WO2019035186A1 - Noise reduction body, method for manufacturing same, electronic device using same - Google Patents

Noise reduction body, method for manufacturing same, electronic device using same Download PDF

Info

Publication number
WO2019035186A1
WO2019035186A1 PCT/JP2017/029440 JP2017029440W WO2019035186A1 WO 2019035186 A1 WO2019035186 A1 WO 2019035186A1 JP 2017029440 W JP2017029440 W JP 2017029440W WO 2019035186 A1 WO2019035186 A1 WO 2019035186A1
Authority
WO
WIPO (PCT)
Prior art keywords
noise
noise reduction
reduction body
semiconductor particles
diamond semiconductor
Prior art date
Application number
PCT/JP2017/029440
Other languages
French (fr)
Japanese (ja)
Inventor
徹 金城
泰典 樋口
Original Assignee
徹 金城
株式会社京楽産業ホールディングス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 徹 金城, 株式会社京楽産業ホールディングス filed Critical 徹 金城
Priority to PCT/JP2017/029440 priority Critical patent/WO2019035186A1/en
Priority to JP2018555287A priority patent/JP6473553B1/en
Publication of WO2019035186A1 publication Critical patent/WO2019035186A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/25Diamond
    • C01B32/28After-treatment, e.g. purification, irradiation, separation or recovery
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields

Definitions

  • the present invention relates to a noise reducer that reduces electromagnetic noise, a method of manufacturing the same, and an electronic device using the same.
  • Patent Document 1 discloses a technique in which a crystalline nanodiamond semiconductor having an activation energy level of 0.8 to 2.0 eV having a spontaneous charge is used as a solar cell protective film.
  • This solar cell protective film increases the light absorbing ability by the light scattering effect of nano diamond semiconductor particles having a particle size of 3-8 nm, prevents the adhesion of dirt on the solar cell surface by the spontaneous charge, and prevents the aged deterioration of the output.
  • An ultraviolet wavelength band of 400 nm or less is converted into a wavelength band of 0.5 to 2.0 ⁇ m to improve the photoelectric conversion efficiency.
  • Patent Document 2 discloses a functional fiber in which nano diamond semiconductor particles are dispersed in the fiber. Specifically, by using nanodiamond semiconductor particles having an activation energy level of 0.1 to 1.0 eV for generating charged particles at around room temperature, a large fiber of biological infrared radiation and charged particle activity is created. The semiconductor particles penetrate the gaps of the fiber polymer crystal and are connected in series in a pseudo manner, and a large electromotive force is generated by integrating the potentials between the particles generated by the excitation at heating around body temperature, and the living body Exert an effect.
  • Patent Document 3 discloses an organic functional material using nano diamond semiconductor particles having ultraviolet absorbing ability and light energy converting ability to convert a wavelength from ultraviolet to infrared light.
  • the organic functional material contains 0.0005 wt% or more of nano diamond semiconductor particles having an activation energy level of 0.2-1.0 eV.
  • JP, 2014-203985 A JP, 2011-074553, A JP, 2011-10635, A
  • the present inventors have previously conducted research on crystalline nano diamond semiconductor particles, and in this research process, a specific structure mainly comprising crystalline nano diamond semiconductor particles affects the electric circuit. It has been found that it has the effect of reducing the electromagnetic noise.
  • an object of the present invention is to provide a novel noise reducer using crystalline nano diamond semiconductor particles.
  • a first invention provides a noise reduction body that reduces electromagnetic noise that affects an electric circuit.
  • the noise reducer is constituted of a plurality of cluster-type cells which are excited independently of one another, have capacitance, and have semiconductor characteristics.
  • Each cluster type cell has a spontaneous charge, and a plurality of crystalline nano diamond semiconductor particles coated with amorphous silicon are bound in a tufted manner.
  • the second invention is composed of a plurality of cluster type cells which are excited independently of each other, have capacitance, and have semiconductor characteristics, and each of the cluster type cells has a spontaneous charge
  • the present invention provides a method of manufacturing a noise reduction body in which crystalline nanodiamond semiconductor particles coated with amorphous silicon are bound in a plurality of tufts and electromagnetic noise affecting the electric circuit is reduced.
  • crystalline nanodiamond is applied by applying a DC voltage to pure water mixed with crystalline nanodiamond semiconductor particles and powder of amorphous silicon through a pair of electrodes.
  • the semiconductor particles are coated with amorphous silicon.
  • a noise reduction body is generated by applying a pulse voltage to pure water mixed with crystalline nano diamond semiconductor particles coated with amorphous silicon via a pair of electrodes.
  • a third invention provides an electronic device having a circuit element and a noise reducer.
  • the circuit elements form part of an electric circuit, generate electromagnetic noise, or are affected by electromagnetic noise.
  • the noise reducer is provided in contact with the circuit element or in the vicinity of the circuit element to reduce electromagnetic noise.
  • the noise reducer is constituted of a plurality of cluster-type cells which are excited independently of one another, have capacitance, and have semiconductor characteristics. Each cluster type cell has a spontaneous charge, and a plurality of crystalline nano diamond semiconductor particles coated with amorphous silicon are bound in a tufted manner.
  • the diameter of the cluster type cell is 15 nm to 30 nm
  • the diameter of the crystalline nano diamond semiconductor particle is 3 nm to 8 nm
  • the activation energy of the crystalline nano diamond semiconductor particle The level is preferably 0.3 eV or more and 0.7 eV or less.
  • electromagnetic noise affecting the electric circuit can be effectively reduced.
  • the noise reducer is provided in contact with or in the vicinity of a circuit element generating electromagnetic noise or a circuit element affected by the electromagnetic noise, and the adverse effect on the electronic device to which the electromagnetic noise is applied. Reduce.
  • FIG. 1 is a schematic view of a noise reduction body according to the present embodiment
  • FIG. 2 is an electron micrograph of the noise reduction body
  • FIG. 3 is an enlarged view thereof.
  • the individual cluster-type cells 2 constituting the noise reduction body 1 vibrate at normal temperature, so it is not possible to take a fine electron micrograph at normal temperature. Therefore, imaging with an electron microscope is performed in a cryogenic environment (for example, -60.degree. C.) in which the vibration of the cluster type cell 2 stops.
  • a cryogenic environment for example, -60.degree. C.
  • the noise reduction body 1 is constituted by a large number of cluster cells 2 which are excited independently of each other.
  • Each cluster type cell 2 has a substantially spherical shape, has a capacitance, and has a characteristic as a semiconductor.
  • One cluster type cell 2 has a structure in which a plurality of crystalline nano diamond semiconductor particles 3 are bound in a tufted form (cluster form), that is, a cluster structure, and the diameter thereof is 15 nm or more and 30 nm or less.
  • Each cluster type cell 2 is formed of an odd number and the same number of crystalline nano diamond semiconductor particles 3. Crystalline nano diamond semiconductor particles 3 have a spontaneous charge and are coated (coated) with amorphous silicon 4.
  • the crystalline nano diamond semiconductor particles 3 those having a particle diameter of 3 nm or more and 8 nm or less are used. Particles of this size have the following characteristics. First, since the surface carbon SP2 layer becomes thin, the generation efficiency of excited charged particles is good, and the blending amount can be small. Second, it has spontaneous polarization and has high performance due to spontaneous charge. Third, the activation energy level of the spontaneous charge is 0.3 eV or more and 0.7 eV or less, and a large number of excited charged particles are generated.
  • Crystalline nano diamond semiconductor particles 3 can typically be obtained by shock compression. This method is also referred to as an explosion method or a detonation method, and is generated by finely crushing using explosive energy of explosives. When explosives (including elemental carbon) are detonated in an environment where air exists, if the explosive energy is huge, nano-sized diamonds are naturally produced. Thus, it is not necessary to prepare a mass of material to be ground.
  • the history of synthetic diamond synthesis is long, and around 1953 the Soviet Union announced the first reproducible synthetic method using high temperature high pressure synthesis (HPHT) and chemical vapor deposition (CVD) methods. Later, detonation was developed in the late 1990's using explosives containing carbon elements. Therefore, the method of manufacturing the crystalline nano diamond semiconductor particles 3 itself is the technical common sense at the time of the application of the present application.
  • the manufacturing method of the noise reduction body 1 is demonstrated.
  • a pair of electrodes consisting of an anode and a cathode are arranged at predetermined intervals, and an alcohol-based liquid such as ethanol is stored.
  • a DC power supply, a protective resistor, an ammeter, and the like are connected to the wiring connecting the pair of electrodes.
  • crystalline nano diamond semiconductor particles and powder of amorphous silicon are mixed in high purity pure water (chiller) stored in a processing container. Then, a direct current voltage is applied to the liquid in which these are mixed, through the pair of electrodes. Thereby, as shown in FIG. 1, the periphery of the crystalline nano diamond semiconductor particles 3 is coated with amorphous silicon 4.
  • the reason why the coating process of the amorphous silicon 4 is performed is to give the function of passing electrons between the crystalline nano diamond semiconductor particles 3 in the cluster type cell 2, in other words, to form a hole phase shift layer. is there.
  • a pulse voltage is applied to the pure water mixed with the crystalline nano diamond semiconductor particles 3 coated with the amorphous silicon 4 through the pair of electrodes.
  • the mixed water to which the pulse voltage is to be applied may be the water treated in the process of FIG. 4 as it is, or the crystalline nanodiamond semiconductor particles 3 coated and powdered after the drying process may be pure water. It may be generated by mixing again.
  • the pulse voltage as shown in FIG. 1, an odd number and an equal number of crystalline nano diamond semiconductor particles 3 are combined and grouped (thrusting).
  • the noise reducer 1 which is excited independently of one another, has a capacitance, and has characteristics as a semiconductor is generated.
  • the noise reducer 1 can be widely used in applications that reduce electromagnetic noise that affects electric circuits.
  • the noise reduction body 1 is provided in contact with or in proximity to at least one of a circuit element (a noise source) generating electromagnetic noise and a circuit element affected by the electromagnetic noise in an electronic device including an electric circuit.
  • a circuit element a noise source
  • Examples of the former include loop antennas and switching circuits.
  • an unnecessary electromagnetic wave electromagnetic noise
  • an IC chip etc. are mentioned as an example of the latter.
  • the following example shows a structure in which the former and the latter exist, but a structure in which only one of them exists may be used.
  • FIG. 5 is a cross-sectional view of main parts of the electronic device according to the first example.
  • the electronic device 5 ⁇ / b> A includes an electric circuit mounted on the substrate 6. Specifically, at least one conductive layer 7 is formed in a predetermined pattern on the printed circuit board 6, and a surface insulating layer 8a having a predetermined pattern is formed on the upper side thereof. The surface insulating layer 8a is partially removed, and the conductive element 7 exposed thereby is connected to the circuit element 9a that generates electromagnetic noise and 9b that is affected by the electromagnetic noise.
  • the surface insulating layer 8 a includes the noise reducer 1 described above.
  • Such a configuration can be obtained by applying an insulating coating agent in which the noise reducing body 1 is mixed, or after applying the insulating coating agent to form the surface insulating layer 8a, noise may be generated on the surface thereof. It can also be obtained by further applying a liquid agent in which the reducing body 1 is dispersed in silicone oil. In the latter case, even if the applied liquid agent is wiped off after that, the noise reduction body 1 which has penetrated into the minute unevenness of the surface insulating layer 8a remains in a microscopic view, so the noise in the surface insulating layer 8a The state in which the reducing body 1 is included is not impaired.
  • the noise reducer 1 is present in the vicinity of the lower side of the devices 9a and 9b.
  • the noise reducer 1 present in the lower vicinity of the device 9a reduces the influence of electromagnetic noise generated by the device 9a on other circuit elements such as the device 9b.
  • the noise reducer 1 present in the lower vicinity of the device 9b reduces the influence of electromagnetic noise generated in other circuit elements such as the device 9a on the device 9b.
  • the electronic device 5A that is less susceptible to the influence of electromagnetic noise can be realized.
  • FIG. 6 is a cross-sectional view of main parts of the electronic device according to the second example.
  • the electronic device 5B a plurality of conductive layers 7 are stacked, and an interlayer insulating film 8b including the noise reduction body 1 is interposed between the upper and lower conductive layers 7.
  • Such a configuration can be obtained by applying an insulating coating agent in which the noise reduction body 1 is mixed as the interlayer insulating film 8 b.
  • the other points are the same as in FIG. 5, so the same reference numerals are given and the description thereof is omitted here (the same applies to FIGS. 7 to 11 below).
  • the electronic device 5B that is less susceptible to the influence of electromagnetic noise can be realized.
  • FIG. 7 is a cross-sectional view of main parts of an electronic device according to a third example.
  • the circuit elements 9a and 9b are mounted on the substrate 8 on which the conductive layer 7 and the surface insulating layer 8a are formed, and the liquid agent in which the noise reduction body 1 is dispersed in silicon oil is It is applied to the entire surface.
  • the noise reducer 1 is in contact with or in the vicinity of the devices 9a and 9b. Thereby, the electronic device 5C which is less susceptible to the influence of electromagnetic noise can be realized.
  • FIG. 8 is a cross-sectional view of main parts of the electronic device according to the fourth example.
  • the circuit elements 9a and 9b are mounted on the substrate 8 on which the conductive layer 7 and the surface insulating layer 8a are formed, and the liquid agent in which the noise reduction body 1 is dispersed in silicon oil It is partially applied to the contacts (terminals) of the elements 9a, 9b. These contacts are exposed to the outside, and are likely to emit electromagnetic noise to the outside, or to be susceptible to external electromagnetic noise. Therefore, only by partially providing the noise reduction body 1 at these contact points, the electronic device 5D that is less susceptible to the influence of electromagnetic noise can be realized.
  • FIG. 9 is a cross-sectional view of main parts of the electronic device according to the fifth example.
  • the circuit elements 9a and 9b are mounted on the substrate 8 on which the conductive layer 7 and the surface insulating layer 8a are formed, and the liquid agent in which the noise reduction body 1 is dispersed in silicon oil Are partially applied to the circuit elements 9a and 9b.
  • These circuit elements 9a and 9b are exposed to the outside, and it is easy to radiate electromagnetic noise to the outside, or external electromagnetic noise is easily incident. Therefore, it is possible to realize the electronic device 5E which is less susceptible to the influence of the electromagnetic noise, even if the noise reducer 1 is partially present.
  • FIG. 10 is a cross-sectional view of main parts of the electronic device according to the sixth example.
  • the circuit elements 9a and 9b are mounted on the substrate 8 on which the conductive layer 7 and the surface insulating layer 8a are formed, and the whole is covered with the cover 10 including the noise reduction body 1.
  • the noise reduction body 1 may be mixed in the material forming the cover body 10, or the liquid agent containing the noise reduction body 1 may be applied after the formation of the cover body 10. As a result, the electronic device 5F that is less susceptible to the influence of electromagnetic noise can be realized.
  • FIG. 11 is a cross-sectional view of main parts of the electronic device according to the seventh example.
  • the circuit elements 9a and 9b are mounted on the substrate 8 on which the conductive layer 7 and the surface insulating layer 8a are formed, and these circuit elements 9a and 9b are shields for reducing the influence of electromagnetic noise It is covered with
  • the noise reducer 1 may be mixed in the material forming the shield 11 or a liquid agent containing the noise reducer 1 may be applied after the shield 11 is formed. Thereby, the noise reduction effect of the shield 11 is enhanced, and the electronic device 5G which is less susceptible to the influence of the electromagnetic noise can be realized.
  • the noise reduction body 1 is provided in contact with or in the vicinity of the circuit element 9 a generating the electromagnetic noise and the circuit element 9 b affected by the electromagnetic noise, to the electronic device to which the electromagnetic noise is applied.
  • the noise reduction body 1 is provided in contact with or in the vicinity of the circuit element 9 a generating the electromagnetic noise and the circuit element 9 b affected by the electromagnetic noise, to the electronic device to which the electromagnetic noise is applied.
  • FIG. 12 is a comparison diagram of the output ripple noise before and after application of the noise reduction body 1
  • FIG. 12 (a) shows the characteristics before application of the noise reduction body 1
  • FIG. 12 (b) shows characteristics after application of the noise reduction body 1.
  • FIG. 13 is a comparison diagram of output ripple noise before and after the interposition of the paper with noise reduction body 1
  • FIG. 13 (a) shows characteristics before interposition of paper
  • FIG. 13 (b) shows characteristics after intervene of paper.
  • the electromagnetic noise can be effectively reduced even when the noise reduction body 1 is provided in the vicinity of the DC / DC converter (circuit element).
  • examples of the electronic devices 5A to 5G include a device functioning as a passive element, a device functioning as an active element, a device functioning as a capacitive element, etc.
  • the noise reduction effect is exhibited when Moreover, the noise reduction body 1 is an application which reduces electromagnetic noise, and can be widely applied to various applied products including the case of an electric device, fibers such as clothes, construction materials, and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

[Problem] To provide a novel noise reduction body using crystalline nano-diamond semiconductor particles [Solution] The present invention provides a noise reduction body 1 which reduces electromagnetic noise affecting electric circuits. This noise reduction body 1 is composed of a plurality cluster-type cells 2 which are excited independently from each other, have capacitance, and have semiconductor properties. In each cluster-type cell 2, a plurality of crystalline nano-diamond semiconductor particles 3 having a spontaneous charge and coated with amorphous silicon 4 are bonded in a tufted shape. Preferably, the diameter of the cluster-type cell 2 is 15-30 nm, the diameter of the crystalline nano-diamond semiconductor particles 3 is 3-8 nm, and the activation energy level of the crystalline nano-diamond semiconductor particles 3 is 0.3-0.7 eV.

Description

ノイズ低減体、その製造方法およびこれを用いた電子機器Noise reduction body, method for manufacturing the same, and electronic device using the same
 本発明は、電磁ノイズを低減するノイズ低減体、その製造方法、および、これを用いた電子機器に関する。 The present invention relates to a noise reducer that reduces electromagnetic noise, a method of manufacturing the same, and an electronic device using the same.
 従来、ナノダイヤモンド粒子は、磁気ディスクのガラス基板研磨等における研磨材として広く使用されているが、近年、ナノダイヤモンド半導体が有する自発電荷に着目した応用例が注目されている。例えば、特許文献1は、自発電荷を有する活性化エネルギーレベル0.8-2.0eVを持つ結晶系ナノダイヤモンド半導体を太陽電池保護膜として使用する技術が開示されている。この太陽電池保護膜は、粒子サイズ3-8nmのナノダイヤモンド半導体粒子の光散乱効果により光吸収能を増し、自発電荷により太陽電池表面の汚れ付着を防止して出力の経年劣化を防止すると共に、400nm以下の紫外線波長帯域を0.5-2.0μmの波長帯域に変換して光電気変換効率を向上させる。 Conventionally, nanodiamond particles are widely used as an abrasive for polishing a glass substrate of a magnetic disk, etc. However, in recent years, applications focused on spontaneous charges possessed by nanodiamond semiconductors have attracted attention. For example, Patent Document 1 discloses a technique in which a crystalline nanodiamond semiconductor having an activation energy level of 0.8 to 2.0 eV having a spontaneous charge is used as a solar cell protective film. This solar cell protective film increases the light absorbing ability by the light scattering effect of nano diamond semiconductor particles having a particle size of 3-8 nm, prevents the adhesion of dirt on the solar cell surface by the spontaneous charge, and prevents the aged deterioration of the output. An ultraviolet wavelength band of 400 nm or less is converted into a wavelength band of 0.5 to 2.0 μm to improve the photoelectric conversion efficiency.
 また、特許文献2には、ナノダイヤモンド半導体粒子を繊維中に分散させた機能性繊維が開示されている。具体的には、室温付近で荷電粒子を発生させる活性化エネルギーレベルが0.1-1.0eVであるナノダイヤモンド半導体粒子を用いることで、生体赤外線及び荷電粒子放射能の大きな繊維を作成する。半導体粒子は、繊維高分子結晶の間隙に浸透して擬似的に直列接続され、体温程度の加熱での励起で発生した粒子間の電位が積算されることによって、大きな起電力を発生し、生体効果を発揮する。 Patent Document 2 discloses a functional fiber in which nano diamond semiconductor particles are dispersed in the fiber. Specifically, by using nanodiamond semiconductor particles having an activation energy level of 0.1 to 1.0 eV for generating charged particles at around room temperature, a large fiber of biological infrared radiation and charged particle activity is created. The semiconductor particles penetrate the gaps of the fiber polymer crystal and are connected in series in a pseudo manner, and a large electromotive force is generated by integrating the potentials between the particles generated by the excitation at heating around body temperature, and the living body Exert an effect.
 さらに、特許文献3には、紫外線吸収能および紫外線から赤外線に波長を変換する光エネルギー変換能を有するナノダイヤモンド半導体粒子を用いた有機機能性材料が開示されている。有機機能性材料は、0.2-1.0eVの活性化エネルギーレベルを有するナノダイヤモンド半導体粒子を0.0005wt%以上含む。 Further, Patent Document 3 discloses an organic functional material using nano diamond semiconductor particles having ultraviolet absorbing ability and light energy converting ability to convert a wavelength from ultraviolet to infrared light. The organic functional material contains 0.0005 wt% or more of nano diamond semiconductor particles having an activation energy level of 0.2-1.0 eV.
特開2014-203985号公報JP, 2014-203985, A 特開2011-074553号公報JP, 2011-074553, A 特開2011-10635号公報JP, 2011-10635, A
 ところで、本発明者らは、以前から結晶系ナノダイヤモンド半導体粒子に関する研究を行っているが、この研究過程において、結晶系ナノダイヤモンド半導体粒子を主体とした特定の構造が、電気回路に影響を及す電磁ノイズを低減する作用を有することを発見した。 By the way, the present inventors have previously conducted research on crystalline nano diamond semiconductor particles, and in this research process, a specific structure mainly comprising crystalline nano diamond semiconductor particles affects the electric circuit. It has been found that it has the effect of reducing the electromagnetic noise.
 そこで、本発明の目的は、結晶系ナノダイヤモンド半導体粒子を用いた新規なノイズ低減体を提供することである。 Therefore, an object of the present invention is to provide a novel noise reducer using crystalline nano diamond semiconductor particles.
 かかる課題を解決すべく、第1の発明は、電気回路に影響を及す電磁ノイズを低減するノイズ低減体を提供する。このノイズ低減体は、互いに独立して励起し、静電容量を有し、かつ、半導体としての特性を備えた複数のクラスター型セルによって構成されている。それぞれのクラスター型セルは、自発電荷を有し、かつ、アモルファスシリコンでコーティングされた複数の結晶系ナノダイヤモンド半導体粒子が房状に結合している。 In order to solve such problems, a first invention provides a noise reduction body that reduces electromagnetic noise that affects an electric circuit. The noise reducer is constituted of a plurality of cluster-type cells which are excited independently of one another, have capacitance, and have semiconductor characteristics. Each cluster type cell has a spontaneous charge, and a plurality of crystalline nano diamond semiconductor particles coated with amorphous silicon are bound in a tufted manner.
 第2の発明は、互いに独立して励起し、静電容量を有し、かつ、半導体としての特性を備えた複数のクラスター型セルよりなり、クラスター型セルのそれぞれが、自発電荷を有し、かつ、アモルファスシリコンでコーティングされた結晶系ナノダイヤモンド半導体粒子が複数房状に結合していると共に、電気回路に影響を及す電磁ノイズを低減するノイズ低減体の製造方法を提供する。この製造方法では、第1のステップとして、結晶系ナノダイヤモンド半導体粒子と、アモルファスシリコンの粉末とが混入された純水に、一対の電極を介して直流電圧を印加することによって、結晶系ナノダイヤモンド半導体粒子をアモルファスシリコンでコーティングする。第2のステップとして、アモルファスシリコンでコーティングされた結晶系ナノダイヤモンド半導体粒子が混入された純水に、一対の電極を介してパルス電圧を印加することによって、ノイズ低減体を生成する。 The second invention is composed of a plurality of cluster type cells which are excited independently of each other, have capacitance, and have semiconductor characteristics, and each of the cluster type cells has a spontaneous charge, Further, the present invention provides a method of manufacturing a noise reduction body in which crystalline nanodiamond semiconductor particles coated with amorphous silicon are bound in a plurality of tufts and electromagnetic noise affecting the electric circuit is reduced. In this manufacturing method, as the first step, crystalline nanodiamond is applied by applying a DC voltage to pure water mixed with crystalline nanodiamond semiconductor particles and powder of amorphous silicon through a pair of electrodes. The semiconductor particles are coated with amorphous silicon. As a second step, a noise reduction body is generated by applying a pulse voltage to pure water mixed with crystalline nano diamond semiconductor particles coated with amorphous silicon via a pair of electrodes.
 第3の発明は、回路要素と、ノイズ低減体とを有する電子機器を提供する。回路要素は、電気回路の一部を構成すると共に、電磁ノイズを発生し、または、電磁ノイズの影響を受ける。ノイズ低減体は、回路要素に接触して、または、回路要素の近傍に設けられ、電磁ノイズを低減する。このノイズ低減体は、互いに独立して励起し、静電容量を有し、かつ、半導体としての特性を備えた複数のクラスター型セルによって構成されている。それぞれのクラスター型セルは、自発電荷を有し、かつ、アモルファスシリコンでコーティングされた複数の結晶系ナノダイヤモンド半導体粒子が房状に結合している。 A third invention provides an electronic device having a circuit element and a noise reducer. The circuit elements form part of an electric circuit, generate electromagnetic noise, or are affected by electromagnetic noise. The noise reducer is provided in contact with the circuit element or in the vicinity of the circuit element to reduce electromagnetic noise. The noise reducer is constituted of a plurality of cluster-type cells which are excited independently of one another, have capacitance, and have semiconductor characteristics. Each cluster type cell has a spontaneous charge, and a plurality of crystalline nano diamond semiconductor particles coated with amorphous silicon are bound in a tufted manner.
 ここで、第1から第3の発明において、上記クラスター型セルの直径は15nm以上30nm以下、上記結晶系ナノダイヤモンド半導体粒子の直径は3nm以上8nm以下、上記結晶系ナノダイヤモンド半導体粒子の活性化エネルギーレベルは0.3eV以上0.7eV以下であることが好ましい。 Here, in the first to third inventions, the diameter of the cluster type cell is 15 nm to 30 nm, the diameter of the crystalline nano diamond semiconductor particle is 3 nm to 8 nm, and the activation energy of the crystalline nano diamond semiconductor particle The level is preferably 0.3 eV or more and 0.7 eV or less.
 本発明によれば、電気回路に影響を及す電磁ノイズを有効に低減することができる。典型的には、ノイズ低減体は、電磁ノイズを発生する回路要素や電磁ノイズの影響を受ける回路要素と接触して、または、その近傍に設けられ、電磁ノイズが及す電子機器への悪影響を低減する。 According to the present invention, electromagnetic noise affecting the electric circuit can be effectively reduced. Typically, the noise reducer is provided in contact with or in the vicinity of a circuit element generating electromagnetic noise or a circuit element affected by the electromagnetic noise, and the adverse effect on the electronic device to which the electromagnetic noise is applied. Reduce.
ノイズ低減体の模式図Schematic diagram of noise reduction body ノイズ低減体の電子顕微鏡写真Electron micrograph of noise reduction body ノイズ低減体の電子顕微鏡写真の拡大図Enlarged view of the electron micrograph of the noise reduction body ノイズ低減体の製造方法の説明図Illustration of the method of manufacturing the noise reduction body 第1の例に係る電子機器の要部断面図Principal part sectional view of electronic device according to first example 第2の例に係る電子機器の要部断面図Principal part sectional view of electronic device according to second example 第3の例に係る電子機器の要部断面図Principal part sectional view of electronic device according to third example 第4の例に係る電子機器の要部断面図Principal part sectional view of electronic device according to fourth example 第5の例に係る電子機器の要部断面図Principal part sectional view of electronic device according to fifth example 第6の例に係る電子機器の要部断面図Principal part sectional view of electronic device according to sixth example 第7の例に係る電子機器の要部断面図Principal part sectional view of electronic device according to seventh example ノイズ低減体の塗布前後における出力リップルノイズの比較図Comparison of output ripple noise before and after application of noise reducer ノイズ低減体が塗布された紙の介在前後における出力リップルノイズの比較図Comparison of output ripple noise before and after the interposition of the paper to which the noise reduction body is applied
 図1は本実施形態に係るノイズ低減体の模式図、図2はノイズ低減体の電子顕微鏡写真、および、図3はその拡大図である。ノイズ低減体1を構成する個々のクラスター型セル2は常温では振動しているため、常温では精細な電子顕微鏡写真を撮影することができない。そこで、電子顕微鏡による撮影は、クラスター型セル2の振動が停止する極低温環境(例えば、-60℃)で行っている。 FIG. 1 is a schematic view of a noise reduction body according to the present embodiment, FIG. 2 is an electron micrograph of the noise reduction body, and FIG. 3 is an enlarged view thereof. The individual cluster-type cells 2 constituting the noise reduction body 1 vibrate at normal temperature, so it is not possible to take a fine electron micrograph at normal temperature. Therefore, imaging with an electron microscope is performed in a cryogenic environment (for example, -60.degree. C.) in which the vibration of the cluster type cell 2 stops.
 このノイズ低減体1は、互いに独立して励起する多数のクラスター型セル2によって構成されている。それぞれのクラスター型セル2は、略球形状であって、静電容量を有し、かつ、半導体としての特性を備えている。一つのクラスター型セル2は、複数の結晶系ナノダイヤモンド半導体粒子3が房状(クラスター状)に結合した構造、すなわち、クラスター構造を有しており、その直径は15nm以上30nm以下である。それぞれのクラスター型セル2は、奇数個、かつ、同数の結晶系ナノダイヤモンド半導体粒子3によって形成されている。結晶系ナノダイヤモンド半導体粒子3は、自発電荷を有し、かつ、アモルファスシリコン4でコーティング(被覆)されている。 The noise reduction body 1 is constituted by a large number of cluster cells 2 which are excited independently of each other. Each cluster type cell 2 has a substantially spherical shape, has a capacitance, and has a characteristic as a semiconductor. One cluster type cell 2 has a structure in which a plurality of crystalline nano diamond semiconductor particles 3 are bound in a tufted form (cluster form), that is, a cluster structure, and the diameter thereof is 15 nm or more and 30 nm or less. Each cluster type cell 2 is formed of an odd number and the same number of crystalline nano diamond semiconductor particles 3. Crystalline nano diamond semiconductor particles 3 have a spontaneous charge and are coated (coated) with amorphous silicon 4.
 本実施形態では、結晶系ナノダイヤモンド半導体粒子3として、3nm以上8nm以下の粒子径を有するものを用いる。このサイズの粒子は以下のような特徴を有している。第1に、表面炭素SP2層が薄くなるため、励起荷電粒子の発生効率が良く、配合量が少なくて済む。第2に、自発分極をもち自発電荷による性能が大きい。第3に、自発電荷の活性化エネルギーレベルが0.3eV以上0.7eV以下を有し、励起された荷電粒子が多く発生する。 In the present embodiment, as the crystalline nano diamond semiconductor particles 3, those having a particle diameter of 3 nm or more and 8 nm or less are used. Particles of this size have the following characteristics. First, since the surface carbon SP2 layer becomes thin, the generation efficiency of excited charged particles is good, and the blending amount can be small. Second, it has spontaneous polarization and has high performance due to spontaneous charge. Third, the activation energy level of the spontaneous charge is 0.3 eV or more and 0.7 eV or less, and a large number of excited charged particles are generated.
 結晶系ナノダイヤモンド半導体粒子3は、典型的には、衝撃圧縮法によって得ることができる。この方法は、爆発法や爆轟法などとも称され、火薬の爆発エネルギー等によって細かく粉砕することによって生成される。空気が存する環境下で火薬(炭素元素を含む。)を爆発させ、この爆発エネルギーが巨大なものである場合、ナノサイズのダイヤモンドが自ずと生成される。よって、粉砕すべき物質の塊を特段用意する必要はない。人工ダイヤモンドの合成の歴史は古く、1953年頃に、ソビエト連邦が、高温高圧合成(HPHT)と化学気相蒸着(CVD)法とを用いた、最初の再現可能な合成方法を発表した。その後、炭素元素を含む爆薬を使用し、爆轟(デトネーション)による合成法が1990年代後半に開発された。よって、結晶系ナノダイヤモンド半導体粒子3の製法、それ自体は、本願出願時の技術常識というべきものである。 Crystalline nano diamond semiconductor particles 3 can typically be obtained by shock compression. This method is also referred to as an explosion method or a detonation method, and is generated by finely crushing using explosive energy of explosives. When explosives (including elemental carbon) are detonated in an environment where air exists, if the explosive energy is huge, nano-sized diamonds are naturally produced. Thus, it is not necessary to prepare a mass of material to be ground. The history of synthetic diamond synthesis is long, and around 1953 the Soviet Union announced the first reproducible synthetic method using high temperature high pressure synthesis (HPHT) and chemical vapor deposition (CVD) methods. Later, detonation was developed in the late 1990's using explosives containing carbon elements. Therefore, the method of manufacturing the crystalline nano diamond semiconductor particles 3 itself is the technical common sense at the time of the application of the present application.
 つぎに、ノイズ低減体1の製造方法について説明する。図4に示すように、処理容器には、アノードおよびカソードよりなる一対の電極が所定の間隔を空けて配置されていると共に、エタノール等のアルコール系の液体が貯留されている。また、一対の電極を接続する配線には、直流電源、保護抵抗、電流計などが接続されている。 Below, the manufacturing method of the noise reduction body 1 is demonstrated. As shown in FIG. 4, in the processing container, a pair of electrodes consisting of an anode and a cathode are arranged at predetermined intervals, and an alcohol-based liquid such as ethanol is stored. In addition, a DC power supply, a protective resistor, an ammeter, and the like are connected to the wiring connecting the pair of electrodes.
 まず、処理容器内に貯留された高純度の純水(チラー)に、結晶系ナノダイヤモンド半導体粒子と、アモルファスシリコンの粉末とを混入する。そして、これらが混入された液体に、一対の電極を介して直流電圧を印加する。これにより、図1に示したように、結晶系ナノダイヤモンド半導体粒子3の周囲がアモルファスシリコン4でコーティングされる。アモルファスシリコン4のコーティング処理を行う理由は、クラスター型セル2内において、結晶系ナノダイヤモンド半導体粒子3相互で電子が通過する機能を付与すること、換言すれば、ホール移相層を形成するためである。 First, crystalline nano diamond semiconductor particles and powder of amorphous silicon are mixed in high purity pure water (chiller) stored in a processing container. Then, a direct current voltage is applied to the liquid in which these are mixed, through the pair of electrodes. Thereby, as shown in FIG. 1, the periphery of the crystalline nano diamond semiconductor particles 3 is coated with amorphous silicon 4. The reason why the coating process of the amorphous silicon 4 is performed is to give the function of passing electrons between the crystalline nano diamond semiconductor particles 3 in the cluster type cell 2, in other words, to form a hole phase shift layer. is there.
 つぎに、アモルファスシリコン4でコーティングされた結晶系ナノダイヤモンド半導体粒子3が混入された純水に、一対の電極を介してパルス電圧を印加する。パルス電圧の印加対象となる混入水は、図4の工程で処理された水をそのまま用いてもよいし、乾燥工程を経て粉末化されたコーティング済の結晶系ナノダイヤモンド半導体粒子3を純水に再度混入することによって生成してもよい。パルス電圧の印加によって、図1に示したように、奇数個、かつ、同数の結晶系ナノダイヤモンド半導体粒子3が結合してグループ化される(スラスター化)。これにより、互いに独立して励起し、かつ、静電容量を有し、半導体としての特性を備えたノイズ低減体1が生成される。 Next, a pulse voltage is applied to the pure water mixed with the crystalline nano diamond semiconductor particles 3 coated with the amorphous silicon 4 through the pair of electrodes. The mixed water to which the pulse voltage is to be applied may be the water treated in the process of FIG. 4 as it is, or the crystalline nanodiamond semiconductor particles 3 coated and powdered after the drying process may be pure water. It may be generated by mixing again. By application of the pulse voltage, as shown in FIG. 1, an odd number and an equal number of crystalline nano diamond semiconductor particles 3 are combined and grouped (thrusting). As a result, the noise reducer 1 which is excited independently of one another, has a capacitance, and has characteristics as a semiconductor is generated.
 以下に例示するように、ノイズ低減体1は、電気回路に影響を及す電磁ノイズを低減する用途で広く用いることができる。ノイズ低減体1は、電気回路を備える電子機器において、電磁ノイズを発生する回路要素(ノイズ発生源)、および、電磁ノイズの影響を受ける回路要素の少なくとも一方に接触または近接して設けられる。前者の例としては、ループアンテナやスイッチング回路などが挙げられる。一般に、高周波電流が流れる回路では、配線のインダクタンスなどによってノイズとなる不要電磁波(電磁ノイズ)が発生する。また、後者の例としては、ICチップなどが挙げられる。なお、以下の例では、前者および後者が存在する構造を示しているが、どちらか一方のみが存在する構造であってもよい。 As exemplified below, the noise reducer 1 can be widely used in applications that reduce electromagnetic noise that affects electric circuits. The noise reduction body 1 is provided in contact with or in proximity to at least one of a circuit element (a noise source) generating electromagnetic noise and a circuit element affected by the electromagnetic noise in an electronic device including an electric circuit. Examples of the former include loop antennas and switching circuits. In general, in a circuit in which a high frequency current flows, an unnecessary electromagnetic wave (electromagnetic noise) which is noise is generated due to the inductance of the wiring or the like. Moreover, an IC chip etc. are mentioned as an example of the latter. The following example shows a structure in which the former and the latter exist, but a structure in which only one of them exists may be used.
 図5は、第1の例に係る電子機器の要部断面図である。この電子機器5Aは、基板6上に実装された電気回路を備えている。具体的には、プリント基板6上には、少なくとも一層の導電層7が所定のパターンで形成されており、その上部には、所定のパターンを有する表面絶縁層8aが形成されている。この表面絶縁層8aは部分的に除去されており、これによって露出した導電層7には、電磁ノイズを発生する回路要素9aと、電磁ノイズの影響を受ける9bとが接続されている。 FIG. 5 is a cross-sectional view of main parts of the electronic device according to the first example. The electronic device 5 </ b> A includes an electric circuit mounted on the substrate 6. Specifically, at least one conductive layer 7 is formed in a predetermined pattern on the printed circuit board 6, and a surface insulating layer 8a having a predetermined pattern is formed on the upper side thereof. The surface insulating layer 8a is partially removed, and the conductive element 7 exposed thereby is connected to the circuit element 9a that generates electromagnetic noise and 9b that is affected by the electromagnetic noise.
 表面絶縁層8aには、上述したノイズ低減体1が含まれている。このような構成は、ノイズ低減体1を混合した絶縁性の塗布剤を塗布することで得られる他、絶縁性の塗布剤を塗布して表面絶縁層8aを形成した後、その表面に、ノイズ低減体1をシリコン系オイルに分散させた液状剤を更に塗布することでも得られる。後者の場合、塗布した液状剤を事後的に拭き取ったとしても、ミクロ的に見れば、表面絶縁層8aの微小な凹凸に侵入したノイズ低減体1が残存するため、表面絶縁層8a中にノイズ低減体1が含まれている状態が損なわれることはない。 The surface insulating layer 8 a includes the noise reducer 1 described above. Such a configuration can be obtained by applying an insulating coating agent in which the noise reducing body 1 is mixed, or after applying the insulating coating agent to form the surface insulating layer 8a, noise may be generated on the surface thereof. It can also be obtained by further applying a liquid agent in which the reducing body 1 is dispersed in silicone oil. In the latter case, even if the applied liquid agent is wiped off after that, the noise reduction body 1 which has penetrated into the minute unevenness of the surface insulating layer 8a remains in a microscopic view, so the noise in the surface insulating layer 8a The state in which the reducing body 1 is included is not impaired.
 この構成では、デバイス9a,9bの下方近傍にノイズ低減体1が存在する。デバイス9aの下方近傍に存在するノイズ低減体1は、デバイス9aにて発生した電磁ノイズが、デバイス9bなどの他の回路要素に及す影響を低減する。また、デバイス9bの下方近傍に存在するノイズ低減体1は、デバイス9aなどの他の回路要素にて発生した電磁ノイズがデバイス9bに及す影響を低減する。これにより、電磁ノイズの影響を受け難い電子機器5Aを実現できる。 In this configuration, the noise reducer 1 is present in the vicinity of the lower side of the devices 9a and 9b. The noise reducer 1 present in the lower vicinity of the device 9a reduces the influence of electromagnetic noise generated by the device 9a on other circuit elements such as the device 9b. Further, the noise reducer 1 present in the lower vicinity of the device 9b reduces the influence of electromagnetic noise generated in other circuit elements such as the device 9a on the device 9b. As a result, the electronic device 5A that is less susceptible to the influence of electromagnetic noise can be realized.
 図6は、第2の例に係る電子機器の要部断面図である。この電子機器5Bでは、複数の導電層7が積層されており、上下の導電層7の間にはノイズ低減体1が含まれた層間絶縁膜8bが介在している。このような構成は、層間絶縁膜8bとして、ノイズ低減体1を混合した絶縁性の塗布剤を塗布することで得ることができる。それ以外の点は図5と同様なので、同一の符号を付してここでの説明を省略する(以下の図7~11も同様。)。この構成では、デバイス9a,9bの下方近傍にノイズ低減体1を設けることによって、電磁ノイズの影響を受け難い電子機器5Bを実現できる。 FIG. 6 is a cross-sectional view of main parts of the electronic device according to the second example. In the electronic device 5B, a plurality of conductive layers 7 are stacked, and an interlayer insulating film 8b including the noise reduction body 1 is interposed between the upper and lower conductive layers 7. Such a configuration can be obtained by applying an insulating coating agent in which the noise reduction body 1 is mixed as the interlayer insulating film 8 b. The other points are the same as in FIG. 5, so the same reference numerals are given and the description thereof is omitted here (the same applies to FIGS. 7 to 11 below). In this configuration, by providing the noise reduction body 1 in the vicinity of the lower side of the devices 9a and 9b, the electronic device 5B that is less susceptible to the influence of electromagnetic noise can be realized.
 図7は、第3の例に係る電子機器の要部断面図である。この電子機器5Cでは、導電層7および表面絶縁層8aが形成された基板8に回路要素9a,9bが実装されていると共に、ノイズ低減体1をシリコン系オイルに分散させた液状剤が、その表面全体に塗布されている。ノイズ低減体1は、デバイス9a,9bに接触して、または、これらの近傍に存在する。これにより、電磁ノイズの影響を受け難い電子機器5Cを実現できる。 FIG. 7 is a cross-sectional view of main parts of an electronic device according to a third example. In the electronic device 5C, the circuit elements 9a and 9b are mounted on the substrate 8 on which the conductive layer 7 and the surface insulating layer 8a are formed, and the liquid agent in which the noise reduction body 1 is dispersed in silicon oil is It is applied to the entire surface. The noise reducer 1 is in contact with or in the vicinity of the devices 9a and 9b. Thereby, the electronic device 5C which is less susceptible to the influence of electromagnetic noise can be realized.
 図8は、第4の例に係る電子機器の要部断面図である。この電子機器5Dでは、導電層7および表面絶縁層8aが形成された基板8に回路要素9a,9bが実装されていると共に、ノイズ低減体1をシリコン系オイルに分散させた液状剤が、回路要素9a,9bの接点(端子)に部分的に塗布されている。これらの接点は、外部に露出しており、外部に電磁ノイズを放射し易く、または、外部の電磁ノイズが入射し易い。よって、これらの接点にノイズ低減体1を部分的に存在させるだけでも、電磁ノイズの影響を受け難い電子機器5Dを実現できる。 FIG. 8 is a cross-sectional view of main parts of the electronic device according to the fourth example. In the electronic device 5D, the circuit elements 9a and 9b are mounted on the substrate 8 on which the conductive layer 7 and the surface insulating layer 8a are formed, and the liquid agent in which the noise reduction body 1 is dispersed in silicon oil It is partially applied to the contacts (terminals) of the elements 9a, 9b. These contacts are exposed to the outside, and are likely to emit electromagnetic noise to the outside, or to be susceptible to external electromagnetic noise. Therefore, only by partially providing the noise reduction body 1 at these contact points, the electronic device 5D that is less susceptible to the influence of electromagnetic noise can be realized.
 図9は、第5の例に係る電子機器の要部断面図である。この電子機器5Eでは、導電層7および表面絶縁層8aが形成された基板8に回路要素9a,9bが実装されていると共に、ノイズ低減体1をシリコン系オイルに分散させた液状剤が、接点を含めて回路要素9a,9bに部分的に塗布されている。これらの回路要素9a,9bは、外部に露出しており、外部に電磁ノイズを放射し易く、または、外部の電磁ノイズが入射し易い。よって、これらにノイズ低減体1を部分的に存在させるだけでも、電磁ノイズの影響を受け難い電子機器5Eを実現できる。 FIG. 9 is a cross-sectional view of main parts of the electronic device according to the fifth example. In the electronic device 5E, the circuit elements 9a and 9b are mounted on the substrate 8 on which the conductive layer 7 and the surface insulating layer 8a are formed, and the liquid agent in which the noise reduction body 1 is dispersed in silicon oil Are partially applied to the circuit elements 9a and 9b. These circuit elements 9a and 9b are exposed to the outside, and it is easy to radiate electromagnetic noise to the outside, or external electromagnetic noise is easily incident. Therefore, it is possible to realize the electronic device 5E which is less susceptible to the influence of the electromagnetic noise, even if the noise reducer 1 is partially present.
 図10は、第6の例に係る電子機器の要部断面図である。この電子機器5Fでは、導電層7および表面絶縁層8aが形成された基板8に回路要素9a,9bが実装されており、その全体がノイズ低減体1を含むカバー体10で覆われている。ノイズ低減体1は、カバー体10を形成する材質中に混合してもよいし、カバー体10の形成後にノイズ低減体1を含む液状剤を塗布してもよい。これにより、電磁ノイズの影響を受け難い電子機器5Fを実現できる。 FIG. 10 is a cross-sectional view of main parts of the electronic device according to the sixth example. In the electronic device 5F, the circuit elements 9a and 9b are mounted on the substrate 8 on which the conductive layer 7 and the surface insulating layer 8a are formed, and the whole is covered with the cover 10 including the noise reduction body 1. The noise reduction body 1 may be mixed in the material forming the cover body 10, or the liquid agent containing the noise reduction body 1 may be applied after the formation of the cover body 10. As a result, the electronic device 5F that is less susceptible to the influence of electromagnetic noise can be realized.
 図11は、第7の例に係る電子機器の要部断面図である。この電子機器5Gでは、導電層7および表面絶縁層8aが形成された基板8に回路要素9a,9bが実装されており、これらの回路要素9a,9bが電磁ノイズの影響を低減するためのシールドで覆われている。ノイズ低減体1は、シールド11を形成する材質中に混合してもよいし、シールド11の形成後にノイズ低減体1を含む液状剤を塗布してもよい。これにより、シールド11のノイズ低減効果が高まり、電磁ノイズの影響を受け難い電子機器5Gを実現できる。 FIG. 11 is a cross-sectional view of main parts of the electronic device according to the seventh example. In the electronic device 5G, the circuit elements 9a and 9b are mounted on the substrate 8 on which the conductive layer 7 and the surface insulating layer 8a are formed, and these circuit elements 9a and 9b are shields for reducing the influence of electromagnetic noise It is covered with The noise reducer 1 may be mixed in the material forming the shield 11 or a liquid agent containing the noise reducer 1 may be applied after the shield 11 is formed. Thereby, the noise reduction effect of the shield 11 is enhanced, and the electronic device 5G which is less susceptible to the influence of the electromagnetic noise can be realized.
 本実施形態によれば、電気回路に影響を及す電磁ノイズを有効に低減することができる。典型的には、ノイズ低減体1は、電磁ノイズを発生する回路要素9aや電磁ノイズの影響を受ける回路要素9bと接触して、または、その近傍に設けられ、電磁ノイズが及す電子機器への悪影響を低減する。現時点では、結晶系ナノダイヤモンド半導体粒子を主体とした特定の構造が電磁ノイズを低減する機序については定かではないものの、以下の実験結果からノイズ低減効果を奏することが実証される。 According to the present embodiment, it is possible to effectively reduce the electromagnetic noise that affects the electric circuit. Typically, the noise reduction body 1 is provided in contact with or in the vicinity of the circuit element 9 a generating the electromagnetic noise and the circuit element 9 b affected by the electromagnetic noise, to the electronic device to which the electromagnetic noise is applied. Reduce the adverse effects of At present, although it is unclear about the mechanism by which a specific structure mainly composed of crystalline nano diamond semiconductor particles reduces electromagnetic noise, it is proved from the following experimental results that the noise reduction effect is exhibited.
 第1の実験として、ノイズ低減体1の塗布の前後において、DC/DCコンバータの磁界放射に関する特性(出力リップルノイズ)をループアンテナで測定した。図12は、ノイズ低減体1の塗布前後における出力リップルノイズの比較図であり、同図(a)はノイズ低減体1の塗布前、同図(b)はノイズ低減体1の塗布後の特性をそれぞれ示す。塗布前は1.252Vp-pなのに対して塗布後は0.457Vp-pであり、上下のピークの高低差が約1/3に低減する結果が得られた。このことから、ノイズ低減体1をDC/DCコンバータ(回路要素)に直接接触するように設けた場合、電磁ノイズを有効に低減できることが理解できる。 As a first experiment, before and after the application of the noise reduction body 1, characteristics (output ripple noise) regarding the magnetic field emission of the DC / DC converter were measured by a loop antenna. FIG. 12 is a comparison diagram of the output ripple noise before and after application of the noise reduction body 1, and FIG. 12 (a) shows the characteristics before application of the noise reduction body 1, and FIG. 12 (b) shows characteristics after application of the noise reduction body 1. Respectively. Before application, it was 1.252 Vp-p, but after application was 0.457 Vp-p, and the result was obtained in which the height difference between the upper and lower peaks was reduced to about 1/3. From this, it can be understood that electromagnetic noise can be effectively reduced when the noise reducer 1 is provided in direct contact with the DC / DC converter (circuit element).
 第2の実験として、ノイズ低減体1を塗布または含浸した紙をDC/DCコンバータとループアンテナとの間(隙間)に介在させる前後において、出力リップルノイズをループアンテナで測定した。図13は、ノイズ低減体1付き紙の介在前後における出力リップルノイズの比較図であり、同図(a)は紙の介在前、同図(b)は紙の介在後の特性をそれぞれ示す。介在前は371.25mVp-pなのに対して介在後は165.00mVp-pであり、上下のピークの高低差が1/2以上低減する結果が得られた。このことから、ノイズ低減体1をDC/DCコンバータ(回路要素)の近傍に設けた場合でも、電磁ノイズを有効に低減できることが理解できる。 As a second experiment, the output ripple noise was measured by the loop antenna before and after the paper coated or impregnated with the noise reduction body 1 was interposed between the DC / DC converter and the loop antenna (gap). FIG. 13 is a comparison diagram of output ripple noise before and after the interposition of the paper with noise reduction body 1, and FIG. 13 (a) shows characteristics before interposition of paper and FIG. 13 (b) shows characteristics after intervene of paper. Before intervention, it was 371.25mVp-p, but after intervention it was 165.00mVp-p, and the result was obtained that the height difference between the upper and lower peaks was reduced by 1/2 or more. From this, it can be understood that the electromagnetic noise can be effectively reduced even when the noise reduction body 1 is provided in the vicinity of the DC / DC converter (circuit element).
 なお、上述した実施形態において、電子機器5A~5Gとしては、受動素子として機能するデバイス、能動素子として機能するデバイス、容量素子として機能するデバイスなどが挙げられ、電気回路に伴う電線や基板など材料に使用すればノイズ低減効果を発揮する。また、ノイズ低減体1は、電磁ノイズを低減する用途で、電気機器のケース、衣類などの繊維、建築材などを含めて、様々な応用製品に広く適用することができる。 In the embodiment described above, examples of the electronic devices 5A to 5G include a device functioning as a passive element, a device functioning as an active element, a device functioning as a capacitive element, etc. The noise reduction effect is exhibited when Moreover, the noise reduction body 1 is an application which reduces electromagnetic noise, and can be widely applied to various applied products including the case of an electric device, fibers such as clothes, construction materials, and the like.
 1 ノイズ低減体
 2 クラスター型セル
 3 結晶系ナノダイヤモンド半導体粒子
 4 アモルファスシリコン
 5A~5G 電子機器
 6 プリント基板
 7 導電層
 8a 表面絶縁層
 8b 層間絶縁膜
 9a,9b 回路要素
 10 カバー体
 11 シールド

 
REFERENCE SIGNS LIST 1 noise reduction body 2 cluster type cell 3 crystalline nano diamond semiconductor particle 4 amorphous silicon 5 A to 5 G electronic equipment 6 printed circuit board 7 conductive layer 8 a surface insulating layer 8 b interlayer insulating film 9 a, 9 b circuit element 10 cover 11 shield

Claims (12)

  1.  電気回路に影響を及す電磁ノイズを低減するノイズ低減体において、
     互いに独立して励起し、静電容量を有し、かつ、半導体としての特性を備えた複数のクラスター型セルよりなり、
     前記複数のクラスター型セルのそれぞれは、
     自発電荷を有し、かつ、アモルファスシリコンでコーティングされた複数の結晶系ナノダイヤモンド半導体粒子が房状に結合していることを特徴とするノイズ低減体。
    In a noise reducer that reduces electromagnetic noise that affects electrical circuits,
    It consists of a plurality of cluster-type cells which are excited independently of one another, have capacitance, and have characteristics as a semiconductor,
    Each of the plurality of clustered cells is
    What is claimed is: 1. A noise reducer characterized in that a plurality of crystalline nano diamond semiconductor particles having a spontaneous charge and coated with amorphous silicon are bound in a tufted manner.
  2.  前記クラスター型セルの直径は、15nm以上30nm以下であることを特徴とする請求項1に記載されたノイズ低減体。 The noise reduction body according to claim 1, wherein the diameter of the cluster type cell is 15 nm or more and 30 nm or less.
  3.  前記結晶系ナノダイヤモンド半導体粒子の直径は、3nm以上8nm以下であることを特徴とする請求項1または2に記載されたノイズ低減体。 The noise reduction body according to claim 1 or 2, wherein a diameter of the crystalline nano diamond semiconductor particles is 3 nm or more and 8 nm or less.
  4.  前記結晶系ナノダイヤモンド半導体粒子の活性化エネルギーレベルは、0.3eV以上0.7eV以下であることを特徴とする請求項3に記載されたノイズ低減体。 The noise reduction body according to claim 3, wherein an activation energy level of the crystalline nano diamond semiconductor particles is 0.3 eV or more and 0.7 eV or less.
  5.  互いに独立して励起し、静電容量を有し、かつ、半導体としての特性を備えた複数のクラスター型セルよりなり、前記クラスター型セルのそれぞれが、自発電荷を有し、かつ、アモルファスシリコンでコーティングされた結晶系ナノダイヤモンド半導体粒子が複数房状に結合していると共に、電気回路に影響を及す電磁ノイズを低減するノイズ低減体の製造方法において、
     前記結晶系ナノダイヤモンド半導体粒子と、アモルファスシリコンの粉末とが混入された純水に、一対の電極を介して直流電圧を印加することによって、前記結晶系ナノダイヤモンド半導体粒子を前記アモルファスシリコンでコーティングする第1のステップと、
     前記アモルファスシリコンでコーティングされた前記結晶系ナノダイヤモンド半導体粒子が混入された純水に、一対の電極を介してパルス電圧を印加することによって、前記ノイズ低減体を生成する第2のステップと
    を有することを特徴とするノイズ低減体の製造方法。
    A plurality of cluster-type cells excited independently of one another, having capacitance and having characteristics as a semiconductor, each of the cluster-type cells having a spontaneous charge and being made of amorphous silicon In a method of manufacturing a noise reduction body, in which coated crystalline nano diamond semiconductor particles are bound in a plurality of tufts and electromagnetic noise affecting the electric circuit is reduced,
    The crystalline nano diamond semiconductor particles are coated with the amorphous silicon by applying a direct current voltage to pure water mixed with the crystalline nano diamond semiconductor particles and powder of amorphous silicon through a pair of electrodes. The first step,
    A second step of generating the noise reduction body by applying a pulse voltage to the pure water mixed with the crystalline nanodiamond semiconductor particles coated with the amorphous silicon through a pair of electrodes A method of manufacturing a noise reduction body characterized in that.
  6.  前記クラスター型セルの直径は、15nm以上30nm以下であることを特徴とする請求項5に記載されたノイズ低減体の製造方法。 The method of manufacturing a noise reduction body according to claim 5, wherein a diameter of the cluster type cell is 15 nm or more and 30 nm or less.
  7.  前記結晶系ナノダイヤモンド半導体粒子の直径は、3nm以上8nm以下であることを特徴とする請求項5または6に記載されたノイズ低減体の製造方法。 The diameter of the said crystal | crystallization type nano diamond semiconductor particle | grain is 3 nm or more and 8 nm or less, The manufacturing method of the noise reduction body described in Claim 5 or 6 characterized by the above-mentioned.
  8.  前記結晶系ナノダイヤモンド半導体粒子の活性化エネルギーレベルは、0.3eV以上0.7eV以下であることを特徴とする請求項7に記載されたノイズ低減体の製造方法。 The method for producing a noise reduction body according to claim 7, wherein the activation energy level of the crystalline nano diamond semiconductor particles is 0.3 eV or more and 0.7 eV or less.
  9.  電子機器において、
     電気回路の一部を構成すると共に、電磁ノイズを発生し、または、電磁ノイズの影響を受ける回路要素と、
     前記回路要素に接触して、または、前記回路要素の近傍に設けられ、前記電磁ノイズを低減するノイズ低減体とを有し、
     前記ノイズ低減体は、互いに独立して励起し、静電容量を有し、かつ、半導体としての特性を備えた複数のクラスター型セルよりなり、
     前記複数のクラスター型セルのそれぞれは、自発電荷を有し、かつ、アモルファスシリコンでコーティングされた複数の結晶系ナノダイヤモンド半導体粒子が房状に結合していることを特徴とする電子機器。
    In electronic devices,
    Circuit elements that form part of an electric circuit and generate electromagnetic noise or are affected by electromagnetic noise;
    A noise reducer provided in contact with or in the vicinity of the circuit element to reduce the electromagnetic noise;
    The noise reducer comprises a plurality of cluster type cells which are excited independently of each other, have a capacitance, and have a characteristic as a semiconductor,
    An electronic device characterized in that each of the plurality of cluster-type cells has a spontaneous charge, and a plurality of crystalline nano diamond semiconductor particles coated with amorphous silicon are bound in a chain shape.
  10.  前記クラスター型セルの直径は、15nm以上30nm以下であることを特徴とする請求項9に記載された電子機器。 The electronic device according to claim 9, wherein a diameter of the cluster type cell is 15 nm or more and 30 nm or less.
  11.  前記結晶系ナノダイヤモンド半導体粒子の直径は、3nm以上8nm以下であることを特徴とする請求項9または10に記載された電子機器。 11. The electronic device according to claim 9, wherein a diameter of the crystalline nano diamond semiconductor particle is 3 nm or more and 8 nm or less.
  12.  前記結晶系ナノダイヤモンド半導体粒子の活性化エネルギーレベルは、0.3eV以上0.7eV以下であることを特徴とする請求項11に記載された電子機器。

     
    The electronic device according to claim 11, wherein the activation energy level of the crystalline nano diamond semiconductor particles is 0.3 eV or more and 0.7 eV or less.

PCT/JP2017/029440 2017-08-16 2017-08-16 Noise reduction body, method for manufacturing same, electronic device using same WO2019035186A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2017/029440 WO2019035186A1 (en) 2017-08-16 2017-08-16 Noise reduction body, method for manufacturing same, electronic device using same
JP2018555287A JP6473553B1 (en) 2017-08-16 2017-08-16 Noise reduction body, method for manufacturing the same, and electronic apparatus using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/029440 WO2019035186A1 (en) 2017-08-16 2017-08-16 Noise reduction body, method for manufacturing same, electronic device using same

Publications (1)

Publication Number Publication Date
WO2019035186A1 true WO2019035186A1 (en) 2019-02-21

Family

ID=65362206

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/029440 WO2019035186A1 (en) 2017-08-16 2017-08-16 Noise reduction body, method for manufacturing same, electronic device using same

Country Status (2)

Country Link
JP (1) JP6473553B1 (en)
WO (1) WO2019035186A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002299238A (en) * 2001-04-04 2002-10-11 Sony Corp Polycrystalline semiconductor film-forming method and semiconductor device manufacturing method
JP2003513462A (en) * 1999-10-30 2003-04-08 フォルシュングスツェントルム カールスルーエ ゲゼルシャフト ミット ベシュレンクテル ハフツング Apparatus having electrodes, spongy permeable layer, electrolyte and means for applying voltage
US20060241236A1 (en) * 2005-01-25 2006-10-26 Kuznetsov Vladimir L Electromagnetic radiation attenuation
JP2013512554A (en) * 2009-11-30 2013-04-11 オーツェー エリコン バルザーズ アーゲー Core-shell nanoparticles applied to electronic batteries
JP2014203985A (en) * 2013-04-05 2014-10-27 徹 金城 Solar cell protective film, solar cell, and manufacturing method therefor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003513462A (en) * 1999-10-30 2003-04-08 フォルシュングスツェントルム カールスルーエ ゲゼルシャフト ミット ベシュレンクテル ハフツング Apparatus having electrodes, spongy permeable layer, electrolyte and means for applying voltage
JP2002299238A (en) * 2001-04-04 2002-10-11 Sony Corp Polycrystalline semiconductor film-forming method and semiconductor device manufacturing method
US20060241236A1 (en) * 2005-01-25 2006-10-26 Kuznetsov Vladimir L Electromagnetic radiation attenuation
JP2013512554A (en) * 2009-11-30 2013-04-11 オーツェー エリコン バルザーズ アーゲー Core-shell nanoparticles applied to electronic batteries
JP2014203985A (en) * 2013-04-05 2014-10-27 徹 金城 Solar cell protective film, solar cell, and manufacturing method therefor

Also Published As

Publication number Publication date
JP6473553B1 (en) 2019-02-20
JPWO2019035186A1 (en) 2019-11-07

Similar Documents

Publication Publication Date Title
JP6050035B2 (en) ELECTRIC ENERGY GENERATOR AND ITS DRIVING METHOD
İyikanat et al. Thinning CsPb 2 Br 5 perovskite down to monolayers: Cs-dependent stability
Alyörük Piezoelectric properties of monolayer II–VI group oxides by first‐principles calculations
Kim et al. Anisotropic 2D SiAs for high‐performance UV–visible photodetectors
KR101565911B1 (en) Method for deposition of nanoparticles onto substrates and high energy density device fabrication
Zhang et al. Nanogenerator made of ZnO nanosheet networks
JPWO2013027717A1 (en) SOLAR CELL AND METHOD FOR PRODUCING THE SOLAR CELL
Smerdov et al. Nanostructured porous silicon and graphene-based materials for PETE electrode synthesys
Singh et al. CdSe/V2O5 core/shell quantum dots decorated reduced graphene oxide nanocomposite for high-performance electromagnetic interference shielding application
Baek et al. Flexible piezoelectric nanogenerators based on a transferred ZnO nanorod/Si micro-pillar array
TW201139676A (en) Diamond neural devices and associated methods
US9153763B2 (en) Thermoelectric material, method for preparing the same, and thermoelectric module including the same
WO2019035186A1 (en) Noise reduction body, method for manufacturing same, electronic device using same
Zhang et al. Air‐Stable Violet Phosphorus/MoS2 van der Waals Heterostructure for High‐Responsivity and Gate‐Tunable Photodetection
Sheng et al. Layer‐Dependent Exciton Modulation Characteristics of 2D MoS2 Driven by Acoustic Waves
JPWO2007145089A1 (en) Three-layer semiconductor particles
RU2660819C1 (en) Method of manufacturing a super-capacitor electrode
JP6462195B1 (en) Electrical contact conducting material and method for producing the same
JP6448884B1 (en) Storage battery
Luxa et al. Freestanding Foils of NbSe2 and Carbon Nanotubes for Efficient Electromagnetic Shielding
Hsieh et al. Single ZnO nanowire–PZT optothermal field effect transistors
WO2019123664A1 (en) Transmission medium
RU2605758C1 (en) Electric power supply source
JP2010103335A (en) Method for manufacturing photoelectric conversion device, method for manufacturing electronic apparatus, photoelectric conversion device and electronic apparatus
JP7070871B2 (en) Compositions and Methods for Producing Pico Crystal Artificial Borane Atoms

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018555287

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17922053

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 23/07/2020)

122 Ep: pct application non-entry in european phase

Ref document number: 17922053

Country of ref document: EP

Kind code of ref document: A1