WO2019031949A1 - Redox flow battery - Google Patents

Redox flow battery Download PDF

Info

Publication number
WO2019031949A1
WO2019031949A1 PCT/KR2018/009277 KR2018009277W WO2019031949A1 WO 2019031949 A1 WO2019031949 A1 WO 2019031949A1 KR 2018009277 W KR2018009277 W KR 2018009277W WO 2019031949 A1 WO2019031949 A1 WO 2019031949A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow
electrolyte
channel
flow channel
point
Prior art date
Application number
PCT/KR2018/009277
Other languages
French (fr)
Korean (ko)
Inventor
이용희
이종욱
강태혁
신동명
김보라
손덕영
최윤호
Original Assignee
롯데케미칼 주식회사
아주대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 롯데케미칼 주식회사, 아주대학교산학협력단 filed Critical 롯데케미칼 주식회사
Publication of WO2019031949A1 publication Critical patent/WO2019031949A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • H01M8/184Regeneration by electrochemical means
    • H01M8/188Regeneration by electrochemical means by recharging of redox couples containing fluids; Redox flow type batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2459Comprising electrode layers with interposed electrolyte compartment with possible electrolyte supply or circulation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a redox flow cell, and more particularly, to a redox flow cell in which an electrolyte is supplied to and discharged from an electrode through an inlet channel and an outlet channel.
  • the zinc bromine redox flow cell is a type of flow cell that produces electricity by redox reaction between the electrolyte and the electrode.
  • a redox flow cell is formed by repeatedly laminating a bipolar electrode and a membrane, stacking a current collector plate and an end plate in sequence on both sides of the outermost layer, and supplying an electrolyte solution
  • An electrolyte pump for supplying an electrolyte to the stack, piping, and an electrolyte tank for storing an electrolyte solution flowing out after the inside of the stack.
  • the stack includes a flow frame, i. E., A membrane flow frame incorporating the membrane and an electrode flow frame incorporating the electrode.
  • the stack is formed by centering one electrode flow frame, having a membrane flow frame in a bilaterally symmetrical structure on both sides of the electrode flow frame, and disposing an end plate at the periphery of the membrane flow frame.
  • the flow frame 101 includes an inlet channel 103 for introducing an electrolyte solution into an internal volume 102 provided between the electrode and the membrane, and a flow channel 103 for discharging the electrolyte solution from the internal volume 102 after the reaction. And an outlet channel (104).
  • the inflow channel 103 uniformly supplies the electrolytic solution flowing into the set pressure, and the outflow channel 104 is configured to uniformly discharge the electrolytic solution flowing out to the atmospheric pressure after the countercurrent.
  • the symmetry coefficient (symmetry coef fi cient), which is the deviation of the flow rate at the branch point, and the maximum velocity of the flowing or flowing electrolyte
  • An absolute value variability range coefficient that is the difference of the lowest speed
  • FIG. 2 is a flow chart showing the flow rate of the electrolyte at the fifth branch point of the inlet channel and the outlet channel of the flow frame of FIG. A portion where the electrolyte is supplied from the fifth branch point b51 of the inlet channel 103 to the internal volume 102 and a portion where the electrolyte is supplied from the fifth branch point b52 of the outlet channel 104 A dead-zone (DZ) whose flow rate is close to zero is generated due to the non-uniformity of the flow velocity.
  • DZ dead-zone
  • FIG. 3 is a flow deviation diagram showing a flow rate deviation (mass flow rate) at the first to third branch points of the inflow channel according to the flow velocity distribution in FIG.
  • Fig. 4 is a graph showing the flow rate deviation (mass flow rate) at the fourth branch point to the low 15 branch point of the inflow channel according to the flow velocity distribution of Fig. 2;
  • the outflow channel 104 is omitted and the inflow channel 103 is described as an example. 3 and 4, the symmetric coefficient which is the flow rate deviation at the first to sixth branch points b1 to b3 of the inflow channel 103 is small (see Fig. 3) ) And the symmetry coefficient (symmetry coef ficient), which is a flow rate deviation at the fifth branch point (b5, b51 in Fig. 2), becomes larger.
  • Embodiments of the present invention provide a method and apparatus for equalizing the flow rate (minimizing the variability range coef ficient) with respect to the flow of the electrolyte flowing into the internal volume from the inlet channel and the electrolyte flowing out of the internal volume into the outlet channel, And to provide a redox flow cell that removes the dead zone from the volume, the inlet channel, and the outlet channel.
  • embodiments of the present invention are directed to uniformly distributing the electrolytic solution to the left and right at the respective branch points of the inlet channel and the outlet channel with respect to the flow of the electrolytic solution flowing from the inlet channel to the inner volume and the electrolytic solution flowing from the inner volume to the outlet channel (Symmetry coefficient) is minimized).
  • the redox flow cell includes a stack for generating an electric current from an electrolyte flowing into an electrolyte inflow line and discharging an electrolyte solution to an electrolyte outflow line, the stack being repeatedly stacked to form an internal volume And a flow frame for receiving the membrane and the electrode plate, wherein the flow frame is connected to the electrolyte inflow line and the electrolyte outflow line through which the electrolytic solution flows into or flows out from the internal volume And the flow channel includes a plurality of discharge ports in one flow channel divided at a final branch point side connected to the internal volume.
  • the plurality of ejection openings may be opened to a minimum size at the center and gradually increase in size toward both sides.
  • the plurality of ejection openings may be spaced apart by a predetermined interval.
  • the flow channel may be divided into three to five channels and then may have a plurality of outlets.
  • the flow channel may have a branch deviation reduction unit between the nth branch point and the (n-1) th branch point.
  • the branching deviation reduction unit of the flow channel is formed by a curve L1 passing through the center of the width of the flow channel and a vertical line L2 passing through the center of the width at a point distributed at the n turn point, May be set to a straight line distance between a first point P1 where the vertical line L2 meets the first line P1 and a second line P2 where the curve L1 and the vertical line L2 meet from above and may be more than zero.
  • the flow channel may have a flow characteristic of 500 to 2000 Re. ⁇ Effects of the Invention ⁇ .
  • the embodiments of the present invention have a plurality of discharge ports partitioned on the side of the final branch point of the flow channel (inlet channel and outlet channel) connected to the internal volume, so that the flow rate of the electrolytic solution,
  • the dead zone can be removed from the internal volume and the inlet and outlet channels by equalizing the flow rate (minimizing the variable range coefficient) for the flow of electrolyte flowing into the inlet and outlet channels.
  • the embodiments of the present invention can uniformly distribute the electrolytic solution (minimization of the symmetry coefficient) to the left and right at each branch point of the inlet channel and the outlet channel.
  • FIG. 1 is a block diagram of a flow frame applied to a redox flow cell of the prior art
  • FIG. 2 is a flow diagram showing the flow rate of the electrolyte at the fifth branch point of the inlet channel and the outlet channel of the flow frame of FIG.
  • FIG. 3 is a flow deviation diagram showing a flow rate deviation at the first branch point to the third branch point of the inflow channel according to the flow velocity distribution of FIG.
  • FIG. 4 is a graph showing the flow rate deviation of the flow channel at the fourth to fifth branch points of the inflow channel according to the flow velocity distribution of FIG. 2.
  • FIG. 5 is a perspective view illustrating a stack applied to a redox flow cell according to an embodiment of the present invention.
  • FIG. 6 is a sectional view taken along the line VI-VI in Fig.
  • FIG. 8 is a partial structural view (a) and a transverse sectional view (b) of a flow frame applied to a redox flow cell according to the first embodiment of the present invention.
  • FIG. 9 is a partial structural view ( a ) and a transverse sectional view (b) of a flow frame applied to a redox flow cell according to a modification of the first embodiment of the present invention.
  • FIG. 10 is a partial structural view ( a ) and a transverse sectional view (b) of a flow frame applied to a redox flow cell according to the second embodiment of the present invention.
  • FIG 11 is a partial structural view ( a ) and a transverse sectional view (b) of a flow frame applied to a redox flow cell according to a modification of the second embodiment of the present invention.
  • FIG. 12 is a partial structural view (a) and a transverse sectional view (b) of a flow frame applied to a redox flow cell according to a third embodiment of the present invention.
  • FIG. 13 is a partial structural view (a) and a transverse sectional view (b) of a flow frame applied to a redox flow cell according to a modification of the third embodiment of the present invention.
  • FIG. 14 is a graph showing the relationship between the pressure loss of the electrolyte, the area-weighted mean outlet velocity, the variable range coefficient, the flow velocity distribution (a) and the flow velocity distribution in the flow frames of the first, second, and third embodiments of FIGS. 8, 10, The cross-sectional flow velocity distribution diagram (b) FIG.
  • FIG. 15 is a graph showing the relationship between pressure loss, area weighted average outlet velocity, variable range coefficient, flow velocity distribution (a) in the flow frame of the first, second, and third embodiments of FIGS. 9, 11, And a cross-sectional flow velocity distribution diagram (b).
  • FIG. 16 is a detailed view showing a shape of a branch deviation reducing section of a branch point in the flow frame applied to FIG. 10; FIG.
  • 17 is a graph showing the relationship between the number of Re channels and the symmetry coefficient of the channel channel and the symmetry coefficient immediately before the quadrant.
  • FIG. 18 is a graph showing the relationship of the variables of the channel channel in the channel just before the fourth branching point optimized for Re.
  • FIG. 19 is a flow diagram showing a flow rate deviation of a final branch point according to the prior art and a flow rate deviation of a final branch point according to an embodiment of the present invention.
  • any part is “connected” with another part, which includes also a case that is “directly coupled to” as well as, interposed between the other member “indirectly coupled to 1 '.
  • an element is referred to as " comprising ", it means that it can include other elements, not excluding other elements unless specifically stated otherwise.
  • FIG. 5 is a perspective view showing a stack applied to a redox flow cell according to an embodiment of the present invention
  • FIG. 6 is a sectional view taken along the line VI-VI in FIG. 5
  • FIG. 7 is a cross- Fig.
  • the redox flow cell of the embodiment includes a stack 120 for generating current, and the electrolyte is supplied from the electrolyte tank (not shown) to the stack 120, 120 to store the electrolyte solution in the electrolyte tank.
  • the stack 120 is configured to generate an electric current while circulating the electrolyte.
  • the electrolyte tank is configured to supply the electrolyte solution to the stack 120 and to store the electrolyte solution flowing out of the stack 120, and is connected to the electrolyte solution inflow line and the electrolyte solution outflow line.
  • the electrolyte tank may include an anode electrolyte tank containing an anode electrolyte containing zinc and a cathode electrolyte tank containing a cathode electrolyte containing bromine (for convenience, a two-phase electrolyte tank containing two phases of the cathode electrolyte, (Not shown).
  • the electrolyte inflow line connects the anode, the cathode electrolyte tank and the stack 120, and flows the electrolyte solution into the stack 120 by driving the electrolyte pump.
  • the electrolyte effluent line connects the anode and the cathode electrolyte tank with the stack 120, and discharges the electrolyte after the stack 120 from the stack 120 via the stack 120.
  • the stack 120 includes the membrane 10, the spacer 20 and the electrode plate 30 which are repeatedly stacked, the current collectors 61 and 62 and the end plates 71 and 72 which are sequentially stacked at both ends in the stacking direction, And includes a first flow channel (CH1) and a second flow channel (CH2) through which the electrolyte flows.
  • the electrode plate 30 includes the anode electrode 32 on one side and the cathode electrode 31 on the other side.
  • the end plates 71 and 72 connect the anode and the cathode electrolyte inlets H21 and H31 connected to the electrolyte inflow line to the first and second flow channel channels CHI and CH2.
  • the end plates 71 and 72 connect the anode and cathode electrolyte outlets H22 and H32 connected to the electrolyte outflow line to the first and second flow channel channels CHI and CH2.
  • the stack 120 may discharge the current generated internally through the bus bars B1 and B2 or may be connected to an external power source to transfer a current to the anode electrolyte tank. .
  • the stack 120 further includes a flow frame, i.e., a membrane flow frame 40 and an electrode flow frame 50. Since the stack 120 has two unit cells CI and C2, one electrode flow frame 50 is provided at the center and two membrane flow frames 40 and two end plates 71, 72 disposed on the outer periphery of the membrane flow frame 40, respectively.
  • a flow frame i.e., a membrane flow frame 40 and an electrode flow frame 50. Since the stack 120 has two unit cells CI and C2, one electrode flow frame 50 is provided at the center and two membrane flow frames 40 and two end plates 71, 72 disposed on the outer periphery of the membrane flow frame 40, respectively.
  • the membrane 10 is configured to pass ions and is coupled to the membrane flow frame 40 in the thickness direction center of the membrane flow frame 40.
  • the electrode plate 30 is joined to the electrode flow frame 50 at the center in the thickness direction of the electrode flow frame 50.
  • the end plate 71, the membrane flow frame 40, the electrode flow frame 50, the membrane flow frame 40 and the end plate 72 are disposed, and a spacer 10 is interposed between the membrane 10 and the electrode plate 30,
  • the stack 120 having the two unit cells CI and C2 is formed by joining the membrane flow frame 40, the electrode flow frame 50 and the end plates 71 and 72 to each other via the through- do.
  • the electrode plate 30 includes a cathode electrode 31 formed on one side and an anode electrode 32 formed on the other side in the portion where the two unit cells CI and C2 are connected and the two unit cells CI and C2 ) Are connected in series.
  • the membrane flow frame 40, the electrode flow frame 50 and the end plates 71 and 72 are adhered to each other to set the internal volume S between the membrane 10 and the electrode plate 30, (CHI, CH2) for supplying an electrolyte solution to the first and second flow channels (CH1, CH2).
  • the first and second flow channel channels (CHI, CH2) are configured to supply the electrolyte at a uniform pressure and amount, respectively, on both sides of the membrane (10).
  • the first channel CH1 is connected to the anode electrolyte inlet H21, the internal volume S and the anode electrolyte outlet H22, and is driven by the anode electrolyte pump, 10 and the anode electrode 32,
  • the anode electrolytic solution flows into the internal volume S set between the anode and the cathode.
  • the second flow channel CH 2 connects the cathode electrolyte inlet H 31, the internal volume S and the cathode electrolyte outlet H 32, and is driven by the cathode electrolyte pump, 10 and the cathode electrode 31 to allow the cathode electrolyte solution to flow out after the catholyte flows.
  • the anode electrolyte undergoes a redox reaction on the side of the anode electrode 32 of the internal volume S to generate a current and is stored in the anode electrolyte tank.
  • the cathode electrolytic solution is redox-repelled on the side of the cathode electrode 31 of the internal volume S to generate a current and stored in the cathode electrolytic solution tank.
  • the bromine contained in the cathode electrolyte is produced and stored in the cathode electrolyte tank.
  • the zinc contained in the anode electrolyte is deposited on the anode electrode 32 and stored.
  • Equation 1 During the discharge, inversion between Equation 1 and Equation 1 occurs between the membrane 10 and the cathode electrode 31, and the inverse reaction of Equation 2 occurs between the membrane 10 and the anode electrode 32.
  • the current collectors 61 and 62 collect the current generated in the cathode electrode 31 and the anode electrode 32 or collect the current generated in the outermost electrode plate 32 30, and 30 to be electrically connected.
  • the flow frame i.e., the membrane flow frame 40, the electrode flow frame 50
  • the flow frame in the first embodiment includes an electrolyte inflow line and an electrolyte inflow line that flow in or out of the internal volume S
  • the first and second flow channel channels (CHI, CH2) Respectively.
  • the one-channel channel CH1 will be described so that the anode electrolyte flowing from the anode electrolyte inlet H21 to the internal volume S flows.
  • the first flow channel CH1 has a plurality of discharge ports 0L1 partitioned at the final branch point (fifth branch point b5) side connected to the internal volume S.
  • the plurality of ejection openings 0L1 are opened to a minimum size at the center and gradually increase in size to both sides (for example, in the width direction of the flow frame (left and right direction in Fig. 8)). This prevents the anode electrolyte from being concentrated in the middle region among the plurality of discharge ports 0L1, thereby enabling a uniform distribution of the anode electrolyte flow.
  • the plurality of ejection openings 0L1 are formed in a rectangular structure, and are spaced apart by a predetermined gap G1.
  • the interval G1 is set to 1 mm.
  • the plurality of discharge ports 0L1 are provided after the fifth branch point b5 after being branched five times from the first one-way channel CH1. That is, the plurality of discharge ports 0L1 are provided on the inner volume S side after the fifth branching point b5 in the first flow channel CH1, and are joined to the inner volume S again.
  • the discharge ports may be formed in a triangular shape, a polygonal shape, a circular shape, an elliptical shape, or the like.
  • FIG. 9 is a partial structural view (a) and a transverse sectional view (b) of a flow frame applied to a redox flow cell according to a modification of the first embodiment of the present invention.
  • the plurality of discharge ports OLL11 are formed in a rectangular shape and are spaced apart by a predetermined gap G11.
  • the gap G11 is set to 0.5 mm. That is, the plurality of discharge ports 0L11 are provided on the inner volume S side after the fifteenth branching point b5 in the first flow channel CH11, and are joined to the inner volume S again.
  • the plurality of discharge ports 0L11 according to the modification of the first embodiment can more uniformly discharge the anode electrolyte into the internal volume S, as compared with the plurality of discharge ports 0L1 according to the first embodiment .
  • 10 is a partial structural view (a) and a transverse sectional view (b) of a flow frame applied to a redox flow cell according to the second embodiment of the present invention.
  • the first flow channel CH3 includes a plurality of discharge ports 0L3 partitioned at the final branch point (fourth branch point b4) connected to the internal volume S Respectively.
  • the plurality of ejection openings 0L3 are opened to a minimum size at the center and gradually increase in size toward both sides. This prevents the anode electrolyte from being concentrated in the middle region of the plurality of discharge ports 0L3, thereby enabling uniform distribution of the anode electrolyte flow.
  • the plurality of ejection openings 0L3 are formed in a rectangular structure, and are spaced apart by the set gap G3.
  • the interval G3 is set to 1 mm.
  • the plurality of discharge ports 0L3 are provided after the fourth branching point b4 branched four times in the gas flow channel CH3. That is, the plurality of discharge ports 0L3 are provided on the inner volume S side after the brinking point b4 in the first flow channel CH3, and are joined to one another to be connected to the inner volume S again.
  • the plurality of outlets 0L3 are formed in a wider range as compared with the plurality of outlets 0L1 in the first embodiment, so that the anode electrolytic solution is discharged from a larger range of the inner volume S So that uniform discharge can be achieved.
  • FIG. 11 is a partial structural view (a) and a transverse sectional view (b) of a flow frame applied to a redox flow cell according to a modification of the second embodiment of the present invention.
  • the plurality of discharge ports 0L31 are formed in a rectangular shape and are spaced apart by a predetermined gap G31.
  • the interval G31 is set to 0.5 mm. That is, the plurality of discharge ports 0L31 are provided on the inner volume S side after the fourth branching point b4 in the first flow channel CH31, and are joined to the inner volume S again.
  • the plurality of discharge ports 0L31 according to the modification of the second embodiment can more uniformly discharge the anode electrolyte into the internal volume S, as compared with the plurality of discharge ports 0L3 according to the second embodiment.
  • FIG. 12 is a partial structural view ( a ) and a transverse sectional view (b) of a flow frame applied to a redox flow cell according to the third embodiment of the present invention.
  • the first flow channel CH4 is connected to the inner volume S And a plurality of discharge ports 0L4 partitioned at the branch point (third branch point b3).
  • the plurality of ejection openings 0L4 are opened to a minimum size at the center and gradually increase in size to both sides. This prevents the anode electrolyte from being concentrated in the middle region among the plurality of discharge ports 0L4, thereby enabling the anode electrolyte flow and uniform distribution.
  • the plurality of ejection openings 0L4 are formed in a rectangular shape and are spaced apart by the set gap G4.
  • the interval G4 is set to 1 ⁇ .
  • the plurality of discharge ports 0L4 are provided after the third branch point b3 branched three times in the first flow channel CH4. That is, the plurality of discharge ports 0L4 are provided on the inner volume S side after the third branching point b3 in the first flow channel CH4, and are combined into one another to be connected to the inner volume (SHI).
  • the plurality of discharge ports 0L4 are formed in a wider range as compared with the plurality of discharge ports 0L3 in the second embodiment, so that the anode electrolyte can be discharged in a wider range of the inner volume S So that uniform discharge can be achieved.
  • FIG. 13 is a partial structural view (a) and a transverse sectional view (b) of a flow frame applied to a redox flow cell according to a modification of the third embodiment of the present invention.
  • the plurality of discharge ports 0L41 are formed in a rectangular structure and are spaced apart by a predetermined gap G41.
  • the gap G41 is set to 0.5 mm.
  • the plurality of discharge ports 0L41 are connected to the inner volume CH4 after the third branch point b3 in the first flow channel CH41. (S), and are joined together into an internal volume (S).
  • the plurality of discharge ports 0L41 according to the modified example of the third embodiment can more uniformly discharge the anode electrolyte into the internal volume S, as compared with the plurality of discharge ports 0L4 according to the third embodiment.
  • Fig. 14 is a graph showing the pressure drop of the electrolyte in the flow frames of the first, second and third embodiments of Figs. 8, 10 and 12, the flow velocity of the area weighted average outlet (ar ea- weighted (a) and (b) of the cross-sectional flow velocity distribution, respectively. The results are shown in Fig. 1 (a) and (b).
  • the first channel channels CHI, CH3, CH4) can gradually reduce the pressure drop as the branch point decreases to 5, 4, and 3.
  • the first channel channels CH3 and CH4 are variable range coefficients for evaluating the uniformity of the area-weighted average outlet velocity according to the number of the branch points being four or three.
  • var iabi 1 ity range coefficient were reduced by 64% and 65%, respectively, from 0.18 m / s to 0.064 m / s and 0.062 m / s, respectively.
  • the first, second, and third embodiments can remove the dead zone in the internal volume S and the first flow channel CHI, CH3, CH4 due to the minimization of the variability range coefficient.
  • FIG. 15 is a graph showing the pressure drop of an electrolytic solution in a flow frame of a modified example of the first, second, and third embodiments of FIGS. 9, 11, and 13, area- (a) and the cross-sectional flow velocity distribution (b), as shown in FIG. 3 (b).
  • the first flow channels CHll, CH31, and CH41 decrease the pressure drop of the electrolyte
  • the varia- bility constant coefficient for evaluating the uniformity of the area-weighted average outlet velocity is implemented more efficiently than in the first, second, and third embodiments Respectively.
  • Modifications of the first, second, and third embodiments can further remove the dead zone from the internal volume S and the first flow channels CHll, CH31, and CH41 due to further minimization of the coefficients.
  • FIG. 16 is a detailed view showing a shape of a branch deviation reducing section of a branch point in the flow frame applied to FIG. 10; FIG. Referring to FIG. 16, in the case where the first flow channel CH3 is branched n times (for example, four times), the first flow channel CH3 is divided into nth branch points (for example, four branch points b4) and has a branch deviation reduction section between n-1 branch points (for example, three branch points b3).
  • the branch deviation reducing section may improve the left and right flow rate deviation at the fourth branch point (b4) Is set according to the length (L) of the music as a variable.
  • L is a straight line distance between a first point P1 where the end point of the curve L1 and the perpendicular line L2 meet below and a second point P2 where the curve L1 and the perpendicular line L2 meet from above, And is greater than zero.
  • the branch deviation reduction section of the first flow channel CH3 immediately before the crab quadrature point b4 increases as the length L increases and the branch deviation reduction section does not exist when the length L is zero ).
  • FIG. 17 is a graph showing the relationship between the Re number and the curvature parameter of the channel channel and the symmetry coef fi cient immediately before the fourth bifurcation point.
  • FIG. 18 is a graph showing the curvature parameter As shown in FIG.
  • the analysis according to the curvature was performed for the laminar flow region corresponding to Reynolds Number 250 to 2000.
  • the symmetry coef fi cient decreases as the length L, which is the curvature variable (branch deviation reduction section) between the fourth branch point M and the third branch point b3, increases, .
  • the length of the curvature parameter with which the symmetric coefficient for each Re number is zero converges to 2.5..
  • FIG. 19 is a flow deviation diagram showing a comparison between the flow rate deviation of the final branch point according to the prior art and the flow rate deviation of the final branch point according to an embodiment of the present invention, and FIG. 19 shows the optimized length L of the curvature
  • the symmetric coefficient according to the branching deviation of the second embodiment is reduced as compared with the conventional technique. That is, the symmetry factor at the fourth branching point b4 of the first-flow channel CH3 of the second embodiment is 0.3%, which is 3.6% improved from the conventional 3.9%.
  • the first flow channel of the prior art is shown.
  • Electrode flow frame 61, 62 Collector plate
  • CH2 Gage 2 Euro channel G1, Gil, G3, G31, G4, G41: Interval
  • H21, H31 anode, cathode electrolyte inlet
  • H22, H32 anode, cathode electrolyte outlet

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

A redox flow battery is introduced. The redox flow battery according to one embodiment of the present invention comprises a stack for generating a current in an electrolytic solution, which flows into an electrolytic solution inflow line, and discharging the electrolytic solution to an electrolytic solution outflow line, wherein the stack comprises membranes, spacers and electrode plates, which are repeatedly stacked so as to form an inner volume, and a flow frame for accommodating the membranes and the electrode plates, the flow frame comprises a flow channel connected to the electrolytic solution inflow line and the electrolytic solution outflow line through which the electrolytic solution flows into or is discharged from the inner volume, and the flow channel comprises a plurality of discharge holes at one flow channel divided at the final bifurcation point connected to the inner volume.

Description

【명세세  【Specification Tax
【발명의 명칭】  Title of the Invention
레독스 흐름 전지  Redox flow cell
【기술분야】  TECHNICAL FIELD
본 발명은 레독스 흐름 전지에 관한 것으로서, 흐름 프레임에 구비되는 유입 채널과 유출 채널을 통하여 전해액을 전극으로 공급 및 배출시키는 레독스 흐름 전지에 관한 것이다.  BACKGROUND OF THE INVENTION 1. Field of the Invention [0001] The present invention relates to a redox flow cell, and more particularly, to a redox flow cell in which an electrolyte is supplied to and discharged from an electrode through an inlet channel and an outlet channel.
【배경기술】  BACKGROUND ART [0002]
아연 브로민 레독스 흐름 전지는 흐름 전지의 일종으로써 전해액과 전극 사이에서 일어나는 산화 환원 반웅으로 전기를 생산한다.  The zinc bromine redox flow cell is a type of flow cell that produces electricity by redox reaction between the electrolyte and the electrode.
예를 들면, 레독스 흐름 전지는 바이폴라 전극판 (bipolar elect rode)과 멤브레인 (membrane)을 반복적으로 적층하고, 적층된 최외곽의 양측에 집전판과 엔드 플레이트를 차례로 적층하여 형성되어 전해액이 공급되어 산화 환원 반응이 일어나는 스택, 스택에 전해액을 공급하는 전해액 펌프와 배관, 스택에서 내부 반웅 후, 유출되는 전해액을 저장하는 전해액 탱크를 포함한다.  For example, a redox flow cell is formed by repeatedly laminating a bipolar electrode and a membrane, stacking a current collector plate and an end plate in sequence on both sides of the outermost layer, and supplying an electrolyte solution An electrolyte pump for supplying an electrolyte to the stack, piping, and an electrolyte tank for storing an electrolyte solution flowing out after the inside of the stack.
스택은 흐름 프레임, 즉 멤브레인을 내장하는 멤브레인 흐름 프레임과 전극을 내장하는 전극 흐름 프레임을 포함한다. 예를 들면, 스택은 1개의 전극 흐름 프레임을 중앙에 구비하고, 전극 흐름 프레임의 양측에 좌우 대칭 구조로 멤브레인 흐름 프레임을 구비하며, 멤브레인 흐름 프레임의 외곽에 엔드 플레이트를 배치하여 형성된다.  The stack includes a flow frame, i. E., A membrane flow frame incorporating the membrane and an electrode flow frame incorporating the electrode. For example, the stack is formed by centering one electrode flow frame, having a membrane flow frame in a bilaterally symmetrical structure on both sides of the electrode flow frame, and disposing an end plate at the periphery of the membrane flow frame.
도 1은 종래기술의 레독스 흐름 전지에 적용되는 흐름 프레임의 구성도이다. 도 1에 도시된 바와 같이, 흐름 프레임 (101)은 전극과 멤브레인 사이에 구비되는 내부 용적 ( 102)에 전해액을 유입하는 유입 채널 ( 103)과, 반웅 후 내부 용적 ( 102)으로부터 전해액을 유출하는 유출 채널 ( 104)을 구비한다. 유입 채널 ( 103)은 설정된 압력으로 유입되는 전해액을 균일하게 공급하고, 유출 채널 ( 104)은 반웅 후 대기압으로 유출되는 전해액을 균일하게 배출하도록 구성된다.  1 is a configuration diagram of a flow frame applied to a redox flow cell of the prior art. 1, the flow frame 101 includes an inlet channel 103 for introducing an electrolyte solution into an internal volume 102 provided between the electrode and the membrane, and a flow channel 103 for discharging the electrolyte solution from the internal volume 102 after the reaction. And an outlet channel (104). The inflow channel 103 uniformly supplies the electrolytic solution flowing into the set pressure, and the outflow channel 104 is configured to uniformly discharge the electrolytic solution flowing out to the atmospheric pressure after the countercurrent.
유동 균일도 평가 변수로 분기점에서 좌우 유량 편차인 대칭 계수 (symmetry coef f i cient )와, 유입 또는 유출되는 전해액의 최대 속도와 최저 속도의 차이인 절대값의 가변 범위 계수 (variability range coefficient)가사용될 수 있다. As the flow uniformity evaluation variables, the symmetry coefficient (symmetry coef fi cient), which is the deviation of the flow rate at the branch point, and the maximum velocity of the flowing or flowing electrolyte An absolute value variability range coefficient that is the difference of the lowest speed can be used.
도 2는 도 1의 흐름 프레임의 유입 채널 및 유출 채널의 계 5분기점에서 전해액 유속을 도시한 유속 분포도이다. 도 2에 도시된 바와 같이, 유입 채널 (103)의 제 5분기점 (b51)에서 내부 용적 (102)으로 전해액이 공급되는 부분과, 유출 채널 (104)의 계 5분기점 (b52)에서 내부 용적 (102)으로부터 전해액이 유출되는 부분에서 가변 범위 계수가 크게 되어, 즉 유속 불균일로 인하여, 유속이 영에 가까운 데드존 (dead-zone) (DZ)이 발생된다.  FIG. 2 is a flow chart showing the flow rate of the electrolyte at the fifth branch point of the inlet channel and the outlet channel of the flow frame of FIG. A portion where the electrolyte is supplied from the fifth branch point b51 of the inlet channel 103 to the internal volume 102 and a portion where the electrolyte is supplied from the fifth branch point b52 of the outlet channel 104 A dead-zone (DZ) whose flow rate is close to zero is generated due to the non-uniformity of the flow velocity.
도 3은 도 2의 유속 분포에 따른 유입 채널의 게 1분기점 내지 제 3분기점에서의 유량 편차 (질량 유량률 (mass flow rate))를 도시한 유량 편차도이다. 도 4는 도 2의 유속 분포에 따른 유입 채널의 제 4분기점 내지 저 15분기점에서의 유량 편차 (질량 유량률)를 도시한 유량 편차도이다.  3 is a flow deviation diagram showing a flow rate deviation (mass flow rate) at the first to third branch points of the inflow channel according to the flow velocity distribution in FIG. Fig. 4 is a graph showing the flow rate deviation (mass flow rate) at the fourth branch point to the low 15 branch point of the inflow channel according to the flow velocity distribution of Fig. 2;
편의상, 유출 채널 (104)을 생략하고, 유입 채널 (103)을 예로 설명한다. 도 3 및 도 4에 도시된 바와 같이, 유입 채널 (103)의 제 1분기점 (bl) 내지 제 3분기점 (b3)에서 유량 편차인 대칭 계수가 작게 나타나고 (도 3 참조), 게 4분기점 (b4) 및 제 5분기점 (b5, 도 2의 b51)에서 유량 편차인 대칭 계수 (symmetry coef f icient )가 더욱 크게 나타난다.  For convenience, the outflow channel 104 is omitted and the inflow channel 103 is described as an example. 3 and 4, the symmetric coefficient which is the flow rate deviation at the first to sixth branch points b1 to b3 of the inflow channel 103 is small (see Fig. 3) ) And the symmetry coefficient (symmetry coef ficient), which is a flow rate deviation at the fifth branch point (b5, b51 in Fig. 2), becomes larger.
【발명의 상세한 설명】  DETAILED DESCRIPTION OF THE INVENTION
【기술적 과제】  [Technical Problem]
본 발명의 실시예들은 유입 채널에서 내부 용적으로 유입되는 전해액 및 내부 용적에서 유출 채널로 유출되는 전해액의 유동에 대하여, 유속을 균일화 (가변 범위 계수 (variability range coef f icient)의 최소화)하여, 내부 용적과 유입 채널 및 유출 채널에서 데드존을 제거하는 레독스 흐름 전지를 제공하고자 한다.  Embodiments of the present invention provide a method and apparatus for equalizing the flow rate (minimizing the variability range coef ficient) with respect to the flow of the electrolyte flowing into the internal volume from the inlet channel and the electrolyte flowing out of the internal volume into the outlet channel, And to provide a redox flow cell that removes the dead zone from the volume, the inlet channel, and the outlet channel.
또한, 본 발명의 실시예들은 유입 채널에서 내부 용적으로 유입되는 전해액 및 내부 용적에서 유출 채널로 유출되는 전해액의 유동에 대하여, 유입 채널과 유출 채널의 각 분기점에서 좌우로 전해액을 균일하게 분배 (좌우 유량 편차 (대칭 계수)를 최소화)하는 레독스 흐름 전지를 제공하고자 한다. 【기술적 해결방법】 In addition, embodiments of the present invention are directed to uniformly distributing the electrolytic solution to the left and right at the respective branch points of the inlet channel and the outlet channel with respect to the flow of the electrolytic solution flowing from the inlet channel to the inner volume and the electrolytic solution flowing from the inner volume to the outlet channel (Symmetry coefficient) is minimized). [Technical Solution]
본 발명의 일 실시예에 따른 레독스 흐름 전지는, 전해액 유입라인으로 유입되는 전해액으로 전류를 생성하고 전해액 유출라인으로 전해액을 유출하는 스택을 포함하며, 상기 스택은 반복적으로 적층되어 내부 용적을 형성하는 멤브레인과 스페이서 및 전극판, 및 상기 멤브레인과 상기 전극판을 수용하는 흐름 프레임을 포함하고, 상기 흐름 프레임은 상기 내부 용적에 전해액을 유입하거나 유출하는 상기 전해액 유입라인과 상기 전해액 유출라인에 연결되는 유로 채널을 포함하며, 상기 유로 채널은 상기 내부 용적에 연결되는 최종 분기점 측에 구획된 1개의 유로 채널에 복수의 토출구들을 구비한다.  The redox flow cell according to an embodiment of the present invention includes a stack for generating an electric current from an electrolyte flowing into an electrolyte inflow line and discharging an electrolyte solution to an electrolyte outflow line, the stack being repeatedly stacked to form an internal volume And a flow frame for receiving the membrane and the electrode plate, wherein the flow frame is connected to the electrolyte inflow line and the electrolyte outflow line through which the electrolytic solution flows into or flows out from the internal volume And the flow channel includes a plurality of discharge ports in one flow channel divided at a final branch point side connected to the internal volume.
상기 복수의 토출구들은 중심에서 최소 크기로 개방되고 양측으로 가면서 점진적으로 증가되는 크기로 개방될 수 있다.  The plurality of ejection openings may be opened to a minimum size at the center and gradually increase in size toward both sides.
상기 복수의 토출구들은 설정된 간격으로 이격될 수 있다.  The plurality of ejection openings may be spaced apart by a predetermined interval.
상기 유로 채널은 3~5회로 분기된 후, 복수의 토출구들을 구비할 수 있다.  The flow channel may be divided into three to five channels and then may have a plurality of outlets.
상기 유로 채널을 n회 분기하는 경우, 상기 유로 채널은 제 n분기점과 제 n-1분기점 사이에서 분기편차 저감부를 가질 수 있다.  When the flow channel is divided n times, the flow channel may have a branch deviation reduction unit between the nth branch point and the (n-1) th branch point.
상기 유로 채널의 분기편차 저감부는 상기 유로 채널의 폭 중심을 지나는 곡선 (L1)과 상기 n분기점에서 분배되는 지점에서 폭 중심을 지나는 수직선 (L2)을 그릴 때, 하방에서 곡선 (L1)의 끝 지점과 수직선 (L2)이 만나는 계 1지점 (P1)과, 상방에서 곡선 (L1)과 수직선 (L2)이 만나는 계 2지점 (P2) 사이의 직선 거리로 설정되고, 0초과일 수 있다.  The branching deviation reduction unit of the flow channel is formed by a curve L1 passing through the center of the width of the flow channel and a vertical line L2 passing through the center of the width at a point distributed at the n turn point, May be set to a straight line distance between a first point P1 where the vertical line L2 meets the first line P1 and a second line P2 where the curve L1 and the vertical line L2 meet from above and may be more than zero.
상기 유로 채널은 Re수 500 내지 2000의 유동 특성을 가질 수 있다. 【발명의 효과】 .  The flow channel may have a flow characteristic of 500 to 2000 Re. 【Effects of the Invention】 .
이와 같이 본 발명의 실시예들은 내부 용적에 연결되는 유로 채널 (유입 채널과 유출 채널)의 최종 분기점 측에 구획된 복수의 토출구들을 구비하므로 유입 채널에서 내부 용적으로 유입되는 전해액 및 내부 용적에서 유출 채널로 유출되는 전해액의 유동에 대하여, 유속을 균일화 (가변 범위 계수의, 최소화)하여 내부 용적과 유입 채널 및 유출 채널에서 데드존을 제거할 수 있다. 또한, 본 발명의 실시예들은 유입 채널과 유출 채널의 각 분기점에서 좌우로 전해액을 균일하게 분배 (대칭 계수의 최소화)할 수 있다. As described above, the embodiments of the present invention have a plurality of discharge ports partitioned on the side of the final branch point of the flow channel (inlet channel and outlet channel) connected to the internal volume, so that the flow rate of the electrolytic solution, The dead zone can be removed from the internal volume and the inlet and outlet channels by equalizing the flow rate (minimizing the variable range coefficient) for the flow of electrolyte flowing into the inlet and outlet channels. In addition, the embodiments of the present invention can uniformly distribute the electrolytic solution (minimization of the symmetry coefficient) to the left and right at each branch point of the inlet channel and the outlet channel.
【도면의 간단한 설명】  BRIEF DESCRIPTION OF THE DRAWINGS
도 1은 종래기술의 레독스 흐름 전지에 적용되는 흐름 프레임의 구성도이다  BRIEF DESCRIPTION OF DRAWINGS FIG. 1 is a block diagram of a flow frame applied to a redox flow cell of the prior art
도 2는 도 1의 흐름 프레임의 유입 채널 및 유출 채널의 제 5분기점에서 전해액 유속을 도시한 유속 분포도이다.  FIG. 2 is a flow diagram showing the flow rate of the electrolyte at the fifth branch point of the inlet channel and the outlet channel of the flow frame of FIG.
도 3은 도 2의 유속 분포에 따른 유입 채널의 제 1분기점 내지 제 3분기점에서의 유량 편차를 도시한 유량 편차도이다.  3 is a flow deviation diagram showing a flow rate deviation at the first branch point to the third branch point of the inflow channel according to the flow velocity distribution of FIG.
도 4는 도 2의 유속 분포에 따른 유입 채널의 제 4분기점 내지 제 5분기점에서의 유량 편차를 도시한 유량 편차도이다.  FIG. 4 is a graph showing the flow rate deviation of the flow channel at the fourth to fifth branch points of the inflow channel according to the flow velocity distribution of FIG. 2. FIG.
도 5는 본 발명의 일 실시예에 따른 레독스 흐름 전지에 적용되는 스택을 도시한사시도이다.  5 is a perspective view illustrating a stack applied to a redox flow cell according to an embodiment of the present invention.
도 6은 도 5의 VI-VI 선에 따른 단면도이다.  6 is a sectional view taken along the line VI-VI in Fig.
도 7은 도 5의 Vn-νΠ 선에 따른 단면도이다.  7 is a cross-sectional view taken along the line Vn -?
도 8은 본 발명의 게 1실시예에 따른 레독스 흐름 전지에 적용되는 흐름 프레임의 부분 구성도 (a)와 횡단면도 (b)이다.  FIG. 8 is a partial structural view (a) and a transverse sectional view (b) of a flow frame applied to a redox flow cell according to the first embodiment of the present invention.
도 9는 본 발명의 게 1실시예의 변형예에 따른 레독스 흐름 전지에 적용되는 흐름 프레임의 부분 구성도 (a)와 횡단면도 (b)이다. 9 is a partial structural view ( a ) and a transverse sectional view (b) of a flow frame applied to a redox flow cell according to a modification of the first embodiment of the present invention.
도 10은 본 발명의 게 2실시예에 따른 레독스 흐름 전지에 적용되는 흐름 프레임의 부분 구성도 (a)와 횡단면도 (b)이다. 10 is a partial structural view ( a ) and a transverse sectional view (b) of a flow frame applied to a redox flow cell according to the second embodiment of the present invention.
도 11은 본 발명의 제 2실시예의 변형예에 따른 레독스 흐름 전지에 적용되는 흐름 프레임의 부분 구성도 (a)와 횡단면도 (b)이다. 11 is a partial structural view ( a ) and a transverse sectional view (b) of a flow frame applied to a redox flow cell according to a modification of the second embodiment of the present invention.
도 12는 본 발명의 제 3실시예에 따른 레독스 흐름 전지에 적용되는 흐름 프레임의 부분 구성도 (a)와 횡단면도 (b)이다.  12 is a partial structural view (a) and a transverse sectional view (b) of a flow frame applied to a redox flow cell according to a third embodiment of the present invention.
도 13은 본 발명의 제 3실시예의 변형예에 따른 레독스 흐름 전지에 적용되는 흐름 프레임의 부분 구성도 (a)와 횡단면도 (b)이다.  13 is a partial structural view (a) and a transverse sectional view (b) of a flow frame applied to a redox flow cell according to a modification of the third embodiment of the present invention.
도 14는 종래기술 대비, 도 8, 도 10 및 도 12의 제 1, 제 2, 게 3실시예의 흐름 프레임에서 전해액의 압력 손실, 면적가중평균 유출구 속도, 가변 범위 계수, 유속 분포도 (a)와 횡단면 유속 분포도 (b)를 비교한 도면이다. FIG. 14 is a graph showing the relationship between the pressure loss of the electrolyte, the area-weighted mean outlet velocity, the variable range coefficient, the flow velocity distribution (a) and the flow velocity distribution in the flow frames of the first, second, and third embodiments of FIGS. 8, 10, The cross-sectional flow velocity distribution diagram (b) FIG.
도 15는 종래기술 대비, 도 9, 도 11 및 도 13의 제 1, 제 2, 제 3실시예의 변형예의 흐름 프레임에서의 압력 손실, 면적가중평균 유출구 속도, 가변 범위 계수, 유속 분포도 (a)와 횡단면 유속 분포도 (b)를 비교한 도면이다.  FIG. 15 is a graph showing the relationship between pressure loss, area weighted average outlet velocity, variable range coefficient, flow velocity distribution (a) in the flow frame of the first, second, and third embodiments of FIGS. 9, 11, And a cross-sectional flow velocity distribution diagram (b).
도 16은 도 10에 적용되는 흐름 프레임에서 분기점의 분기편차 저감부 형상을 도시한 상세도이다.  FIG. 16 is a detailed view showing a shape of a branch deviation reducing section of a branch point in the flow frame applied to FIG. 10; FIG.
도 17은 Re수와 게 4분기점 직전에서 유로 채널의 곡를 변수와 대칭 계수 (symmetry coef f ici ent )의 관계를 도시한 그래프이다.  17 is a graph showing the relationship between the number of Re channels and the symmetry coefficient of the channel channel and the symmetry coefficient immediately before the quadrant.
도 18은 Re와 최적화된 제 4분기점 직전에서 유로 채널의 곡를 변수의 관계를 도시한 그래프이다.  FIG. 18 is a graph showing the relationship of the variables of the channel channel in the channel just before the fourth branching point optimized for Re.
도 19는 종래기술에 따른 최종 분기점의 유량 편차와 본 발명의 일 실시예에 따른 최종 분기점의 유량 편차를 비교 도시한 유량 편차도이다. 【발명의 실시를 위한 최선의 형태】  FIG. 19 is a flow diagram showing a flow rate deviation of a final branch point according to the prior art and a flow rate deviation of a final branch point according to an embodiment of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
이하, 첨부한 도면을 참고로 하여 본 발명의 실시예에 대하여 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다.  Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings, which will be readily apparent to those skilled in the art to which the present invention pertains. The present invention may be embodied in many different forms and is not limited to the embodiments described herein.
도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 동일 또는 유사한 구성요소에 대해서는 동일한 참조부호를 붙였다.  In order to clearly illustrate the present invention, parts not related to the description are omitted, and the same or similar components are denoted by the same reference numerals throughout the specification.
명세서 전체에서, 어떤 부분이 다른 부분과 "연결 "되어 있다고 할 때, 이는 "직접적으로 연결"되어 있는 경우뿐 만 아니라, 다른 부재를 사이에 두고 "간접적으로 연결1 '된 것도 포함한다. 또한, 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다. In the specification, when that any part is "connected" with another part, which includes also a case that is "directly coupled to" as well as, interposed between the other member "indirectly coupled to 1 '. In addition, When an element is referred to as " comprising ", it means that it can include other elements, not excluding other elements unless specifically stated otherwise.
명세서 전체에서 층, 막, 영역, 판 등의 부분이 다른 부분 "~위에" 또는 "~상에 " 있다고 할 때 이는 다른 부분의 "바로 위에 " 있는 경우뿐 아니라 그 중간에 다른 부분이 있는 경우도 포함한다. 그리고 "~위에1' 또는 "~상에" 라 함은 대상 부분의 위 또는 아래에 위치하는 것을 의미하며, 반드시 중력 방향을 기준으로 상측에 위치하는 것을 의미하지 않는다. It will be understood that when a layer, film, region, plate, or the like is referred to as being "on" or "on" another portion throughout the specification, . And " 1 over" or The term " on " means located above or below the object portion, and does not necessarily mean that it is located on the upper side with respect to the gravitational direction.
도 5는 본 발명의 일 실시예에 따른 레독스 흐름 전지에 적용되는 스택을 도시한 사시도이고, 도 6은 도 5의 VI-VI 선에 따른 단면도이쪄, 도 7은 도 5의 VH-νΠ 선에 따른 단면도이다.  FIG. 5 is a perspective view showing a stack applied to a redox flow cell according to an embodiment of the present invention, FIG. 6 is a sectional view taken along the line VI-VI in FIG. 5, and FIG. 7 is a cross- Fig.
도 5 내지 도 7을 참조하면, 일 실시예의 레독스 흐름 전지는 전류를 발생시키는 스택 (120)을 구비하고, 전해액 탱크 (미도시)로부터 전해액을 스택 (120)으로 유입하고, 반웅 후 스택 (120)으로부터 전해액을 유출하여 전해액 탱크에 저장하도록 구성된다.  5 to 7, the redox flow cell of the embodiment includes a stack 120 for generating current, and the electrolyte is supplied from the electrolyte tank (not shown) to the stack 120, 120 to store the electrolyte solution in the electrolyte tank.
일례로써, 스택 (120)은 전해액을 순환시키면서 전류를 발생시키도록 구성된다. 전해액 탱크는 스택 ( 120)에 전해액을 공급하고, 스택 (120)에서 유출되는 전해액을 저장하도록 구성되어, 전해액 유입라인과 전해액 유출라인으로 연결된다.  By way of example, the stack 120 is configured to generate an electric current while circulating the electrolyte. The electrolyte tank is configured to supply the electrolyte solution to the stack 120 and to store the electrolyte solution flowing out of the stack 120, and is connected to the electrolyte solution inflow line and the electrolyte solution outflow line.
예를 들면, 전해액 탱크는 아연을 포함하는 애노드 전해액을 수용하는 애노드 전해액 탱크, 및 브로민을 포함하는 캐소드 전해액을 수용하는 캐소드 전해액 탱크 (편의상, 캐소드 전해액의 2상을 수용하는 2상 전해액 탱크를 도시 생략함)를 포함한다.  For example, the electrolyte tank may include an anode electrolyte tank containing an anode electrolyte containing zinc and a cathode electrolyte tank containing a cathode electrolyte containing bromine (for convenience, a two-phase electrolyte tank containing two phases of the cathode electrolyte, (Not shown).
전해액 유입라인은 애노드, 캐소드 전해액 탱크와 스택 (120)을 연결하여 전해액 펌프의 구동으로 스택 ( 120)에 전해액을 유입한다. 전해액 유출라인은 애노드, 캐소드 전해액 탱크와 스택 ( 120)을 연결하여 스택 (120)을 경유한 반웅 후의 전해액을 스택 (120)으로부터 유출한다.  The electrolyte inflow line connects the anode, the cathode electrolyte tank and the stack 120, and flows the electrolyte solution into the stack 120 by driving the electrolyte pump. The electrolyte effluent line connects the anode and the cathode electrolyte tank with the stack 120, and discharges the electrolyte after the stack 120 from the stack 120 via the stack 120.
스택 (120)은 반복적으로 적층되는 멤브레인 (10)과 스페이서 (20) 및 전극판 (30), 적층 방향의 양단에 차례로 적층되는 집전판 (61, 62)과 엔드 플레이트 (71, 72), 및 전해액을 유동시키는 제 1유로 채널 (CH1)과 제 2유로 채널 (CH2)을 포함한다. 전극판 (30)은 일측의 애노드 전극 (32)과 다른 일측의 캐소드 전극 (31)을 포함한다.  The stack 120 includes the membrane 10, the spacer 20 and the electrode plate 30 which are repeatedly stacked, the current collectors 61 and 62 and the end plates 71 and 72 which are sequentially stacked at both ends in the stacking direction, And includes a first flow channel (CH1) and a second flow channel (CH2) through which the electrolyte flows. The electrode plate 30 includes the anode electrode 32 on one side and the cathode electrode 31 on the other side.
엔드 플레이트 (71, 72)는 전해액 유입라인에 연결되는 애노드, 캐소드 전해액 유입구 (H21 , H31)를 제 1, 계 2유로 채널 (CHI , CH2)에 연결한다. 엔드 플레이트 (71, 72)는 전해액 유출라인에 연결되는 애노드, 캐소드 전해액 유출구 (H22 , H32)를 제 1, 제 2유로 채널 (CHI , CH2)에 연결한다. 또한, 스택 (120)은 버스바 (Bl , B2)를 통하여 내부에서 생성된 전류를 방전하거나, 외부의 전원에 연결되어 애노드 전해액 탱크에 전류를 층전할 수 있다. . The end plates 71 and 72 connect the anode and the cathode electrolyte inlets H21 and H31 connected to the electrolyte inflow line to the first and second flow channel channels CHI and CH2. The end plates 71 and 72 connect the anode and cathode electrolyte outlets H22 and H32 connected to the electrolyte outflow line to the first and second flow channel channels CHI and CH2. The stack 120 may discharge the current generated internally through the bus bars B1 and B2 or may be connected to an external power source to transfer a current to the anode electrolyte tank. .
스택 (120)은 흐름 프레임, 즉 멤브레인 흐름 프레임 (40)과 전극 흐름 프레임 (50)을 더 포함한다. 스택 (120)은 2개의 단위 셀 (CI , C2)을 구비하므로 1개의 전극 흐름 프레임 (50)을 중앙에 구비하고, 전극 흐름 프레임 (50)의 양측에 좌우 대칭 구조로 2개의 멤브레인 흐름 프레임 (40)을 배치하며, 및 멤브레인 흐름 프레임 (40)의 외곽에 각각 2개의 엔드 플레이트 (71, 72)를 배치하여 형성된다.  The stack 120 further includes a flow frame, i.e., a membrane flow frame 40 and an electrode flow frame 50. Since the stack 120 has two unit cells CI and C2, one electrode flow frame 50 is provided at the center and two membrane flow frames 40 and two end plates 71, 72 disposed on the outer periphery of the membrane flow frame 40, respectively.
멤브레인 (10)은 이온을 통과시키도록 구성되고, 멤브레인 흐름 프레임 (40)에 멤브레인 흐름 프레임 (40)의 두께 방향 중심에 결합된다. 전극판 (30)은 전극 흐름 프레임 (50)에 전극 흐름 프레임 (50)의 두께 방향 중심에 결합된다.  The membrane 10 is configured to pass ions and is coupled to the membrane flow frame 40 in the thickness direction center of the membrane flow frame 40. The electrode plate 30 is joined to the electrode flow frame 50 at the center in the thickness direction of the electrode flow frame 50.
엔드 플레이트 (71), 멤브레인 흐름 프레임 (40), 전극 흐름 프레임 (50), 멤브레인 흐름 프레임 (40) 및 엔드 플레이트 (72)을 배치하고, 멤브레인 (10)과 전극판 (30) 사이에 각각 스페이서 (20)를 개재하여 멤브레인 흐름 프레임 (40), 전극 흐름 프레임 (50) 및 엔드 플레이트 (71, 72)을 서로 접합함으로써, 2개의 단위 셀 (CI , C2)을 구비한 스택 ( 120)이 형성된다.  The end plate 71, the membrane flow frame 40, the electrode flow frame 50, the membrane flow frame 40 and the end plate 72 are disposed, and a spacer 10 is interposed between the membrane 10 and the electrode plate 30, The stack 120 having the two unit cells CI and C2 is formed by joining the membrane flow frame 40, the electrode flow frame 50 and the end plates 71 and 72 to each other via the through- do.
전극판 (30)은 2개의 단위 셀 (CI , C2)이 연결되는 부분.에서는 일측으로 캐소드 전극 (31)을 형성하고 다른 측으로 애노드 전극 (32)을 형성하여, 2개의 단위 셀 (CI , C2)을 직렬로 연결하는 바이폴라 전극으로 형성된다.  The electrode plate 30 includes a cathode electrode 31 formed on one side and an anode electrode 32 formed on the other side in the portion where the two unit cells CI and C2 are connected and the two unit cells CI and C2 ) Are connected in series.
멤브레인 흐름 프레임 (40), 전극 흐름 프레임 (50) 및 엔드 플레이트 (71, 72)는 서로 접착되어 멤브레인 ( 10)과 전극판 (30) 사이에 내부 용적 (S)을 설정하며, 내부 용적 (S)에 전해액을 공급하는 제 1, 제 2유로 채널 (CHI , CH2)을 구비한다. 제 1, 계 2유로 채널 (CHI , CH2)은 멤브레인 ( 10)의 양면에서 각각 균일한 압력과 양으로 전해액을 공급하도록 구성된다.  The membrane flow frame 40, the electrode flow frame 50 and the end plates 71 and 72 are adhered to each other to set the internal volume S between the membrane 10 and the electrode plate 30, (CHI, CH2) for supplying an electrolyte solution to the first and second flow channels (CH1, CH2). The first and second flow channel channels (CHI, CH2) are configured to supply the electrolyte at a uniform pressure and amount, respectively, on both sides of the membrane (10).
도 5 및 도 6을 참조하면, 제 1유로 채널 (CH1)은 애노드 전해액 유입구 (H21) , 내부 용적 (S) 및 애노드 전해액 유출구 (H22)를 연결하여, 애노드 전해액 펌프의 구동에 의하여, 멤브레인 (10)과 애노드 전극 (32) 사이에 설정되는 내부 용적 (S)으로 애노드 전해액을 유입하여 반웅 후, 유출 가능하게 한다. 5 and 6, the first channel CH1 is connected to the anode electrolyte inlet H21, the internal volume S and the anode electrolyte outlet H22, and is driven by the anode electrolyte pump, 10 and the anode electrode 32, The anode electrolytic solution flows into the internal volume S set between the anode and the cathode.
도 5 및 도 7을 참조하면, 제 2유로 채널 (CH2)은 캐소드 전해액 유입구 (H31) , 내부 용적 (S) 및 캐소드 전해액 유출구 (H32)를 연결하여 , 캐소드 전해액 펌프의 구동에 의하여, 멤브레인 (10)과 캐소드 전극 (31) 사이에 설정되는 내부 용적 (S)으로 캐소드 전해액을 유입하여 반웅 후, 유출 가능하게 한다.  5 and 7, the second flow channel CH 2 connects the cathode electrolyte inlet H 31, the internal volume S and the cathode electrolyte outlet H 32, and is driven by the cathode electrolyte pump, 10 and the cathode electrode 31 to allow the cathode electrolyte solution to flow out after the catholyte flows.
애노드 전해액은 내부 용적 (S)의 애노드 전극 (32) 측에서 산화환원 반응하여 전류를 생성하여 애노드 전해액 탱크에 저장된다. 캐소드 전해액은 내부 용적 (S)의 캐소드 전극 (31) 측에서 산화환원 반웅하여 전류를 생성하여 캐소드 전해액 탱크에 저장된다.  The anode electrolyte undergoes a redox reaction on the side of the anode electrode 32 of the internal volume S to generate a current and is stored in the anode electrolyte tank. The cathode electrolytic solution is redox-repelled on the side of the cathode electrode 31 of the internal volume S to generate a current and stored in the cathode electrolytic solution tank.
층전시, 멤브레인 (10)과 캐소드 전극 (31) 사이에서,  Layer display, between the membrane 10 and the cathode electrode 31,
2Β → 2Br + 2e~ (식 1) 2Β → 2Br + 2e ~ (formula 1)
와 같은 화학 반웅이 일어나서, 캐소드 전해액에 포함된 브로민이 생산되어 캐소드 전해액 탱크에 저장된다.  The bromine contained in the cathode electrolyte is produced and stored in the cathode electrolyte tank.
충전시, 멤브레인 (10)과 애노드 전극 (32) 사이에서,  During charging, between the membrane 10 and the anode electrode 32,
Zn2 + + 2e"→ Zn (식 2) Zn 2 + + 2e & quot ; - > Zn (Formula 2)
와 같은 화학 반응이 일어나서, 애노드 전해액에 포함된 아연이 애노드 전극 (32)에 증착되어 저장된다.  The zinc contained in the anode electrolyte is deposited on the anode electrode 32 and stored.
방전시, 멤브레인 (10)과 캐소드 전극 (31) 사이에서, 식 1의 역 반웅이 일어나고, 멤브레인 ( 10)과 애노드 전극 (32) 사이에서 식 2의 역 반웅이 일어난다.  During the discharge, inversion between Equation 1 and Equation 1 occurs between the membrane 10 and the cathode electrode 31, and the inverse reaction of Equation 2 occurs between the membrane 10 and the anode electrode 32.
집전판 (61, 62)은 캐소드 전극 (31)과 애노드 전극 (32)에서 생성된 전류를 모으거나, 외부에서 캐소드 전극 (31)과 애노드 전극 (32)에 전류를 공급하도록 최외곽 전극판 (30, 30)에 접착되어 전기적으로 연결된다.  The current collectors 61 and 62 collect the current generated in the cathode electrode 31 and the anode electrode 32 or collect the current generated in the outermost electrode plate 32 30, and 30 to be electrically connected.
도 8은 본 발명의 제 1실시예에 따른 레독스 흐름 전지에 적용되는 흐름 프레임의 부분 구성도 (a)와 횡단면도 (b)이다. 도 8을 참조하면, 제 1실시예에서 흐름 프레임 (즉 멤브레인 흐름 프레임 (40), 전극 흐름 프레임 (50) )은 내부 용적 (S)에 전해액을 유입하거나 유출하는 전해액 유입라인과 전해액 유출라인을 연결하는 제 1, 제 2유로 채널 (CHI , CH2)을 구비한다 . 8 is a partial structural view (a) and a transverse sectional view (b) of a flow frame applied to a redox flow cell according to the first embodiment of the present invention. 8, the flow frame (i.e., the membrane flow frame 40, the electrode flow frame 50) in the first embodiment includes an electrolyte inflow line and an electrolyte inflow line that flow in or out of the internal volume S The first and second flow channel channels (CHI, CH2) Respectively.
편의상, 애노드 전해액 유입구 (H21)에서 내부 용적 (S)으로 유입되는 애노드 전해액을 흐르게 하는 게 1유로 채널 (CH1)에 대하여 설명한다. 제 1유로 채널 (CH1)은 내부 용적 (S)에 연결되는 최종 분기점 (제 5분기점 (b5) ) 측에 구획된 복수의 토출구들 (0L1)을 구비한다.  For convenience, the one-channel channel CH1 will be described so that the anode electrolyte flowing from the anode electrolyte inlet H21 to the internal volume S flows. The first flow channel CH1 has a plurality of discharge ports 0L1 partitioned at the final branch point (fifth branch point b5) side connected to the internal volume S.
복수의 토출구들 (0L1)은 중심에서 최소 크기로 개방되고 양측으로 가면서 점진적으로 증가되는 크기로 개방된다 (예를 들면, 흐름 프레임의 폭 방향 (도 8의 좌우 방향)에서) . 이는 애노드 전해액이 복수의 토출구들 (0L1) 중 가운데 영역으로 집중되는 것을 방지하여, 애노드 전해액 유동의 균일한 분배를 가능하게 한다.  The plurality of ejection openings 0L1 are opened to a minimum size at the center and gradually increase in size to both sides (for example, in the width direction of the flow frame (left and right direction in Fig. 8)). This prevents the anode electrolyte from being concentrated in the middle region among the plurality of discharge ports 0L1, thereby enabling a uniform distribution of the anode electrolyte flow.
일례로써, 복수의 토출구들 (0L1)은 사각형 구조로 형성되고, 설정된 간격 (G1)으로 이격된다. 간격 (G1)은 1mm로 설정된다. 복수의 토출구들 (0L1)은 게 1유로 채널 (CH1)에서 5회 분기된 게 5분기점 (b5) 이후에, 구비된다. 즉 복수의 토출구들 (0L1)은 제 1유로 채널 (CH1)에서 제 5분기점 (b5) 후 내부 용적 (S) 측에 구비되어 다시 하나로 합쳐져서 내부 용적 (S)에 연결된다. 도시하지 않았으나 토출구들은 삼각형, 다각형, 원형 또는 타원형 등으로 형성될 수 있다.  By way of example, the plurality of ejection openings 0L1 are formed in a rectangular structure, and are spaced apart by a predetermined gap G1. The interval G1 is set to 1 mm. The plurality of discharge ports 0L1 are provided after the fifth branch point b5 after being branched five times from the first one-way channel CH1. That is, the plurality of discharge ports 0L1 are provided on the inner volume S side after the fifth branching point b5 in the first flow channel CH1, and are joined to the inner volume S again. Although not shown, the discharge ports may be formed in a triangular shape, a polygonal shape, a circular shape, an elliptical shape, or the like.
이하 본 발명의 다양한 실시예들에 대하여 설명한다. 제 1실시예 및 기 설명된 실시예와 동일한 구성에 대한 설명을 생략하고, 서로 다른 구성에 대하여 설명한다.  Hereinafter, various embodiments of the present invention will be described. The description of the same configuration as that of the first embodiment and the previously described embodiment will be omitted and different configurations will be described.
도 9는 본 발명의 제 1실시예의 변형예에 따른 레독스 흐름 전지에 적용되는 흐름 프레임의 부분 구성도 (a)와 횡단면도 (b)이다. 도 9를 참조하면, 제 1유로 채널 (CH11)에서, 복수의 토출구들 (0L11)은 사각형 구조로 형성되고, 설정된 간격 (G11)으로 이격된다. 간격 (G11)은 0.5mm로 설정된다. 즉 복수의 토출구들 (0L11)은 제 1유로 채널 (CH11)에서 거 15분기점 (b5) 후, 내부 용적 (S) 측에 구비되어 다시 하나로 합쳐져서 내부 용적 (S)에 연결된다.  9 is a partial structural view (a) and a transverse sectional view (b) of a flow frame applied to a redox flow cell according to a modification of the first embodiment of the present invention. Referring to FIG. 9, in the first flow channel CH11, the plurality of discharge ports OLL11 are formed in a rectangular shape and are spaced apart by a predetermined gap G11. The gap G11 is set to 0.5 mm. That is, the plurality of discharge ports 0L11 are provided on the inner volume S side after the fifteenth branching point b5 in the first flow channel CH11, and are joined to the inner volume S again.
따라서 제 1실시예의 변형.예에 따른 복수의 토출구들 (0L11)은 제 1실시예에 따른 복수의 토출구들 (0L1)에 비하여, 애노드 전해액을 내부 용적 (S)으로 더 균일하게 토출할 수 있다. 도 10은 본 발명의 계 2실시예에 따른 레독스 흐름 전지에 적용되는 흐름 프레임의 부분 구성도 (a)와 횡단면도 (b)이다. 도 10을 참조하면, 제 2실시예에서, 제 1유로 채널 (CH3)은 내부 용적 (S)에 연결되는 최종 분기점 (제 4분기점 (b4) ) 측에 구획된 복수의 토출구들 (0L3)을 구비한다. Therefore, the plurality of discharge ports 0L11 according to the modification of the first embodiment can more uniformly discharge the anode electrolyte into the internal volume S, as compared with the plurality of discharge ports 0L1 according to the first embodiment . 10 is a partial structural view (a) and a transverse sectional view (b) of a flow frame applied to a redox flow cell according to the second embodiment of the present invention. 10, in the second embodiment, the first flow channel CH3 includes a plurality of discharge ports 0L3 partitioned at the final branch point (fourth branch point b4) connected to the internal volume S Respectively.
복수의 토출구들 (0L3)은 중심에서 최소 크기로 개방되고 양측으로 가면서 점진적으로 증가되는 크기로 개방된다. ᅳ이는 애노드 전해액이 복수의 토출구들 (0L3) 중 가운데 영역으로 집중되는 것을 방지하여, 애노드 전해액 유동의 균일한 분배를 가능하게 한다.  The plurality of ejection openings 0L3 are opened to a minimum size at the center and gradually increase in size toward both sides. This prevents the anode electrolyte from being concentrated in the middle region of the plurality of discharge ports 0L3, thereby enabling uniform distribution of the anode electrolyte flow.
일례로써, 복수의 토출구들 (0L3)은 사각형 구조로 형성되고, 설정된 간격 (G3)으로 이격된다. 간격 (G3)은 1mm로 설정된다. 복수의 토출구들 (0L3)은 게 1유로 채널 (CH3)에서 4회 분기된 제 4분기점 (b4) 이후에 , 구비된다. 즉 복수의 토출구들 (0L3)은 제 1유로 채널 (CH3)에서 거 분기점 (b4) 후 내부 용적 (S) 측에 구비되어 다시 하나로 합쳐져서 내부 용적 (S)에 연결된다.  By way of example, the plurality of ejection openings 0L3 are formed in a rectangular structure, and are spaced apart by the set gap G3. The interval G3 is set to 1 mm. The plurality of discharge ports 0L3 are provided after the fourth branching point b4 branched four times in the gas flow channel CH3. That is, the plurality of discharge ports 0L3 are provided on the inner volume S side after the brinking point b4 in the first flow channel CH3, and are joined to one another to be connected to the inner volume S again.
제 2실시예에서 복수의 토출구들 (0L3)은 제 1실시예에서 복수의 토출구들 (0L1)과 비교할 때, 더 넓은 범위에 형성되어, 애노드 전해액을 내부 용적 (S)의 보다 넓은 범위에서 더 균일하게 토출할 수 있다.  In the second embodiment, the plurality of outlets 0L3 are formed in a wider range as compared with the plurality of outlets 0L1 in the first embodiment, so that the anode electrolytic solution is discharged from a larger range of the inner volume S So that uniform discharge can be achieved.
도 11은 본 발명의 제 2실시예의 변형예에 따른 레독스 흐름 전지에 적용되는 흐름 프레임의 부분 구성도 (a)와 횡단면도 (b)이다. 도 11을 참조하면, 게 1유로 채널 (CH31)에서, 복수의 토출구들 (0L31)은 사각형 구조로 형성되고, 설정된 간격 (G31)으로 이격된다. 간격 (G31)은 0.5mm로 설정된다. 즉 복수의 토출구들 (0L31)은 제 1유로 채널 (CH31)에서 제 4분기점 (b4) 후, 내부 용적 (S) 측에 구비되어 다시 하나로 합쳐져서 내부 용적 (S)에 연결된다.  11 is a partial structural view (a) and a transverse sectional view (b) of a flow frame applied to a redox flow cell according to a modification of the second embodiment of the present invention. Referring to FIG. 11, in the gas channel channel CH31, the plurality of discharge ports 0L31 are formed in a rectangular shape and are spaced apart by a predetermined gap G31. The interval G31 is set to 0.5 mm. That is, the plurality of discharge ports 0L31 are provided on the inner volume S side after the fourth branching point b4 in the first flow channel CH31, and are joined to the inner volume S again.
따라서 제 2실시예의 변형예에 따른 복수의 토출구들 (0L31)은 제 2실시예에 따른 복수의 토출구들 (0L3)에 비하여, 애노드 전해액을 내부 용적 (S)으로 더 균일하게 토출할 수 있다.  Accordingly, the plurality of discharge ports 0L31 according to the modification of the second embodiment can more uniformly discharge the anode electrolyte into the internal volume S, as compared with the plurality of discharge ports 0L3 according to the second embodiment.
도 12는 본 발명의 게 3실시예에 따른 레독스 흐름 전지에 적용되는 흐름 프레임의 부분 구성도 (a)와 횡단면도 (b)이다. 도 12를 참조하면, 제 3실시예에서, 제 1유로 채널 (CH4)은 내부 용적 (S)에 연결되는 최종 분기점 (제 3분기점 (b3) )측에 구획된 복수의 토출구들 (0L4)을 구비한다. 12 is a partial structural view ( a ) and a transverse sectional view (b) of a flow frame applied to a redox flow cell according to the third embodiment of the present invention. Referring to Fig. 12, in the third embodiment, the first flow channel CH4 is connected to the inner volume S And a plurality of discharge ports 0L4 partitioned at the branch point (third branch point b3).
복수의 토출구들 (0L4)은 중심에서 최소 크기로 개방되고 양측으로 가면서 점진적으로 증가되는 크기로 개방된다. 이는 애노드 전해액이 복수의 토출구들 (0L4) 중 가운데 영역으로 집중되는 것을 방지하여, 애노드 전해액 유동와 균일한 분배를 가능하게 한다.  The plurality of ejection openings 0L4 are opened to a minimum size at the center and gradually increase in size to both sides. This prevents the anode electrolyte from being concentrated in the middle region among the plurality of discharge ports 0L4, thereby enabling the anode electrolyte flow and uniform distribution.
일례로써, 복수의 토출구들 (0L4)은 사각형 구조로 형성되고, 설정된 간격 (G4)으로 이격된다. 간격 (G4)은 1瞧로 설정된다. 복수의 토출구들 (0L4)은 제 1유로 채널 (CH4)에서 3회 분기된 제 3분기점 (b3) 이후에, 구비된다. 즉 복수의 토출구들 (0L4)은 제 1유로 채널 (CH4)에서 제 3분기점 (b3) 후 내부 용적 (S) 측에 구비되어 다시 하나로 합쳐져서 내부 용적 (SHI 연결된다.  By way of example, the plurality of ejection openings 0L4 are formed in a rectangular shape and are spaced apart by the set gap G4. The interval G4 is set to 1 占. The plurality of discharge ports 0L4 are provided after the third branch point b3 branched three times in the first flow channel CH4. That is, the plurality of discharge ports 0L4 are provided on the inner volume S side after the third branching point b3 in the first flow channel CH4, and are combined into one another to be connected to the inner volume (SHI).
제 3실시예에서 복수의 토출구들 (0L4)은 제 2실시예에서 복수의 토출구들 (0L3)과 비교할 때, 더 넓은 범위에 형성되어, 애노드 전해액을 내부 용적 (S)의 보다 넓은 범위에서 더 균일하게 토출할 수 있다.  In the third embodiment, the plurality of discharge ports 0L4 are formed in a wider range as compared with the plurality of discharge ports 0L3 in the second embodiment, so that the anode electrolyte can be discharged in a wider range of the inner volume S So that uniform discharge can be achieved.
도 13은 본 발명의 제 3실시예의 변형예에 따른 레독스 흐름 전지에 적용되는 흐름 프레임의 부분 구성도 (a)와 횡단면도 (b)이다. 도 13을 참조하면, 계 1유로 채널 (CH41)에서, 복수의 토출구들 (0L41)은 사각형 구조로 형성되고, 설정된 간격 (G41)으로 이격된다. 간격 (G41)은 0.5mm로 설정된다. 즉 복수의 토출구들 (0L41)은 제 1유로 채널 (CH41)에서 제 3분기점 (b3) 후, 내부 용적. (S) 측에 구비되어 다시 하나로 합쳐져서 내부 용적 (S)에 연결된다.  13 is a partial structural view (a) and a transverse sectional view (b) of a flow frame applied to a redox flow cell according to a modification of the third embodiment of the present invention. Referring to FIG. 13, in the system 1 flow channel CH41, the plurality of discharge ports 0L41 are formed in a rectangular structure and are spaced apart by a predetermined gap G41. The gap G41 is set to 0.5 mm. In other words, the plurality of discharge ports 0L41 are connected to the inner volume CH4 after the third branch point b3 in the first flow channel CH41. (S), and are joined together into an internal volume (S).
따라서 제 3실시예의 변형예에 따른 복수의 토출구들 (0L41)은 제 3실시예에 따른 복수의 토출구들 (0L4)에 비하여, 애노드 전해액을 내부 용적 (S)으로 더 균일하게 토출할 수 있다.  Accordingly, the plurality of discharge ports 0L41 according to the modified example of the third embodiment can more uniformly discharge the anode electrolyte into the internal volume S, as compared with the plurality of discharge ports 0L4 according to the third embodiment.
도 14는 종래기술 대비, 도 8, 도 10 및 도 12의 제 1, 제 2, 제 3실시예의 흐름 프레임에서 전해액의 압력 손실 (pressure drop) , 면적가중 평균 토출구의 유속 속도 ( ar ea— weighted average out let veloci ty) , 가변 범위 계수 (variabi l i ty range coeff i cient ) , 유속 분포도 (veloci ty magni tude contour ) (a)와 횡단면 유속 분포도 (b)를 비교한 도면이다.  Fig. 14 is a graph showing the pressure drop of the electrolyte in the flow frames of the first, second and third embodiments of Figs. 8, 10 and 12, the flow velocity of the area weighted average outlet (ar ea- weighted (a) and (b) of the cross-sectional flow velocity distribution, respectively. The results are shown in Fig. 1 (a) and (b).
도 14를 참조하면 , 제 1, 제 2, 제 3실시예에서 제 1유로 채널 (CHI , CH3 , CH4)은 분기점이 5, 4, 3으로 줄어듦에 따라 압력 손실 (pressure drop)을 점진적으로 줄일 수 있다. Referring to FIG. 14, in the first, second, and third embodiments, the first channel channels CHI, CH3, CH4) can gradually reduce the pressure drop as the branch point decreases to 5, 4, and 3.
또한 제 2, 제 3실시예에서 제 1유로 채널 (CH3, CH4)은 분기점의 개수를 4, 3개로 줆임에 따라 토출 속도 (area-weighted average outlet velocity)의 균일성을 평가하는 가변 범위 계수 (var iabi 1 ity range coefficient)를 각각 종래기술의 0.18m/s에서 0.064m/s와 0.062m/s로 64%와 65%감소시켰다.  In the second and third embodiments, the first channel channels CH3 and CH4 are variable range coefficients for evaluating the uniformity of the area-weighted average outlet velocity according to the number of the branch points being four or three. var iabi 1 ity range coefficient were reduced by 64% and 65%, respectively, from 0.18 m / s to 0.064 m / s and 0.062 m / s, respectively.
가변 범위 계수 (variability range coefficient)의 최소화로 인하여, 제 1, 제 2, 게 3실시예는 내부 용적 (S)과 제 1유로 채널 (CHI, CH3, CH4)에서 데드존을 제거할 수 있다.  The first, second, and third embodiments can remove the dead zone in the internal volume S and the first flow channel CHI, CH3, CH4 due to the minimization of the variability range coefficient.
도 15는 종래기술 대비, 도 9, 도 11 및 도 13의 제 1, 제 2, 제 3실시예의 변형예의 흐름 프레임에서 전해액의 압력 손실 (pressure drop), 면적가중 평균 토출구의 유속 속도 (area-weighted average outlet velocity), 가변 범위 계수 (variability range coefficient), 유속 분포도 (velocity magnitude contour)(a)와 횡단면 유속 분포도 (b)를 비교한 도면이다.  FIG. 15 is a graph showing the pressure drop of an electrolytic solution in a flow frame of a modified example of the first, second, and third embodiments of FIGS. 9, 11, and 13, area- (a) and the cross-sectional flow velocity distribution (b), as shown in FIG. 3 (b).
도 15를 참조하면, 제 1, 제 2, 제 3실시예의 변형예에서 제 1유로 채널 (CHll, CH31, CH41)은 분기점이 5, 4, 3으로 줄어듦에도 전해액의 압력 손실 (pressure drop), 에 대하여 큰 차이는 없지만 토출 속도 (area—weighted average outlet velocity)의 균일성을 평가하는 가변 범위 계수 (var iabi 1 ity range coefficient)를 제 1, 제 2, 제 3실시예에서보다 더 효율적으로 구현하였다.  Referring to FIG. 15, in the first, second, and third embodiments, the first flow channels CHll, CH31, and CH41 decrease the pressure drop of the electrolyte, The varia- bility constant coefficient for evaluating the uniformity of the area-weighted average outlet velocity is implemented more efficiently than in the first, second, and third embodiments Respectively.
가변 범위. 계수의 더 최소화로 인하여, 제 1, 제 2, 제 3실시예의 변형예는 내부 용적 (S)과 제 1유로 채널 (CHll, CH31, CH41)에서 데드존을 더 제거할 수 있다.  Variable range. Modifications of the first, second, and third embodiments can further remove the dead zone from the internal volume S and the first flow channels CHll, CH31, and CH41 due to further minimization of the coefficients.
도 16은 도 10에 적용되는 흐름 프레임에서 분기점의 분기편차 저감부 형상을 도시한 상세도이다. 도 16을 참조하면, 게 1유로 채널 (CH3)을 n회 (일례로써 4회 ) 분기하는 경우, 제 1유로 채널 (CH3)은 제 n분기점 (일례로써, 게 4분기점 (b4) )과 제 n-1분기점 (일례로써, 게 3분기점 (b3)) 사이에서 분기편차 저감부를 가진다.  FIG. 16 is a detailed view showing a shape of a branch deviation reducing section of a branch point in the flow frame applied to FIG. 10; FIG. Referring to FIG. 16, in the case where the first flow channel CH3 is branched n times (for example, four times), the first flow channel CH3 is divided into nth branch points (for example, four branch points b4) and has a branch deviation reduction section between n-1 branch points (for example, three branch points b3).
분기편차 저감부는 제 4분기점 (b4)에서의 좌우 유량 편차를 개선하는 곡를 변수로써, 길이 (L)에 따라 설정된다. 제 1유로 채널 (CH3)의 폭 중심을 지나는 곡선 (L1)과 제 n분기점 (일례로써, 제 4분기점 (b4) )에서 분배되는 지점에서 폭 중심을 지나는 수직선 (L2)을 그릴 때, 길이 (L)는 하방에서 곡선 (L1)의 끝 지점과 수직선 (L2)이 만나는 제 1지점 (P1)과, 상방에서 곡선 (L1)과 수직선 (L2)이 만나는 제 2지점 (P2) 사이의 직선 거리로 설정되고, 0초과이다. 길이 (L)의 증가에 따라 게 4분기점 (b4) 직전에서 제 1유로 채널 (CH3)의 분기편차 저감부가 증가하고 (a) , 길이 (L)가 영이면 분기편차 저감부가 존재하지 않는다 (b) . The branch deviation reducing section may improve the left and right flow rate deviation at the fourth branch point (b4) Is set according to the length (L) of the music as a variable. When drawing a vertical line L2 passing through the center of the width at a point distributed at the nth branch point (for example, the fourth branch point b4) and the curve L1 passing through the width center of the first flow channel CH3, L is a straight line distance between a first point P1 where the end point of the curve L1 and the perpendicular line L2 meet below and a second point P2 where the curve L1 and the perpendicular line L2 meet from above, And is greater than zero. The branch deviation reduction section of the first flow channel CH3 immediately before the crab quadrature point b4 increases as the length L increases and the branch deviation reduction section does not exist when the length L is zero ).
도 17은 Re수와 제 4분기점 직전에서 유로 채널의 곡률 변수와 대칭 계수 (symmetry coef f i cient )의 관계를 도시한 그래프이며, 도 18은 Re와 최적화된 게 4분기점 직전에서 유로 채널의 곡률 변수의 관계를 도시한 그래프이다.  FIG. 17 is a graph showing the relationship between the Re number and the curvature parameter of the channel channel and the symmetry coef fi cient immediately before the fourth bifurcation point. FIG. 18 is a graph showing the curvature parameter As shown in FIG.
도 17 및 도 18을 참조하면, 해당 곡률에 따른 해석은 Re수 (Reynolds Number ) 250부터 2000에 해당되는 층류 영역에 대해 진행하였다. 제 4분기점 (M)과 제 3분기점 (b3) 사이의 곡률 변수 (분기편차 저감부)인 길이 (L)가 증가함에 따라 대칭 계수 (symmetry coef f i cient )가 감소하며, 이러한 경향은 모든 Re 수에 대해서 유사하다. 각 Re수에 대한 대칭 계수가 0이 되는 곡률 변수인 길이는 2.5匪로 수렴된다.  Referring to FIGS. 17 and 18, the analysis according to the curvature was performed for the laminar flow region corresponding to Reynolds Number 250 to 2000. The symmetry coef fi cient decreases as the length L, which is the curvature variable (branch deviation reduction section) between the fourth branch point M and the third branch point b3, increases, . The length of the curvature parameter with which the symmetric coefficient for each Re number is zero converges to 2.5..
도 19는 종래기술에 따른 최종 분기점의 유량 편차와 본 발명의 일 실시예에 따른 최종 분기점의 유량 편차를 비교 도시한 유량 편차도이고, 도 19를 참조하면, 최적화된 곡률의 길이 (L)를 적용하여 해석한 결과 종래기술에 비하여, 제 2실시의 분기 편차에 따른 대칭 계수가 줄어드는 것을 확인할 수 있다. 즉 제 2실시예의 게 1유로 채널 (CH3)의 제 4분기점 (b4)에서의 대칭 계수 (symmetry coef f i cient )는 0.3%로, 기존의 3.9%에 비해 3.6% 개선되었다. 편의상, 종래기술의 제 1유로 채널을 도시하고 있다.  FIG. 19 is a flow deviation diagram showing a comparison between the flow rate deviation of the final branch point according to the prior art and the flow rate deviation of the final branch point according to an embodiment of the present invention, and FIG. 19 shows the optimized length L of the curvature As a result, it can be confirmed that the symmetric coefficient according to the branching deviation of the second embodiment is reduced as compared with the conventional technique. That is, the symmetry factor at the fourth branching point b4 of the first-flow channel CH3 of the second embodiment is 0.3%, which is 3.6% improved from the conventional 3.9%. For convenience, the first flow channel of the prior art is shown.
이상을 통해 본 발명의 바람직한 실시예에 대하여 설명하였지만, 본 발명은 이에 한정되는 것이 아니고 특허청구범위와 발명의 상세한 설명 및 첨부한 도면의 범위 안에서 여러 가지로 변형하여 실시하는 것이 가능하고 이 또한 본 발명의 범위에 속하는 것은 당연하다. - 부호의 설명 -While the present invention has been particularly shown and described with reference to exemplary embodiments thereof, it is to be understood that the invention is not limited to the disclosed exemplary embodiments, but, on the contrary, And it goes without saying that the invention belongs to the scope of the invention. - Explanation of symbols -
10 : 멤브레인 20: 스페이서 10: membrane 20: spacer
30 전극판 32: 애노드 전극  30 electrode plate 32: anode electrode
31 캐소드 전극 40: 멤브레인 흐름  31 Cathode electrode 40: Membrane flow
50 전극 흐름 프레임 61, 62: 집전판  50 Electrode flow frame 61, 62: Collector plate
71 72: 엔드 플레이트 120 —人—ΪΙ 1 71 72: End plate 120 - Person -ΪΙ 1
L: 길이 L1: 고서  L: length L1:
L2 직선 B1, B2: 버스바  L2 straight line B1, B2: bus bar
b3 제 3분기점 b4: 제 4분기점 b3 Third branch point b4: Fourth branch point
b5 제 5분기점 ci, C2: 단위 셀 b5 fifth branch point ci, C2: unit cell
CHI, CHll, CH3, CH31, CH4, CH41: 제 1유로 채널  CHI, CH11, CH3, CH31, CH4, CH41: The first channel
CH2: 게 2유로 채널 Gl, Gil, G3, G31, G4, G41: 간격 CH2: Gage 2 Euro channel G1, Gil, G3, G31, G4, G41: Interval
H21, H31: 애노드, 캐소드 전해액 유입구 H21, H31: anode, cathode electrolyte inlet
H22, H32: 애노드, 캐소드 전해액 유출구  H22, H32: anode, cathode electrolyte outlet
0L1, OLll, 0L3, 0L31, 0L4, 0L41: 토출구  0L1, OLll, 0L3, 0L31, 0L4, 0L41:
PI, P2: 제 1, 제 2지점 S: 내부 용적  PI, P2: First and second points S: Inner volume

Claims

【청구의 범위】 Claims:
【청구항 1】  [Claim 1]
전해액 유입라인으로 유입되는 전해액으로 전류를 생성하고 전해액 유출라인으로 전해액을 유출하는 스택을 포함하며, 상기 스택은 반복적으로 적층되어 내부 용적을 형성하는 멤브레인과 스페이서 및 전극판, 및 상기 멤브레인과 상기 전극판을 수용하는 흐름 프레임을 포함하고,  And a stack for generating an electric current with an electrolyte flowing into the electrolyte inflow line and discharging the electrolyte to the electrolyte outflow line, wherein the stack is repeatedly stacked to form an internal volume, a spacer, and an electrode plate, A flow frame for receiving the plate,
상기 흐름 프레임은 상기 내부 용적에 전해액을 유입하거나 유출하는 상기 전해액 유입라인과 상기 전해액 유출라인에 연결되는 유로 채널을 포함하며,  Wherein the flow frame includes a flow channel connected to the electrolyte inflow line and the electrolyte inflow line through which the electrolyte flows into or flows out from the internal volume,
상기 유로 채널은 상기 내부 용적에 연결되는 최종 분기점 측에 구획된 1개의 유로 채널에 복수의 토출구들을 구비하는 레독스 흐름 전지 .  Wherein the flow channel has a plurality of discharge ports in one flow channel partitioned at a final branch point side connected to the internal volume.
【청구항 2】 [Claim 2]
게 1항에 있어서,  In Item 1,
상기 복수의 토출구들은 중심에서 최소 크기로 개방되고 양측으로 가면서 점진적으로 증가되는 크기로 개방되는 레독스 흐름 전지.  Wherein the plurality of ejection openings are opened to a minimum size at the center and gradually open to both sides of the redox flow cell.
【청구항 3]  [3]
제 1항에 있어서,  The method according to claim 1,
상기 복수의 토출구들은 설정된 간격으로 이격되는 레독스 흐름 전지.  Wherein the plurality of discharge ports are spaced apart at a predetermined interval.
【청구항 4】  Claim 4
게 1항에 있어서,  In Item 1,
상기 유로 채널은 3~5회로 분기된 후, 복수의 토출구들을 구비하는 레독스 흐름 전지 .  Wherein the flow channel is divided into three to five circuits, and then the plurality of discharge ports are provided.
【청구항 5】  [Claim 5]
제 1항에 있어서,  The method according to claim 1,
상기 유로 채널을 n회 분기하는 경우 상기 유로 채널은 제 n분기점과 제 n-1분기점 사이에서 분기편차 저감부를 가지는 레독스 흐름 전지.  Wherein when the flow channel is divided n times, the flow channel has a branch deviation reduction section between the n-th branch point and the (n-1) th branch point.
【청구항 6】  [Claim 6]
게 5항에 있어서,  In Item 5,
상기 유로 채널의 분기편차 저감부는 상기 유로 채널의 폭 중심을 지나는 곡선 (LI)과 상기 n분기점에서 분배되는 지점에서 폭 중심을 지나는 수직선 (L2)을 그릴 때, 하방에서 곡선 (L1)의 끝 지점과 수직선 (L2)이 만나는 제 1지점 (P1)과, 상방에서 곡선 (L1)과 수직선 (L2)이 만나는 거 12지점 (P2) 사이의 직선 거리로 설정되고, 0초과인 레독스 흐름 전지. 【청구항 7】 Wherein the branching deviation reducing section of the flow channel The first point P1 where the end point of the curve L1 and the perpendicular line L2 meet from below when the vertical line L2 passing through the center of the width is drawn at the point where the curve passes through the curve LI and the point divided by the n branch point, The redox flow cell being set at a straight line distance between points 12 and P2 where the curve L1 and the vertical line L2 meet from above. 7.
제 6항에 있어서,  The method according to claim 6,
상기 유로 채널은  The channel channel
Re수 500 내지 2000의 유동 특성을 가지는 레독스 흐름 전지 .  A redox flow cell having flow characteristics of 500 to 2000 Re.
PCT/KR2018/009277 2017-08-11 2018-08-13 Redox flow battery WO2019031949A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020170102431A KR20190017498A (en) 2017-08-11 2017-08-11 Redox flow battery
KR10-2017-0102431 2017-08-11

Publications (1)

Publication Number Publication Date
WO2019031949A1 true WO2019031949A1 (en) 2019-02-14

Family

ID=65271088

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/009277 WO2019031949A1 (en) 2017-08-11 2018-08-13 Redox flow battery

Country Status (2)

Country Link
KR (1) KR20190017498A (en)
WO (1) WO2019031949A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113889640A (en) * 2020-07-01 2022-01-04 中国科学院大连化学物理研究所 Flow battery galvanic pile

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102586856B1 (en) * 2021-06-09 2023-10-06 연세대학교 산학협력단 Bipolar Plate for Redox Flow Battery, stack and Redox Flow Battery using The Same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100119937A1 (en) * 2007-03-28 2010-05-13 Redflow Pty Ltd Cell stack for a flowing electrolyte battery
CN103441290A (en) * 2013-09-06 2013-12-11 大连融科储能技术发展有限公司 Electrode frame for all vanadium flow battery
US20140162095A1 (en) * 2011-08-22 2014-06-12 Zbb Energy Corporation Internal Header Flow Divider for Uniform Electrolyte Distribution
KR101459927B1 (en) * 2013-07-12 2014-11-07 오씨아이 주식회사 Cell frmae for improved flow distributing and redox flow battery having the same
KR20160055489A (en) * 2014-11-10 2016-05-18 롯데케미칼 주식회사 Redox flow battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100119937A1 (en) * 2007-03-28 2010-05-13 Redflow Pty Ltd Cell stack for a flowing electrolyte battery
US20140162095A1 (en) * 2011-08-22 2014-06-12 Zbb Energy Corporation Internal Header Flow Divider for Uniform Electrolyte Distribution
KR101459927B1 (en) * 2013-07-12 2014-11-07 오씨아이 주식회사 Cell frmae for improved flow distributing and redox flow battery having the same
CN103441290A (en) * 2013-09-06 2013-12-11 大连融科储能技术发展有限公司 Electrode frame for all vanadium flow battery
KR20160055489A (en) * 2014-11-10 2016-05-18 롯데케미칼 주식회사 Redox flow battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113889640A (en) * 2020-07-01 2022-01-04 中国科学院大连化学物理研究所 Flow battery galvanic pile
CN113889640B (en) * 2020-07-01 2023-10-20 中国科学院大连化学物理研究所 Flow battery pile

Also Published As

Publication number Publication date
KR20190017498A (en) 2019-02-20

Similar Documents

Publication Publication Date Title
US9577242B2 (en) Internal header flow divider for uniform electrolyte distribution
US7687193B2 (en) Electrochemical battery incorporating internal manifolds
US5366824A (en) Flow battery
KR101209684B1 (en) Stack manifold insert having guide for distributing the flow of fluid and fuel cell stack comprising the same
KR101309262B1 (en) Combined complex electrode cell and redox flow battery comprising thereof
WO2019031949A1 (en) Redox flow battery
US10301200B2 (en) Flow distributors for electrochemical separation
CN110050372B (en) Bipolar plate, cell stack and redox flow battery
WO2016117264A1 (en) Redox-flow battery
US10665877B2 (en) Redox flow battery with external supply line and/or disposal line
KR101511228B1 (en) Redox flow battery
US20220126238A1 (en) Structures for Normalizing Multi-Planar Flow Distribution Within an Electrochemical Separation System
JPS5927461A (en) Electrode for layer-built secondary battery
KR101791319B1 (en) Redox flow battery system having reduced shunt loss
EP3322019A1 (en) Redox flow battery
US3223606A (en) Electrodialysis device and method of operation
WO2019234869A1 (en) Bipolar plate, cell frame, cell stack, and redox flow battery
KR102105474B1 (en) Flow Frame for Redox Flow Battery and Redox Flow Battery Comprising the Same
EP0131173A1 (en) Electrolysis apparatus
JP2009536094A (en) Exchange membrane device with at least two compartments, in particular an electrodialysis device
KR101721196B1 (en) Redox flow battery
JPS63213261A (en) Electrolyte circulation type cell
KR101864862B1 (en) Method for controlling operation of redox flow battery
WO2016117262A1 (en) Redox-flow battery operation method and redox-flow battery
JPH02183968A (en) Cell stack for electrolyte circulation type secondary battery and cell stack fitting member

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18843155

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18843155

Country of ref document: EP

Kind code of ref document: A1