WO2019033948A1 - 飞行装置的控制信道的分配方法、起飞方法和遥控方法 - Google Patents

飞行装置的控制信道的分配方法、起飞方法和遥控方法 Download PDF

Info

Publication number
WO2019033948A1
WO2019033948A1 PCT/CN2018/098972 CN2018098972W WO2019033948A1 WO 2019033948 A1 WO2019033948 A1 WO 2019033948A1 CN 2018098972 W CN2018098972 W CN 2018098972W WO 2019033948 A1 WO2019033948 A1 WO 2019033948A1
Authority
WO
WIPO (PCT)
Prior art keywords
channel
station
flight
departure station
control
Prior art date
Application number
PCT/CN2018/098972
Other languages
English (en)
French (fr)
Inventor
彭安斋
王勇
陈少华
高扬
Original Assignee
菜鸟智能物流控股有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 菜鸟智能物流控股有限公司 filed Critical 菜鸟智能物流控股有限公司
Priority to EP18846021.6A priority Critical patent/EP3654126B1/en
Publication of WO2019033948A1 publication Critical patent/WO2019033948A1/zh
Priority to US16/788,075 priority patent/US11780578B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/382Monitoring; Testing of propagation channels for resource allocation, admission control or handover
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/04Control of altitude or depth
    • G05D1/06Rate of change of altitude or depth
    • G05D1/0607Rate of change of altitude or depth specially adapted for aircraft
    • G05D1/0653Rate of change of altitude or depth specially adapted for aircraft during a phase of take-off or landing
    • GPHYSICS
    • G08SIGNALLING
    • G08CTRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
    • G08C17/00Arrangements for transmitting signals characterised by the use of a wireless electrical link
    • G08C17/02Arrangements for transmitting signals characterised by the use of a wireless electrical link using a radio link
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/003Flight plan management
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/0047Navigation or guidance aids for a single aircraft
    • G08G5/0069Navigation or guidance aids for a single aircraft specially adapted for an unmanned aircraft
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2201/00UAVs characterised by their flight controls
    • B64U2201/20Remote controls

Definitions

  • the present invention relates to the field of flight remote control technologies, and in particular, to a control channel allocation method for a flight device, a take-off method, a take-off remote control method, and a landing remote control method, and a flight management server, a flight device, a take-off remote controller, and a landing remote controller. .
  • UAV logistics As an example, UAV cargo transportation is generally divided into three stages, cargo take-off, route flight and end cargo delivery, that is, drone landing, by transporting logistics packages between different logistics sites for flight transportation. It can solve a series of problems such as the road is not good or crowded.
  • the inventor found that during the landing and take-off phase of the drone, the flight altitude is relatively low, and there may be interference factors such as pedestrians, wires, and houses. This is a stage with high risk, so the standby is usually used at this stage.
  • the remote controller performs auxiliary control on the drone one-to-one, that is, the remote controller is in standby standby state, and does not actually control the drone, and can quickly switch to the active control state only when an emergency occurs, by controlling the user's Experience and operation to avoid accidents caused by drones.
  • the inventor also found in the research process that since the remote control and the drone are one-to-one configuration, the drone at the logistics site is very mobile, and if each drone is equipped for each drone A dedicated remote control, on the one hand, is relatively expensive; on the other hand, it is difficult to distinguish between multiple remote controls of the same logistics site. If the remote control is used confusingly, not only can the manual correct intervention of the drone be achieved, It can even lead to more serious accidents.
  • the present application provides a method for allocating a control channel of a flight device, which is used to divide a 2.4G wireless frequency band into 80 control channels in advance, thereby sharing all the drones and remote controllers at the same logistics site.
  • the control channel is also controlled by using a remote controller at each logistics site, that is, a plurality of drones can be separately controlled, that is, no one-to-one control between the drone and the remote controller is performed; It can ensure that when multiple UAVs take off or land at the same time, the remote control can control one of the UAVs as needed, and can quickly switch between multiple control channels corresponding to multiple UAVs. Improve the spectrum utilization efficiency of the remote control and reduce the receiving interference between the drones.
  • the present application can also configure a remote control signal indicator on the drone to help the user to distinguish whether the drone that needs to be controlled is connected.
  • the present application also provides a flight management server, a flight device, and a take-off and landing remote control to ensure the implementation and application of the above method in practice.
  • the present application discloses a method for allocating a control channel of a flight device, the method comprising:
  • the target control channel that meets the preset control condition is allocated to the flight device according to the logistics information and the flight time, and includes:
  • the plurality of control channels respectively correspond to a plurality of channel identifiers; and selecting, from the candidate channels, a channel that is the farthest from each of the used channels, as a target channel for controlling the flying device, includes:
  • a candidate channel corresponding to the difference having the largest absolute value is determined as a target channel for controlling the flying device.
  • control channel occupancy table of each of the departure station and the arrival station is pre-stored, and the control channel occupancy table is used for saving the idle state of the control channel of the departure station or the arrival station in each time period;
  • searching for a control channel that is idle at the departure station and the arrival station, as a candidate channel includes:
  • a control channel that is idle during the flight time is queried as a candidate channel.
  • the method further includes:
  • the method further includes:
  • the method further includes:
  • the method further includes:
  • the embodiment of the present application further provides a control channel based takeoff method, the method comprising:
  • the method further includes:
  • a real-time flight position is synchronized to the flight management server during flight of the flight device.
  • the target control channel includes: a departure station channel as a control channel of the departure station, and an arrival station channel as a control channel of the arrival station, and the method further includes:
  • the embodiment of the present application further discloses a take-off remote control method, and the method includes:
  • the method further includes:
  • the remote controller of the departure station After receiving the channel release request of the departure station channel transmitted by the flight management server, the remote controller of the departure station releases the departure station channel.
  • the embodiment of the present application further discloses a landing remote control method, the method comprising:
  • a heartbeat message is sent on the arrival station channel corresponding to the flying device in which the abnormality occurs to control the landing process of the abnormally occurring flying device.
  • the method further includes:
  • the remote controller of the arrival station Upon receiving the release request of the arrival station channel transmitted by the flight management server, the remote controller of the arrival station releases the arrival station channel.
  • the embodiment of the present application further discloses a flight management server, including:
  • a processor configured to allocate a corresponding flight device for the received task; determine, according to the flight information in the task, an effective time of the flight device flying from the departure station to the arrival station; and, according to the Logistics information and the flight time, assigning the flight device a target control channel that meets a preset control condition;
  • a communication interface for transmitting the target control channel to the flying device.
  • the processor is configured to allocate, to the flight device, a target control channel that meets a preset control condition according to the logistics information and the flight time, including:
  • the plurality of control channels respectively correspond to a plurality of channel identifiers; the processor is configured to select, from the candidate channels, a channel that is the farthest from each used channel as a target channel for controlling the flying device, including :
  • a candidate channel corresponding to the difference having the largest absolute value is determined as a target channel for controlling the flying device.
  • the processor is further configured to pre-store a control channel occupancy table of each of the departure station and the arrival station, where the control channel occupancy table is used to save the idle state of the control channel of the departure station or the arrival station in each time period;
  • the processor is configured to search for a control channel that is idle at the departure station and the arrival station during the flight time, as a candidate channel, including:
  • a control channel that is idle during the flight time is queried as a candidate channel.
  • the processor is further configured to:
  • the processor is further configured to:
  • the processor is further configured to:
  • the flight device After the flight device takes off, monitoring a real-time flight position of the flight device; determining whether the real-time flight position of the flight device meets a preset channel switching condition, and if so, enabling channel access of the arrival station channel A request is sent to the remote control of the arriving station.
  • the processor is further configured to:
  • the embodiment of the present application also discloses a flying device, including:
  • a communication interface configured to receive a target control channel sent by the flight management server
  • a processor configured to determine whether a heartbeat message from the remote controller of the departure station can be received on the target control channel, and if yes, take off from the departure station according to a flight path preset in the flight device.
  • a real-time flight position is synchronized to the flight management server during flight of the flight device.
  • the processor is further configured to:
  • a real-time flight position is synchronized to the flight management server during flight of the flight device.
  • the target control channel includes: a departure station channel as a control channel of the departure station, and an arrival station channel as a control channel of the arrival station, the processor is further configured to:
  • the embodiment of the present application further discloses a take-off remote controller, including:
  • a processor configured to obtain a departure station channel and a flight device identifier from a channel enable request of a departure station channel sent by the flight management server;
  • a communication interface configured to send a heartbeat message to the corresponding flight device by using the departure station channel, so that after the flight device receives the heartbeat message, the flight device follows the preset flight route from the departure station take off.
  • the processor is further configured to:
  • the departure station channel After receiving the channel release request of the departure station channel transmitted by the flight management server, the departure station channel is released.
  • the embodiment of the present application also discloses a landing remote controller, including:
  • a communication interface configured to receive an enable request of an arrival station channel sent by the flight management server
  • a processor configured to acquire an arrival station channel and a flight device identifier carried in an enable request of the arrival station channel; if an abnormality occurs in any flight device, send a heartbeat message on an arrival station channel corresponding to the abnormal flight device, In order to control the landing process of the abnormal flying device.
  • the processor is further configured to:
  • the arriving station channel is released upon receiving a request to cancel the arriving station channel transmitted by the flight management server.
  • the embodiments of the present application include the following advantages:
  • the flight management server uniformly manages a plurality of pre-divided control channels, and each control channel includes: a sub-communication channel and a frequency hopping pattern that is cyclically set according to a preset channel interval, and the flight management server is After the received task assigns the corresponding flight device, the flight time of the flight device from the departure station to the arrival station is calculated, and the flight device is allocated control for being idle at both the departure station and the arrival station during the flight time. Channel used to assist control of the flight device during take-off or landing. In the above manner, it is possible to perform one-to-one binding control on the remote controller and the flying device.
  • the take-off device needs to perform auxiliary control during take-off or landing, it can be taken off by the take-off remote controller during take-off and landing respectively.
  • the landing remote control controls the flight device by using a control channel pre-allocated by the flight management server, and releases the channel resources of the control channel after the control is completed.
  • FIG. 1 is an exemplary schematic diagram of a frequency hopping pattern of dividing a control channel in the present application
  • FIG. 2 is a schematic diagram of an exemplary scenario of the present application in practical application
  • FIG. 3 is an exemplary flow chart of an embodiment of a method of the present application.
  • FIG. 5 is an exemplary schematic diagram of a control interface of a remote controller of the present application.
  • FIG. 6 is a schematic structural diagram of an embodiment of a flight management server of the present application.
  • FIG. 7 is a schematic structural diagram of an embodiment of a remote controller of the present application.
  • the 2.4G radio frequency band needs to be divided in advance.
  • 2.4G wireless frequency band refers to the frequency band between 2.405GHz-2.485GHz (science, medicine, agriculture).
  • the 2.4G radio resource band 2.400 GHz to 2.480 GHz is first divided into 80 sub-communication channels, each channel width is 1 M, and the hopping pattern is cyclically set according to the 22 M interval. In this embodiment, if such a 1M frequency point and its corresponding frequency hopping pattern are used as one control channel, a total of 80 control channels are obtained, and the control channels are separated from each other and the frequency hopping gain can be obtained.
  • one control channel may include two parts: a starting frequency point and a frequency hopping pattern, and 80 control channels are numbered from 1 to 80 (ie, control channel identification) according to the starting frequency point order, and the 80 control channels are
  • the division method is pre-cured in the flight management server, the flight device (such as a drone, etc.) and the remote controller, and a unique control channel can be obtained according to the number.
  • the hopping spectrum can be referred to FIG. 1.
  • the horizontal axis is the frequency hopping period of the physical channel
  • the frequency point is the center position of the physical channel
  • the vertical axis is the time slot, in order to achieve frequency hopping of the channel resources.
  • Gain generally divides the time into several time slices.
  • One time slice, that is, one block in FIG. 1 is a time slot.
  • the sequence numbers from 1 to 80 in the first column are used to represent the control channel. Number, the second column indicates the starting frequency.
  • the physical position of the logical channel in each time slot is indicated in a frequency hopping period. Since the same logical channel changes back and forth on different physical channels in one frequency hopping period, it is called frequency hopping.
  • FIG. 1 the horizontal axis is the frequency hopping period of the physical channel
  • the frequency point is the center position of the physical channel
  • the vertical axis is the time slot, in order to achieve frequency hopping of the channel resources.
  • Gain generally divides the time into several time slices.
  • a plurality of squares of the same drawing mode represent one logical channel (the logical channel is distinguished by a control channel identifier), and the position of the first time slot of the logical channel in the frequency hopping period is the starting frequency point.
  • the blocks in the box with the letter "A” represent a logical channel, and so on.
  • the blocks in the box with the letter “D” represent a logical channel, and the blocks in the block are all right-slashes.
  • Logical channels, and the blocks in the box that are left slashes also represent a logical channel, and so on.
  • this is only exemplary data. In practical applications, other ways can still be used to identify the same logical channel.
  • the unmanned aircraft is simply referred to as "unmanned aerial vehicle", and is a non-manned aircraft operated by a radio remote control device and a self-provided program control device.
  • a radio remote control device operated by a radio remote control device and a self-provided program control device.
  • the task may be a logistics task, for example, transporting one or more logistics packages to the arrival station by using a flying device from the departure station, and the task of transporting the one or more logistics packages from the departure station is a logistics task.
  • the task can also be a monitoring task, for example, the flight device can be used to monitor the equipment of the departure station or the arrival station.
  • the task can also be a photographic task, for example, using a flying device to perform aerial photography between the departure station and the arrival station, and the like.
  • embodiments of the present application can be applied to any task performed from a departure station using a flight device to an arrival station.
  • the flight management server 101 can manage each of the pre-divided control channels, as well as the flight devices 102 (e.g., drones) of each of the departure stations and the respective arrival stations. Specifically, the flight management server 101 can determine which of the departure or arrival stations, how many drones are available, and which of the departure or arrival stations, which control channel is in an idle state, can be used as a control Departure station channel or arrival station channel of a drone. Wherein, the departure station channel of the drone is used to indicate a control channel used to control the drone at the departure station where the drone takes off, and the arrival station channel is used to indicate that the arrival station at the drone is used to The control channel that the drone controls.
  • the departure station channel of the drone is used to indicate a control channel used to control the drone at the departure station where the drone takes off
  • the arrival station channel is used to indicate that the arrival station at the drone is used to The control channel that the drone controls.
  • the flight management server 101 can be used for the logistics task (in the actual application, the logistics task identifier can be used to distinguish)
  • a drone is assigned, and the drone is assigned a departure station channel for controlling the drone at the time of takeoff, and an arrival station channel for controlling the drone when landing.
  • a remote controller 103 of the departure station corresponding to the departure station or a remote controller 104 of the arrival station is provided.
  • the flight management server After the flight management server allocates the departure station channel or the arrival station channel to the drone, it notifies the remote station 103 of the departure station of the channel enable request of the departure station channel, so that the remote controller 103 of the departure station can control on the departure station channel.
  • the takeoff of the drone; and the flight management server can transmit a channel enable request to the station's channel to the remote station 104 of the arriving station so that the remote station 104 of the arriving station can control the drone's landing on the arriving station channel.
  • the drone Before the departure of the departure station, the drone can receive the heartbeat message sent by the remote control of the departure station on the departure station channel. If it can be received, it will take off according to the preset flight route. If it is not received, it will not take off. This ensures that the remote control of the departure station can successfully control the drone on the departure station channel to avoid uncontrollable situations. Similarly, when the drone is about to land at the arrival station, it also receives the heartbeat message sent by the remote controller of the arrival station on the arrival station channel. If it can receive the landing again, it is convenient to reach the remote controller of the station. When the man-machine has an unexpected situation or needs to control the drone, the arrival station channel can be normally used to send a control command to the drone, thereby realizing the control of the drone.
  • FIG. 3 a flowchart of an embodiment of a method for allocating a control channel of a flight device according to the present application is shown.
  • the embodiment may be applied to the flight management server shown in FIG. 2, and the embodiment may include the following steps:
  • Step 301 The flight management server assigns a corresponding flight device to the received task.
  • the flight management server can establish contact with each logistics site.
  • Each logistics site sends the logistics package of the logistics package to the flight management server as a logistics task when there is a logistics package to be transported.
  • Identification used to identify each logistics package received by the flight management server.
  • the tasks to be transported including one or more logistics that are transported from the same logistics site to other same logistics sites, are referred to as a logistics task.
  • logistics task For example, from logistics site A to logistics site B, there are currently 3 logistics packages to be transported, and the three logistics packages can be transported by one drone, then the three logistics packages can be combined into one logistics task, logistics task.
  • the identification may be a unique serial number generated by the flight management server for the logistics task, for example: 201705300114AB.
  • the logistics site A is referred to as the departure station of the logistics task
  • the logistics site B is referred to as the arrival station of the logistics task.
  • the flight management server When the flight management server receives the new logistics task, it assigns a drone to the logistics task according to the situation of the drone corresponding to the departure station identified by the logistics task. For example, at the logistics site A, there are two UAVs available for UAV A and UAV B, while UAV A has a stronger carrying capacity and can carry physical packages of more than 20KG, and the above three logistics packages With a total weight of 21KG, the drone A can be assigned as a drone that undertakes the logistics task "201705300114AB". Of course, if both drones are available, you can choose one at a time.
  • Step 302 The flight management server determines, according to the flight information in the task, a flight time of the flight device from the departure station to the arrival station.
  • the flight information may include information of the departure station and the arrival station based on the flight information in the mission, for example, the departure station is the logistics station A, and the arrival station is the logistics station B.
  • the flight management server calculates the flight time from the departure station to the arrival station based on the average flight speed of the assigned drone.
  • the flight time is in actual application, which is the time when the drone meets the preset time condition from the departure station to the arrival station.
  • the flight time may be the total occupancy time of drone A flying from logistics site A to logistics site B.
  • the estimated flight time can be obtained by dividing the distance from the logistics site A to the logistics site B by the flight speed of the drone A.
  • the flight time can also be the time to meet the preset partial time conditions.
  • the departure time from the departure station and the landing time at which the arrival station begins to land ie the time of smooth flight between the departure station and the arrival station, is no longer calculated during the flight time.
  • those skilled in the art can also set other time conditions to obtain flight time, which is used to filter which control channels of the departure station or the arrival station are idle during the flight time.
  • Step 303 The flight management server allocates, to the flight device, a target control channel that meets a preset flight condition according to the logistics information and the flight time.
  • each of the logistics stations can use the 80 control channels.
  • the control channel occupancy table of each logistics station includes a time and a control channel in the control channel occupancy table, that is, whether a certain control channel is in an idle state within a certain period of time. For example, for the control channel occupancy table of the logistics site A, the information of the time period "10:00 on May 15, 2017 to 10:10 on May 15, 2017" is saved, and the control channel corresponding to the time zone is controlled. Channel 1 indicates that the control channel occupied at the logistics site A is the control channel 1 during this time period.
  • step 303 may include the following steps A1 to A3:
  • Step A1 During the flight time, look up the control channel that is idle at the departure station and the arrival station as a candidate channel.
  • the flight management server can first find the control channel that is idle at both the departure station and the arrival station, in order to facilitate the logistics station A at the departure station and the logistics station B at the arrival station.
  • Candidate channel Assuming that the flight time is the total occupancy time, which is 15 minutes in total, the flight management server looks for a control channel that is idle at both the logistics site A and the logistics site B within 15 minutes from the current time. For example, within 15 minutes, there is control channel 3 in the idle channel of the logistics station A, and within the control channel 315 minutes, the logistics station B is also the idle channel, then the control channel 3 is the candidate channel, and so on, from 80 control channels. All candidate channels.
  • the departure time at the departure station is 2 minutes and the landing time at the arrival station is also 2 minutes, it is possible to separately find the idle channel of the logistics station A within 2 minutes of the departure time, and 2 minutes during the landing time.
  • the idle channel of the internal logistics station B is sufficient. It is not necessary to consider whether the control channel is idle within 11 minutes of the flight of the flying device.
  • the flight management server may first search for the control channel that is idle within 15 minutes in the control channel occupancy table corresponding to the logistics site A. As candidate set 1. The flight management server then searches for the idle control channel within 15 minutes from the control channel occupancy table corresponding to the logistics site B as the candidate set 2, and then the flight management server intersects the candidate sets 1 and 2 to obtain the logistics site A. And the logistics station B are both idle candidate channels.
  • Step A2 selecting a channel farthest from each used channel from the candidate channels as a target channel for controlling the flying device at the departure station and the arriving station.
  • a candidate channel that is relatively far away from the used channel may be selected as the final determined target channel.
  • the using the channel may include: at least the control channel corresponding to the departure station or the arrival station being non-idle during the flight time. Specifically, when searching for a candidate channel that is the farthest from each used channel, the difference between the candidate channel and the channel identifier of each used channel may be separately calculated, and then the candidate channel having the largest absolute value among the differences may be It is determined to control the target channel of the flying device.
  • control channel 6, control channel 10, and control channel 15, and the control channel 25, control channel 61, and control channel 76 are used, and the identification numbers of the candidate channels are respectively 25, 61, and 76.
  • Subtraction, -19, -55, and -70 are obtained for control channel 6, -15, -51, and -66 for control channel 10, respectively -10, -46, and -61 for control channel 15, respectively.
  • the absolute value is the difference between the control channel 6 and the use channel 76. Therefore, the control channel 6 can be used as the target channel for controlling the flight device at the departure station and the arrival station.
  • step A1 Before step A2, it can be determined whether the candidate channel, that is, the control channel that is idle and the arrival station is idle, is successfully queried. If the query is successful, step A2 is performed; if the query is unsuccessful, step A3 is entered:
  • Step A3 querying an idle control channel in the control channel occupancy table corresponding to the departure station as a departure station channel for controlling the flight device at the departure station; and a control channel occupancy table corresponding to the arrival station The idle control channel is queried as the arriving station channel controlling the flying device at the arriving station.
  • the departure station channel is used to receive the heartbeat message of the remote controller of the departure station, and the flight device switches to the heartbeat of the remote controller of the arrival station channel to receive the arrival station when the arrival station landed.
  • the message is fine.
  • the channel on which the departure station is idle is the control channel 5
  • the channel on which the station is idle is the control channels 15 and 27, then [Control Channel 5, Control Channel 15] can be used as the candidate channel 1, wherein the departure station channel is the control channel 5
  • the arriving station channel is the control channel 15; [Control Channel 5, Control Channel] 27 may also be used as the candidate channel 2, wherein the starting station channel is the control channel 5 and the arriving station channel is the control channel 27.
  • a target control channel capable of controlling the flight device at both the departure station and the arrival station is obtained, and the flight management server transmits the target control channel to the flight device. If the target control channel is the same control channel at both the originating station and the arriving station, then only one channel identifier can be transmitted, and if the originating station channel and the arriving station channel are different, the flight management server can identify and arrive at the channel of the departure station channel. The channel identification of the station channel is sent to the flight device.
  • the departure station channel and the arrival station channel are not the same control channel as an example, and then proceeds to step 304.
  • Step 304 The flight management server transmits the departure station channel and the arrival station channel to the flight device, and sends a channel enable request of the departure station channel to a remote controller of the departure station.
  • the flight management server transmits the channel identifier of the departure station channel and the channel identifier of the arrival station channel to the flight device, and after receiving the two channel identifiers, the flight device first receives on the control channel indicated by the channel identifier of the departure station channel.
  • Heartbeat message from the remote control of the departure station.
  • the flight management server may also send a channel enable request of the departure station channel to the remote controller of the departure station, wherein the channel enable request may include: a flight device identifier, a logistics task identifier, a channel identifier of the departure station channel, and a duration.
  • the remote controller of the departure station transmits a heartbeat message to the corresponding flight device of the flight device identification on the departure station channel for the duration.
  • Step 305 The flight device determines whether a heartbeat message from the remote controller of the departure station can be received on the departure station channel, and if yes, proceeds to step 306.
  • the flight device When the arrival station takes off, the flight device first checks whether the channel identifier of the departure station channel and the channel identifier of the arrival station channel delivered by the flight management server are received, and if received, on the control channel corresponding to the channel identifier of the departure station channel. , receiving heartbeat messages from the remote control of the departure station.
  • Step 306 The flight device takes off from the departure station according to a preset flight route in the flight device.
  • the remote control of the departure station can control the flight device, so if the flight device can receive the heartbeat message from the remote control of the departure station, then the flight The device can take off from the departure station according to the preset flight route.
  • the operator on the ground can recognize more clearly, and the red and green double fog fog lights can be preset on the flying device once the receiving from the departure station is received.
  • the heartbeat message of the remote controller can control the double flash fog lamp to start flashing, and if the heartbeat message is not received, the control double flash fog lamp stops flashing.
  • those skilled in the art can also use other methods with distinctive identification features to identify.
  • Step 307 After the flight device takes off, the flight management server monitors the real-time flight position of the flight device.
  • a real-time flight position is synchronized to the flight management server during flight of the flight device. For example, the actual distance to the departure station changes, or whether a certain waypoint is reached, etc., so that the flight management server can monitor the flight device from the departure station to the arrival station.
  • Step 308 The flight management server determines whether the real-time flight position of the flight device meets a preset channel switching condition, and if yes, the process proceeds to step 309.
  • Some channel switching conditions may be preset in the flight management server, and the channel switching condition is used to indicate that the flying device is about to land at the arriving station. In this case, if the starting station channel and the arriving station channel are not the same control channel, it is necessary to arrive. The channel enable request for the station channel is sent to the remote control of the arriving station. Of course, if the departure station channel and the arrival station channel are the same control channel, step 308 may not be performed.
  • the flight management server can determine in real time whether the flight device has completed half of the flight from the departure station to the arrival station according to the received real-time flight position of the flight device, or whether it flies to the first stage before arriving at the station. A waypoint, etc., if any of the preset one or more channel switching conditions are met, step 309 is performed.
  • Step 309 The flight management server sends an enable request of the arrival station channel to the remote controller of the arrival station, and sends a release request of the departure station channel to the remote controller of the departure station, so as to The remote control of the departure station releases the channel resources of the departure station channel and releases the channel resources of the departure station channel.
  • the flight device In the case where the flight device enters the vicinity of the arrival station to start an accurate landing, if the flight device normally flies to the arrival station on the flight route, it can land normally. In practical applications, there may be situations where multiple flight devices need to land at the same time at the arrival station. In this case, if the flight device is normally flying to the arrival station, the landing process can be directly performed. At the same time, the remote controller arriving at the station can only send heartbeat messages on one of the arriving station channels. Therefore, if multiple flying devices need to land at the same time, the remote controller arriving at the station only needs to control the abnormal flying device to land. Other flight devices that do not have an abnormality can directly land normally.
  • the remote controller of the arrival station acquires the three flight devices from the request for the arrival station channel of the three flight devices transmitted from the flight management server.
  • A, B, and C correspond to the arrival station channels A, B, and C, respectively.
  • the remote controller arriving at the station can operate on any of the arriving station channels at the same time, that is, a heartbeat message can be sent on any of the arriving station channels to control the flying device corresponding to the arriving station channel.
  • the request for enabling the arrival station channel may also include: a flight device identifier, a logistics task identifier, and an arrival station channel.
  • the flight management server may also modify the non-idle state of the departure station channel to the idle state in the control channel occupancy table of the saved departure station, and release the channel resource of the departure station channel.
  • the remote controller of the arriving station can be quickly switched to the arrival station channel C to complete the manual control of the landing process of the flight device C.
  • the remote control of the arriving station can be on the corresponding arrival station channel of the flying device.
  • some channel switching conditions may also be preset, for example, leaving the departure station above a preset distance threshold (for example, 2 kilometers, etc.), or continuing the preset time threshold (for example, 1 minute, etc.) is not received.
  • the heartbeat message from the remote controller of the arriving station, etc. the flight device can reset the control channel receiving the heartbeat message, and automatically switch to the arrival station channel to receive the heartbeat message sent by the remote controller from the arriving station.
  • the signaling interaction diagram between the flight management server, the flight device, the departure station, and the remote controller of the arrival station can be referred to FIG. 4.
  • the arrival station channel and the departure station channel are sent together to the flight device, and the channel enable request of the departure station channel (which may include the departure station channel identification, the flight device)
  • the identification is sent to the remote controller of the departure station, and the flight device uses the departure station channel to receive the heartbeat message sent by the remote controller of the departure station and take off.
  • the flight device synchronizes the flight position information to the flight management server in real time, and when the flight device satisfies the preset channel switching condition, the flight device switches to the arrival station channel to receive the heartbeat message sent by the remote controller of the arrival station.
  • the flight management server transmits a channel enable request to the station channel to the remote controller of the arrival station when the preset channel switching condition is satisfied, and transmits a channel release request of the departure station channel to the remote controller of the departure station, and the flight management server Release the channel resources of the departure station channel. Then, the remote controller of the arrival station sends a heartbeat message to the flying device that has an abnormality on the arrival station channel, and the flying device that has an abnormality receives the heartbeat message on the arrival station channel, then landed at the departure station; no abnormality occurred. The flight device can land on its own at the arrival station, and the flight management server releases the channel resources arriving at the station channel.
  • each departure station or arrival station is configured with only one remote controller, if there are multiple drones at a certain departure station that need to take off at the same time or in close proximity, or at some There are a plurality of drones that need to land at the arrival station, and a channel selection knob or the like can be set on the corresponding remote controller.
  • a control interface of the remote controller can be referred to FIG.
  • an active channel display screen 501 and a channel selection knob 502 may be disposed on the remote controller for use on the active channel display screen 501 in order of receiving time, from top to bottom.
  • Each of the arrival station channels in the enable request received by the remote controller of the arriving station is sequentially displayed in the lower order.
  • the arrival station channel that the remote controller of the arrival station receives first is the control channel 15, and the last received arrival station channel is the control channel 31, and there are currently three active channels.
  • the active channel display screen can also display the logistics task identifier and the flight device identifier together with the control channel identifier, as well as the departure station and the arrival station, etc., so that the operator can distinguish and select the channel.
  • the newly received control channel of the remote controller of the arriving station is sequentially displayed in the list below the control channel 31.
  • the operator can select one of the active channels corresponding to the flight device in which the abnormality occurs by rotating the channel selection knob 502.
  • the remote controller immediately uses the selected active channel and transmits the heartbeat message using the flight device identification and the logistics task identifier. Give the flight device.
  • the display content of the active channel display screen 501 is empty, the newly displayed active channel is selected by default.
  • the flight management server may further send a request for canceling the departure station channel to the remote controller of the departure station, and the cancellation request may include: a departure station channel identifier, a logistics task identifier, and a flight device identifier, and the remote controller of the departure station receives the release.
  • the list of active channel displays corresponding to the departure station channel can be deleted.
  • the remote controller and the flight management server may establish a long link through the logistics site WI-FI network or the mobile communication network, and receive the foregoing control channel enable request and the control channel release request through the long link.
  • the flight management server uniformly manages a plurality of pre-divided control channels, and each control channel includes: a sub-communication channel and a frequency hopping pattern that is cyclically set according to a preset channel interval, and a flight management server.
  • multiple remote control units can be separately controlled at each logistics site, that is, no one-to-one control between the drone and the remote controller is performed;
  • the example also ensures that when multiple UAVs take off or land at the same time, the remote control can control one of the drones as needed, and can quickly switch between multiple control channels corresponding to multiple UAVs. , thereby improving the spectrum utilization efficiency of the remote controller and reducing the reception interference between the drones.
  • the embodiment of the present application can also configure a remote control signal indicator on the drone to help the user to distinguish whether the drone that needs to be controlled is connected.
  • the present application further provides an embodiment of a flight management server.
  • the flight management server may include:
  • a processor 601 configured to allocate a corresponding flight device for the received task; determine, according to the flight information in the task, an effective time of the flight device flying from the departure station to the arrival station; Describing the logistics information and the flight time, assigning the flight device a target control channel that meets a preset control condition;
  • a communication interface 603 coupled to the processor 601 via the communication bus 602 for transmitting the target control channel to the flying device.
  • the processor 601 is configured to allocate the target control channel that meets the preset control condition to the flight device according to the logistics information and the time of flight, and specifically includes:
  • the use channel includes: a control channel that is non-idle at least in a state corresponding to the departure station or the arrival station during the flight time.
  • the plurality of control channels respectively correspond to a plurality of channel identifiers; the processor 601 is configured to select, from the candidate channels, a channel that is the farthest from each used channel as a target channel for controlling the flying device.
  • the method may include: respectively calculating an absolute value of a difference between each candidate channel and a channel identifier of each used channel; and determining, by the candidate channel corresponding to the absolute value of the absolute value, a candidate channel that is controlled by the flying device Target channel.
  • the processor 601 is further configured to pre-save a control channel occupancy table of each of the departure station and the arrival station, where the control channel occupancy table is used to save the idleness of the control channel of the departure station or the arrival station in each time period.
  • the processor is configured to search for a control channel that is idle at the departure station and the arrival station, as a candidate channel, and specifically includes: respectively, from the departure station and the arrival station In the control channel occupancy table, the control channel that is idle during the flight time is queried as a candidate channel.
  • the processor 601 is further configured to: determine whether the candidate channel is successfully queried, and if yes, perform the channel that selects the farthest distance from each used channel from the candidate channels; if not, Querying an idle control channel in a control channel occupancy table corresponding to the departure station as a departure station channel for controlling the flight device at the departure station; and querying idle in a control channel occupancy table corresponding to the arrival station Control channel as the arrival station channel controlling the flight device at the arrival station.
  • the processor 601 is further configured to: send the departure station channel and the arrival station channel to the flight device, and send a channel enable request of the departure station channel to the remote control of the departure station. Device.
  • the processor 601 is further configured to: monitor a real-time flight position of the flight device after the flight device takes off; determine whether the real-time flight position of the flight device meets a preset channel switching condition, if And transmitting a channel enable request of the arriving station channel to a remote controller of the arriving station.
  • the processor 601 is further configured to: send a channel release request of the departure station channel to a remote controller of the departure station, and release a channel resource occupied by the departure station channel.
  • the flight management server in this embodiment can uniformly manage a plurality of pre-divided control channels, and each control channel includes: a sub-communication channel and a hopping pattern that is cyclically set according to a preset channel interval, and the flight management server is After the received logistics task assigns the corresponding flight device, calculate the flight time of the flight device from the departure station to the arrival station, and allocate the flight device to be free at both the departure station and the arrival station during the flight time. Control channel for auxiliary control of the flight device during take-off or landing.
  • the embodiment of the present application further provides an embodiment of a flying device.
  • the flying device may include:
  • a communication interface configured to receive a target control channel sent by the flight management server
  • a processor configured to determine whether a heartbeat message from the remote controller of the departure station can be received on the target control channel, and if yes, take off from the departure station according to a flight path preset in the flight device.
  • the processor is further configured to: synchronize a real-time flight position to the flight management server during flight of the flying device.
  • the target control channel may specifically include: a departure station channel as a control channel of the departure station, and an arrival station channel as a control channel of the arrival station, the processor may be further configured to: determine at the departure station Whether the heartbeat message is not received on the channel for more than a preset time, or whether the departure station exceeds the preset distance threshold; if so, the heartbeat message sent by the remote controller of the arriving station is received on the arrival station channel.
  • an embodiment of the present application further provides an embodiment of a take-off remote controller.
  • the take-off remote controller may include:
  • the processor 701 is configured to obtain a departure station channel and a flight device identifier from a channel enable request of a departure station channel sent by the flight management server.
  • a communication interface 703 connected to the processor 701 via the communication bus 702 for transmitting a heartbeat message to the corresponding flight device by using the departure station channel, so that the flight device receives the heartbeat message After that, take off from the departure station according to a preset flight route;
  • a display screen 704 connected to the processor 701 and the communication interface 703 via a communication bus 702 is used to display the departure station channel.
  • the processor 701 is further configured to: release the starting station channel after receiving a channel release request of the departure station channel sent by the flight management server.
  • the embodiment of the present application further provides an embodiment of a landing remote controller.
  • the landing remote controller may specifically include:
  • a communication interface configured to receive an enable request of an arrival station channel sent by the flight management server
  • a processor connected to the communication interface via a communication bus for acquiring an arrival station channel and a flight device identifier carried in an enable request of the arrival station channel; if an abnormality occurs in any of the flight devices, corresponding to the flight device in which the abnormality occurs Sending a heartbeat message on the arrival station channel to control the landing process of the abnormally occurring flying device;
  • a display connected to the communication interface and the processor via a communication bus for displaying the departure station channel.
  • the processor may be further configured to: release the arrival station channel after receiving the release request of the arrival station channel sent by the flight management server.
  • a remote controller can be used to control multiple drones at each logistics site, that is, no one-to-one control between the drone and the remote controller;
  • the application embodiment can also ensure that when multiple UAVs take off or land at the same time, the remote controller can control one of the drones as needed, and can quickly connect between multiple control channels corresponding to multiple UAVs. Switching is performed to improve the spectrum utilization efficiency of the remote controller and reduce the reception interference between the drones.
  • the embodiment of the present application can also configure a remote control signal indicator on the drone to help the user to distinguish whether the drone that needs to be controlled is connected.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Signal Processing (AREA)
  • Electromagnetism (AREA)
  • Automation & Control Theory (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Traffic Control Systems (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

本申请提供了飞行装置的控制信道的分配方法、起飞方法和遥控方法,其中,该分配方法包括:为接收到的任务分配对应的飞行装置;依据所述任务中的飞行信息,确定所述飞行装置从所述出发站飞行至所述到达站的飞行时间;依据所述物流信息和所述飞行时间,为所述飞行装置分配满足预设控制条件的目标控制信道。采用本申请实施例,能够保证在多台无人机同时起飞或降落时,遥控器能够根据需要控制其中一台无人机进行控制,并可以快速在多个无人机对应的多个控制信道之间进行切换,从而提升遥控器的频谱利用效率,降低无人机之间的接收干扰。此外,本申请还可以在无人机上配置遥控信号指示灯,帮助操作用户区分是否已经联通所需控制的无人机。

Description

飞行装置的控制信道的分配方法、起飞方法和遥控方法
本申请要求2017年08月16日递交的申请号为201710702657.6、发明名称为“飞行装置的控制信道的分配方法、起飞方法和遥控方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及飞行遥控技术领域,特别涉及一种飞行装置的控制信道的分配方法、起飞方法、起飞遥控方法和降落遥控方法,以及,一种飞行管理服务器、飞行装置、起飞遥控器和降落遥控器。
背景技术
在互联网越来越普及的目前,几乎所有的用户都在互联网上进行购物,相应的,物流行业也发展的越来越快。随着物流行业的普及,采用飞行装置,例如无人机,来运输物流包裹的现象也越来越常见。以无人机物流为例,无人机货物运送一般分为三个阶段,载货起飞,航线飞行和末端货物投递即无人机降落,通过将物流包裹在不同的物流站点之间进行飞行运输,可以解决实际中道路不好走或拥挤等一系列问题。
发明内容
发明人在研究过程中发现,在无人机的降落和起飞阶段,往往因为飞行高度比较低,可能出现行人、电线、房屋等干扰因素,是风险高发的阶段,所以在这一阶段通常采用备用遥控器一对一地对无人机进行辅助控制,即遥控器处于备用等待状态,并不对无人机进行实际控制,只有在突发情况发生时可以快速切换进入主动控制状态,通过控制用户的经验和操作,避免无人机发引发事故。
发明人在研究过程中还发现,由于遥控器和无人机都是一对一配置,而在物流站点无人机的流动性很大,如果在各个物流站点都为每一个无人机都配备一个专用的遥控器,一方面成本比较高;另一方面也很难对同一个物流站点的多个遥控器进行区别,如果因为遥控器使用混乱,不仅不能达到人工正确干预无人机的目的,甚至会引发更严重的事故。
基于此,本申请提供了一种飞行装置的控制信道的分配方法,用以预先将2.4G无线频段划分为80个控制信道,从而在同一个物流站点的各无人机和各遥控器共享全部控制 信道,也因此,在各个物流站点各采用一台遥控器即可分别控制多台无人机,即无人机和遥控器之间不再一对一进行控制;同时,本申请实施例还能够保证在多台无人机同时起飞或降落时,遥控器能够根据需要控制其中一台无人机进行控制,并可以快速在多个无人机对应的多个控制信道之间进行切换,从而提升遥控器的频谱利用效率,降低无人机之间的接收干扰。此外,本申请还可以在无人机上配置遥控信号指示灯,帮助操作用户区分是否已经联通所需控制的无人机。
本申请还提供了一种飞行管理服务器、飞行装置以及起飞、降落遥控器,用以保证上述方法在实际中的实现及应用。
为了解决上述问题,本申请公开了一种飞行装置的控制信道的分配方法,该方法包括:
为接收到的任务分配对应的飞行装置;
依据所述任务中的飞行信息,确定所述飞行装置从所述出发站飞行至所述到达站的飞行时间;
依据所述物流信息和所述飞行时间,为所述飞行装置分配满足预设控制条件的目标控制信道。
其中,所述依据所述物流信息和飞行时间,为所述飞行装置分配满足预设控制条件的目标控制信道,包括:
在所述飞行时间内,查找在所述出发站和所述到达站空闲的控制信道,作为候选信道;
从所述候选信道中选择与各使用信道的距离最远的信道,作为在所述出发站和所述到达站控制所述飞行装置的目标信道;所述使用信道包括:在所述飞行时间内,至少在出发站或到达站对应的状态为非空闲的控制信道。
其中,所述多个控制信道分别对应于多个信道标识;所述从所述候选信道中选择与各使用信道的距离最远的信道,作为控制所述飞行装置的目标信道,包括:
分别计算各候选信道与各使用信道的信道标识之间的差值的绝对值;
将所述绝对值最大的差值对应的候选信道,确定为控制所述飞行装置的目标信道。
其中,预先保存各出发站和到达站的控制信道占用表,所述控制信道占用表用于保存在各时间段内,出发站或到达站的控制信道的空闲情况;
相应的,所述在所述飞行时间内,查找在所述出发站和所述到达站空闲的控制信道,作为候选信道,包括:
分别从所述出发站和所述到达站的控制信道占用表中,查询在所述飞行时间内空闲的控制信道,作为候选信道。
其中,所述方法还包括:
判断所述候选信道是否查询成功,如果是,则执行所述从所述候选信道中选择与各使用信道的距离最远的信道;
如果否,则在所述出发站对应的控制信道占用表中查询空闲的控制信道,作为在所述出发站控制所述飞行装置的出发站信道;以及,在所述到达站对应的控制信道占用表中查询空闲的控制信道,作为在所述到达站控制所述飞行装置的到达站信道。
其中,所述方法还包括:
将所述出发站信道和到达站信道发送至所述飞行装置,以及,将所述出发站信道的信道使能请求发送至所述出发站的遥控器。
其中,所述方法还包括:
在所述飞行装置起飞之后,监控所述飞行装置的实时飞行位置;
判断所述飞行装置的实时飞行位置是否满足预设的信道切换条件,如果是,则将所述到达站信道的信道使能请求发送至所述到达站的遥控器。
其中,所述方法还包括:
向所述出发站的遥控器发送所述出发站信道的信道解除请求,并释放所述出发站信道占用的信道资源。
本申请实施例还提供了一种基于控制信道的起飞方法,该方法包括:
接收飞行管理服务器发送的目标控制信道;
判断在所述目标控制信道上是否能接收到来自出发站的遥控器的心跳消息,如果是,则按照飞行装置中预设的飞行路线从出发站起飞。
其中,所述方法还包括:
在所述飞行装置的飞行过程中,向所述飞行管理服务器同步实时飞行位置。
其中,所述目标控制信道包括:作为出发站的控制信道的出发站信道,和,作为到达站的控制信道的到达站信道,还包括:
判断在所述出发站信道上是否超过预设时间未接收到心跳消息,或者,是否距离出发站超过预设距离阈值;
如果是,则在所述到达站信道上接收到达站的遥控器发送的心跳消息。
本申请实施例还公开了一种起飞遥控方法,该方法包括:,
从飞行管理服务器发送的出发站信道的信道使能请求中,获取出发站信道和飞行装置标识;
使用所述出发站信道,向所述飞行装置标识对应的飞行装置发送心跳消息,以便所述飞行装置接收到所述心跳消息后,按照预设的飞行路线从所述出发站起飞。
其中,所述方法还包括:
在接收到飞行管理服务器发送的出发站信道的信道解除请求后,所述出发站的遥控器释放所述出发站信道。
本申请实施例还公开了一种降落遥控方法,该方法包括:
接收飞行管理服务器发送的到达站信道的使能请求;
获取所述到达站信道的使能请求中携带的到达站信道和飞行装置标识;
如果任一飞行装置出现异常,在出现异常的飞行装置对应的到达站信道上发送心跳消息,以便对所述出现异常的飞行装置的降落过程进行控制。
其中,所述方法还包括:
在接收到飞行管理服务器发送的到达站信道的解除请求后,所述到达站的遥控器释放所述到达站信道。
本申请实施例还公开了一种飞行管理服务器,包括:
处理器,用于为接收到的任务分配对应的飞行装置;依据所述任务中的飞行信息,确定所述飞行装置从所述出发站飞行至所述到达站的有效时间;以及,依据所述物流信息和所述飞行时间,为所述飞行装置分配满足预设控制条件的目标控制信道;
通信接口,用于向所述飞行装置发送所述目标控制信道。
其中,所述处理器用于依据所述物流信息和所述飞行时间,为所述飞行装置分配满足预设控制条件的目标控制信道,包括:
在所述飞行时间内,查找在所述出发站和所述到达站空闲的控制信道,作为候选信道;
从所述候选信道中选择与各使用信道的距离最远的信道,作为在所述出发站和所述到达站控制所述飞行装置的目标信道;所述使用信道包括:在所述飞行时间内,至少在出发站或到达站对应的状态为非空闲的控制信道。
其中,所述多个控制信道分别对应于多个信道标识;所述处理器用于从所述候选信道中选择与各使用信道的距离最远的信道,作为控制所述飞行装置的目标信道,包括:
分别计算各候选信道与各使用信道的信道标识之间的差值的绝对值;
将所述绝对值最大的差值对应的候选信道,确定为控制所述飞行装置的目标信道。
其中,所述处理器还用于预先保存各出发站和到达站的控制信道占用表,所述控制信道占用表用于保存在各时间段内,出发站或到达站的控制信道的空闲情况;
所述处理器用于在所述飞行时间内,查找在所述出发站和所述到达站空闲的控制信道,作为候选信道,包括:
分别从所述出发站和所述到达站的控制信道占用表中,查询在所述飞行时间内空闲的控制信道,作为候选信道。
其中,所述处理器还用于:
判断所述候选信道是否查询成功,如果是,则执行所述从所述候选信道中选择与各使用信道的距离最远的信道;
如果否,则在所述出发站对应的控制信道占用表中查询空闲的控制信道,作为在所述出发站控制所述飞行装置的出发站信道;以及,在所述到达站对应的控制信道占用表中查询空闲的控制信道,作为在所述到达站控制所述飞行装置的到达站信道。
其中,所述处理器还用于:
将所述出发站信道和到达站信道发送至所述飞行装置,以及,将所述出发站信道的信道使能请求发送至所述出发站的遥控器。
其中,所述处理器还用于:
在所述飞行装置起飞之后,监控所述飞行装置的实时飞行位置;判断所述飞行装置的实时飞行位置是否满足预设的信道切换条件,如果是,则将所述到达站信道的信道使能请求发送至所述到达站的遥控器。
向所述出发站的遥控器发送所述出发站信道的信道解除请求,并释放所述出发站信道占用的信道资源。
其中,所述处理器还用于:
向所述出发站的遥控器发送所述出发站信道的信道解除请求,并释放所述出发站信道占用的信道资源。
本申请实施例还公开了一种飞行装置,包括:
通信接口,用于接收飞行管理服务器发送的目标控制信道;
处理器,用于判断在所述目标控制信道上是否能接收到来自出发站的遥控器的心跳消息,如果是,则按照飞行装置中预设的飞行路线从出发站起飞。
在所述飞行装置的飞行过程中,向所述飞行管理服务器同步实时飞行位置。
其中,所述处理器还用于:
在所述飞行装置的飞行过程中,向所述飞行管理服务器同步实时飞行位置。
其中,所述目标控制信道包括:作为出发站的控制信道的出发站信道,和,作为到达站的控制信道的到达站信道,所述处理器还用于:
判断在所述出发站信道上是否超过预设时间未接收到心跳消息,或者,是否距离出发站超过预设距离阈值;如果是,则在所述到达站信道上接收到达站的遥控器发送的心跳消息。
本申请实施例还公开了一种起飞遥控器,包括:
处理器,用于从飞行管理服务器发送的出发站信道的信道使能请求中,获取出发站信道和飞行装置标识;
通信接口,用于使用所述出发站信道,向所述飞行装置标识对应的飞行装置发送心跳消息,以便所述飞行装置接收到所述心跳消息后,按照预设的飞行路线从所述出发站起飞。
其中,所述处理器还用于:
在接收到飞行管理服务器发送的出发站信道的信道解除请求后,释放所述出发站信道。
本申请实施例还公开了一种降落遥控器,包括:
通信接口,用于接收飞行管理服务器发送的到达站信道的使能请求;
处理器,用于获取所述到达站信道的使能请求中携带的到达站信道和飞行装置标识;如果任一飞行装置出现异常,在出现异常的飞行装置对应的到达站信道上发送心跳消息,以便对所述出现异常的飞行装置的降落过程进行控制。
其中,所述处理器还用于:
在接收到飞行管理服务器发送的到达站信道的解除请求后,释放所述到达站信道。
与现有技术相比,本申请实施例包括以下优点:
在本申请实施例中,采用飞行管理服务器统一管理预先划分的多个控制信道,每一个控制信道都包括:子通信频道和按照预设的信道间隔循环设置的跳频图谱,飞行管理服务器在为接收到的任务分配对应的飞行装置后,再计算飞行装置从所述出发站飞行至所述到达站的飞行时间,为所述飞行装置分配在该飞行时间内在出发站和到达站都空闲的控制信道,用来对飞行装置在起飞或降落时进行辅助控制。通过上述方式,就可以无需对遥控器和飞行装置进行一对一的绑定控制,如果起飞装置在起飞或者降落的过程中, 需要进行辅助控制,则可以分别在起飞和降落时由起飞遥控器和降落遥控器采用飞行管理服务器预先分配的控制信道对飞行装置进行控制,并在控制完成之后释放该控制信道的信道资源即可。
当然,实施本申请的任一产品并不一定需要同时达到以上所述的所有优点。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本申请中划分控制信道的跳频图谱的示例性示意图;
图2是本申请在实际应用中的示例性场景示意图;
图3是本申请的方法实施例的示例性流程图;
图4是本申请的信令交互的示例性示意图;
图5是本申请的遥控器的控制界面的示例性的示意图;
图6是本申请的飞行管理服务器实施例的示例性结构示意图;
图7是本申请的遥控器实施例的示例性结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
在本申请实施例中,需要预先对2.4G无线频段进行划分。2.4G无线频段,是指频率处于2.405GHz-2.485GHz(科学、医药、农业)之间的频段。在本申请实施例中,首先将2.4G无线资源频段2.400GHz~2.480GHz划分为80个子通信频道,每一个频道宽度为1M,并且,按照22M间隔循环设置跳频图谱。在本实施例中将这样一个1M的频点及其对应的跳频图谱作为一个控制信道,则得到一共80个控制信道,控制信道之间互相分离并能够获取跳频增益。因此,一个控制信道可以包括起始频点和跳频图案两部分, 而80个控制信道按照起始频点顺序进行从1~80的编号(即控制信道标识),而这80个控制信道的划分方式预先固化在飞行管理服务器、飞行装置(例如无人机等)和遥控器中,根据编号可以得到一个唯一的控制信道。
具体的,跳频图谱可以参考图1所示,在图1中,横轴为物理频道的跳频周期,频点即物理频道的中心位置;纵轴为时隙,为了实现频道资源的跳频增益,一般会把时间划分成若干个时间片,一个时间片即图1中的一个方块就是一个时隙,在图1中,第一列方块中从1到80的序号用于表示控制信道的编号,第二列方块表示起始频点。在图1中,表示一个跳频周期内,逻辑频道在每一个时隙内的物理位置,因为一个跳频周期内同一个逻辑信道在不同的物理频道上来回变化,所以叫做跳频。在图1中,同一种绘图方式的多个方块表示一个逻辑频道(逻辑频道即采用控制信道标识来区分),而逻辑频道在跳频周期内第一个时隙的位置就是起始频点。例如,方块内都有字母“A”的各方块表示一个逻辑频道,以此类推,方块内都有字母“D”的各方块表示一个逻辑频道,方块内都是右斜线的各方块表示一个逻辑频道,而方块内都是左斜线的各方块也表示一个逻辑频道,等等。当然,这仅仅是示例性数据,在实际应用中,仍然可以采用其他方式来标识同一个逻辑频道。
在本申请实施例中,无人驾驶飞机简称“无人机”,是利用无线电遥控设备和自备的程序控制装置操纵的不载人飞机。机上无驾驶舱,但安装有自动驾驶仪、程序控制装置等设备,以飞行装置为无人机进行举例示意。
在本申请实施例中,任务可以是物流任务,例如从出发站采用飞行装置将一个或多个物流包裹运输至到达站,则从出发站运输这一个或多个物流包裹的任务即是物流任务。任务还可以是监控任务,例如可以采用飞行装置对出发站或到达站的设备进行监控等。任务还可以是摄影任务,例如,采用飞行装置对在出发站和到达站之间进行航拍的任务,等等。因此,本申请实施例可以适用于从出发站采用飞行装置飞行至到达站来完成的任何任务。
参考图2,为本申请在实际应用中的示例性场景示意图。其中,飞行管理服务器101可以管理预先划分的各控制信道,以及各出发站和各到达站的飞行装置102(例如无人机)。具体的,飞行管理服务器101可以将哪一个出发站或到达站处,有多少个无人机可以使用,以及哪一个出发站或到达站,哪一个控制信道处于空闲状态,可以用来作为控制某个无人机的出发站信道或到达站信道等。其中,无人机的出发站信道用于表示在 无人机起飞的出发站用来对无人机进行控制的控制信道,而到达站信道用于表示在无人机降落的到达站用来对无人机进行控制的控制信道。
为了描述方便,以下以任务为物流任务为例进行说明。在有物流任务产生时,例如,存在一个从图2中的出发站运输至到达站的物流包裹,则飞行管理服务器101可以为该物流任务(在实际应用中可以采用物流任务标识来进行区分)分配一个无人机,并且,为该无人机分配用于起飞时控制该无人机的出发站信道,以及用于降落时控制该无人机的到达站信道。在本申请实施例中,在每一个出发站或到达站,均设置一个与该出发站对应的出发站的遥控器103,或者到达站的遥控器104。飞行管理服务器为无人机分配出发站信道或者到达站信道后,会将出发站信道的信道使能请求通知出发站的遥控器103,以便出发站的遥控器103可以在该出发站信道上控制无人机的起飞;以及,飞行管理服务器可以将到达站信道的信道使能请求发送至到达站的遥控器104,以便到达站的遥控器104可以在到达站信道上控制无人机的降落。
而无人机在出发站起飞前,可以在出发站信道上接收出发站的遥控器发送的心跳消息,如果能接收到,再按照预设的飞行路线起飞,如果接收不到,就不进行起飞,从而保证了出发站的遥控器能够成功在出发站信道上控制无人机以避免不可控的情况发生。同理,在无人机将要在到达站开始降落时,也在到达站信道上接收到达站的遥控器发送的心跳消息,如果能接收到再开始降落,这样就方便到达站的遥控器在无人机出现意外情况或者需要对无人机进行控制时,可以正常使用到达站信道向无人机发送控制指令,从而实现对无人机的控制。
参考图3,示出了本申请一种飞行装置的控制信道的分配方法实施例的流程图,本实施例可以应用于图2所示的飞行管理服务器上,本实施例可以包括以下步骤:
步骤301:飞行管理服务器为接收到的任务分配对应的飞行装置。
在实际应用中,以任务为物流任务为例,飞行管理服务器可以与各物流站点建立联系,各物流站点在有物流包裹需要运输的时候,将物流包裹的物流号码发送至飞行管理服务器作为物流任务标识,用来标识飞行管理服务器收到的各物流包裹。在本实施例中,将从同一个物流站点运输至其他的相同物流站点的一个或多个物流包括的待运输任务,称为一个物流任务。例如,物流站点A到物流站点B,当前有3个物流包裹待运输,且该3个物流包裹可以采用一台无人机运输,则可以将这3个物流包裹合并为一个物流任务,物流任务标识可以是飞行管理服务器为该物流任务生成的唯一序列码,例如: 201705300114AB。当然,这仅仅是示例性的数据。其中,可以理解的是,在本实施例中将物流站点A称为该物流任务的出发站,而将物流站点B称为该物流任务的到达站。
飞行管理服务器在接收到新的物流任务时,会根据该物流任务标识的出发站对应的无人机情况,为该物流任务分配一个无人机。例如,在物流站点A有无人机A和无人机B共两台无人机可用,而无人机A的承载能力更强一些,能承载20KG以上的物理包裹,且上述3个物流包裹的总重量为21KG,则可以将无人机A分配为承担物流任务“201705300114AB”的无人机。当然,如果两台无人机都可以选择,则可以随机选择一台。
步骤302:飞行管理服务器依据所述任务中的飞行信息,确定所述飞行装置从所述出发站飞行至所述到达站的飞行时间。
在分配了无人机后,根据任务中的飞行信息,该飞行信息可以包括出发站和到达站的信息,例如,出发站为物流站点A,到达站为物流站点B。飞行管理服务器依据被分配的无人机的平均飞行速度,计算从出发站飞行至到达站的飞行时间。其中,飞行时间在实际应用中,是无人机从出发站飞行至到达站的过程中满足预设时间条件的时间。例如,飞行时间可以是无人机A从物流站点A飞行至物流站点B的全部占用时间。例如,无人机A的飞行速度为120km/h,则将物流站点A到物流站点B的距离除以无人机A的飞行速度,就可以得到预计的飞行时间。当然,飞行时间还可以是满足预设的部分时间条件的时间。例如,从出发站开始起飞的起飞时间,以及,在到达站开始降落的降落时间,即不再将在出发站和到达站之间平稳飞行的时间计算在飞行时间内。当然,本领域技术人员也可以设置其他的一些时间条件来得到飞行时间,用来筛选在该飞行时间内出发站或到达站的哪些控制信道是空闲的。
步骤303:飞行管理服务器依据所述物流信息和所述飞行时间,为所述飞行装置分配满足预设飞行条件的目标控制信道。
在实际应用中,因为已经预先划分了80个可用的控制信道,则每个物流站点都可以使用这80个控制信道,为了方便飞行管理服务器对各个物流站点的控制信道的管理,飞行管理服务器保存了各个物流站点的控制信道占用表,在控制信道占用表中包括时间和控制信道,即在某个时间段内,某个控制信道是否为空闲状态。例如,对于物流站点A的控制信道占用表中,保存有时间段“2017年5月15号10:00至2017年5月15号10:10”的信息,对应该时间段的控制信道为控制信道1,则表示在该时间段内,在物流站点A被占用的控制信道为控制信道1。
具体的,步骤303可以包括以下步骤A1~步骤A3:
步骤A1:在所述飞行时间内,查找在所述出发站和所述到达站空闲的控制信道,作为候选信道。
为了方便在出发站即物流站点A,以及到达站即物流站点B,都能通过控制信道对无人机进行控制,飞行管理服务器首先可以查找到在出发站和到达站都空闲的控制信道,作为候选信道。假设飞行时间为全部占用时间,一共为15分钟,则飞行管理服务器就查找从当前时刻开始的15分钟内,在物流站点A和物流站点B都空闲的控制信道。例如,15分钟内物流站点A的空闲信道中有控制信道3,而控制信道315分钟内在物流站点B也是空闲信道,则控制信道3就是候选信道,以此类推,从80个控制信道中找出所有的候选信道。
当然,假设在出发站的起飞时间为2分钟,而在到达站的降落时间也是2分钟,则可以分别查找在起飞时间的2分钟内物流站点A的空闲信道,以及,在降落时间的2分钟内物流站点B的空闲信道即可。在飞行装置平稳飞行的11分钟内可以无需考虑控制信道是否空闲。
具体的,在飞行管理服务器保存了各个物流站点的控制信道占用表的情况下,飞行管理服务器可以先在物流站点A对应的控制信道占用表中查找全部占用时间即15分钟内空闲的控制信道,作为候选集合1。飞行管理服务器接着再从物流站点B对应的控制信道占用表中查找15分钟内空闲的控制信道,作为候选集合2,接着飞行管理服务器将候选集合1和2进行交集,即可得到在物流站点A和物流站点B都空闲的候选信道了。
步骤A2:从所述候选信道中选择与各使用信道的距离最远的信道,作为在所述出发站和所述到达站控制所述飞行装置的目标信道。
为了进一步避免信道之间的干扰,在实际应用中,可以选择离使用信道距离比较远的候选信道作为最终确定的目标信道。其中,使用信道可以包括:在所述飞行时间内,至少有出发站或到达站对应的状态为非空闲的控制信道。具体的,在查找与各使用信道的距离最远的候选信道时,可以分别计算各候选信道与各使用信道的信道标识之间的差值,然后将差值中的绝对值最大的候选信道,确定为控制飞行装置的目标信道即可。
例如,候选信道有3个,控制信道6、控制信道10和控制信道15,而使用信道有控制信道25、控制信道61和控制信道76,则分别将候选信道的标识号与25、61和76相减,对于控制信道6则分别得到-19、-55和-70,对于控制信道10则分别得到-15、-51和-66,对于控制信道15则分别得到-10、-46和-61。而绝对值最大的是控制信道6与使 用信道76的差值,因此,可以将控制信道6作为在出发站和到达站控制飞行装置的目标信道。
因为在实际应用中,可能不会存在同时在出发站和到达站都空闲的控制信道,而是仅仅在出发站空闲或者仅仅在到达站空闲的控制信道,则可以理解的是,在步骤A1之后步骤A2之前,还可以判断候选信道即出发站和到达站都空闲的控制信道是否查询成功,查询成功的情况下执行步骤A2;如果查询不成功,则进入步骤A3:
步骤A3:在所述出发站对应的控制信道占用表中查询空闲的控制信道,作为在所述出发站控制所述飞行装置的出发站信道;以及,在所述到达站对应的控制信道占用表中查询空闲的控制信道,作为在所述到达站控制所述飞行装置的到达站信道。
在本步骤中,因为没有同一个控制信道在出发站和到达站同时都空闲,所以就可以查找仅在出发站空闲的控制信道作为出发站信道,并查找仅在到达站空闲的控制信道作为到达站信道。在实际应用中,飞行装置在出发站起飞时,采用出发站信道来接收出发站的遥控器的心跳消息,而飞行装置在到达站降落时再切换为到达站信道接收到达站的遥控器的心跳消息即可。
例如,出发站空闲的信道为控制信道5,到达站空闲的信道为控制信道15和27,则可以将[控制信道5,控制信道15]作为候选信道1,其中的出发站信道为控制信道5,到达站信道为控制信道15;也可以将[控制信道5,控制信道]27作为候选信道2,其中的出发站信道为控制信道5,到达站信道为控制信道27。
执行步骤303之后,得到在出发站和到达站都能控制飞行装置的目标控制信道,飞行管理服务器再将目标控制信道发送至飞行装置。如果目标控制信道在出发站和到达站都是同一个控制信道,则可以仅发送一个信道标识,而如果出发站信道和到达站信道不同,则飞行管理服务器可以将出发站信道的信道标识和到达站信道的信道标识都发送给飞行装置。
在本实施例中,以出发站信道和到达站信道不是同一个控制信道为例进行说明,接着进入步骤304。
步骤304:飞行管理服务器将所述出发站信道和到达站信道发送至所述飞行装置,以及,将所述出发站信道的信道使能请求发送至所述出发站的遥控器。
飞行管理服务器将出发站信道的信道标识和到达站信道的信道标识都发送至飞行装置,飞行装置在接收到这两个信道标识后,首先在该出发站信道的信道标识指示的控制信道上接收来自出发站的遥控器的心跳消息。同时,飞行管理服务器还可以将出发站信 道的信道使能请求发送至出发站的遥控器,其中,信道使能请求可以包括:飞行装置标识、物流任务标识、出发站信道的信道标识和持续时间,出发站的遥控器就在该持续时间内在出发站信道上向飞行装置标识对应的飞行装置发送心跳消息。
步骤305:飞行装置判断在所述出发站信道上是否能接收到来自所述出发站的遥控器的心跳消息,如果是,则进入步骤306。
在到达站起飞时,飞行装置首先检查是否接收到飞行管理服务器下发的出发站信道的信道标识和到达站信道的信道标识,如果接收到,则在出发站信道的信道标识对应的控制信道上,接收来自出发站的遥控器的心跳消息。
步骤306:飞行装置按照所述飞行装置中预设的飞行路线从出发站起飞。
因为只有出发站的遥控器和飞行装置同时工作在同一个控制信道下,出发站的遥控器才能对飞行装置进行控制,所以如果飞行装置能接收到来自出发站的遥控器的心跳消息,则飞行装置就可以按照预设的飞行路线从出发站起飞。
可以理解的是,为了使得飞行装置处于遥控器辅助控制的情况下,地面的操作人员能够更为清楚的辨识,可以在飞行装置上预先设置红绿双闪雾灯,一旦接收到来自出发站的遥控器的心跳消息,就可以控制双闪雾灯开始闪动,并且在接收不到心跳消息的情况下,控制双闪雾灯停止闪动。当然,本领域技术人员也可以采用其他具有显著性识别特点的其他方式来进行标识。
步骤307:在所述飞行装置起飞之后,飞行管理服务器监控所述飞行装置的实时飞行位置。
在所述飞行装置的飞行过程中,向所述飞行管理服务器同步实时飞行位置。例如,与出发站的实际距离变化,或者是否到达了某一个航点等,以便飞行管理服务器对飞行装置在出发站至到达站之间进行全程监控。
步骤308:飞行管理服务器判断所述飞行装置的实时飞行位置是否满足预设的信道切换条件,如果是,则步进入步骤309。
在飞行管理服务器可以预先设置一些信道切换条件,信道切换条件用于表示飞行装置快要在到达站降落了,这种情况下,如果出发站信道和到达站信道不是同一个控制信道,就需要将到达站信道的信道使能请求发送至到达站的遥控器上。当然,如果出发站信道和到达站信道是同一个控制信道,则可以不执行步骤308。
在实际应用中,飞行管理服务器根据接收到的飞行装置同步的实时飞行位置,可以实时判断飞行装置是否已经飞完从出发站至到达站的航程的一半,或者,是否飞至到达 站之前的第一个航点,等等,如果满足这些预先设置好的任意一个或多个信道切换条件,则执行步骤309。
步骤309:飞行管理服务器将所述到达站信道的使能请求发送至所述到达站的遥控器,以及,向所述出发站的遥控器发送所述出发站信道的解除请求,以便在所述出发站的遥控器释放所述出发站信道的信道资源,以及,释放出发站信道的信道资源。
在飞行装置进入到达站附近区域开始准确降落的情况下,如果飞行装置在飞行路线上正常飞行至到达站了,就可以正常降落。在实际应用中,可能会存在在到达站有多个飞行装置在同一时间需要降落的情况,在这种情况下,如果飞行装置是正常飞行至到达站,就可以直接执行降落流程。在同一时间,到达站的遥控器只能在一个到达站信道上发送心跳消息,因此,如果有多个飞行装置同一时间需要降落,到达站的遥控器只需要控制那个出现异常的飞行装置进行降落,其他未出现异常的飞行装置直接正常降落即可。
假设有飞行装置A、B、C同时进入到达站附近,到达站的遥控器会从飞行管理服务器发送的、这三个飞行装置的到达站信道的使能请求中,获取到这三个飞行装置A、B、C分别对应的到达站信道A、B、C。到达站的遥控器在同一个时间,可以工作在任意一个到达站信道上,即可以在任意一个到达站信道上发送心跳消息来控制该到达站信道对应的飞行装置。其中,到达站信道的使能请求也可以包括:飞行装置标识、物流任务标识和到达站信道。同时,飞行管理服务器还可以在保存的出发站的控制信道占用表中,将出发站信道的非空闲状态修改为空闲状态,并释放出发站信道的信道资源。
在飞行装置A、B、C开始降落时,假设操作人员目测到飞行装置C状态不正常,可以将到达站的遥控器快速切换到到达站信道C上,完成对飞行装置C降落过程的人工控制。不过在实际应用中,大多数情况在同一个时间只有一架飞行装置需要降落,到达站的遥控工作在这架飞行装置对应的到达站信道上即可。
而对于飞行装置来讲,也可以预先设置一些信道切换条件,例如,离开出发站在预设距离阈值(例如2公里等)以上,或者,持续预设时间阈值(例如1分钟等)没有收到来自到达站的遥控器的心跳消息等,则飞行装置可以重新设置接收心跳消息的控制信道,自动切换至到达站信道上接收来自到达站的遥控器发送的心跳消息。
具体的,飞行管理服务器、飞行装置、出发站和到达站的遥控器之间的信令交互图可以参考图4所示。在图4中,飞行管理服务器控制信道成功分配之后,将到达站信道和出发站信道一并发送给飞行装置,并且,将出发站信道的信道使能请求(可以包括出发站信道标识、飞行装置标识等)发送至出发站的遥控器,飞行装置使用出发站信道接 收出发站的遥控器发送的心跳消息并起飞。在飞行装置的起飞过程中,飞行装置向飞行管理服务器实时同步飞行位置信息,并且飞行装置在满足预设信道切换条件时,切换至到达站信道接收到达站的遥控器发送的心跳消息。
而飞行管理服务器则在满足预设信道切换条件时,向到达站的遥控器发送到达站信道的信道使能请求,并且向出发站的遥控器发送出发站信道的信道解除请求,同时飞行管理服务器释放出发站信道的信道资源。接着,到达站的遥控器在到达站信道上向出现异常的飞行装置发送心跳消息,而出现异常的飞行装置在到达站信道上接收到心跳消息后,就在出发站进行降落;未出现异常的飞行装置则在到达站自行降落即可,同时,飞行管理服务器将到达站信道的信道资源进行释放。
在实际应用中,因为各出发站或到达站,都仅仅配置了一个遥控器,因此,如果在相同时间或者接近时间内,在某个出发站有多个无人机需要起飞,或者在某个到达站有多个无人机需要降落,可以在对应的遥控器上设置信道选择旋钮等,具体的,遥控器的一个示例性控制界面可以参考图5所示。
在图5中,假设为到达站的遥控器,则遥控器上可以设置一个活动信道显示屏幕501和信道选择旋钮502,在活动信道显示屏幕501上用于按照接收时间的先后顺序,从上到下地依次显示到达站的遥控器接收到的使能请求中的各个到达站信道。例如对于图5来讲,该到达站的遥控器最先接收到的到达站信道为控制信道15,最后接收到的到达站信道为控制信道31,当前一共有3个活动信道。当然,在活动信道显示屏幕上还可以和控制信道标识一并显示物流任务标识和飞行装置标识、以及出发站和到达站等等,便于操作人员分辨和选择信道。
而到达站的遥控器最新接收到的控制信道则依次显示在控制信道31下方的列表中即可。操作人员可以通过旋转信道选择旋钮502来选中与出现异常的飞行装置对应的某一个活动信道,选择后遥控器就立即使用选中的活动信道以及使用飞行装置标识和物流任务标识携带在心跳消息中发送给该飞行装置。在实际应用中,如果活动信道显示屏幕501的显示内容为空,则默认选中最新显示的活动信道。
同时,飞行管理服务器还可以向出发站的遥控器发送出发站信道的解除请求,该解除请求中可以包括:出发站信道标识、物流任务标识和飞行装置标识,出发站的遥控器接收到该解除请求之后,就可以将出发站信道对应的那一列活动信道显示列表进行删除。其中,遥控器与飞行管理服务器可以通过物流站点WI-FI网络或者移动通信网络建立长链接,并通过该长链接来接收前述的控制信道的使能请求和控制信道的解除请求。
可见,在本申请实施例中,采用飞行管理服务器统一管理预先划分的多个控制信道,每一个控制信道都包括:子通信频道和按照预设的信道间隔循环设置的跳频图谱,飞行管理服务器在为接收到的物流任务分配对应的飞行装置后,再计算飞行装置从所述出发站飞行至所述到达站的飞行时间,为所述飞行装置分配在该飞行时间内在出发站和到达站都空闲的控制信道,用来对飞行装置在起飞或降落时进行辅助控制。通过上述方式,就可以无需对遥控器和飞行装置进行一对一的绑定控制,只需要在起飞和降落时采用飞行管理服务器预先分配的控制信道进行控制,并在控制完成之后释放该控制信道的信道资源即可。
因此,采用本申请实施例,在各个物流站点各采用一台遥控器即可分别控制多台无人机,即无人机和遥控器之间不再一对一进行控制;同时,本申请实施例还能够保证在多台无人机同时起飞或降落时,遥控器能够根据需要控制其中一台无人机进行控制,并可以快速在多个无人机对应的多个控制信道之间进行切换,从而提升遥控器的频谱利用效率,降低无人机之间的接收干扰。此外,本申请实施例还可以在无人机上配置遥控信号指示灯,帮助操作用户区分是否已经联通所需控制的无人机。
对于前述的方法实施例,为了简单描述,故将其都表述为一系列的动作组合,但是本领域技术人员应该知悉,本申请并不受所描述的动作顺序的限制,因为依据本申请,某些步骤可以采用其他顺序或者同时进行。其次,本领域技术人员也应该知悉,说明书中所描述的实施例均属于优选实施例,所涉及的动作和模块并不一定是本申请所必须的。
参见图6,本申请还提供了一种飞行管理服务器实施例,在本实施例中,该飞行管理服务器可以包括:
处理器601,用于为接收到的任务分配对应的飞行装置;依据所述任务中的飞行信息,确定所述飞行装置从所述出发站飞行至所述到达站的有效时间;以及,依据所述物流信息和所述飞行时间,为所述飞行装置分配满足预设控制条件的目标控制信道;以及,
与处理器601通过通信总线602连接的通信接口603,用于向所述飞行装置发送所述目标控制信道。
其中,所述处理器601用于依据所述物流信息和所述飞行时间,为所述飞行装置分配满足预设控制条件的目标控制信道,具体可以包括:
在所述飞行时间内,查找在所述出发站和所述到达站空闲的控制信道,作为候选信 道;从所述候选信道中选择与各使用信道的距离最远的信道,作为在所述出发站和所述到达站控制所述飞行装置的目标信道;所述使用信道包括:在所述飞行时间内,至少在出发站或到达站对应的状态为非空闲的控制信道。
其中,所述多个控制信道分别对应于多个信道标识;所述处理器601用于从所述候选信道中选择与各使用信道的距离最远的信道,作为控制所述飞行装置的目标信道,具体可以包括:分别计算各候选信道与各使用信道的信道标识之间的差值的绝对值;以及,将所述绝对值最大的差值对应的候选信道,确定为控制所述飞行装置的目标信道。
其中,所述处理器601还可以用于预先保存各出发站和到达站的控制信道占用表,所述控制信道占用表用于保存在各时间段内,出发站或到达站的控制信道的空闲情况;所述处理器用于在所述飞行时间内,查找在所述出发站和所述到达站空闲的控制信道,作为候选信道,具体可以包括:分别从所述出发站和所述到达站的控制信道占用表中,查询在所述飞行时间内空闲的控制信道,作为候选信道。
其中,所述处理器601还可以用于:判断所述候选信道是否查询成功,如果是,则执行所述从所述候选信道中选择与各使用信道的距离最远的信道;如果否,则在所述出发站对应的控制信道占用表中查询空闲的控制信道,作为在所述出发站控制所述飞行装置的出发站信道;以及,在所述到达站对应的控制信道占用表中查询空闲的控制信道,作为在所述到达站控制所述飞行装置的到达站信道。
其中,所述处理器601还可以用于:将所述出发站信道和到达站信道发送至所述飞行装置,以及,将所述出发站信道的信道使能请求发送至所述出发站的遥控器。
其中,所述处理器601还可以用于:在所述飞行装置起飞之后,监控所述飞行装置的实时飞行位置;判断所述飞行装置的实时飞行位置是否满足预设的信道切换条件,如果是,则将所述到达站信道的信道使能请求发送至所述到达站的遥控器。
其中,所述处理器601还可以用于:向所述出发站的遥控器发送所述出发站信道的信道解除请求,并释放所述出发站信道占用的信道资源。
可见,本实施例中的飞行管理服务器可以统一管理预先划分的多个控制信道,每一个控制信道都包括:子通信频道和按照预设的信道间隔循环设置的跳频图谱,飞行管理服务器在为接收到的物流任务分配对应的飞行装置后,再计算飞行装置从所述出发站飞行至所述到达站的飞行时间,为所述飞行装置分配在该飞行时间内在出发站和到达站都空闲的控制信道,用来对飞行装置在起飞或降落时进行辅助控制。通过上述方式,就可以无需对遥控器和飞行装置进行一对一的绑定控制,只需要在起飞和降落时采用飞行管 理服务器预先分配的控制信道进行控制,并在控制完成之后释放该控制信道的信道资源即可。
本申请实施例还提供了一种飞行装置实施例,在本实施例中,该飞行装置可以包括:
通信接口,用于接收飞行管理服务器发送的目标控制信道;
处理器,用于判断在所述目标控制信道上是否能接收到来自出发站的遥控器的心跳消息,如果是,则按照飞行装置中预设的飞行路线从出发站起飞。
其中,所述处理器还可以用于:在所述飞行装置的飞行过程中,向所述飞行管理服务器同步实时飞行位置。
其中,所述目标控制信道具体可以包括:作为出发站的控制信道的出发站信道,和,作为到达站的控制信道的到达站信道,所述处理器还可以用于:判断在所述出发站信道上是否超过预设时间未接收到心跳消息,或者,是否距离出发站超过预设距离阈值;如果是,则在所述到达站信道上接收到达站的遥控器发送的心跳消息。
参考图7所示,本申请实施例还提供了一种起飞遥控器实施例,在本实施例中,该起飞遥控器可以包括:
处理器701,用于从飞行管理服务器发送的出发站信道的信道使能请求中,获取出发站信道和飞行装置标识;
与所述处理器701通过通信总线702连接的通信接口703,用于使用所述出发站信道,向所述飞行装置标识对应的飞行装置发送心跳消息,以便所述飞行装置接收到所述心跳消息后,按照预设的飞行路线从所述出发站起飞;
与所述处理器701和通信接口703通过通信总线702连接的显示屏704,用于显示出发站信道。
其中,所述处理器701还可以用于:在接收到飞行管理服务器发送的出发站信道的信道解除请求后,释放所述出发站信道。
本申请实施例还提供了一种降落遥控器实施例,在本实施例中,该降落遥控器具体可以包括:
通信接口,用于接收飞行管理服务器发送的到达站信道的使能请求;
与通信接口通过通信总线连接的处理器,用于获取所述到达站信道的使能请求中携带的到达站信道和飞行装置标识;如果任一飞行装置出现异常,在出现异常的飞行装置 对应的到达站信道上发送心跳消息,以便对所述出现异常的飞行装置的降落过程进行控制;
与通信接口和处理器通过通信总线连接的显示屏,用于显示出发站信道。
其中,所述处理器还可以用于:在接收到飞行管理服务器发送的到达站信道的解除请求后,释放所述到达站信道。
对于本申请实施例中的遥控器,在各个物流站点各采用一台遥控器即可分别控制多台无人机,即无人机和遥控器之间不再一对一进行控制;同时,本申请实施例还能够保证在多台无人机同时起飞或降落时,遥控器能够根据需要控制其中一台无人机进行控制,并可以快速在多个无人机对应的多个控制信道之间进行切换,从而提升遥控器的频谱利用效率,降低无人机之间的接收干扰。此外,本申请实施例还可以在无人机上配置遥控信号指示灯,帮助操作用户区分是否已经联通所需控制的无人机。
需要说明的是,本说明书中的各个实施例均采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似的部分互相参见即可。对于装置类实施例而言,由于其与方法实施例基本相似,所以描述的比较简单,相关之处参见方法实施例的部分说明即可。
最后,还需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
以上对本申请所提供的飞行装置的控制信道的分配方法、起飞方法和遥控方法进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想;同时,对于本领域的一般技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。

Claims (30)

  1. 一种飞行装置的控制信道的分配方法,其特征在于,该方法包括:
    为接收到的任务分配对应的飞行装置;
    依据所述任务中的飞行信息,确定所述飞行装置从出发站飞行至到达站的飞行时间;
    依据所述物流信息和所述飞行时间,为所述飞行装置分配满足预设控制条件的目标控制信道。
  2. 根据权利要求1所述的方法,其特征在于,所述依据所述物流信息和飞行时间,为所述飞行装置分配满足预设控制条件的目标控制信道,包括:
    在所述飞行时间内,查找在所述出发站和所述到达站空闲的控制信道,作为候选信道;
    从所述候选信道中选择与各使用信道的距离最远的信道,作为在所述出发站和所述到达站控制所述飞行装置的目标信道;所述使用信道包括:在所述飞行时间内,至少在出发站或到达站对应的状态为非空闲的控制信道。
  3. 根据权利要求2所述的方法,其特征在于,多个控制信道分别对应于多个信道标识;所述从所述候选信道中选择与各使用信道的距离最远的信道,作为控制所述飞行装置的目标信道,包括:
    分别计算各候选信道与各使用信道的信道标识之间的差值的绝对值;
    将所述绝对值最大的差值对应的候选信道,确定为控制所述飞行装置的目标信道。
  4. 根据权利要求2所述的方法,其特征在于,预先保存各出发站和到达站的控制信道占用表,所述控制信道占用表用于保存在各时间段内,出发站或到达站的控制信道的空闲情况;
    相应的,所述在所述飞行时间内,查找在所述出发站和所述到达站空闲的控制信道,作为候选信道,包括:
    分别从所述出发站和所述到达站的控制信道占用表中,查询在所述飞行时间内空闲的控制信道,作为候选信道。
  5. 根据权利要求4所述的方法,其特征在于,还包括:
    判断所述候选信道是否查询成功,如果是,则执行所述从所述候选信道中选择与各使用信道的距离最远的信道;
    如果否,则在所述出发站对应的控制信道占用表中查询空闲的控制信道,作为在所 述出发站控制所述飞行装置的出发站信道;以及,在所述到达站对应的控制信道占用表中查询空闲的控制信道,作为在所述到达站控制所述飞行装置的到达站信道。
  6. 根据权利要求5所述的方法,其特征在于,还包括:
    将所述出发站信道和到达站信道发送至所述飞行装置,以及,将所述出发站信道的信道使能请求发送至所述出发站的遥控器。
  7. 根据权利要求6所述的方法,其特征在于,还包括:
    在所述飞行装置起飞之后,监控所述飞行装置的实时飞行位置;
    判断所述飞行装置的实时飞行位置是否满足预设的信道切换条件,如果是,则将所述到达站信道的信道使能请求发送至所述到达站的遥控器。
  8. 根据权利要求6所述的方法,其特征在于,还包括:
    向所述出发站的遥控器发送所述出发站信道的信道解除请求,并释放所述出发站信道占用的信道资源。
  9. 一种基于控制信道的起飞方法,其特征在于,该方法包括:
    接收飞行管理服务器发送的目标控制信道;
    判断在所述目标控制信道上是否能接收到来自出发站的遥控器的心跳消息,如果是,则按照飞行装置中预设的飞行路线从出发站起飞。
  10. 根据权利要求9所述的方法,其特征在于,还包括:
    在所述飞行装置的飞行过程中,向所述飞行管理服务器同步实时飞行位置。
  11. 根据权利要求9所述的方法,其特征在于,所述目标控制信道包括:作为出发站的控制信道的出发站信道,和,作为到达站的控制信道的到达站信道,还包括:
    判断在所述出发站信道上是否超过预设时间未接收到心跳消息,或者,是否距离出发站超过预设距离阈值;
    如果是,则在所述到达站信道上接收到达站的遥控器发送的心跳消息。
  12. 一种起飞遥控方法,其特征在于,该方法包括:
    从飞行管理服务器发送的出发站信道的信道使能请求中,获取出发站信道和飞行装置标识;
    使用所述出发站信道,向所述飞行装置标识对应的飞行装置发送心跳消息,以便所述飞行装置接收到所述心跳消息后,按照预设的飞行路线从所述出发站起飞。
  13. 根据权利要求12所述的方法,其特征在于,还包括:
    在接收到飞行管理服务器发送的出发站信道的信道解除请求后,所述出发站的遥控器释放所述出发站信道。
  14. 一种降落遥控方法,其特征在于,该方法包括:
    接收飞行管理服务器发送的到达站信道的使能请求;
    获取所述到达站信道的使能请求中携带的到达站信道和飞行装置标识;
    如果任一飞行装置出现异常,在出现异常的飞行装置对应的到达站信道上发送心跳消息,以便对所述出现异常的飞行装置的降落过程进行控制。
  15. 根据权利要求14所述的方法,其特征在于,还包括:
    在接收到飞行管理服务器发送的到达站信道的解除请求后,所述到达站的遥控器释放所述到达站信道。
  16. 一种飞行管理服务器,其特征在于,包括:
    处理器,用于为接收到的任务分配对应的飞行装置;依据所述任务中的飞行信息,确定所述飞行装置从出发站飞行至到达站的有效时间;以及,依据物流信息和所述飞行时间,为所述飞行装置分配满足预设控制条件的目标控制信道;
    通信接口,用于向所述飞行装置发送所述目标控制信道。
  17. 根据权利要求16所述的服务器,其特征在于,所述处理器用于依据所述物流信息和所述飞行时间,为所述飞行装置分配满足预设控制条件的目标控制信道,包括:
    在所述飞行时间内,查找在所述出发站和所述到达站空闲的控制信道,作为候选信道;
    从所述候选信道中选择与各使用信道的距离最远的信道,作为在所述出发站和所述到达站控制所述飞行装置的目标信道;所述使用信道包括:在所述飞行时间内,至少在出发站或到达站对应的状态为非空闲的控制信道。
  18. 根据权利要求17所述的服务器,其特征在于,多个控制信道分别对应于多个信道标识;所述处理器用于从所述候选信道中选择与各使用信道的距离最远的信道,作为控制所述飞行装置的目标信道,包括:
    分别计算各候选信道与各使用信道的信道标识之间的差值的绝对值;
    将所述绝对值最大的差值对应的候选信道,确定为控制所述飞行装置的目标信道。
  19. 根据权利要求17所述的服务器,其特征在于,所述处理器还用于预先保存各出发站和到达站的控制信道占用表,所述控制信道占用表用于保存在各时间段内,出发站或到达站的控制信道的空闲情况;
    所述处理器用于在所述飞行时间内,查找在所述出发站和所述到达站空闲的控制信道,作为候选信道,包括:
    分别从所述出发站和所述到达站的控制信道占用表中,查询在所述飞行时间内空闲的控制信道,作为候选信道。
  20. 根据权利要求19所述的服务器,其特征在于,所述处理器还用于:
    判断所述候选信道是否查询成功,如果是,则执行所述从所述候选信道中选择与各使用信道的距离最远的信道;
    如果否,则在所述出发站对应的控制信道占用表中查询空闲的控制信道,作为在所述出发站控制所述飞行装置的出发站信道;以及,在所述到达站对应的控制信道占用表中查询空闲的控制信道,作为在所述到达站控制所述飞行装置的到达站信道。
  21. 根据权利要求20所述的服务器,其特征在于,所述处理器还用于:
    将所述出发站信道和到达站信道发送至所述飞行装置,以及,将所述出发站信道的信道使能请求发送至所述出发站的遥控器。
  22. 根据权利要求21所述的服务器,其特征在于,所述处理器还用于:
    在所述飞行装置起飞之后,监控所述飞行装置的实时飞行位置;判断所述飞行装置的实时飞行位置是否满足预设的信道切换条件,如果是,则将所述到达站信道的信道使能请求发送至所述到达站的遥控器。
  23. 根据权利要求21所述的服务器,其特征在于,所述处理器还用于:
    向所述出发站的遥控器发送所述出发站信道的信道解除请求,并释放所述出发站信道占用的信道资源。
  24. 一种飞行装置,其特征在于,包括:
    通信接口,用于接收飞行管理服务器发送的目标控制信道;
    处理器,用于判断在所述目标控制信道上是否能接收到来自出发站的遥控器的心跳消息,如果是,则按照飞行装置中预设的飞行路线从出发站起飞。
  25. 根据权利要求24所述的装置,其特征在于,所述处理器还用于:
    在所述飞行装置的飞行过程中,向所述飞行管理服务器同步实时飞行位置。
  26. 根据权利要求24所述的装置,其特征在于,所述目标控制信道包括:作为出发站的控制信道的出发站信道,和,作为到达站的控制信道的到达站信道,所述处理器还用于:
    判断在所述出发站信道上是否超过预设时间未接收到心跳消息,或者,是否距离出发站超过预设距离阈值;如果是,则在所述到达站信道上接收到达站的遥控器发送的心跳消息。
  27. 一种起飞遥控器,其特征在于,包括:
    处理器,用于从飞行管理服务器发送的出发站信道的信道使能请求中,获取出发站信道和飞行装置标识;
    通信接口,用于使用所述出发站信道,向所述飞行装置标识对应的飞行装置发送心跳消息,以便所述飞行装置接收到所述心跳消息后,按照预设的飞行路线从所述出发站起飞;
    显示屏,用于显示出发站信道。
  28. 根据权利要求27所述的遥控器,其特征在于,所述处理器还用于:
    在接收到飞行管理服务器发送的出发站信道的信道解除请求后,释放所述出发站信道。
  29. 一种降落遥控器,其特征在于,包括:
    通信接口,用于接收飞行管理服务器发送的到达站信道的使能请求;
    处理器,用于获取所述到达站信道的使能请求中携带的到达站信道和飞行装置标识;如果任一飞行装置出现异常,在出现异常的飞行装置对应的到达站信道上发送心跳消息,以便对所述出现异常的飞行装置的降落过程进行控制;
    显示屏,用于显示出发站信道。
  30. 根据权利要求29所述的遥控器,其特征在于,所述处理器还用于:
    在接收到飞行管理服务器发送的到达站信道的解除请求后,释放所述到达站信道。
PCT/CN2018/098972 2017-08-16 2018-08-06 飞行装置的控制信道的分配方法、起飞方法和遥控方法 WO2019033948A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP18846021.6A EP3654126B1 (en) 2017-08-16 2018-08-06 Control channel allocation method, flight management server
US16/788,075 US11780578B2 (en) 2017-08-16 2020-02-11 Control channel allocation method, take-off method and remote control method for flight apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710702657.6A CN109412721B (zh) 2017-08-16 2017-08-16 飞行装置的控制信道的分配方法、起飞方法和遥控方法
CN201710702657.6 2017-08-16

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/788,075 Continuation US11780578B2 (en) 2017-08-16 2020-02-11 Control channel allocation method, take-off method and remote control method for flight apparatus

Publications (1)

Publication Number Publication Date
WO2019033948A1 true WO2019033948A1 (zh) 2019-02-21

Family

ID=65362322

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/098972 WO2019033948A1 (zh) 2017-08-16 2018-08-06 飞行装置的控制信道的分配方法、起飞方法和遥控方法

Country Status (4)

Country Link
US (1) US11780578B2 (zh)
EP (1) EP3654126B1 (zh)
CN (1) CN109412721B (zh)
WO (1) WO2019033948A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021012102A1 (en) * 2019-07-19 2021-01-28 SZ DJI Technology Co., Ltd. Control method

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110471446A (zh) * 2019-08-23 2019-11-19 深圳市千代创新电子科技有限公司 遥控飞行器的控制方法、装置及系统
CN110834724A (zh) * 2019-11-12 2020-02-25 丁贺 一种无人机、配送无人机分布式分时控制系统及控制方法
CN110989629B (zh) * 2019-12-28 2022-08-12 天津大学 一种舰船模型专用一体化控制器
CN114442613A (zh) * 2021-12-30 2022-05-06 上海智远弘业智能技术股份有限公司 遥控器及其控制方法、智能搬运机器人

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130289858A1 (en) * 2012-04-25 2013-10-31 Alain Anthony Mangiat Method for controlling and communicating with a swarm of autonomous vehicles using one-touch or one-click gestures from a mobile platform
CN105487553A (zh) * 2016-01-11 2016-04-13 余江 一种无人飞行器的控制方法及装置
CN105807788A (zh) * 2016-03-09 2016-07-27 广州极飞电子科技有限公司 无人机监控方法、系统以及无人机和地面站
CN105898741A (zh) * 2016-03-24 2016-08-24 北京京东尚科信息技术有限公司 无人机的控制方法及控制系统和无人机系统
CN105939533A (zh) * 2016-04-15 2016-09-14 深圳市大疆创新科技有限公司 点对多点的无人机通信系统及无人机
CN106412046A (zh) * 2016-09-23 2017-02-15 北京京东尚科信息技术有限公司 一站多机控制方法、装置和系统

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140197280A1 (en) 2011-11-22 2014-07-17 Donald Earl Smith Delta Wing Unmanned Aerial Vehicle (UAV) and Method of Manufacture of the Same
US8989922B2 (en) 2013-03-15 2015-03-24 Azure Sky Group, LLC. Modular drone and methods for use
US9479964B2 (en) * 2014-04-17 2016-10-25 Ubiqomm Llc Methods and apparatus for mitigating fading in a broadband access system using drone/UAV platforms
US9422139B1 (en) 2014-05-19 2016-08-23 Google Inc. Method of actively controlling winch swing via modulated uptake and release
US20160042637A1 (en) 2014-08-11 2016-02-11 Clandestine Development, Llc Drone Safety Alert Monitoring System and Method
US9174733B1 (en) 2014-08-28 2015-11-03 Google Inc. Payload-release device and operation thereof
US10362469B2 (en) 2014-09-30 2019-07-23 At&T Intellectual Property I, L.P. Access to wireless emergency alert information via the spectrum access system
US9868526B2 (en) 2014-10-15 2018-01-16 W. Morrison Consulting Group, Inc. Airborne drone delivery network and method of operating same
US9601022B2 (en) * 2015-01-29 2017-03-21 Qualcomm Incorporated Systems and methods for restricting drone airspace access
US10867277B2 (en) 2015-07-08 2020-12-15 Ebay Inc. Public transport infrastructure facilitated drone delivery
US11100453B2 (en) 2015-07-08 2021-08-24 Avaya Inc. Agent interaction during operation of an unmanned delivery service
CN205121346U (zh) * 2015-10-30 2016-03-30 杨珊珊 无人飞行器的调度装置及调度系统
US9412280B1 (en) 2015-11-05 2016-08-09 Daniel Ian Zwillinger Cooperative system and method for precise autonomous delivery
CN205265924U (zh) * 2016-01-05 2016-05-25 陈昊 一种无人飞行器
KR102419355B1 (ko) * 2016-01-27 2022-07-12 한국전자통신연구원 무인기 제어용 통신 채널 동적 할당 및 변경 방법 및 절차
FR3048773B1 (fr) * 2016-03-14 2020-08-14 Thales Sa Procede et systeme de gestion d'un plan de vol multi-destination
CN105892486A (zh) * 2016-04-15 2016-08-24 陈昊 数据通信方法、无人飞行器及控制端
CN205787905U (zh) * 2016-04-15 2016-12-07 陈昊 无人飞行器、无人飞行器控制端及系统
US10266266B2 (en) 2016-05-23 2019-04-23 Wing Aviation Llc Payload delivery system with removable spool
US10460279B2 (en) 2016-06-28 2019-10-29 Wing Aviation Llc Interactive transport services provided by unmanned aerial vehicles
CN106716973A (zh) * 2016-11-22 2017-05-24 深圳市大疆创新科技有限公司 无人飞行器的控制方法及地面控制端
CN106919183B (zh) * 2016-12-20 2019-12-13 北京理工大学 统一控制的多功能无人机群组
CN106814749A (zh) * 2017-02-06 2017-06-09 珠海市磐石电子科技有限公司 一种基于多点控制的无人机系统及控制方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130289858A1 (en) * 2012-04-25 2013-10-31 Alain Anthony Mangiat Method for controlling and communicating with a swarm of autonomous vehicles using one-touch or one-click gestures from a mobile platform
CN105487553A (zh) * 2016-01-11 2016-04-13 余江 一种无人飞行器的控制方法及装置
CN105807788A (zh) * 2016-03-09 2016-07-27 广州极飞电子科技有限公司 无人机监控方法、系统以及无人机和地面站
CN105898741A (zh) * 2016-03-24 2016-08-24 北京京东尚科信息技术有限公司 无人机的控制方法及控制系统和无人机系统
CN105939533A (zh) * 2016-04-15 2016-09-14 深圳市大疆创新科技有限公司 点对多点的无人机通信系统及无人机
CN106412046A (zh) * 2016-09-23 2017-02-15 北京京东尚科信息技术有限公司 一站多机控制方法、装置和系统

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021012102A1 (en) * 2019-07-19 2021-01-28 SZ DJI Technology Co., Ltd. Control method
EP3788731A4 (en) * 2019-07-19 2021-03-10 SZ DJI Technology Co., Ltd. CONTROL PROCEDURE

Also Published As

Publication number Publication date
EP3654126A4 (en) 2021-03-31
CN109412721A (zh) 2019-03-01
EP3654126B1 (en) 2022-10-26
US20200172242A1 (en) 2020-06-04
US11780578B2 (en) 2023-10-10
EP3654126A1 (en) 2020-05-20
CN109412721B (zh) 2022-05-27

Similar Documents

Publication Publication Date Title
WO2019033948A1 (zh) 飞行装置的控制信道的分配方法、起飞方法和遥控方法
US11429094B2 (en) Drone communication system and communication system of drone server
WO2017185607A1 (zh) 一种无人机飞行控制方式切换方法、装置及其无人机
CN104503456B (zh) 基于4g通信的无人机控制装置与方法
US9613534B2 (en) Systems and methods for creating a network cloud based system for supporting regional, national and international unmanned aircraft systems
JPWO2019181899A1 (ja) 管理システム及びその制御方法並びに管理サーバ
US11245466B2 (en) Base station device, communication system and communication control method
JP6944854B2 (ja) 情報処理装置
WO2021044863A1 (ja) 第1の無線局、第2の無線局、コアネットワークノード、移動端末、システム、方法、及びコンピュータに読み取り可能な非一時的記録媒体
EP3101643B1 (en) Systems and methods for creating a network cloud based system for supporting regional, national and international unmanned aircraft systems
WO2022166501A1 (zh) 无人机控制
WO2019237302A1 (zh) 信息传输方法、装置、系统及存储介质
WO2017185651A1 (zh) 一种无人机图像传输方式切换方法、装置及其无人机
WO2021044864A1 (ja) 管制装置、第1のコアネットワークノード、無線局、第2のコアネットワークノード、移動端末、システム、方法、プログラム、及び、コンピュータに読み取り可能な非一時的記録媒体
CN111091333A (zh) 快递投放方法、装置及存储介质
US20200295820A1 (en) Terminal device for air-to-ground communication, communication control method therefor, and air-to-ground communication system
CN113168778A (zh) 用于改进飞行通信5g网络服务质量的方法
CA2976911C (en) Systems and methods for wireless communication in frequency-limited, client-dense environments
CN113920784A (zh) 一种通信方法、装置及存储介质
US20240194082A1 (en) Devices, systems, and methods for autonomously landing unmanned aerial vehicles with collaborative information sharing
KR101695532B1 (ko) 지상이동유도관제시스템 실시간 모니터링 시스템
US20160227595A1 (en) Wireless communication control method and wireless communication control system
US20240177613A1 (en) Remote id conflict system
EP3892959A1 (en) Traffic management systems and methods for unmanned aerial vehicles
EP3719776A1 (en) Emulating a vehicle-communications-center data request to obtain data from a system or subsystem onboard the vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18846021

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018846021

Country of ref document: EP

Effective date: 20200213