WO2019031711A1 - System for decontaminating radioactively contaminated water - Google Patents

System for decontaminating radioactively contaminated water Download PDF

Info

Publication number
WO2019031711A1
WO2019031711A1 PCT/KR2018/007769 KR2018007769W WO2019031711A1 WO 2019031711 A1 WO2019031711 A1 WO 2019031711A1 KR 2018007769 W KR2018007769 W KR 2018007769W WO 2019031711 A1 WO2019031711 A1 WO 2019031711A1
Authority
WO
WIPO (PCT)
Prior art keywords
microalgae
decontamination
water tank
contaminated water
incubator
Prior art date
Application number
PCT/KR2018/007769
Other languages
French (fr)
Korean (ko)
Inventor
김도형
이운장
김태영
Original Assignee
주식회사 오리온이엔씨
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 오리온이엔씨 filed Critical 주식회사 오리온이엔씨
Publication of WO2019031711A1 publication Critical patent/WO2019031711A1/en

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/04Treating liquids
    • G21F9/06Processing
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/32Biological treatment of water, waste water, or sewage characterised by the animals or plants used, e.g. algae
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/32Biological treatment of water, waste water, or sewage characterised by the animals or plants used, e.g. algae
    • C02F3/322Biological treatment of water, waste water, or sewage characterised by the animals or plants used, e.g. algae use of algae

Definitions

  • the present invention relates to a radioactive contaminated water decontamination system, and more particularly, to a radioactive contaminated water decontamination system capable of efficiently decontaminating radioactive contaminated water by intermingling an incubator for culturing microalgae, a decontamination section using cultured microalgae, It is about technology that can be done.
  • the cesium salt is highly soluble in water and flows rapidly into the groundwater and sea, and is absorbed into crops and plants to spread the pollution rapidly. Therefore, it is very important for humans and the environment to remove radioactive nuclides such as Cs-137 and Sr-90 from polluted groundwater, soil, and seawater as well as wastewater generated from the nuclear fuel reprocessing process of nuclear power plants. Is required.
  • radioactive liquid wastes generated from nuclear power reactors have heavy half-life radionuclides such as Cs-137, Sr-90, Co-60 and other short half-life radionuclides and large amounts of radioactive nuclides such as Na, K, It contains radionuclides.
  • the radioactive concentration of low-level liquid radioactive waste is approximately 10 -4 to 10 -2 ⁇ Ci / cc, while the radioactivity is low, but it accounts for more than 85% of the total radioactive waste.
  • Microalgae is a phytoplankton that has recently been reconsidered as a future clean energy and material resource.
  • the potential of microalgae is already a potential source of energy industry materials and greenhouse gas reduction.
  • the utilization of the three major fields is expanding.
  • the present invention has been made in view of the above problems, and it is an object of the present invention to provide a micro-algae culturing apparatus, a micro-algae culturing apparatus, And to provide a technique capable of decontaminating radioactive contaminated water.
  • the incubator for culturing the microalgae, the decalcification unit using the microalgae cultured, and the post-treatment unit of the microalgae are interlocked with each other, It is advantageous that the system can be decontaminated and the system can be mounted on a vehicle or the like to carry out radioactive decontamination operation without being restricted by the place.
  • FIG. 1 is a view showing a system for decontaminating radioactive contamination using microalgae according to an embodiment of the present invention.
  • Fig. 2 is a schematic view showing the structure of the decontamination unit shown in Fig. 1.
  • Fig. 2 is a schematic view showing the structure of the decontamination unit shown in Fig. 1.
  • FIG. 3 is a view schematically showing another embodiment of the decontamination portion shown in Fig.
  • FIG. 4 is a view schematically showing another embodiment of the decontamination portion shown in Fig.
  • FIG. 5 is a view schematically showing another embodiment of the decontamination portion shown in Fig.
  • FIG. 6 is a view schematically showing another embodiment of the decontamination portion shown in FIG. 2.
  • FIG. 6 is a view schematically showing another embodiment of the decontamination portion shown in FIG. 2.
  • FIG. 7 is a view schematically showing another embodiment of the decontamination portion shown in FIG. 2.
  • FIG. 7 is a view schematically showing another embodiment of the decontamination portion shown in FIG. 2.
  • FIG. 8 is a view showing an example of an incubator of the present invention.
  • FIG. 9 is a schematic view showing the post-treatment section of the microalgae shown in FIG. 1.
  • FIG. 9 is a schematic view showing the post-treatment section of the microalgae shown in FIG. 1.
  • FIG. 10 is a view schematically showing the structure of a radioactive contamination decontamination system using microalgae shown in FIG. 1.
  • FIG. 10 is a view schematically showing the structure of a radioactive contamination decontamination system using microalgae shown in FIG. 1.
  • the transporting means 3 means a truck or the like provided with a loading box closed at all sides.
  • the loading box has a space that is shielded from the outside. Therefore, the transporting means can be moved to various places, so that the radioactive decontamination operation can be performed at any place.
  • the loading wall is made of a wall made of a radiation shielding material in order to prevent radiation from being emitted to the outside.
  • the contaminated water tank 5, the flushing section 7, the culture section 8, the treated water tank 9 and the post-treatment section 11 are stably fixed to the loading box of the conveying means 3 Lt; / RTI > That is, it can be fixed by a fixing bracket, welding, or the like.
  • the contaminated water tank 5 and the treated water tank 90 are disposed on both sides of the conveying means 3 and the decontamination portion 7 is disposed at the center so that the conveying means 3 can be balanced.
  • the treatment section 11 is arranged behind the conveying means 3, so that the processed microalgae can be easily discharged.
  • the decontamination portion 7 performs decontamination treatment of the radioactive contaminated water with microalgae.
  • the flushing portion 7 includes a tubular case 13 in which microalgae are charged; A pretreatment member 15 mounted on one side of the case 13 for filtering and preliminarily treating foreign matters such as mud contained in the polluted water; A fine algae separating member (17) mounted on the other side of the case (13) and capable of separating the treated water and the microalgae; An inlet pipe L1 connecting one side of the case 13 to the contaminated water storage tank; And an outgoing pipe L2 connecting the other side of the case 13 to the process water storage tank.
  • the case 13 is cylindrical, and the micro-algae and the contaminated water are supplied to the inside space of the case 13, so that the decontamination process can proceed.
  • the microalgae can be supplied to the case 13 after being cultured by the culture unit 8 as described later.
  • the case 13 is preferably formed of a transparent material or a semi-transparent material so that the inside can be observed. Therefore, the state of the microalgae charged into the case 13 can be visually confirmed.
  • the pretreatment member 15 is installed at one side end of the case 13, so that foreign matter contained in the contaminated water can be purified.
  • the pretreatment member 15 may include various shapes, for example, a membrane or a wire mesh.
  • the contaminated water supplied from the contaminated water tank 5 by the pump or the like is primarily treated while passing through the pretreatment member 15 in the form of a membrane, charged into the case 13, It can be treated decontamination.
  • the microalgae separating member 17 separates the microalgae from the treated water when they are discharged from the case 13 to the treated water tank 9, so that the microalgae can be treated in a tertiary manner.
  • the microalgae separating member 17 may include various forms such as a membrane, and may be applied to any shape in which microalgae can be filtered from the treated water.
  • the pretreatment member 15 and the fine algae separating member 17 are provided in the case 13 of the pretreatment member 15 and the fine algae separating member 17.
  • the present invention is not limited thereto and may be modified .
  • the process of treating the microalgae can be performed outside the case 13 by separating the microalgae separation member 17 separately.
  • a plurality of cases 13 are arranged in parallel, and an inlet pipe L1 connected to the contaminated water tank 5 is divided into a plurality of tubes L3 and connected to the inlet of each case 13.
  • a plurality of tubes L4 connected to the outlets of the respective cases 13 may be merged into one working tube L2 and discharged to the treatment water tank 9.
  • the decontamination portion 7 comprises a porous container 19; And a decontamination film 21 disposed in a wound shape inside the porous container 19.
  • the porous container 19 has a structure in which a plurality of microholes are formed to allow the treated water to be discharged to the outside.
  • connection pipe 23 is formed in the upper part of the porous container 19 so that the contaminated water can be supplied by connecting the inlet pipe L1 connected to the polluted water tank 5.
  • the decontamination film 21 refers to an alginate film F in which fine algae are fixed, and is manufactured by winding the decontamination film 21 in the form of a roll.
  • the roll-shaped decontamination film 21 is inserted into the porous container 19 in a wound form.
  • the treated water By disposing the porous container 19 inside the treated water tank 9, the treated water can be discharged to the outside through the fine holes of the porous container 19 and stored in the tank.
  • this flaking portion 7 is shown in Fig.
  • a membrane bag M nonwoven fabric or the like
  • microalgae is put into the contaminated water tank 5 to decontaminate it.
  • the mesh size of the membrane is larger than water molecules and radionuclides (Cs, Sr, etc.) and smaller than microalgae.
  • micro-algae contaminated after decontamination are reduced in volume through post-treatment such as heat treatment.
  • the microalgae charged into the flushing portion 7 can be cultured by the culture unit 8.
  • the culture unit 8 includes an incubator 30 for culturing a microalgae, an air compressor 32 for supplying air to the incubator 30, a carbon dioxide and nitrogen gas And a bubble generator 38 for supplying an air bubble to the flocculation chamber 36.
  • the flocculation chamber 36 is connected to the flocculation chamber 36.
  • the flocculation chamber 36 is connected to the flocculation chamber 36 through an air bubble generator.
  • the incubator 30 is a photobioreactor system in which a microalgae strain such as Chlorella, which is mainly used for removing radioactive substances, is cultured in a large amount.
  • the microalgae thus produced can efficiently remove cesium and strontium.
  • the incubator 30 is formed of a transparent tube, for example, polycarbonate.
  • the incubator 30 has a plurality of units, and the upper and lower portions of the incubators 30 are connected by the upper and lower connection pipes 31 and 33. Therefore, the liquid stored in each incubator 30 can communicate with each other.
  • the liquid stored in the incubator 30 is filled with microalgae and can be cultured by sunlight.
  • the air compressor (32) is connected to the lower part of the incubator (30) to supply air into the incubator (30).
  • microalgae are generated as time elapses, and compressed air is injected to prevent the microalgae from flowing uniformly and adhering to the surface of the incubator 30.
  • the compressed air is injected into the incubator 30 and rises in the form of bubbles.
  • the micro-algae are caused to flow to be uniformly dispersed.
  • carbon dioxide and nitrogen gas are injected into the incubator 30 through the gas mixer 34 during the microalgae culture so that the microalgae can be cultured in an optimal state.
  • the sensor 39 is installed in the incubator 30 to automatically perform the supply of the medium and the cell harvesting according to the cell concentration, and adjust the nutrient concentration, pH, carbon dioxide concentration, And monitoring.
  • the microalgae cultured in the incubator 30 can be harvested by being transferred to the flocculation chamber 36.
  • the bubble generator 38 is connected to the coagulation chamber 36, so that the fine bubbles are supplied into the coagulation chamber 36.
  • the microalgae float up by buoyancy, and floating microalgae float on the water surface formed at the uppermost stage.
  • the microalgae floating on the water surface can be harvested by being discharged to the outside.
  • microalgae thus harvested are injected into the case 13 of the decontamination portion 7 and used for decontaminating the contaminated water.
  • the post-treatment section 11 treats micro-algae used for decontamination in the decontamination section 7.
  • the microalgae used in the decontamination process are discarded because the radioactive material is in a state of being adsorbed.
  • the micro-algae injected into the post-treatment unit 11 can be heated by the heat to reduce the volume.
  • the present invention relates to a radioactive contaminated water decontamination system, and more particularly, to a technology capable of efficiently decontaminating radioactive contaminated water by intermingling an incubator for culturing microalgae, a decontamination portion using cultured microalgae, and a post- And is applicable to the field of radioactive contaminated water decontamination.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Botany (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Microbiology (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

The present invention relates to a radioactivity decontamination system. The radioactivity decontamination system comprises: a conveying means (3); a contaminated water tank (5) mounted on the conveying means (3) and storing radioactively contaminated water; a decontaminating part (7) for decontaminating, by microalgae, the contaminated water stored in the contaminated water tank (5); a culturing unit (8) for culturing the microalgae and supplying the same to the decontaminating part (7); a treatment water tank (9) for storing treatment water decontaminated by the decontaminating part (7); and a post-treatment part (11) for performing post-treating on the treatment water supplied from the treatment water tank (9).

Description

방사성 오염수 제염 시스템Radioactive contaminant decontamination system
본 발명은 방사성 오염수 제염 시스템에 관한 것으로, 보다 상세하게는 미세조류를 배양하는 배양기와, 배양된 미세조류를 이용한 제염부와, 미세조류의 후처리부를 서로 연동시킴으로써 효율적으로 방사성 오염수를 제염할 수 있는 기술에 관한 것이다.The present invention relates to a radioactive contaminated water decontamination system, and more particularly, to a radioactive contaminated water decontamination system capable of efficiently decontaminating radioactive contaminated water by intermingling an incubator for culturing microalgae, a decontamination section using cultured microalgae, It is about technology that can be done.
2011년에 발생한 일본 후쿠시마 원전사고는 국제원자력 사고등급(INES) 상 최악인 '레벨 7'로 기록되었고 1986년 4월의 체르노빌 원전 사고 보다 10배 이상의 방사능 물질이 유출된 것으로 예상되며 이와 유사한 대규모 방사성 물질 유출에 대비한 기술 개발 필요성이 세계적으로 일어나고 있다. Japan's Fukushima nuclear accident in 2011 was recorded at level 7, the worst in the International Nuclear Accident Index (INES), and it is estimated that more than 10 times more radioactivity was released than the Chernobyl nuclear accident in April 1986, There is a worldwide need for technology development in preparation for material spillage.
아직도 일본은 후쿠시마 원전으로부터 방사능 유출이 계속 됨으로서 유출된 방사성 물질 처리와 효과적인 정화 기술에 대한 필요성은 생존의 문제로 대두되고 있으며, 특히 유출된 발생한 방사성 물질 중 Cs-137과 Sr-90은 반감기가 각각 28.8년과 30년으로서 한번 방사능 유출로 인해 오랫동안 오염 상태가 지속됨으로써 인간과 환경에 매우 치명적인 결과를 초래한다. In Japan, the need for effective treatment of radioactive materials and effluent from the Fukushima Nuclear Power Plant continues to be a problem of survival. In particular, Cs-137 and Sr-90 have a half-life As 28.8 years and 30 years, once the radioactive outflow has persisted for a long period of pollution, it causes very fatal consequences to humans and the environment.
세슘염은 물에 대한 용해도가 높아서 빠른 속도로 지하수와 바다로 흘러들어가고 농작물과 식물 속으로 흡수가 되어 오염을 빠르게 확산시키게 된다. 따라서 원자력 발전소의 핵연료 재처리 과정에서 발생하는 폐수뿐 아니라 오염된 지하수, 토양, 바닷물로부터 방사성 핵종인 Cs-137과 Sr-90 등을 제거하는 것은 인간과 환경에 매우 중요하며 이들의 시급한 처리 및 제거가 요구된다. The cesium salt is highly soluble in water and flows rapidly into the groundwater and sea, and is absorbed into crops and plants to spread the pollution rapidly. Therefore, it is very important for humans and the environment to remove radioactive nuclides such as Cs-137 and Sr-90 from polluted groundwater, soil, and seawater as well as wastewater generated from the nuclear fuel reprocessing process of nuclear power plants. Is required.
또한, 원자력 발전에서는 핵반응으로 발생하는 열을 냉각시키기 위하여 막대한 양의 물을 사용하고 있으며 운전되는 핵반응기는 많은 양의 방사성 액체 폐기물을 배출하고 있어 원자력 산업의 보급에 주요 장애요인으로 지적되어 왔다.In nuclear power generation, a large amount of water is used to cool the heat generated by the nuclear reaction, and the nuclear reactor is operated as a major obstacle to the diffusion of the nuclear industry because it discharges a large amount of radioactive liquid waste.
특히, 원전에서 발생되는 저준위 방사성 액체폐기물의 대부분은 Cs-137, Sr-90, Co-60 등과 같은 중장반감기의 방사성핵종과 기타 단반감기의 방사성핵종, 그리고 Na, K, B 등과 같은 다량의 비방사성핵종을 함유하고 있다.In particular, most of the low-level radioactive liquid wastes generated from nuclear power reactors have heavy half-life radionuclides such as Cs-137, Sr-90, Co-60 and other short half-life radionuclides and large amounts of radioactive nuclides such as Na, K, It contains radionuclides.
일반적으로 저준위 액체 방사성폐기물의 방사능 농도는 대략 10-4~10-2μCi/cc이며, 방사능 세기는 낮지만 방사성폐기물의 발생량 측면에서는 전체의 85% 이상을 차지한다. Generally, the radioactive concentration of low-level liquid radioactive waste is approximately 10 -4 to 10 -2 μCi / cc, while the radioactivity is low, but it accounts for more than 85% of the total radioactive waste.
특히, 원자력발전소 가동 중 방출되는 액체폐기물 중 상당량이 세탁배수계통에서 발생되고 있으며 총방출 방사능량의 30~40%에 달하는 것으로 알려져 있다.In particular, a considerable amount of liquid wastes emitted during the operation of a nuclear power plant are generated in the washing and drainage system and are known to reach 30 to 40% of the total emitted radioactivity.
기존의 화학적인 방사능 제거 방식은 체르노빌/후쿠시마 사건과 같은 유분과 불순물 및 바닷물이 섞인 대규모 방사능 유출에는 효과적으로 대처할 수 없으므로 대규모 방사능 오염 물질을 효과적으로 신속하게 제거 할 수 있는 친환경적 방법이 요구된다. 방사능 제거 능력이 있고 성장속도가 매우 빠른 미세조류나 해조류를 이용한 방법이 이에 해당된다.Conventional chemical methods for removing radioactivity can not effectively cope with large-scale radioactive spills involving oil, impurities and seawater such as the Chernobyl / Fukushima incident. Therefore, an eco-friendly method is needed to effectively and rapidly remove large-scale radioactive contaminants. This is the case with microalgae or seaweeds that have radioactivity removal and very fast growth rates.
미세조류는 최근에 미래 청정에너지 및 소재 자원으로 재조명 받고 있는 식물성 플랑크톤으로서 미세조류의 잠재성은 이미 에너지 산업소재 생산, 온실가스 저감이 가능한 자원으로 미국을 비롯한 세계에서 환경 분야, 에너지 분야, 화학분야의 3대 분야를 중심으로 활용이 확대되고 있다.Microalgae is a phytoplankton that has recently been reconsidered as a future clean energy and material resource. The potential of microalgae is already a potential source of energy industry materials and greenhouse gas reduction. The utilization of the three major fields is expanding.
그러나, 종래의 이러한 미세조류를 방사능에 오염된 대상물을 제염하는 분야에는 적용된 적이 없다.However, such conventional microalgae have not been applied to the field of decontaminating objects contaminated with radioactivity.
따라서, 본 발명은 상기한 문제점을 해결하기 위하여 제안된 것으로서, 본 발명의 목적은 미세조류를 배양하는 배양기와, 배양된 미세조류를 이용한 제염부와, 미세조류의 후처리부를 서로 연동시킴으로써 효율적으로 방사성 오염수를 제염할 수 있는 기술을 제공하는 것이다.SUMMARY OF THE INVENTION Accordingly, the present invention has been made in view of the above problems, and it is an object of the present invention to provide a micro-algae culturing apparatus, a micro-algae culturing apparatus, And to provide a technique capable of decontaminating radioactive contaminated water.
상기한 목적을 달성하기 위하여 본 발명의 일 실시예는, According to an aspect of the present invention,
이송수단(3)과; Conveying means (3);
이송수단(3)에 탑재되어 방사성 오염수를 저장하는 오염수 탱크(5)와;A polluted water tank (5) mounted on the conveying means (3) for storing the radioactive contaminated water;
오염수 탱크(5)에 저장된 오염수를 미세조류에 의하여 제염하는 제염부(7)와; A decontamination section (7) for decontaminating the contaminated water stored in the contaminated water tank (5) by microalgae;
미세조류를 배양하여 제염부(7)에 공급하는 배양부(8)와; A culture section (8) for culturing a microalgae and supplying the microalgae to the decalcification section (7);
제염부(7)에 의하여 제염처리된 처리수를 저장하는 처리수 탱크(9)와; 그리고A treatment water tank 9 for storing treatment water treated by the decontamination portion 7; And
제염부(7)에서 분리된 미세조류를 후처리하는 후처리부(11)를 포함하는 방사능 제염 시스템을 제공한다.And a post-treatment section (11) for post-treating the microalgae separated in the decontamination section (7).
상기한 본 발명의 실시예에 따른 미세조류를 이용한 방사능 제염 시스템은 미세조류를 배양하는 배양기와, 배양된 미세조류를 이용한 제염부와, 미세조류의 후처리부를 서로 연동시킴으로써 효율적으로 방사성 오염수를 제염할 수 있는 시스템을 제공하고, 이 시스템을 차량 등에 탑재함으로써 장소에 제약을 받지 않고 방사능 제염작업을 실시할 수 있는 장점이 있다.In the radioactive decontamination system using the microalgae according to the embodiment of the present invention, the incubator for culturing the microalgae, the decalcification unit using the microalgae cultured, and the post-treatment unit of the microalgae are interlocked with each other, It is advantageous that the system can be decontaminated and the system can be mounted on a vehicle or the like to carry out radioactive decontamination operation without being restricted by the place.
도 1은 본 발명의 일 실시예에 따른 미세조류를 이용한 방사능 오염 제염 시스템을 보여주는 도면이다.1 is a view showing a system for decontaminating radioactive contamination using microalgae according to an embodiment of the present invention.
도 2는 도 1에 도시된 제염부의 구조를 개략적으로 보여주는 도면이다.Fig. 2 is a schematic view showing the structure of the decontamination unit shown in Fig. 1. Fig.
도 3은 도 2에 도시된 제염부의 다른 실시예를 개략적으로 보여주는 도면이다.3 is a view schematically showing another embodiment of the decontamination portion shown in Fig.
도 4는 도 3에 도시된 제염부의 다른 실시예를 개략적으로 보여주는 도면이다.4 is a view schematically showing another embodiment of the decontamination portion shown in Fig.
도 5는 도 2에 도시된 제염부의 또 다른 실시예를 개략적으로 보여주는 도면이다.5 is a view schematically showing another embodiment of the decontamination portion shown in Fig.
도 6은 도 2에 도시된 제염부의 또 다른 실시예를 개략적으로 보여주는 도면이다.FIG. 6 is a view schematically showing another embodiment of the decontamination portion shown in FIG. 2. FIG.
도 7은 도 2에 도시된 제염부의 또 다른 실시예를 개략적으로 보여주는 도면이다.FIG. 7 is a view schematically showing another embodiment of the decontamination portion shown in FIG. 2. FIG.
도 8은 본 발명의 배양기의 예를 보여주는 도면이다.8 is a view showing an example of an incubator of the present invention.
도 9는 도 1에 도시된 미세조류의 후처리부를 개략적으로 보여주는 도면이다.FIG. 9 is a schematic view showing the post-treatment section of the microalgae shown in FIG. 1. FIG.
도 10은 도 1에 도시된 미세조류를 이용한 방사능 오염 제염 시스템의 구조를 개략적으로 도시한 도면이다.FIG. 10 is a view schematically showing the structure of a radioactive contamination decontamination system using microalgae shown in FIG. 1. FIG.
이하, 본 발명의 일 실시예에 따른 미세조류를 이용한 방사능 제염 시스템을 첨부된 도면을 이용하여 상세하게 설명한다.Hereinafter, a radioactive decontamination system using microalgae according to an embodiment of the present invention will be described in detail with reference to the accompanying drawings.
도 1 내지 도 9에 도시된 바와 같이, 본 발명이 제안하는 방사능 제염 시스템은 이송수단(3)과; 이송수단(3)에 탑재되어 방사성 오염수를 저장하는 오염수 탱크(5)와; 오염수 탱크(5)에 저장된 오염수를 미세조류에 의하여 제염하는 제염부(7)와; 미세조류를 배양하여 제염부(7)에 공급하는 배양부(8)와; 제염부(7)에 의하여 제염처리된 처리수를 저장하는 처리수 탱크(9)와; 그리고 제염부(7)에서 분리된 미세조류를 처리하는 후처리부(11)를 포함한다.1 to 9, a radioactive decontamination system proposed by the present invention comprises conveying means 3; A polluted water tank (5) mounted on the conveying means (3) for storing the radioactive contaminated water; A decontamination section (7) for decontaminating the contaminated water stored in the contaminated water tank (5) by microalgae; A culture section (8) for culturing a microalgae and supplying the microalgae to the decalcification section (7); A treatment water tank 9 for storing treatment water treated by the decontamination portion 7; And a post-treatment unit 11 for treating microalgae separated from the decontamination unit 7.
이러한 구조를 갖는 방사능 제염 시스템에 있어서, 이송수단(3)은 사방이 밀폐된 적재함이 마련된 트럭 등을 의미한다.In the radioactive decontamination system having such a structure, the transporting means 3 means a truck or the like provided with a loading box closed at all sides.
이 적재함은 외부와 차단된 공간을 갖는 구조가 바람직하다. 따라서, 이송 수단은 여러 장소를 이동함으로써 장소에 제약없이 방사능 제염작업이 이루어 질 수 있다. 이때 적재함은 내부에서 방사능 제염이 이루어지므로 방사선이 외부로 방출되는 것을 방지하기 위하여 방사선 차폐 재질의 벽체로 이루어지는 것이 바람직하다. 또한, 상기 오염수 탱크(5)와, 제염부(7)와, 배양부(8)와, 처리수 탱크(9)와, 후처리부(11)는 이송수단(3)의 적재함에 안정적으로 고정될 수 있는 구조를 갖는다. 즉, 고정 브라켓이나 용접 등에 의하여 고정될 수 있다.It is preferable that the loading box has a space that is shielded from the outside. Therefore, the transporting means can be moved to various places, so that the radioactive decontamination operation can be performed at any place. At this time, since the loading box is internally subjected to radioactive decontamination, it is preferable that the loading wall is made of a wall made of a radiation shielding material in order to prevent radiation from being emitted to the outside. The contaminated water tank 5, the flushing section 7, the culture section 8, the treated water tank 9 and the post-treatment section 11 are stably fixed to the loading box of the conveying means 3 Lt; / RTI > That is, it can be fixed by a fixing bracket, welding, or the like.
그리고, 오염수 탱크(5)와 처리수 탱크(90는 이송수단(3)의 양측에 배치되고, 제염부(7)는 가운데에 배치됨으로써 이송수단(3)의 균형을 유지할 수 있다. 또한 후처리부(11)는 이송수단(3)의 후방에 배치함으로써 처리된 미세조류를 쉽게 배출할 수 있다.The contaminated water tank 5 and the treated water tank 90 are disposed on both sides of the conveying means 3 and the decontamination portion 7 is disposed at the center so that the conveying means 3 can be balanced. The treatment section 11 is arranged behind the conveying means 3, so that the processed microalgae can be easily discharged.
상기 제염부(7)는 방사성 오염수를 미세조류에 의하여 제염처리를 실시하게 된다.The decontamination portion 7 performs decontamination treatment of the radioactive contaminated water with microalgae.
이러한 제염부(7)는 도 3에 도시된 바와 같이, 내부에 미세조류가 장입된 관체 형상의 케이스(13)와; 케이스(13)의 일측에 장착되어 오염수에 포함된 진흙 등이물질을 필터링하여 선행처리하는 사전처리부재(15)와; 케이스(13)의 타측에 장착되어 처리수와 미세조류를 분리할 수 있는 미세조류 분리부재(17)와; 케이스(13)의 일측과 오염수 저장탱크를 연결하는 입측배관(L1)과; 케이스(13)의 타측과 처리수 저장탱크를 연결하는 출측배관(L2)을 포함한다.As shown in Fig. 3, the flushing portion 7 includes a tubular case 13 in which microalgae are charged; A pretreatment member 15 mounted on one side of the case 13 for filtering and preliminarily treating foreign matters such as mud contained in the polluted water; A fine algae separating member (17) mounted on the other side of the case (13) and capable of separating the treated water and the microalgae; An inlet pipe L1 connecting one side of the case 13 to the contaminated water storage tank; And an outgoing pipe L2 connecting the other side of the case 13 to the process water storage tank.
상기 케이스(13)는 원통형상으로서 내부의 공간에 미세조류 및 오염수가 공급됨으로써 제염과정이 진행될 수 있다.The case 13 is cylindrical, and the micro-algae and the contaminated water are supplied to the inside space of the case 13, so that the decontamination process can proceed.
이때, 미세조류는 후술하는 바와 같이 배양부(8)에 의하여 배양된 후 케이스(13)에 공급될 수 있다.At this time, the microalgae can be supplied to the case 13 after being cultured by the culture unit 8 as described later.
그리고, 케이스(13)는 투명 재질 혹은 반투명재질로 형성됨으로써 내부를 관찰할 수 있는 것이 바람직하다. 따라서, 케이스(13) 내부에 장입된 미세조류의 상태를 육안으로 확인할 수 있다.The case 13 is preferably formed of a transparent material or a semi-transparent material so that the inside can be observed. Therefore, the state of the microalgae charged into the case 13 can be visually confirmed.
또한, 사전처리부재(15)는 케이스(13)의 일측 단부에 장착됨으로써 오염수에 포함된 이물질 등을 정화처리할 수 있다. 이러한 사전처리부재(15)는 다양한 형태가 포함될 수 있으며, 예를 들면 멤브레인이나 철망이 적용될 수 있다.In addition, the pretreatment member 15 is installed at one side end of the case 13, so that foreign matter contained in the contaminated water can be purified. The pretreatment member 15 may include various shapes, for example, a membrane or a wire mesh.
따라서, 오염수 탱크(5)로부터 펌프 등에 의하여 공급된 오염수는 멤브레인 형태의 사전처리부재(15)를 통과하면서 1차적으로 처리되고, 케이스(13)의 내부에 장입된 후 미세조류에 의하여 2차적으로 제염처리될 수 있다. Therefore, the contaminated water supplied from the contaminated water tank 5 by the pump or the like is primarily treated while passing through the pretreatment member 15 in the form of a membrane, charged into the case 13, It can be treated decontamination.
그리고, 케이스(13)로부터 처리수 탱크(9)로 배출될 때 미세조류 분리부재(17)에 의하여 미세조류를 처리수로부터 분리함으로써 3차적으로 처리할 수 있다.The microalgae separating member 17 separates the microalgae from the treated water when they are discharged from the case 13 to the treated water tank 9, so that the microalgae can be treated in a tertiary manner.
이때, 미세조류 분리부재(17)는 멤브레인 등 다양한 형태가 포함될 수 있으며, 처리수로부터 미세조류를 걸러낼 수 있는 형태면 모두 적용 가능하다.At this time, the microalgae separating member 17 may include various forms such as a membrane, and may be applied to any shape in which microalgae can be filtered from the treated water.
그리고, 이러한 제염부(7)는 사전 처리부재(15) 및 미세조류 분리부재(17)가장착된 한 셋트의 케이스(13)에 의하여 설명하였지만 본 발명은 이에 한정되는 것은 아니고 변경 실시될 수도 있다.The pretreatment member 15 and the fine algae separating member 17 are provided in the case 13 of the pretreatment member 15 and the fine algae separating member 17. However, the present invention is not limited thereto and may be modified .
그 일예가 도 4에 도시된 바와 같이, 미세조류 분리부재(17)를 케이스(13)로부터 별도로 분리하여 출측배관(L2)상에 배치하는 것도 가능하다.4, it is also possible to dispose the fine algae separating member 17 separately from the case 13 and place it on the outgoing pipe L2.
이와 같이, 미세조류 분리부재(17)를 별도로 분리함으로써 미세조류를 처리하는 과정을 케이스(13)의 외부에서 처리할 수 있다.As described above, the process of treating the microalgae can be performed outside the case 13 by separating the microalgae separation member 17 separately.
또한, 제염부(7)의 다른 실시예가 도 5에 도시되는 바, 대량의 오염수를 제염처리하는 경우, 제 1 및 미세조류 분리부재(15,17)가 장착된 다수 셋트의 케이스(13)를 병렬로 연결할 수도 있다.5, when a large amount of contaminated water is decontaminated, a plurality of sets of cases 13, on which the first and the microalgae separating members 15 and 17 are mounted, May be connected in parallel.
즉, 다수개의 케이스(13)가 병렬로 배치되고, 오염수 탱크(5)에 연결된 입측배관(L1)이 여러 관체(L3)로 분리되어 각 케이스(13)의 입측에 연결된다. 또한, 각 케이스(13)의 출측에 연결된 다수의 관체(L4)는 하나의 츨측배관(L2)으로 합류하여 처리수 탱크(9)로 배출될 수 있다.That is, a plurality of cases 13 are arranged in parallel, and an inlet pipe L1 connected to the contaminated water tank 5 is divided into a plurality of tubes L3 and connected to the inlet of each case 13. [ In addition, a plurality of tubes L4 connected to the outlets of the respective cases 13 may be merged into one working tube L2 and discharged to the treatment water tank 9.
한편, 이러한 제염부(7)의 또 다른 실시예가 도 6에 도시된다. 도시된 바와 같이, 제염부(7)는 다공성 용기(19)와; 다공성 용기(19)의 내부에 권취형상으로 배치된 제염필름(21)으로 구성된다.On the other hand, another embodiment of this flaking portion 7 is shown in Fig. As shown, the decontamination portion 7 comprises a porous container 19; And a decontamination film 21 disposed in a wound shape inside the porous container 19.
다공성 용기(19)는 다수의 미세홀들이 형성됨으로써 제염된 처리수가 외부로 배출될 수 있는 구조이다.The porous container 19 has a structure in which a plurality of microholes are formed to allow the treated water to be discharged to the outside.
또한, 다공성 용기(19)의 상부에는 연결홀(23)이 형성됨으로써 오염수 탱크(5)에 연결된 입측배관(L1)이 연결됨으로써 오염수가 공급될 수 있다.The connection pipe 23 is formed in the upper part of the porous container 19 so that the contaminated water can be supplied by connecting the inlet pipe L1 connected to the polluted water tank 5. [
그리고, 상기 제염필름(21)은 미세조류가 내부에 고정된 알지네이트 필름(F)을 의미하며, 이러한 제염필름(21)을 롤 형태로 권취하여 제조한다.The decontamination film 21 refers to an alginate film F in which fine algae are fixed, and is manufactured by winding the decontamination film 21 in the form of a roll.
이러한 롤 형태의 제염필름(21)을 다공성 용기(19)의 내부에 권취된 형태로 삽입하게 된다.The roll-shaped decontamination film 21 is inserted into the porous container 19 in a wound form.
그리고, 다공성 용기(19)를 처리수 탱크(9)의 내부에 배치함으로써 제염된 처리수가 다공성 용기(19)의 미세홀을 통하여 외부로 배출되어 탱크내에 저장될 수 있다.By disposing the porous container 19 inside the treated water tank 9, the treated water can be discharged to the outside through the fine holes of the porous container 19 and stored in the tank.
이러한 제염부(7)의 또 다른 실시예가 도 7에 도시된다. 도시된 바와 같이, 미세조류를 넣은 맴브레인 주머니(M;부직포 등)를 오염수 탱크(5)에 투입하여 제염하는 방식이다.Another embodiment of this flaking portion 7 is shown in Fig. As shown in the figure, a membrane bag M (nonwoven fabric or the like) containing microalgae is put into the contaminated water tank 5 to decontaminate it.
이때, 미세조류 분리부재(17)로서 멤브레인을 사용하는 경우, 멤브레인의 망 크기는 물분자 및 방사성핵종 (Cs, Sr 등)보다 크고 미세조류 보다 작게 형성한다. 또한, 제염 후 오염된 미세조류는 열처리 등의 후처리를 통해 부피를 감소시킨다.At this time, when a membrane is used as the fine algae separating member 17, the mesh size of the membrane is larger than water molecules and radionuclides (Cs, Sr, etc.) and smaller than microalgae. In addition, micro-algae contaminated after decontamination are reduced in volume through post-treatment such as heat treatment.
한편, 상기 제염부(7)에 장입되는 미세조류는 배양부(8)에 의하여 배양될 수 있다.On the other hand, the microalgae charged into the flushing portion 7 can be cultured by the culture unit 8.
이러한 배양부(8)는 도 8에 도시된 바와 같이, 미세조류를 배양하는 배양기(30와; 배양기(30)에 공기를 공급하는 공기압축기(32)와; 배양기(30)에 이산화탄소 및 질소가스를 주입하는 기체 혼합기(34)와; 배양기(30)에 의하여 배양된 미세조류를 포집하는 응집챔버(36)와; 응집챔버(36)에 공기버블을 공급하는 버블 발생기(38)를 포함한다.8, the culture unit 8 includes an incubator 30 for culturing a microalgae, an air compressor 32 for supplying air to the incubator 30, a carbon dioxide and nitrogen gas And a bubble generator 38 for supplying an air bubble to the flocculation chamber 36. The flocculation chamber 36 is connected to the flocculation chamber 36. The flocculation chamber 36 is connected to the flocculation chamber 36 through an air bubble generator.
상기 배양기(30)는 광생물 반응기 방식으로서, 방사성 물질 제거에 주로 사용되는 클로렐라(Chlorella) 등의 미세조류 균주를 대량으로 배양하는 방식이다. 이와 같이 생성된 미세조류는 세슘과 스트론튬을 효율적으로 제거할 수 있다.The incubator 30 is a photobioreactor system in which a microalgae strain such as Chlorella, which is mainly used for removing radioactive substances, is cultured in a large amount. The microalgae thus produced can efficiently remove cesium and strontium.
이러한 배양기(30)는 투명재질의 관체로 형성되며, 예를 들면 폴리카보네이트 재질이다. 그리고, 배양기(30)는 다수개로 구성되며, 각 배양기(30)의 상부 및 하부는 상부 및 하부 연결관(31,33)에 의하여 연결된다. 따라서, 각 배양기(30)의 내부에 저장된 액체는 서로 연통될 수 있다.The incubator 30 is formed of a transparent tube, for example, polycarbonate. The incubator 30 has a plurality of units, and the upper and lower portions of the incubators 30 are connected by the upper and lower connection pipes 31 and 33. Therefore, the liquid stored in each incubator 30 can communicate with each other.
이러한 배양기(30)의 내부에 저장된 액체에는 미세조류가 충전되며, 햇빛에 의하여 배양될 수 있다.The liquid stored in the incubator 30 is filled with microalgae and can be cultured by sunlight.
그리고 공기 압축기(32)는 배양기(30)의 하부에 연결됨으로써 배양기(30)의 내부로 공기를 공급하게 된다. 배양기(30)의 내부에는 시간이 경과함에 따라 미세조류가 생성되는 바, 이러한 미세조류가 균일하게 유동되어 배양기(30) 표면에 부착되지 않도록 하기 위하여 압축공기를 주입하게 된다.The air compressor (32) is connected to the lower part of the incubator (30) to supply air into the incubator (30). In the incubator 30, microalgae are generated as time elapses, and compressed air is injected to prevent the microalgae from flowing uniformly and adhering to the surface of the incubator 30.
즉, 압축공기가 배양기(30)의 내부로 주입되어 기포형태로 상승하게 되는 바, 이 과정에서 미세조류를 유동시킴으로써 균일하게 분산되도록 한다.That is, the compressed air is injected into the incubator 30 and rises in the form of bubbles. In this process, the micro-algae are caused to flow to be uniformly dispersed.
또한, 미세조류 배양중에 기체 혼합기(34)를 통하여 이산화탄소 및 질소가스를 배양기(30)의 내부로 주입함으로써 미세조류가 최적의 상태에서 배양될 수 있도록 한다.In addition, carbon dioxide and nitrogen gas are injected into the incubator 30 through the gas mixer 34 during the microalgae culture so that the microalgae can be cultured in an optimal state.
이때, 배양기(30)에는 센서(39)가 장착됨으로써 세포농도에 따른 배지공급과 세포수확을 자동적으로 수행되게 하며, 배지 내 영양분 농도, pH, 이산화탄소 농도 및 주입, 빛 조사 등을 센서를 통해 조절 및 모니터링이 가능하다.At this time, the sensor 39 is installed in the incubator 30 to automatically perform the supply of the medium and the cell harvesting according to the cell concentration, and adjust the nutrient concentration, pH, carbon dioxide concentration, And monitoring.
그리고, 상기 배양기(30)에서 배양된 미세조류는 응집챔버(36)로 이송됨으로써 수확될 수 있다.The microalgae cultured in the incubator 30 can be harvested by being transferred to the flocculation chamber 36.
이때, 응집챔버(36)에는 버블 발생기(38)가 연결됨으로써 미세버블이 응집챔버(36)의 내부로 공급된다. 그리고, 미세버블이 응집챔버(36)의 내부에서 상승함에 따라 미세조류를 부력에 의하여 부상시키게 되고 부상한 미세조류는 최상단에 형성된 수면에 부유하게 된다.At this time, the bubble generator 38 is connected to the coagulation chamber 36, so that the fine bubbles are supplied into the coagulation chamber 36. As the fine bubbles rise inside the flocculation chamber 36, the microalgae float up by buoyancy, and floating microalgae float on the water surface formed at the uppermost stage.
그리고, 수면에 부유하는 미세조류는 외부로 배출됨으로써 수확될 수 있다.The microalgae floating on the water surface can be harvested by being discharged to the outside.
이와 같이 수확된 미세조류는 제염부(7)의 케이스(13)에 주입되어 오염수를 제염하는 과정에 사용된다.The microalgae thus harvested are injected into the case 13 of the decontamination portion 7 and used for decontaminating the contaminated water.
한편, 후처리부(11)는 도 9에 도시된 바와 같이, 제염부(7)에서 제염에 사용된 미세조류를 후처리하게 된다. 즉, 제염공정에 사용된 미세조류는 방사성 물질이 흡착된 상태이므로 폐기하게 되는 바 부피를 감용하여 폐기하게 된다. On the other hand, as shown in Fig. 9, the post-treatment section 11 treats micro-algae used for decontamination in the decontamination section 7. In other words, the microalgae used in the decontamination process are discarded because the radioactive material is in a state of being adsorbed.
이때 부피 감용방식은 다양한 방식이 적용될 수 있으며, 처리 환경에 따라 적절하게 선택되어질 수 있다.At this time, various methods can be applied to the volumizing method and can be appropriately selected according to the processing environment.
예를 들면, 후처리부(11)의 감용기(27) 내부에 히트 파이프(Heat pipe;29)를 배치함으로써, 내부에 투입된 미세조류가 열에 의하여 가열되어 부피가 감용될 수 있는 구조이다.For example, by arranging a heat pipe 29 inside the container 27 of the post-processing unit 11, the micro-algae injected into the post-treatment unit 11 can be heated by the heat to reduce the volume.
혹은, 감용기(27)를 냉동건조 방식에 의하여 부피를 감용할 수 있는 방안도 가능하다.Alternatively, it is possible to reduce the volume of the container 27 by the freeze-drying method.
본 발명은 방사성 오염수 제염 시스템에 관한 것으로서, 미세조류를 배양하는 배양기와, 배양된 미세조류를 이용한 제염부와, 미세조류의 후처리부를 서로 연동시킴으로써 효율적으로 방사성 오염수를 제염할 수 있는 기술에 관한 것으로서 방사성 오염수 제염 기술분야에 이용 가능하다.TECHNICAL FIELD [0001] The present invention relates to a radioactive contaminated water decontamination system, and more particularly, to a technology capable of efficiently decontaminating radioactive contaminated water by intermingling an incubator for culturing microalgae, a decontamination portion using cultured microalgae, and a post- And is applicable to the field of radioactive contaminated water decontamination.

Claims (7)

  1. 이송수단(3)과; Conveying means (3);
    이송수단(3)에 탑재되어 방사성 오염수를 저장하는 오염수 탱크(5)와;A polluted water tank (5) mounted on the conveying means (3) for storing the radioactive contaminated water;
    오염수 탱크(5)에 저장된 오염수를 미세조류에 의하여 제염하는 제염부(7)와; A decontamination section (7) for decontaminating the contaminated water stored in the contaminated water tank (5) by microalgae;
    미세조류를 배양하여 제염부(7)에 공급하는 배양부(8)와; A culture section (8) for culturing a microalgae and supplying the microalgae to the decalcification section (7);
    제염부(7)에 의하여 제염처리된 처리수를 저장하는 처리수 탱크(9)와; 그리고A treatment water tank 9 for storing treatment water treated by the decontamination portion 7; And
    처리수 탱크(9)로부터 공급된 처리수를 후처리하는 후처리부(11)를 포함하는 방사능 제염 시스템.And a post-treatment section (11) for post-treating the treated water supplied from the treated water tank (9).
  2. 제 1항에 있어서,The method according to claim 1,
    제염부(7)는 내부에 미세조류가 장입된 관체 형상의 케이스(13)와; 케이스(13)의 일측에 장착되어 오염수를 필터링하여 선행처리하는 사전처리부재(15)와; 케이스(13)의 타측에 장착되어 미세조류를 분리할 수 있는 미세조류 분리부재(17)와; 케이스(13)의 일측과 오염수 저장탱크를 연결하는 입측배관(L1)과; 케이스(13)의 타측과 처리수 저장탱크를 연결하는 출측배관(L2)을 포함하는 방사능 제염 시스템.The shielding portion (7) has a tubular case (13) in which microalgae are charged; A pretreatment member (15) mounted on one side of the case (13) for pretreating the polluted water by filtering; A fine algae separating member 17 mounted on the other side of the case 13 and capable of separating the microalgae; An inlet pipe L1 connecting one side of the case 13 to the contaminated water storage tank; And an outgoing pipe (L2) connecting the other side of the case (13) to the treated water storage tank.
  3. 제 2항에 있어서,3. The method of claim 2,
    상기 사전처리부재(15)가 장착된 케이스(13)는 다수개가 병렬로 배치될 수 있는 방사능 제염 시스템.Wherein a plurality of cases (13) in which the pretreatment member (15) is mounted can be arranged in parallel.
  4. 제 1항에 있어서,The method according to claim 1,
    제염부(7)는 다공성 용기(19)와; 다공성 용기(19)의 내부에 권취형상으로 배치된 제염필름(21)을 포함하며,The decontamination portion (7) comprises a porous container (19); And a decontamination film (21) arranged in a wound shape inside the porous container (19)
    다공성 용기(19)는 다수의 미세홀들이 형성됨으로써 제염된 처리수가 외부로 배출될 수 있고,Since the porous container 19 is formed with a plurality of fine holes, the treated water can be discharged to the outside,
    제염필름(21)은 미세조류가 내부에 고정된 알지네이트 필름(F)을 포함하는 방사능 제염 시스템.The decontamination film (21) comprises an alginate film (F) in which fine algae are fixed.
  5. 제 1항에 있어서,The method according to claim 1,
    제염부(7)는 미세조류를 넣은 사전처리부재 주머니(M)를 포함하며, The scouring portion (7) includes a pretreatment member bag (M) containing microalgae,
    사전처리부재 주머니(M)는 오염수 탱크(5)에 투입되어 제염공정이 진행되는 방사능 제염 시스템.The pretreatment member bag (M) is charged into the contaminated water tank (5), and the decontamination process proceeds.
  6. 제 1항에 있어서,The method according to claim 1,
    배양부(8)는 미세조류를 배양하는 배양기(30)와; 배양기(30)에 공기를 공급하는 공기압축기(32)와; 배양기(30)에 이산화탄소 및 질소가스를 주입하는 기체 혼합기(34)와; 배양기(30)에 의하여 배양된 미세조류를 포집하는 응집챔버(36)와; 응집챔버(36)에 공기버블을 공급하는 버블 발생기(38)를 포함하며,The culture unit 8 includes an incubator 30 for culturing microalgae; An air compressor (32) for supplying air to the incubator (30); A gas mixer 34 for injecting carbon dioxide and nitrogen gas into the incubator 30; An agglomeration chamber 36 for collecting microalgae cultured by the incubator 30; And a bubble generator (38) for supplying an air bubble to the flocculation chamber (36)
    배양기(30)는 투명재질의 관체로서 내부에 태양광에 의하여 미세조류가 생성되는 방사능 제염 시스템.The incubator (30) is a tube made of transparent material, and micro-algae are generated by sunlight inside.
  7. 제 1항에 있어서,The method according to claim 1,
    오염수 탱크(5)와 처리수 탱크(90는 이송수단(7)의 적재함의 양측에 배치되고, 제염부(7)는 가운데 배치되며, 후처리부(11)는 이송수단(3)의 후방에 배치되는 방사능 제염 시스템.The contaminated water tank 5 and the treated water tank 90 are disposed on both sides of the loading box of the conveying means 7 and the shredding portion 7 is disposed in the center and the post-processing portion 11 is disposed on the rear side of the conveying means 3 Lt; / RTI >
PCT/KR2018/007769 2017-08-11 2018-07-10 System for decontaminating radioactively contaminated water WO2019031711A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020170102318A KR101986094B1 (en) 2017-08-11 2017-08-11 System for decontaminating radioactive polluted water
KR10-2017-0102318 2017-08-11

Publications (1)

Publication Number Publication Date
WO2019031711A1 true WO2019031711A1 (en) 2019-02-14

Family

ID=65271604

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/007769 WO2019031711A1 (en) 2017-08-11 2018-07-10 System for decontaminating radioactively contaminated water

Country Status (2)

Country Link
KR (1) KR101986094B1 (en)
WO (1) WO2019031711A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102313012B1 (en) * 2019-10-25 2021-10-14 주식회사 오리온이엔씨 System and method for treatment of large scale radioactive waste towards waste certification
CN110853789A (en) * 2020-01-13 2020-02-28 华核(天津)新技术开发有限公司 Electric radioactive pollution decontamination device and emergency guarantee system
KR102623829B1 (en) * 2020-11-06 2024-01-11 서강대학교산학협력단 Method for purifying radioactivity-contaminated object using microbiome

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100716004B1 (en) * 2006-11-10 2007-05-08 주식회사 데콘엔지니어링 An apparatus for decontaminating radioactive contaminated waste oil
KR20130115048A (en) * 2012-04-10 2013-10-21 이선주 Cleaning device of radioactive contaminated surface
JP2013242235A (en) * 2012-05-21 2013-12-05 Shimizu Corp Contamination water treatment unit
JP2014194394A (en) * 2013-03-29 2014-10-09 Yoshio Abe Mobile decontamination apparatus
KR20150064806A (en) * 2013-12-03 2015-06-12 (주)이엔이티 System and method for eliminating radioactive materials from contaminated water using algae

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101723908B1 (en) 2016-01-25 2017-04-10 한국원자력연구원 Decontamination method of radioactivity contaminated material and method of radioactive waste disposal
KR101727216B1 (en) * 2016-04-22 2017-04-17 (주)이엔이 Apparatus for disposal of liquid radioactive waste

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100716004B1 (en) * 2006-11-10 2007-05-08 주식회사 데콘엔지니어링 An apparatus for decontaminating radioactive contaminated waste oil
KR20130115048A (en) * 2012-04-10 2013-10-21 이선주 Cleaning device of radioactive contaminated surface
JP2013242235A (en) * 2012-05-21 2013-12-05 Shimizu Corp Contamination water treatment unit
JP2014194394A (en) * 2013-03-29 2014-10-09 Yoshio Abe Mobile decontamination apparatus
KR20150064806A (en) * 2013-12-03 2015-06-12 (주)이엔이티 System and method for eliminating radioactive materials from contaminated water using algae

Also Published As

Publication number Publication date
KR20190017447A (en) 2019-02-20
KR101986094B1 (en) 2019-06-05

Similar Documents

Publication Publication Date Title
WO2019031711A1 (en) System for decontaminating radioactively contaminated water
KR101611275B1 (en) The bioengineering method and apparatus to remove tritium in water
CN102870708A (en) Factory circulating water aquiculture system
CN106554130A (en) Integral biological filter sewage processing meanss
CN108271730A (en) A kind of low-carbon zero-emission industrial circulating water cultivating system based on anaerobic denitrifying
CZ298303B6 (en) Apparatus for and method of cleaning irradiated nuclear fuel assembly
KR102313012B1 (en) System and method for treatment of large scale radioactive waste towards waste certification
CN105130127A (en) Printing and dyeing wastewater treatment device
KR101556655B1 (en) System and method for eliminating radioactive materials from contaminated water using algae
CN103304034A (en) Method and device for purifying water body with heavy-metal pollution
WO2018016775A1 (en) Decontamination method and decontamination system for radioactive waste resin
WO2017014346A1 (en) Modularized remediation system for benthic sediment and construction method therefor
CN211734124U (en) Domestic sewage recycling device for construction site
CN214060279U (en) Mariculture tail water recycling device
CN209266035U (en) Core biochemical decontamination waste liquid pretreatment unit
EP3491652A1 (en) Tank closure cesium removal
CN214299779U (en) Novel medical sewage treatment equipment
CN214142013U (en) Be applied to treatment facility that nature water bottom silt was cleared up
US20230125729A1 (en) Method for the aerobic and anaerobic cultivation of microorganisms, method for the production of a preparation for cleaning contaminated liquids and surfaces, method for cleaning contaminated liquids and surfaces and method for cleaning contaminated surfaces
CN215195548U (en) Floating mud disposal device for water distribution tank of secondary sedimentation tank for circumferential inlet and outlet of sewage plant
RU194177U1 (en) Filter container for cleaning solutions from radionuclides
US20230143790A1 (en) Method for the aerobic and anaerobic cultivation of microorganisms, method for the production of a preparation for cleaning radioactive liquids and radioactively charged surfaces, method for cleaning radioactive liquids and method for cleaning radio-actively charged surfaces
CN214299612U (en) Improved device for treating synthetic wastewater of sym-triazine herbicides
CN2761600Y (en) Rouse treatment device of washing sewage
CN206828309U (en) A kind of rubbish permeates Waste Water Treatment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18843711

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18843711

Country of ref document: EP

Kind code of ref document: A1