WO2019031021A1 - Exhaust power generation device - Google Patents
Exhaust power generation device Download PDFInfo
- Publication number
- WO2019031021A1 WO2019031021A1 PCT/JP2018/019728 JP2018019728W WO2019031021A1 WO 2019031021 A1 WO2019031021 A1 WO 2019031021A1 JP 2018019728 W JP2018019728 W JP 2018019728W WO 2019031021 A1 WO2019031021 A1 WO 2019031021A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- rotor shaft
- rotor
- exhaust
- cooling tower
- bearing
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D13/00—Assembly, mounting or commissioning of wind motors; Arrangements specially adapted for transporting wind motor components
- F03D13/20—Arrangements for mounting or supporting wind motors; Masts or towers for wind motors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D9/00—Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
- F03D9/30—Wind motors specially adapted for installation in particular locations
- F03D9/34—Wind motors specially adapted for installation in particular locations on stationary objects or on stationary man-made structures
- F03D9/43—Wind motors specially adapted for installation in particular locations on stationary objects or on stationary man-made structures using infrastructure primarily used for other purposes, e.g. masts for overhead railway power lines
- F03D9/45—Building formations
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B10/00—Integration of renewable energy sources in buildings
- Y02B10/30—Wind power
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/70—Wind energy
- Y02E10/72—Wind turbines with rotation axis in wind direction
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/70—Wind energy
- Y02E10/728—Onshore wind turbines
Definitions
- the present invention relates to a power generation device with high power generation efficiency utilizing exhaust in air conditioning equipment.
- Patent Document 1 describes a power generation device using a long blade rotor that utilizes the exhaust of air conditioning equipment.
- FIG. 1 a device in which the rotor is disposed above the exhaust port of the exhaust machine with the main shaft horizontal, and in FIG. An apparatus is described which blows with a duct.
- the wind turbine can not be efficiently used in the season when the cooling tower is not used.
- the present invention takes the following technical measures in order to solve the problems.
- a plurality of rotors are disposed on the rotor shaft so as to be positioned above the exhaust port of the cooling tower when the rotor shaft is horizontal.
- Exhaust power generator as described.
- the rotor shaft is supported on the base via a hinge via a hinged supporting frame, and a plurality of rotors are disposed on the rotor shaft, and the supporting frame is inclined horizontally on the cooling tower.
- the upper support for supporting the rotor shaft is configured to be able to be raised from vertical to horizontal via a hinge on the support erected on the side of the cooling tower.
- the rotor By leveling the rotor shaft above the cooling tower, the rotor can be disposed above the exhaust port of the cooling tower, and the exhaust can efficiently rotate the rotor to generate power.
- the rotor shaft can be vertically erected to allow the natural wind to rotate the rotor.
- the tip end of which the rotor shaft is horizontal is supported by the bearing on the upper surface of the shaft support column, so that stable rotation can be achieved.
- a plurality of rotors are disposed on the rotor shaft so as to be located above the exhaust port of the cooling tower when the rotor shaft is horizontal.
- the rotor shaft is supported by a support frame which can be raised and lowered via a hinge on a base. Since a plurality of rotors are disposed on the rotor shaft and the support frame is horizontally inclined on the cooling tower, the support frame is horizontally inclined so that the respective rotors face each cooling tower. Since each rotor can be rotated by the exhaust of each cooling tower and a strong rotational torque can be obtained on the rotor shaft, a large power generation efficiency can be obtained. When the cooling tower is not used, by raising the support frame, the natural wind can rotate the rotor to generate power.
- FIG. 5 is an enlarged side view of a bearing portion of the exhaust power generation device.
- FIG. 4 is a plan view taken along line IV-IV in FIG. 3; It is a front view which shows Example 2 of the exhaust gas electric power generating apparatus of this invention.
- FIG. 6 is a plan view of the exhaust gas generator of FIG. 5; It is a front view which shows Example 3 of the exhaust gas electric power generating apparatus of this invention.
- FIG. 8 is a plan view of the exhaust gas generator of FIG. 7;
- the upper support 3 is mounted so as to be capable of raising and lowering via a hinge 4 on a base 2 erected on the side of the cooling tower 10.
- the shape of the base 2 is, for example, a vertically oriented cylindrical body, and an outward flange 2A is formed at the upper end.
- the outward flange 2A is provided with a plurality of bolt holes 2B, and when the upper support 3 is erected, it is fixed by bolts as described later.
- a fluid pressure cylinder 15 directed in the vertical direction is disposed, and the tip of the sliding rod 15A protruding upward therefrom is connected to the base end face of the upper support 3, and the sliding rod
- the upper support 3 pivots about the hinge 4 and the rotor shaft 7 becomes vertical.
- the arrangement position and number of the fluid pressure cylinders 15 and the fluid for operation are appropriately selected according to the size and the shape of the upper support 3.
- the generator 5 is fixed inside the large diameter base 3A of the upper support 3 and the rotor shaft 7 is supported inside the small diameter portion 3B via the bearing 6, and the base end of the rotor shaft 7 Are connected to the generator 5.
- the rotor 8 rotates, its rotational force is transmitted to the generator 5 via the rotor shaft 7.
- An outwardly directed flange 3C corresponding to the flange 2A of the base 2 is formed on the outer surface of the base 3A of the upper support 3.
- the outward flange 3C is provided with a bolt hole (not shown).
- the rotor 8 is fixed to the rotor shaft 7. That is, a plurality of laterally long lift type long blades 9 are fixed in parallel via the support arm 8A.
- a diameter of the cooling tower 10 is 2 m
- the length of the lift type long blade 9 is 2 m
- the chord length is about 50 cm
- the rotation diameter of the long blade 9 is about 2 m.
- an inward inclined portion 9A is formed.
- the air flow that escapes in the lateral direction strikes the inward inclined portion 9 A and moves in the trailing edge direction to increase the rotational efficiency of the rotor 8.
- the front end of the rotor shaft 7 is fixed to the upper end of the shaft support column 11 via a bearing 12 so that the lift type long blade 9 becomes horizontal at an appropriate distance above the cooling tower 10. It is As shown in FIGS. 3 and 4, the bearing 12 has a flange 12B projecting from the lower portion of the annular support 12A, and the flange 12B is fixed on the shaft support column 11 with a screw 12C.
- a bearing 13 is fitted in the receiving hole 12D of the annular support 12A.
- the diameter of the inner hole 13A of the bearing 13 is larger than the diameter of the rotor shaft 7, and the outer diameter of the rotor shaft 7 in contact with the inner side of the inner hole 13A is increased to increase the diameter of the rotor shaft 7.
- the ring 14 is fixed.
- the large diameter bearing 13 can be used by the diameter increasing ring 14, and the load applied to the circumferential surface of the rotor shaft 7 can be dispersed to the large diameter bearing 13.
- the diameter increasing ring 14 and the large diameter bearing 13 are also used for the bearing 6 in the upper support 3.
- FIG. 5 is a front view showing an exhaust power generation system according to a second embodiment of the present invention
- FIG. 6 is a plan view thereof.
- the same members as those in the front row are given the same reference numerals, and the description thereof is omitted.
- a plurality of (three in the drawing) rotors 8 are arranged in series on the rotor shaft 7.
- the number of rotors 8 corresponds to the cooling tower 10 disposed on the ground.
- FIG. 7 is a front view showing an exhaust power generation system according to a third embodiment of the present invention
- FIG. 8 is a plan view of the same.
- the rotor shaft 7 is supported by a support frame 17.
- the base 2 is assembled in a square in plan view and front view.
- the rotor shaft 7 is supported by a support frame 17 in which four horizontal frame beams 17A and 17A and square frame bars 17B at both ends are combined.
- the tip of the rotor shaft 7 is supported by a bearing 17C fixed to a central portion of the frame 17B.
- the tip of the support frame 17 is detachably fixed by the frame support column 11.
- the diameter increasing ring 14 may be used for the bearing 17C.
- the generator 5 is fixed to the base end face of the support frame 17, and the rotor shaft 7 is connected to this.
- Six rotors 8 are disposed on the rotor shaft 7 in accordance with the number of cooling towers 10 installed. As shown in FIG. 8, an intermediate crosspiece 17D is fixed in the middle of the support frame 17, and the middle of the rotor shaft 7 is supported by a bearing (not shown) fixed thereto.
- the upper edge of the base 2 and the base of the support frame 17 are fixed by the hinge 4, and the support frame 17 is erected on the base 2 and a fixing portion 17F overlapping on the fixing portion 2C is fixed by an arbitrary bolt. .
- the long blades 9 in the vertical rotor shaft 7 also become vertical, and the rotor 8 is rotated by natural wind as a vertical axis wind turbine.
- a fluid pressure cylinder 15 is disposed between the base 2 and the support frame 17.
- the tip of the sliding rod 15A is connected to the support frame 17.
- the support frame 17 can be vertically erected on the upper surface of the base 2.
- the support frame 17 is moved upward to make the rotor shaft 7 vertical, the long blades 9 in each rotor 8 also become vertical, receive natural wind, rotate, and generate electricity. .
- the number of cooling towers 10 is arranged in series long, for example, six, and arranging the long rotor shaft 7 on it, and making it upright, because the tilt device becomes a large scale, in such a case
- the bases 2 can be disposed on both sides of the cooling tower, and the short rotor shafts 7 can be brought up and down in opposite directions from both sides.
- the exhaust from the cooling tower can be used effectively for the generator.
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Architecture (AREA)
- Power Engineering (AREA)
- Wind Motors (AREA)
- Motor Or Generator Cooling System (AREA)
Abstract
The purpose of the present invention is to provide an efficient power generation device utilizing the exhaust of an air conditioner. The present invention is configured such that: long blades 9, comprising inwardly inclined sections 9A at blade tips thereof, are disposed around a rotor shaft 7 and in parallel with the rotor shaft 7; the rotor shaft 7 is fixed on a base 2 so as to be erectable; and when the rotor shaft 7 is tilted horizontally, a rotor 8 is positioned above an exhaust port 10A of a cooling tower 10, becomes rotatable by exhaust, and when the rotor shaft 7 is erected, the rotor 8 is rotated by natural wind.
Description
本発明は、空気調整機器における排気を利用した発電効率の良い発電装置に関する。
The present invention relates to a power generation device with high power generation efficiency utilizing exhaust in air conditioning equipment.
空気調整機器の排気を利用し、縦長翼ロータを使用した発電装置が特許文献1に記載されている。
特許文献1に記載の発明においては、図1に、排風機の排出口の上部に主軸を水平としてロータを配設した装置が、また、図2に縦主軸ロータに排風機の排気口から、ダクトをもって送風する態様の装置が記載されている。Patent Document 1 describes a power generation device using a long blade rotor that utilizes the exhaust of air conditioning equipment.
In the invention described inPatent Document 1, in FIG. 1, a device in which the rotor is disposed above the exhaust port of the exhaust machine with the main shaft horizontal, and in FIG. An apparatus is described which blows with a duct.
特許文献1に記載の発明においては、図1に、排風機の排出口の上部に主軸を水平としてロータを配設した装置が、また、図2に縦主軸ロータに排風機の排気口から、ダクトをもって送風する態様の装置が記載されている。
In the invention described in
特許文献1に記載の発明においては、クーリングタワーを使用しない季節には、風車を効率良く利用することは出来ない。
In the invention described in Patent Document 1, the wind turbine can not be efficiently used in the season when the cooling tower is not used.
本発明は、前記課題を解決するために、次のような技術的手段を講じた。
The present invention takes the following technical measures in order to solve the problems.
(1)ロータ軸の周囲に、翼端に内向傾斜部を備える長ブレードを、主軸と平行に配設し、ロータ軸を支柱上で起倒可能に固定し、ロータ軸を水平に傾倒した時に、ロータをクーリングタワーの排気口の上部に位置させて、排気により回転可能とし、かつロータ軸を直立させたときに、自然風によってロータが回転するようにした排気発電装置。
(1) When a long blade having an inward inclined portion at the wing tip is disposed in parallel with the main shaft around the rotor shaft, and the rotor shaft is rotatably fixed on the column so as to tilt the rotor shaft horizontally. An exhaust power generator wherein the rotor is positioned above the exhaust port of the cooling tower and is rotatable by the exhaust, and when the rotor shaft is erected, the rotor is rotated by natural wind.
(2)前記ロータ軸の水平とした先端を、軸支持柱の上面の軸受で支持してなる前記(1)に記載の排気発電装置。
(2) The exhaust power generation device according to (1), wherein the horizontal tip of the rotor shaft is supported by a bearing on the upper surface of a shaft support column.
(3)前記ロータ軸において、軸受で支持される部位に増径環を外嵌固着し、かつ増径環の外面を軸受で支持してなる前記(1)または(2)に記載の排気発電装置。
(3) The exhaust power generation according to (1) or (2), wherein in the rotor shaft, the diameter increasing ring is externally fitted and fixed to a portion supported by the bearing, and the outer surface of the diameter increasing ring is supported by the bearing. apparatus.
(4)前記ロータ軸には、複数のロータが、ロータ軸を水平とした時に、クーリングタワーの排気口の上方に位置するように配設されている前記(1)~(3)のいずれかに記載の排気発電装置。
(4) In any of the above (1) to (3), a plurality of rotors are disposed on the rotor shaft so as to be positioned above the exhaust port of the cooling tower when the rotor shaft is horizontal. Exhaust power generator as described.
(5)前記ロータ軸は、基台上にヒンジを介して、起倒可能な支持枠に支持され、ロータ軸には複数のロータを配設し、支持枠を、クーリングタワー上に水平に傾倒させるようにした前記(1)~(4)のいずれかに記載の排気発電装置。
(5) The rotor shaft is supported on the base via a hinge via a hinged supporting frame, and a plurality of rotors are disposed on the rotor shaft, and the supporting frame is inclined horizontally on the cooling tower The exhaust gas generator according to any one of the above (1) to (4).
本発明によると、次のような効果が奏せられる。
According to the present invention, the following effects can be achieved.
前記(1)に記載の発明においては、クーリングタワーの横に立設した支柱上において、ロータ軸を支持する上部支柱が、ヒンジを介して垂直から水平まで起倒可能に構成されている。クーリングタワーの上にロータ軸を水平とすることにより、ロータをクーリングタワーの排気口の上に配設し、排気により、効率良くロータを回転させて発電をすることが出来る。クーリングタワーを使用しないときには、ロータ軸を垂直に起立させて、自然風によりロータを回転させることが出来る。
In the invention described in the above (1), the upper support for supporting the rotor shaft is configured to be able to be raised from vertical to horizontal via a hinge on the support erected on the side of the cooling tower. By leveling the rotor shaft above the cooling tower, the rotor can be disposed above the exhaust port of the cooling tower, and the exhaust can efficiently rotate the rotor to generate power. When the cooling tower is not used, the rotor shaft can be vertically erected to allow the natural wind to rotate the rotor.
前記(2)に記載の発明においては、ロータ軸を水平とした先端は、軸支持柱の上面の軸受で支持されるので、安定した回転をさせることが出来る。
In the invention described in (2), the tip end of which the rotor shaft is horizontal is supported by the bearing on the upper surface of the shaft support column, so that stable rotation can be achieved.
前記(3)に記載の発明においては、ロータ軸における軸受で支持される部位に外嵌固着した増径環の外面を、軸受で支持してあるので、ロータ軸の径よりも大きな径の軸受で支持することができ、ロータ軸の周面にかかる負荷は、大きな軸受によって分散され、軽快に回転させることが出来る。
In the invention described in the above (3), since the outer surface of the diameter-increasing ring fixed to the portion supported by the bearing in the rotor shaft is supported by the bearing, the bearing having a diameter larger than the diameter of the rotor shaft The load applied to the circumferential surface of the rotor shaft can be dispersed by a large bearing and can be rotated freely.
前記(4)に記載の発明においては、ロータ軸には、複数のロータが、ロータ軸を水平とした時に、クーリングタワーの排気口の上に位置するように配設されている。
複数のクーリングタワーが直列に設置されているときには、1本のロータ軸を、複数のロータで回転させることが出来るので、大なトルクにより効率良く大容量の発電をさせることが出来る。 In the invention described in (4), a plurality of rotors are disposed on the rotor shaft so as to be located above the exhaust port of the cooling tower when the rotor shaft is horizontal.
When a plurality of cooling towers are installed in series, since one rotor shaft can be rotated by a plurality of rotors, large torque can efficiently generate a large amount of power.
複数のクーリングタワーが直列に設置されているときには、1本のロータ軸を、複数のロータで回転させることが出来るので、大なトルクにより効率良く大容量の発電をさせることが出来る。 In the invention described in (4), a plurality of rotors are disposed on the rotor shaft so as to be located above the exhaust port of the cooling tower when the rotor shaft is horizontal.
When a plurality of cooling towers are installed in series, since one rotor shaft can be rotated by a plurality of rotors, large torque can efficiently generate a large amount of power.
前記(5)に記載の発明においては、ロータ軸は、基台上にヒンジを介して起倒可能な支持枠に支持されている。ロータ軸には複数のロータが配設され、支持枠をクーリングタワー上に水平に傾倒させるようにしてあるので、支持枠を水平に傾倒し、各クーリングタワー上に各ロータが対面するようにすることにより、各クーリングタワーの排気により各ロータを回転させ、ロータ軸に強力な回転トルクを得ることが出来るので、大な発電効率を得ることが出来る。
クーリングタワーを使用しない時は、支持枠を起立させることにより、自然風によってロータを回転させて、発電させることが出来る。 In the invention described in the above (5), the rotor shaft is supported by a support frame which can be raised and lowered via a hinge on a base. Since a plurality of rotors are disposed on the rotor shaft and the support frame is horizontally inclined on the cooling tower, the support frame is horizontally inclined so that the respective rotors face each cooling tower. Since each rotor can be rotated by the exhaust of each cooling tower and a strong rotational torque can be obtained on the rotor shaft, a large power generation efficiency can be obtained.
When the cooling tower is not used, by raising the support frame, the natural wind can rotate the rotor to generate power.
クーリングタワーを使用しない時は、支持枠を起立させることにより、自然風によってロータを回転させて、発電させることが出来る。 In the invention described in the above (5), the rotor shaft is supported by a support frame which can be raised and lowered via a hinge on a base. Since a plurality of rotors are disposed on the rotor shaft and the support frame is horizontally inclined on the cooling tower, the support frame is horizontally inclined so that the respective rotors face each cooling tower. Since each rotor can be rotated by the exhaust of each cooling tower and a strong rotational torque can be obtained on the rotor shaft, a large power generation efficiency can be obtained.
When the cooling tower is not used, by raising the support frame, the natural wind can rotate the rotor to generate power.
本発明の実施形態を、図面を参照して説明する。図1に示すように、本発明の排気発電装置1では、クーリングタワー10の横に立設した基台2の上に、上部支柱3がヒンジ4を介して起倒可能に装着されている。
Embodiments of the present invention will be described with reference to the drawings. As shown in FIG. 1, in the exhaust gas power generation system 1 of the present invention, the upper support 3 is mounted so as to be capable of raising and lowering via a hinge 4 on a base 2 erected on the side of the cooling tower 10.
基台2の形は、例えば縦向きの円筒体で、上端に外向フランジ2Aが形成されている。外向フランジ2Aには、複数のボルト孔2Bが設けられており、上部支柱3を直立させた時に、後記するようにボルトにより固定される。
The shape of the base 2 is, for example, a vertically oriented cylindrical body, and an outward flange 2A is formed at the upper end. The outward flange 2A is provided with a plurality of bolt holes 2B, and when the upper support 3 is erected, it is fixed by bolts as described later.
基台2の内部には、上下方向を向く流体圧シリンダ15が配設され、それより上方へ突出する摺動杆15Aの先端は、上部支柱3の基端面に連結されており、摺動杆15Aがシリンダ15内に引込まれると、上部支柱3はヒンジ4を中心に回動して、ロータ軸7は垂直となる。なお流体圧シリンダ15の配設位置、本数及び作動用の流体は、上部支柱3の大きさや形状に応じて適宜選択される。
Inside the base 2, a fluid pressure cylinder 15 directed in the vertical direction is disposed, and the tip of the sliding rod 15A protruding upward therefrom is connected to the base end face of the upper support 3, and the sliding rod When the 15A is retracted into the cylinder 15, the upper support 3 pivots about the hinge 4 and the rotor shaft 7 becomes vertical. The arrangement position and number of the fluid pressure cylinders 15 and the fluid for operation are appropriately selected according to the size and the shape of the upper support 3.
上部支柱3の、大径の基部3A内には発電機5が固定され、かつ小径部3Bの内部には、軸受6を介してロータ軸7が支持されており、ロータ軸7の基端部は、発電機5に連結されている。ロータ8が回転すると、その回転力は、ロータ軸7を介して発電機5に伝えられるようになっている。
The generator 5 is fixed inside the large diameter base 3A of the upper support 3 and the rotor shaft 7 is supported inside the small diameter portion 3B via the bearing 6, and the base end of the rotor shaft 7 Are connected to the generator 5. When the rotor 8 rotates, its rotational force is transmitted to the generator 5 via the rotor shaft 7.
上部支柱3の基部3Aの外面には、基台2のフランジ2Aと対応する外向フランジ3Cが形成されている。外向フランジ3Cには、図示しないボルト孔が設けられている。上部支柱3を直立させると、外向フランジ3C、2A同士が重なり、ボルト孔2Bに図示しないボルトを嵌挿して、上下の外向フランジ3C、2Aをボルトで締結させることによって、上部支柱3を基台2に堅固に固定することが出来る。
An outwardly directed flange 3C corresponding to the flange 2A of the base 2 is formed on the outer surface of the base 3A of the upper support 3. The outward flange 3C is provided with a bolt hole (not shown). When the upper column 3 is erected, the outward flanges 3C and 2A overlap with each other, and a bolt (not shown) is inserted into the bolt hole 2B and the upper and lower outward flanges 3C and 2A are fastened by bolts to base the upper column 3 It can be fixed firmly to 2.
ロータ軸7には、ロータ8が固定されている。すなわち、支持腕8Aを介して横長の複数の揚力型の長ブレード9が平行に固定されている。
例えばクーリングタワー10の直径が2mなら、揚力型の長ブレード9の長さを2m、弦長50cm前後とし、長ブレード9の回転直径を2m前後とする。 Therotor 8 is fixed to the rotor shaft 7. That is, a plurality of laterally long lift type long blades 9 are fixed in parallel via the support arm 8A.
For example, if the diameter of thecooling tower 10 is 2 m, the length of the lift type long blade 9 is 2 m, the chord length is about 50 cm, and the rotation diameter of the long blade 9 is about 2 m.
例えばクーリングタワー10の直径が2mなら、揚力型の長ブレード9の長さを2m、弦長50cm前後とし、長ブレード9の回転直径を2m前後とする。 The
For example, if the diameter of the
長ブレード9の両端には、内向傾斜部9Aが形成されている。長ブレード9の内面に当って、側方向に逸流する気流は、内向傾斜部9Aに当り、後縁方向へ移動して、ロータ8の回転効率を高める。
At both ends of the long blade 9, an inward inclined portion 9A is formed. On the inner surface of the long blade 9, the air flow that escapes in the lateral direction strikes the inward inclined portion 9 A and moves in the trailing edge direction to increase the rotational efficiency of the rotor 8.
この揚力型の長ブレード9が、クーリングタワー10の上方において、適度の間隔を開けて水平になるように、ロータ軸7の先端部を、軸支持柱11の上端に、軸受12を介して固定してある。
軸受12は、図3、図4に示すように、環状支持部12Aの下部にフランジ12Bを突設してあり、フランジ12Bを、ネジ12Cをもって軸支持柱11の上に固定してある。 The front end of therotor shaft 7 is fixed to the upper end of the shaft support column 11 via a bearing 12 so that the lift type long blade 9 becomes horizontal at an appropriate distance above the cooling tower 10. It is
As shown in FIGS. 3 and 4, thebearing 12 has a flange 12B projecting from the lower portion of the annular support 12A, and the flange 12B is fixed on the shaft support column 11 with a screw 12C.
軸受12は、図3、図4に示すように、環状支持部12Aの下部にフランジ12Bを突設してあり、フランジ12Bを、ネジ12Cをもって軸支持柱11の上に固定してある。 The front end of the
As shown in FIGS. 3 and 4, the
環状支持部12Aの受孔12Dには、軸受13が嵌着されている。軸受13の内孔13Aの直径は、ロータ軸7の直径よりも大径としてあり、内孔13Aの内側に当接するロータ軸7の外周には、ロータ軸7の直径を大きくするための増径環14が固定されている。
A bearing 13 is fitted in the receiving hole 12D of the annular support 12A. The diameter of the inner hole 13A of the bearing 13 is larger than the diameter of the rotor shaft 7, and the outer diameter of the rotor shaft 7 in contact with the inner side of the inner hole 13A is increased to increase the diameter of the rotor shaft 7. The ring 14 is fixed.
この増径環14により、大径の軸受13を使用することができ、ロータ軸7の周面にかかる負荷を、大径の軸受13に分散させることが出来る。この増径環14と大径の軸受13は、上部支柱3における軸受6にも使用される。
The large diameter bearing 13 can be used by the diameter increasing ring 14, and the load applied to the circumferential surface of the rotor shaft 7 can be dispersed to the large diameter bearing 13. The diameter increasing ring 14 and the large diameter bearing 13 are also used for the bearing 6 in the upper support 3.
クーリングタワー10を稼働させると、排気口10Aから、例えば風速5m/s~8m/sの気流が排出される。
従って、図1に示すようにロータ軸7を水平としておくと、排気口10Aから排出される高速の排気流によってロータ8は高速回転し、上部支柱3における発電機5により発電された電気は、基台2内に設けた蓄電池16に蓄電される。 When thecooling tower 10 is operated, an air flow of, for example, 5 m / s to 8 m / s is discharged from the exhaust port 10A.
Therefore, when therotor shaft 7 is horizontal as shown in FIG. 1, the rotor 8 is rotated at high speed by the high speed exhaust flow discharged from the exhaust port 10A, and the electricity generated by the generator 5 in the upper support 3 is A storage battery 16 provided in the base 2 is charged.
従って、図1に示すようにロータ軸7を水平としておくと、排気口10Aから排出される高速の排気流によってロータ8は高速回転し、上部支柱3における発電機5により発電された電気は、基台2内に設けた蓄電池16に蓄電される。 When the
Therefore, when the
図5は、本発明の排気発電装置の実施例2を示す正面図、図6は、その平面図である。前列と同じ部材には、同じ符号を付して説明を省略する。
この実施例2は、ロータ軸7にロータ8を複数(図では3基)直列に配設したものである。ロータ8の数は、地上に配設されているクーリングタワー10と対応させてある。 FIG. 5 is a front view showing an exhaust power generation system according to a second embodiment of the present invention, and FIG. 6 is a plan view thereof. The same members as those in the front row are given the same reference numerals, and the description thereof is omitted.
In the second embodiment, a plurality of (three in the drawing)rotors 8 are arranged in series on the rotor shaft 7. The number of rotors 8 corresponds to the cooling tower 10 disposed on the ground.
この実施例2は、ロータ軸7にロータ8を複数(図では3基)直列に配設したものである。ロータ8の数は、地上に配設されているクーリングタワー10と対応させてある。 FIG. 5 is a front view showing an exhaust power generation system according to a second embodiment of the present invention, and FIG. 6 is a plan view thereof. The same members as those in the front row are given the same reference numerals, and the description thereof is omitted.
In the second embodiment, a plurality of (three in the drawing)
図7は、本発明の排気発電装置の実施例3を示す正面図、図8は同じく平面図である。前例と同じ部材には、同じ符号を付して説明を省略する。
この実施例3は、ロータ軸7を支持枠17で支持するものである。基台2は、図7及び図8に示すように、平面視及び正面視で4角形に組まれている。 FIG. 7 is a front view showing an exhaust power generation system according to a third embodiment of the present invention, and FIG. 8 is a plan view of the same. The same members as in the previous example are given the same reference numerals, and the description thereof is omitted.
In the third embodiment, therotor shaft 7 is supported by a support frame 17. As shown in FIGS. 7 and 8, the base 2 is assembled in a square in plan view and front view.
この実施例3は、ロータ軸7を支持枠17で支持するものである。基台2は、図7及び図8に示すように、平面視及び正面視で4角形に組まれている。 FIG. 7 is a front view showing an exhaust power generation system according to a third embodiment of the present invention, and FIG. 8 is a plan view of the same. The same members as in the previous example are given the same reference numerals, and the description thereof is omitted.
In the third embodiment, the
図7に示すように、ロータ軸7を、水平の4本の枠桁17A、17Aと、両端部の4角形の枠桟17Bとを組合わせた支持枠17に支持されている。枠桟17Bの中央部分に固定された軸受17Cによって、ロータ軸7の先端が支持されている。
As shown in FIG. 7, the rotor shaft 7 is supported by a support frame 17 in which four horizontal frame beams 17A and 17A and square frame bars 17B at both ends are combined. The tip of the rotor shaft 7 is supported by a bearing 17C fixed to a central portion of the frame 17B.
支持枠17の先端部は、枠支持柱11により着脱可能に固定されている。この軸受17Cに、前記増径環14を利用することがある。支持枠17の基端面に発電機5が固定され、これにロータ軸7が連結されている。
The tip of the support frame 17 is detachably fixed by the frame support column 11. The diameter increasing ring 14 may be used for the bearing 17C. The generator 5 is fixed to the base end face of the support frame 17, and the rotor shaft 7 is connected to this.
ロータ軸7には、クーリングタワー10の設置数に合わせて、6基のロータ8が配設されている。図8に示すように、支持枠17の中間に中桟17Dが固定され、それに固定されている図示しない軸受によって、ロータ軸7の中間が支持されている。
Six rotors 8 are disposed on the rotor shaft 7 in accordance with the number of cooling towers 10 installed. As shown in FIG. 8, an intermediate crosspiece 17D is fixed in the middle of the support frame 17, and the middle of the rotor shaft 7 is supported by a bearing (not shown) fixed thereto.
基台2の上縁と支持枠17の基部はヒンジ4で固定されており、支持枠17を基台2上に直立させて、固定部2C上に重なる固定部17Fを任意のボルトにより固定する。
これにより、垂直となったロータ軸7における長ブレード9も垂直となり、ロータ8は縦軸風車として自然風によって回転される。 The upper edge of thebase 2 and the base of the support frame 17 are fixed by the hinge 4, and the support frame 17 is erected on the base 2 and a fixing portion 17F overlapping on the fixing portion 2C is fixed by an arbitrary bolt. .
As a result, thelong blades 9 in the vertical rotor shaft 7 also become vertical, and the rotor 8 is rotated by natural wind as a vertical axis wind turbine.
これにより、垂直となったロータ軸7における長ブレード9も垂直となり、ロータ8は縦軸風車として自然風によって回転される。 The upper edge of the
As a result, the
また基台2と支持枠17の間に、流体圧シリンダ15が配設されている。その摺動杆15Aの先端は、支持枠17に連結されており、摺動杆15Aを伸長させると、支持枠17を基台2の上面に垂直に起立させることができる。
A fluid pressure cylinder 15 is disposed between the base 2 and the support frame 17. The tip of the sliding rod 15A is connected to the support frame 17. When the sliding rod 15A is extended, the support frame 17 can be vertically erected on the upper surface of the base 2.
クーリングタワー10を使用しない期間には、支持枠17を上向動させて、ロータ軸7を垂直とすると、各ロータ8における長ブレード9も垂直となって、自然風を受けて回転し、発電させる。
When the cooling tower 10 is not used, the support frame 17 is moved upward to make the rotor shaft 7 vertical, the long blades 9 in each rotor 8 also become vertical, receive natural wind, rotate, and generate electricity. .
図7に示すように、1本のロータ軸7に6基のロータ8が配設されているので、回転トルクは大となり、大容量の発電をさせることが可能である。
特に、クーリングタワー10の排気量は一定であり、かつ継続的であるので、自然風よりも効率の良い発電効果が得られる。また排気は放出されると消えてしまうものであるから、無駄となる資源の有効利用となる。 As shown in FIG. 7, since sixrotors 8 are disposed on one rotor shaft 7, the rotational torque is large, and it is possible to generate a large amount of power.
In particular, since the displacement of thecooling tower 10 is constant and continuous, a more efficient power generation effect than natural wind can be obtained. In addition, since the exhaust gas is released when it is released, it is an effective use of waste resources.
特に、クーリングタワー10の排気量は一定であり、かつ継続的であるので、自然風よりも効率の良い発電効果が得られる。また排気は放出されると消えてしまうものであるから、無駄となる資源の有効利用となる。 As shown in FIG. 7, since six
In particular, since the displacement of the
なお、クーリングタワー10の数が、例えば6基など長く直列に配設され、その上に長いロータ軸7を配設して、直立させることは、その傾倒装置が大がかりとなるので、そのような場合には、例えば基台2をクーリングタワーの両側に配して、両側から短尺のロータ軸7を、対向状に起倒させるようにすることが出来る。
In addition, the number of cooling towers 10 is arranged in series long, for example, six, and arranging the long rotor shaft 7 on it, and making it upright, because the tilt device becomes a large scale, in such a case For example, the bases 2 can be disposed on both sides of the cooling tower, and the short rotor shafts 7 can be brought up and down in opposite directions from both sides.
クーリングタワーからの排気を、発電装置用として有効に利用することが出来る。
The exhaust from the cooling tower can be used effectively for the generator.
1. 排気発電装置
2. 基台
2A.外向フランジ
2B.ボルト孔
2C 固定部
3. 上部支柱
3A.基部
3B.小径部
3C.外向フランジ
4. ヒンジ
5. 発電機
6. 軸受
7. ロータ軸
8. ロータ
8A.支持腕
9. 揚力型長ブレード
9A.内向傾斜部
10.クーリングタワー
10A.排気口
11.枠支持柱
12.軸受
12A.環状支持部
12B.フランジ
12C.ネジ
12D.受孔
13.軸受
13A.内孔
14.増径環
15.流体圧シリンダ
15A.摺動杆
16.蓄電池
17.支持枠
17A.枠桁
17B.枠桟
17C.軸受
17D.中桟
17E.軸受
17F.固定部 1.Exhaust power generator 2. Base 2A. Outgoing flange 2B. Bolt hole 2C Fixing part 3. Upper support 3A. Base 3B. Small diameter portion 3C. Outgoing flange 4. Hinge 5. Generator 6. Bearing 7. Rotor shaft 8. Rotor 8A. Support arm 9. Lift type long blade 9A. Inward inclined portion 10. Cooling tower 10A. Exhaust port 11. Frame support column 12. Bearings 12A. Annular support 12B. Flange 12C. Screw 12D. Hole 13. Bearings 13A. Inner hole 14. Enlargement ring 15. Fluid pressure cylinder 15A. Sliding rod 16. Storage battery 17. Support frame 17A. Frame digit 17B. Frame 17C. Bearings 17D. Nakajima 17E. Bearings 17F. Fixed part
2. 基台
2A.外向フランジ
2B.ボルト孔
2C 固定部
3. 上部支柱
3A.基部
3B.小径部
3C.外向フランジ
4. ヒンジ
5. 発電機
6. 軸受
7. ロータ軸
8. ロータ
8A.支持腕
9. 揚力型長ブレード
9A.内向傾斜部
10.クーリングタワー
10A.排気口
11.枠支持柱
12.軸受
12A.環状支持部
12B.フランジ
12C.ネジ
12D.受孔
13.軸受
13A.内孔
14.増径環
15.流体圧シリンダ
15A.摺動杆
16.蓄電池
17.支持枠
17A.枠桁
17B.枠桟
17C.軸受
17D.中桟
17E.軸受
17F.固定部 1.
Claims (5)
- ロータ軸の周囲に、翼端に内向傾斜部を備える長ブレードをロータ軸と平行に配設し、基台上で起倒可能に配設したロータ軸を水平に傾倒し、ロータをクーリングタワーの排気口の上部に位置させたとき、排気により回転可能とし、かつロータ軸を直立させたときに、自然風によりロータが回転するようにしたことを特徴とする排気発電装置。 A long blade having an inward inclined portion at the wing tip is disposed parallel to the rotor shaft around the rotor shaft, and the rotor shaft, which is disposed on the base so as to be able to be raised and lowered, is horizontally inclined to discharge the rotor from the cooling tower. An exhaust power generator characterized in that when positioned at the upper part of a mouth, it is rotatable by exhaust air and when the rotor shaft is erected, the rotor is rotated by natural wind.
- 前記ロータ軸の水平とした先端を、軸支持柱の上面の軸受で支持してなることを特徴とする請求項1に記載の排気発電装置。 The exhaust power generation device according to claim 1, wherein the horizontal tip of the rotor shaft is supported by a bearing on an upper surface of a shaft support column.
- 前記ロータ軸において、軸受で支持される部位に増径環を外嵌固着し、かつ増径環の外面を軸受で支持してなることを特徴とする請求項1または2に記載の排気発電装置。 3. The exhaust gas generator according to claim 1, wherein an enlarged diameter ring is externally fixed to a portion of the rotor shaft supported by the bearing, and the outer surface of the enlarged diameter ring is supported by the bearing. .
- 前記ロータ軸には、複数のロータが、ロータ軸を水平とした時に、クーリングタワーの排気口の上方に位置するように配設されていることを特徴とする請求項1~3のいずれかに記載の排気発電装置。 4. The rotor shaft according to any one of claims 1 to 3, wherein a plurality of rotors are disposed above the exhaust port of the cooling tower when the rotor shaft is horizontal. Exhaust power generation equipment.
- 前記ロータ軸は、基台上にヒンジを介して起倒可能な支持枠に支持され、ロータ軸には複数のロータを配設し、支持枠を、クーリングタワー上に水平に傾倒させるようにしたことを特徴とする請求項1~4のいずれかに記載の排気発電装置。 The rotor shaft is supported by a support frame which can be raised and lowered via a hinge on a base, and a plurality of rotors are arranged on the rotor shaft, and the support frame is horizontally inclined on the cooling tower. 5. The exhaust gas generator according to any one of claims 1 to 4, characterized in that
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017153561A JP2019031944A (en) | 2017-08-08 | 2017-08-08 | Exhaust power generator |
JP2017-153561 | 2017-08-08 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019031021A1 true WO2019031021A1 (en) | 2019-02-14 |
Family
ID=65272228
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/019728 WO2019031021A1 (en) | 2017-08-08 | 2018-05-22 | Exhaust power generation device |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2019031944A (en) |
WO (1) | WO2019031021A1 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011007147A (en) * | 2009-06-29 | 2011-01-13 | Global Energy Co Ltd | Exhaust gas flow power plant |
JP2013527381A (en) * | 2010-05-31 | 2013-06-27 | グリーン アース パワー カンパニー リミテッド | System and method for recovering wind energy from non-natural wind sources |
WO2014019716A1 (en) * | 2012-07-31 | 2014-02-06 | Marcora S.P.A. | Plant for treating air with forced-ventilation heat exchangers |
WO2015174405A1 (en) * | 2014-05-12 | 2015-11-19 | 横浜ゴム株式会社 | Power generation system |
-
2017
- 2017-08-08 JP JP2017153561A patent/JP2019031944A/en active Pending
-
2018
- 2018-05-22 WO PCT/JP2018/019728 patent/WO2019031021A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011007147A (en) * | 2009-06-29 | 2011-01-13 | Global Energy Co Ltd | Exhaust gas flow power plant |
JP2013527381A (en) * | 2010-05-31 | 2013-06-27 | グリーン アース パワー カンパニー リミテッド | System and method for recovering wind energy from non-natural wind sources |
WO2014019716A1 (en) * | 2012-07-31 | 2014-02-06 | Marcora S.P.A. | Plant for treating air with forced-ventilation heat exchangers |
WO2015174405A1 (en) * | 2014-05-12 | 2015-11-19 | 横浜ゴム株式会社 | Power generation system |
Also Published As
Publication number | Publication date |
---|---|
JP2019031944A (en) | 2019-02-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1482172B1 (en) | Rotor supporting structure of a windmill | |
US4074951A (en) | Wind power converter | |
KR101561585B1 (en) | Wings variable tidal and wind power generator increased generation efficiency | |
KR101849052B1 (en) | Ventilator using wind power induced by direction key and non-powered fan driving system | |
JP2005337245A (en) | Vertical axis type wind power generator | |
BRPI0621034A2 (en) | device to generate energy thanks to the force of the wind | |
JP2023095968A (en) | Wind power plant | |
JP2005090332A (en) | Darrieus wind turbine | |
WO2012150623A1 (en) | Horizontal axis wind power generator | |
JP4387726B2 (en) | Wind generator for all wind direction | |
CN101216014A (en) | Perpendicular wind power generator | |
WO2019031021A1 (en) | Exhaust power generation device | |
KR101294010B1 (en) | An apparatus for folding blades of wind power generator | |
KR101087223B1 (en) | Butterfly type wing for a wind power generator | |
KR20100118741A (en) | Apparatus for generating by wind power | |
US20150035280A1 (en) | Device for the adjustment and stabilization of wind turbines | |
CN207131528U (en) | Drain degeneration-resistant wind-driven generator | |
CN101105170B (en) | Vertical wind power generator | |
CN217976451U (en) | Wind wheel structure of wind driven generator | |
RU2722982C1 (en) | Rotary windmill | |
KR20170129031A (en) | The air gear liyong wind power generator | |
KR20110007071A (en) | Wind generator that improve generation efficiency | |
US20160333851A1 (en) | Wind power generating apparatus | |
WO2009079925A1 (en) | Vertical wind power generator | |
KR101114496B1 (en) | Wind Turbine Generator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18844107 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18844107 Country of ref document: EP Kind code of ref document: A1 |