WO2019031041A1 - 光ファイバセンサ導入編地、及び光ファイバセンサ導入編地の製造方法 - Google Patents

光ファイバセンサ導入編地、及び光ファイバセンサ導入編地の製造方法 Download PDF

Info

Publication number
WO2019031041A1
WO2019031041A1 PCT/JP2018/021544 JP2018021544W WO2019031041A1 WO 2019031041 A1 WO2019031041 A1 WO 2019031041A1 JP 2018021544 W JP2018021544 W JP 2018021544W WO 2019031041 A1 WO2019031041 A1 WO 2019031041A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical fiber
fiber sensor
knitted fabric
covered
yarn
Prior art date
Application number
PCT/JP2018/021544
Other languages
English (en)
French (fr)
Inventor
明男 坂口
広明 石澤
祥平 児山
Original Assignee
国立大学法人信州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人信州大学 filed Critical 国立大学法人信州大学
Publication of WO2019031041A1 publication Critical patent/WO2019031041A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04BKNITTING
    • D04B1/00Weft knitting processes for the production of fabrics or articles not dependent on the use of particular machines; Fabrics or articles defined by such processes
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04BKNITTING
    • D04B1/00Weft knitting processes for the production of fabrics or articles not dependent on the use of particular machines; Fabrics or articles defined by such processes
    • D04B1/14Other fabrics or articles characterised primarily by the use of particular thread materials
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04CBRAIDING OR MANUFACTURE OF LACE, INCLUDING BOBBIN-NET OR CARBONISED LACE; BRAIDING MACHINES; BRAID; LACE
    • D04C1/00Braid or lace, e.g. pillow-lace; Processes for the manufacture thereof
    • D04C1/02Braid or lace, e.g. pillow-lace; Processes for the manufacture thereof made from particular materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre

Definitions

  • the present invention relates to an optical fiber sensor introduced knit fabric in which an optical fiber sensor is introduced to a knit fabric, and a method of manufacturing an optical fiber sensor introduced knit fabric capable of introducing an optical fiber sensor into a knit fabric using a knitting machine. It is a thing.
  • the optical fiber sensor is in the form of fiber and yarn as its name suggests, so it is considered that it is easy to conform to the existing textile process.
  • the conventional method relies on the method of hand-stitching the optical fiber sensor on the cloth or pressing on the belt.
  • Patent Document 1 describes a decorative fiber fabric in which an optical fiber is incorporated into a fiber fabric, although the use is different.
  • an optical fiber (a light emitting decorative body) may be woven or knitted in the same manner as other warps or wefts constituting a fiber fabric, or an optical fiber may be used as a fiber fabric. There is a statement that it may be bound.
  • optical fibers optical fiber sensors
  • a knitting machine when using a knitting machine to introduce optical fibers into a fabric like ordinary yarns, they break and break. It is difficult to weave or not to bend or bend. Therefore, the optical fiber is manually sewn or tied to the fiber fabric by hand and manually introduced into the fiber fabric. Manual work is time consuming and results in expensive fiber fabrics. Therefore, the inventors have invented a method of introducing an optical fiber into a knitted fabric during the process of producing a fiber fabric by making use of the feature that the optical fiber is in a fiber / yarn shape, and has already filed an application in Japanese Patent Application No. 2017-001499. There is. The method is to introduce a yarn into an optical fiber and introduce it into a knitted fabric by thread knitting using a knitting machine. This has made it possible to manufacture inexpensively.
  • An object of the present invention is to provide an optical fiber sensor introduction knit fabric which is highly safe and can accurately measure a biomedical signal, and a method of manufacturing the same.
  • the optical fiber sensor introduced knit fabric of the present invention made to achieve the above object comprises a covered optical fiber sensor covered with a thread so as not to expose the surface of the optical fiber sensor, and the covered optical fiber sensor And a pressing mechanism for pressing a detection unit of the covered optical fiber sensor against a knitted fabric which is hooked and held by a stitch of a part and a subject on which the knitted fabric is mounted.
  • the knitted fabric is formed in a cylindrical shape, and the size of the cylindrical hole is smaller than the size of the subject entering the cylindrical shape, and the stretch of the knitted fabric
  • the detection unit of the covered optical fiber sensor is formed so as to be pressed against the subject by the property.
  • the knitted fabric is provided with a stretch yarn as an additive yarn of a base yarn constituting the knitted fabric.
  • At least two of the stretch yarns be provided as the yarn for the base yarn.
  • the knitted fabric is preferably knitted by rib knitting.
  • the pressing mechanism preferably presses the detection unit of the covered optical fiber sensor against the subject with a pressure of at least 0.4 kPa.
  • a stitch of the knitted fabric is not hooked on the detection portion of the covered optical fiber sensor, and a stitch of the knitted fabric is hooked on a portion other than the detection portion of the covered optical fiber sensor.
  • a braid formed by a plurality of the yarns is formed with the optical fiber sensor as a core, and one filament yarn is used as each yarn forming the braid. It is preferred that
  • the covered optical fiber sensor be provided with a detection unit display for displaying the position of the detection unit.
  • a first step of manufacturing a covered optical fiber sensor by covering the surface with an optical fiber so as not to expose the surface of the optical fiber sensor and manufacturing a knitted fabric by a knitting machine
  • the stitches of the knitted fabric are not caught on the detection portion of the covered optical fiber sensor, and the stitches of the knitted fabric are caught on the knitted fabric by thread knitting so that the stitches of the knitted fabric are caught on portions other than the detection portion of the covered optical fiber sensor.
  • a second step of introducing is introducing.
  • the yarn covers the periphery of the optical fiber sensor, even if the optical fiber sensor is broken, it is safe because the broken portion does not directly hit the object. . Further, since the optical fiber sensor is pressed against the subject by the pressing mechanism, even if a thread is wound around, the weak movement of the subject can be detected, and the biological signal can be measured accurately.
  • the knitted fabric is formed in a cylindrical shape, and the size of the cylindrical hole is formed smaller than the object which enters the cylindrical shape, and the covered optical fiber sensor is obtained by the elasticity of the knitted fabric
  • the biological signal can be accurately measured because the detection unit can be firmly pressed against the subject while requiring no additional members and structurally simple and inexpensive. can do.
  • the elastic force of the stretch yarn can increase the stretchability of the fabric, so the detection portion of the covered optical fiber sensor is firmly covered.
  • the sample can be pressed, and the biological signal can be measured more accurately.
  • the stretch yarn can be knitted with the ground yarn, it can be easily manufactured.
  • the stretchability of the knitted fabric can be further increased, and the detection unit of the covered optical fiber sensor is more reliably pressed against the subject And the biological signal can be measured more accurately.
  • the detection unit of the covered optical fiber sensor can be pressed firmly against the subject.
  • the biological signal can be measured more accurately.
  • the detection unit and the subject are in close contact Therefore, the biological signal can be measured more accurately.
  • the covered optical fiber sensor is formed of a braid around the optical fiber sensor and one filament yarn is used as each yarn forming a braid
  • the braid is alternately braided with each other. Because it is rare, gaps do not easily form between the yarns and it is difficult to melt them. Therefore, even if the optical fiber sensor is broken, the broken end portion is less likely to jump out from between the yarns, which is more safe. Since one filament yarn is thin and strong, the biosignal can be easily transmitted to the optical fiber sensor, and the biosignal can be measured more accurately.
  • the covered optical fiber sensor is provided with a detection unit display that displays the position of the detection unit, the detection unit can be easily aligned with the measurement target site, and thus the biological signal can be measured more accurately.
  • an optical fiber sensor can be introduced to a knitted fabric using a knitting machine, and a living body is not caught in a detection portion of a covered optical fiber sensor. It is possible to manufacture an optical fiber sensor-introduced knitted fabric that can accurately measure a signal.
  • FIG. 2 (a) is an example in which a braid is formed with an optical fiber sensor as a core
  • FIG. 2 (b) is an example in which a yarn is closely wound in a coil shape on the optical fiber sensor.
  • FIG. 2 (a) is an example in which a braid is formed with an optical fiber sensor as a core
  • FIG. 2 (b) is an example in which a yarn is closely wound in a coil shape on the optical fiber sensor.
  • It is explanatory drawing which shows the example which attached the detection part display which displays the position of a detection part on a covered optical fiber sensor.
  • FIG. 7 (a) is a schematic plan view of a tubular optical fiber sensor introduced fabric
  • FIG. 7 (b) is a schematic view of a wrist of a subject wearing the tubular optical fiber sensor introduced fabric.
  • FIG. It is explanatory drawing which shows the state which mounted
  • FIG. It is a schematic diagram which shows a mode that an optical fiber sensor is made into a core with a braiding machine, and a braid is assembled.
  • FIG. 19 (a) is a graph showing a pulse wave detected by a 90-Wale wristband type covered FBG sensor-introduced knitted fabric
  • FIG. 19 (b) is detected by medical tape fixation detected at the same time It is a graph which shows a pulse wave.
  • FIG. 20 (a) is a graph showing a pulse wave detected by a 100-Wale wristband type covered FBG sensor-introduced knitted fabric
  • FIG. 20 (b) is detected by medical tape fixation detected at the same time
  • FIG. 21 (a) shows a cadet yarn
  • FIG. 21 (b) shows a silk yarn
  • FIG. 21 (c) shows a cotton yarn as a ground yarn.
  • the upper graph is a graph showing pulse waves detected by a 28-Wale wristband-type covered FBG sensor-introduced fabric, and the lower graph is a graph showing pulse waves detected by medical tape fixation detected at the same time.
  • FIG. 1 shows a tubular optical fiber sensor introduction knit fabric 1 to which the present invention is applied.
  • the optical fiber sensor introduction knitted fabric 1 is for mounting on a subject and measuring a biological signal of the subject.
  • a subject is a living thing to be measured, and means a person (also referred to as a subject) and an animal.
  • a subject is a living thing to be measured, and means a person (also referred to as a subject) and an animal.
  • an example in which the subject is a human is shown.
  • the optical fiber sensor introduction knitted fabric 1 comprises a covered optical fiber sensor 5, a knitted fabric 2 for holding (passing) the covered optical fiber sensor 5 by hooking a part of the stitches, and a subject on which the knitted fabric 2 is mounted. And a pressing mechanism for pressing the covered optical fiber sensor 5.
  • FIG. 2A shows an example in which the yarn 4 is wound around the optical fiber sensor 3 by forming a braid formed by a plurality of yarns 4 with the optical fiber sensor 3 as a core (central axis). It shows.
  • FIG. 2B shows an example in which the yarn 4 is wound around the optical fiber sensor 3 by tightly winding the plurality of yarns 4 with the optical fiber sensor 3 as a core (central axis).
  • the broken end When the surface of the optical fiber sensor 3 is exposed, when the optical fiber sensor 3 is broken, the broken end may pop out from the exposed portion, which may damage the subject. Therefore, covering the surface of the optical fiber sensor 3 with the yarn 4 is important from the viewpoint of safety. How to cover the yarn 4 (winding method) is optional, but when the optical fiber sensor 3 is broken, the broken end is covered with the yarn 4 and does not protrude outside (winding method) It is important to be there.
  • the number of yarns 4 for forming a braid is shown as an example of eight in the figure, it may be appropriately set to four, eight or sixteen. In the figure, although the example which braided the braid by how to set up a round braid (round eight batting) is shown, since there are publicly known various ways of assembling a braid, it may set suitably.
  • FIG. 2 (b) shows an example in which a plurality of (four) yarns 4 are aligned and closely wound in a coil shape
  • one yarn 4 may be closely wound in a coil shape.
  • the optical fiber sensor 3 has a detection unit (sensor unit) formed of an optical fiber or an optical component on a part of the optical fiber.
  • the optical fiber sensor 3 is an FBG (Fiber Bragg Grating) sensor as an example.
  • FBG Fiber Bragg Grating
  • a diffraction grating (FBG) is formed in the middle of an optical fiber.
  • the portion where the diffraction grating is formed is a detection portion.
  • the yarn 4 is closely wound on the optical fiber sensor 3 so that biological signals such as external force such as movement of blood vessels and muscles due to pulse and temperature such as body temperature can be easily transmitted to the detection unit of the optical fiber sensor 3 Is preferred.
  • the yarn 4 is of small diameter. Further, it is preferable that the diameter of the yarn 4 is hard to be crushed by an external force.
  • the yarns 4 include filament yarns (also referred to as long fiber yarns) and spun yarns (also referred to as short fiber yarns and spun yarns).
  • Filament yarn is a yarn made of long continuous fibers.
  • filament yarns include silk yarns for natural fibers, and various yarns such as polyester yarns, polypropylene yarns, acrylic yarns and nylon yarns for synthetic fiber yarns.
  • Filament yarns are characterized by being thin and strong, having a smooth and glossy surface. Filament yarns are particularly suitable as yarns 4 to be wound around the optical fiber sensor 3 because they are thin and strong.
  • yarns formed of filament yarns there are two types of yarns formed of filament yarns: one made of a single filament yarn and another made of two or more (for example, two) filament yarns.
  • the yarn 4 a yarn made of a single filament yarn is thinner and less likely to be deformed by an external force, and therefore, it can be preferably used as the yarn 4. Therefore, as shown in FIG. 2 (a), when forming the braid by assembling the yarns 4, it is preferable to use one filament yarn as each of the yarns 4 forming the braid.
  • a spun yarn is one in which a large number of short fibers are twisted and spliced (spun) into a long yarn.
  • span yarns include cotton yarn, hemp yarn and wool yarn as natural fibers, and as synthetic fiber yarns, various yarns such as polyester yarn, polypropylene yarn, acrylic yarn, nylon yarn and the like.
  • the spun yarn is easy to conform to the fabric.
  • a spun yarn may be used as the yarn 4 according to need.
  • the position of the detection unit of the optical fiber sensor 3 becomes difficult to understand. Therefore, it is preferable to attach a detection unit display that indicates the position of the detection unit.
  • a detection unit display that indicates the position of the detection unit.
  • a plurality of detection units are formed in one optical fiber sensor 3. Also in this case, it is preferable to attach a detection unit display to each of the plurality of detection units.
  • FIG. 3 shows an example in which a detection unit display 11 for displaying the position of the detection unit 6 of the covered optical fiber sensor 5 (optical fiber sensor 3) is attached to the covered optical fiber sensor 5.
  • FIG. 3A shows an example in which the position of the detection unit 6 is colored as the detection unit display 11.
  • FIG. 3B shows an example in which the positions of both sides sandwiching the detection unit 6 are colored as the detection unit display 11.
  • the detection unit display 11 may not directly indicate the position of the detection unit 6.
  • the position of the detection unit 6 may be indirectly indicated, such as attaching the detection unit display 11 to a position away from the detection unit 6 by a predetermined distance (for example, 100 mm).
  • the color of the detection unit display 11 may be, for example, red, blue, yellow, or black, and may be any color different from the color of the yarn 4.
  • the knitted fabric 2 is formed in a cylindrical shape as an example.
  • the tubular knitted fabric 2 is, for example, a wristband for fitting (wearing) the wrist of the subject 91 (see FIG. 8).
  • the tubular knitted fabric 2 may be for attachment to any site other than the subject's wrist, such as an ankle, elbow, upper arm, chest, and neck.
  • at least a part of the entire knitted fabric (garment) may constitute the tubular knitted fabric 2 so that the tip of the sleeve of the outer jacket constitutes the tubular knitted fabric 2.
  • the knitted fabric 2 is knitted by plain knitting as an example.
  • the method of knitting is not limited to plain knitting, and knitting can be performed by any known method of knitting. For example, although it mentions later, as shown in the knitted fabric 2a of FIG. 5, it is preferable that it is knitted by rib knitting.
  • the knitted fabric 2 is cotton fiber yarn, vegetable fiber yarn such as hemp yarn, wool yarn, animal fiber yarn such as silk yarn, rayon, regenerated fiber yarn such as cupra, semi-synthetic fiber yarn such as acetate, polyester yarn, polypropylene yarn, acrylic yarn, nylon A known yarn such as a synthetic fiber yarn such as yarn is used as the ground yarn and knitted.
  • the covered optical fiber sensor 5 is attached to the tubular knitted fabric 2.
  • a measuring device 101 for measuring a biological signal is connected to an end of the covered optical fiber sensor 5 (optical fiber sensor 3).
  • the measuring device 101 may be attached to the tubular knitted fabric 2 as shown in FIG. 1 or may be disposed at a location away from the knitted fabric 2.
  • the covered optical fiber sensor 5 disposed in the knitted fabric 2 may be covered with at least the yarn 4.
  • the yarn 4 (see FIG. 2) may or may not be wound around the optical fiber (optical fiber sensor 3) of the portion connected to the measuring device 101 disposed outside.
  • a connector for optical fiber connection may be disposed at the end of the covered optical fiber sensor 5.
  • FIG. 4 the principal part enlarged view by the side of the inner wall of the cylindrical knitted fabric 2, and also the one part enlarged view are shown typically.
  • the detection unit 6 of the covered optical fiber sensor 5 is attached to the inner wall side of the tubular fabric 2 so as to be exposed.
  • the covered optical fiber sensor 5 is hooked (passed) by a part of the stitches 23 of the stitches 21 constituting the knitted fabric 2 and is held by the knitted fabric 2.
  • the stitches 21 and 23 are similar to each other, but here, the stitch hooked on the covered optical fiber sensor 5 is used as the stitch 23.
  • the stitch 23 may be referred to as a connected stitch 23.
  • the stitches 23 are loops passing through one stitch 21, and two points are hooked on the covered optical fiber sensor 5 with respect to one stitch 21. Only the stitch 23 is on the near side of the covered optical fiber sensor 5 in the figure. Therefore, the covered optical fiber sensor 5 at a portion other than the stitches 23 appears on the inner wall side of the tubular fabric 2. The covered optical fiber sensor 5 at the portion of the stitch 23 appears on the outer wall side of the tubular fabric 2.
  • the interval between the stitches 23 in which the covered optical fiber sensor 5 is hooked (passed) is arbitrary, and may be a constant interval or an irregular interval.
  • the stitches 23 are formed so as to be one of the three stitches 21 in the lateral direction (every two stitches 21). That the stitch 23 of the knitted fabric 2 is not hooked on the detection part 6 of the covered optical fiber sensor 5 and the stitch 23 of the cloth 2 is hooked on a part other than the detection part 6 of the covered optical fiber sensor 5 preferable.
  • the detection part display 11 is attached to the position of the detection part 6 is shown. As shown in the figure, no stitch 23 is formed at the position of the detection unit 6 (detection unit display 11), and a stitch 23 is formed so as to sandwich the detection unit 6 (detection unit display 11). There is.
  • the knitted fabric 2 may have a detection unit display (not shown) indicating the position where the detection unit 6 should be arranged.
  • the color of the knitted fabric 2 at the position where the detection unit 6 is to be arranged may be an arbitrary color different from the color of the other part of the knitted fabric 2.
  • an arrow, a symbol, a character, a picture, or the like may be displayed on the knitted fabric 2 so as to indicate the position where the detection unit 6 should be arranged.
  • the optical fiber sensor introduction knitted fabric 1 may be constituted by a knitted fabric 2a.
  • the knitted fabric 2a is knitted by rib knitting. Rib knitting is also called rubber knitting.
  • the ribbed knitted fabric 2a is characterized in that the stretchability in the lateral direction (lateral direction in the figure) is large.
  • the same figure shows the example knitted by 2nd rib knitting (2nd rubber knitting) in the kind of rib knitting.
  • the second rib knit is a knit fabric in which the front and back eyes are alternately knitted vertically by two eyes.
  • the rib knitting may be performed in any mesh number such as first rib knitting and third rib knitting.
  • the stretchability of the knitted fabric 2a is: first rib knitting ⁇ second rib knitting ⁇ third rib knitting. It is common for rib knitting to knit by 1st rib knitting or 2 rib knitting. Therefore, it is preferable to form the knitted fabric 2a by second rib knitting excellent in stretchability.
  • the detection part 6 of the covered optical fiber sensor 5 is attached so that it may expose on the inner wall side of the cylindrical fabric 2a.
  • the covered optical fiber sensor 5 is hooked (passed) by a part of the stitches 23a of the stitches 21a constituting the knitted fabric 2a, and is held by the knitted fabric 2a.
  • the stitches 23a are a mesh of a part of the mesh knitted longitudinally.
  • the knitted fabrics 2 and 2a shown in FIGS. 4 and 5 are preferably provided with stretch yarns as yarns of base yarns constituting the knitted fabrics 2 and 2a.
  • the stretch yarn is a yarn having stretchability.
  • An example of a stretch yarn is a covered yarn.
  • the covered yarn is a yarn obtained by winding a spun yarn or a filament yarn around a polyurethane elastic yarn to be a core yarn.
  • Marlon registered trademark manufactured by GSI Marlontex Co., Ltd. can be preferably used.
  • the knitted fabrics 2 and 2a it is preferable that at least two stretch yarns 33 1 and 33 2 be provided as a yarn for the ground yarn 31.
  • the ground yarn 31 and the stretch yarns 33 1 and 33 2 are knitted as one yarn to knit the knitted fabrics 2 and 2a.
  • the stretch yarns 33 1 and 33 2 as yarns for the ground yarn, the production of the knitted fabrics 2 and 2a can be carried out easily.
  • the ground yarn 31 and the stretch yarns 33 1 and 33 2 may be aligned and used, or the ground yarn 31 and the stretch yarns 33 1 and 33 2 may be twisted and used. .
  • a plurality of ground yarns 31 may be used as one, as in the case of two or three yarns.
  • knitting the knitted fabrics 2, 2a by knitting two ground yarns 31, 31 and two stretch yarns 33 1 , 33 2 as one yarn Good.
  • the number of stretch yarns 33 used as yarn application is arbitrary, and may be appropriately used, such as one, two, three or four. It is more preferable to use at least two stretch yarns 33 than to use one stretch yarn 33 as the yarn application because the stretchability of the knitted fabric 2a is increased.
  • FIG. 7 (a) shows a schematic plan view of the tubular knitted fabric 2 (2a)
  • FIG. 7 (b) shows the wrist of the subject 91 passed through the tubular knitted fabric 2 (2a).
  • a schematic sectional view is shown.
  • the cross section of the wrist is schematically shown in a circular shape.
  • the knitted fabric 2 will be described, the same applies to the knitted fabric 2a.
  • the tubular knitted fabric 2 has a pressing mechanism for pressing the covered optical fiber sensor 5 against the subject 91. Since the knitted fabric 2 generally has stretchability, a tubular knitted fabric 2 shown in FIG. 7 is one using this stretchability as a pressing mechanism. Specifically, as the pressing mechanism, the size (the cylinder diameter and the cylinder size) of the cylindrical hole of the knitted fabric 2 is formed smaller than the object 91 which enters the cylindrical shape, The covered optical fiber sensor 5 is formed in such a size as to be pressed against the subject 91 by the elasticity of the above.
  • the knitted fabric 2 is in the form of a cylinder whose size (tubular dimension) of the circumference (inner circumference) of the cylinder in a non-stretched state (normal state) is N 1 It is formed.
  • the knitted fabric 2 has stretchability in which the length of the circumference (inner circumference) extends to N 2 when the cylindrical hole is pushed out.
  • the subject 91 has a length of the outer periphery of the wrist (length around the wrist) of a size D.
  • the tubular knitted fabric 2 is formed to have the following relationship.
  • the covered optical fiber sensor 5 is introduced into the knitted fabric 2 along the circumferential direction of the tubular knitted fabric 2. Since the stretchability of the knitted fabric 2 at the site into which the covered optical fiber sensor 5 is introduced is reduced, it is preferable to introduce the covered optical fiber sensor 5 into the tubular fabric 2 of a semicircular circumference at most. As described above, by setting the portion to which the covered optical fiber sensor 5 is introduced at most to a half of a cylindrical shape, the stretchability of the knitted fabric 2 can be secured by the remaining portion. In consideration of the stretchability of the knitted fabric 2, the smaller the range for introducing the covered optical fiber sensor 5 into the knitted fabric 2 is preferable.
  • the length of the covered optical fiber sensor 5 introduced into the knitted fabric 2 be short.
  • a circumferential division it is even more preferable to set a maximum of 1/5.
  • FIG. 8 illustrates a state in which the optical fiber sensor introduction knitted fabric 1 is attached to the wrist of the subject 91. Since the size of the hole of the tubular knitted fabric 2 (2a) is smaller than the size of the wrist of the subject 91, the tubular knitted fabric 2 is pushed and spread and fitted on the wrist. Therefore, since the covered optical fiber sensor 5 is pressed against the wrist, the optical fiber sensor 3 can accurately detect the biological signal. Since the ribbed knitted fabric 2a is excellent in stretchability, it can be preferably used for the optical fiber sensor introduced knitted fabric 1.
  • the size of the cylindrical hole is preferably formed so as to press the covered optical fiber sensor 5 against the subject 91 at a pressure of at least 0.4 kPa. By setting it as such pressure, a biomedical signal can be detected correctly correctly.
  • the size of the cylindrical hole is formed so as to press the covered optical fiber sensor 5 against the subject 91 at a pressure of at most 1.0 kPa (more preferably at most 0.8 kPa). preferable.
  • the hole diameter of the tubular fabric 2 is such that the diameter of the covered optical fiber sensor 5 is pressed against the subject 91 at a pressure of 0.4 kPa to 1.0 kPa (more preferably 0.4 kPa to 0.8 kPa). It is preferable to form.
  • This pressure is an example, and may be changed as appropriate depending on the attachment site of the tubular knitted fabric 2 (the measurement site of the subject 91), or may be suitably changed according to the type when the subject 91 is an animal. .
  • the covered optical fiber sensor 5 is provided with a detection unit display 11 (see FIGS. 3, 4 and 5) indicating the position of the detection unit 6.
  • the detection unit 6 can be accurately aligned on the point), and the biological signal can be accurately detected.
  • a detection unit display (not shown) indicating the position of the detection unit 6 is attached to the knitted fabric 2
  • the detection unit 6 can be accurately aligned with the measurement target region of the subject 91.
  • the signal can be detected accurately.
  • a detection unit display (not shown) is attached to the outer peripheral portion of the tubular knitted fabric 2
  • the position of the detection unit 6 can be visually recognized from the outside in a state where the tubular knitted fabric 2 is attached.
  • the biological signal detected by the optical fiber sensor 3 is measured by the measuring device 101 as biological signal data and stored.
  • the biological signal data may be output from the measuring device 101 to the outside wirelessly or by wire.
  • the measuring device 101 measures biological signals such as pulse waves, pulse and blood pressure.
  • the knitted fabric 2 may not be cylindrical but may be flat.
  • a spring such as a leaf spring or a coil spring may be used.
  • the method of manufacturing the optical fiber sensor introduction knitted fabric 1 includes a first step of manufacturing a covered optical fiber sensor by covering the yarn 4 with the yarn 4 so as not to expose the surface of the optical fiber sensor (by winding the yarn 4)
  • a first step of manufacturing a covered optical fiber sensor by covering the yarn 4 with the yarn 4 so as not to expose the surface of the optical fiber sensor (by winding the yarn 4)
  • the knitted fabric 2 (2a) since the stitches 23 of the knitted fabric 2 (2a) are not caught by the detecting portion 6 of the covered optical fiber sensor 5 (optical fiber sensor 3), the detecting portion of the covered optical fiber sensor 5
  • the first step of covering with the thread 4 so as not to expose the optical fiber sensor 3 may be performed by hand winding or machine winding, but using a known machine It is preferable to wind.
  • a known machine it is preferable to use a known braiding machine.
  • assembled is typically shown in FIG. 9 as an example of a 1st process.
  • FIG. 9 schematically shows the main part of the braiding machine observed from the upper side.
  • the bobbins on which the yarn 4 is wound are set in the eight bobbin carriers 41 respectively.
  • the optical fiber sensor 3 shown in cross section is set at the center of eight bobbin carriers.
  • the optical fiber sensor 3 and the respective yarns 4, 4 travel (pull) toward the upper side (viewing surface side in the drawing).
  • the four bobbin carriers 41 rotating in the clockwise direction and the four bobbin carriers 41 rotating in the counterclockwise direction cross each other to move the optical fiber sensor 3 as a core.
  • the braid is formed by the yarns 4, 4.
  • the thickness and traveling speed of the yarn 4 are appropriately set so that the yarn 4 can be in close contact with the optical fiber sensor 3 to form a braid.
  • a known winding machine may be used.
  • a detection unit display 11 is attached to the manufactured covered optical fiber sensor 5.
  • the detection unit display 11 is formed by coloring with ink, paint or the like at a position corresponding to the detection unit 6 of the optical fiber sensor 3.
  • the position of the detection unit 6 can be identified, for example, by recording the length from the end of the optical fiber sensor 3 to the detection unit 6 in advance.
  • the flat knitted fabric 2 into which the covered optical fiber sensor 5 is introduced may be manufactured, or a three-dimensional knitted fabric like the cylindrical knitted fabric 2 may be manufactured.
  • a known knitting machine capable of thread knitting for example, a flat knitting machine such as a flat-type flat knitting machine or a two-needle floor knitting machine
  • the covered optical fiber sensor 5 is set as a thread for thread knitting corresponding to the place where the optical fiber sensor 3 is to be introduced, and thread knitting is performed.
  • the pattern of thread knitting can be appropriately set to any pattern.
  • the connection stitch 23 (see FIG. 4) of the knitted fabric 2 is not caught in the detection unit 6 of the covered optical fiber sensor 5, and the connection stitch 23 of the knit fabric 2 is caught in a portion other than the detection unit 6 of the optical fiber sensor 3. It is preferable to use a pattern.
  • the position of the detection unit 6 can be visually recognized by the detection unit display 11 (see FIG. 3).
  • one connection stitch 23 may be hooked at one place, or a plurality of connection stitches 23 such as 2 to 5 may be hooked at one place.
  • the tubular knitted fabric 2 can be manufactured by bag knitting using, for example, a known two-needle-bed knitting machine.
  • a two-needle floor knitting machine for example, a knitting machine (see FIG. 18) in which a rib nitter is attached to a flat-type flat knitting machine may be used.
  • the present invention is not limited to the two-needle floor knitting machine, as long as it can produce the tubular knitted fabric 2, and other knitting machines may be used.
  • knitting needles 201 are arranged in the knitting machine.
  • the thread thread (covered optical fiber sensor 5) is passed through the upper side (one side) of the knitting needle 201 at the site where it is desired to hook the knitted fabric (connected stitch 23 in FIG. 4). Otherwise, the lower side (the other side) of the knitting needle 201 is set to pass through.
  • a thread can be knitted by passing the carriage through this portion, and the covered optical fiber sensor 5 can be introduced into the knitted fabric 2.
  • the knitting needle 201 is not hung on the part of the detection part 6 (detection part indication 11) of the covered optical fiber sensor 5 but on both sides of the detection part 6.
  • the connection stitch 23 (see FIG. 4) is not formed in the detection unit 6 by not putting the knitting needle 201 on.
  • the covered optical fiber sensor 5 is thread-knitted at an arbitrary position of the knitted fabric 2 to introduce a tubular shape
  • the optical fiber sensor introduction knitted fabric 1 can be manufactured.
  • the covered optical fiber sensor 5 is introduced along the circumferential direction of the tubular fabric 2 by performing bag knitting with a two-needle floor knitting machine.
  • the length for introducing the covered optical fiber sensor 5 is arbitrary.
  • thread knitting is performed on one needle bed (one-needle bed) of the two-needle bed knitting machine, at most a tubular half-round knit fabric along a cylindrical winding direction 2.
  • the covered fiber optic sensor 5 can be introduced into 2.
  • the knitting machine is not limited to a flat knitting machine or a two-needle floor (two-row needle floor) knitting machine, and any knitting machine capable of thread knitting can be used.
  • a Jacquard flat knitting machine Jacquard flat knitting machine
  • Jacquard flat knitting machine A card rib knitting machine may be used, or a four-needle floor (four-row needle floor) knitting machine may be used.
  • Thread knitting is also called inlay knitting or insertion knitting. It is preferable to introduce the covered optical fiber sensor 5 into the knitted fabric 2 (2a) by inlay knitting using an automatic knitting machine called an industrial inlay knitting machine. By using the inlay knitting machine, it is possible to manufacture the knitted fabric 2 (2a) having the covered optical fiber sensor 5 introduced therein automatically and at high speed.
  • the measuring device 101 may be connected to the optical fiber sensor 3 before introducing the covered optical fiber sensor 5 into the knitted fabric 2 or may be connected after being introduced.
  • the optical fiber sensor introduction knitted fabric 1 may be worn on a person to measure a biological signal, or may be worn on a pet or an animal such as a domestic animal to measure the biological signal.
  • the pulse wave can be analyzed to obtain various biological information such as blood pressure, respiratory rate, stress, and the like.
  • the blood pressure can be measured by analyzing the waveform data of the pulse wave by using the “blood pressure measurement device” shown in Japanese Patent Application Laid-Open No. 2015-231512 developed by the inventors.
  • the pulse wave waveform data is analyzed and the blood sugar level is analyzed. It can be measured.
  • the FBG sensor was used as an optical fiber sensor.
  • the FBG sensor is model name SM-CW-90-2-15-10-UA-3.5-2R, manufactured by Shinko Electric Co., Ltd., with a detection unit length (sensor length) 10 mm, wavelength resolution 0.1 pm, wavelength range 1550 ⁇ 0.5 nm, material: quartz glass, fiber diameter 145 ⁇ m, core diameter 10.5 ⁇ m, coating diameter 245 ⁇ m were used.
  • a covered optical fiber sensor 5 was produced on a trial basis using a 16 round braided braiding machine shown in FIG. 11 (name: medium carrier braider, model: 101-C, manufactured by Kokubun Limited).
  • a bobbin wound with yarn was set on 8 of 16 bobbin carriers of the braiding machine.
  • the FBG sensor was set at the center and used as a core.
  • the braiding machine was operated to be in close contact with the outer periphery of the FBG sensor to form a round eight-strike (eight string) braid as shown in FIG. 2 (a).
  • the braiding pitch was 2.5 mm.
  • a silk yarn which is a filament yarn was used as a yarn.
  • a braid was produced around the FBG sensor using a single (one) silk thread. The thickness of the silk thread is 14 tex (measured count number already refined). Below, this is called a single covered FBG sensor.
  • a braid was produced around the FBG sensor using double (two) silk yarns (a silk yarn obtained by bundling two yarns). The thickness of the silk thread is 14 tex ⁇ 2. Below, this is called a double covered FBG sensor.
  • FIG. 12 shows photographs of a single FBG sensor not covered with a yarn, a single covered FBG sensor of Prototype Example 1, and a double covered FBG sensor of Prototype Example 2. As shown in FIG. 12
  • the detectors of these single FBG sensors, a single covered FBG sensor, and a double covered FBG sensor were attached to a subject's wrist at an arterial point (pulsating point of radial artery) with a medical adhesive tape to measure a pulse wave.
  • the subject is a twenties male.
  • As a photodetector model name: PF25-S01, a heterodyne FBG sensor monitor manufactured by Nagano Keiki Co., Ltd. was used.
  • the band pass filter used a pass band of 0.5 Hz ⁇ f ⁇ 5 Hz.
  • FIG. 13 shows a measurement block diagram.
  • FIG. 14 shows the measurement results of pulse waves.
  • the measurement levels were FBG sensor alone, single covered FBG sensor, and double covered FBG sensor in descending order.
  • the pulse can be measured by detecting a peak from the pulse wave.
  • the blood pressure was calculated based on the waveform shape of the detected pulse wave.
  • the blood pressure was calculated by a method of estimating the blood pressure value from the acquired data of the pulse wave based on a calibration formula constructed based on the correlation between the waveform data of the pulse wave and the measured value of the blood pressure.
  • the blood pressure value was calculated by the method disclosed in Japanese Patent Application Laid-Open No. 2015-231512 filed by the applicant.
  • the pulse wave was measured 100 times, and the blood pressure was calculated from the waveform.
  • the calculation result of the blood pressure is shown in FIG. In the figure, a plurality of calculation results are plotted.
  • the reference systolic blood pressure on the horizontal axis of the graph is an actual measurement value of blood pressure measured using a sphygmomanometer (type name: PVM-2701, manufactured by Nippon Denko Kogyo Co., Ltd.).
  • Calculated systolic blood pressure on the vertical axis of the graph is a calculated value.
  • the calculated value is on the 45 ° line shown in the graph. In other words, it can be evaluated that the closer the calculation results are on the 45 ° line, the better the calculation result.
  • Table 1 shows the correlation coefficient and the average error of the calculation result.
  • the blood pressure calculation results were gathered on the 45 ° line, and it was possible to obtain almost the same good results as the FBG sensor alone.
  • the blood pressure calculation result by the double covered FBG sensor slightly fluctuated from above the 45 ° line. This result is also apparent from the correlation coefficient and the average error of Table 1. From this result, it can be said that the single covered FBG sensor is superior to the double covered FBG sensor when calculating the blood pressure from the pulse wave.
  • a contact pressure measuring device AMI 3037-10-II, manufactured by AMI Techno
  • the diameter of the pressure receiving sensor air pack which is a sensor part used what is 20 mm.
  • Four tubular knitted fabrics were manufactured, with 80 wales (82 mm), 90 wales (91 mm), 100 wales (102 mm), and 110 wales (112 mm) in the circumferential dimension of the wristband (the circumferential length of the wristband).
  • the subject was a 20-year-old male with 160 mm around the wrist.
  • the circumferential dimensions of the wristband were 51%, 57%, 64% and 70% with respect to the dimensions around the wrist.
  • the circumferential dimension of the wristband is approximately the length of the inner periphery.
  • the measurement results are shown in FIG.
  • the coating pressure was about 0.4 kPa at a perimeter of 100 wales, and was about 0.75 kPa at 90 wales and about 1.0 kPa at 80 wales.
  • Pulse wave detection was attempted by pressing the covered FBG sensor with the wristband using the four wristbands manufactured above.
  • a covered FBG sensor the double covered FBG sensor of Prototype Example 2 was used.
  • the measurement results are shown in FIG. As shown in the figure, a periodic waveform corresponding to the pulsation was obtained.
  • the wristband size is large, ie in the loose wearing condition (110 wales), the level of the detected signal is small.
  • the wristband size of 80 to 100 wales is considered to be advantageous for pulse wave detection, but 80 wale means that there is a feeling of compression at the time of wearing.
  • the covering pressure pressure to press the covered FBG sensor
  • the covering pressure capable of detecting the pulse wave without feeling a strong feeling of pressure is considered to be about 0.4 to 0.8 kPa.
  • the prototyped covered FBG sensor was introduced into a tubular knitted fabric 2 (see FIG. 4) to manufacture a tubular optical fiber sensor introduced knitted fabric 1 (second step).
  • a flat type flat knitting machine (manual punch card knitting machine, model name SK-280, manufactured by Amagasaki Uestec Co., Ltd.), rib nitter (standard rib nitter, model name SRP 60N, manufactured by Amagasaki Uestec, Inc.
  • the machine is a two-needle floor knitting machine by attaching a), so that bag knitting can be performed.
  • a stitch dial is installed on each of the flat knitting machine and the rib nitter.
  • the stitch dial changes the size of the stitch, and is changed according to the yarn number to be used.
  • a stretchable polyurethane / nylon double covered yarn (840 d / 110 d), which is preferable as a wrist band, was used.
  • the stitch dials were 3.2 for punch card machines and 5.2 for rib nitters.
  • the stitch density of the knitted fabric is 25 wales / inch and 13 courses / inch.
  • Bag knitting is produced by reciprocating the carriage shown in FIG.
  • the method of knitting is flat knitting of weft knitting. Except for the site where the covered FBG sensor is introduced, a tubular knitted fabric was knitted by ordinary bag knitting.
  • the knitting machine shown in FIG. 18 is provided with an arm thread hook and a brush for thread knitting when only a flat type flat knitting machine (punch card knitting machine) is installed when a rib knitter is attached to enable bag knitting. Absent.
  • introduction by thread knitting was attempted by a method in which a covered FBG sensor introduced as a thread yarn is passed through the knitting needles of a flat-type flat knitting machine and then knitted.
  • the pattern of thread knitting is a pattern which does not form a connecting stitch with a length of 26 mm (for 16 stitches) centering on the detecting part with some allowance for forming a connecting stitch in a 10 mm detecting part of a covered FBG sensor.
  • the connected stitches were formed at sites other than the detection portion.
  • the connected stitches were formed in a pattern formed by one of the three stitches in the lateral direction.
  • the length of the covered FBG sensor of the portion introduced into the tubular knitted fabric 2 was slightly shorter than the half circumference.
  • FIG. 19 shows measurement results of pulse waves by a covered FBG sensor-introduced fabric of 90 wales around the wrist band.
  • FIG. 19 (a) shows a measurement result by a wristband type covered FBG sensor-introduced fabric
  • FIG. 19 (b) shows a signal detection result at the same time when the tape is fixed for medical use.
  • a clear periodic peak was detected in the wristband type covered FBG sensor-introduced fabric.
  • FIG. 19 (b)) shows compared with the signal (FIG. 19 (b)) from the covered FBG sensor fixed with the medical tape measured simultaneously with this.
  • the peaks are synchronized.
  • the signal level of the wristband type (FIG. 19 (a)) was larger than that of the medical tape (FIG. 19 (b))
  • FIG. 20 shows the result of signal detection in a covered FBG sensor-introduced fabric of which the circumference of the wristband is 100 wales.
  • FIG. 20 (a) shows a measurement result by a wristband type covered FBG sensor-introduced knitted fabric
  • FIG. 20 (b) shows a signal detection result at the same time of measuring the medical tape fixed.
  • the periodic peak was able to be detected.
  • FIG. 20 (b) shows that the peaks are synchronized.
  • the double-covered FBG sensor of Prototype Example 2 was introduced into a tubular knitted fabric 2a (see FIG. 5), and a wristband-type optical fiber sensor-introduced knitted fabric using the knitted fabric 2a was manufactured (second step).
  • the knitting structure is a second rib.
  • FIG. 21 (a) is a cadet yarn
  • FIG. 21 (b) is a silk yarn
  • FIG. 21 (c) is a cotton yarn.
  • the double-covered FBG sensor of Prototype Example 2 was introduced into a tubular knitted fabric 2a (see FIG. 5) to manufacture a wristband type optical fiber sensor-introduced knitted fabric 1 (second step).
  • the knitting structure is a second rib.
  • the base yarn of the knitted fabric 2a one obtained by taking two cotton yarns (100% cotton 30/2 Ne) was used.
  • the number of wales and manufactured a plurality of wristbands with different dimensions The number of wales of the manufactured wristband is five steps of 20, 24, 28, 32, and 36.
  • the number of knitting marlon 2000 which is a stretch yarn, was changed. A yarn produced by knitting one Marlon 2000 yarn and one woven by two yarns were manufactured.
  • the dimensions of the manufactured wristband are shown in Table 2.
  • the dressing pressure produced by the wristband was measured.
  • An air pack type contact pressure measuring device (AMI 3037-10-II) manufactured by AMI Techno, Inc. was used to measure the clothing pressure.
  • An air pack (diameter 20 mm) was placed on the radial artery of the wrist, which is the pulse wave measurement position, and fixed with a seal.
  • the wristband was attached from above, and the measurement of coating pressure was performed.
  • the sample which did not weave in Marlon 2000 was also produced for comparison, and coating pressure measurement was performed.
  • the pressure measured when the wristband was removed from the dressing pressure measured when wearing the wristband was taken as the dressing pressure of the wristband.
  • a wristband with 20, 24, 28, 32, and 36 wales was attached to a test subject with a size of 155 mm around the wrist, and the coating pressure was measured.
  • the measurement results of the clothing pressure are shown in FIG.
  • the coating pressure could not be detected.
  • the wristbands in which one Marlon 2000 was knitted and in the two wristbands the wristband in which two Marlon 2000s were knitted showed higher coating pressure in all the wales. Also, as the number of wales decreased, the coating pressure increased.
  • the wristband that showed the highest coating pressure is a sample with a wales number of 20 in which two Marlon 2000s are knitted. However, the wristband with a wale number of 20 was small in knitting and difficult to remove. Therefore, the measurement of pulse waves was performed using two types of wristbands, the 24th and 28th eyes, in which two Marlon 2000 yarns are knitted, as a wristband that is easily removable and has a high coating pressure.
  • the subject was a 20-year-old female. The measurement posture was measured twice for about 15 seconds in the supine position. Nagano Instruments FBG data logger PF20 (wavelength sweep method) was used as a measuring instrument.
  • FIG. 23 shows an optical path of the device. Table 3 shows the device specifications. Band pass filtering was performed because of the need to remove noise.
  • a covered FBG sensor introduction wristband was worn on the left wrist of the subject.
  • the covered FBG sensor of Example 2 was fixed to the right wrist with a medical tape.
  • optical fiber sensor-introduced fabric and the method of manufacturing an optical fiber sensor-introduced fabric according to the present invention can be used for applications that incorporate a sensor that is highly safe and can accurately measure a biological signal into clothes and the like.
  • 1 is an optical fiber sensor introduction knitted fabric
  • 2 ⁇ 2a is a knitted fabric
  • 3 is an optical fiber sensor
  • 4 is a yarn
  • 5 is a covered optical fiber sensor
  • 6 is a detection portion of a covered optical fiber sensor (optical fiber sensor)
  • 11 is detector display
  • 21-22a are stitches
  • 23-23a are stitches (consolidated stitch)
  • 33 1, 33 2 stretch yarn 41 is the bobbin carrier
  • D is the length of the outer circumference of the subject's wrist (length around the wrist)
  • N 1 is the length of the cylindrical inner circumference in a non-stretched state (normal state)
  • N 2 is a cylindrical The length of the inner circumference when the hole is pushed open.

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Textile Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Physiology (AREA)
  • Manufacturing & Machinery (AREA)
  • Biophysics (AREA)
  • General Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Cardiology (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Knitting Of Fabric (AREA)

Abstract

安全性が高く、生体信号を正確に測定することができる光ファイバセンサ導入編地、およびその製造方法を提供することを目的とする。 光ファイバセンサ導入編地1は、光ファイバセンサの表面を露出させないように光ファイバセンサに糸が巻き付けられているカバード光ファイバセンサ5と、カバード光ファイバセンサ5を一部の編目23に引っ掛けて保持する編地2と、編地2を装着する被検体に対して、カバード光ファイバセンサ5の検出部6を押し当てるための押当機構とを備えるものである。

Description

光ファイバセンサ導入編地、及び光ファイバセンサ導入編地の製造方法
 本発明は、光ファイバセンサを編地に導入した光ファイバセンサ導入編地、及び編機を使用して光ファイバセンサを編地に導入することが可能な光ファイバセンサ導入編地の製造方法に関するものである。
 高齢化社会の到来に伴う医療費の増大と医療従事者の不足は現代における最も深刻な課題の一つである。現在の医療は患者が自覚症状を覚えてから医師に相談する形態が通常であるが、この時点では病気がすでに進行してしまっていることも少なくない。定期的な健康診断もあるがその周期は年月単位であり、病気の早期発見には不十分なのが現状である。
 病気を早期に発見するには普段から生体信号(バイタルサイン)をこまめに測定しておくのが有効であり、理想的には生体信号を常時モニタリングして自覚症状が出る前に体の異常を検出して速やかに治療を開始するやり方が医療費問題のみならず、人々の生活の質(Quality of life)の向上の観点からも望ましい。生体信号の常時モニタリングにはそれが安全であること、測定データが正確であることが最も重要である。又、安価でストレスがかからないことが重要である。
 これを可能とするために人が常時身につける衣服に生体信号検出機能を組み込んだスマートテキスタイルの開発が広く取り組まれている。衣服に生体信号検出機能を組み込むことでストレスをかけずに生体信号をモニタリングすることができる。中でも光ファイバセンサはその名の通り繊維・糸形状をしているので既存のテキスタイルのプロセスになじみやすいと考えられる。しかし、従来の方法では光ファイバセンサを生地に手で縫い付ける、あるいはベルトで押さえる方法に頼っているのが現状である。
 先行技術文献として例えば特許文献1には、用途は違うが、繊維生地に光ファイバを組み込んだ装飾繊維生地が記載されている。同文献の段落0012には、繊維生地を構成する他の経糸又は緯糸と同じようにして、光ファイバ(発光装飾体)を織り込んだり、編み込んだりしてもよく、或いは、繊維生地に光ファイバを括り付けるようにしてもよいということの記載がある。
実開平5-96095号公報
 光ファイバ(光ファイバセンサ)は、通常の繊維生地の糸に比べてかなり剛直であるため、編機を使用して光ファイバを通常の糸のように編地に導入しようとすると、折れて破損してしまったり、曲がらなかったりして編み込むことが難しい。そのため、光ファイバを手で繊維生地に縫い付けるたり、括り付けたりして人手で繊維生地に導入していた。人手による作業は、手間が掛かり、結果的に高価な繊維生地になっていた。そこで発明者らは光ファイバが繊維・糸形状をしている特徴を活かして繊維生地の製造工程中に光ファイバを編地に導入する方法を発明し、既に特願2017-001499に出願している。その方法は、光ファイバに糸を付け、編機を使用してスレッド編みすることで編地に導入するものである。これにより安価に製造することが可能になった。
 光ファイバセンサ導入編地のさらなる課題として、高い安全性を有し、生体信号をより正確に測定できるものとする必要性がある。発明者らは、この課題を解決するために、鋭意研究を続けている。
 本発明は、安全性が高く、生体信号を正確に測定することができる光ファイバセンサ導入編地、およびその製造方法を提供することを目的とする。
 前記の目的を達成するためになされた本発明の光ファイバセンサ導入編地は、光ファイバセンサの表面を露出させないように糸で覆われているカバード光ファイバセンサと、前記カバード光ファイバセンサを一部の編目に引っ掛けて保持する編地と、前記編地を装着する被検体に対して、前記カバード光ファイバセンサの検出部を押し当てるための押当機構とを、備える。
 前記押当機構として、前記編地が筒状に形成されており、前記筒状の穴の大きさが、その筒状内に入る前記被検体よりも小さく形成されていて、前記編地の伸縮性によって前記カバード光ファイバセンサの検出部が前記被検体に押し当てられるように形成されていることが好ましい。
 前記編地は、前記編地を構成する地糸の添糸としてストレッチ糸が設けられているものであることが好ましい。
 前記ストレッチ糸は、前記地糸に対し、前記添糸として少なくとも2本が設けられていることが好ましい。
 前記編地は、リブ編みで編成されているものであることが好ましい。
 前記押当機構は、前記カバード光ファイバセンサの検出部を少なくとも0.4kPaの圧力で前記被検体に押し当てるものであることが好ましい。
 前記カバード光ファイバセンサの検出部には前記編地の編目が引っ掛けられておらず、前記カバード光ファイバセンサの検出部以外の部位に前記編地の編目が引っ掛けられていることが好ましい。
 前記カバード光ファイバセンサは、前記光ファイバセンサを芯にして複数の前記糸で組まれた組紐が形成されていて、前記組紐を組む各々の前記糸として、1本のフィラメント糸が用いられているものであることが好ましい。
 前記カバード光ファイバセンサには、前記検出部の位置を表示する検出部表示が付されていることが好ましい。
 本発明の光ファイバセンサ導入編地の製造方法は、光ファイバセンサの表面を露出させないように糸で覆ってカバード光ファイバセンサを製造する第1の工程と、編機により編地を製造するときに、前記カバード光ファイバセンサの検出部には前記編地の編目が引っ掛からず、前記カバード光ファイバセンサの検出部以外の部位に前記編地の編目が引っ掛かるように、スレッド編みにより前記編地に導入する第2の工程とを、含む。
 本発明の光ファイバセンサ導入編地によれば、光ファイバセンサの周囲を糸が覆っているため、例え光ファイバセンサが折れたとしても、折れた部位が被検体に直接当たらないため安全である。又、押当機構によって光ファイバセンサが被検体に押し付けられるため、周囲に糸が巻き付いていても被検体の微弱な動きを検出することができ、生体信号を正確に測定することができる。
 押当機構として、編地が筒状に形成されており、筒状の穴の大きさがその筒状内に入る被検体よりも小さく形成されていて、編地の伸縮性によってカバード光ファイバセンサの検出部が被検体に押し当てられる場合、追加的な部材が必要なく構造的に簡便で安価でありながら、しっかりと検出部を被検体に押し当てることができるため、生体信号を正確に測定することができる。
 編地を構成する地糸の添糸としてストレッチ糸が設けられている場合、ストレッチ糸の弾性力によって編地の伸縮力を大きくすることができるため、カバード光ファイバセンサの検出部をしっかりと被検体に押し当てることができ、生体信号をより正確に測定することができる。さらに、ストレッチ糸を地糸と共に編み込めるため、簡便に製造することができる。ストレッチ糸が地糸に対し、添糸として少なくとも2本が設けられている場合、編地の伸縮力をより大きくすることができ、カバード光ファイバセンサの検出部をより確実に被検体に押し当てることができ、生体信号をより一層正確に測定することができる。
 編地がリブ編みで編成されているものである場合、伸縮性に優れるため、カバード光ファイバセンサの検出部をしっかりと被検体に押し当てることができる。
 押当機構がカバード光ファイバセンサの検出部を少なくとも0.4kPaの圧力で被検体に押し当てるものである場合、生体信号をより正確に測定することができる。
 カバード光ファイバセンサの検出部には編地の編目が引っ掛けられておらず、カバード光ファイバセンサの検出部以外の部位に編地の編目が引っ掛けられている場合、検出部と被検体とが密着するため、生体信号をより正確に測定することができる。
 カバード光ファイバセンサが光ファイバセンサを芯にして組紐の形成されたもので、組紐を組む各々の糸として1本のフィラメント糸が用いられているものである場合、組紐は糸同士が交互に組まれているため、糸同士の間に隙間が生じにくく解けにくい。そのため、光ファイバセンサが折れたとしても折れた端部が糸同士の間から飛び出しにくいため、より安全である。1本のフィラメント糸は細くて強いため、光ファイバセンサに生体信号が伝わりやすく、生体信号を一層正確に測定することができる。
 カバード光ファイバセンサに検出部の位置を表示する検出部表示が付されている場合、測定対象部位に検出部を位置合わせしやすくなるため、生体信号を一層正確に測定することができる。
 本発明の光ファイバセンサ導入編地の製造方法によれば、編機を使用して光ファイバセンサを編地に導入することができ、カバード光ファイバセンサの検出部に編目を引っ掛けないため、生体信号を正確に測定できる光ファイバセンサ導入編地を製造することができる。
本発明を適用する光ファイバセンサ導入編地を模式的に示す説明図である。 本発明を適用する光ファイバセンサ導入編地に用いるカバード光ファイバセンサを模式的に示す説明図である。図2(a)は光ファイバセンサを芯にして組紐を形成した例であり、図2(b)は光ファイバセンサに糸をコイル状に密巻きした例である。 カバード光ファイバセンサに検出部の位置を表示する検出部表示を付した例を示す説明図である。 本発明を適用する筒状の光ファイバセンサ導入編地の内壁側の要部拡大図、及びさらにその一部拡大図を模式的に示す説明図である。 本発明を適用する別の筒状の光ファイバセンサ導入編地の内壁側の要部拡大図である。 編地の地糸及び添糸を示す説明図である。 図7(a)は筒状の光ファイバセンサ導入編地の模式的な平面図であり、図7(b)は筒状の光ファイバセンサ導入編地を装着する被検体の手首の模式的な断面図である。 本発明を適用する筒状の光ファイバセンサ導入編地を被検体の手首に装着した状態を示す説明図である。 組紐機で光ファイバセンサを芯にして組紐を組む様子を示す模式図である。 スレッド糸をセットする糸掛けのない編機でスレッド編みを行ってカバード光ファイバセンサを編地に導入する方法を示す説明図である。 実施例で使用した組紐機を示す説明図である。 糸でカバリングしないFBGセンサ単体、試作したシングルカバードFBGセンサ、試作したダブルカバードFBGセンサを示す写真である。 測定ブロック図である。 図12に示したFBGセンサ単体、シングルカバードFBGセンサ、ダブルカバードFBGセンサによって検出した脈波を示すグラフである。 図12に示したFBGセンサ単体、シングルカバードFBGセンサ、ダブルカバードFBGセンサによって検出した脈波を用いて算出した血圧を示すグラフである。 リストバンド(筒状の編地)の周寸法と被服圧との関係を示すグラフである。リストバンドの周寸法(1周の長さ)をウェールで表している。 リストバンドでカバードFBGセンサを押さえるようにして検出した脈波を示すグラフである。 実施例で使用した編機を示す説明図である。 図19(a)は、90ウェールのリストバンド型のカバードFBGセンサ導入編地によって検出した脈波を示すグラフであり、図19(b)は、これと同時に検出した医療用テープ固定によって検出した脈波を示すグラフである。 図20(a)は、100ウェールのリストバンド型のカバードFBGセンサ導入編地によって検出した脈波を示すグラフであり、図20(b)は、これと同時に検出した医療用テープ固定によって検出した脈波を示すグラフである。 リブ編みで編成したリストバンド型の光ファイバセンサ導入編地を示す写真である。図21(a)はキャデット糸、図21(b)は絹糸、図21(c)は綿糸を地糸に用いたものである。 リブ編みで編成したリストバンド型の光ファイバセンサ導入編地によって測定した被服圧の測定結果を示す表及びグラフである。 脈波の測定装置の光路図である。 被験者の左手首にカバードFBGセンサ導入リストバンドを着用した状態を示す写真である。 被験者の右手首にカバードFBGセンサを医療用テープで固定した状態を示す写真である。 上は、28ウェールのリストバンド型のカバードFBGセンサ導入編地によって検出した脈波を示すグラフであり、下は、これと同時に検出した医療用テープ固定によって検出した脈波を示すグラフである。
 以下、発明を実施するための形態を詳細に説明するが、本発明の範囲はこれらの形態に限定されるものではない。
 図1に、本発明を適用する筒状の光ファイバセンサ導入編地1を示す。光ファイバセンサ導入編地1は、被検体に装着して、被検体の生体信号を測定するためのものである。被検体とは、測定対象となる生き物のことであり、人(被験者ともいう)及び動物を意味する。ここでは、被検体が人である例を示す。
 光ファイバセンサ導入編地1は、カバード光ファイバセンサ5と、そのカバード光ファイバセンサ5を一部の編目に引っ掛けて(通して)保持する編地2と、編地2を装着する被検体に対してカバード光ファイバセンサ5を押し当てるための押当機構とを、備えるものである。
 図2に、カバード光ファイバセンサ5の例を示す。カバード光ファイバセンサ5は、光ファイバセンサ3の表面を露出させないように、光ファイバセンサ3が糸で覆われているものである。光ファイバセンサ3は、周囲に糸が巻き付けられている。図2(a)は、光ファイバセンサ3を芯(中心軸)にして複数の糸4で組まれた組紐が形成されていることで、光ファイバセンサ3に糸4が巻き付けられている例を示している。図2(b)は、光ファイバセンサ3を芯(中心軸)にして複数の糸4が密巻きされていることで、光ファイバセンサ3に糸4が巻き付けられている例を示している。
 光ファイバセンサ3の表面が露出していると、光ファイバセンサ3が折れたときに、折れた端部が露出部から飛び出す可能性が有り、被検体を傷つける可能性がある。そのため、光ファイバセンサ3の表面を糸4で覆うことが安全性の観点から重要である。糸4の覆い方(巻き付け方)は任意であるが、光ファイバセンサ3が折れたときに、折れた端部が糸4で覆われて外部に飛び出さないような覆い方(巻き付け方)であることが重要である。
 図2(a)に示す組紐を組む巻き付け方は、糸4同士が交互に組まれているため、糸4同士の間に隙間が生じにくく解けにくい。したがって、光ファイバセンサ3の折れた端部が糸4同士の間から飛び出しにくいため好ましい。組紐を組む糸4の数は、同図では8本組の例を示しているが、4本、8本、16本のように適宜設定すればよい。同図では、丸打紐の組み方(丸八打ち)で組紐を組んだ例を示しているが、組紐の組み方には公知の種々の組み方があるので適宜設定すればよい。
 図2(b)では、複数(4本)の糸4を並ぶように揃えてコイル状に密巻きにした例を示しているが、1本の糸4をコイル状に密巻きにしてもよい。
 光ファイバセンサ3は、光ファイバの一部に光ファイバ又は光学部品で形成された検出部(センサ部)を有するものである。光ファイバセンサ3は、一例として、FBG(Fiber Bragg Grating:ファイバ・ブラッグ・グレーティング)センサである。FBGセンサは、光ファイバの途中に回折格子(FBG)が形成されているものである。回折格子の形成されている部分が検出部になっている。回折格子に温度や外力が加わると光ファイバは膨張や伸張し、それに伴い回折格子の間隔が変わり、回折格子で反射する光波長が変化する。この原理を利用して、FBGセンサは、温度や外力の変化を、光波長の変化として検出する。
 光ファイバセンサ3の検出部に、脈拍による血管の動きや筋肉の動きなどの外力、体温などの温度といった生体信号が伝わりやすくするために、糸4は、光ファイバセンサ3に密着して巻き付けられていることが好ましい。又、糸4は、細い径のものであることが好ましい。又、糸4は外力で径がつぶれ難いものであることが好ましい。
 糸4として、フィラメント糸(長繊維糸ともいう)及びスパン糸(短繊維糸、紡績糸ともいう)が挙げられる。
 フィラメント糸とは、長く連続した繊維を糸にしたものである。フィラメント糸の例として、天然繊維では、絹糸が挙げられ、合成繊維糸では、ポリエステル糸、ポリプロピレン糸、アクリル糸、ナイロン糸などの各種の糸が挙げられる。フィラメント糸は、細くて強く、表面が滑らかで光沢があるという特徴がある。フィラメント糸は、細くて強いため、光ファイバセンサ3に巻き付ける糸4として特に適している。
 フィラメント糸で形成された糸には、1本のフィラメント糸だけで糸になっているものと、複数本(例えば2本)のフィラメント糸を引き揃えたり撚ったりして糸にしたものが有る。糸4として、1本のフィラメント糸だけで糸になっているものの方が、細くて外力で変形し難いため、糸4として好ましく用いることができる。したがって、図2(a)に示したように糸4を組んで組紐を形成する場合、組紐を組む各々の糸4として、1本のフィラメント糸を用いることが好ましい。
 スパン糸とは、多数の短い繊維を撚って繋ぎ(紡績して)長い糸にしたものである。スパン糸の例として、天然繊維では、綿糸、麻糸、毛糸が挙げられ、合成繊維糸では、ポリエステル糸、ポリプロピレン糸、アクリル糸、ナイロン糸などの各種の糸が挙げられる。スパン糸は、生地になじみやすい。必要性に応じて、スパン糸を糸4として用いてもよい。
 光ファイバセンサ3に糸4を巻き付けると、光ファイバセンサ3の検出部の位置が分かりにくくなってしまう。そのため、検出部の位置を示す検出部表示を付けることが好ましい。1本の光ファイバセンサ3に検出部が複数形成されているものもある。この場合も、複数の検出部の各々に検出部表示を付けることが好ましい。
 図3に、カバード光ファイバセンサ5(光ファイバセンサ3)の検出部6の位置を表示する検出部表示11をカバード光ファイバセンサ5に付けた例を示す。図3(a)は、検出部表示11として、検出部6の位置に色を付けた例を示している。図3(b)は、検出部表示11として、検出部6を挟む両側の位置に色を付けた例を示している。検出部表示11は、検出部6の位置を直接的に示すものでなくてもよい。例えば、検出部6から所定距離(例えば100mm)離れている位置に検出部表示11を付けるというように、検出部6の位置を間接的に示すものであってもよい。検出部表示11の色は、例えば、赤色、青色、黄色、黒色であり、糸4の色とは異なる任意の色とすればよい。
 図1に示すように、編地2は、一例として筒状に形成されている。この筒状の編地2は、一例として被検体91の手首(図8参照)に通してはめる(装着する)ためのリストバンドである。筒状の編地2は、例えば、足首、肘、上腕部、胸、首などの被験者の手首以外の任意の部位に装着するためのものであってもよい。例えば上着の袖の先端部が筒状の編地2を構成するように、編地全体(衣服)のうちの少なくとも一部が筒状の編地2を構成していてもよい。
 図1中の左下側に、編地2の一部を拡大して示している。編地2は、一例として平編みで編まれたものである。編み方(編組織)は、平編みに限定されず、公知の任意の編み方で編むことができる。例えば、後述するが、図5の編地2aに示すように、リブ編みで編まれたものであることが好ましい。
 編地2は、綿糸、麻糸などの植物繊維糸、毛糸、絹糸などの動物繊維糸、レーヨン、キュプラなどの再生繊維糸、アセテートなどの半合成繊維糸、ポリエステル糸、ポリプロピレン糸、アクリル糸、ナイロン糸などの合成繊維糸など、公知の糸を地糸に用いて編まれたものである。
 カバード光ファイバセンサ5は、筒状の編地2に取り付けられている。カバード光ファイバセンサ5(光ファイバセンサ3)の端部には、一例として、生体信号を測定する測定機器101が接続されている。測定機器101は、図1に示すように筒状の編地2に取り付けられていてもよいし、編地2から離れた場所に配置されていてもよい。測定機器101が編地2から離れた場所に配置されている場合、編地2に配置されているカバード光ファイバセンサ5が少なくとも糸4で覆われていればよい。外部に配置された測定機器101と繋ぐ部分の光ファイバ(光ファイバセンサ3)には糸4(図2参照)が巻き付けられていてもよいし、巻き付けられていなくてもよい。測定機器101に換えて、カバード光ファイバセンサ5の端部に、光ファイバ接続用のコネクタが配置されていてもよい。
 図4に、筒状の編地2の内壁側の要部拡大図、及びさらにその一部拡大図を模式的に示す。同図に示すように、筒状の編地2の内壁側にカバード光ファイバセンサ5の検出部6が表出するように取り付けられている。カバード光ファイバセンサ5は、編地2を構成する編目21のうちの一部の編目23に引っ掛けられて(通されて)、編地2に保持されている。編目21と編目23は同様のものであるが、ここでは、カバード光ファイバセンサ5に引っ掛けられているものを編目23としている。以下、編目23を連結編目23ということもある。同図に示されるように、編目23は、1つの編目21の中を通るループであり、1つの編目21に対しカバード光ファイバセンサ5に2か所が引っ掛けられている。カバード光ファイバセンサ5よりも図の手前側にあるのは編目23だけである。そのため、編目23以外の部位のカバード光ファイバセンサ5は、筒状の編地2の内壁側に現れている。編目23の部位のカバード光ファイバセンサ5は、筒状の編地2の外壁側に現れる。
 カバード光ファイバセンサ5が引っ掛けられている(通されている)編目23同士の間隔は任意であり、一定間隔であってもよいし、不定間隔であってもよい。同図の例では、横方向の3個の編目21の内1つの割合(編目21の2つおき)になるように編目23を形成している。カバード光ファイバセンサ5の検出部6には編地2の編目23が引っ掛けられておらず、カバード光ファイバセンサ5の検出部6以外の部位に編地2の編目23が引っ掛けられていることが好ましい。同図では、検出部6の位置に検出部表示11が付された例を示している。同図に示すように、検出部6(検出部表示11)の位置には編目23が形成されておらず、検出部6(検出部表示11)を間に挟むように編目23が形成されている。
 編地2に、検出部6が配置されるべき位置を示す検出部表示(不図示)を付してもよい。例えば、検出部6が配置されるべき位置の編地2の色を、編地2の他の部位の色と異なる任意の色にしてもよい。又は、検出部6が配置されるべき位置を示すように、編地2に、矢印、記号、文字、絵などを表示してもよい。
 図5に示すように、光ファイバセンサ導入編地1は、編地2aで構成されていてもよい。同図は、筒状の編地2aの内壁側の要部拡大図を模式的に示している。編地2aは、リブ編みで編まれたものである。リブ編みはゴム編みとも呼ばれている。リブ編みの編地2aは、横方向(図の横方向)の伸縮性が大きいという特徴がある。同図は、リブ編みの種類の中の2目リブ編み(2目ゴム編み)で編まれた例を示している。2目リブ編みとは、表目と裏目を2目ずつ縦に交互に編んだ編み地である。リブ編みは、1目リブ編み、3目リブ編みなど、任意の網目数で編めばよい。編地2aの伸縮性は、1目リブ編み<2目リブ編み<3目リブ編みである。リブ編みは、1目リブ編み又は2目リブ編みで編むことが一般的である。そのため、伸縮性に優れた2目リブ編みで編地2aを形成することが好ましい。
 同図に示すように、筒状の編地2aの内壁側にカバード光ファイバセンサ5の検出部6が表出するように取り付けられている。カバード光ファイバセンサ5は、編地2aを構成する編目21aのうちの一部の編目23aに引っ掛けられて(通されて)、編地2aに保持されている。この例では、編目23aは、縦に編む網目の内の一部の網目である。
 図4、図5に示した編地2,2aは、編地2,2aを構成する地糸の添糸としてストレッチ糸が設けられているものであることが好ましい。
 ストレッチ糸とは、伸縮性を有する糸である。ストレッチ糸の一例として、カバードヤーンがある。カバードヤーンとは、芯糸になるポリウレタン弾性糸に、紡績糸又はフィラメント糸を巻き付けた糸である。カバードヤーンとして、例えば、GSIマルロンテックス株式会社製のマルロン(登録商標)を好ましく使用することができる。
 図6に示すように、編地2,2aは、地糸31に対し、添糸として少なくとも2本のストレッチ糸33,33が設けられていることが好ましい。地糸31及びストレッチ糸33,33を1本の糸として用いて編んで、編地2,2aを編成する。ストレッチ糸33,33を地糸の添糸として編み込むことで編地2,2aの製造を簡便に行うことができる。同図に示すように地糸31とストレッチ糸33,33とを引き揃えて使用してもよいし、地糸31とストレッチ糸33,33とを撚って使用してもよい。
 地糸31は、2本取り、3本取りのように複数本を1本として使用してもよい。例えば、地糸31を2本取りする場合、2本の地糸31,31及び2本のストレッチ糸33,33を1本の糸として編むことで、編地2,2aを編成すればよい。
 添糸として使用するストレッチ糸33の本数は任意であり、1本、2本、3本、又は4本のように適宜使用すればよい。添糸として1本のストレッチ糸33を使用するよりも、少なくとも2本のストレッチ糸33を使用したほうが、編地2aの伸縮力が大きくなるため好ましい。
 図7(a)に、筒状の編地2(2a)の模式的な平面図を示し、図7(b)に筒状の編地2(2a)に通される被検体91の手首の模式的な断面図を示す。なお、手首の断面は、模式的に円形で示している。以下、編地2について説明するが、編地2aも同様である。
 筒状の編地2は、被検体91に対してカバード光ファイバセンサ5を押し当てるための押当機構を有している。編地2は一般的に伸縮性を有しているため、この伸縮性を押当機構として利用したものが、図7に示す筒状の編地2である。具体的には、押当機構として、編地2の筒状の穴の大きさ(筒径、筒寸法)が、その筒状内に入る被検体91よりも小さく形成されていて、編地2の伸縮性によってカバード光ファイバセンサ5が被検体91に押し当てられるような大きさで形成されている。
 図7(a)に示すように、編地2は、伸縮していない状態(通常状態)の筒の周(内周)の長さ(筒寸法)がNである大きさの筒状に形成されている。編地2は、その筒状の穴を押し広げたときに周(内周)の長さがNまで伸びる伸縮性を有するものである。
 図7(b)に示すように、被検体91は、その手首の外周の長さ(手首周りの長さ)がDの大きさのものである。
 ここで、     N<D<N
の関係になるように、筒状の編地2が形成されている。
 カバード光ファイバセンサ5は、筒状の編地2の周回方向に沿うように、編地2に導入されている。カバード光ファイバセンサ5を導入した部位の編地2は伸縮性が小さくなることから、カバード光ファイバセンサ5は、最大でも筒状の半周分の編地2に導入することが好ましい。このように、カバード光ファイバセンサ5を導入する部位を最大でも筒状の半周分とすることで、残りの部位によって編地2の伸縮性を担保することができる。編地2の伸縮性を考慮すると、カバード光ファイバセンサ5を編地2に導入する範囲は小さい方が好ましい。言い換えると、編地2に導入するカバード光ファイバセンサ5の長さは短い方が好ましい。例えば、編地2に導入する範囲を最大でも筒状の半周分(1/2周分)とするよりも、最大でも筒状の1/3周分とする方が好ましく、最大でも1/4周分とする方がより好ましく、最大でも1/5周分とする方が更に好ましい。
 図8に、光ファイバセンサ導入編地1を被検体91の手首に装着した状態を図示する。筒状の編地2(2a)の穴の大きさが被検体91の手首の大きさよりも小さいため、筒状の編地2が押し広げられて手首にはめられる。このため、カバード光ファイバセンサ5が手首に押し付けられるため、光ファイバセンサ3は生体信号を正確に検出することができる。リブ編みの編地2aは伸縮性に優れるため、光ファイバセンサ導入編地1に好ましく用いることができる。
 筒状の編地2を装着したときに、筒による被検体91の締め付けが弱すぎると、カバード光ファイバセンサ5が被検体91に弱く押し当てられるため、信号検出レベルが小さくなったり、ノイズ成分が大きくなったりして、測定上好ましくない。そこで、筒状の穴の大きさが、カバード光ファイバセンサ5を少なくとも0.4kPaの圧力で被検体91に押し当てる大きさで形成されていることが好ましい。このような圧力とすることで、生体信号を正確に精度よく検出することができる。
 筒状の編地2を装着したときに、筒による被検体91の締め付けが強すぎると好ましくない。そこで、筒状の穴の大きさが、カバード光ファイバセンサ5を最大でも1.0kPa(より好ましくは最大でも0.8kPa)の圧力で被検体91に押し当てる大きさで形成されていることが好ましい。
 そのため、筒状の編地2の穴径は、カバード光ファイバセンサ5を0.4kPa~1.0kPa(より好ましくは0.4kPa~0.8kPa)の圧力で被検体91に押し当てる大きさに形成することが好ましい。この圧力は一例であり、筒状の編地2の装着部位(被検体91の測定部位)によって適宜変更してもよいし、被検体91が動物である場合その種類によって適宜変更してもよい。
 カバード光ファイバセンサ5には、検出部6の位置を示す検出部表示11(図3、図4、図5参照)が付されているため、被検体91の測定対象部位(例えば手首裏側の動脈点)に検出部6を正確に位置合わせすることができ、生体信号を正確に検出することができる。編地2に検出部6の位置を示す検出部表示(不図示)が付されている場合も同様に、被検体91の測定対象部位に検出部6を正確に位置合わせすることができ、生体信号を正確に検出することができる。筒状の編地2の外周部に検出部表示(不図示)を付した場合、筒状の編地2を装着した状態で、検出部6の位置を外部から視認することができる。
 光ファイバセンサ3の検出した生体信号は測定機器101によって生体信号データとして測定され、保存される。生体信号データは、測定機器101から外部に無線又は有線で出力されるようにしてもよい。例えば、測定機器101は、脈波、脈拍、血圧などの生体信号を測定する。
 仮に光ファイバセンサ3が折れたとしても、周囲を糸4が覆っているため、折れた端部が被検体91に触れず、安全である。
 なお、押当機構として、筒状の編地の伸縮性を利用した例を示したが、輪ゴムなどの弾性を有する環状帯(バンド)を編地2とは別に備えてもよい。弾性を有する環状帯を押当機構とする場合、被検体91に装着した編地2を環状帯で締め付けることで被検体91に検出部6を押し当てればよい。このように編地2とは別体の押当機構を備える場合、編地2は筒状ではなく、平坦なものであってもよい。例えば、押し当て機構として、板ばね、コイルばねなどのばねを用いてもよい。
 次に、光ファイバセンサ導入編地1の製造方法について説明する。
 光ファイバセンサ導入編地1の製造方法は、光ファイバセンサの表面を露出させないように糸4で覆って(糸4を巻き付けて)カバード光ファイバセンサを製造する第1の工程と、編機により編地2(2a)を製造するときに、カバード光ファイバセンサ5(光ファイバセンサ3)の検出部6には編地2(2a)の編目23が引っ掛からず、カバード光ファイバセンサ5の検出部6以外の部位に編地2(2a)の編目23が引っ掛かるように、スレッド編み(インレイ編み)により編地2(2a)に導入する第2の工程とを、含むものである。以下、具体的に説明する。
(第1の工程)
 光ファイバセンサ3を露出させないように糸4で覆う(以下、カバリングするともいう)第1の工程は、手巻きで行っても、機械巻きで行ってもよいが、公知の機械を使用して巻き付けることが好ましい。例えば、第1の工程として、図2(a)に示したように糸4で組紐を組む場合、公知の組紐機を使用することが好ましい。
 図9に、第1の工程の例として、公知の組紐機により、光ファイバセンサ3を芯にして複数の糸4,4・・・で組紐を組む様子を模式的に示す。
 図9は、組紐機を上部側から観察した要部を模式的に示している。8個のボビンキャリア41に、各々糸4の巻かれたボビンがセットされている。断面で示す光ファイバセンサ3は、8個のボビンキャリアの中心にセットされている。光ファイバセンサ3及び各糸4,4・・・は、上部側(図の観察面側)に向かって走行する(引かれる)。
 同図に一点鎖線で経路を示すように、時計方向に回る4つのボビンキャリア41と、反時計回りに回る4つのボビンキャリア41とが交差しながら移動することで、光ファイバセンサ3を芯にして、糸4,4・・・で組紐が形成される。光ファイバセンサ3に糸4が密着して組紐を形成できるように、糸4の太さや走行スピードを適宜設定する。
 又、例えば、第1の工程として、図2(b)に示したように糸4をコイル状に密巻きする場合、公知の巻き線機を使用してもよい。
 製造したカバード光ファイバセンサ5に、検出部表示11を付す。検出部表示11は、光ファイバセンサ3の検出部6に対応する位置に、インク、塗料などで色付けして形成する。検出部6の位置は、例えば光ファイバセンサ3の端部から検出部6までの長さを予め記録しておくことで、特定可能である。
(第2の工程)
 第2の工程では、編機で編地2(2a)(図4、図5参照)を形成している最中に、カバード光ファイバセンサ5を任意の位置に編み込んで導入する。しかしながら、光ファイバセンサ3は剛直であるので、光ファイバセンサ3を編地2の編み糸と同じように編み込むことは難しい。光ファイバセンサ3をスレッド編みにより編地2に導入しようとしても、光ファイバセンサ3は剛直かつ表面が滑るため、編地2に編み込むことは難しい。そこで、本発明者らの開発した導入方法により、編地2に導入する。その方法とは、光ファイバセンサ3に糸4を巻き付けることで、編地2にスレッド編みが可能になるというものである。第1の工程で光ファイバセンサ3に糸4を巻き付けたのは、光ファイバセンサ3が折れたときの安全性確保という理由があると共に、編機で導入できるようにするためという理由もある。
 第2の工程で、カバード光ファイバセンサ5を導入した平坦な編地2を製造してもよいし、筒状の編地2のように立体的な編地を製造してもよい。
 第2の工程では、スレッド編みを行うことが可能な公知の編機(例えば平型横編機のような平編機や2枚針床の編機)を使用する。例えば平編機で編地2を製造しているときに、光ファイバセンサ3を導入したい場所に対応させて、カバード光ファイバセンサ5をスレッド編み用の糸としてセットして、スレッド編みを行う。スレッド編みのパターンは、任意のパターンに適宜設定することができる。ただし、カバード光ファイバセンサ5の検出部6には編地2の連結編目23(図4参照)が引っ掛からず、光ファイバセンサ3の検出部6以外の部位に編地2の連結編目23が引っ掛かるパターンとすることが好ましい。検出部6の位置は、検出部表示11(図3参照)により、視認することができる。カバード光ファイバセンサ5には、1か所につき1つの連結編目23を引っ掛けてもよいし、1か所につき2~5個のような複数の連結編目23を引っ掛けてもよい。
 筒状の編地2は、例えば公知の2枚針床の編機を使用して、袋編みの編み方で製造することができる。2枚針床の編機として、例えば平型横編機にリブニッターを取り付けた編機(図18参照)を使用してもよい。筒状の編地2を製造することができるものであれば、2枚針床の編機に限られず、他の編機を使用してもよい。
 スレッド糸をセットする糸掛けのない編機(スレッド編み機能付きとは機能表示されていない編み機)であっても、スレッド編みを行うことが可能である。
 図10に示すように、編機には編み針201が並んでいる。スレッド糸をセットする糸掛けのない編機の場合、スレッド糸(カバード光ファイバセンサ5)を編地(図4の連結編目23)に引っ掛けたい部位で編み針201の上(一方の側)を通し、それ以外は編み針201の下(他方の側)を通すようにセットする。この部位にキャリッジを通すことでスレッド編みができ、カバード光ファイバセンサ5を編地2に導入できる。
 同図に示すように、カバード光ファイバセンサ5の検出部6(検出部表示11)の部位には編み針201を掛けず、検出部6の両脇に編み針201を掛ける。編み針201を掛けないことで、検出部6に連結編目23(図4参照)が形成されない。
 第2の工程で、例えば2枚針床の編機を使用して袋編みするときに、カバード光ファイバセンサ5を、編地2の任意の位置にスレッド編みして導入することで、筒状の光ファイバセンサ導入編地1を製造することができる。2枚針床の編機で袋編みすることで、カバード光ファイバセンサ5は筒状の編地2の周回方向に沿うように導入される。カバード光ファイバセンサ5を導入する長さは任意である。2枚針床の編機のうちの一方の針床(1枚針床)の編機でスレッド編みを行うと、筒状の周回方向に沿うように、最大でも筒状の半周分の編地2にカバード光ファイバセンサ5を導入できる。
 編機は平編機、2枚針床(2列針床)の編機に限定されず、スレッド編みが可能な編機であれば使用することができ、例えば、ジャカード平編機、ジャカードリブ編機を使用してもよいし、4枚針床(4列針床)の編機を使用してもよい。
 スレッド編みは、インレイ編み又は挿入編みとも呼ばれている。工業用のインレイ編機と呼ばれる自動編機を使用して、カバード光ファイバセンサ5を編地2(2a)にインレイ編みにより導入することが好ましい。インレイ編機を使用することで、自動的かつ高速に、カバード光ファイバセンサ5を導入した編地2(2a)を製造することができる。
 測定機器101は、カバード光ファイバセンサ5を編地2に導入する前に光ファイバセンサ3に接続してもよいし、導入した後に接続してもよい。
 光ファイバセンサ導入編地1を人に装着して生体信号を測定してもよいし、ペットや家畜などの動物に装着して生体信号を測定してもよい。例えば、脈波を測定することで、脈波を解析して、血圧、呼吸数、ストレスなど様々な生体情報を得ることが出来る。例えば、発明者らが開発した特開2015-231512号公報に示した「血圧測定装置」を利用することで、脈波の波形データを解析して血圧を測定することができる。また、例えば、発明者らが開発したWO2016/147795号公報に示した「非侵襲血糖値測定および非侵襲血糖値測定装置」を利用することで、脈波の波形データを解析して血糖値を測定することができる。
(カバード光ファイバセンサによる生体信号の測定)
 先ず、カバード光ファイバセンサによって、被検体の生体信号が測定可能であることを確認した。
 光ファイバセンサとしてFBGセンサを用いた。FBGセンサは、型名SM-CW-90-2-15-10-U-A-3.5-2R,伸興電線株式会社製であり、検出部長(センサ長)10mm、波長分解能0.1pm、波長範囲1550±0.5nm、材料:石英ガラス、ファイバ径145μm、コア径10.5μm、コーティング径245μmのものを用いた。
 組紐機の一例として図11に示す16丸打組紐機(名称:中型キャリアブレーダー、型式:101-C、株式会社コクブンリミテッド製)を使用して、カバード光ファイバセンサ5を試作した。組紐機の16個の内の8個のボビンキャリアに糸が巻かれたボビンをセットした。中心にFBGセンサをセットして芯にした。組紐機を作動させて、FBGセンサの外周に密着させて図2(a)に示すような丸八打ち(8本組)の組紐を形成した。組紐のピッチは、2.5mmとした。
 糸には、フィラメント糸である絹糸を使用した。試作例1として、シングル(1本)の絹糸を用いてFBGセンサの周囲に組紐を製作した。絹糸の太さは14tex(精錬済みの実測番手)である。以下では、これをシングルカバードFBGセンサという。試作例2として、ダブル(2本)の絹糸(2本を束ねた絹糸)を用いてFBGセンサの周囲に組紐を製作した。絹糸の太さは、14tex×2である。以下では、これをダブルカバードFBGセンサという。
 図12に、糸でカバリングしないFBGセンサ単体、試作例1のシングルカバードFBGセンサ、試作例2のダブルカバードFBGセンサの写真を示す。
 これらFBGセンサ単体、シングルカバードFBGセンサ、ダブルカバードFBGセンサの検出部を、被験者の手首の動脈点(橈骨動脈の脈動点)に医療用粘着テープで貼り付けて脈波を測定した。被験者は20代男性である。光検出器には、型名:PF25-S01、長野計器株式会社製のヘテロダインFBGセンサモニタを使用した。バンドパスフィルタは、通過帯域0.5Hz<f<5Hzを使用した。図13に、測定ブロック図を示す。
 図14に、脈波の測定結果を示す。測定レベルは、大きい方から順に、FBGセンサ単体、シングルカバードFBGセンサ、ダブルカバードFBGセンサとなった。シングルカバードFBGセンサ及びダブルカバードFBGセンサいずれの場合も、脈波からピークを検出することで脈拍の測定が可能である。
 さらに、検出した脈波の波形形状に基づいて血圧を算出した。血圧は、脈波の波形データと血圧の実測値との相関関係に基づいて構築された検量式に基づいて、脈波の取得データから血圧値を推定する方法で算出した。具体的には、出願人が既に出願した特開2015-231512に開示した方法で血圧値を算定した。
 脈波の測定を100回行い、その波形から血圧を算出した。血圧の算出結果を図15に示す。同図には、複数の算出結果をプロットしている。グラフの横軸の参照収縮期血圧は血圧計(型名PVM-2701、日本光電工業株式会社製)を用いて測定した血圧の実測値である。グラフの縦軸の算出収縮期血圧が算出値である。血圧の実測値と算出値とが一致するとグラフ中に示した45°のライン上に算出値が乗る。つまり、算出結果が45°のライン上に近く集まるほど良い算出結果であると評価できる。表1に、算出結果の相関係数、平均誤差を示す。
Figure JPOXMLDOC01-appb-T000001
 図15に示されるように、シングルカバードFBGセンサは血圧算出結果が45°のライン上に近く集まり、FBGセンサ単体とほぼ同様の良好な結果を得ることができた。一方、ダブルカバードFBGセンサによる血圧算出結果は45°のライン上から多少ばらついた。この結果は、表1の相関係数、平均誤差からも明らかである。この結果から、脈波から血圧を算出する場合には、シングルカバードFBGセンサの方が、ダブルカバードFBGセンサよりも優れているといえる。
(リストバンドの周寸法と被服圧)
 リストバンドの周寸法と、リストバンドを手首に装着したときの検出部を手首に押し当てる圧力(被服圧)との関係を測定した。被服圧の測定には、接触圧測定器(AMI 3037-10-II, エイエムアイ・テクノ製)を用いた。センサ部である受圧センサエアパックの直径は20mmのものを使用した。リストバンドの周寸法(リストバンドの周の長さ)が80ウェール(82mm)、90ウェール(91mm)、100ウェール(102mm)、110ウェール(112mm)の4つの筒状編地を試作した。被験者は、手首周りが160mmの20代男性1名とした。したがって、リストバンドの周寸法は、手首周り寸法に対して、51%、57%、64%、70%であった。なお、編地は柔らかく薄いのでリストバンドの周寸法はほぼ内周の長さになる。
 図16に、測定結果を示す。編地のウェール数が増えると周寸法が大きくなるため被服圧は低下した。周寸法100ウェールで0.4kPa程度の被服圧となり、90ウェールで0.75kPa程度、80ウェールで1.0kPa程度となった。
(リストバンドとカバード光ファイバセンサによる生体信号の測定)
 上記で試作した4つのリストバンドを使用して、リストバンドでカバードFBGセンサを押さえるようにして脈波検出を試みた。カバードFBGセンサとして、試作例2のダブルカバードFBGセンサを使用した。
 図17に測定結果を示す。同図に示す通り、脈動に対応する周期的な波形が得られた。リストバンド寸法が大きい場合、即ちゆるい装着状態(110ウェール)では検出された信号のレベルが小さい。今回の被験者においてはリストバンド寸法が80から100ウェール程度が脈波検出に有利と考えられるが、80ウェールの場合は装着時に圧迫感があるということであったので、90ウェールと100ウェールの二つの寸法で実際にFBGセンサを導入したリストバンドを製作することにした。
 強い圧迫感を感じさせずに脈波を検出できる被服圧(カバードFBGセンサを押し当てる圧力)は、0.4~0.8kPa程度と考えられる。
(カバードFBGセンサの筒状編地への導入1)
 試作したカバードFBGセンサを筒状の編地2(図4参照)に導入し、筒状の光ファイバセンサ導入編地1を製造した(第2の工程)。図18に示すように平型横編機(手動式パンチカード編機、型名SK-280、柏崎ユーエステック株式会社製)にリブニッター(スタンダードリブニッター、型名SRP 60N,柏崎ユーエステック株式会社製)を取り付けることで2枚針床の編機とし、袋編みが出来るようにした。
 平型横編機とリブニッターにはそれぞれ編目ダイヤルが設置されている。この編目ダイヤルは編目の大きさを変化させるもので、使用する糸番手に対応して変更する。編地用糸には、リストバンドとして好ましい伸縮性のあるポリウレタン/ナイロンダブルカバードヤーン(840d/110d)を用いた。編目ダイヤルはパンチカード編機で3.2、リブニッターで5.2とした。編地の編目密度は25 wales/inchおよび13 courses/inchである。
 袋編みの編成は同図に示すキャリッジを往復させることで作製する。編み方はよこ編みの平編みである。カバードFBGセンサを導入する部位以外は、通常の袋編みで筒状の編地を編成した。
 図18に示した編機は、リブニッターを取り付けて袋編みができるようにした場合、平型横編機(パンチカード編機)のみのときにはあるスレッド編みのためのアーム糸かけとブラシを付けられない。
 そのため、図10に示したように、スレッド糸として導入するカバードFBGセンサを平型横編機の編み針に通しておいてから編む方法でスレッド編みによる導入を試みた。先ずカバードFBGセンサを導入するコースまで通常の袋編みを編成した。次に、編み針を手前に引き出した。続いて、同図に示すように、FBGセンサを、連結編目に掛けたい箇所(リストバンドの外周面側(編地の表面)に露出させる箇所)では編み針の上側、被験者側になる編地裏面(リストバンドの内周面側)に露出させたいところでは編み針の下側になるように編み針にかけた。次に、この編み針の上にキャリッジを通して1コース編成すると編地にカバードFBGセンサが指定のパターン通りに編地に導入された。
 スレッド編みのパターンは、カバードFBGセンサの検出部10mmの部位に連結編目を形成しないために、多少余裕をとって検出部を中心とする長さ26mm(16編目分)に連結編目を形成しないパターンとした。検出部以外の部位に連結編目を形成した。連結編目は、横方向の3個の編目の内1つの割合で形成するパターンとした。
 筒状の編地2に導入した部分のカバードFBGセンサの長さは半周分より若干短い長さとした。
 カバードFBGセンサを導入した後は、通常の袋編みで筒状の編地を編成した。リストバンドの周寸法が90ウェール、100ウェールの2種類の筒状のカバードFBGセンサ導入編地を製作した。
(リストバンド型のカバードFBGセンサ導入編地による脈波の測定)
 製作したリストバンド型(筒状)のカバードFBGセンサ導入編地を左手首に装着した。リストバンド装着の際にはFBGセンサの検出部が手首の脈動点に接するように調節した。右手首の脈動点には、カバードFBGセンサを医療用テープで固定して比較対象とした。図13に示した測定ブロック図で測定した。反射波長の検出にはヘテロダインFBGセンサモニタ(PF25-S01, 長野計器)を用いた。サンプリング周波数は10kHzとし、20秒間連続して測定を行った。測定データにはノイズが含まれているためこれを除去する目的で通過帯域が0.5<f<5Hzのバンドパスフィルタを用いて脈波に関連した成分の抽出を行った。測定は2回行った。
 図19に、リストバンド周囲が90ウェールのカバードFBGセンサ導入編地による脈波の測定結果を示す。図19(a)は、リストバンド型のカバードFBGセンサ導入編地による測定結果であり、図19(b)は、これと同時に測定した医療用テープ固定での信号検出結果である。図19(a)に示すように、リストバンド型のカバードFBGセンサ導入編地は、明瞭な周期的なピークが検出された。またこれと同時に測定した医療用テープで固定したカバードFBGセンサからの信号(図19(b))と比較してみるとそのピークが同期していることがわかる。リストバンド型の信号レベル(図19(a))は医療用テープ(図19(b))よりも大きかったが、これは医療用テープが単に固定するだけであるのに対してリストバンドは被服圧をかけてセンサを人体に接触させているからであると考えられる。
 図20に、リストバンド周囲が100ウェールのカバードFBGセンサ導入編地での信号検出結果を示す。図20(a)は、リストバンド型のカバードFBGセンサ導入編地による測定結果であり、図20(b)は、これと同時に測定した医療用テープ固定での信号検出結果である。図20(a)に示すように、周期的なピークが検出できた。またこれと同時に測定した医療用テープで固定したカバードFBGセンサからの信号(図20(b))と比較してみるとそのピークが同期していることがわかる。図20(a)と図19(a)を比較すると、100ウェールは90ウェールの場合と較べてピークの形が捉えにくくなっている。これは衣服圧が下がったためにセンサと人体の密着が悪くなり、脈動によるFBGセンサのひずみが小さくなったためと考えられる。
 そのため、圧迫感や測定の正確性から、0.5~0.8kPaの圧力でカバードFBGセンサの検出部を被検体に押し当てることが好ましいと考えられる。
(カバードFBGセンサの筒状編地への導入2)
 試作例2のダブルカバードFBGセンサを筒状の編地2a(図5参照)に導入し、編地2aを用いたリストバンド型の光ファイバセンサ導入編地を製造した(第2の工程)。編組織は、2目リブ編みである。編機として、自動編機である島精機製作所製、ホールガーメント横編機SWG-091N(10ゲージ)を使用した。
 編地2aの地糸として、キャデット(登録商標)糸(アクリル60% ウール40% 2/48Nm)を3本取り、絹糸(21中12×2, 実測番手約44tex)を2本取り、綿糸(綿100% 30/2Ne)を2本取りの3種類を用いた。編地2aの編成時に、地糸とともに添糸としてストレッチ糸であるマルロン2000を編み込んだ。マルロン2000は熱収縮糸であるため、編成後に170℃のスチームアイロンを当て仕上げ処理を行った。
 上記のキャデット糸、絹糸、綿糸の3種類の地糸すべてでダブルカバードFBGセンサの導入が可能であった。製造した3種類のリストバンドの写真を図21に示す。図21(a)がキャデット糸、図21(b)が絹糸、図21(c)が綿糸である。
(カバードFBGセンサの筒状編地への導入3)
 試作例2のダブルカバードFBGセンサを筒状の編地2a(図5参照)に導入し、リストバンド型の光ファイバセンサ導入編地1を製造した(第2の工程)。編組織は、2目リブ編みである。編機として、自動編機である島精機製作所製、ホールガーメント横編機SWG-091N(10ゲージ)を使用した。
 編地2aの地糸として、綿糸(綿100% 30/2Ne)を2本取りしたものを用いた。リストバンドのサイズに幅を持たせるため、ウェール数を変更し寸法を変化させた複数のリストバンドを製造した。製造したリストバンドのウェール数は、20,24,28,32,36目の5段階である。さらに、被服圧を変化させる目的でストレッチ糸であるマルロン2000を編み込む本数を変化させた。添糸としてマルロン2000を1本編み込んだものと2本編み込んだものを製造した。
 なお、ウェール数を小さくした際には編み上がりが小さくなり着脱の際に手を通すことが困難となる。特に編み終わり部分の伸縮性が小さく、着脱が困難となったため、編み終わり部分にはゴム糸と熱溶解糸を用いた。
 製造したリストバンドの寸法を表2に示す。
Figure JPOXMLDOC01-appb-T000002
(被服圧の測定)
 リストバンドによって生じる被服圧を測定した。被服圧測定にはエイエムアイ・テクノ製エアパック式接触圧測定器(AMI3037-10-II)を用いた。脈波測定位置である手首の橈骨動脈上にエアパック(直径20mm)を置き、シールで固定した。この上からリストバンドを装着し、被服圧の測定を行った。比較のためにマルロン2000を編み込まない試料も作製し被服圧測定をおこなった。リストバンド着用時に測定された被服圧からリストバンドを外したときに測定された圧力を引き、リストバンドの被服圧とした。測定姿勢は座位で、手首回り寸法155mmの被験者に対しウェール数20,24,28,32,36目のリストバンドを装着し、被服圧を測定した。
 被服圧の測定結果を図22に示す。マルロン2000を編み込まなかった試料では、被服圧を検出することが出来なかった。マルロン2000を1本編込んだリストバンドと、2本編込んだリストバンドでは、全てのウェール数においてマルロン2000を2本編込んだリストバンドの方が高い被服圧を示した。また、ウェール数が小さくなるのに伴い、被服圧は高くなった。最も高い被服圧を示したリストバンドは、マルロン2000を2本編込んだウェール数20目の試料である。しかしながら、ウェール数20目のリストバンドは編み上がりが小さく、着脱が困難であった。よって、着脱容易で被服圧の高いリストバンドとして、マルロン2000を2本編込んだウェール数24目および28目の二種類のリストバンドで脈波の測定を行った。
(脈波の測定)
 被験者は20代女性1名とした。測定姿勢は仰臥位で約15秒間の測定を2回ずつ行った。測定器には長野計器製FBGデータロガーPF20(波長掃引方式)を用いた。図23に装置の光路図を示す。表3に装置仕様を示す。ノイズを除去する必要性からバンドパスフィルタ処理を行った。
Figure JPOXMLDOC01-appb-T000003
 図24に示すように被験者の左手首にカバードFBGセンサ導入リストバンドを着用した。図25に示すように、右手首に試作例2のカバードFBGセンサを医療用テープで固定した。
 ウェール数28目のリストバンドで測定を行った結果を図26に示す。リストバンドに導入されたFBGセンサから、テープで固定したFBGセンサから得られる波形と同期する波形が得られた。ウェール数24目のリストバンドでも同様の結果を得ることができた。
 本発明の光ファイバセンサ導入編地及び光ファイバセンサ導入編地の製造方法は、安全性が高く生体信号を正確に測定することができるセンサを衣服などに組み込む用途に利用できる。
 1は光ファイバセンサ導入編地、2・2aは編地、3は光ファイバセンサ、4は糸、5はカバード光ファイバセンサ、6はカバード光ファイバセンサ(光ファイバセンサ)の検出部、11は検出部表示、21・22aは編目、23・23aは編目(連結編目)、31は地糸、33・33はストレッチ糸、41はボビンキャリア、91は被検体、101は測定機器、201は編み針、Dは被検体の手首の外周の長さ(手首周りの長さ)、Nは伸縮していない状態(通常状態)の筒状の内周の長さ、Nは筒状の穴を押し広げたときの内周の長さである。

Claims (10)

  1.  光ファイバセンサの表面を露出させないように糸で覆われているカバード光ファイバセンサと、
     前記カバード光ファイバセンサを一部の編目に引っ掛けて保持する編地と、
     前記編地を装着する被検体に対して、前記カバード光ファイバセンサの検出部を押し当てるための押当機構とを、備える光ファイバセンサ導入編地。
  2.  前記押当機構として、前記編地が筒状に形成されており、前記筒状の穴の大きさが、その筒状内に入る前記被検体よりも小さく形成されていて、前記編地の伸縮性によって前記カバード光ファイバセンサの検出部が前記被検体に押し当てられるように形成されている請求項1に記載の光ファイバセンサ導入編地。
  3.  前記編地は、前記編地を構成する地糸の添糸としてストレッチ糸が設けられているものである請求項2に記載の光ファイバセンサ導入編地。
  4.  前記ストレッチ糸は、前記地糸に対し、前記添糸として少なくとも2本が設けられている請求項3に記載の光ファイバセンサ導入編地。
  5.  前記編地は、リブ編みで編成されているものである請求項2から4のいずれかに記載の光ファイバセンサ導入編地。
  6.  前記押当機構は、前記カバード光ファイバセンサの検出部を少なくとも0.4kPaの圧力で前記被検体に押し当てるものである請求項1から5のいずれかに記載の光ファイバセンサ導入編地。
  7.  前記カバード光ファイバセンサの検出部には前記編地の編目が引っ掛けられておらず、前記カバード光ファイバセンサの検出部以外の部位に前記編地の編目が引っ掛けられている請求項1から6のいずれかに記載の光ファイバセンサ導入編地。
  8.  前記カバード光ファイバセンサは、前記光ファイバセンサを芯にして複数の前記糸で組まれた組紐が形成されていて、前記組紐を組む各々の前記糸として、1本のフィラメント糸が用いられているものである請求項1から7のいずれかに記載の光ファイバセンサ導入編地。
  9.  前記カバード光ファイバセンサには、前記検出部の位置を表示する検出部表示が付されている請求項1から8のいずれかに記載の光ファイバセンサ導入編地。
  10.  光ファイバセンサの表面を露出させないように糸で覆ってカバード光ファイバセンサを製造する第1の工程と、
     編機により編地を製造するときに、前記カバード光ファイバセンサの検出部には前記編地の編目が引っ掛からず、前記カバード光ファイバセンサの検出部以外の部位に前記編地の編目が引っ掛かるように、スレッド編みにより前記編地に導入する第2の工程とを、含む光ファイバセンサ導入編地の製造方法。
PCT/JP2018/021544 2017-08-10 2018-06-05 光ファイバセンサ導入編地、及び光ファイバセンサ導入編地の製造方法 WO2019031041A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-155062 2017-08-10
JP2017155062 2017-08-10

Publications (1)

Publication Number Publication Date
WO2019031041A1 true WO2019031041A1 (ja) 2019-02-14

Family

ID=65271317

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/021544 WO2019031041A1 (ja) 2017-08-10 2018-06-05 光ファイバセンサ導入編地、及び光ファイバセンサ導入編地の製造方法

Country Status (1)

Country Link
WO (1) WO2019031041A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114592256A (zh) * 2022-02-11 2022-06-07 广东飞和信息科技有限公司 一种基于光纤检测的体征检测方法
GB2602240A (en) * 2021-04-27 2022-06-22 Suunto Oy Wearable device
JP2023509384A (ja) * 2019-12-20 2023-03-08 エンプニア・インコーポレイテッド ウェアラブルヘルスモニタリング装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6017158A (ja) * 1983-07-09 1985-01-29 松岡 弘 靴下、タイツ、サポ−タなどの編成方法
JP2014534848A (ja) * 2011-10-21 2014-12-25 コーニンクレッカ フィリップス エヌ ヴェ 医療介入のための体表面フィードバック
US20150313533A1 (en) * 2014-05-04 2015-11-05 Scott J. Rapp Fiber optic based devices and methods for monitoring soft tissue

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6017158A (ja) * 1983-07-09 1985-01-29 松岡 弘 靴下、タイツ、サポ−タなどの編成方法
JP2014534848A (ja) * 2011-10-21 2014-12-25 コーニンクレッカ フィリップス エヌ ヴェ 医療介入のための体表面フィードバック
US20150313533A1 (en) * 2014-05-04 2015-11-05 Scott J. Rapp Fiber optic based devices and methods for monitoring soft tissue

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SAKAGUCHI ET AL.: "Fabrication of Optical Fiber Embedded Knitted Fabrics for Smart Textiles", JOURNAL OF TEXTILE ENGINEERING, vol. 62, no. 6, 2016, pages 129 - 134, XP055577214 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023509384A (ja) * 2019-12-20 2023-03-08 エンプニア・インコーポレイテッド ウェアラブルヘルスモニタリング装置
GB2602240A (en) * 2021-04-27 2022-06-22 Suunto Oy Wearable device
CN114592256A (zh) * 2022-02-11 2022-06-07 广东飞和信息科技有限公司 一种基于光纤检测的体征检测方法

Similar Documents

Publication Publication Date Title
Koyama et al. Smart textile using hetero-core optical fiber for heartbeat and respiration monitoring
JP2018531122A6 (ja) 複合テキスタイルおよび光学センサ
JP2018531122A (ja) 複合テキスタイルおよび光学センサ
WO2019031041A1 (ja) 光ファイバセンサ導入編地、及び光ファイバセンサ導入編地の製造方法
US7715897B2 (en) Extended optical range reflective system for monitoring motion of a member
JP6407881B2 (ja) フロートループ型織物電極及びその編成方法
KR100863064B1 (ko) 생체 신호 측정용 의복 및 그 제조 방법
WO2015112095A1 (en) Smart belt for breathing and heart rate monitoring
AU2002237976B2 (en) Composite elastic and wire fabric for physiological monitoring apparel
CA2885338C (en) Method for limiting elasticity of selected regions in knitted fabrics
AU2002237976A1 (en) Composite elastic and wire fabric for physiological monitoring apparel
Koyama et al. Vital sign measurement using covered FBG sensor embedded into knitted fabric for smart textile
CN105873502B (zh) 动态血压监测仪用血压袖带组件
Narbonneau et al. FBG-based smart textiles for continuous monitoring of respiratory movements for healthcare applications
JP2012065911A (ja) 光ファイバシート
CN105769138A (zh) 基于多层复合织物结构的光纤脉搏传感织物及其服装
CN110840403A (zh) 自供电织物传感器及监测系统
Narbonneau et al. OFSETH: Smart medical textile for continuous monitoring of respiratory motions under magnetic resonance imaging
CN205697731U (zh) 基于多层复合织物结构的光纤脉搏传感织物及其服装
JPWO2020075481A1 (ja) 生体信号モニタリングウェア
US20230135094A1 (en) Garment
JP2020065671A (ja) 生体情報計測用布帛
WO2023013249A1 (ja) 生体情報計測用衣類
Zhou et al. Design, preparation, and performance research of a knitted sensor for respiratory rate detection
Koyama et al. Smart textile with plain weave structure using hetero-core optical fiber sensor and wool threads

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18844857

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18844857

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP