] The method for recovering nucleic acid according to [1] or [3], wherein the specific surface area of the porous silica particles is 150 to 1000 m 2 / g.
[5] The method for recovering nucleic acid according to [2] or [3], wherein the specific surface area of the porous silica particles is 8 to 400 m 2 / g.
[6] The method for recovering nucleic acid according to any one of [1] to [5], wherein the purity of the porous silica particles is 90% by mass or more.
[7] The method for recovering nucleic acid according to any one of [1] to [6], wherein the nucleic acid is bound to the porous silica particle in the presence of a chaotropic substance solution.
[8] The method for recovering nucleic acid according to any one of [1] to [7], wherein the complex is washed before eluting the nucleic acid from the complex.
[9] The method for recovering a nucleic acid according to any one of [1] to [8], wherein the length of the nucleic acid is 10 5 to 10 11 bp.
[10] a D 50 of 6 ~ 50 [mu] m particle size distribution based on volume, the pore volume determined by the BJH method is 0.3 ~ 5 cm 3 / g, an average pore diameter determined by BJH method from 60 to A carrier for nucleic acid binding comprising porous silica particles of 500 Å.
[11] a D 50 of 6 ~ 50 [mu] m particle size distribution based on volume, the pore volume determined by mercury porosimetry is 0.6 ~ 5 cm 3 / g, an average pore diameter determined by the mercury porosimeter is 200 ~ A carrier for nucleic acid binding comprising porous silica particles of 5000 Å.
[12] a D 50 of 6 ~ 50 [mu] m particle size distribution based on volume, the pore volume determined by the BJH method is the 0.3 ~ 5 cm 3 / g, an average pore diameter determined by BJH method from 60 to A first container containing porous silica particles that is 500 Å;
A second container containing a binding solution for binding nucleic acid to the porous silica particles.
[13] a particle size D 50 of 6 ~ 50 [mu] m in the distribution of a volume basis, the pore volume determined by mercury porosimetry is the 0.6 ~ 5cm 3 / g, 200 average pore diameter determined by the mercury porosimeter is ~ A first container containing porous silica particles of 5000 Å;
A second container containing a binding solution for binding nucleic acid to the porous silica particles.
[14] The nucleic acid recovery kit according to [12] or [13], wherein the binding solution is a chaotropic substance solution.
[15] The container according to any one of [12] to [14], further comprising a third container containing an eluate for eluting the nucleic acid from the complex in which the porous silica particle and the nucleic acid are bound to each other. Nucleic acid recovery kit.
[16] The nucleic acid recovery kit according to any one of [12] to [15], further comprising a fourth container containing a washing solution for washing the complex in which the porous silica particles and the nucleic acid are bound. .
 本発明の核酸の回収方法によれば、核酸が長い場合でも、簡便な操作により高回収率で核酸を回収できる。
 本発明の核酸結合用担体および核酸回収キットはそれぞれ、前記回収方法に好適に用いることができる。
According to the nucleic acid recovery method of the present invention, even when the nucleic acid is long, the nucleic acid can be recovered at a high recovery rate by a simple operation.
The nucleic acid binding carrier and the nucleic acid recovery kit of the present invention can be suitably used for the above recovery method, respectively.
実施例Aの例1~10における多孔質シリカ粒子IのD50とDNA回収率との関係を示すグラフである。FIG. 16 is a graph showing the relationship between D 50 of the porous silica particles I and DNA recovery in Examples 1 to 10 of Example A. FIG. 実施例Aの例1~10における多孔質シリカ粒子IのD90/D10とDNA回収率との関係を示すグラフである。FIG. 16 is a graph showing the relationship between D 90 / D 10 of the porous silica particles I and the DNA recovery in Examples 1 to 10 of Example A. FIG. 実施例Aの例1~10における多孔質シリカ粒子Iの細孔容積とDNA回収率との関係を示すグラフである。FIG. 16 is a graph showing the relationship between the pore volume of porous silica particles I and the DNA recovery in Examples 1 to 10 of Example A. FIG. 実施例Aの例1~10における多孔質シリカ粒子Iの平均細孔径とDNA回収率との関係を示すグラフである。7 is a graph showing the relationship between the average pore size of porous silica particles I and the DNA recovery in Examples 1 to 10 of Example A. 実施例Aの例1~10における多孔質シリカ粒子Iの比表面積(SSA)とDNA回収率との関係を示すグラフである。7 is a graph showing the relationship between the specific surface area (SSA) of porous silica particles I and the DNA recovery in Examples 1 to 10 of Example A. 実施例Bの例12~26における多孔質シリカ粒子IIのD50とDNA回収率との関係を示すグラフである。FIG. 16 is a graph showing the relationship between D 50 of the porous silica particles II and the DNA recovery in Examples 12 to 26 of Example B. FIG. 実施例Bの例12~26における多孔質シリカ粒子IIのD90/D10とDNA回収率との関係を示すグラフである。FIG. 16 is a graph showing the relationship between D 90 / D 10 of the porous silica particles II and the DNA recovery in Examples 12 to 26 of Example B. FIG. 実施例Bの例12~26における多孔質シリカ粒子IIの細孔容積とDNA回収率との関係を示すグラフである。FIG. 16 is a graph showing the relationship between the pore volume of porous silica particles II and the DNA recovery in Examples 12 to 26 of Example B. FIG. 実施例Bの例12~26における多孔質シリカ粒子IIの平均細孔径とDNA回収率との関係を示すグラフである。FIG. 16 is a graph showing the relationship between the average pore size of porous silica particles II and the DNA recovery in Examples 12 to 26 of Example B. FIG. 実施例Bの例12~26における多孔質シリカ粒子IIの比表面積(SSA)とDNA回収率との関係を示すグラフである。FIG. 16 is a graph showing the relationship between the specific surface area (SSA) of porous silica particles II and the DNA recovery in Examples 12 to 26 of Example B. FIG.
 本明細書における以下の用語の意味は、以下の通りである。
 「D50」は、体積基準での粒度分布の全体積を100%とした累積体積分布曲線において50%となる点の粒子径、すなわち体積基準累積50%径である。
 「D10」は、体積基準での粒度分布の全体積を100%とした累積体積分布曲線において10%となる点の粒子径、すなわち体積基準累積10%径である。
 「D90」は、体積基準での粒度分布の全体積を100%とした累積体積分布曲線において90%となる点の粒子径、すなわち体積基準累積90%径である。
The meanings of the following terms in the present specification are as follows.
“D 50 ” is a particle diameter at a point of 50% in a cumulative volume distribution curve where the total volume of particle size distribution on a volume basis is 100%, that is, a volume based cumulative 50% diameter.
“D 10 ” is the particle diameter at a point of 10% in the cumulative volume distribution curve where the total volume of particle size distribution on a volume basis is 100%, that is, the volume based cumulative 10% diameter.
“D 90 ” is a particle diameter at a point of 90% in the cumulative volume distribution curve where the total volume of particle size distribution on a volume basis is 100%, that is, a volume-based cumulative 90% diameter.
 「体積基準での粒度分布」は、レーザー散乱粒度分布測定装置(たとえば、レーザー回折/散乱式粒子径分布測定装置等)で測定した頻度分布および累積体積分布曲線から求められる。測定は、粉末を水媒体中に超音波処理等で充分に分散させて行われる。
 「BJH法により求めた細孔容積」とは、BJH法によって吸着等温線から求めた細孔容積である。吸着等温線の測定では、吸着ガスとして窒素ガスを用いる。
 「BJH法により求めた平均細孔径」とは、BJH法によって吸着等温線から求めた平均細孔径である。吸着等温線の測定では、吸着ガスとして窒素ガスを用いる。
 「BJH法」とは、吸着等温線から細孔径分布を求める方法の一つである、Barrett,JoynerおよびHalendaによるメソ細孔径分布の決定法である。
The “particle size distribution on a volume basis” is obtained from the frequency distribution and the cumulative volume distribution curve measured by a laser scattering particle size distribution measuring apparatus (for example, a laser diffraction / scattering type particle size distribution measuring apparatus etc.). The measurement is carried out by sufficiently dispersing the powder in an aqueous medium by ultrasonic treatment or the like.
The “pore volume determined by the BJH method” is a pore volume determined from the adsorption isotherm by the BJH method. In the measurement of the adsorption isotherm, nitrogen gas is used as the adsorption gas.
The "average pore size determined by the BJH method" is an average pore size determined from the adsorption isotherm by the BJH method. In the measurement of the adsorption isotherm, nitrogen gas is used as the adsorption gas.
The “BJH method” is a method of determining mesopore diameter distribution by Barrett, Joyner and Halenda, which is one of methods for determining pore diameter distribution from adsorption isotherm.
 「水銀ポロシメータにより求めた細孔容積」とは、水銀ポロシメータを用いて測定した細孔容積である。
 「水銀ポロシメータにより求めた平均細孔径」とは、水銀ポロシメータを用いて測定した平均細孔径である。
 水銀ポロシメータによる細孔容積または平均細孔径の測定において、水銀の物性値には接触角140°、表面張力480dynes/cm、密度13.5335g/mLを用いる。測定条件は圧力50mmHg、真空引き時間5分、注入圧力1.49psi、平衡時間10秒とする。
 「比表面積」とは、BET(Brunauer,Emmet,Teller)法によって吸着等温線から求めた比表面積である。吸着等温線の測定では、吸着ガスとして窒素ガスを用いる。
 「シリカ純度」は、多孔質シリカ粒子の総質量に対するシリカ(SiO)の質量の割合である。シリカ純度は、医薬部外品原料規格2006「無水ケイ酸」定量法により測定される。
 数値範囲を示す「~」は、その前後に記載された数値を下限値および上限値として含む意味で使用される。
The "pore volume determined by mercury porosimetry" is a pore volume measured using a mercury porosimeter.
The "average pore size determined by mercury porosimetry" is an average pore size measured using a mercury porosimeter.
In the measurement of the pore volume or average pore diameter by a mercury porosimeter, a physical property value of mercury is a contact angle of 140 °, a surface tension of 480 dynes / cm, and a density of 13.5335 g / mL. Measurement conditions are a pressure of 50 mm Hg, an evacuation time of 5 minutes, an injection pressure of 1.49 psi, and an equilibration time of 10 seconds.
The "specific surface area" is a specific surface area determined from an adsorption isotherm by a BET (Brunauer, Emmet, Teller) method. In the measurement of the adsorption isotherm, nitrogen gas is used as the adsorption gas.
"Silica purity" is the ratio of the mass of the silica (SiO 2) with respect to the total weight of the porous silica particles. Silica purity is measured by the quasi-drug raw material standard 2006 "anhydrous silicic acid" determination method.
“-” Indicating a numerical range is used in the meaning including the numerical values described before and after that as the lower limit value and the upper limit value.
〔核酸の回収方法〕
 本発明の核酸の回収方法は、以下の結合工程および溶出工程を有する。結合工程の後、溶出工程の前に、以下の洗浄工程をさらに有してもよい。
 結合工程:多孔質シリカ粒子Iまたは多孔質シリカ粒子IIに核酸を結合させて複合体を形成する工程。
 洗浄工程:前記複合体を洗浄する工程。
 溶出工程:前記複合体から核酸を溶出させ、回収する工程。
[Method of recovering nucleic acid]
The nucleic acid recovery method of the present invention comprises the following binding and elution steps. After the binding step, the following washing step may be further included before the elution step.
Bonding step: a step of binding a nucleic acid to porous silica particles I or porous silica particles II to form a complex.
Washing step: a step of washing the complex.
Elution step: a step of eluting and recovering nucleic acid from the complex.
(多孔質シリカ粒子)
 本発明の核酸の回収方法において多孔質シリカ粒子は、核酸結合用担体として用いられる。多孔質シリカ粒子は、その表面にシリカが存在している。多孔質シリカ粒子は、シリカ以外の成分(以下、他の成分ともいう)をさらに含んでもよい。
(Porous silica particles)
In the method for recovering nucleic acid of the present invention, porous silica particles are used as a carrier for binding nucleic acid. Porous silica particles have silica present on their surface. The porous silica particles may further contain components other than silica (hereinafter, also referred to as other components).
 多孔質シリカ粒子のシリカ純度は、90質量%以上が好ましく、95質量%以上がより好ましく、98質量%以上が特に好ましい。シリカ純度の上限は特に限定されず、100質量%であってもよい。
 特許文献1の記載のように、他の成分が多孔質シリカ粒子に含まれる場合、核酸の回収時に多孔質シリカ粒子から他の成分が溶出して測定に悪影響を及ぼすことがある。また、磁性体の表面を多孔質シリカで被覆した磁性シリカ粒子は、原料や製造にコストがかかり、高価である。
 シリカ純度が前記下限値以上であれば、核酸の回収時に多孔質シリカ粒子から他の成分が溶出したとしても測定に悪影響を及ぼしにくく、また安価である。
 多孔質シリカ粒子は、コスト、耐薬性の点から、磁性シリカ粒子ではないことが好ましい。例えば粒子全体が多孔質シリカからなる粒子であってもよい。
90 mass% or more is preferable, as for the silica purity of porous silica particle, 95 mass% or more is more preferable, and 98 mass% or more is especially preferable. The upper limit of the silica purity is not particularly limited, and may be 100% by mass.
When other components are contained in the porous silica particles as described in Patent Document 1, the other components may be eluted from the porous silica particles at the time of recovery of the nucleic acid to adversely affect the measurement. Moreover, the magnetic silica particle which coat | covered the surface of the magnetic body with porous silica is expensive for a raw material and manufacture, and is expensive.
If the silica purity is at least the above lower limit, even if other components are eluted from the porous silica particles at the time of recovery of nucleic acid, the measurement is unlikely to adversely affect the measurement and is inexpensive.
The porous silica particles are preferably not magnetic silica particles in terms of cost and chemical resistance. For example, the whole particle may be a particle which consists of porous silica.
 多孔質シリカ粒子の体積基準での粒度分布において、D50は6~50μmであり、6~45μmが好ましく、7~30μmが特に好ましい。D50が前記範囲内であれば、核酸回収率が優れる。
 D90/D10は、10以下が好ましく、8以下がより好ましく、6以下が特に好ましい。D90/D10が前記上限値以下であれば、核酸回収率がより優れる。D90/D10の下限は特に限定されず、例えば1であってもよい。
 D90は、例えば10~100μmであり、D10は、例えば1~50μmである。
In the particle size distribution on a volume basis of the porous silica particles, D 50 is 6 ~ 50 [mu] m, preferably 6 ~ 45μm, 7 ~ 30μm are particularly preferred. If D 50 is within the above range, the nucleic acid recovery rate is excellent.
D 90 / D 10 is preferably 10 or less, more preferably 8 or less, particularly preferably 6 or less. If D 90 / D 10 is less than the upper limit, the nucleic acid recovery more excellent. The lower limit of D 90 / D 10 is not particularly limited, and may be 1, for example.
D 90 is, for example, 10 to 100 μm, and D 10 is, for example, 1 to 50 μm.
 多孔質シリカ粒子Iの細孔容積は、BJH法により求めた細孔容積であり、その範囲は0.3~5cm/gであり、0.4~3cm/gが好ましく、0.5~2.5cm/gが特に好ましい。
 また、多孔質シリカ粒子IIの細孔容積は、水銀ポロシメータにより求めた細孔容積であり、その範囲は0.6~5cm/gであり、0.6~4cm/gが好ましく、0.6~2.5cm/gが特に好ましい。細孔容積が前記下限値以上であれば、核酸回収率が優れる。細孔容積が前記上限値以下であれば、洗浄性が優れる。
Pore volume of porous silica particles I is a pore volume determined by the BJH method, the range is 0.3 ~ 5cm 3 / g, preferably 0.4 ~ 3cm 3 / g, 0.5 Particular preference is given to ̃2.5 cm 3 / g.
Further, the pore volume of the porous silica particles II is a pore volume determined by mercury porosimeter, the range is 0.6 ~ 5cm 3 / g, preferably 0.6 ~ 4cm 3 / g, 0 6 to 2.5 cm 3 / g are particularly preferred. If the pore volume is equal to or more than the lower limit value, the nucleic acid recovery rate is excellent. If the pore volume is equal to or less than the upper limit value, the washability is excellent.
 多孔質シリカ粒子Iの平均細孔径は、BJH法により求めた平均細孔径であり、その範囲は60~500Åであり、60~450Åが好ましく、90~450Åが特に好ましい。多孔質シリカ粒子Iの平均細孔径が前記下限値以上であれば、核酸回収率が優れる。平均細孔径が前記上限値以下であれば、短い核酸に対しても回収率が優れる。
 また、多孔質シリカ粒子IIの平均細孔径は、水銀ポロシメータにより求めた平均細孔径であり、その範囲は200~5000Åであり、200~4000Åが好ましく、200~2500Åが特に好ましい。多孔質シリカ粒子IIの平均細孔径が前記下限値以上上限値以下であれば、核酸回収効率が優れる。
The average pore size of the porous silica particles I is an average pore size determined by the BJH method, and the range is 60 to 500 Å, preferably 60 to 450 Å, and particularly preferably 90 to 450 Å. If the average pore diameter of the porous silica particles I is not less than the above lower limit value, the nucleic acid recovery rate is excellent. If the average pore diameter is equal to or less than the upper limit value, the recovery rate is excellent even for short nucleic acids.
The average pore size of the porous silica particles II is an average pore size determined by a mercury porosimeter, and the range is 200 to 5000 Å, preferably 200 to 4000 Å, and particularly preferably 200 to 2500 Å. If the average pore diameter of the porous silica particles II is not less than the lower limit value and not more than the upper limit value, the nucleic acid recovery efficiency is excellent.
 多孔質シリカ粒子Iの比表面積は、BET法により求めた比表面積であり、150~1000m/gが好ましく、150~800m/gがより好ましく、170~650m/gが特に好ましい。
 また、多孔質シリカ粒子IIの比表面積は、BET法により求めた比表面積であり、8~400m/gが好ましく、8~350m/gがより好ましく、8~300m/gが特に好ましい。比表面積が前記下限値以上であれば、核酸回収率がより優れ、前記上限値以下であれば、洗浄性が優れる。
The specific surface area of porous silica particles I is a specific surface area as determined by BET method is preferably 150 ~ 1000m 2 / g, more preferably 150 ~ 800m 2 / g, particularly preferably 170 ~ 650m 2 / g.
The specific surface area of porous silica particles II is a specific surface area as determined by the BET method, preferably 8 ~ 400m 2 / g, more preferably 8 ~ 350m 2 / g, particularly preferably 8 ~ 300m 2 / g . When the specific surface area is equal to or more than the lower limit value, the nucleic acid recovery rate is more excellent. When the specific surface area is equal to or less than the upper limit value, the washability is excellent.
 多孔質シリカ粒子は、市販の多孔質シリカ粒子のなかから所望の特性(D50、細孔容積、平均細孔径等)を満たすものを適宜選択して用いることができる。 As the porous silica particles, those having desired properties (D 50 , pore volume, average pore diameter, etc.) can be appropriately selected and used from commercially available porous silica particles.
(核酸)
 核酸は、DNA(デオキシリボ核酸)およびRNA(リボ核酸)の総称である。
 多孔質シリカ粒子に結合させる核酸の種類は、特に限定されず、DNAであってもよく、RNAであってもよく、それらの混合物であってもよい。DNAおよびRNAの種類や構造は特に限定されない。例えばDNAは1本鎖DNAであってもよく2本鎖DNAであってもよい。
 核酸は、真核生物(動物、植物、昆虫、線虫、酵母、カビ等)由来の核酸であってもよく、原核生物(大腸菌、枯草菌、ラン藻、マイコプラズマ等のバクテリア)由来の核酸であってもよく、無生物(ウイルス、葉緑体、ミトコンドリア等)由来の核酸であってもよい。
(Nucleic acid)
Nucleic acid is a generic term for DNA (deoxyribonucleic acid) and RNA (ribonucleic acid).
The type of nucleic acid to be bound to the porous silica particle is not particularly limited, and may be DNA, RNA, or a mixture thereof. The type and structure of DNA and RNA are not particularly limited. For example, the DNA may be single stranded DNA or double stranded DNA.
The nucleic acid may be nucleic acid derived from a eukaryote (animal, plant, insect, nematode, yeast, mold etc.) or nucleic acid derived from a prokaryote (bacteria such as E. coli, Bacillus subtilis, cyanobacteria, mycoplasma etc.) It may be a nucleic acid derived from an inanimate substance (virus, chloroplast, mitochondria, etc.).
 核酸の長さは、10~1011bpが好ましく、10~1011bpがより好ましく、10~10bpが特に好ましい。
 従来のシリカメンブレンを用いた核酸精製キットで対象とされる核酸の長さは通常10bp以下である。核酸が長くなるにつれて、回収率が低くなり、特に10bp以上になると、回収率がより低くなる。これは、核酸が長くなるにつれて、核酸が担体に強固に結合し、溶出しにくくなるためと考えられる。
 本発明の回収方法によれば、長さが10bp以上の核酸であっても優れた回収率で回収できる。そのため、核酸の長さが10bp以上である場合に特に本発明の有用性が高い。核酸の長さが1011bp以下であれば、核酸回収率がより優れる。
 なお、天然に存在する長さ10~1011bpの核酸はDNAである。
The length of the nucleic acids is preferably 10 ~ 10 11 bp, more preferably from 10 5 ~ 10 11 bp, particularly preferably 10 5 ~ 10 9 bp.
The length of the nucleic acid targeted by the nucleic acid purification kit using a conventional silica membrane is usually 10 6 bp or less. The longer the nucleic acid, the lower the recovery, especially at 10 5 bp or more, the lower the recovery. It is considered that this is because as the nucleic acid becomes longer, the nucleic acid becomes strongly bound to the carrier and becomes difficult to elute.
According to the recovery method of the present invention, even a nucleic acid having a length of 10 5 bp or more can be recovered with an excellent recovery rate. Therefore, the utility of the present invention is particularly high when the length of the nucleic acid is 10 5 bp or more. If the length of the nucleic acid is 10 11 bp or less, the nucleic acid recovery rate is more excellent.
The naturally occurring nucleic acid of 10 5 to 10 11 bp in length is DNA.
(結合工程)
 結合工程では、多孔質シリカ粒子に核酸を結合させて複合体を形成する。
 結合工程は、担体として前記多孔質シリカ粒子を用いる以外は、公知の方法を使用して実施できる。
 多孔質シリカ粒子に核酸を結合させる方法の一例として、核酸を含む試料と、結合液とを混合して混合液(以下、第1混合液ともいう)を得て、前記第1混合液と多孔質シリカ粒子とを接触させる方法が挙げられる。
(Bonding process)
In the binding step, nucleic acids are bound to the porous silica particles to form a complex.
The bonding step can be carried out using known methods, except that the porous silica particles are used as a carrier.
As an example of a method for binding nucleic acid to porous silica particles, a sample containing nucleic acid and a binding solution are mixed to obtain a mixed solution (hereinafter also referred to as a first mixed solution), and the first mixed solution and the pores are obtained. And a method of contacting with the porous silica particles.
 核酸を含む試料としては通常、生物試料が用いられる。生物試料としては、例えば血液、血清、穿刺液、気道ぬぐい液、尿、糞便、膿、毛髪、爪等が挙げられる。 Usually, a biological sample is used as a sample containing nucleic acid. Examples of biological samples include blood, serum, puncture fluid, airway wiping fluid, urine, feces, pus, hair, nails and the like.
 結合液は、核酸を前記多孔質シリカ粒子に結合させる作用を有する液である。結合液の作用により、試料中の核酸が多孔質シリカ粒子に結合する。
 結合液としては、好ましくは、カオトロピック物質溶液が用いられる。したがって、結合工程では、好ましくは、カオトロピック物質溶液の存在下で多孔質シリカ粒子に核酸を結合させる。
The binding solution is a solution having an action of binding a nucleic acid to the porous silica particles. The action of the binding solution causes the nucleic acids in the sample to bind to the porous silica particles.
Preferably, a chaotropic substance solution is used as the binding solution. Thus, in the binding step, preferably the nucleic acids are bound to the porous silica particles in the presence of a chaotropic substance solution.
 カオトロピック物質は、水等の溶媒中でカオトロピックイオンを生成する。カオトロピックイオンの作用によって、核酸と多孔質シリカ粒子とが結合しやすくなる。また、カオトロピックイオンは、タンパク質や核酸の一次構造を変えることなく二次、三次、四次構造を変えることができる。そのため、生物試料とカオトロピック物質溶液とを混合することで、生物試料中の核酸を含む細胞等を破壊し、核酸を溶離させることができる。したがって、カオトロピック物質溶液は、生物試料中の細胞等から核酸を溶離させる溶離液としても機能する。 The chaotropic substance generates chaotropic ions in a solvent such as water. The action of the chaotropic ion facilitates binding of the nucleic acid to the porous silica particle. In addition, chaotropic ions can change the secondary, tertiary or quaternary structure without changing the primary structure of proteins or nucleic acids. Therefore, by mixing the biological sample and the chaotropic substance solution, cells or the like containing the nucleic acid in the biological sample can be destroyed and the nucleic acid can be eluted. Therefore, the chaotropic substance solution also functions as an eluent for eluting nucleic acids from cells or the like in a biological sample.
 カオトロピック物質としては、例えば、グアニジンチオシアン酸塩、グアニジン塩酸塩、ヨウ化ナトリウム、ヨウ化カリウム、過塩素酸ナトリウム、尿素等が挙げられる。カオトロピック物質は1種を単独で用いてもよく2種以上を併用してもよい。これらのうち、カオトロピック効果の強さ、リボヌクレアーゼ等の核酸分解酵素に対する阻害効果の大きさから、グアニジンチオシアン酸塩またはグアニジン塩酸塩が好ましい。 Examples of chaotropic substances include guanidine thiocyanate, guanidine hydrochloride, sodium iodide, potassium iodide, sodium perchlorate, urea and the like. The chaotropic substances may be used alone or in combination of two or more. Among these, guanidine thiocyanate or guanidine hydrochloride is preferable in view of the strength of the chaotropic effect and the magnitude of the inhibitory effect on nucleolytic enzymes such as ribonuclease.
 結合液のカオトロピック物質濃度は、充分なカオトロピック効果が得られればよく、カオトロピック物質に応じて適宜設定されるが、好ましくは1.0~8.0Mであり、カオトロピック物質がグアニジン塩酸塩である場合は、4.0~7.5Mが好ましく、カオトロピック物質がグアニジンチオシアン酸塩である場合には、3.0~5.5Mが好ましい。 The concentration of the chaotropic substance in the binding solution may be set appropriately depending on the chaotropic substance, as long as sufficient chaotropic effect can be obtained, preferably 1.0 to 8.0 M, and the chaotropic substance is guanidine hydrochloride. 4.0 to 7.5 M is preferable, and 3.0 to 5.5 M is preferable when the chaotropic substance is guanidine thiocyanate.
 結合液は、緩衝剤を含むことが好ましい。緩衝剤としては、一般に使用されるものであればよく、特に限定されないが、中性付近、すなわちpH5.0~9.0において緩衝能を有するものが好ましく、例えば、トリス-塩酸緩衝液、TE緩衝液(トリスおよびエチレンジアミン四酢酸(EDTA)を含有)、四ホウ酸ナトリウム-塩酸緩衝液、リン酸二水素カリウム-四ホウ酸ナトリウム緩衝液等が挙げられる。
 結合液の緩衝剤濃度は、固形分換算で、1~500mMが好ましい。また、結合液のpHは、6.0~9.0が好ましい。pHは、25℃における値である。
The binding solution preferably contains a buffer. The buffer is not particularly limited as long as it is generally used, and is not particularly limited, but one having a buffer ability near neutral, ie, pH 5.0 to 9.0 is preferable, for example, Tris-HCl buffer, TE Buffers (containing Tris and ethylenediaminetetraacetic acid (EDTA)), sodium tetraborate-hydrochloric acid buffer, potassium dihydrogenphosphate-sodium tetraborate buffer and the like can be mentioned.
The buffer concentration of the binding solution is preferably 1 to 500 mM in terms of solid content. The pH of the binding solution is preferably 6.0 to 9.0. The pH is the value at 25 ° C.
 結合液は、細胞膜の破壊、細胞中に含まれるタンパク質を変性させる目的で、界面活性剤をさらに含んでもよい。界面活性剤としては、一般に細胞等からの核酸抽出に使用されるものであればよく、特に限定されないが、例えば、ポリオキシエチレンアルキルフェニルエーテル系界面活性剤(例えばトリトン系界面活性剤)、ポリオキシエチレンソルビタン脂肪酸エステル系界面活性剤(例えばTween系界面活性剤)等の非イオン界面活性剤、N-ラウロイルサルコシンナトリウム等の陰イオン界面活性剤等が挙げられる。界面活性剤は1種を単独で用いてもよく2種以上を併用してもよい。
 結合液の界面活性剤濃度は、例えば非イオン界面活性剤の場合は、1~500mMが好ましい。
The binding solution may further contain a surfactant for the purpose of breaking down cell membranes and denatured proteins contained in the cells. The surfactant is not particularly limited as long as it is generally used for nucleic acid extraction from cells and the like, and examples thereof include polyoxyethylene alkyl phenyl ether surfactant (for example, triton surfactant), poly Nonionic surfactants such as oxyethylene sorbitan fatty acid ester surfactants (for example, Tween surfactants), anionic surfactants such as N-lauroyl sarcosine sodium, and the like can be mentioned. One surfactant may be used alone, or two or more surfactants may be used in combination.
The surfactant concentration of the binding solution is preferably 1 to 500 mM, for example, in the case of a nonionic surfactant.
 結合液は、試料中に含まれるタンパク質、特にリボヌクレアーゼを変性、失活させる目的で、還元剤をさらに含んでもよい。還元剤としては、一般に細胞等からの核酸抽出に使用されるものであればよく、特に限定されないが、例えば、2-メルカプトエタノール、ジチオスレイトール等が挙げられる。 The binding solution may further contain a reducing agent in order to denature and inactivate proteins contained in the sample, particularly ribonuclease. The reducing agent is not particularly limited as long as it is generally used for nucleic acid extraction from cells and the like, and examples thereof include 2-mercaptoethanol, dithiothreitol and the like.
 試料と結合液とを混合する際、アルコールをさらに混合してもよい。アルコールによって、核酸の不溶化を促進することができる。アルコールとしては、例えばエタノール、プロパノール、イソプロパノール、ブタノール等が挙げられる。
 結合液に予めアルコールを含有させてもよい。
The alcohol may be further mixed when mixing the sample and the binding solution. Alcohol can promote the insolubilization of nucleic acids. Examples of the alcohol include ethanol, propanol, isopropanol, butanol and the like.
The binding solution may contain an alcohol beforehand.
 試料および結合液とともにアルコールを混合する場合、試料および結合液と混合するアルコールの量としては、例えば、第1混合液中のアルコールの含有量が、試料に対して10~90質量%となる量である。
 混合時の温度条件は、例えば4~80℃である。混合時間は、混合方法によっても異なるが、例えば0.1~60分間である。
When alcohol is mixed with the sample and the binding solution, the amount of alcohol mixed with the sample and the binding solution is, for example, an amount such that the content of alcohol in the first mixture is 10 to 90% by mass with respect to the sample It is.
The temperature condition at the time of mixing is, for example, 4 to 80.degree. The mixing time varies depending on the mixing method, but is, for example, 0.1 to 60 minutes.
 第1混合液と多孔質シリカ粒子とを接触させる前に、第1混合液に対し、核酸以外の成分(固形の夾雑物等)の低減等のために、遠心分離等の前処理を行ってもよい。遠心分離の条件は、例えば100~20000rpmで0.1~60分間である。 Before contacting the first mixed solution with the porous silica particles, the first mixed solution is subjected to pretreatment such as centrifugation for reduction of components other than nucleic acids (solid impurities and the like). It is also good. The conditions for centrifugation are, for example, 100 to 20000 rpm and 0.1 to 60 minutes.
 第1混合液と多孔質シリカ粒子との接触方法としては、例えば、第1混合液と多孔質シリカ粒子とを混合して混合液(以下、第2混合液ともいう)を得て、第2混合液から多孔質シリカ粒子(すなわち複合体)を回収する方法(以下、方法(1)ともいう)、または多孔質シリカ粒子が容器外に流出しないように保持された通液可能な容器(例えばカラム等)に第1混合液を通液する方法(以下、方法(2)ともいう)等が挙げられる。
 第1混合液と多孔質シリカ粒子とを接触させる際の、接触温度は、例えば4~80℃であり、接触時間は、例えば0.1~60分間である。
As a method of contacting the first mixed solution with the porous silica particles, for example, the first mixed solution and the porous silica particles are mixed to obtain a mixed solution (hereinafter also referred to as a second mixed solution). A method of recovering porous silica particles (that is, composite) from the liquid mixture (hereinafter, also referred to as method (1)), or a flowable container (for example, a porous member in which porous silica particles are retained so as not to flow out of the container) A method (hereinafter, also referred to as method (2)) or the like in which the first mixed solution is passed through a column or the like can be mentioned.
The contact temperature at the time of contacting the first mixed solution with the porous silica particles is, for example, 4 to 80 ° C., and the contact time is, for example, 0.1 to 60 minutes.
 方法(1)において、第1混合液と混合する多孔質シリカ粒子の量は、第1混合液100質量部に対して好ましくは2~200質量部である。
 第1混合液と多孔質シリカ粒子とを混合した時点から、多孔質シリカ粒子を第2混合液から回収するまでの時間が接触時間に相当する。この間、第2混合液に対し、撹拌等を行ってもよい。
 第2混合液から多孔質シリカ粒子を回収する方法としては、遠心分離、ろ過等の各種の固液分離方法を利用できる。一例として、フィルタによって上下に区画された容器の上部に第2混合液を入れ、遠心、吸引等により通液させ、フィルタ上に残った多孔質シリカ粒子を回収する方法が挙げられる。
In the method (1), the amount of porous silica particles mixed with the first liquid mixture is preferably 2 to 200 parts by mass with respect to 100 parts by mass of the first liquid mixture.
The time from when the first liquid mixture and the porous silica particles are mixed to when the porous silica particles are recovered from the second liquid mixture corresponds to the contact time. During this time, the second mixed liquid may be stirred or the like.
As a method of recovering porous silica particles from the second mixed solution, various solid-liquid separation methods such as centrifugation and filtration can be used. As an example, the second mixed solution is put in the upper part of the container divided up and down by a filter, and it is made to flow by centrifugation, suction or the like, and the porous silica particles remaining on the filter are recovered.
 方法(2)は、例えば、前記容器に第1混合液を入れ、任意の時間(接触時間)保持した後、容器から排出する方法であってよい。
 容器に入れる第1混合液の量は、例えば多孔質シリカ粒子100質量部に対し、好ましくは50~5000質量部である。
 第1混合液を容器内に保持している間に、撹拌等を行ってもよい。
 第1混合液を容器から排出させる方法としては、特に限定されず、例えば遠心、吸引、等が挙げられる。
The method (2) may be, for example, a method in which the first mixed solution is put in the container, held for an arbitrary time (contact time), and then discharged from the container.
The amount of the first liquid mixture contained in the container is, for example, preferably 50 to 5000 parts by mass with respect to 100 parts by mass of the porous silica particles.
While holding the first mixed solution in the container, stirring or the like may be performed.
The method for discharging the first mixed solution from the container is not particularly limited, and examples thereof include centrifugation and suction.
(洗浄工程)
 洗浄工程では、結合工程で得た、多孔質シリカ粒子と核酸とが結合した複合体を洗浄する。
 複合体には核酸以外の成分(タンパク質、糖類、脂質等)が付着していることがある。複合体を洗浄することで、核酸以外の成分を低減できる。洗浄を行う回数は1回でもよく2回以上でもよい。
(Washing process)
In the washing step, the complex in which the porous silica particles and the nucleic acid are bound obtained in the binding step is washed.
Components other than nucleic acids (proteins, saccharides, lipids, etc.) may be attached to the complex. By washing the complex, components other than nucleic acids can be reduced. The washing may be performed once or twice or more.
 洗浄に用いる洗浄液としては、複合体から核酸を溶出させず、かつ核酸以外の成分の脱離を促進できるものであれば特に限定されない。洗浄液としては、例えば、カオトロピック物質溶液、アルコール、その水溶液等が挙げられる。
 カオトロピック物質溶液としては、前述の結合液で挙げたものと同様であってよく、例えば4.0~7.5Mのグアニジン塩酸塩溶液が挙げられる。カオトロピック物質溶液は、緩衝剤、界面活性剤、還元剤等を含んでいてもよい。
 上記アルコールとしては、エタノール、プロパノール、イソプロパノールまたはブタノール等が好ましく、エタノールが特に好ましい。アルコールまたはその水溶液のアルコール濃度は、40~100質量%が好ましく、60~100質量%がより好ましい。アルコール濃度が前記下限値以上であれば、核酸が溶出しにくい。
The washing solution used for washing is not particularly limited as long as it does not elute nucleic acid from the complex and can promote the detachment of components other than nucleic acid. As a washing | cleaning liquid, a chaotropic substance solution, alcohol, its aqueous solution etc. are mentioned, for example.
The chaotropic substance solution may be the same as that described above for the binding solution, and examples include 4.0 to 7.5 M guanidine hydrochloride solution. The chaotropic substance solution may contain a buffer, a surfactant, a reducing agent and the like.
As the above-mentioned alcohol, ethanol, propanol, isopropanol, butanol and the like are preferable, and ethanol is particularly preferable. The alcohol concentration of the alcohol or its aqueous solution is preferably 40 to 100% by mass, and more preferably 60 to 100% by mass. If the alcohol concentration is above the lower limit value, it is difficult for the nucleic acid to elute.
 洗浄液として、カオトロピック物質溶液と、アルコールまたはその水溶液とを併用してもよい。例えばカオトロピック物質溶液による洗浄を行った後に、アルコールまたはその水溶液による洗浄を行ってもよい。
 洗浄液として、アルコール濃度が互いに異なる2種以上のアルコールまたはその水溶液を併用してもよい。
As the washing solution, a chaotropic substance solution and an alcohol or an aqueous solution thereof may be used in combination. For example, washing with a chaotropic substance solution may be followed by washing with an alcohol or an aqueous solution thereof.
As the washing solution, two or more kinds of alcohols having different alcohol concentrations or their aqueous solutions may be used in combination.
 複合体の洗浄方法としては、特に限定されない。例えば、結合工程で前記方法(1)で回収した複合体と洗浄液とを混合して混合液(以下、第3混合液ともいう)を得て、第3混合液から複合体を回収する方法(以下、方法(1’)ともいう)、または結合工程で前記方法(2)で第1混合液を排出した後の容器に洗浄液を通液する方法(以下、方法(2’)ともいう)等が挙げられる。
 洗浄時の温度条件は、好ましくは4~80℃である。
 1回あたりの洗浄時間は、好ましくは0.1~60分間である。
The method of washing the complex is not particularly limited. For example, a method of recovering a complex from a third liquid mixture by obtaining a mixed liquid (hereinafter also referred to as a third mixed liquid) by mixing the complex and the washing liquid recovered in the method (1) in the bonding step Hereinafter, a method (hereinafter, also referred to as method (2 ′)), etc., in which a cleaning solution is passed through a container after the first mixed solution is discharged in the method (2) in the method (1 ′) Can be mentioned.
The temperature condition at the time of washing is preferably 4 to 80.degree.
The washing time per wash is preferably 0.1 to 60 minutes.
 方法(1’)において、1回の洗浄で複合体と混合する洗浄液の量は、好ましくは複合体100質量部に対して10~10000質量部である。
 複合体と洗浄液とを混合した時点から、複合体を第3混合液から回収するまでの時間が洗浄時間に相当する。この間、第2混合液に対し、撹拌等を行ってもよい。
 第3混合液から複合体を回収する方法としては、第2混合液から多孔質シリカ粒子を回収する方法と同様の方法が挙げられる。
In the method (1 ′), the amount of the washing solution mixed with the complex in one washing is preferably 10 to 10000 parts by mass with respect to 100 parts by mass of the complex.
The time from when the complex and the washing liquid are mixed to when the complex is recovered from the third mixed solution corresponds to the washing time. During this time, the second mixed liquid may be stirred or the like.
As a method of recovering the complex from the third mixed solution, the same method as the method of recovering porous silica particles from the second mixed solution can be mentioned.
 方法(2’)は、例えば、前記容器に洗浄液を入れ、任意の時間(洗浄時間)保持した後、容器から排出する方法であってもよい。
 容器に入れる洗浄液の量は、複合体100質量部に対し、好ましくは10~10000質量部である。
 洗浄液を容器内に保持している間に、撹拌等を行ってもよい。
 洗浄液を容器から排出させる方法としては、容器から第1混合液を排出させる方法と同様の方法が挙げられる。
The method (2 ′) may be, for example, a method of putting a cleaning solution into the container, holding it for an arbitrary time (cleaning time), and then discharging it from the container.
The amount of the washing solution contained in the container is preferably 10 to 10000 parts by mass with respect to 100 parts by mass of the complex.
While holding the cleaning solution in the container, stirring or the like may be performed.
As a method of discharging the cleaning liquid from the container, the same method as the method of discharging the first mixed liquid from the container may be mentioned.
 洗浄後、必要に応じて、複合体を乾燥させてもよい。乾燥方法としては、例えば恒温槽等が挙げられる。乾燥条件としては、好ましくは、乾燥温度が30~80℃であり、乾燥時間が0.1~3000分間である。 After washing, if necessary, the complex may be dried. As a drying method, a thermostat etc. are mentioned, for example. As the drying conditions, preferably, the drying temperature is 30 to 80 ° C., and the drying time is 0.1 to 3000 minutes.
(溶出工程)
 溶出工程では、結合工程後または洗浄工程後の複合体から核酸を溶出させ、核酸を回収する。溶出を行う回数は1回でもよく2回以上でもよい。
 溶出工程は、公知の方法を利用して実施できる。例えば、複合体と溶出液とを接触させ、その後、溶出液を回収する方法が挙げられる。
 溶出液は、多孔質シリカ粒子に結合した核酸を溶出させる作用を有する液である。溶出液の作用によって、複合体から核酸が溶出し、核酸を含む溶出液が得られる。
 溶出液としては、例えば、水、TE緩衝液(10mMトリス-塩酸塩、1.0mM EDTA、pH8.0)等が挙げられる。
(Elution step)
In the elution step, the nucleic acid is eluted from the complex after the binding step or the washing step to recover the nucleic acid. The elution may be performed once or twice or more.
The elution step can be carried out using a known method. For example, there is a method in which the complex is brought into contact with the eluate, and then the eluate is recovered.
The eluate is a solution having an action of eluting nucleic acids bound to the porous silica particles. The action of the eluate elutes the nucleic acid from the complex to obtain an eluate containing the nucleic acid.
As an elution solution, for example, water, TE buffer (10 mM Tris-hydrochloride, 1.0 mM EDTA, pH 8.0) and the like can be mentioned.
 複合体と溶出液とを接触させ、その後、溶出液を回収する方法としては、特に限定されない。例えば、結合工程で前記方法(1)で回収した複合体または洗浄工程で前記方法(1’)で洗浄した複合体と、溶出液とを混合して混合液(以下、第4混合液ともいう)を得て、第4混合液から、核酸を溶出させた複合体(すなわち多孔質シリカ粒子)を除去する方法(以下、方法(1”)ともいう)、結合工程で前記方法(2)で第1混合液を排出した後の容器または洗浄工程で前記の方法(2’)で洗浄液を排出した後の容器に、溶出液を通液する方法(以下、方法(2”)ともいう)等が挙げられる。
 複合体と溶出液との接触時の接触温度は、好ましくは4~80℃であり、接触時間は、好ましくは0.1~60分間である。
There is no particular limitation on the method of bringing the complex into contact with the elution solution and then recovering the elution solution. For example, the complex recovered in the method (1) in the binding step or the complex washed in the method (1 ′) in the washing step and the eluate are mixed and a mixed solution (hereinafter also referred to as a fourth mixed solution) ) And removing the complex (that is, porous silica particles) from which the nucleic acid is eluted from the fourth mixture (hereinafter, also referred to as method (1 ′ ′)), in the binding step in the method (2) A method (hereinafter, also referred to as method (2 ′ ′)) in which the eluate is passed through a container after discharging the first liquid mixture or a container after discharging the washing liquid by the method (2 ′) in the washing step Can be mentioned.
The contact temperature at the time of contact between the complex and the eluate is preferably 4 to 80 ° C., and the contact time is preferably 0.1 to 60 minutes.
 方法(1”)において、複合体と混合する溶出液の量は、例えば複合体100質量部に対して10~10000質量部である。
 複合体と溶出液とを混合した時点から、多孔質シリカ粒子を第4混合液から回収するまでの時間が接触時間に相当する。この間、第4混合液に対し、撹拌等を行ってもよい。
 第4混合液から多孔質シリカ粒子を除去する方法としては、遠心分離、ろ過等の各種の固液分離方法を利用できる。
In the method (1 ′ ′), the amount of eluate mixed with the complex is, for example, 10 to 10000 parts by mass with respect to 100 parts by mass of the complex.
The time from when the complex and the eluate are mixed to when the porous silica particles are recovered from the fourth mixture corresponds to the contact time. During this time, the fourth liquid mixture may be stirred or the like.
As a method of removing porous silica particles from the fourth mixed solution, various solid-liquid separation methods such as centrifugation and filtration can be used.
 方法(2”)は、例えば、前記容器に溶出液を入れ、任意の時間(接触時間)保持した後、容器から排出する方法であってよい。
 容器に入れる溶出液の量は、例えば複合体100質量部に対し、10~10000質量部である。
 溶出液を容器内に保持している間に、撹拌等を行ってもよい。
 溶出液を容器から排出させる方法としては、容器から第1混合液を排出させる方法と同様の方法が挙げられる。
Method (2 ′ ′) may be, for example, a method of putting the eluate into the container, holding it for an arbitrary time (contact time), and then discharging it from the container.
The amount of eluate contained in the container is, for example, 10 to 10000 parts by mass with respect to 100 parts by mass of the complex.
While holding the eluate in the container, stirring or the like may be performed.
As a method of discharging the eluate from the container, the same method as the method of discharging the first mixed liquid from the container may be mentioned.
 本発明にあっては、核酸結合用担体として、D50が6~50μmであり、BJH法により求めた細孔容積が0.3~5cm/gであり、BJH法により求めた平均細孔径が60~500Åである多孔質シリカ粒子、またはD50が6~50μmであり、水銀ポロシメータにより求めた細孔容積が0.6~5cm/gであり、水銀ポロシメータにより求めた平均細孔径が200~5000Åである多孔質シリカ粒子を用いているため、核酸が長い場合でも、高回収率で核酸を回収できる。また、多孔質シリカ粒子に核酸を結合させ、溶出させるだけで核酸を回収でき、操作が簡便である。
 前記多孔質シリカ粒子にあっては、D50、細孔容積および平均細孔径が前記範囲内であることで、結合工程での多孔質シリカ粒子への核酸の結合効率、および溶出工程での複合体からの核酸の溶出効率が共に優れるため、核酸を高回収率で回収できる。
 結合効率が高い理由としては、多孔質シリカ粒子の表面に開口した細孔に核酸の一部が嵌まりやすいことが考えられる。溶出効率が高い理由としては、多孔質シリカ粒子の表面に開口した細孔によって核酸との接触面積が相対的に少なくなっていること、個々の細孔が複数箇所に開口していることで、細孔に嵌まった核酸が脱離する際に細孔内から溶出液が回り込み、核酸が脱離しやすいこと等が考えられる。
In the present invention, as the nucleic acid binding carrier, D 50 is 6 ~ 50 [mu] m, a pore volume determined by the BJH method is 0.3 ~ 5cm 3 / g, average pore diameter as determined by the BJH method Porous silica particles having a diameter of 60 to 500 Å, or having a D 50 of 6 to 50 μm, a pore volume of 0.6 to 5 cm 3 / g as determined by mercury porosimetry, and an average pore diameter as determined by mercury porosimetry Since porous silica particles of 200 to 5000 Å are used, nucleic acids can be recovered with high recovery rate even when the nucleic acids are long. Further, the nucleic acid can be recovered only by binding the nucleic acid to the porous silica particle and eluting it, and the operation is simple.
In the porous silica particle, the binding efficiency of the nucleic acid to the porous silica particle in the binding step and the compounding in the elution step, because the D 50 , the pore volume and the average pore diameter are in the above ranges Because the elution efficiency of nucleic acid from the body is both excellent, nucleic acid can be recovered with high recovery rate.
As a reason for the high binding efficiency, it is considered that a part of the nucleic acid easily fits into the pores opened on the surface of the porous silica particle. The reason why the elution efficiency is high is that the contact area with the nucleic acid is relatively reduced by the pores opened on the surface of the porous silica particles, and the individual pores are opened at a plurality of locations, When the nucleic acid fitted in the pore is detached, it is conceivable that the elution solution wraps around from inside the pore and the nucleic acid is easily detached.
〔核酸回収キット〕
 本発明の核酸回収キットは、上述した多孔質シリカ粒子を収容した第1の容器と、核酸を前記多孔質シリカ粒子に結合させる結合液を収容した第2の容器と、を備える。
 本発明の核酸回収キットは、必要に応じて、前記多孔質シリカ粒子と前記核酸とが結合した複合体から前記核酸を溶出させる溶出液を収容した第3の容器をさらに備えていてもよい。
 本発明の核酸回収キットは、必要に応じて、前記多孔質シリカ粒子と前記核酸とが結合した複合体を洗浄する洗浄液を収容した第4の容器をさらに備えていてもよい。
[Nucleic acid recovery kit]
The nucleic acid recovery kit of the present invention comprises a first container containing the porous silica particles described above, and a second container containing a binding solution for binding nucleic acids to the porous silica particles.
The nucleic acid recovery kit of the present invention may further include a third container containing an eluate for eluting the nucleic acid from the complex in which the porous silica particles and the nucleic acid are bound, as necessary.
The nucleic acid recovery kit of the present invention may further include a fourth container containing a washing solution for washing the complex in which the porous silica particles and the nucleic acid are bound, as necessary.
 本発明の核酸回収キットは、上述した本発明の核酸の回収方法に用いることができる。例えば第1の容器に収容された多孔質シリカ粒子と、第2の容器に収容された結合液とを用いて、結合工程を実施できる。
 第3の容器をさらに備えている場合は、第3の容器に収容された溶出液を用いて、溶出工程をさらに実施できる。
 第4の容器をさらに備えている場合は、第4の容器に収容された洗浄液を用いて、洗浄工程をさらに実施できる。
The nucleic acid recovery kit of the present invention can be used in the above-described method of recovering a nucleic acid of the present invention. The bonding step can be carried out, for example, using porous silica particles contained in a first container and a binding liquid contained in a second container.
If the third container is further provided, the elution step can be further performed using the eluate contained in the third container.
When the fourth container is further provided, the washing step can be further performed using the washing liquid stored in the fourth container.
 第1の容器に収容された多孔質シリカ粒子を結合工程で用いる際には、多孔質シリカ粒子を第1の容器から取り出し、別の容器で結合工程を行うようにしてもよく、多孔質シリカ粒子を第1の容器内に収容したまま、第1の容器内で結合工程を行うようにしてもよい。 When the porous silica particles contained in the first container are used in the bonding step, the porous silica particles may be removed from the first container, and the bonding step may be performed in another container. The bonding step may be performed in the first container while the particles are contained in the first container.
 第2の容器に収容された結合液としては、結合工程で挙げた結合液が挙げられ、カオトロピック物質溶液が好ましい。
 第2の容器に収容された結合液を結合工程で用いる際には、水等の溶媒で希釈してもよい。
The binding solution contained in the second container includes the binding solution mentioned in the binding step, and a chaotropic substance solution is preferable.
When the binding solution contained in the second container is used in the binding step, it may be diluted with a solvent such as water.
 第3の容器に収容された溶出液としては、溶出工程で挙げた溶出液が挙げられる。
 第3の容器に収容された溶出液を溶出工程で用いる際には、水等の溶媒で希釈してもよい。
Examples of the eluate contained in the third container include the eluate mentioned in the elution step.
When using the eluate stored in the third container in the elution step, it may be diluted with a solvent such as water.
 第4の容器に収容された洗浄液としては、洗浄工程で挙げた洗浄液が挙げられる。
 第4の容器に収容された洗浄液を洗浄工程で用いる際には、水等の溶媒で希釈してもよい。
The washing liquid contained in the fourth container includes the washing liquid mentioned in the washing step.
When using the washing | cleaning liquid accommodated in the 4th container at the washing | cleaning process, you may dilute with solvent, such as water.
 以下、実施例を示して本発明を詳細に説明する。ただし、本発明はこれらの実施例に限定されるものではない。 Hereinafter, the present invention will be described in detail by way of examples. However, the present invention is not limited to these examples.
 <実施例A>
 下記の多孔質シリカ粒子1~10について、下記の評価方法に従って粒度分布、細孔容積、平均細孔径および比表面積を求め、更に下記の実施例Aの例1~11に基づいて核酸(DNA)の回収率を求めた。なお、実施例Aの例1~11のうち、例1~6は実施例であり、例7~11は比較例である。
 各例で使用した評価方法および材料を以下に示す。
Example A
With respect to the following porous silica particles 1 to 10, the particle size distribution, pore volume, average pore diameter and specific surface area were determined according to the following evaluation method, and nucleic acids (DNA) were further obtained based on Examples 1 to 11 below. The recovery rate of Of Examples 1 to 11 of Example A, Examples 1 to 6 are Examples, and Examples 7 to 11 are Comparative Examples.
The evaluation methods and materials used in each example are shown below.
〔評価方法〕
(粒度分布)
 多孔質シリカ粒子を超音波処理によって水に充分に分散させ、レーザー回折/散乱式粒子径分布測定装置(日機装社製、MT-3300EX)により測定を行い、頻度分布および累積体積分布曲線を得ることで体積基準の粒度分布を得た。得られた累積体積分布曲線からD10、D50、D90、D90/D10を求めた。
〔Evaluation method〕
(Particle size distribution)
The porous silica particles are sufficiently dispersed in water by ultrasonication, and measurement is performed using a laser diffraction / scattering particle size distribution measuring device (MT-3300EX, manufactured by Nikkiso Co., Ltd.) to obtain frequency distribution and cumulative volume distribution curve. Volume-based particle size distribution was obtained. From the cumulative volume distribution curve obtained was determined D 10, D 50, D 90 , D 90 / D 10.
(BJH法による細孔容積および平均細孔径の測定)
 細孔分布測定装置(mirometrics社製、3FLEX)にて、吸着ガスとして窒素ガスを用いて、吸着等温線を測定した。
 細孔分布測定装置に付属の解析ソフトウェアを用い、吸着等温線における相対圧力P/Pが0.01~0.995の34点からBJH法によって細孔容積(BJH吸着積算細孔容積)および平均細孔径(BJH平均細孔直径)を求めた。
(比表面積)
 また、相対圧力P/Pが0.05~0.30の10点からBET法によって比表面積を求めた。
(Measurement of pore volume and average pore diameter by BJH method)
An adsorption isotherm was measured with a pore distribution measuring device (manufactured by mirometrics, 3FLEX) using nitrogen gas as an adsorption gas.
Pore volume (BJH adsorption integrated pore volume) and BJH method from the 34 points of relative pressure P / P 0 in the adsorption isotherm from 0.01 to 0.995 using analysis software attached to the pore distribution measuring device The average pore size (BJH average pore diameter) was determined.
(Specific surface area)
Further, the specific surface area was determined by the BET method from 10 points at a relative pressure P / P 0 of 0.05 to 0.30.
〔材料〕
 多孔質シリカ粒子1:AGCエスアイテック社製、型番:L-52。
 多孔質シリカ粒子2:AGCエスアイテック社製、型番:L-203。
 多孔質シリカ粒子3:AGCエスアイテック社製、型番:EP-DM-20-120A。
 多孔質シリカ粒子4:大阪ソーダ社製、型番:SP-120-20P。
 多孔質シリカ粒子5:大阪ソーダ社製、型番:IR-60-25/40。
 多孔質シリカ粒子6:富士シリシア社製、型番:SMB100-20。
 多孔質シリカ粒子7:AGCエスアイテック社製、型番:サンラブリー。
 多孔質シリカ粒子8:AGCエスアイテック社製、型番:NP-200。
 多孔質シリカ粒子9:富士シリシア社製、型番:BW-820MH。
 多孔質シリカ粒子10:富士シリシア社製、型番:MB100-75/200。
〔material〕
Porous silica particle 1: manufactured by AGC S.I. Tech., Model number: L-52.
Porous silica particle 2: manufactured by AGC S.I. Tech., Model number: L-203.
Porous silica particle 3: manufactured by AGC S.I. Tech., Model number: EP-DM-20-120A.
Porous silica particles 4: manufactured by Osaka Soda, model number: SP-120-20P.
Porous silica particles 5: manufactured by Osaka Soda, model number: IR-60-25 / 40.
Porous silica particles 6: manufactured by Fuji Silysia, model number: SMB100-20.
Porous silica particles 7: manufactured by AGC S.I. Tech., Model number: Sun Lovely.
Porous silica particles 8: manufactured by AGC S.I. Tech., Model number: NP-200.
Porous silica particles 9: manufactured by Fuji Silysia, model number: BW-820MH.
Porous silica particles 10: manufactured by Fuji Silysia, model number: MB100-75 / 200.
 結合液:核酸抽出キット(Qiagen社製、商品名:DNeasy Blood tisue kit)に付属の吸着バッファー(組成:50mMトリス-塩酸塩、5.0Mグアニジンチオシアン酸塩、20mM EDTA、1.2質量%ポリエチレングリコールモノ-p-イソオクチルフェニレンエーテル)。
 洗浄液1:前記核酸抽出キットに付属の洗浄バッファー1。
 洗浄液2:前記核酸抽出キットに付属の洗浄バッファー2。
 溶出液:前記核酸抽出キットに付属の溶出バッファー。
 ヒトゲノム溶液:プロメガ社製、製品名human genomic DNA G3041、長さおよそ3×10塩基対のDNAを含有、DNA濃度200μg/mL。
 大腸菌ゲノム溶液:シグマアルドリッチ社製、製品名GenElute Plasmid Miniprep Kitを用いて大腸菌DH5αの培養液を処理して調製した、長さおよそ4.65×10塩基対のDNAを含有、DNA濃度50μg/mL。
Binding solution: Adsorption buffer (Composition: 50 mM Tris-hydrochloride, 5.0 M guanidine thiocyanate, 20 mM EDTA, 1.2% by mass polyethylene) attached to the nucleic acid extraction kit (Qiagen, trade name: DNeasy Blood tisue kit) Glycol mono-p-isooctyl phenylene ether).
Washing solution 1: Washing buffer 1 attached to the nucleic acid extraction kit.
Washing solution 2: Washing buffer 2 attached to the nucleic acid extraction kit.
Eluent: Elution buffer supplied with the above nucleic acid extraction kit.
Human genome solution: manufactured by Promega, product name human genomic DNA G3041, containing DNA approximately 3 × 10 9 base pairs in length, DNA concentration 200 μg / mL.
E. coli genome solution: prepared by treating a culture solution of E. coli DH5α using Sigma-Aldrich, product name GenElute Plasmid Miniprep Kit, containing DNA of about 4.65 × 10 6 base pairs in length, 50 μg / DNA concentration mL.
 チップカラム:2本のピペットチップ(BioPointe Scientific社製、商品名:Pipette tip 1250μl)をそれぞれ周方向に沿って2つに切断し、ピペットチップの先端を含む部分(以下、「部分A」ともいう。)と、ピペットチップの後端を含む部分(以下、「部分B」ともいう。)とを得た。このとき、2本のピペットチップそれぞれの切断位置(先端から切断位置までの距離)を変えた。ピペットチップは、先端に向かって直径が小さくなっているため、2つのピペットチップそれぞれの切断位置における内径は異なっている。
 2本のピペットチップそれぞれから得た2つの部分Aのうち長い方(切断位置の内径が大きい方)の部分Aの後端の開口を、孔径1μmのポリテトラフルオロエチレン(PTFE)フィルタで覆った。その状態で部分Aを先端側から、2つの部分Bのうち長い方(切断位置の内径が小さい方)の部分Bの後端の開口からその内側に挿入し、部分Aの後端部分およびフィルタの外縁部分が部分Bの先端部分に係止された状態とした。これをチップカラムとして用いた。
Tip column: Two pipette tips (manufactured by BioPointe Scientific, trade name: Pipette tip 1250 μl) are each cut into two along the circumferential direction, and the portion including the tip of the pipette tip (hereinafter also referred to as “part A”) And a portion including the rear end of the pipette tip (hereinafter, also referred to as “portion B”). At this time, the cutting position (the distance from the tip to the cutting position) of each of the two pipette tips was changed. Because the pipette tip has a smaller diameter toward the tip, the inner diameters at the cutting positions of the two pipette tips are different.
The opening at the rear end of the longer part of the two parts A obtained from each of the two pipette tips (the one with the larger internal diameter at the cutting position) was covered with a 1 μm pore size polytetrafluoroethylene (PTFE) filter . In that state, the part A is inserted from the tip end side through the opening at the rear end of the longer part (smaller inside diameter of the cutting position) of the two parts B, the rear end part of the part A and the filter The outer edge portion of the hook was locked to the tip end of the portion B. This was used as a tip column.
〔例1~10〕
 試料としてヒトゲノム溶液または大腸菌ゲノム溶液を使用し、以下の手順で試料からの核酸の回収を行い、核酸(DNA)の回収率を求めた。結果を表1に示す。
 まず、容量1.5mLのエッペンドルフチューブに、試料220μL、結合液200μLおよび100質量%エタノール200μLを加え、混合して第1混合液を得た。
 次に、第1混合液620μLに表1に示す多孔質シリカ粒子20mgを加え、混合して第2混合液を得た。
 次に、第2混合液の全量をチップカラムに移し、遠心分離機を使用して3500rpm、2分間、20℃の条件で遠心分離することにより、多孔質シリカ粒子をチップカラムのフィルタ上に集めた。
 次に、ろ過液を捨て、チップカラムに洗浄液1の500μLを加え、前記と同様の条件で遠心分離した。次に、ろ過液を捨て、チップカラムに洗浄液2の500μLを加え、前記と同様の条件で遠心分離した。その後、ろ過液を捨て、3500rpm、7分間、20℃の条件で遠心分離した。
 次に、前記チップカラムに溶出液の200μLを加え、1分間放置したのち、3500rpm、2分間、20℃の条件で遠心分離した。得られたろ過液を核酸抽出液とした。
[Examples 1 to 10]
Using a human genome solution or an E. coli genome solution as a sample, the nucleic acid was recovered from the sample according to the following procedure, and the recovery rate of nucleic acid (DNA) was determined. The results are shown in Table 1.
First, 220 μL of a sample, 200 μL of a binding solution and 200 μL of 100% by mass ethanol were added to a 1.5 mL Eppendorf tube, and mixed to obtain a first mixed solution.
Next, 20 mg of porous silica particles shown in Table 1 were added to 620 μL of the first mixed solution, and mixed to obtain a second mixed solution.
Next, the whole amount of the second mixed solution is transferred to the chip column, and the porous silica particles are collected on the filter of the chip column by centrifuging under the conditions of 20 ° C. for 2 minutes at 3500 rpm using a centrifuge. The
Next, the filtrate was discarded, 500 μL of washing solution 1 was added to the tip column, and centrifuged under the same conditions as described above. Next, the filtrate was discarded, 500 μL of washing solution 2 was added to the tip column, and centrifuged under the same conditions as described above. Thereafter, the filtrate was discarded and centrifuged at 3500 rpm for 7 minutes at 20 ° C.
Next, 200 μL of the eluate was added to the chip column, allowed to stand for 1 minute, and centrifuged under conditions of 3500 rpm, 2 minutes, and 20 ° C. The obtained filtrate was used as a nucleic acid extract.
 核酸抽出液中のDNA濃度を、アッセイキット(invitrogen社製、商品名Qubit assay)を用いて、そのプロトコルに従って測定した。具体的には核酸抽出液1μLに対してWorking solution 199μLを加え、2~3秒間ボルテックスし、室温で2分間反応させたのち、フルオロメータ(invitrogen社、商品名Qubit FluorometerにてDNA濃度を測定した。
 測定されたDNA濃度から、核酸抽出液中のDNAの質量W(g)を算出した。この値と、用いた試料(220μL)中のDNAの質量W(g)から、以下の式によりDNA回収率を求めた。
 DNA回収率(%)=W/W×100
The DNA concentration in the nucleic acid extract was measured according to the protocol using an assay kit (manufactured by invitrogen, trade name Qubit assay). Specifically, 199 μL of Working solution was added to 1 μL of nucleic acid extract, vortexed for 2 to 3 seconds, reacted at room temperature for 2 minutes, and then the DNA concentration was measured with a fluorometer (invitrogen, trade name Qubit Fluorometer) .
The mass W 1 (g) of the DNA in the nucleic acid extract was calculated from the measured DNA concentration. From this value and the mass W 2 (g) of DNA in the used sample (220 μL), the DNA recovery rate was determined by the following equation.
DNA recovery (%) = W 1 / W 2 × 100
〔例11〕
 試料としてヒトゲノム溶液または大腸菌ゲノム溶液を使用し、シリカメンブレンを備えた市販の核酸抽出キット(Qiagen社製、商品名:DNeasy Blood tisue kit)を用いて、そのプロトコルに従って核酸を抽出し、核酸抽出液を得た。
 得られた核酸抽出液について、例1~10と同様にして、以下の手順で試料からの核酸の回収を行い、核酸(DNA)の回収率を求めた。結果を表1に示す。
[Example 11]
Using a commercially available nucleic acid extraction kit (manufactured by Qiagen, trade name: DNeasy Blood tisue kit) using a human genome solution or E. coli genome solution as a sample, the nucleic acid is extracted according to the protocol and a nucleic acid extract I got
With respect to the obtained nucleic acid extract, in the same manner as in Examples 1 to 10, the nucleic acid was recovered from the sample by the following procedure, and the recovery rate of the nucleic acid (DNA) was determined. The results are shown in Table 1.
 例1~10で用いた多孔質シリカ粒子のD10、D50、D90、D90/D10、シリカ(SiO)純度、比表面積、細孔容積、および平均細孔径を表1に示す。なお、シリカ純度については、多孔質シリカ粒子3および8のみ測定したが、他の多孔質シリカ粒子のシリカ純度はいずれも98質量%以上とみられる。
 また、例1~10における、ヒトゲノム溶液を試料としたときのDNA回収率を縦軸にとり、多孔質シリカ粒子のD50、D90/D10、細孔容積、平均細孔径または比表面積(SSA)を横軸にとったグラフを図1~5に示す。各グラフにおいて、例1~6の結果は実施例として、例7~10の結果は比較例として示した。
The D 10 , D 50 , D 90 , D 90 / D 10 , silica (SiO 2 ) purity, specific surface area, pore volume, and average pore diameter of the porous silica particles used in Examples 1 to 10 are shown in Table 1. . In addition, although only the porous silica particles 3 and 8 were measured about the silica purity, the silica purity of the other porous silica particle is all considered to be 98 mass% or more.
Also, in Examples 1-10, taken ordinate DNA recovery rate when the human genome solution as a sample, D 50 of the porous silica particles, D 90 / D 10 pore volume, average pore diameter or the specific surface area (SSA Figures 1 to 5 show graphs in which the horizontal axis is taken). In each graph, the results of Examples 1 to 6 are shown as Examples, and the results of Examples 7 to 10 are shown as Comparative Examples.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 例1~6においては、核酸の回収率が高かった。
 一方、例7では、多孔質シリカ粒子のD50が6μm未満であり、細孔容積が0.3cm/g未満であるため、核酸の回収率が劣っていた。例8では、多孔質シリカ粒子の細孔容積が0.3cm/g未満であり、平均細孔径が60Å未満であるため、核酸の回収率が劣っていた。例9では、多孔質シリカ粒子のD50が50μmより大きく、細孔容積が0.3cm/g未満であり、平均細孔径が60Å未満であるため、核酸の回収率が劣っていた。例10では、多孔質シリカ粒子のD50が50μm未満より大きいため、核酸の回収率が劣っていた。
In Examples 1 to 6, the recovery of nucleic acid was high.
On the other hand, in Example 7, since the porous silica particles had a D 50 of less than 6 μm and a pore volume of less than 0.3 cm 3 / g, the nucleic acid recovery rate was poor. In Example 8, since the pore volume of the porous silica particles was less than 0.3 cm 3 / g and the average pore diameter was less than 60 Å, the recovery rate of nucleic acid was inferior. In Example 9, since the D50 of the porous silica particles is greater than 50 μm, the pore volume is less than 0.3 cm 3 / g, and the average pore diameter is less than 60 Å, the nucleic acid recovery rate is poor. In Example 10, the recovery rate of the nucleic acid was poor because the D 50 of the porous silica particles was larger than 50 μm.
 <実施例B>
 下記の多孔質シリカ粒子12~26について、下記の評価方法に従って粒度分布、細孔容積、平均細孔径および比表面積を求め、更に下記の実施例Bの例12~27に基づいて核酸(DNA)の回収率を求めた。なお、実施例Bの例12~27のうち、例12~21は実施例であり、例22~27比較例である。
 各例で使用した評価方法および材料を以下に示す。
Example B
The particle size distribution, pore volume, average pore diameter and specific surface area of the following porous silica particles 12 to 26 were determined according to the following evaluation method, and nucleic acids (DNA) were further obtained based on Examples 12 to 27 of Example B below. The recovery rate of Of the examples 12 to 27 of the example B, the examples 12 to 21 are examples and the examples 22 to 27 are comparative examples.
The evaluation methods and materials used in each example are shown below.
〔評価方法〕
(粒度分布)
 多孔質シリカ粒子12~26ついて、実施例Aと同様にして体積基準の粒度分布を得た。得られた累積体積分布曲線からD10、D50、D90、D90/D10を求めた。
〔Evaluation method〕
(Particle size distribution)
With respect to the porous silica particles 12 to 26, in the same manner as in Example A, a volume-based particle size distribution was obtained. From the cumulative volume distribution curve obtained was determined D 10, D 50, D 90 , D 90 / D 10.
(比表面積)
 細孔分布測定装置(mirometrics社製、3FLEX)にて、吸着ガスとして窒素ガスを用いて、吸着等温線を測定した。
 細孔分布測定装置に付属の解析ソフトウェアを用い、吸着等温線における相対圧力P/Pが0.05~0.30の10点からBET法によって比表面積を求めた。
(Specific surface area)
An adsorption isotherm was measured with a pore distribution measuring device (manufactured by mirometrics, 3FLEX) using nitrogen gas as an adsorption gas.
The specific surface area was determined by the BET method from ten points with a relative pressure P / P 0 of 0.05 to 0.30 in the adsorption isotherm using analysis software attached to the pore distribution measuring apparatus.
(水銀ポロシメータによる細孔容積および平均細孔径の測定)
 水銀ポロシメータ(mirometrics社製、AutoPore IV9500)を用いて細孔容積および平均細孔径の測定を行った。
 水銀の物性値には接触角140°、表面張力480dynes/cm、密度13.5335g/mLを用いた。測定条件は圧力50mmHg、真空引き時間5分、注入圧力1.49psi、平衡時間10秒とした。
(Measurement of pore volume and average pore size by mercury porosimetry)
Pore volume and average pore size were measured using a mercury porosimeter (manufactured by Mirometrics, AutoPore IV 9500).
The physical properties of mercury used were a contact angle of 140 °, a surface tension of 480 dynes / cm, and a density of 13.5335 g / mL. The measurement conditions were a pressure of 50 mmHg, an evacuation time of 5 minutes, an injection pressure of 1.49 psi, and an equilibration time of 10 seconds.
〔材料〕
 多孔質シリカ粒子12:AGCエスアイテック社製、型番:L-52。
 多孔質シリカ粒子13:AGCエスアイテック社製、型番:EP-DM-10-1000AW。
 多孔質シリカ粒子14AGCエスアイテック社製、型番:EP-DM-10-700AW。
 多孔質シリカ粒子15AGCエスアイテック社製、型番:EP-DM-20-1000AW。
 多孔質シリカ粒子16AGCエスアイテック社製、型番:L-203。
 多孔質シリカ粒子17大阪ソーダ社製、型番:SP-1000-10。
 多孔質シリカ粒子18:大阪ソーダ社製、型番:SP-1000-20。
 多孔質シリカ粒子19大阪ソーダ社製、型番:SP-2000-20。
 多孔質シリカ粒子20富士シリシア社製、型番:SMB1000-10。
 多孔質シリカ粒子21富士シリシア社製、型番:SMB1000-20。
 多孔質シリカ粒子22:AGCエスアイテック社製、型番:EP-DF-5-1000AW2。
 多孔質シリカ粒子23AGCエスアイテック社製、型番:NP-200。
 多孔質シリカ粒子24AGCエスアイテック社製、型番:D-75-1000AW。
 多孔質シリカ粒子25AGCエスアイテック社製、型番:D-150-1000AW。
 多孔質シリカ粒子26:AGCエスアイテック社製、型番:D-250-1000AW。
〔material〕
Porous silica particles 12: manufactured by AGC S.I. Tech., Model number: L-52.
Porous silica particles 13: manufactured by AGC S.I. Tech., Model number: EP-DM-10-1000AW.
Porous silica particles 14 AG manufactured by SSI Tech, model number: EP-DM-10-700AW.
Porous silica particles 15 manufactured by AGC SITEC Co., Ltd., model number: EP-DM-20-1000AW.
Porous silica particle 16 AG manufactured by SSI Tech, model number: L-203.
Porous silica particles 17 manufactured by Osaka Soda, model number: SP-1000-10.
Porous silica particles 18: manufactured by Osaka Soda, model number: SP-1000-20.
Porous silica particles 19 manufactured by Osaka Soda, model number: SP-2000-20.
Porous silica particles 20 manufactured by Fuji Silysia, model number: SMB1000-10.
Porous silica particle 21 manufactured by Fuji Silysia, model number: SMB1000-20.
Porous silica particles 22: manufactured by AGC S.I. Tech., Model number: EP-DF-5-1000AW2.
Porous silica particle 23 AGC SCITECH Co., Ltd. make, model number: NP-200.
Porous silica particle 24 AGC SCITECH Co., Ltd. make, model number: D-75-1000AW.
Porous silica particle 25 AGC SCITECH Co., Ltd. make, model number: D-150-1000AW.
Porous silica particles 26: manufactured by AGC S.I. Tech., Model number: D-250-1000 AW.
 結合液、洗浄液1、洗浄液2、溶出液、ヒトゲノム溶液、大腸菌ゲノム溶液およびチップカラムについては、実施例Aと同じ種類のものを使用した。 The same type as in Example A was used for the binding solution, washing solution 1, washing solution 2, eluate, human genome solution, E. coli genome solution and chip column.
〔例12~26〕
 試料としてヒトゲノム溶液または大腸菌ゲノム溶液を使用し、実施例Aの例1~10と同様の手順で試料からの核酸の回収を行い、核酸(DNA)の回収率を求めた。結果を表2に示す。
[Examples 12 to 26]
Using a human genome solution or E. coli genome solution as a sample, the nucleic acid was recovered from the sample in the same manner as in Examples 1 to 10 of Example A, and the recovery rate of nucleic acid (DNA) was determined. The results are shown in Table 2.
〔例27〕
 例27は、実施例Aの表1の例11の結果を示したものである。
 得られた核酸抽出液について、例12~26と同様にして、以下の手順で試料からの核酸の回収を行い、核酸(DNA)の回収率を求めた。結果を表2に示す。
[Example 27]
Example 27 shows the results of Example 11 in Table 1 of Example A.
With respect to the obtained nucleic acid extract, in the same manner as in Examples 12 to 26, the nucleic acid was recovered from the sample by the following procedure, and the recovery rate of the nucleic acid (DNA) was determined. The results are shown in Table 2.
 例12~26で用いた多孔質シリカ粒子のD10、D50、D90、D90/D10、シリカ(SiO)純度、比表面積、細孔容積、および平均細孔径を表2に示す。なお、シリカ純度については、多孔質シリカ粒子13~15、22~23のみ測定したが、他の多孔質シリカ粒子のシリカ純度もいずれも98質量%以上とみられる。
 また、例12~26における、ヒトゲノム溶液を試料としたときのDNA回収率を縦軸に、多孔質シリカ粒子のD50、D90/D10、細孔容積、平均細孔径または比表面積(SSA)を横軸にとったグラフを図6~10に示す。各グラフにおいて、例12~21の結果は実施例として、例22~27の結果は比較例として示した。
The D 10 , D 50 , D 90 , D 90 / D 10 , silica (SiO 2 ) purity, specific surface area, pore volume, and average pore diameter of the porous silica particles used in Examples 12 to 26 are shown in Table 2. . Although only the porous silica particles 13 to 15 and 22 to 23 were measured as to the silica purity, it is considered that the silica purity of the other porous silica particles is also 98 mass% or more.
In Examples 12 to 26, the DNA recovery rate when using a human genome solution as a sample is indicated on the vertical axis as D 50 , D 90 / D 10 , pore volume, average pore diameter or specific surface area (SSA) of porous silica particles. 6 to 10 show graphs in which the abscissa axis is taken). In each graph, the results of Examples 12 to 21 are shown as Examples, and the results of Examples 22 to 27 are shown as Comparative examples.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 例12~21では、核酸の回収率が高かった。
 一方、例22では、多孔質シリカ粒子のD50が6μm未満であるため、核酸の回収率が劣っていた。例23では、多孔質シリカ粒子の細孔容積が0.6cm/g未満、平均細孔径が200Å未満であるため、核酸の回収率が劣っていた。例24~26では、多孔質シリカ粒子のD50が50μm超であるため、核酸の回収率が劣っていた。
 なお、2017年8月18日に出願された日本特許出願2017-157978号および日本特許出願2017-157968号の明細書、特許請求の範囲、要約書および図面の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。
In Examples 12-21, the recovery of nucleic acid was high.
On the other hand, in Example 22, since the porous silica particles had a D 50 of less than 6 μm, the nucleic acid recovery rate was poor. In Example 23, since the pore volume of the porous silica particles is less than 0.6 cm 3 / g and the average pore diameter is less than 200 Å, the recovery rate of the nucleic acid is poor. In Examples 24 to 26, since the porous silica particles had a D 50 of more than 50 μm, the recovery rate of nucleic acid was poor.
The entire contents of the specification, claims, abstract and drawing of Japanese Patent Application 2017-157978 and Japanese Patent Application 2017-157968 filed on Aug. 18, 2017 are incorporated herein by reference. It is incorporated as a disclosure of the specification of the invention.

Claims (16)

  1.  体積基準での粒度分布のD50が6~50μmであり、BJH法により求めた細孔容積が0.3~5cm/gであり、BJH法により求めた平均細孔径が60~500Åである多孔質シリカ粒子に核酸を結合させて複合体を形成し、
     前記複合体から前記核酸を溶出させ、回収することを特徴とする、核酸の回収方法。
    A D 50 of 6 ~ 50 [mu] m particle size distribution based on volume, the pore volume determined by the BJH method is 0.3 ~ 5cm 3 / g, an average pore diameter determined by the BJH method is a 60 ~ 500 Å Binding nucleic acid to porous silica particles to form a complex;
    A method for recovering nucleic acid, which comprises eluting and recovering the nucleic acid from the complex.
  2.  体積基準での粒度分布のD50が6~50μmであり、水銀ポロシメータにより求めた細孔容積が0.6~5cm/gであり、水銀ポロシメータにより求めた平均細孔径が200~5000Åである多孔質シリカ粒子に核酸を結合させて複合体を形成し、
     前記複合体から前記核酸を溶出させ、回収することを特徴とする、核酸の回収方法。
    A D 50 of 6 ~ 50 [mu] m particle size distribution based on volume, the pore volume determined by mercury porosimetry is the 0.6 ~ 5cm 3 / g, average pore diameter is 200 ~ 5000 Å determined by mercury porosimeter Binding nucleic acid to porous silica particles to form a complex;
    A method for recovering nucleic acid, which comprises eluting and recovering the nucleic acid from the complex.
  3.  前記多孔質シリカ粒子の体積基準での粒度分布のD90/D10が10以下である、請求項1または2に記載の核酸の回収方法。 The porous D 90 / D 10 of the particle size distribution based on the volume of the silica particles is 10 or less, a method of recovering nucleic acids according to claim 1 or 2.
  4.  前記多孔質シリカ粒子の比表面積が150~1000m/gである、請求項1または3に記載の核酸の回収方法。 The method for recovering nucleic acid according to claim 1 or 3, wherein the specific surface area of the porous silica particles is 150 to 1000 m 2 / g.
  5.  前記多孔質シリカ粒子の比表面積が8~400m/gである、請求項2または3に記載の核酸の回収方法。 The method for recovering nucleic acid according to claim 2 or 3, wherein the specific surface area of the porous silica particles is 8 to 400 m 2 / g.
  6.  前記多孔質シリカ粒子のシリカ純度が90質量%以上である、請求項1~5のいずれか一項に記載の核酸の回収方法。 The method for recovering nucleic acid according to any one of claims 1 to 5, wherein the silica purity of the porous silica particles is 90% by mass or more.
  7.  カオトロピック物質溶液の存在下で、前記多孔質シリカ粒子に前記核酸を結合させる、請求項1~6のいずれか一項に記載の核酸の回収方法。 The method for recovering nucleic acid according to any one of claims 1 to 6, wherein the nucleic acid is bound to the porous silica particle in the presence of a chaotropic substance solution.
  8.  前記複合体から前記核酸を溶出させる前に、前記複合体を洗浄する、請求項1~7のいずれか一項に記載の核酸の回収方法。 The method for recovering nucleic acid according to any one of claims 1 to 7, wherein the complex is washed before eluting the nucleic acid from the complex.
  9.  前記核酸の長さが10~1011bpである、請求項1~8のいずれか一項に記載の核酸の回収方法。 The method for recovering nucleic acid according to any one of claims 1 to 8, wherein the length of the nucleic acid is 10 5 to 10 11 bp.
  10.  体積基準での粒度分布のD50が6~50μmであり、BJH法により求めた細孔容積が0.3~5cm/gであり、BJH法により求めた平均細孔径が60~500Åである多孔質シリカ粒子を含有することを特徴とする核酸結合用担体。 A D 50 of 6 ~ 50 [mu] m particle size distribution based on volume, the pore volume determined by the BJH method is 0.3 ~ 5cm 3 / g, an average pore diameter determined by the BJH method is a 60 ~ 500 Å A carrier for nucleic acid binding comprising porous silica particles.
  11.  体積基準での粒度分布のD50が6~50μmであり、水銀ポロシメータにより求めた細孔容積が0.6~5cm/gであり、水銀ポロシメータにより求めた平均細孔径が200~5000Åである多孔質シリカ粒子からなることを特徴とする核酸結合用担体。 A D 50 of 6 ~ 50 [mu] m particle size distribution based on volume, the pore volume determined by mercury porosimetry is the 0.6 ~ 5cm 3 / g, average pore diameter is 200 ~ 5000 Å determined by mercury porosimeter A carrier for nucleic acid binding comprising porous silica particles.
  12.  体積基準での粒度分布のD50が6~50μmであり、BJH法により求めた細孔容積が0.3~5cm/gであり、BJH法により求めた平均細孔径が60~500Åである多孔質シリカ粒子を収容した第1の容器と、
     核酸を前記多孔質シリカ粒子に結合させる結合液を収容した第2の容器と、を備えることを特徴とする核酸回収キット。
    A D 50 of 6 ~ 50 [mu] m particle size distribution based on volume, the pore volume determined by the BJH method is 0.3 ~ 5cm 3 / g, an average pore diameter determined by the BJH method is a 60 ~ 500 Å A first container containing porous silica particles;
    A second container containing a binding solution for binding nucleic acid to the porous silica particles.
  13.  体積基準での粒度分布のD50が6~50μmであり、水銀ポロシメータにより求めた細孔容積が0.6~5cm/gであり、水銀ポロシメータにより求めた平均細孔径が200~5000Åである多孔質シリカ粒子を収容した第1の容器と、
     核酸を前記多孔質シリカ粒子に結合させる結合液を収容した第2の容器と、を備えることを特徴とする核酸回収キット。
    A D 50 of 6 ~ 50 [mu] m particle size distribution based on volume, the pore volume determined by mercury porosimetry is the 0.6 ~ 5cm 3 / g, average pore diameter is 200 ~ 5000 Å determined by mercury porosimeter A first container containing porous silica particles;
    A second container containing a binding solution for binding nucleic acid to the porous silica particles.
  14.  前記結合液がカオトロピック物質溶液である、請求項12または13に記載の核酸回収キット。 The nucleic acid recovery kit according to claim 12 or 13, wherein the binding solution is a chaotropic substance solution.
  15.  前記多孔質シリカ粒子と前記核酸とが結合した複合体から前記核酸を溶出させる溶出液を収容した第3の容器をさらに備える、請求項12~14のいずれか一項に記載の核酸回収キット。 The nucleic acid recovery kit according to any one of claims 12 to 14, further comprising a third container containing an eluate for eluting the nucleic acid from a complex in which the porous silica particle and the nucleic acid are bound.
  16.  前記多孔質シリカ粒子と前記核酸とが結合した複合体を洗浄する洗浄液を収容した第4の容器をさらに備える、請求項12~15のいずれか一項に記載の核酸回収キット。 The nucleic acid recovery kit according to any one of claims 12 to 15, further comprising a fourth container containing a washing solution for washing a complex in which the porous silica particle and the nucleic acid are bound.
PCT/JP2018/028130 2017-08-18 2018-07-26 Nucleic acid collection method, nucleic-acid-binding carrier, and nucleic acid collection kit WO2019035335A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017-157968 2017-08-18
JP2017157968A JP2020191784A (en) 2017-08-18 2017-08-18 Method of recovering nucleic acid, support for nucleic acid bonding and nucleic acid recovery kit
JP2017157978A JP2020191785A (en) 2017-08-18 2017-08-18 Method of recovering nucleic acid, support for nucleic acid bonding and nucleic acid recovery kit
JP2017-157978 2017-08-18

Publications (1)

Publication Number Publication Date
WO2019035335A1 true WO2019035335A1 (en) 2019-02-21

Family

ID=65362260

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/028130 WO2019035335A1 (en) 2017-08-18 2018-07-26 Nucleic acid collection method, nucleic-acid-binding carrier, and nucleic acid collection kit

Country Status (1)

Country Link
WO (1) WO2019035335A1 (en)

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09505724A (en) * 1993-08-30 1997-06-10 プロメガ・コーポレイシヨン Nucleic acid purification composition and method
JPH11313670A (en) * 1997-12-25 1999-11-16 Tosoh Corp Magnetic carrier, its production and extraction of nucleic acid by using the same
JP2000300262A (en) * 1999-04-14 2000-10-31 Toyobo Co Ltd Extraction of nucleic acid using particule carrier
JP2003507049A (en) * 1999-08-20 2003-02-25 プロメガ コーポレイション Simultaneous isolation and quantification of DNA
US20050287583A1 (en) * 1997-01-21 2005-12-29 Promega Corporation Methods and kits for isolating biological target materials using silica magnetic particles
JP2007286226A (en) * 2006-04-14 2007-11-01 Sumitomo Osaka Cement Co Ltd Anti-glare member
JP2008072987A (en) * 2006-09-22 2008-04-03 Sony Corp Micro channel, device for recovering nucleic acid and method for recovering nucleic acid
JP2008220260A (en) * 2007-03-13 2008-09-25 Hitachi Metals Ltd Method for magnetic separation of magnetic particle
JP2009092592A (en) * 2007-10-11 2009-04-30 Toyobo Co Ltd Nucleic acid immobilizing substrate, method for manufacturing same, nucleic acid testing device, method for manufacturing same and nucleic acid testing method
US20090221809A1 (en) * 2005-12-09 2009-09-03 Sud-Chemie Ag Method for the sorption of at least one nucleic acid-activated phyllosilicates
JP2014009215A (en) * 2012-07-02 2014-01-20 Nof Corp Production method of lipid including tertiary amino group
JP2014526973A (en) * 2011-09-15 2014-10-09 インストラクション・ゲーエムベーハー Adsorbent containing on its surface an aromatic ring system with anionic or deprotonated groups for the purification of organic molecules
US20150275269A1 (en) * 2012-10-26 2015-10-01 The Emerther Company Method for purifying nucleic acid and kit
JP2017003527A (en) * 2015-06-15 2017-01-05 富士シリシア化学株式会社 Filler for hydrophilic interaction chromatography, and method of separating hydrophilic compound

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09505724A (en) * 1993-08-30 1997-06-10 プロメガ・コーポレイシヨン Nucleic acid purification composition and method
US20050287583A1 (en) * 1997-01-21 2005-12-29 Promega Corporation Methods and kits for isolating biological target materials using silica magnetic particles
JPH11313670A (en) * 1997-12-25 1999-11-16 Tosoh Corp Magnetic carrier, its production and extraction of nucleic acid by using the same
JP2000300262A (en) * 1999-04-14 2000-10-31 Toyobo Co Ltd Extraction of nucleic acid using particule carrier
JP2003507049A (en) * 1999-08-20 2003-02-25 プロメガ コーポレイション Simultaneous isolation and quantification of DNA
US20090221809A1 (en) * 2005-12-09 2009-09-03 Sud-Chemie Ag Method for the sorption of at least one nucleic acid-activated phyllosilicates
JP2007286226A (en) * 2006-04-14 2007-11-01 Sumitomo Osaka Cement Co Ltd Anti-glare member
JP2008072987A (en) * 2006-09-22 2008-04-03 Sony Corp Micro channel, device for recovering nucleic acid and method for recovering nucleic acid
JP2008220260A (en) * 2007-03-13 2008-09-25 Hitachi Metals Ltd Method for magnetic separation of magnetic particle
JP2009092592A (en) * 2007-10-11 2009-04-30 Toyobo Co Ltd Nucleic acid immobilizing substrate, method for manufacturing same, nucleic acid testing device, method for manufacturing same and nucleic acid testing method
JP2014526973A (en) * 2011-09-15 2014-10-09 インストラクション・ゲーエムベーハー Adsorbent containing on its surface an aromatic ring system with anionic or deprotonated groups for the purification of organic molecules
JP2014009215A (en) * 2012-07-02 2014-01-20 Nof Corp Production method of lipid including tertiary amino group
US20150275269A1 (en) * 2012-10-26 2015-10-01 The Emerther Company Method for purifying nucleic acid and kit
JP2017003527A (en) * 2015-06-15 2017-01-05 富士シリシア化学株式会社 Filler for hydrophilic interaction chromatography, and method of separating hydrophilic compound

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
GUNAL, G. ET AL.: "Human genomic DNA isolation from whole blood using a simple microfluidic system with silica- and polymer-based stationary phases", MATERIALS SCIENCE AND ENGINEERING C, vol. 74, 10 January 2017 (2017-01-10), pages 10 - 20 *
SAKASHITA, SHIZUKA: "Fundamental Powder Technology for Engineer Related to Colour Material Field : Chap. 1 Physical Property of Particle and Powder", J. JPN. SOC. COLOUR MATER., vol. 78, 2005, pages 168 - 184 *
ZHANG, L. ET AL.: "Preparation of porous magnetic silica microspheres and their application in genomic deoxyribonucleic acids extraction", CHINESE JOURNAL OF ANALYTICAL CHEMISTRY, vol. 34, no. 7, 2006, pages 923 - 926, XP022857778, DOI: doi:10.1016/S1872-2040(06)60043-1 *
ZHANG, Z. ET AL.: "Synthesis of novel porous magnetic silica microspheres as adsorbents for isolation of genomic DNA", BIOTECHNOLOGY PROGRESS, vol. 22, no. 2, 2006, pages 514 - 518, XP002440337, DOI: doi:10.1021/bp050400w *

Similar Documents

Publication Publication Date Title
JP7370987B2 (en) Methods for isolating and purifying nucleic acids using solid-liquid phase systems
AU2002333673B2 (en) Isolation and purification of nucleic acids
JP2012502632A (en) Small RNA isolation method
EP1911844A1 (en) Methods and kit for isolating nucleic acids
JP6562389B2 (en) Nucleic acid purification method
AU2015314928B2 (en) Sorbent material for separating bio-macromolecules
JP2020536579A (en) Methods of Using Aqueous Biphasic Systems for Isolation, Purification and / or Concentration of Short Nucleic Acid Fragments
JP2006311803A (en) Method for purifying nucleic acid and tool for purifying nucleic acid
JP2006517225A (en) Chemical treatment of biological samples for nucleic acid extraction and kits for the treatment
US8685742B2 (en) Apparatus and method for the more efficient isolation of nucleic acids
JP2007244375A (en) Method for separation and purification of ribonucleic acid
US8586350B2 (en) Mechanism of separating and purifying DNA and the like
US20230257733A1 (en) Method for isolating nucleic acid
JP4297148B2 (en) Nucleic acid recovery apparatus and nucleic acid recovery method
WO2019035335A1 (en) Nucleic acid collection method, nucleic-acid-binding carrier, and nucleic acid collection kit
JP6737179B2 (en) Method for separating and purifying nucleic acid and solid phase carrier, device, kit
JP2020191785A (en) Method of recovering nucleic acid, support for nucleic acid bonding and nucleic acid recovery kit
JP2020191784A (en) Method of recovering nucleic acid, support for nucleic acid bonding and nucleic acid recovery kit
EP3124608B1 (en) Method and reagent for extracting nucleic acid
JP5880626B2 (en) Simple and fast nucleic acid extraction method
JP4482517B2 (en) Purification method of target substances using silver nanoparticles
JPH11262387A (en) Nucleic acid-binding magnetic carrier and isolation of nucleic acid using the carrier
JP4690656B2 (en) Nucleic acid separation and purification method and separation adsorbent
JP2010200661A (en) Simple and rapid method for extracting nucleic acid
RU2653130C1 (en) Magnetic sorbent, a method for its production and a method for separation of molecules of nucleic acids

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18846166

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 18846166

Country of ref document: EP

Kind code of ref document: A1