WO2019030919A1 - Fuel cell unit structure, and method for controlling fuel cell unit structure - Google Patents

Fuel cell unit structure, and method for controlling fuel cell unit structure Download PDF

Info

Publication number
WO2019030919A1
WO2019030919A1 PCT/JP2017/029207 JP2017029207W WO2019030919A1 WO 2019030919 A1 WO2019030919 A1 WO 2019030919A1 JP 2017029207 W JP2017029207 W JP 2017029207W WO 2019030919 A1 WO2019030919 A1 WO 2019030919A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
power generation
fuel cell
cell
flow path
Prior art date
Application number
PCT/JP2017/029207
Other languages
French (fr)
Japanese (ja)
Inventor
和弘 ▲高▼畑
基 柳沼
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to US16/637,001 priority Critical patent/US11316181B2/en
Priority to EP17920632.1A priority patent/EP3667786B1/en
Priority to PCT/JP2017/029207 priority patent/WO2019030919A1/en
Priority to CN201780093814.6A priority patent/CN110998940B/en
Priority to JP2019535558A priority patent/JP6870739B2/en
Publication of WO2019030919A1 publication Critical patent/WO2019030919A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • H01M8/04753Pressure; Flow of fuel cell reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/2483Details of groupings of fuel cells characterised by internal manifolds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04201Reactant storage and supply, e.g. means for feeding, pipes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • H01M8/2418Grouping by arranging unit cells in a plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • H01M8/2425High-temperature cells with solid electrolytes
    • H01M8/2428Grouping by arranging unit cells on a surface of any form, e.g. planar or tubular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a unit structure of a fuel cell and a control method of the unit structure of a fuel cell.
  • a fuel cell generates electricity by supplying gas to a power generation cell configured by sandwiching an electrolyte between a fuel electrode and an oxidant electrode. It is desirable for the fuel cell to uniformly supply gas to the power generation cell to increase power generation efficiency. Then, the technique of supplying gas with respect to the whole surface of a power generation cell is known by offsetting the inlet and outlet of gas with respect to a power generation cell (for example, refer patent document 1).
  • An object of the present invention is to provide a fuel cell unit structure and a fuel cell control method capable of sufficiently improving power generation efficiency.
  • a unit structure of a fuel cell according to the present invention for achieving the above object has a power generation cell, a separator, a flow passage, a plurality of gas inlets, a plurality of gas outlets, and an adjustment unit.
  • the power generation cell generates electric power by the gas supplied by sandwiching the electrolyte between the fuel electrode and the oxidant electrode.
  • the separator is provided between the power generation cell and the power generation cell to separate adjacent power generation cells.
  • the flow path portion is formed between the separator and the separator and includes a plurality of flow paths for supplying the gas to the power generation cell.
  • the plurality of gas inlets allow the gas to flow into the flow passage.
  • the plurality of gas outlets allow the gas to flow out of the flow passage.
  • the adjustment unit adjusts the amount of the gas flowing through the plurality of flow paths.
  • the adjustment unit reduces the variation in flow among the plurality of flow paths by adjusting the pressure loss of the flow path portion formed between the plurality of gas inlets or the plurality of gas
  • a control method of a unit structure of a fuel cell according to the present invention for achieving the above object comprises: supplying a gas from a gas inlet to a flow passage formed in the separator to a power generation cell held between separators; It is a control method of a unit structure of a fuel cell which generates gas by discharging gas from a gas outlet.
  • the flow of the gas supplied from the gas inlet is divided into a main flow flowing through the flow path portion of the separator and a plurality of the flow in the same plane of the power generation cell. Dividing into at least two flows of the auxiliary flow flowing between the power generation cells and adjusting the pressure loss of the gas in the auxiliary flow to make the distribution of the gas in the same plane in the main flow uniform.
  • FIG. 2 is a perspective view showing the fuel cell of FIG. 1 disassembled into a cover, a cell stack assembly and an external manifold.
  • FIG. 3 is a perspective view of the cell stack assembly of FIG. 2 disassembled into an air shelter, an upper end plate, a stack and a lower end plate.
  • FIG. 4 is a perspective view showing the stack of FIG. 3 disassembled into an upper module unit, a plurality of middle module units and a lower module unit.
  • FIG. 5 is an exploded perspective view of the upper module unit of FIG. 4;
  • FIG. 5 is an exploded perspective view of the middle module unit of FIG. 4;
  • FIG. 5 is an exploded perspective view of the lower module unit of FIG.
  • FIG. 10 is an exploded perspective view showing one of the cell units of FIGS. 5 to 7 in a disassembled state and another cell unit (configuration other than a metal support cell assembly) located below the one cell unit.
  • FIG. 9 is an exploded perspective view of the metal support cell assembly of FIG. 8;
  • FIG. 9 is a side view showing the metal support cell assembly of FIG. 8 in cross section. It is sectional drawing which shows a metal support cell assembly etc.
  • It is a perspective view which shows the separator of FIG. 12 partially.
  • FIG. 8 from the anode side (The side which visually recognized the separator 102 from the downward direction unlike FIG. 8). It is a perspective view which shows the separator of FIG. 14 partially. It is a perspective view which shows the example which provided the auxiliary
  • FIG. 21C is a top view schematically showing a configuration in which the adjustment unit of FIG. 21A to FIG. 23B is provided in the entire auxiliary flow channel (from the upstream side to the downstream side).
  • FIG. 21C is a top view schematically showing a configuration in which the adjustment unit of FIGS. 21A to 23B is provided in a part (upstream and downstream) of the auxiliary flow channel.
  • arrows representing X, Y, and Z are used to indicate the orientations of members constituting the fuel cell.
  • the direction of the arrow represented by X indicates the lateral direction X of the fuel cell.
  • the direction of the arrow represented by Y indicates the longitudinal direction Y of the fuel cell.
  • the direction of the arrow represented by Z indicates the stacking direction Z of the fuel cell.
  • FIG. 1 is a perspective view showing a fuel cell 100 according to the first embodiment.
  • FIG. 2 is a perspective view showing the fuel cell 100 of FIG. 1 disassembled into a cover 112, a cell stack assembly 100M and an external manifold 111.
  • FIG. 3 is a perspective view showing the cell stack assembly 100M of FIG. 2 disassembled into an air shelter 110, an upper end plate 109, a stack 100S and a lower end plate 108.
  • FIG. 4 is a perspective view showing the stack 100S of FIG. 3 disassembled into an upper module unit 100P and a plurality of middle module units 100Q and a lower module unit 100R.
  • FIG. 1 is a perspective view showing a fuel cell 100 according to the first embodiment.
  • FIG. 2 is a perspective view showing the fuel cell 100 of FIG. 1 disassembled into a cover 112, a cell stack assembly 100M and an external manifold 111.
  • FIG. 3 is a perspective view showing the cell stack assembly 100M of FIG. 2 disassembled
  • FIG. 5 is an exploded perspective view of the upper module unit 100P of FIG. 6 is an exploded perspective view of the middle module unit 100Q of FIG.
  • FIG. 7 is an exploded perspective view of the lower module unit 100R of FIG.
  • FIG. 8 disassembles one cell unit 100T in FIGS. 5 to 7 and disassembles another cell unit 100T (configuration other than the metal support cell assembly 101) located below the one cell unit 100T.
  • FIG. 5 is an exploded perspective view of the upper module unit 100P of FIG. 6 is an exploded perspective view of the middle module unit 100Q of FIG.
  • FIG. 7 is an exploded perspective view of the lower module unit 100R of FIG.
  • FIG. 8 disassembles one cell unit 100T in FIGS. 5 to 7 and disassembles another cell unit 100T (configuration other than the metal support cell assembly 101) located below the one cell unit 100T.
  • FIG. 9 is an exploded perspective view of the metal support cell assembly 101 of FIG.
  • FIG. 10 is a side view showing the metal support cell assembly 101 of FIG. 8 in cross section.
  • FIG. 11 is a cross-sectional view showing the metal support cell assembly 101 and the like.
  • 12 is a perspective view showing the separator 102 of FIG. 8 from the cathode side (the side where the separator 102 is viewed from above as in FIG. 8).
  • FIG. 13 is a perspective view partially showing the separator 102 of FIG.
  • FIG. 14 is a perspective view showing the separator 102 of FIG. 8 from the anode side (a side where the separator 102 is viewed from below unlike in FIG. 8).
  • FIG. 15 is a perspective view partially showing the separator 102 of FIG. FIG.
  • FIG. 16 is a cross-sectional view showing an example of the adjustment unit 200 provided in the auxiliary flow path.
  • FIG. 17 corresponds to a cross-sectional view partially (crossing two metal support cell assemblies etc.) in a state where the metal support cell assembly 101, the separator 102 and the current collection auxiliary layer 103 are stacked.
  • the unit structure of the fuel cell 100 is such that the cell stack assembly 100M is sandwiched from above and below by an external manifold 111 for supplying gas from the outside and a cover 112 for protecting the cell stack assembly 100M. Configured.
  • the cell stack assembly 100M sandwiches the stack 100S from the top and bottom by the lower end plate 108 and the upper end plate 109 to seal the cathode gas CG. It is covered and constituted by the shelter 110.
  • the stack 100S is configured by stacking an upper module unit 100P, a plurality of middle module units 100Q, and a lower module unit 100R, as shown in FIGS.
  • the upper module unit 100P outputs the power generated by the cell unit 100T to the outside, as shown in FIG.
  • a module end 105 corresponding to a plate is sandwiched from above and below.
  • the middle module unit 100Q is configured by sandwiching a plurality of stacked cell units 100T from above and below by a pair of module ends 105.
  • the lower module unit 100R is configured by sandwiching a plurality of stacked cell units 100T from above and below by the module end 105 and the lower current collector plate 107.
  • the cell unit 100T includes a metal support cell assembly 101 provided with a power generation cell 101M that generates electric power by the supplied gas, and a metal support cell adjacent along the stacking direction Z.
  • a sealing member 104 is included which seals the edges of the cell assembly 101 and the manifold portion of the separator 102 to restrict the flow of gas.
  • the current collection auxiliary layer 103 and the sealing member 104 are disposed between the metal support cell assembly 101 and the separator 102 adjacent to each other along the stacking direction Z due to their structures.
  • metal support cell assembly 101 and separator 102 form a joined body 100U by annularly joining the respective outer edges along joining line V as shown in the center of FIG. Do. Therefore, the current collection auxiliary layer 103 and the sealing member 104 are disposed between the joined bodies 100U (the metal support cell assembly 101 and the separator 102) adjacent to each other along the stacking direction Z. That is, as shown in the lower part of FIG. 8, the current collection auxiliary layer 103 and the sealing member 104 are adjacent to the metal support cell assembly 101 of one joined body 100U and the one joined body 100U along the stacking direction Z. It arrange
  • the metal support cell assembly 101 is provided with a power generation cell 101M that generates power using the supplied gas.
  • the metal support cell assembly 101 is composed of a metal support cell 101N arranged in a row along the longitudinal direction Y and a cell frame 101W holding the metal support cell 101N from the periphery.
  • the metal support cell 101N is configured of a power generation cell 101M and a support metal 101V that supports the power generation cell 101M from one side.
  • the power generation cell 101M is configured by sandwiching the electrolyte 101S between the anode 101T and the cathode 101U.
  • the anode 101T is a fuel electrode, and an anode gas AG (for example, hydrogen) and oxide ions are reacted to generate an oxide of the anode gas AG and to take out electrons.
  • the anode 101T is resistant to a reducing atmosphere, transmits the anode gas AG, has high electrical conductivity, and has a catalytic action of causing the anode gas AG to react with oxide ions.
  • the anode 101T is formed of a rectangular shape larger than the electrolyte 101S.
  • the anode 101T is made of, for example, a cemented carbide in which a metal such as nickel and an oxide ion conductor such as yttria-stabilized zirconia are mixed. As shown in FIGS. 9 and 10, the anode 101T has a thin plate shape and a rectangular shape.
  • the electrolyte 101S transmits oxide ions from the cathode 101U toward the anode 101T.
  • the electrolyte 101S does not pass gas and electrons while passing oxide ions.
  • the electrolyte 101S is formed in a rectangular shape.
  • the electrolyte 101S is made of, for example, solid oxide ceramics such as stabilized zirconia in which yttria, neodymium oxide, samaria, gadoria, scandia and the like are solid-solved.
  • the electrolyte 101S is in the form of a thin plate, and has a rectangular shape slightly larger than the anode 101T. As shown in FIG.
  • the outer edge of the electrolyte 101S is refracted toward the side of the anode 101T to be in contact with the side surface along the stacking direction Z of the anode 101T.
  • the tip of the outer edge of the electrolyte 101S is in contact with the support metal 101V.
  • the cathode 101U is an oxidant electrode, which reacts electrons with cathode gas CG (eg, oxygen contained in air) to convert oxygen molecules into oxide ions.
  • the cathode 101 U is resistant to an oxidizing atmosphere, permeates the cathode gas CG, has high electrical conductivity, and has a catalytic action of converting oxygen molecules into oxide ions.
  • the cathode 101U is formed in a rectangular shape smaller than the electrolyte 101S.
  • the cathode 101U is made of, for example, an oxide such as lanthanum, strontium, manganese or cobalt. As shown in FIGS.
  • the cathode 101U has a thin plate shape and a rectangular shape as in the case of the anode 101T.
  • the cathode 101U faces the anode 101T via the electrolyte 101S. Since the outer edge of the electrolyte 101S is bent toward the anode 101T, the outer edge of the cathode 101U does not come in contact with the outer edge of the anode 101T.
  • the support metal 101V supports the power generation cell 101M from the side of the anode 101T, as shown in FIGS. 9 and 10.
  • the support metal 101V has gas permeability, high electrical conductivity, and sufficient strength.
  • the support metal 101V is formed of a rectangular shape sufficiently larger than the anode 101T.
  • the support metal 101V is made of, for example, a corrosion resistant alloy containing nickel or chromium, a corrosion resistant steel, or stainless steel.
  • the cell frame 101W holds the metal support cell 101N from the periphery.
  • the cell frame 101W is formed in a thin rectangular shape.
  • the cell frame 101W is provided with a pair of openings 101k along the longitudinal direction Y.
  • the pair of openings 101k of the cell frame 101W each have a rectangular through hole, and are smaller than the outer shape of the support metal 101V.
  • the cell frame 101W is made of metal and is insulated using an insulating material or a coating.
  • the insulating material is formed, for example, by fixing aluminum oxide to the cell frame 101W.
  • the metal support cell assembly 101 is joined to the cell frame 101W by joining the outer edge of the support metal 101V to the inner edge of the opening 101k of the cell frame 101W.
  • the cell frame 101 W is a circular extension (first extension 101 p, the first extension 101 p, The second extending portion 101 q and the third extending portion 101 r are provided.
  • the cell frame 101W is provided with circular extending portions (the fourth extending portion 101s and the fifth extending portion 101t) extending in the surface direction from two places separated from the center of the other side along the longitudinal direction Y ing.
  • the first extending portion 101p, the second extending portion 101q and the third extending portion 101r, and the fourth extending portion 101s and the fifth extending portion 101t separate a pair of openings 101k. , Alternately located along the longitudinal direction Y.
  • the cell frame 101W includes an anode-side first inlet 101a, an anode-side second inlet 101b, and an anode-side third inlet 101c for passing (inflowing) the anode gas AG.
  • the first extension portion 101p, the second extension portion 101q, and the third extension portion 101r are provided.
  • the cell frame 101W is provided with an anode-side first outlet 101d and an anode-side second outlet 101e, through which the anode gas AG passes (outflows), in the fourth extending portion 101s and the fifth extending portion 101t.
  • the anode-side first inlet 101a, the anode-side second inlet 101b, the anode-side third inlet 101c, the anode-side first outlet 101d, and the anode-side second outlet 101e of the anode gas AG are so-called manifolds .
  • the cathode side first inlet 101f for passing (inflowing) the cathode gas CG is provided in the space between the first extending portion 101p and the second extending portion 101q.
  • the cell frame 101W is provided with a cathode-side second inlet 101g for passing (inflowing) the cathode gas CG in a space between the second extending portion 101q and the third extending portion 101r.
  • the cell frame 101W is provided with a cathode side first outlet 101h through which the cathode gas CG passes (outflows), on the right side in FIG. 9 with respect to the fourth extending portion 101s.
  • the cell frame 101W is provided with a cathode-side second outlet 101i for passing (outflowing) the cathode gas CG in the space between the fourth extending portion 101s and the fifth extending portion 101t.
  • the cell frame 101W is provided with a cathode-side third outlet 101j that allows the cathode gas CG to pass (outflow), on the left side in FIG. 9 with respect to the fifth extension portion 101t.
  • the cathode side first inlet 101f, the cathode side second inlet 101g, the cathode side first outlet 101h, the cathode side second outlet 101i and the cathode side third outlet 101j are of the cell frame 101W. It corresponds to the space between the outer peripheral surface and the inner side surface of the air shelter 110.
  • the separator 102 is provided between each power generation cell 101M and power generation cell 101M of the metal support cell assembly 101 to be stacked, as shown in FIG. 8, FIG. 11 and FIG. 12, to separate adjacent power generation cells 101M. .
  • the separator 102 is disposed to face the metal support cell assembly 101.
  • the separator 102 has the same outer shape as the metal support cell assembly 101.
  • the separator 102 is made of metal, and is insulated using an insulating material or a coating except for a region (flow passage portion 102L) facing the power generation cell 101M.
  • the insulating material is formed, for example, by fixing aluminum oxide to the separator 102.
  • the flow path portion 102L is provided side by side in the longitudinal direction Y so as to face the power generation cell 101M.
  • the flow path portion 102L extends the flow path extending along the gas flow direction (short side direction X) into the gas flow direction (short side). It is formed by arranging in the direction (longitudinal direction Y) orthogonal to the hand direction X). As shown in FIG. 11 to FIG. 15, the flow path portion 102L has a constant convex anode side protrusion 102y so as to protrude downward from the flat portion 102x in the plane of the longitudinal direction Y and the transverse direction X. Provided at intervals of The anode side protrusion 102y extends along the gas flow direction (short direction X).
  • the anode-side protrusion 102 y protrudes downward from the lower end of the separator 102.
  • the flow path portion 102L is provided with convex cathode side projections 102z at regular intervals so as to protrude upward from the flat portion 102x.
  • the cathode side protrusion 102z extends along the gas flow direction (short direction X).
  • the cathode side protrusion 102 z protrudes upward from the upper end of the separator 102.
  • the flow channel portion 102L alternately provides the anode-side protrusions 102y and the convex cathode-side protrusions 102z along the longitudinal direction Y with the flat portion 102x therebetween.
  • the gap between the flow path portion 102L and the metal support cell assembly 101 located below the flow path portion 102L is configured as a flow path of the anode gas AG.
  • the anode gas AG flows from the anode-side second inlet 102b of the separator 102 shown in FIG. 14 through the plurality of grooves 102q shown in FIGS. 14 and 15 into the flow channel portion 102L on the anode side.
  • the separator 102 flows the anode side from the plurality of grooves 102q from the anode side first inlet 102a, the anode side second inlet 102b, and the anode side third inlet 102c, respectively.
  • the gap between the flow path portion 102L and the metal support cell assembly 101 located above the flow path portion 102L is configured as a flow path of the cathode gas CG.
  • the cathode gas CG passes from the cathode side first inlet 102 f and the cathode side second inlet 102 g of the separator 102 shown in FIG. 12 to the cathode side beyond the cathode outer edge 102 p of the separator 102 shown in FIGS. 12 and 13. Flows into the flow path portion 102L of the In the separator 102, as shown in FIG. 13, the outer edge 102p on the cathode side is thinner than the other portions.
  • the separator 102 has an anode side first inlet for passing the anode gas AG so as to be positioned relative to the metal support cell assembly 101 along the stacking direction Z.
  • An anode side second inlet 102b, an anode side third inlet 102c, an anode side first outlet 102d, and an anode side second outlet 102e are provided.
  • the separator 102 has a cathode side first inlet 102 f, a cathode side second inlet 102 g, and a cathode side first inlet 102 f for passing the cathode gas CG so that the separator 102 is positioned relative to the metal support cell assembly 101 along the stacking direction Z.
  • One outlet 102h, a cathode side second outlet 102i, and a cathode side third outlet 102j are provided.
  • the cathode side first inlet 102f of the cathode gas CG, the cathode side second inlet 102g, the cathode side first outlet 102h, the cathode side second outlet 102i and the cathode side third outlet 102j The space corresponds to the space between the outer peripheral surface of the air conditioner 102 and the inner surface of the air shelter 110.
  • the current collection auxiliary layer 103 forms a space for passing gas between the power generation cell 101 M and the separator 102, and equalizes the surface pressure to electrically connect the power generation cell 101 M and the separator 102. It assists in contact.
  • the current collection auxiliary layer 103 is a so-called expanded metal.
  • the current collection auxiliary layer 103 is disposed between the power generation cell 101M and the flow path portion 102L of the separator 102.
  • the current collection auxiliary layer 103 has an outer shape similar to that of the power generation cell 101M.
  • the current collection auxiliary layer 103 is formed of a wire mesh in which openings such as rhombus are provided in a grid.
  • the sealing member 104 partially seals the gap between the metal support cell assembly 101 and the separator 102 to restrict the flow of gas, as shown in FIG.
  • the sealing member 104 is a so-called gasket having a spacer and a sealing function.
  • the sealing member 104 is directed from the anode side inlet (for example, the anode side first inlet 102 a) and the anode side outlet (for example, the anode side first outlet 102 d) of the separator 102 toward the flow path on the cathode side of the separator 102.
  • the sealing member 104 is formed in a ring shape.
  • the sealing member 104 has an inner peripheral edge of an anode side inlet (for example, the anode side first inlet 102 a) facing the cathode side surface of the separator 102 and an inner peripheral edge of the anode side outlet (for example, the anode side first outlet 102 d). Bond to The sealing member 104 is made of, for example, thermiculite having heat resistance and sealability.
  • the module end 105 is a plate for holding the lower end or the upper end of the plurality of stacked cell units 100T, as shown in FIGS.
  • the module end 105 is disposed at the lower end or the upper end of the plurality of stacked cell units 100T.
  • the module end 105 has an outer shape similar to that of the cell unit 100T.
  • the module end 105 is made of a conductive material that does not transmit gas, and is insulated using an insulating material or a coating except for a region facing the power generation cell 101 M and the other module end 105.
  • the insulating material is configured, for example, by fixing aluminum oxide to the module end 105.
  • the module end 105 has an anode side first inlet 105a for passing the anode gas AG, an anode side second inlet 105b, and an anode side third so that the relative position is aligned with the cell unit 100T along the stacking direction Z.
  • An inlet 105c, an anode side first outlet 105d, and an anode side second outlet 105e are provided.
  • the module end 105 has a cathode side first inlet 105 f for passing the cathode gas CG, a cathode side second inlet 105 g, and a cathode side first so that the relative position is aligned with the cell unit 100 T along the stacking direction Z.
  • An outlet 105 h, a cathode side second outlet 105 i and a cathode side third outlet 105 j are provided.
  • the cathode side first inlet 105f, the cathode side second inlet 105g, the cathode side first outlet 105h, the cathode side second outlet 105i and the cathode side third outlet 105j It corresponds to the space between the outer peripheral surface and the inner side surface of the air shelter 110.
  • the upper current collecting plate 106 shown in FIG. 5 is for outputting the power generated by the cell unit 100T to the outside.
  • the upper current collecting plate 106 is disposed at the upper end of the upper module unit 100P, as shown in FIG.
  • the upper current collecting plate 106 has an outer shape similar to that of the cell unit 100T.
  • the upper current collecting plate 106 is provided with a terminal (not shown) connected to an external current-carrying member.
  • the upper current collector plate 106 is made of a conductive material that does not transmit gas, and is insulated using an insulating material or a coating except for the region facing the power generation cell 101M of the cell unit 100T and the part of the terminal.
  • the insulating material is configured, for example, by fixing aluminum oxide to the upper current collecting plate 106.
  • the lower current collecting plate 107 shown in FIG. 7 is for outputting the power generated by the cell unit 100T to the outside.
  • the lower current collecting plate 107 is disposed at the lower end of the lower module unit 100R, as shown in FIG.
  • the lower current collector plate 107 has an outer shape similar to that of the upper current collector plate 106.
  • Lower current collector plate 107 is provided with a terminal (not shown) connected to an external current-carrying member.
  • the lower current collector plate 107 is made of a conductive material that does not transmit gas, and is insulated using an insulating material or a coating except for the region facing the power generation cell 101M of the cell unit 100T and the terminal portion.
  • the insulating material is formed, for example, by fixing aluminum oxide to the lower current collector plate 107.
  • the lower current collector plate 107 has an anode side first inlet 107a, an anode side second inlet 107b, and an anode side, which allow the anode gas AG to pass through so that the relative position is aligned with the cell unit 100T along the stacking direction Z.
  • a third inlet 107c, an anode side first outlet 107d and an anode side second outlet 107e are provided.
  • the lower current collecting plate 107 has a cathode side first inlet 107f for passing the cathode gas CG, a cathode side second inlet 107g, and a cathode side to allow the cathode gas CG to pass through in the stacking direction Z relative to the cell unit 100T.
  • a first outlet 107h, a cathode side second outlet 107i and a cathode side third outlet 107j are provided.
  • the cathode side first inlet 107f, the cathode side second inlet 107g, the cathode side first outlet 107h, the cathode side second outlet 107i and the cathode side third outlet 107j It corresponds to the space between the outer peripheral surface of the electric plate 107 and the inner side surface of the air shelter 110.
  • the lower end plate 108 holds the stack 100S from below as shown in FIGS. 2 and 3.
  • the lower end plate 108 is disposed at the lower end of the stack 100S.
  • the lower end plate 108 has an outer shape similar to that of the cell unit 100T except for a part.
  • the lower end plate 108 is formed by linearly extending both ends along the longitudinal direction Y in order to form an inlet and an outlet of the cathode gas CG.
  • the lower end plate 108 is formed sufficiently thicker than the cell unit 100T.
  • the lower end plate 108 is made of, for example, metal, and the upper surface in contact with the lower current collector plate 107 is insulated using an insulating material or a coating.
  • the insulating material is formed, for example, by fixing aluminum oxide to the lower end plate 108.
  • the lower end plate 108 has an anode-side first inlet 108a, an anode-side second inlet 108b, and an anode-side first inlet 108a through which the anode gas AG passes so that the relative position is aligned with the cell unit 100T along the stacking direction Z.
  • a three inlet 108c, an anode side first outlet 108d and an anode side second outlet 108e are provided.
  • the lower end plate 108 has a cathode side first inlet 108 f, a cathode side second inlet 108 g, and a cathode side first inlet 108 f for passing the cathode gas CG so as to be positioned relative to the cell unit 100 T in the stacking direction Z.
  • One outlet 108 h, a cathode side second outlet 108 i and a cathode side third outlet 108 j are provided.
  • the upper end plate 109 holds the stack 100S from above as shown in FIGS. 2 and 3.
  • the upper end plate 109 is disposed at the upper end of the stack 100S.
  • the upper end plate 109 has the same outer shape as the lower end plate 108.
  • the upper end plate 109 unlike the lower end plate 108, does not have a gas inlet and outlet.
  • the upper end plate 109 is made of, for example, metal, and the lower surface in contact with the upper current collector plate 106 is insulated using an insulating material or a coating.
  • the insulating material is formed, for example, by fixing aluminum oxide to the upper end plate 109.
  • the air shelter 110 forms a flow path of the cathode gas CG with the stack 100S.
  • the air shelter 110 covers from above the stack 100S sandwiched by the lower end plate 108 and the upper end plate 109, as shown in FIGS. 2 and 3.
  • the air shelter 110 forms an inlet and an outlet for the cathode gas CG of the components of the stack 100S by the gap between the inner side surface of the air shelter 110 and the side surface of the stack 100S.
  • the air shelter 110 is in the form of a box and opens at the bottom and part of the side.
  • the air shelter 110 is made of, for example, metal, and the inside surface is insulated using an insulating material or a coating.
  • the insulating material is configured, for example, by fixing aluminum oxide to the air shelter 110.
  • the external manifold 111 supplies gas from the outside to the plurality of cell units 100T, as shown in FIGS. 1 and 2.
  • the outer manifold 111 is disposed below the cell stack assembly 100M.
  • the outer manifold 111 has an outer shape that simplifies the shape of the lower end plate 108.
  • the outer manifold 111 is formed sufficiently thicker than the lower end plate 108.
  • the outer manifold 111 is made of, for example, metal.
  • the external manifold 111 has an anode-side first inlet 111a, an anode-side second inlet 111b, and an anode-side third inlet 111a through which the anode gas AG is passed so that the relative position is aligned with the cell unit 100T along the stacking direction Z.
  • An inlet 111c, an anode side first outlet 111d and an anode side second outlet 111e are provided.
  • the external manifold 111 has a cathode side first inlet 111f, a cathode side second inlet 111g, and a cathode side first so that the relative position is aligned along the stacking direction Z with the cell unit 100T that passes the cathode gas CG.
  • An outlet 111h, a cathode side second outlet 111i, and a cathode side third outlet 111j are provided.
  • the cover 112 covers and protects the cell stack assembly 100M, as shown in FIGS. 1 and 2.
  • the cover 112 sandwiches the cell stack assembly 100M together with the external manifold 111 from above and below.
  • the cover 112 has a box shape and is open at the bottom.
  • the cover 112 is made of, for example, metal, and the inner surface is insulated by an insulating material.
  • FIG. 16 is a perspective view showing an example in which auxiliary flow paths T11 and T12 are provided as components of the adjustment unit 200.
  • FIG. 17 shows a central portion in a state in which the metal support cell assembly 101, the separator 102 and the current collection auxiliary layer 103 are stacked, and a cross section showing a state in which the auxiliary flow passage T11 is provided as a component of the adjustment unit 200 in the central portion. It corresponds to the figure.
  • the adjustment unit 200 is configured by, for example, auxiliary flow paths T11 and T12 formed of a space (air gap).
  • the auxiliary flow path T11 or the like which is a component of the adjustment unit 200 is provided in the separator 102 as shown in FIGS. 12 to 15 in addition to FIGS.
  • the auxiliary flow path T11 positioned at the right end of the flow path portion 102L on the left side of FIG. 16 is a flow path facing the end (right end) of the corresponding power generation cell 101M, and is the anode side second inflow port 102b or the cathode side. It corresponds to a flow path relatively close to the second outlet 102i.
  • the auxiliary flow path T12 positioned at the right end of the flow path portion 102L on the right side of FIG. 16 is a flow path facing the end (right end) of the corresponding power generation cell 101M, and is the anode side first inflow port 102a or the cathode side. It corresponds to a flow path relatively close to the first outlet 102 h.
  • the auxiliary flow path T11 positioned at the left end of the flow path portion 102L on the right side of FIG. 16 is a flow path facing the end (left end) of the corresponding power generation cell 101M, and is the anode side second inflow port 102b or the cathode side It corresponds to a flow path relatively close to the second outlet 102i.
  • FIG. 18A is a perspective view schematically showing the flow of the anode gas AG and the cathode gas CG in the fuel cell 100.
  • FIG. 18B is a perspective view schematically showing the flow of the cathode gas CG in the fuel cell 100.
  • FIG. 18C is a perspective view schematically showing the flow of the anode gas AG in the fuel cell 100.
  • the anode gas AG is supplied to the anode 101T of each power generation cell 101M through an inlet of each of the outer manifold 111, the lower end plate 108, the module end 105, the separator 102, and the metal support cell assembly 101. That is, the anode gas AG is distributed to the flow path on the anode side provided in the gap between the separator 102 and the metal support cell assembly 101 alternately stacked from the external manifold 111 to the upper end collector plate 106. Is supplied. Thereafter, the anode gas AG reacts in the power generation cell 101M, passes through the outlet of each component described above, and is exhausted in the state of exhaust gas.
  • the anode gas AG is supplied to the flow channel portion 102L across the separator 102 so as to intersect the cathode gas CG.
  • the anode gas AG passes through the anode side first inlet 102a, the anode side second inlet 102b and the anode side third inlet 102c of the separator 102 located at the bottom of FIG. 18C, and the metal support cell assembly After passing through the anode-side first inlet 101a, the anode-side second inlet 101b, and the anode-side third inlet 101c of the fuel cell 101, the gas flows into the flow path portion 102L of the separator 102 positioned above FIG.
  • the anode gas AG after reacting at the anode 101T flows out from the flow path portion 102L of the separator 102 located in the upper part of FIG. 18C in the state of exhaust gas, and the anode side first outlet 101d of the metal support cell assembly 101.
  • 18A passes through the anode side second outlet 101e, and is discharged to the outside through the anode side first outlet 102d and the anode side second outlet 102e of the separator 102 located at the lower side in FIG. 18C.
  • the cathode gas CG is supplied to the cathode 101U of the power generation cell 101M through an inlet of each of the outer manifold 111, the lower end plate 108, the module end 105, the separator 102, and the metal support cell assembly 101. That is, the cathode gas CG is distributed to the cathode-side flow path provided in the gap between the metal support cell assembly 101 and the separator 102 alternately stacked from the external manifold 111 to the upper end collector plate 106. Is supplied. Thereafter, the cathode gas CG reacts in the power generation cell 101M, passes through the outlet of each component described above, and is exhausted in the state of exhaust gas.
  • the inlet and the outlet of the cathode gas CG in each of the above components are constituted by the gap between the outer peripheral surface of each component and the inner side surface of the air shelter 110.
  • the cathode gas CG passes through the cathode-side first inlet 102f and the cathode-side second inlet 102g of the separator 102 located in the lower part of FIG. 18B and flows into the flow path portion 102L of the separator 102.
  • the cathode gas CG after reacting at the cathode 101U flows out from the flow path portion 102L of the separator 102 located below in FIG. 18B in the state of exhaust gas, and the cathode side first outlet 102h of the separator 102, It passes through the cathode side second outlet 102i and the cathode side third outlet 102j and is discharged to the outside.
  • the unit structure of the fuel cell 100 includes a power generation cell 101M, a separator 102, a flow passage 102L, a plurality of gas inlets, a plurality of gas outlets, and an adjustment unit 200.
  • the power generation cell 101M generates electric power by the gas supplied by sandwiching the electrolyte 101S between the anode 101T and the cathode 101U.
  • the separator 102 is provided between the power generation cell 101M and the power generation cell 101M to separate adjacent power generation cells 101M.
  • the flow path portion 102L is formed between the separators 102 and 102, and includes a plurality of flow paths for supplying a gas to the power generation cell 101M.
  • the plurality of gas inlets allow the gas to flow into the flow path portion 102L.
  • the plurality of gas outlets allow the gas to flow out of the flow path.
  • the adjustment unit 200 adjusts the amount of gas flowing through the plurality of flow paths. The adjustment unit 200 reduces the variation in flow among the plurality of flow paths by adjusting the pressure loss of the flow path portion formed between the plurality of gas inlets or the plurality of gas outlets.
  • the control method of the unit structure of the fuel cell 100 includes a gas inlet (for example, an anode side first inlet 102 a, an anode side second inlet 102 b, and an anode side third) in the power generation cell 101 M sandwiched between the separators 102.
  • the gas is supplied from the inlet 102c) to the flow path portion 102L formed in the separator 102, and the gas is discharged from the gas outlet (for example, the anode side first outlet 102d and the anode side second outlet 102e) to generate power.
  • This is a control method of the unit structure of the fuel cell 100.
  • the flow of the gas supplied from the gas inlet is divided into the main flow flowing through the flow path portion 102L of the separator 102 and the plurality of power generation cells in the same plane of the power generation cell 101M.
  • “within the same plane of the power generation cell 101M” indicates that a plurality of the power generation cells 101M are arranged so as to be arranged on the same separator 102. Further, in the control method of the unit structure of the fuel cell 100, to make the distribution of the gas in the same plane in the main flow uniform is to reduce the variation in the flow rate of the gas.
  • the reduction in the variation of the gas flow rate means that the flow rates of the respective gases in the plurality of flow paths of the separator 102 are made close to the same flow rate by adjusting them to have the same flow velocity, pressure, density and the like. .
  • the unit structure of the fuel cell 100 and the control method of the unit structure of the fuel cell 100, the variation in flow among the plurality of flow paths can be reduced. That is, the unit structure of fuel cell 100 can uniformly supply the gas to power generation cell 101M. Therefore, the unit structure of fuel cell 100 can sufficiently improve the power generation efficiency.
  • the unit structure of the fuel cell 100 is configured as shown in FIG. 19 by adjusting the amount of gas supplied to the end of the power generation cell 101M (for example, the portion facing the auxiliary flow paths T11 and T12).
  • the variation of the gas supplied to the central portion (for example, the portion facing the main flow path S11) of the power generation cell 101M and the end portion (for example the portion facing the auxiliary flow paths T11 and T12) of the power generation cell 101M can be suppressed. That is, the unit structure of the fuel cell 100 increases or decreases the gas flow (main flow) flowing through the central portion of the power generation cell 101M by controlling the gas flow (side flow) flowing through the end of the power generation cell 101M.
  • the unit structure of the fuel cell 100 can uniformly supply the gas to the central portion and the end portion of the power generation cell 101M. Therefore, the unit structure of fuel cell 100 can sufficiently improve the power generation efficiency.
  • the unit structure of the fuel cell 100 it is possible to prevent the partial shortage of the gas supplied to the power generation cell 101M and to suppress the decrease in the power generation performance. Therefore, the unit structure of fuel cell 100 can sufficiently improve the power generation efficiency.
  • the unit structure of the fuel cell 100 it is possible to prevent the gas supplied to the power generation cell 101M from being partially excessive, and to reduce the amount of the unreacted and flowed out gas. As the distribution variation of the gas supplied to the power generation cell 101M is smaller, it is possible to reduce the excess gas supply amount.
  • the distribution variation of the gas supplied to the power generation cell 101M is reduced by about 14% on the anode side and by about 12% on the cathode side. Therefore, the unit structure of fuel cell 100 can sufficiently improve the power generation efficiency.
  • the unit structure of the fuel cell 100 since the gas can be uniformly supplied to the power generation cell 101M, when the high temperature gas is supplied, the variation of the temperature distribution of the gas can be suppressed. it can. Therefore, the unit structure of fuel cell 100 can sufficiently improve the power generation efficiency.
  • the numbers of the plurality of gas inlets and the plurality of gas outlets be different.
  • the inlet for example, the first anode side inlet 102a, the second anode side inlet 102b and the third anode side inlet 102c
  • the outlet for example, the second anode side
  • One outlet 102d and the anode-side second outlet 102e are provided in an offset manner to equalize the pressure loss of the gas flowing through the plurality of flow channels, and to disperse the variation of each gas flowing through the plurality of flow channels. It can be suppressed.
  • the unit structure of fuel cell 100 is such that the amount of gas supplied to the end of power generation cell 101M (for example, the portion facing auxiliary flow paths T11 and T12) and the central portion of power generation cell 101M (for example, main flow path S11) The amount of gas supplied to the part) can be made uniform. Therefore, the unit structure of fuel cell 100 can sufficiently improve the power generation efficiency.
  • the auxiliary flow paths T11 and T12 are formed between the facing surfaces of the plurality of power generation cells 101M by arranging the plurality of power generation cells 101M in the same plane on the adjustment unit 200. Is preferred.
  • the auxiliary flow paths T11 and T12 can be formed between the facing surfaces of the plurality of power generation cells 101M with a simple configuration.
  • auxiliary flow passage T12 between the non-facing surface of at least one of the power generation cells 101M and the end portion of the cell frame 101W.
  • the amount of gas supplied to the auxiliary flow passage T12 between the non-facing surface of the power generation cell 101M and the end of the cell frame 101W is adjusted to be sufficient for power generation of the power generation cell 101M.
  • Gas can be supplied to the central portion (for example, the portion facing the main flow path S11) contributing to the Therefore, the unit structure of fuel cell 100 can sufficiently improve the power generation efficiency.
  • the adjusting unit 200 preferably adjusts the amount of gas flowing to the plurality of power generation cells arranged side by side.
  • the active area can be divided into smaller sections (the required active area is configured using the plurality of power generation cells 101M), and the variation in gas can be suppressed for each active area. Therefore, the unit structure of fuel cell 100 can sufficiently improve the power generation efficiency.
  • adjustment unit 200 preferably adjusts the amount of gas flowing between adjacent power generation cells.
  • adjustment unit 200 preferably adjusts the amount of gas flowing on at least one side of adjacent power generation cells.
  • the amount of gas supplied to the end of the power generation cell 101M is adjusted to be sufficient for power generation of the power generation cell 101M.
  • Gas can be supplied to the central portion of the power generation cell 101M contributing to the Therefore, the unit structure of fuel cell 100 can sufficiently improve the power generation efficiency.
  • the flow of gas in the area of the active area is controlled by the adjustment units 201 to 203 shown in FIGS. 19 to 24B.
  • FIG. 19 is a top view schematically showing the flow of gas in the main flow path S11 of the separator 102 and the flow of gas in the auxiliary flow paths T11 and T12 from the cathode side.
  • FIG. 20 is a top view schematically showing the flow of gas in the main flow path S11 of the separator 102 and the flow of gas in the auxiliary flow paths T11 and T12 from the anode side.
  • the pair of flow path portions 102L of the separator 102 respectively have a main flow path S11 and auxiliary flow paths T11 and T12 facing the pair of power generation cells 101M (not shown).
  • Each main flow passage S11 located at the center of the pair of flow passage portions 102L in FIG. 19 corresponds to a flow passage facing the central portion of each of the pair of power generation cells 101M.
  • the auxiliary flow path T11 positioned at the right end of the flow path portion 102L on the left side of FIG. 19 is a flow path facing the end (right end) of the corresponding power generation cell 101M, and is the anode side second inflow port 102b or the cathode side. It corresponds to a flow path relatively close to the second outlet 102i.
  • the auxiliary flow passage T12 positioned at the left end of the flow passage portion 102L on the left side of FIG. 19 is a flow passage facing the end (left end) of the corresponding power generation cell 101M, and is the anode side third inlet 102c or the cathode side It corresponds to a flow path relatively close to the third outlet 102 j.
  • the auxiliary flow path T12 positioned at the right end of the flow path portion 102L on the right side of FIG. 19 is a flow path facing the end (right end) of the corresponding power generation cell 101M, and is the anode side first inflow port 102a or the cathode side. It corresponds to a flow path relatively close to the first outlet 102 h.
  • the auxiliary flow passage T11 positioned at the left end of the flow passage portion 102L on the right side of FIG. 19 is a flow passage facing the end (left end) of the corresponding power generation cell 101M, and is the anode side second inflow port 102b or the cathode side It corresponds to a flow path relatively close to the second outlet 102i.
  • FIG. 21A is a perspective view showing Example 1 of the adjustment unit 201 provided in the auxiliary flow paths T11 and T12 in the fuel cell of the second embodiment.
  • FIG. 21B is a cross-sectional view showing Example 1 of the adjustment unit 201 provided in the auxiliary flow paths T11 and T12.
  • FIG. 22A is a perspective view showing an example 2 of the adjustment unit 202 provided in the auxiliary flow paths T11 and T12.
  • FIG. 22B is a cross-sectional view showing Example 2 of the adjustment unit 202 provided in the auxiliary flow paths T11 and T12.
  • FIG. 23A is a perspective view showing Example 3 of the adjustment unit 203 provided in the auxiliary flow paths T11 and T12.
  • FIGS. 24A and 24B are top views schematically showing a configuration in which the adjustment units 201 to 203 are provided in specific portions of the auxiliary flow paths T11 and T12.
  • the adjusting units 201 to 203 have, for example, the configurations shown in FIGS. 21A to 23B, and adjust the amount of gas flowing through the plurality of flow paths.
  • the adjustment units 201 to 203 reduce the variation in flow among the plurality of flow paths by adjusting the pressure loss of the flow path portion formed between the plurality of gas inlets or the plurality of gas outlets.
  • the adjustment units 201 to 203 are provided in the auxiliary flow paths T11 and T12 of the flow path portion 102L, as shown in FIG.
  • the adjustment units 201 to 203 adjust the amount of gas flowing through the auxiliary flow passages T11 and T12 to equalize the amount of gas flowing through the main flow passage S11 and the amount of gas flowing through the auxiliary flow passages T11 and T12.
  • FIG. 21A and 21B show an example 1 of the adjustment unit 201.
  • FIG. The adjustment unit 201 is provided in the region of the auxiliary flow passages T11 and T12 of the flow passage portion 102L of the separator 102.
  • the adjustment unit 201 extends the anode side protrusion 102y in the direction of the gas flow in the region of the auxiliary flow paths T11 and T12 along the direction (longitudinal direction Y) orthogonal to the gas flow direction, thereby the anode 101T side of the power generation cell 101M. Partially reduce the cross-sectional area of the flow path.
  • the adjustment unit 201 adjusts the cross-sectional area of the flow path on the anode side in the auxiliary flow paths T11 and T12.
  • the adjustment unit 201 partially increases or decreases the cross-sectional area of the flow path on the cathode 101U side of the power generation cell 101M by providing the sealing material 113 in the gap between the anode side protrusion 102y and the cathode 101U of the power generation cell 101M. .
  • the sealing material 113 is made of, for example, thermiculite elongated along the flow path.
  • the adjustment unit 201 adjusts the cross-sectional area of the flow path on the cathode side in the auxiliary flow paths T11 and T12. By these adjustments, the adjustment unit 201 equalizes the amount of gas flowing through the main flow passage S11 and the amount of gas flowing through the auxiliary flow passages T11 and T12 in the flow passage portion 102L of the separator 102.
  • FIG. 22A and 22B show an example 2 of the adjustment unit 202.
  • FIG. The adjustment unit 202 is provided in the region of the auxiliary flow passages T11 and T12 of the flow passage portion 102L of the separator 102.
  • the adjusting portion 202 extends the flat portion 102x without forming the anode-side protrusion 102y in the region of the auxiliary flow paths T11 and T12, and then seals the gap between the flat portion 102x and the anode 101T of the power generation cell 101M.
  • the sealing material 114 is made of, for example, thermiculite elongated along the flow path.
  • the adjustment unit 202 adjusts the cross-sectional area of the flow paths on the anode side in the auxiliary flow paths T11 and T12.
  • the adjustment unit 202 partially increases or decreases the cross-sectional area of the flow passage on the cathode 101U side of the power generation cell 101M by providing the sealing material 115 in the gap between the flat portion 102x and the cathode 101U of the power generation cell 101M.
  • the sealing material 115 is made of, for example, thermiculite elongated along the flow path.
  • the adjustment unit 202 adjusts the cross-sectional area of the flow path on the cathode side in the auxiliary flow paths T11 and T12. By these adjustments, the adjustment unit 202 equalizes the amount of gas flowing through the main flow passage S11 and the amount of gas flowing through the auxiliary flow passages T11 and T12 in the flow passage portion 102L of the separator 102.
  • FIGS. 23A and 23B An example 3 of the adjustment unit 203 is shown in FIGS. 23A and 23B.
  • the adjustment unit 203 is provided in the region of the auxiliary flow passages T11 and T12 of the flow passage portion 102L of the separator 102.
  • the adjustment portion 203 extends the flat portion 102x without forming the cathode side protrusion 102z in the region of the auxiliary flow paths T11 and T12, and then a spring member in the gap between the flat portion 102x and the cathode 101U of the power generation cell 101M.
  • the spring member 116 is made of a thin plate metal.
  • the spring member 116 is composed of a flat base material 116a and a plurality of elastically deformable upright pieces 116b which are formed so as to be cantilevered from the base material 116a.
  • the adjusting unit 203 sets the shape and distance of the rising pieces 116 b of the spring member 116 to adjust the cross-sectional area of the flow path on the cathode side. In this manner, the adjustment unit 203 adjusts the cross-sectional area of the flow path on the cathode side in the auxiliary flow paths T11 and T12. By these adjustments, the adjustment unit 203 equalizes the amount of gas flowing through the main flow passage S11 and the amount of gas flowing through the auxiliary flow passages T11 and T12 in the flow passage portion 102L of the separator 102.
  • the adjustment units 201 to 203 determine the range provided in the auxiliary flow paths T11 and T12 of the separator 102 so that the pressure loss of the gas becomes a desired value.
  • the adjustment units 201 to 203 can be provided in all of the auxiliary flow paths T11 and T12 of the separator 102 (from the upstream side to the downstream side). Such a configuration is applied when it is necessary to relatively increase the pressure loss of the gas in the auxiliary flow paths T11 and T12 of the separator 102.
  • the adjustment units 201 to 203 can be provided in a part (upstream and downstream, only upstream or only downstream) of the auxiliary flow paths T11 and T12 of the separator 102. Such a configuration is applied when it is necessary to relatively increase the pressure loss of the gas in the auxiliary flow paths T11 and T12 of the separator 102.
  • the adjustment units 201 to 203 are provided with separate control mechanisms for adjusting the amount of gas in the auxiliary flow passages T11 and T12.
  • the control mechanism controls the gas in such a way as to increase or decrease the pressure loss of the gas in the auxiliary flow passages T11 and T12.
  • the adjustment units 201 to 203 are one example, and can constitute various control mechanisms.
  • the adjustment units 201 to 203 at the end along the gas flow of the power generation cell 101M.
  • the amount of gas supplied to the end of the power generation cell 101M (for example, the portion facing the auxiliary flow paths T11 and T12) is adjusted to be sufficient for power generation of the power generation cell 101M.
  • Gas can be supplied to the central portion (for example, the portion facing the main flow path S11) contributing to the Therefore, the unit structure of fuel cell 100 can sufficiently improve the power generation efficiency.
  • the adjusting units 201 to 203 include at least an inlet (for example, an anode-side first inlet 102a, an anode-side second stream) among a plurality of channels facing the anode 101T of the power generation cell 101M.
  • the pressure loss of the gas flowing in a part of the flow paths (auxiliary flow paths T11 and T12) relatively close to the inlet 102b and the anode side third inflow port 102c) is the gas flowing in the other flow paths (main flow path S11) It is preferable to configure so as to be larger than the pressure loss of
  • the amount of gas supplied to the end of the power generation cell 101M (for example, the portion facing the auxiliary flow paths T11 and T12) is adjusted so as not to become excessive.
  • the gas can be uniformly supplied to the central portion (for example, the portion facing the main flow path S11) and the end portion of the power generation cell 101M (for example, the portion facing the auxiliary flow paths T11 and T12). Therefore, the unit structure of fuel cell 100 can sufficiently improve the power generation efficiency.
  • the adjusting units 201 to 203 are relatively close to at least the inlets (for example, the first anode side inlet 102a, the second anode side inlet 102b, and the third inlet side 102c).
  • the cross sectional area of a part of the flow paths (auxiliary flow paths T11 and T12) is smaller than the cross sectional area of the other flow paths (main flow path S11).
  • the gas supplied to the end of the power generation cell 101M (for example, the portion facing the auxiliary flow paths T11 and T12) is very easy to adjust the cross-sectional area of the flow path.
  • the amount is adjusted so as not to be excessive, for the central portion of the power generation cell 101M (for example, the portion facing the main flow path S11) and the end of the power generation cell 101M (for example, the portion facing the auxiliary flow paths T11 and T12) Gas can be supplied evenly. Therefore, the unit structure of fuel cell 100 can sufficiently improve the power generation efficiency.
  • the fuel cell according to the third embodiment is different from the fuel cell according to the third embodiment in that the flow of gas in the area away from the active area corresponding to the area of the power generation cell 101M is controlled by the adjustment units 401 to 404 shown in FIGS. It differs from the fuel cell of the second embodiment.
  • the flow of gas in the region of the active area is controlled by the adjustment units 201 to 203 shown in FIGS. 21A to 23B.
  • the adjustment units 401 to 404 shown in FIGS. 25A to 25D are convex portions 301s in regions located between the pair of flow passage portions 301L of the separator 301 (auxiliary flow passages T63 to T93 shown in FIGS. 26A and 26B). It comprises by providing ⁇ 304s. That is, the adjustment units 401 to 404 are provided in portions of the separators 301 to 304 not facing the power generation cell 101M.
  • the auxiliary flow paths T63 to T93 shown in FIGS. 26A and 26B are at least an inlet (for example, a cathode side first inlet and a cathode side second inlet) among a plurality of flow paths facing the cathode 101U of the power generation cell 101M.
  • the adjustment units 401 to 404 mainly control the flow of the cathode gas CG in the auxiliary flow paths T63 to T93 shown in FIGS. 26A and 26B, which are areas separated from the active area where the power generation cells 101M exist.
  • FIG. 25A shows an example 1 of the adjustment unit 401 provided in the auxiliary flow passage T63 of the separator 301.
  • FIG. The adjustment unit 401 is configured of a convex portion 301 s formed in a region (auxiliary flow passage T 63) located between the pair of flow passage portions 301 L of the separator 301.
  • the convex portion 301s has a rectangular protrusion having a through hole along the gas flow direction (the short direction X), each half pitch along the direction (longitudinal direction Y) orthogonal to the gas flow direction. They are formed in a row along the short direction X while being alternately shifted.
  • the convex portions 301s are provided in a pair along the direction (longitudinal direction Y) orthogonal to the direction of gas flow.
  • the adjusting unit 401 may configure the convex portion 301 s as a member separate from the separator 301, and may be joined to the auxiliary flow path T 63 of the separator 301.
  • FIG. 25B illustrates an example 2 of the adjustment unit 402 provided in the auxiliary flow passage T73 of the separator 302.
  • the adjustment unit 402 is configured of a convex portion 302 s formed in a region (auxiliary flow passage T 73) located between the pair of flow passage portions 302 L of the separator 302.
  • the convex portion 302s is in the shape of an elongated rectangular solid along the direction of gas flow (the short direction X).
  • the convex portion 302 s can arbitrarily set the pressure loss of the gas in the auxiliary flow passage T 73 by adjusting the shape.
  • the convex portion 302s is easily formed on the separator 302 by press processing or the like.
  • the adjusting unit 402 may configure the convex portion 302 s as a member separate from the separator 302 and may be joined to the auxiliary flow passage T 73 of the separator 302.
  • FIG. 25C shows Example 3 of the adjustment unit 403 provided in the auxiliary flow passage T83 of the separator 303.
  • the adjustment unit 403 is configured by a convex portion 303 s formed in a region (auxiliary flow passage T 83) located between the pair of flow passage portions 303 L of the separator 303.
  • the convex portion 303 s has a rectangular shape elongated along the direction (longitudinal direction Y) orthogonal to the direction of the gas flow.
  • a plurality of convex portions 303 s are provided at regular intervals along the gas flow direction (short direction X).
  • the convex portion 303s can arbitrarily set the pressure loss of the gas in the auxiliary flow passage T83 by adjusting the number, the interval, and the shape.
  • the convex portion 303s can easily maintain its shape when the temperature of the separator 303 becomes high.
  • the adjusting unit 403 may constitute the convex portion 303 s as a member separate from the separator 303 and may be joined to the auxiliary flow passage T 83 of the separator 303.
  • FIG. 25D shows an example 4 of the adjusting unit 404 provided in the auxiliary flow passage T93 of the separator 304.
  • the adjustment unit 404 is configured by a convex portion 304 s formed in a region (auxiliary flow passage T 93) located between the pair of flow passage portions 304 L of the separator 304.
  • the convex portion 304s has a cylindrical shape.
  • a plurality of convex portions 304s are formed in a lattice shape along the direction of the gas flow (the short direction X).
  • the convex portion 304s can arbitrarily set the pressure loss of the gas in the auxiliary flow passage T93 by adjusting the number, the interval, and the shape.
  • the convex portion 304 s can easily maintain its shape when the temperature of the separator 304 is high.
  • the convex portions 304 s can be easily formed with different configurations (number, interval, and shape) on the anode side and the cathode side of the separator 304.
  • the adjustment unit 404 may configure the convex portion 304 s as a member separate from the separator 304, and may be joined to the auxiliary flow path T 93 of the separator 304.
  • the adjustment units 401 to 404 shown in FIGS. 25A to 25D determine the ranges provided in the auxiliary flow paths T63, T73, T83, and T93 of the separators 301 to 304 so that the pressure loss of the gas becomes a desired value. .
  • the adjustment units 401 to 404 can be provided in all of the auxiliary flow paths T63, T73, T83 and T93 of the separators 301 to 304 (from the upstream side to the downstream side). Such a configuration is applied when there is a need to relatively increase the pressure loss of gas in the auxiliary flow paths T63, T73, T83 and T93 of the separators 301 to 304.
  • the adjusting units 401 to 404 can be provided in part (upstream and downstream, only upstream or only downstream) of the auxiliary flow paths T63, T73, T83 and T93 of the separators 301 to 304.
  • Such a configuration is applied when it is necessary to relatively reduce the pressure loss of the gas in the auxiliary flow paths T63, T73, T83 and T93 of the separators 301 to 304.
  • the unit structure of the fuel cell is, for example, relative to at least the inlets (for example, the cathode side first inlet and the cathode side second inlet) among the plurality of flow paths facing the cathode 101U of the power generation cell 101M in the separator 301, for example.
  • the adjusting unit 401 is configured to control the cross-sectional area of at least a part of the flow paths (auxiliary flow path T63) relatively close to the inflow ports (for example, the first cathode side inlet and the second cathode side inlet).
  • the cross sectional area of the gas flowing in the flow path (main flow path) is made larger.
  • the amount of the cathode gas CG supplied to the end of the cathode 101U of the power generation cell 101M is equalized to the amount of the cathode gas CG supplied to the central portion of the cathode 101U of the power generation cell 101M. be able to. Therefore, the unit structure of the fuel cell heats the cathode gas CG supplied to the cathode 101U of the power generation cell 101M and rapidly starts (warms up) the temperature of the cathode gas CG at the end of the cathode 101U of the power generation cell 101M.
  • the gradient can be relaxed (preventing excessive thermal stress). Therefore, the unit structure of the fuel cell can efficiently start up (warm air) efficiently while suppressing the influence of the thermal stress on the components involved in the warm air, and sufficiently improve the power generation efficiency.
  • the unit structure of the fuel cell is, for example, relative to at least the inlets (for example, the cathode side first inlet and the cathode side second inlet) among the plurality of flow paths facing the cathode 101U of the power generation cell 101M in the separator 301, for example.
  • the adjustment unit 401 is configured to reduce the pressure loss of at least a part of the flow paths (auxiliary flow path T63) relatively close to the inflow ports (for example, the first cathode side inlet and the second cathode side inlet). Make it larger than the pressure loss of the gas flowing in the flow path (main flow path).
  • the unit structure of the fuel cell According to the unit structure of the fuel cell, the amount of the cathode gas CG supplied to the end of the cathode 101U of the power generation cell 101M and the amount of the cathode gas CG supplied to the central portion of the cathode 101U of the power generation cell 101M are equalized. be able to. Therefore, the unit structure of the fuel cell can efficiently start up (warm air) efficiently while suppressing the influence of the thermal stress on the components involved in the warm air, and sufficiently improve the power generation efficiency.
  • the unit structure of the fuel cell according to the fourth embodiment is different from the fuel cells according to the first and third embodiments described above in the arrangement of the flow path portion and the supply portion (inlet and outlet) provided in the separator. .
  • FIG. 27A shows an arrangement example 1 of the flow path portion 501L provided in the separator 501 and the supply portion (inlet and outlet).
  • four anode side inlets 501r and three cathode side inlets 501t are alternately arranged on the upstream side of two pairs of flow path portions 501L (each facing the power generation cell 101M not shown) arranged side by side.
  • four cathode side outlets 501 u and three anode side outlets 501 s are alternately provided on the downstream side of the two sets of flow path portions 501 L arranged in the left and right direction.
  • the separator 501 is configured such that the number of anode side outlets 501s is an odd number and the number of anode side inlets 501r is an even number.
  • an anode side inlet 501r and an anode side outlet 501s corresponding to the anode 101T of one power generation cell 101M, and a cathode side inlet 501t and a cathode side outlet 501u corresponding to the cathode 101U of the other power generation cell 101M. are alternately provided adjacent to each other across the flow path portion 501L.
  • FIG. 27B shows an arrangement example 2 of the flow path portion 502L provided in the separator 502 and the supply portion (inlet and outlet).
  • four anode side inlets 502r and three cathode side inlets 502t are alternately arranged on the upstream side of three pairs of flow path portions 502L (each facing the power generation cell 101M not shown) arranged side by side.
  • four cathode side outlets 502 u and three anode side outlets 502 s are alternately provided on the downstream side of the three sets of flow path portions 502 L aligned in the left and right direction.
  • the separator 502 has the same outer shape as the separator 501.
  • the width of the flow path portion 502L of the separator 502 is smaller than the width of the flow path portion 501L of the separator 501 in the longitudinal direction Y.
  • the supply unit provided in the separator 501 is, for example, on the anode side, with the number of one of the anode side inlet 501r and the anode side outlet 501s (anode side outlet 501s) being an odd number. It is preferable to set the number of the other of the inflow port 501r and the anode side outflow port 501s (anode side inflow port 501r) to an even number.
  • the unit structure of the fuel cell for example, by alternately providing the anode side inlet 501 r and the anode side outlet 501 s with the flow path portion 501 L interposed, pressure loss of the gas flowing through the plurality of flow paths is equalized.
  • the variations in the respective gases flowing through the plurality of flow paths can be suppressed. That is, the unit structure of the fuel cell can equalize the amount of gas supplied to the end of the power generation cell 101M and the amount of gas supplied to the central portion of the power generation cell 101M. Therefore, the unit structure of the fuel cell can sufficiently improve the power generation efficiency.
  • the separator 501 corresponds to the anode side inlet 501r and the anode side outlet 501s of the supply unit corresponding to the anode 101T of one power generation cell 101M and the cathode 101U of the other power generation cell 101M.
  • the cathode side inlet 501 t and the cathode side outlet 501 u of the supply unit are alternately adjacent to each other.
  • the unit structure of the fuel cell by alternately providing the inlet and the outlet on the anode side and the cathode side, the pressure loss of the gas flowing through the plurality of flow paths is equalized, and each flowing through the plurality of flow paths Can be suppressed. That is, the unit structure of the fuel cell can equalize the amount of gas supplied to the end of the power generation cell 101M and the amount of gas supplied to the central portion of the power generation cell 101M. Therefore, the unit structure of the fuel cell can sufficiently improve the power generation efficiency.
  • the unit structure of the fuel cell according to the fifth embodiment is different from the fuel cells according to the first to fourth embodiments described above in the arrangement of the flow path part and the supply part (inlet and outlet) provided in the separator. .
  • the adjustment units 201 to 203 can be applied to separators in which the flow path unit and the supply unit (inflow port and outflow port) are configured by various arrangements.
  • FIG. 28A shows an arrangement example 1 of the flow path portion 602L and the supply portion (inflow port 602p and outflow port 602q) in the separator 602.
  • the inflow port 602p and the outflow port 602q are included in a region where the flow path of the flow path portion 602L is extended, and are provided diagonally on the upstream side and the downstream side of the flow path portion 602L.
  • FIG. 28A shows the main flow path S21 and the auxiliary flow paths T21 and T22 in the first arrangement example.
  • the adjustment unit adjusts the amount of gas flowing in a part of the flow paths (auxiliary flow paths T21 and T22) relatively close to the inflow port 602p and the outflow port 602q among the plurality of flow paths, and the respective flow paths are adjusted. Control the variation of the gas flowing through the
  • FIG. 28B shows an arrangement example 2 of the flow path portion 612L and the supply portion (the inlet 612p and the outlet 612q) in the separator 612.
  • FIG. The inlet 612p and the outlet 612q are provided diagonally on the upstream side and the downstream side of the flow passage portion 612L in a state of being separated from the region where the flow passage of the flow passage portion 612L is extended.
  • FIG. 28B shows the main flow path S31 and the auxiliary flow paths T31 and T32 in the arrangement example 2.
  • the adjustment unit adjusts the amount of gas flowing in a part of the flow paths (auxiliary flow paths T31 and T32) relatively close to the inflow port 612p and the outflow port 612q among the plurality of flow paths, and the respective flow paths are adjusted. Control the variation of the gas flowing through the
  • FIG. 28C shows an arrangement example 3 of the flow path portion 622L and the supply portion (a pair of inlets 622p and outlets 622q) in the separator 622.
  • the pair of inflow ports 622p is included in a region where the flow path of the flow path portion 622L is extended, and is provided at both upstream sides of the flow path portion 622L.
  • the outlet 622 q is included in an extended region of the flow path in the flow path portion 622 L, and is provided at the center on the downstream side of the flow path portion 622 L.
  • FIG. 28C shows the main flow path S41 and the auxiliary flow paths T41 and T42 in the arrangement example 3.
  • the adjustment unit adjusts the amount of gas flowing in a part of the flow paths (auxiliary flow paths T41 and T42) relatively close to the pair of inflow ports 622p among the flow paths, and flows in each flow path Reduce the variation of gas.
  • FIG. 28D shows an arrangement example 4 of the flow path portion 632L and the supply portion (a pair of inlet 632p and outlet 632q) provided in the separator 632.
  • the pair of inlets 632p are provided at both upstream ends of the flow path portion 632L in a state of being separated from the extended region of the flow path of the flow path portion 632L.
  • the outlet 632 q is included in an extended region of the flow path of the flow path portion 632 L, and is provided at the center on the downstream side of the flow path portion 632 L.
  • FIG. 28D shows the main flow path S51 and the auxiliary flow paths T51 and T52 in the arrangement example 4.
  • the adjustment unit adjusts the amount of gas flowing in a part of the flow paths (auxiliary flow paths T51 and T52) relatively close to the pair of inflow ports 632p among the plurality of flow paths, and flows in each flow path Reduce the variation of gas.
  • the unit structure of the fuel cell of the fifth embodiment described above is applicable to various configurations as shown in FIG. 28A, FIG. 28B, FIG. 28C and FIG. 28D.
  • the unit structure of the fuel cell has been described as a unit structure applied to a solid oxide fuel cell (SOFC), but a polymer electrolyte membrane fuel cell (PEMFC, It may be configured as a unit structure applied to Polymer Electrolyte Membrane Fuel Cell), phosphoric acid fuel cell (PAFC, Phosphoric Acid Fuel Cell), or molten carbonate fuel cell (MCFC, Molten Carbonate Fuel Cell). That is, the unit structure of the fuel cell is, in addition to a solid oxide fuel cell (SOFC), a solid polymer membrane fuel cell (PEMFC), a phosphoric acid fuel cell (PAFC), or a molten carbonate fuel cell (MCFC) Can be applied to the unit structure of a solid oxide fuel cell (SOFC), a solid polymer membrane fuel cell (PEMFC), a phosphoric acid fuel cell (PAFC), or a molten carbonate fuel cell (MCFC) Can be applied to the unit structure of
  • each flow path is physically separated. You may comprise as one space, without dividing.
  • the supply unit on the cathode side has been described as being open in the fuel cell, but may be configured as a supply unit on the anode side.
  • the unit structure of the fuel cell may be configured by appropriately combining the specifications of the first to fifth embodiments.

Abstract

[Problem] To provide a fuel cell unit structure that can sufficiently improve power generation efficiency. [Solution] This unit structure for a fuel cell 100 includes a power generation cell 101M, a separator 102, a flow path portion 102L, a plurality of gas inflow ports, a plurality of gas outflow ports, and adjustment portions 201-203. The plurality of gas inflow ports (e.g., an anode-side first inflow port 102a, an anode-side second inflow port 102b, and an anode-side third inflow port 102c) allow gas to flow into the flow path portion 102L. The plurality of gas outflow ports (e.g., an anode-side first outflow port 102d, and an anode-side second outflow port 102e) allow gas to flow out from the flow path portion. The adjustment portions 201-203 adjust the amount of gas flowing through the plurality of flow paths. The adjustment portions 201-203 reduce variation in flow among the plurality of flow paths by adjusting the pressure loss in the flow path portion formed among the plurality of gas inflow ports or the plurality of gas outflow ports.

Description

燃料電池のユニット構造および燃料電池のユニット構造の制御方法Fuel cell unit structure and control method of fuel cell unit structure
 本発明は、燃料電池のユニット構造および燃料電池のユニット構造の制御方法に関する。 The present invention relates to a unit structure of a fuel cell and a control method of the unit structure of a fuel cell.
 従来から、燃料電池は、電解質を燃料極と酸化剤極で挟んで構成した発電セルに対してガスを供給して発電している。燃料電池は、発電セルに対してガスを均等に供給して発電効率を上げることが望ましい。そこで、発電セルに対してガスの流入口と流出口をオフセットさせることによって、発電セルの全面に対してガスを供給する技術が知られている(例えば、特許文献1を参照。)。 BACKGROUND ART Conventionally, a fuel cell generates electricity by supplying gas to a power generation cell configured by sandwiching an electrolyte between a fuel electrode and an oxidant electrode. It is desirable for the fuel cell to uniformly supply gas to the power generation cell to increase power generation efficiency. Then, the technique of supplying gas with respect to the whole surface of a power generation cell is known by offsetting the inlet and outlet of gas with respect to a power generation cell (for example, refer patent document 1).
特開2015-109225号公報JP, 2015-109225, A
 特許文献1に記載の構成では、発電セルの全面に対してガスを供給しているものの、例えば、発電セルの中央部を流れるガスの流量と、発電セルの端部を流れるガスの流れのばらつきを低下させることが困難である。したがって、発電効率を十分に向上させることは難しい。 In the configuration described in Patent Document 1, although the gas is supplied to the entire surface of the power generation cell, for example, the variation in the flow rate of the gas flowing in the central portion of the power generation cell and the flow of the gas flowing in the end portion of the power generation cell It is difficult to lower Therefore, it is difficult to sufficiently improve the power generation efficiency.
 本発明の目的は、発電効率を十分に向上させることができる燃料電池のユニット構造および燃料電池の制御方法を提供することである。 An object of the present invention is to provide a fuel cell unit structure and a fuel cell control method capable of sufficiently improving power generation efficiency.
 上記目的を達成するための本発明の燃料電池のユニット構造は、発電セルと、セパレータと、流路部と、複数のガス流入口と、複数のガス流出口と、調整部と、を有する。前記発電セルは、電解質を燃料極と酸化剤極とで挟み供給されたガスによって発電する。前記セパレータは、前記発電セルと前記発電セルとの間に設け、隣り合う前記発電セルを隔てる。前記流路部は、前記セパレータと前記セパレータとの間に形成され前記発電セルに前記ガスを供給する複数の流路からなる。複数の前記ガス流入口は、前記流路部に前記ガスを流入させる。複数の前記ガス流出口は、前記流路部から前記ガスを流出させる。前記調整部は、複数の前記流路を流れる前記ガスの量を調整する。前記調整部は複数のガス流入口間または複数のガス流出口間に形成される前記流路部の圧力損失を調整することによって複数の前記流路間の流れのばらつきを低下させる。 A unit structure of a fuel cell according to the present invention for achieving the above object has a power generation cell, a separator, a flow passage, a plurality of gas inlets, a plurality of gas outlets, and an adjustment unit. The power generation cell generates electric power by the gas supplied by sandwiching the electrolyte between the fuel electrode and the oxidant electrode. The separator is provided between the power generation cell and the power generation cell to separate adjacent power generation cells. The flow path portion is formed between the separator and the separator and includes a plurality of flow paths for supplying the gas to the power generation cell. The plurality of gas inlets allow the gas to flow into the flow passage. The plurality of gas outlets allow the gas to flow out of the flow passage. The adjustment unit adjusts the amount of the gas flowing through the plurality of flow paths. The adjustment unit reduces the variation in flow among the plurality of flow paths by adjusting the pressure loss of the flow path portion formed between the plurality of gas inlets or the plurality of gas outlets.
 上記目的を達成するための本発明の燃料電池のユニット構造の制御方法は、セパレータの間に狭持された発電セルにガス流入口からガスを前記セパレータに形成した流路部に供給し、前記ガスをガス流出口から排出して発電する燃料電池のユニット構造の制御方法である。この燃料電池のユニット構造の制御方法は、前記ガス流入口から供給される前記ガスの流れを、前記発電セルの同一平面内において、前記セパレータの前記流路部を流れる主流れと、複数の前記発電セルの間を流れる補助流れの少なくとも2つの流れに分割し、前記補助流れにおける前記ガスの圧力損失を調整して、前記主流れにおける同一平面内での前記ガスの分配を均一にする。 A control method of a unit structure of a fuel cell according to the present invention for achieving the above object comprises: supplying a gas from a gas inlet to a flow passage formed in the separator to a power generation cell held between separators; It is a control method of a unit structure of a fuel cell which generates gas by discharging gas from a gas outlet. In the method of controlling the unit structure of the fuel cell, the flow of the gas supplied from the gas inlet is divided into a main flow flowing through the flow path portion of the separator and a plurality of the flow in the same plane of the power generation cell. Dividing into at least two flows of the auxiliary flow flowing between the power generation cells and adjusting the pressure loss of the gas in the auxiliary flow to make the distribution of the gas in the same plane in the main flow uniform.
第1実施形態の燃料電池を示す斜視図である。It is a perspective view showing a fuel cell of a 1st embodiment. 図1の燃料電池をカバーとセルスタックアッセンブリーおよび外部マニホールドに分解した状態を示す斜視図である。FIG. 2 is a perspective view showing the fuel cell of FIG. 1 disassembled into a cover, a cell stack assembly and an external manifold. 図2のセルスタックアッセンブリーをエアーシェルターと上部エンドプレートとスタックおよび下部エンドプレートに分解した状態を示す斜視図である。FIG. 3 is a perspective view of the cell stack assembly of FIG. 2 disassembled into an air shelter, an upper end plate, a stack and a lower end plate. 図3のスタックを上部モジュールユニットと複数の中部モジュールユニットおよび下部モジュールユニットに分解した状態を示す斜視図である。FIG. 4 is a perspective view showing the stack of FIG. 3 disassembled into an upper module unit, a plurality of middle module units and a lower module unit. 図4の上部モジュールユニットを分解して示す斜視図である。FIG. 5 is an exploded perspective view of the upper module unit of FIG. 4; 図4の中部モジュールユニットを分解して示す斜視図である。FIG. 5 is an exploded perspective view of the middle module unit of FIG. 4; 図4の下部モジュールユニットを分解して示す斜視図である。FIG. 5 is an exploded perspective view of the lower module unit of FIG. 4; 図5~図7の一のセルユニットを分解し、かつ、その一のセルユニットの下方に位置する他のセルユニット(メタルサポートセルアッセンブリー以外の構成)を分解して示す斜視図である。FIG. 10 is an exploded perspective view showing one of the cell units of FIGS. 5 to 7 in a disassembled state and another cell unit (configuration other than a metal support cell assembly) located below the one cell unit. 図8のメタルサポートセルアッセンブリーを分解して示す斜視図である。FIG. 9 is an exploded perspective view of the metal support cell assembly of FIG. 8; 図8のメタルサポートセルアッセンブリーを断面で示す側面図である。FIG. 9 is a side view showing the metal support cell assembly of FIG. 8 in cross section. メタルサポートセルアッセンブリー等を示す断面図である。It is sectional drawing which shows a metal support cell assembly etc. 図8のセパレータをカソード側(図8と同じくセパレータ102を上方から視認した側)から示す斜視図である。It is a perspective view which shows the separator of FIG. 8 from the cathode side (The side which visually recognized the separator 102 from the upper direction similarly to FIG. 8). 図12のセパレータを部分的に示す斜視図である。It is a perspective view which shows the separator of FIG. 12 partially. 図8のセパレータをアノード側(図8と異なりセパレータ102を下方から視認した側)から示す斜視図である。It is a perspective view which shows the separator of FIG. 8 from the anode side (The side which visually recognized the separator 102 from the downward direction unlike FIG. 8). 図14のセパレータを部分的に示す斜視図である。It is a perspective view which shows the separator of FIG. 14 partially. 調整部の構成要素として補助流路を設けた例を示す斜視図である。It is a perspective view which shows the example which provided the auxiliary | assistant flow path as a component of an adjustment part. メタルサポートセルアッセンブリーとセパレータおよび集電補助層を積層した状態の中央部分を示し、その中央部分に調整部の構成要素として補助流路を設けた状態を示す断面図に相当する。It is a cross-sectional view showing a central portion in a state in which the metal support cell assembly, the separator, and the current collection auxiliary layer are stacked, and providing an auxiliary flow path as a component of the adjustment portion in the central portion. 燃料電池におけるアノードガスおよびカソードガスの流れを模式的に示す斜視図である。It is a perspective view which shows typically the flow of anode gas in a fuel cell, and cathode gas. 燃料電池におけるカソードガスの流れを模式的に示す斜視図である。It is a perspective view which shows typically the flow of the cathode gas in a fuel cell. 燃料電池におけるアノードガスの流れを模式的に示す斜視図である。It is a perspective view which shows typically the flow of the anode gas in a fuel cell. セパレータの主流路におけるガスの流れと補助流路におけるガスの流れをカソード側から模式的に示す上面図である。It is a top view which shows typically the flow of the gas in the main flow path of a separator, and the flow of the gas in an auxiliary flow path from the cathode side. セパレータの主流路におけるガスの流れと補助流路におけるガスの流れをアノード側から模式的に示す上面図である。It is a top view which shows typically the flow of the gas in the main flow path of a separator, and the flow of the gas in an auxiliary flow path from the anode side. 第2実施形態の燃料電池に関して、補助流路に設けた調整部の例1を示す斜視図である。It is a perspective view which shows Example 1 of the adjustment part provided in the auxiliary flow path regarding the fuel cell of 2nd Embodiment. 補助流路に設けた調整部の例1を示す断面図である。It is sectional drawing which shows Example 1 of the adjustment part provided in the auxiliary flow path. 補助流路に設けた調整部の例2を示す斜視図である。It is a perspective view which shows Example 2 of the adjustment part provided in the auxiliary flow path. 補助流路に設けた調整部の例2を示す断面図である。It is sectional drawing which shows Example 2 of the adjustment part provided in the auxiliary flow path. 補助流路に設けた調整部の例3を示す斜視図である。It is a perspective view which shows Example 3 of the adjustment part provided in the auxiliary flow path. 補助流路に設けた調整部の例3を示す断面図である。It is sectional drawing which shows Example 3 of the adjustment part provided in the auxiliary flow path. 図21A~図23Bの調整部を補助流路の全部(上流から下流まで)に設けた構成を模式的に示す上面図である。FIG. 21C is a top view schematically showing a configuration in which the adjustment unit of FIG. 21A to FIG. 23B is provided in the entire auxiliary flow channel (from the upstream side to the downstream side). 図21A~図23Bの調整部を補助流路の一部(上流および下流)に設けた構成を模式的に示す上面図である。FIG. 21C is a top view schematically showing a configuration in which the adjustment unit of FIGS. 21A to 23B is provided in a part (upstream and downstream) of the auxiliary flow channel. 第3実施形態の燃料電池に関して、セパレータの補助流路に設けた調整部の例1を示す斜視図である。It is a perspective view which shows Example 1 of the adjustment part provided in the auxiliary flow path of the separator regarding the fuel cell of 3rd Embodiment. セパレータの補助流路に設けた調整部の例2を示す斜視図である。It is a perspective view which shows Example 2 of the adjustment part provided in the auxiliary flow path of the separator. セパレータの補助流路に設けた調整部の例3を示す斜視図である。It is a perspective view which shows Example 3 of the adjustment part provided in the auxiliary flow path of the separator. セパレータの補助流路に設けた調整部の例4を示す斜視図である。It is a perspective view which shows Example 4 of the adjustment part provided in the auxiliary flow path of the separator. 図25A~図25Dの調整部を補助流路の全部(上流から下流まで)に設けた構成を模式的に示す上面図である。It is a top view which shows typically the structure which provided the adjustment part of FIG. 25A-FIG. 25D in all the auxiliary | assistant flow paths (from the upstream to the downstream). 図25A~図25Dの調整部を補助流路の一部(上流および下流)に設けた構成を模式的に示す上面図である。It is a top view which shows typically the structure which provided the adjustment part of FIG. 25A-FIG. 25D in a part (upstream and downstream) of an auxiliary flow path. 第4実施形態の燃料電池に関して、セパレータに設けた流路部と供給部との配置例1を模式的に示す上面図である。It is a top view which shows typically the example 1 of arrangement | positioning of the flow-path part provided in the separator, and the supply part regarding the fuel cell of 4th Embodiment. セパレータに設けた流路部と供給部との配置例2を模式的に示す上面図である。It is a top view which shows typically the example 2 of arrangement | positioning of the flow-path part and the supply part which were provided in the separator. セパレータにおける流路部と供給部(流入口と流出口)の配置例1と、主流路と補助流路を示す模式的に示す上面図である。It is an upper side figure which shows typically the arrangement example 1 of the flow-path part and supply part (inflow port and outflow port) in a separator, and a main flow path and an auxiliary flow path. セパレータにおける流路部と供給部(流入口と流出口)の配置例2と、主流路と補助流路を模式的に示す上面図である。It is an upper side figure which shows typically the arrangement example 2 of the flow-path part and supply part (inflow port and outflow port) in a separator, and a main flow path and an auxiliary flow path. セパレータにおける流路部と供給部(流入口と流出口)の配置例3と、主流路と補助流路を模式的に示す上面図である。It is an upper side figure which shows typically the arrangement example 3 of the flow-path part and supply part (inflow port and outflow port) in a separator, and a main flow path and an auxiliary flow path. セパレータにおける流路部と供給部(流入口と流出口)の配置例4と、主流路と補助流路を模式的に示す上面図である。It is an upper side figure which shows typically the arrangement example 4 of the flow-path part and supply part (inflow port and outflow port) in a separator, and a main flow path and an auxiliary flow path.
 以下、添付した図面を参照しながら、本発明の第1~第5実施形態を説明する。図面において、同一の部材には同一の符号を付し、重複する説明を省略する。図面において、各部材の大きさや比率は、第1~第5実施形態の理解を容易にするために誇張し、実際の大きさや比率とは異なる場合がある。 Hereinafter, first to fifth embodiments of the present invention will be described with reference to the attached drawings. In the drawings, the same members are denoted by the same reference numerals and redundant description will be omitted. In the drawings, the size and ratio of each member may be exaggerated to facilitate the understanding of the first to fifth embodiments, and may differ from the actual size and ratio.
 各図において、X、Y、およびZで表す矢印を用いて、燃料電池を構成する部材の方位を示している。Xによって表す矢印の方向は、燃料電池の短手方向Xを示している。Yによって表す矢印の方向は、燃料電池の長手方向Yを示している。Zによって表す矢印の方向は、燃料電池の積層方向Zを示している。 In each of the drawings, arrows representing X, Y, and Z are used to indicate the orientations of members constituting the fuel cell. The direction of the arrow represented by X indicates the lateral direction X of the fuel cell. The direction of the arrow represented by Y indicates the longitudinal direction Y of the fuel cell. The direction of the arrow represented by Z indicates the stacking direction Z of the fuel cell.
 (第1実施形態)
 (燃料電池100の構成)
 図1は、第1実施形態の燃料電池100を示す斜視図である。図2は、図1の燃料電池100をカバー112とセルスタックアッセンブリー100Mおよび外部マニホールド111に分解した状態を示す斜視図である。図3は、図2のセルスタックアッセンブリー100Mをエアーシェルター110と上部エンドプレート109とスタック100Sおよび下部エンドプレート108に分解した状態を示す斜視図である。図4は、図3のスタック100Sを上部モジュールユニット100Pと複数の中部モジュールユニット100Qおよび下部モジュールユニット100Rに分解した状態を示す斜視図である。図5は、図4の上部モジュールユニット100Pを分解して示す斜視図である。図6は、図4の中部モジュールユニット100Qを分解して示す斜視図である。図7は、図4の下部モジュールユニット100Rを分解して示す斜視図である。図8は、図5~図7の一のセルユニット100Tを分解し、かつ、その一のセルユニット100Tの下方に位置する他のセルユニット100T(メタルサポートセルアッセンブリー101以外の構成)を分解して示す斜視図である。
First Embodiment
(Configuration of fuel cell 100)
FIG. 1 is a perspective view showing a fuel cell 100 according to the first embodiment. FIG. 2 is a perspective view showing the fuel cell 100 of FIG. 1 disassembled into a cover 112, a cell stack assembly 100M and an external manifold 111. As shown in FIG. FIG. 3 is a perspective view showing the cell stack assembly 100M of FIG. 2 disassembled into an air shelter 110, an upper end plate 109, a stack 100S and a lower end plate 108. FIG. 4 is a perspective view showing the stack 100S of FIG. 3 disassembled into an upper module unit 100P and a plurality of middle module units 100Q and a lower module unit 100R. FIG. 5 is an exploded perspective view of the upper module unit 100P of FIG. 6 is an exploded perspective view of the middle module unit 100Q of FIG. FIG. 7 is an exploded perspective view of the lower module unit 100R of FIG. FIG. 8 disassembles one cell unit 100T in FIGS. 5 to 7 and disassembles another cell unit 100T (configuration other than the metal support cell assembly 101) located below the one cell unit 100T. And FIG.
 図9は、図8のメタルサポートセルアッセンブリー101を分解して示す斜視図である。図10は、図8のメタルサポートセルアッセンブリー101を断面で示す側面図である。図11は、メタルサポートセルアッセンブリー101等を示す断面図である。図12は、図8のセパレータ102をカソード側(図8と同じくセパレータ102を上方から視認した側)から示す斜視図である。図13は、図12のセパレータ102を部分的に示す斜視図である。図14は、図8のセパレータ102をアノード側(図8と異なりセパレータ102を下方から視認した側)から示す斜視図である。図15は、図14のセパレータ102を部分的に示す斜視図である。図16は、補助流路に設けた調整部200の例を示す断面図である。図17は、メタルサポートセルアッセンブリー101とセパレータ102および集電補助層103を積層した状態で部分的(2つのメタルサポートセルアッセンブリー等を横断)に示す断面図に相当する。 FIG. 9 is an exploded perspective view of the metal support cell assembly 101 of FIG. FIG. 10 is a side view showing the metal support cell assembly 101 of FIG. 8 in cross section. FIG. 11 is a cross-sectional view showing the metal support cell assembly 101 and the like. 12 is a perspective view showing the separator 102 of FIG. 8 from the cathode side (the side where the separator 102 is viewed from above as in FIG. 8). FIG. 13 is a perspective view partially showing the separator 102 of FIG. FIG. 14 is a perspective view showing the separator 102 of FIG. 8 from the anode side (a side where the separator 102 is viewed from below unlike in FIG. 8). FIG. 15 is a perspective view partially showing the separator 102 of FIG. FIG. 16 is a cross-sectional view showing an example of the adjustment unit 200 provided in the auxiliary flow path. FIG. 17 corresponds to a cross-sectional view partially (crossing two metal support cell assemblies etc.) in a state where the metal support cell assembly 101, the separator 102 and the current collection auxiliary layer 103 are stacked.
 燃料電池100のユニット構造は、図1および図2に示すように、セルスタックアッセンブリー100Mを、外部からガスを供給する外部マニホールド111と、セルスタックアッセンブリー100Mを保護するカバー112によって上下から挟み込んで、構成している。 As shown in FIGS. 1 and 2, the unit structure of the fuel cell 100 is such that the cell stack assembly 100M is sandwiched from above and below by an external manifold 111 for supplying gas from the outside and a cover 112 for protecting the cell stack assembly 100M. Configured.
 燃料電池100のユニット構造において、セルスタックアッセンブリー100Mは、図2および図3に示すように、スタック100Sを、下部エンドプレート108と上部エンドプレート109によって上下から挟み込み、カソードガスCGを封止するエアーシェルター110によって覆って、構成している。スタック100Sは、図3および図4に示すように、上部モジュールユニット100P、複数の中部モジュールユニット100Qおよび下部モジュールユニット100Rを積層して、構成している。 In the unit structure of the fuel cell 100, as shown in FIGS. 2 and 3, the cell stack assembly 100M sandwiches the stack 100S from the top and bottom by the lower end plate 108 and the upper end plate 109 to seal the cathode gas CG. It is covered and constituted by the shelter 110. The stack 100S is configured by stacking an upper module unit 100P, a plurality of middle module units 100Q, and a lower module unit 100R, as shown in FIGS.
 燃料電池100のユニット構造において、上部モジュールユニット100Pは、図5に示すように、複数積層したセルユニット100Tを、セルユニット100Tで発電された電力を外部に出力する上部集電板106と、エンドプレートに相当するモジュールエンド105によって上下から挟み込んで構成している。中部モジュールユニット100Qは、図6に示すように、複数積層したセルユニット100Tを、一対のモジュールエンド105によって上下から挟み込んで構成している。下部モジュールユニット100Rは、図7に示すように、複数積層したセルユニット100Tを、モジュールエンド105と下部集電板107によって上下から挟み込んで構成している。 In the unit structure of the fuel cell 100, as shown in FIG. 5, the upper module unit 100P outputs the power generated by the cell unit 100T to the outside, as shown in FIG. A module end 105 corresponding to a plate is sandwiched from above and below. As shown in FIG. 6, the middle module unit 100Q is configured by sandwiching a plurality of stacked cell units 100T from above and below by a pair of module ends 105. As shown in FIG. 7, the lower module unit 100R is configured by sandwiching a plurality of stacked cell units 100T from above and below by the module end 105 and the lower current collector plate 107.
 燃料電池100のユニット構造において、セルユニット100Tは、図8に示すように、供給されたガスによって発電する発電セル101Mを設けたメタルサポートセルアッセンブリー101、積層方向Zに沿って隣り合うメタルサポートセルアッセンブリー101の発電セル101Mを隔てるセパレータ102、メタルサポートセルアッセンブリー101の発電セル101Mとセパレータ102との間にガスを通す空間を形成しつつ面圧を均等にする集電補助層103、およびメタルサポートセルアッセンブリー101とセパレータ102のマニホールドの部分の縁を封止してガスの流れを制限する封止部材104を含んでいる。集電補助層103および封止部材104は、その構造上、積層方向Zに沿って隣り合うメタルサポートセルアッセンブリー101とセパレータ102との間に配置するものである。 In the unit structure of the fuel cell 100, as shown in FIG. 8, the cell unit 100T includes a metal support cell assembly 101 provided with a power generation cell 101M that generates electric power by the supplied gas, and a metal support cell adjacent along the stacking direction Z. A separator 102 for separating the power generation cell 101M of the assembly 101, a current collection assisting layer 103 for equalizing the surface pressure while forming a space for passing gas between the power generation cell 101M of the metal support cell assembly 101 and the separator 102, and a metal support A sealing member 104 is included which seals the edges of the cell assembly 101 and the manifold portion of the separator 102 to restrict the flow of gas. The current collection auxiliary layer 103 and the sealing member 104 are disposed between the metal support cell assembly 101 and the separator 102 adjacent to each other along the stacking direction Z due to their structures.
 ここで、燃料電池100の製造方法上、メタルサポートセルアッセンブリー101およびセパレータ102は、図8の中央に示すように、各々の外縁を接合ラインVに沿って環状に接合して接合体100Uを構成する。このため、積層方向Zに沿って隣り合う接合体100U(メタルサポートセルアッセンブリー101およびセパレータ102)の間に、集電補助層103および封止部材104を配置する構成としている。すなわち、集電補助層103および封止部材104は、図8の下方に示すように、一の接合体100Uのメタルサポートセルアッセンブリー101と、一の接合体100Uと積層方向Zに沿って隣り合う他の接合体100Uのセパレータ102との間に、配置している。 Here, according to the method of manufacturing fuel cell 100, metal support cell assembly 101 and separator 102 form a joined body 100U by annularly joining the respective outer edges along joining line V as shown in the center of FIG. Do. Therefore, the current collection auxiliary layer 103 and the sealing member 104 are disposed between the joined bodies 100U (the metal support cell assembly 101 and the separator 102) adjacent to each other along the stacking direction Z. That is, as shown in the lower part of FIG. 8, the current collection auxiliary layer 103 and the sealing member 104 are adjacent to the metal support cell assembly 101 of one joined body 100U and the one joined body 100U along the stacking direction Z. It arrange | positions between the separators 102 of 100 A of other joining bodies.
 以下、燃料電池100を構成毎に説明する。 Hereinafter, the fuel cell 100 will be described for each configuration.
 メタルサポートセルアッセンブリー101は、図9および図10に示すように、供給されたガスによって発電する発電セル101Mを設けたものである。 As shown in FIGS. 9 and 10, the metal support cell assembly 101 is provided with a power generation cell 101M that generates power using the supplied gas.
 メタルサポートセルアッセンブリー101は、図9に示すように、長手方向Yに沿って2つ並べて配置したメタルサポートセル101Nと、メタルサポートセル101Nを周囲から保持するセルフレーム101Wによって構成している。 As shown in FIG. 9, the metal support cell assembly 101 is composed of a metal support cell 101N arranged in a row along the longitudinal direction Y and a cell frame 101W holding the metal support cell 101N from the periphery.
 メタルサポートセル101Nは、発電セル101Mと、発電セル101Mを一方から支持するサポートメタル101Vによって構成している。メタルサポートセルアッセンブリー101において、発電セル101Mは、図9および図10に示すように、電解質101Sをアノード101Tとカソード101Uで挟み込んで構成している。 The metal support cell 101N is configured of a power generation cell 101M and a support metal 101V that supports the power generation cell 101M from one side. In the metal support cell assembly 101, as shown in FIGS. 9 and 10, the power generation cell 101M is configured by sandwiching the electrolyte 101S between the anode 101T and the cathode 101U.
 アノード101Tは、図9および図10に示すように、燃料極であって、アノードガスAG(例えば水素)と酸化物イオンを反応させて、アノードガスAGの酸化物を生成するとともに電子を取り出す。アノード101Tは、還元雰囲気に耐性を有し、アノードガスAGを透過させ、電気伝導度が高く、アノードガスAGを酸化物イオンと反応させる触媒作用を有する。アノード101Tは、電解質101Sよりも大きい長方体形状から形成されている。アノード101Tは、例えば、ニッケル等の金属、イットリア安定化ジルコニア等の酸化物イオン伝導体を混在させた超硬合金からなる。アノード101Tは、図9および図10に示すように、薄板状であって長方形状からなる。 As shown in FIGS. 9 and 10, the anode 101T is a fuel electrode, and an anode gas AG (for example, hydrogen) and oxide ions are reacted to generate an oxide of the anode gas AG and to take out electrons. The anode 101T is resistant to a reducing atmosphere, transmits the anode gas AG, has high electrical conductivity, and has a catalytic action of causing the anode gas AG to react with oxide ions. The anode 101T is formed of a rectangular shape larger than the electrolyte 101S. The anode 101T is made of, for example, a cemented carbide in which a metal such as nickel and an oxide ion conductor such as yttria-stabilized zirconia are mixed. As shown in FIGS. 9 and 10, the anode 101T has a thin plate shape and a rectangular shape.
 電解質101Sは、図9および図10に示すように、カソード101Uからアノード101Tに向かって酸化物イオンを透過させるものである。電解質101Sは、酸化物イオンを通過させつつ、ガスと電子を通過させない。電解質101Sは、長方体形状から形成されている。電解質101Sは、例えば、イットリア、酸化ネオジム、サマリア、ガドリア、スカンジア等を固溶した安定化ジルコニアなどの固体酸化物セラミックスからなる。電解質101Sは、図9および図10に示すように、薄板状であって、アノード101Tよりも若干大きい長方形状からなる。電解質101Sの外縁は、図10に示すように、アノード101Tの側に向かって屈折して、アノード101Tの積層方向Zに沿った側面に接触している。電解質101Sの外縁の先端は、サポートメタル101Vに接触している。 As shown in FIGS. 9 and 10, the electrolyte 101S transmits oxide ions from the cathode 101U toward the anode 101T. The electrolyte 101S does not pass gas and electrons while passing oxide ions. The electrolyte 101S is formed in a rectangular shape. The electrolyte 101S is made of, for example, solid oxide ceramics such as stabilized zirconia in which yttria, neodymium oxide, samaria, gadoria, scandia and the like are solid-solved. As shown in FIGS. 9 and 10, the electrolyte 101S is in the form of a thin plate, and has a rectangular shape slightly larger than the anode 101T. As shown in FIG. 10, the outer edge of the electrolyte 101S is refracted toward the side of the anode 101T to be in contact with the side surface along the stacking direction Z of the anode 101T. The tip of the outer edge of the electrolyte 101S is in contact with the support metal 101V.
 カソード101Uは、図9および図10に示すように、酸化剤極であって、カソードガスCG(例えば空気に含まれる酸素)と電子を反応させて、酸素分子を酸化物イオンに変換する。カソード101Uは、酸化雰囲気に耐性を有し、カソードガスCGを透過させ、電気伝導度が高く、酸素分子を酸化物イオンに変換する触媒作用を有する。カソード101Uは、電解質101Sよりも小さい長方体形状から形成されている。カソード101Uは、例えば、ランタン、ストロンチウム、マンガン、コバルト等の酸化物からなる。
カソード101Uは、図9および図10に示すように、アノード101Tと同様に、薄板状であって長方形状からなる。カソード101Uは、電解質101Sを介して、アノード101Tと対向している。電解質101Sの外縁がアノード101T側に屈折していることから、カソード101Uの外縁は、アノード101Tの外縁と接触することがない。
The cathode 101U, as shown in FIGS. 9 and 10, is an oxidant electrode, which reacts electrons with cathode gas CG (eg, oxygen contained in air) to convert oxygen molecules into oxide ions. The cathode 101 U is resistant to an oxidizing atmosphere, permeates the cathode gas CG, has high electrical conductivity, and has a catalytic action of converting oxygen molecules into oxide ions. The cathode 101U is formed in a rectangular shape smaller than the electrolyte 101S. The cathode 101U is made of, for example, an oxide such as lanthanum, strontium, manganese or cobalt.
As shown in FIGS. 9 and 10, the cathode 101U has a thin plate shape and a rectangular shape as in the case of the anode 101T. The cathode 101U faces the anode 101T via the electrolyte 101S. Since the outer edge of the electrolyte 101S is bent toward the anode 101T, the outer edge of the cathode 101U does not come in contact with the outer edge of the anode 101T.
 サポートメタル101Vは、図9および図10に示すように、発電セル101Mをアノード101Tの側から支持するものである。サポートメタル101Vは、ガス透過性を有し、電気伝導度が高く、十分な強度を有する。サポートメタル101Vは、アノード101Tよりも十分に大きい長方体形状から形成されている。サポートメタル101Vは、例えば、ニッケルやクロムを含有する耐食合金や耐食鋼、ステンレス鋼からなる。 The support metal 101V supports the power generation cell 101M from the side of the anode 101T, as shown in FIGS. 9 and 10. The support metal 101V has gas permeability, high electrical conductivity, and sufficient strength. The support metal 101V is formed of a rectangular shape sufficiently larger than the anode 101T. The support metal 101V is made of, for example, a corrosion resistant alloy containing nickel or chromium, a corrosion resistant steel, or stainless steel.
 セルフレーム101Wは、図9および図10に示すように、メタルサポートセル101Nを周囲から保持するものである。セルフレーム101Wは、薄い長方形状から形成している。セルフレーム101Wは、一対の開口部101kを、長手方向Yに沿って設けている。セルフレーム101Wの一対の開口部101kは、それぞれ長方形状の貫通口からなり、サポートメタル101Vの外形よりも小さい。セルフレーム101Wは、金属からなり、絶縁材またはコーティングを用いて絶縁している。絶縁材は、例えば、セルフレーム101Wに酸化アルミニウムを固着させて構成する。セルフレーム101Wの開口部101kの内縁に、サポートメタル101Vの外縁を接合することによって、セルフレーム101Wにメタルサポートセルアッセンブリー101を接合している。 As shown in FIGS. 9 and 10, the cell frame 101W holds the metal support cell 101N from the periphery. The cell frame 101W is formed in a thin rectangular shape. The cell frame 101W is provided with a pair of openings 101k along the longitudinal direction Y. The pair of openings 101k of the cell frame 101W each have a rectangular through hole, and are smaller than the outer shape of the support metal 101V. The cell frame 101W is made of metal and is insulated using an insulating material or a coating. The insulating material is formed, for example, by fixing aluminum oxide to the cell frame 101W. The metal support cell assembly 101 is joined to the cell frame 101W by joining the outer edge of the support metal 101V to the inner edge of the opening 101k of the cell frame 101W.
 セルフレーム101Wは、図9および図10に示すように、長手方向Yに沿った一辺の右端と中央と左端から、面方向に延ばした円形状の延在部(第1延在部101p、第2延在部101qおよび第3延在部101r)を設けている。セルフレーム101Wは、長手方向Yに沿った他辺の中央から離間した2箇所から、面方向に延ばした円形状の延在部(第4延在部101sおよび第5延在部101t)を設けている。セルフレーム101Wにおいて、第1延在部101p、第2延在部101qおよび第3延在部101rと、第4延在部101sおよび第5延在部101tは、一対の開口部101kを隔てて、長手方向Yに沿って交互に位置している。 As shown in FIGS. 9 and 10, the cell frame 101 W is a circular extension (first extension 101 p, the first extension 101 p, The second extending portion 101 q and the third extending portion 101 r are provided. The cell frame 101W is provided with circular extending portions (the fourth extending portion 101s and the fifth extending portion 101t) extending in the surface direction from two places separated from the center of the other side along the longitudinal direction Y ing. In the cell frame 101W, the first extending portion 101p, the second extending portion 101q and the third extending portion 101r, and the fourth extending portion 101s and the fifth extending portion 101t separate a pair of openings 101k. , Alternately located along the longitudinal direction Y.
 セルフレーム101Wは、図9および図10に示すように、アノードガスAGを通過(流入)させるアノード側第1流入口101a、アノード側第2流入口101b、アノード側第3流入口101cを、第1延在部101p、第2延在部101qおよび第3延在部101rに設けている。セルフレーム101Wは、アノードガスAGを通過(流出)させるアノード側第1流出口101dおよびアノード側第2流出口101eを、第4延在部101sおよび第5延在部101tに設けている。アノードガスAGのアノード側第1流入口101a、アノード側第2流入口101b、アノード側第3流入口101c、アノード側第1流出口101dおよびアノード側第2流出口101eは、いわゆる、マニホールドである。 The cell frame 101W, as shown in FIGS. 9 and 10, includes an anode-side first inlet 101a, an anode-side second inlet 101b, and an anode-side third inlet 101c for passing (inflowing) the anode gas AG. The first extension portion 101p, the second extension portion 101q, and the third extension portion 101r are provided. The cell frame 101W is provided with an anode-side first outlet 101d and an anode-side second outlet 101e, through which the anode gas AG passes (outflows), in the fourth extending portion 101s and the fifth extending portion 101t. The anode-side first inlet 101a, the anode-side second inlet 101b, the anode-side third inlet 101c, the anode-side first outlet 101d, and the anode-side second outlet 101e of the anode gas AG are so-called manifolds .
 セルフレーム101Wは、図9に示すように、カソードガスCGを通過(流入)させるカソード側第1流入口101fを、第1延在部101pと第2延在部101qの間の空間に設けている。セルフレーム101Wは、カソードガスCGを通過(流入)させるカソード側第2流入口101gを、第2延在部101qと第3延在部101rの間の空間に設けている。セルフレーム101Wは、カソードガスCGを通過(流出)させるカソード側第1流出口101hを、第4延在部101sよりも図9中の右側に設けている。セルフレーム101Wは、カソードガスCGを通過(流出)させるカソード側第2流出口101iを、第4延在部101sと第5延在部101tの間の空間に設けている。セルフレーム101Wは、カソードガスCGを通過(流出)させるカソード側第3流出口101jを、第5延在部101tよりも図9中の左側に設けている。セルフレーム101Wにおいて、カソード側第1流入口101f、カソード側第2流入口101g、カソード側第1流出口101h、カソード側第2流出口101iおよびカソード側第3流出口101jは、セルフレーム101Wの外周面とエアーシェルター110の内側面との空間に相当する。 In the cell frame 101W, as shown in FIG. 9, the cathode side first inlet 101f for passing (inflowing) the cathode gas CG is provided in the space between the first extending portion 101p and the second extending portion 101q. There is. The cell frame 101W is provided with a cathode-side second inlet 101g for passing (inflowing) the cathode gas CG in a space between the second extending portion 101q and the third extending portion 101r. The cell frame 101W is provided with a cathode side first outlet 101h through which the cathode gas CG passes (outflows), on the right side in FIG. 9 with respect to the fourth extending portion 101s. The cell frame 101W is provided with a cathode-side second outlet 101i for passing (outflowing) the cathode gas CG in the space between the fourth extending portion 101s and the fifth extending portion 101t. The cell frame 101W is provided with a cathode-side third outlet 101j that allows the cathode gas CG to pass (outflow), on the left side in FIG. 9 with respect to the fifth extension portion 101t. In the cell frame 101W, the cathode side first inlet 101f, the cathode side second inlet 101g, the cathode side first outlet 101h, the cathode side second outlet 101i and the cathode side third outlet 101j are of the cell frame 101W. It corresponds to the space between the outer peripheral surface and the inner side surface of the air shelter 110.
 セパレータ102は、図8、図11および図12に示すように、積層するメタルサポートセルアッセンブリー101の各々の発電セル101Mと発電セル101Mとの間に設け、隣り合う発電セル101Mを隔てるものである。 The separator 102 is provided between each power generation cell 101M and power generation cell 101M of the metal support cell assembly 101 to be stacked, as shown in FIG. 8, FIG. 11 and FIG. 12, to separate adjacent power generation cells 101M. .
 セパレータ102は、メタルサポートセルアッセンブリー101と対向して配置している。セパレータ102は、メタルサポートセルアッセンブリー101と同様の外形形状からなる。セパレータ102は、金属からなり、発電セル101Mと対向する領域(流路部102L)を除いて、絶縁材またはコーティングを用いて絶縁している。絶縁材は、例えば、セパレータ102に酸化アルミニウムを固着させて構成する。セパレータ102は、流路部102Lを、発電セル101Mと対向するように長手方向Yに並べて設けている。 The separator 102 is disposed to face the metal support cell assembly 101. The separator 102 has the same outer shape as the metal support cell assembly 101. The separator 102 is made of metal, and is insulated using an insulating material or a coating except for a region (flow passage portion 102L) facing the power generation cell 101M. The insulating material is formed, for example, by fixing aluminum oxide to the separator 102. In the separator 102, the flow path portion 102L is provided side by side in the longitudinal direction Y so as to face the power generation cell 101M.
 セパレータ102において、流路部102Lは、図8および図11および図12に示すように、ガスの流れの方向(短手方向X)に沿って延ばした流路を、ガスの流れの方向(短手方向X)と直交する方向(長手方向Y)に並べることによって形成している。流路部102Lは、図11~図15に示すように、長手方向Yおよび短手方向Xの面内において平坦な平坦部102xから下方に突出するように、凸状のアノード側突起102yを一定の間隔で設けている。アノード側突起102yは、ガスの流れの方向(短手方向X)に沿って延びている。アノード側突起102yは、セパレータ102の下端から下方に向かって突出している。流路部102Lは、図11~図15に示すように、平坦部102xから上方に突出するように、凸状のカソード側突起102zを一定の間隔で設けている。カソード側突起102zは、ガスの流れの方向(短手方向X)に沿って延びている。カソード側突起102zは、セパレータ102の上端から上方に向かって突出している。流路部102Lは、アノード側突起102yと凸状のカソード側突起102zを、平坦部102xを隔てて、長手方向Yに沿って交互に設けている。 In the separator 102, as shown in FIG. 8 and FIGS. 11 and 12, the flow path portion 102L extends the flow path extending along the gas flow direction (short side direction X) into the gas flow direction (short side). It is formed by arranging in the direction (longitudinal direction Y) orthogonal to the hand direction X). As shown in FIG. 11 to FIG. 15, the flow path portion 102L has a constant convex anode side protrusion 102y so as to protrude downward from the flat portion 102x in the plane of the longitudinal direction Y and the transverse direction X. Provided at intervals of The anode side protrusion 102y extends along the gas flow direction (short direction X). The anode-side protrusion 102 y protrudes downward from the lower end of the separator 102. As shown in FIGS. 11 to 15, the flow path portion 102L is provided with convex cathode side projections 102z at regular intervals so as to protrude upward from the flat portion 102x. The cathode side protrusion 102z extends along the gas flow direction (short direction X). The cathode side protrusion 102 z protrudes upward from the upper end of the separator 102. The flow channel portion 102L alternately provides the anode-side protrusions 102y and the convex cathode-side protrusions 102z along the longitudinal direction Y with the flat portion 102x therebetween.
 セパレータ102は、図11および図17に示すように、流路部102Lと、その下方に位置するメタルサポートセルアッセンブリー101との隙間を、アノードガスAGの流路として構成している。アノードガスAGは、図14に示すセパレータ102のアノード側第2流入口102b等から、図14および図15に示す複数の溝102qを通り、アノード側の流路部102Lに流入する。セパレータ102は、図14および図15に示すように、複数の溝102qを、アノード側第1流入口102a、アノード側第2流入口102b、アノード側第3流入口102cから、それぞれアノード側の流路部102Lに向かって放射状に形成している。セパレータ102は、図11および図17に示すように、流路部102Lと、その上方に位置するメタルサポートセルアッセンブリー101との隙間を、カソードガスCGの流路として構成している。カソードガスCGは、図12に示すセパレータ102のカソード側第1流入口102fおよびカソード側第2流入口102gから、図12および図13に示すセパレータ102のカソード側の外縁102pを越えて、カソード側の流路部102Lに流入する。セパレータ102は、図13に示すように、カソード側の外縁102pを、他の部分よりも肉薄に形成している。 In the separator 102, as shown in FIGS. 11 and 17, the gap between the flow path portion 102L and the metal support cell assembly 101 located below the flow path portion 102L is configured as a flow path of the anode gas AG. The anode gas AG flows from the anode-side second inlet 102b of the separator 102 shown in FIG. 14 through the plurality of grooves 102q shown in FIGS. 14 and 15 into the flow channel portion 102L on the anode side. As shown in FIGS. 14 and 15, the separator 102 flows the anode side from the plurality of grooves 102q from the anode side first inlet 102a, the anode side second inlet 102b, and the anode side third inlet 102c, respectively. It is radially formed toward the road portion 102L. In the separator 102, as shown in FIGS. 11 and 17, the gap between the flow path portion 102L and the metal support cell assembly 101 located above the flow path portion 102L is configured as a flow path of the cathode gas CG. The cathode gas CG passes from the cathode side first inlet 102 f and the cathode side second inlet 102 g of the separator 102 shown in FIG. 12 to the cathode side beyond the cathode outer edge 102 p of the separator 102 shown in FIGS. 12 and 13. Flows into the flow path portion 102L of the In the separator 102, as shown in FIG. 13, the outer edge 102p on the cathode side is thinner than the other portions.
 セパレータ102は、図8、図12および図14に示すように、メタルサポートセルアッセンブリー101と積層方向Zに沿って相対的な位置が合うように、アノードガスAGを通過させるアノード側第1流入口102a、アノード側第2流入口102b、アノード側第3流入口102c、アノード側第1流出口102dおよびアノード側第2流出口102eを設けている。セパレータ102は、メタルサポートセルアッセンブリー101と積層方向Zに沿って相対的な位置が合うように、カソードガスCGを通過させるカソード側第1流入口102f、カソード側第2流入口102g、カソード側第1流出口102h、カソード側第2流出口102iおよびカソード側第3流出口102jを設けている。セパレータ102において、カソードガスCGのカソード側第1流入口102f、カソード側第2流入口102g、カソード側第1流出口102h、カソード側第2流出口102iおよびカソード側第3流出口102jは、セパレータ102の外周面とエアーシェルター110の内側面との空間に相当する。 As shown in FIG. 8, FIG. 12 and FIG. 14, the separator 102 has an anode side first inlet for passing the anode gas AG so as to be positioned relative to the metal support cell assembly 101 along the stacking direction Z. An anode side second inlet 102b, an anode side third inlet 102c, an anode side first outlet 102d, and an anode side second outlet 102e are provided. The separator 102 has a cathode side first inlet 102 f, a cathode side second inlet 102 g, and a cathode side first inlet 102 f for passing the cathode gas CG so that the separator 102 is positioned relative to the metal support cell assembly 101 along the stacking direction Z. One outlet 102h, a cathode side second outlet 102i, and a cathode side third outlet 102j are provided. In the separator 102, the cathode side first inlet 102f of the cathode gas CG, the cathode side second inlet 102g, the cathode side first outlet 102h, the cathode side second outlet 102i and the cathode side third outlet 102j The space corresponds to the space between the outer peripheral surface of the air conditioner 102 and the inner surface of the air shelter 110.
 集電補助層103は、図8に示すように、発電セル101Mとセパレータ102との間にガスを通す空間を形成しつつ面圧を均等にして、発電セル101Mとセパレータ102との電気的な接触を補助するものである。 As shown in FIG. 8, the current collection auxiliary layer 103 forms a space for passing gas between the power generation cell 101 M and the separator 102, and equalizes the surface pressure to electrically connect the power generation cell 101 M and the separator 102. It assists in contact.
 集電補助層103は、いわゆる、エキスパンドメタルである。集電補助層103は、発電セル101Mとセパレータ102の流路部102Lとの間に配置している。集電補助層103は、発電セル101Mと同様の外形形状からなる。集電補助層103は、菱形等の開口を格子状に設けた金網状からなる。 The current collection auxiliary layer 103 is a so-called expanded metal. The current collection auxiliary layer 103 is disposed between the power generation cell 101M and the flow path portion 102L of the separator 102. The current collection auxiliary layer 103 has an outer shape similar to that of the power generation cell 101M. The current collection auxiliary layer 103 is formed of a wire mesh in which openings such as rhombus are provided in a grid.
 封止部材104は、図8に示すように、メタルサポートセルアッセンブリー101とセパレータ102との隙間を部分的に封止してガスの流れを制限するものである。 The sealing member 104 partially seals the gap between the metal support cell assembly 101 and the separator 102 to restrict the flow of gas, as shown in FIG.
 封止部材104は、スペーサーとシールの機能を備え、いわゆるガスケットである。封止部材104は、セパレータ102のアノード側流入口(例えばアノード側第1流入口102a)およびアノード側流出口(例えばアノード側第1流出口102d)から、セパレータ102のカソード側の流路に向かって、アノードガスAGが混入することを防止する。封止部材104は、リング状に形成している。封止部材104は、セパレータ102のカソード側の面に臨んでいるアノード側流入口(例えばアノード側第1流入口102a)、およびアノード側流出口(例えばアノード側第1流出口102d)の内周縁に接合する。封止部材104は、例えば、耐熱性およびシール性を有するサーミキュライトからなる。 The sealing member 104 is a so-called gasket having a spacer and a sealing function. The sealing member 104 is directed from the anode side inlet (for example, the anode side first inlet 102 a) and the anode side outlet (for example, the anode side first outlet 102 d) of the separator 102 toward the flow path on the cathode side of the separator 102. Thus, the anode gas AG is prevented from being mixed. The sealing member 104 is formed in a ring shape. The sealing member 104 has an inner peripheral edge of an anode side inlet (for example, the anode side first inlet 102 a) facing the cathode side surface of the separator 102 and an inner peripheral edge of the anode side outlet (for example, the anode side first outlet 102 d). Bond to The sealing member 104 is made of, for example, thermiculite having heat resistance and sealability.
 モジュールエンド105は、図5~図7に示すように、複数積層したセルユニット100Tの下端または上端を保持するプレートである。 The module end 105 is a plate for holding the lower end or the upper end of the plurality of stacked cell units 100T, as shown in FIGS.
 モジュールエンド105は、複数積層したセルユニット100Tの下端または上端に配置している。モジュールエンド105は、セルユニット100Tと同様の外形形状からなる。モジュールエンド105は、ガスを透過させない導電性材料からなり、発電セル101Mおよび他のモジュールエンド105と対向する一部の領域を除いて、絶縁材またはコーティングを用いて絶縁している。絶縁材は、例えば、モジュールエンド105に酸化アルミニウムを固着させて構成する。 The module end 105 is disposed at the lower end or the upper end of the plurality of stacked cell units 100T. The module end 105 has an outer shape similar to that of the cell unit 100T. The module end 105 is made of a conductive material that does not transmit gas, and is insulated using an insulating material or a coating except for a region facing the power generation cell 101 M and the other module end 105. The insulating material is configured, for example, by fixing aluminum oxide to the module end 105.
 モジュールエンド105は、セルユニット100Tと積層方向Zに沿って相対的な位置が合うように、アノードガスAGを通過させるアノード側第1流入口105a、アノード側第2流入口105b、アノード側第3流入口105c、アノード側第1流出口105dおよびアノード側第2流出口105eを設けている。モジュールエンド105は、セルユニット100Tと積層方向Zに沿って相対的な位置が合うように、カソードガスCGを通過させるカソード側第1流入口105f、カソード側第2流入口105g、カソード側第1流出口105h、カソード側第2流出口105iおよびカソード側第3流出口105jを設けている。モジュールエンド105において、カソード側第1流入口105f、カソード側第2流入口105g、カソード側第1流出口105h、カソード側第2流出口105iおよびカソード側第3流出口105jは、モジュールエンド105の外周面とエアーシェルター110の内側面との空間に相当する。 The module end 105 has an anode side first inlet 105a for passing the anode gas AG, an anode side second inlet 105b, and an anode side third so that the relative position is aligned with the cell unit 100T along the stacking direction Z. An inlet 105c, an anode side first outlet 105d, and an anode side second outlet 105e are provided. The module end 105 has a cathode side first inlet 105 f for passing the cathode gas CG, a cathode side second inlet 105 g, and a cathode side first so that the relative position is aligned with the cell unit 100 T along the stacking direction Z. An outlet 105 h, a cathode side second outlet 105 i and a cathode side third outlet 105 j are provided. In the module end 105, the cathode side first inlet 105f, the cathode side second inlet 105g, the cathode side first outlet 105h, the cathode side second outlet 105i and the cathode side third outlet 105j It corresponds to the space between the outer peripheral surface and the inner side surface of the air shelter 110.
 上部集電板106は、図5に示し、セルユニット100Tで発電された電力を外部に出力するものである。 The upper current collecting plate 106 shown in FIG. 5 is for outputting the power generated by the cell unit 100T to the outside.
 上部集電板106は、図5に示すように、上部モジュールユニット100Pの上端に配置している。上部集電板106は、セルユニット100Tと同様の外形形状からなる。上部集電板106は、外部の通電部材と接続される端子(不図示)を設けている。上部集電板106は、ガスを透過させない導電性材料からなり、セルユニット100Tの発電セル101Mと対向する領域および端子の部分を除いて、絶縁材またはコーティングを用いて絶縁している。絶縁材は、例えば、上部集電板106に酸化アルミニウムを固着させて構成する。 The upper current collecting plate 106 is disposed at the upper end of the upper module unit 100P, as shown in FIG. The upper current collecting plate 106 has an outer shape similar to that of the cell unit 100T. The upper current collecting plate 106 is provided with a terminal (not shown) connected to an external current-carrying member. The upper current collector plate 106 is made of a conductive material that does not transmit gas, and is insulated using an insulating material or a coating except for the region facing the power generation cell 101M of the cell unit 100T and the part of the terminal. The insulating material is configured, for example, by fixing aluminum oxide to the upper current collecting plate 106.
 下部集電板107は、図7に示し、セルユニット100Tで発電された電力を外部に出力するものである。 The lower current collecting plate 107 shown in FIG. 7 is for outputting the power generated by the cell unit 100T to the outside.
 下部集電板107は、図7に示すように、下部モジュールユニット100Rの下端に配置している。下部集電板107は、上部集電板106と同様の外形形状からなる。下部集電板107は、外部の通電部材と接続される端子(不図示)を設けている。下部集電板107は、ガスを透過させない導電性材料からなり、セルユニット100Tの発電セル101Mと対向する領域および端子の部分を除いて、絶縁材またはコーティングを用いて絶縁している。絶縁材は、例えば、下部集電板107に酸化アルミニウムを固着させて構成する。 The lower current collecting plate 107 is disposed at the lower end of the lower module unit 100R, as shown in FIG. The lower current collector plate 107 has an outer shape similar to that of the upper current collector plate 106. Lower current collector plate 107 is provided with a terminal (not shown) connected to an external current-carrying member. The lower current collector plate 107 is made of a conductive material that does not transmit gas, and is insulated using an insulating material or a coating except for the region facing the power generation cell 101M of the cell unit 100T and the terminal portion. The insulating material is formed, for example, by fixing aluminum oxide to the lower current collector plate 107.
 下部集電板107は、セルユニット100Tと積層方向Zに沿って相対的な位置が合うように、アノードガスAGを通過させるアノード側第1流入口107a、アノード側第2流入口107b、アノード側第3流入口107c、アノード側第1流出口107dおよびアノード側第2流出口107eを設けている。下部集電板107は、セルユニット100Tと積層方向Zに沿って相対的な位置が合うように、カソードガスCGを通過させるカソード側第1流入口107f、カソード側第2流入口107g、カソード側第1流出口107h、カソード側第2流出口107iおよびカソード側第3流出口107jを設けている。下部集電板107において、カソード側第1流入口107f、カソード側第2流入口107g、カソード側第1流出口107h、カソード側第2流出口107iおよびカソード側第3流出口107jは、下部集電板107の外周面とエアーシェルター110の内側面との空間に相当する。 The lower current collector plate 107 has an anode side first inlet 107a, an anode side second inlet 107b, and an anode side, which allow the anode gas AG to pass through so that the relative position is aligned with the cell unit 100T along the stacking direction Z. A third inlet 107c, an anode side first outlet 107d and an anode side second outlet 107e are provided. The lower current collecting plate 107 has a cathode side first inlet 107f for passing the cathode gas CG, a cathode side second inlet 107g, and a cathode side to allow the cathode gas CG to pass through in the stacking direction Z relative to the cell unit 100T. A first outlet 107h, a cathode side second outlet 107i and a cathode side third outlet 107j are provided. In the lower current collector plate 107, the cathode side first inlet 107f, the cathode side second inlet 107g, the cathode side first outlet 107h, the cathode side second outlet 107i and the cathode side third outlet 107j It corresponds to the space between the outer peripheral surface of the electric plate 107 and the inner side surface of the air shelter 110.
 下部エンドプレート108は、図2および図3に示すように、スタック100Sを下方から保持するものである。 The lower end plate 108 holds the stack 100S from below as shown in FIGS. 2 and 3.
 下部エンドプレート108は、スタック100Sの下端に配置している。下部エンドプレート108は、一部を除いて、セルユニット100Tと同様の外形形状からなる。下部エンドプレート108は、カソードガスCGの流入口および排出口を形成するために、長手方向Yに沿った両端を直線状に伸長させて形成している。下部エンドプレート108は、セルユニット100Tよりも十分に厚く形成している。下部エンドプレート108は、例えば、金属からなり、下部集電板107と接触する上面を、絶縁材またはコーティングを用いて絶縁している。絶縁材は、例えば、下部エンドプレート108に酸化アルミニウムを固着させて構成する。 The lower end plate 108 is disposed at the lower end of the stack 100S. The lower end plate 108 has an outer shape similar to that of the cell unit 100T except for a part. The lower end plate 108 is formed by linearly extending both ends along the longitudinal direction Y in order to form an inlet and an outlet of the cathode gas CG. The lower end plate 108 is formed sufficiently thicker than the cell unit 100T. The lower end plate 108 is made of, for example, metal, and the upper surface in contact with the lower current collector plate 107 is insulated using an insulating material or a coating. The insulating material is formed, for example, by fixing aluminum oxide to the lower end plate 108.
 下部エンドプレート108は、セルユニット100Tと積層方向Zに沿って相対的な位置が合うように、アノードガスAGを通過させるアノード側第1流入口108a、アノード側第2流入口108b、アノード側第3流入口108c、アノード側第1流出口108dおよびアノード側第2流出口108eを設けている。下部エンドプレート108は、セルユニット100Tと積層方向Zに沿って相対的な位置が合うように、カソードガスCGを通過させるカソード側第1流入口108f、カソード側第2流入口108g、カソード側第1流出口108h、カソード側第2流出口108iおよびカソード側第3流出口108jを設けている。 The lower end plate 108 has an anode-side first inlet 108a, an anode-side second inlet 108b, and an anode-side first inlet 108a through which the anode gas AG passes so that the relative position is aligned with the cell unit 100T along the stacking direction Z. A three inlet 108c, an anode side first outlet 108d and an anode side second outlet 108e are provided. The lower end plate 108 has a cathode side first inlet 108 f, a cathode side second inlet 108 g, and a cathode side first inlet 108 f for passing the cathode gas CG so as to be positioned relative to the cell unit 100 T in the stacking direction Z. One outlet 108 h, a cathode side second outlet 108 i and a cathode side third outlet 108 j are provided.
 上部エンドプレート109は、図2および図3に示すように、スタック100Sを上方から保持するものである。 The upper end plate 109 holds the stack 100S from above as shown in FIGS. 2 and 3.
 上部エンドプレート109は、スタック100Sの上端に配置している。上部エンドプレート109は、下部エンドプレート108と同様の外形形状からなる。上部エンドプレート109は、下部エンドプレート108と異なり、ガスの流入口および排出口を設けていない。上部エンドプレート109は、例えば、金属からなり、上部集電板106と接触する下面を、絶縁材またはコーティングを用いて絶縁している。絶縁材は、例えば、上部エンドプレート109に酸化アルミニウムを固着させて構成する。 The upper end plate 109 is disposed at the upper end of the stack 100S. The upper end plate 109 has the same outer shape as the lower end plate 108. The upper end plate 109, unlike the lower end plate 108, does not have a gas inlet and outlet. The upper end plate 109 is made of, for example, metal, and the lower surface in contact with the upper current collector plate 106 is insulated using an insulating material or a coating. The insulating material is formed, for example, by fixing aluminum oxide to the upper end plate 109.
 エアーシェルター110は、図2および図3に示すように、スタック100Sとの間において、カソードガスCGの流路を形成するものである。 The air shelter 110, as shown in FIGS. 2 and 3, forms a flow path of the cathode gas CG with the stack 100S.
 エアーシェルター110は、図2および図3に示すように、下部エンドプレート108と上部エンドプレート109によって挟み込まれたスタック100Sを上方から覆っている。エアーシェルター110は、エアーシェルター110の内側面とスタック100Sの側面との隙間の部分によって、スタック100Sの構成部材のカソードガスCGの流入口と流出口を形成する。エアーシェルター110は、箱形状からなり、下部の全てと側部の一部を開口している。エアーシェルター110は、例えば、金属からなり、内側面を絶縁材またはコーティングを用いて絶縁している。絶縁材は、例えば、エアーシェルター110に酸化アルミニウムを固着させて構成する。 The air shelter 110 covers from above the stack 100S sandwiched by the lower end plate 108 and the upper end plate 109, as shown in FIGS. 2 and 3. The air shelter 110 forms an inlet and an outlet for the cathode gas CG of the components of the stack 100S by the gap between the inner side surface of the air shelter 110 and the side surface of the stack 100S. The air shelter 110 is in the form of a box and opens at the bottom and part of the side. The air shelter 110 is made of, for example, metal, and the inside surface is insulated using an insulating material or a coating. The insulating material is configured, for example, by fixing aluminum oxide to the air shelter 110.
 外部マニホールド111は、図1および図2に示すように、外部から複数のセルユニット100Tにガスを供給するものである。 The external manifold 111 supplies gas from the outside to the plurality of cell units 100T, as shown in FIGS. 1 and 2.
 外部マニホールド111は、セルスタックアッセンブリー100Mの下方に配置している。外部マニホールド111は、下部エンドプレート108の形状を単純化した外形形状からなる。外部マニホールド111は、下部エンドプレート108よりも十分に厚く形成している。外部マニホールド111は、例えば、金属からなる。 The outer manifold 111 is disposed below the cell stack assembly 100M. The outer manifold 111 has an outer shape that simplifies the shape of the lower end plate 108. The outer manifold 111 is formed sufficiently thicker than the lower end plate 108. The outer manifold 111 is made of, for example, metal.
 外部マニホールド111は、セルユニット100Tと積層方向Zに沿って相対的な位置が合うように、アノードガスAGを通過させるアノード側第1流入口111a、アノード側第2流入口111b、アノード側第3流入口111c、アノード側第1流出口111dおよびアノード側第2流出口111eを設けている。外部マニホールド111は、カソードガスCGを通過させるセルユニット100Tと積層方向Zに沿って相対的な位置が合うように、カソード側第1流入口111f、カソード側第2流入口111g、カソード側第1流出口111h、カソード側第2流出口111iおよびカソード側第3流出口111jを設けている。 The external manifold 111 has an anode-side first inlet 111a, an anode-side second inlet 111b, and an anode-side third inlet 111a through which the anode gas AG is passed so that the relative position is aligned with the cell unit 100T along the stacking direction Z. An inlet 111c, an anode side first outlet 111d and an anode side second outlet 111e are provided. The external manifold 111 has a cathode side first inlet 111f, a cathode side second inlet 111g, and a cathode side first so that the relative position is aligned along the stacking direction Z with the cell unit 100T that passes the cathode gas CG. An outlet 111h, a cathode side second outlet 111i, and a cathode side third outlet 111j are provided.
 カバー112は、図1および図2に示すように、セルスタックアッセンブリー100Mを被覆して保護するものである。 The cover 112 covers and protects the cell stack assembly 100M, as shown in FIGS. 1 and 2.
 カバー112は、セルスタックアッセンブリー100Mを、外部マニホールド111とともに上下から挟み込んでいる。カバー112は、箱形状からなり、下部を開口させている。カバー112は、例えば、金属からなり、内側面を絶縁材によって絶縁している。 The cover 112 sandwiches the cell stack assembly 100M together with the external manifold 111 from above and below. The cover 112 has a box shape and is open at the bottom. The cover 112 is made of, for example, metal, and the inner surface is insulated by an insulating material.
 (燃料電池100に設けた調整部200の構成)
 図16は、調整部200の構成要素として補助流路T11およびT12を設けた例を示す斜視図である。図17は、メタルサポートセルアッセンブリー101とセパレータ102および集電補助層103を積層した状態の中央部分を示し、その中央部分に調整部200の構成要素として補助流路T11を設けた状態を示す断面図に相当する。
(Configuration of Adjustment Unit 200 Provided to Fuel Cell 100)
FIG. 16 is a perspective view showing an example in which auxiliary flow paths T11 and T12 are provided as components of the adjustment unit 200. As shown in FIG. FIG. 17 shows a central portion in a state in which the metal support cell assembly 101, the separator 102 and the current collection auxiliary layer 103 are stacked, and a cross section showing a state in which the auxiliary flow passage T11 is provided as a component of the adjustment unit 200 in the central portion. It corresponds to the figure.
 調整部200は、一例として、空間(空隙)からなる補助流路T11およびT12によって構成している。調整部200の構成要素である補助流路T11等は、図16および図17に加えて図12~図15にも示すように、セパレータ102に設けている。図16の左側の流路部102Lの右端に位置する補助流路T11は、対応する発電セル101Mの端部(右端)に対向する流路であって、アノード側第2流入口102bやカソード側第2流出口102iに相対的に近い流路に相当する。図16の左側の流路部102Lの左端に位置する補助流路T12は、対応する発電セル101Mの端部(左端)に対向する流路であって、アノード側第3流入口102cやカソード側第3流出口102jに相対的に近い流路に相当する。図16の右側の流路部102Lの右端に位置する補助流路T12は、対応する発電セル101Mの端部(右端)に対向する流路であって、アノード側第1流入口102aやカソード側第1流出口102hに相対的に近い流路に相当する。図16の右側の流路部102Lの左端に位置する補助流路T11は、対応する発電セル101Mの端部(左端)に対向する流路であって、アノード側第2流入口102bやカソード側第2流出口102iに相対的に近い流路に相当する。 The adjustment unit 200 is configured by, for example, auxiliary flow paths T11 and T12 formed of a space (air gap). The auxiliary flow path T11 or the like which is a component of the adjustment unit 200 is provided in the separator 102 as shown in FIGS. 12 to 15 in addition to FIGS. The auxiliary flow path T11 positioned at the right end of the flow path portion 102L on the left side of FIG. 16 is a flow path facing the end (right end) of the corresponding power generation cell 101M, and is the anode side second inflow port 102b or the cathode side. It corresponds to a flow path relatively close to the second outlet 102i. The auxiliary flow passage T12 positioned at the left end of the flow passage portion 102L on the left side of FIG. 16 is a flow passage facing the end (left end) of the corresponding power generation cell 101M, and is the anode side third inlet 102c or the cathode side. It corresponds to a flow path relatively close to the third outlet 102 j. The auxiliary flow path T12 positioned at the right end of the flow path portion 102L on the right side of FIG. 16 is a flow path facing the end (right end) of the corresponding power generation cell 101M, and is the anode side first inflow port 102a or the cathode side. It corresponds to a flow path relatively close to the first outlet 102 h. The auxiliary flow path T11 positioned at the left end of the flow path portion 102L on the right side of FIG. 16 is a flow path facing the end (left end) of the corresponding power generation cell 101M, and is the anode side second inflow port 102b or the cathode side It corresponds to a flow path relatively close to the second outlet 102i.
 (燃料電池100におけるガスの流れ)
 図18Aは、燃料電池100におけるアノードガスAGおよびカソードガスCGの流れを模式的に示す斜視図である。図18Bは、燃料電池100におけるカソードガスCGの流れを模式的に示す斜視図である。図18Cは、燃料電池100におけるアノードガスAGの流れを模式的に示す斜視図である。
(Flow of gas in fuel cell 100)
FIG. 18A is a perspective view schematically showing the flow of the anode gas AG and the cathode gas CG in the fuel cell 100. FIG. FIG. 18B is a perspective view schematically showing the flow of the cathode gas CG in the fuel cell 100. FIG. 18C is a perspective view schematically showing the flow of the anode gas AG in the fuel cell 100.
 アノードガスAGは、外部マニホールド111、下部エンドプレート108、モジュールエンド105、セパレータ102、およびメタルサポートセルアッセンブリー101の各々の流入口を通過して、各々の発電セル101Mのアノード101Tに供給される。すなわち、アノードガスAGは、外部マニホールド111から終端の上部集電板106に至るまで、交互に積層されたセパレータ102とメタルサポートセルアッセンブリー101との隙間に設けられたアノード側の流路に分配して供給される。その後、アノードガスAGは、発電セル101Mで反応し、上記の各構成部材の各々の流出口を通過して排ガスの状態で排出される。 The anode gas AG is supplied to the anode 101T of each power generation cell 101M through an inlet of each of the outer manifold 111, the lower end plate 108, the module end 105, the separator 102, and the metal support cell assembly 101. That is, the anode gas AG is distributed to the flow path on the anode side provided in the gap between the separator 102 and the metal support cell assembly 101 alternately stacked from the external manifold 111 to the upper end collector plate 106. Is supplied. Thereafter, the anode gas AG reacts in the power generation cell 101M, passes through the outlet of each component described above, and is exhausted in the state of exhaust gas.
 アノードガスAGは、図18Aに示すように、セパレータ102を隔てて、カソードガスCGと交差するように、流路部102Lに供給される。アノードガスAGは、図18Cにおいて、図18Cの下方に位置するセパレータ102のアノード側第1流入口102a、アノード側第2流入口102bおよびアノード側第3流入口102cを通過し、メタルサポートセルアッセンブリー101のアノード側第1流入口101a、アノード側第2流入口101bおよびアノード側第3流入口101cを通過した後、図18Cの上方に位置するセパレータ102の流路部102Lに流入して、メタルサポートセルアッセンブリー101の発電セル101Mのアノード101Tに供給される。アノード101Tで反応した後のアノードガスAGは、排気ガスの状態で、図18Cの上方に位置するセパレータ102の流路部102Lから流出して、メタルサポートセルアッセンブリー101のアノード側第1流出口101dおよびアノード側第2流出口101eを通過し、図18C中の下方に位置するセパレータ102のアノード側第1流出口102dおよびアノード側第2流出口102eを通過して外部に排出される。 As shown in FIG. 18A, the anode gas AG is supplied to the flow channel portion 102L across the separator 102 so as to intersect the cathode gas CG. 18C, the anode gas AG passes through the anode side first inlet 102a, the anode side second inlet 102b and the anode side third inlet 102c of the separator 102 located at the bottom of FIG. 18C, and the metal support cell assembly After passing through the anode-side first inlet 101a, the anode-side second inlet 101b, and the anode-side third inlet 101c of the fuel cell 101, the gas flows into the flow path portion 102L of the separator 102 positioned above FIG. It is supplied to the anode 101T of the power generation cell 101M of the support cell assembly 101. The anode gas AG after reacting at the anode 101T flows out from the flow path portion 102L of the separator 102 located in the upper part of FIG. 18C in the state of exhaust gas, and the anode side first outlet 101d of the metal support cell assembly 101. 18A passes through the anode side second outlet 101e, and is discharged to the outside through the anode side first outlet 102d and the anode side second outlet 102e of the separator 102 located at the lower side in FIG. 18C.
 カソードガスCGは、外部マニホールド111、下部エンドプレート108、モジュールエンド105、セパレータ102、およびメタルサポートセルアッセンブリー101の各々の流入口を通過して、発電セル101Mのカソード101Uに供給される。すなわち、カソードガスCGは、外部マニホールド111から終端の上部集電板106に至るまで、交互に積層されたメタルサポートセルアッセンブリー101とセパレータ102との隙間に設けられたカソード側の流路に分配して供給される。その後、カソードガスCGは、発電セル101Mで反応し、上記の各構成部材の各々の流出口を通過して排ガスの状態で排出される。上記の各構成部材におけるカソードガスCGの流入口および流出口は、各々の構成部材の外周面と、エアーシェルター110の内側面との間の隙間によって、構成している。 The cathode gas CG is supplied to the cathode 101U of the power generation cell 101M through an inlet of each of the outer manifold 111, the lower end plate 108, the module end 105, the separator 102, and the metal support cell assembly 101. That is, the cathode gas CG is distributed to the cathode-side flow path provided in the gap between the metal support cell assembly 101 and the separator 102 alternately stacked from the external manifold 111 to the upper end collector plate 106. Is supplied. Thereafter, the cathode gas CG reacts in the power generation cell 101M, passes through the outlet of each component described above, and is exhausted in the state of exhaust gas. The inlet and the outlet of the cathode gas CG in each of the above components are constituted by the gap between the outer peripheral surface of each component and the inner side surface of the air shelter 110.
 カソードガスCGは、図18Bにおいて、図18Bの下方に位置するセパレータ102のカソード側第1流入口102fおよびカソード側第2流入口102gを通過し、そのセパレータ102の流路部102Lに流入して、メタルサポートセルアッセンブリー101の発電セル101Mのカソード101Uに供給される。カソード101Uで反応した後のカソードガスCGは、排気ガスの状態で、図18B中の下方に位置するセパレータ102の流路部102Lから流出して、そのセパレータ102のカソード側第1流出口102h、カソード側第2流出口102iおよびカソード側第3流出口102jを通過して外部に排出される。 In FIG. 18B, the cathode gas CG passes through the cathode-side first inlet 102f and the cathode-side second inlet 102g of the separator 102 located in the lower part of FIG. 18B and flows into the flow path portion 102L of the separator 102. , The cathode 101 U of the power generation cell 101 M of the metal support cell assembly 101. The cathode gas CG after reacting at the cathode 101U flows out from the flow path portion 102L of the separator 102 located below in FIG. 18B in the state of exhaust gas, and the cathode side first outlet 102h of the separator 102, It passes through the cathode side second outlet 102i and the cathode side third outlet 102j and is discharged to the outside.
 以上説明した第1実施形態の作用効果を説明する。 The operation and effect of the first embodiment described above will be described.
 燃料電池100のユニット構造は、発電セル101Mと、セパレータ102と、流路部102Lと、複数のガス流入口と、複数のガス流出口と、調整部200と、を有する。発電セル101Mは、電解質101Sをアノード101Tとカソード101Uとで挟み供給されたガスによって発電する。セパレータ102は、発電セル101Mと発電セル101Mとの間に設け、隣り合う発電セル101Mを隔てる。流路部102Lは、セパレータ102とセパレータ102との間に形成され発電セル101Mにガスを供給する複数の流路からなる。複数のガス流入口(例えば、アノード側第1流入口102a、アノード側第2流入口102bおよびアノード側第3流入口102c)は、流路部102Lにガスを流入させる。複数のガス流出口(例えば、アノード側第1流出口102dおよびアノード側第2流出口102e)は、流路部からガスを流出させる。調整部200は、複数の流路を流れるガスの量を調整する。調整部200は複数のガス流入口間または複数のガス流出口間に形成される流路部の圧力損失を調整することによって複数の流路間の流れのばらつきを低下させる。 The unit structure of the fuel cell 100 includes a power generation cell 101M, a separator 102, a flow passage 102L, a plurality of gas inlets, a plurality of gas outlets, and an adjustment unit 200. The power generation cell 101M generates electric power by the gas supplied by sandwiching the electrolyte 101S between the anode 101T and the cathode 101U. The separator 102 is provided between the power generation cell 101M and the power generation cell 101M to separate adjacent power generation cells 101M. The flow path portion 102L is formed between the separators 102 and 102, and includes a plurality of flow paths for supplying a gas to the power generation cell 101M. The plurality of gas inlets (for example, the first anode side inlet 102a, the second anode side inlet 102b, and the third anode side inlet 102c) allow the gas to flow into the flow path portion 102L. The plurality of gas outlets (for example, the first anode side outlet 102d and the second anode side outlet 102e) allow the gas to flow out of the flow path. The adjustment unit 200 adjusts the amount of gas flowing through the plurality of flow paths. The adjustment unit 200 reduces the variation in flow among the plurality of flow paths by adjusting the pressure loss of the flow path portion formed between the plurality of gas inlets or the plurality of gas outlets.
 燃料電池100のユニット構造の制御方法は、セパレータ102の間に狭持された発電セル101Mにガス流入口(例えば、アノード側第1流入口102a、アノード側第2流入口102bおよびアノード側第3流入口102c)からガスをセパレータ102に形成した流路部102Lに供給し、ガスをガス流出口(例えば、アノード側第1流出口102dおよびアノード側第2流出口102e)から排出して発電する燃料電池100のユニット構造の制御方法である。この燃料電池100のユニット構造の制御方法は、ガス流入口から供給されるガスの流れを、発電セル101Mの同一平面内において、セパレータ102の流路部102Lを流れる主流れと、複数の発電セル101Mの間を流れる補助流れの少なくとも2つの流れに分割し、補助流れにおけるガスの圧力損失を調整して、主流れにおける同一平面内でのガスの分配を均一にする。 The control method of the unit structure of the fuel cell 100 includes a gas inlet (for example, an anode side first inlet 102 a, an anode side second inlet 102 b, and an anode side third) in the power generation cell 101 M sandwiched between the separators 102. The gas is supplied from the inlet 102c) to the flow path portion 102L formed in the separator 102, and the gas is discharged from the gas outlet (for example, the anode side first outlet 102d and the anode side second outlet 102e) to generate power. This is a control method of the unit structure of the fuel cell 100. In the method of controlling the unit structure of the fuel cell 100, the flow of the gas supplied from the gas inlet is divided into the main flow flowing through the flow path portion 102L of the separator 102 and the plurality of power generation cells in the same plane of the power generation cell 101M. Split into at least two streams of auxiliary flow between 101 M and adjust the pressure loss of gas in the auxiliary flow to make the distribution of gas in the same plane in the main flow uniform.
 燃料電池100のユニット構造の制御方法において、発電セル101Mの同一平面内とは、その発電セル101Mを同一のセパレータ102上に並べるように複数配置していることを表している。また、燃料電池100のユニット構造の制御方法において、主流れにおける同一平面内でのガスの分配を均一にするとは、ガスの流量のばらつきを低下させることである。ガスの流量のばらつきの低下とは、セパレータ102の複数の流路における各々のガスの流れを、同一の流速、圧力、密度等になるように調整することによって、同一の流量に近づけることをいう。 In the control method of the unit structure of the fuel cell 100, “within the same plane of the power generation cell 101M” indicates that a plurality of the power generation cells 101M are arranged so as to be arranged on the same separator 102. Further, in the control method of the unit structure of the fuel cell 100, to make the distribution of the gas in the same plane in the main flow uniform is to reduce the variation in the flow rate of the gas. The reduction in the variation of the gas flow rate means that the flow rates of the respective gases in the plurality of flow paths of the separator 102 are made close to the same flow rate by adjusting them to have the same flow velocity, pressure, density and the like. .
 かかる燃料電池100のユニット構造および燃料電池100のユニット構造の制御方法によれば、複数の流路間の流れのばらつきを低下させることができる。すなわち、燃料電池100のユニット構造は、発電セル101Mに対してガスを均等に供給することができる。したがって、燃料電池100のユニット構造は、発電効率を十分に向上させることができる。 According to the unit structure of the fuel cell 100 and the control method of the unit structure of the fuel cell 100, the variation in flow among the plurality of flow paths can be reduced. That is, the unit structure of fuel cell 100 can uniformly supply the gas to power generation cell 101M. Therefore, the unit structure of fuel cell 100 can sufficiently improve the power generation efficiency.
 特に、かかる燃料電池100のユニット構造は、図19に示すような構成において、発電セル101Mの端部(例えば補助流路T11およびT12と対向する部分)に供給するガスの量を調整することによって、発電セル101Mの中央部(例えば主流路S11と対向する部分)と発電セル101Mの端部(例えば補助流路T11およびT12と対向する部分)に供給するガスのばらつきを抑制することができる。すなわち、燃料電池100のユニット構造は、発電セル101Mの端部を流れるガスの流れ(脇流れ)を制御することによって、発電セル101Mの中央部を流れるガスの流れ(主流れ)を増減させて、発電セル101Mの中央部と端部に供給するガスのばらつきを抑制することができる。この結果、燃料電池100のユニット構造は、発電セル101Mの中央部と端部に対してガスを均等に供給することができる。したがって、燃料電池100のユニット構造は、発電効率を十分に向上させることができる。 In particular, the unit structure of the fuel cell 100 is configured as shown in FIG. 19 by adjusting the amount of gas supplied to the end of the power generation cell 101M (for example, the portion facing the auxiliary flow paths T11 and T12). The variation of the gas supplied to the central portion (for example, the portion facing the main flow path S11) of the power generation cell 101M and the end portion (for example the portion facing the auxiliary flow paths T11 and T12) of the power generation cell 101M can be suppressed. That is, the unit structure of the fuel cell 100 increases or decreases the gas flow (main flow) flowing through the central portion of the power generation cell 101M by controlling the gas flow (side flow) flowing through the end of the power generation cell 101M. It is possible to suppress the variation of the gas supplied to the central portion and the end portion of the power generation cell 101M. As a result, the unit structure of the fuel cell 100 can uniformly supply the gas to the central portion and the end portion of the power generation cell 101M. Therefore, the unit structure of fuel cell 100 can sufficiently improve the power generation efficiency.
 また、かかる燃料電池100のユニット構造によれば、発電セル101Mに供給されるガスが部分的に不足することを防止して、発電性能が低下することを抑制することができる。したがって、燃料電池100のユニット構造は、発電効率を十分に向上させることができる。 Further, according to the unit structure of the fuel cell 100, it is possible to prevent the partial shortage of the gas supplied to the power generation cell 101M and to suppress the decrease in the power generation performance. Therefore, the unit structure of fuel cell 100 can sufficiently improve the power generation efficiency.
 また、かかる燃料電池100のユニット構造によれば、発電セル101Mに供給されるガスが部分的に過剰になることを防止して、未反応で流出されるガスの量を低減することができる。発電セル101Mに供給されるガスの分配ばらつきが小さい程、過剰となるガスの供給量を低減することができる。本実施形態の構成を適用することによって、発電セル101Mに供給されるガスの分配ばらつきは、アノード側において約14%低減し、カソード側において約12%低減した。したがって、燃料電池100のユニット構造は、発電効率を十分に向上させることができる。 Moreover, according to the unit structure of the fuel cell 100, it is possible to prevent the gas supplied to the power generation cell 101M from being partially excessive, and to reduce the amount of the unreacted and flowed out gas. As the distribution variation of the gas supplied to the power generation cell 101M is smaller, it is possible to reduce the excess gas supply amount. By applying the configuration of the present embodiment, the distribution variation of the gas supplied to the power generation cell 101M is reduced by about 14% on the anode side and by about 12% on the cathode side. Therefore, the unit structure of fuel cell 100 can sufficiently improve the power generation efficiency.
 また、かかる燃料電池100のユニット構造によれば、発電セル101Mに対してガスを均等に供給することができることから、高温のガスを供給する場合に、ガスの温度分布のばらつきを抑制することができる。したがって、燃料電池100のユニット構造は、発電効率を十分に向上させることができる。 Further, according to the unit structure of the fuel cell 100, since the gas can be uniformly supplied to the power generation cell 101M, when the high temperature gas is supplied, the variation of the temperature distribution of the gas can be suppressed. it can. Therefore, the unit structure of fuel cell 100 can sufficiently improve the power generation efficiency.
 燃料電池100のユニット構造において、複数のガス流入口と複数のガス流出口との数とを異ならせることが好ましい。 In the unit structure of the fuel cell 100, it is preferable that the numbers of the plurality of gas inlets and the plurality of gas outlets be different.
 かかる燃料電池100のユニット構造によれば、流入口(例えば、アノード側第1流入口102a、アノード側第2流入口102bおよびアノード側第3流入口102c)と、流出口(例えば、アノード側第1流出口102dおよびアノード側第2流出口102e)を、オフセットして設けることになり、複数の流路を流れるガスの圧力損失を均等にして、複数の流路を流れる各々のガスのばらつきを抑制することができる。すなわち、燃料電池100のユニット構造は、発電セル101Mの端部(例えば補助流路T11およびT12と対向する部分)に供給するガスの量と、発電セル101Mの中央部(例えば主流路S11と対向する部分)に供給するガスの量を、均等にすることができる。したがって、燃料電池100のユニット構造は、発電効率を十分に向上させることができる。 According to the unit structure of the fuel cell 100, the inlet (for example, the first anode side inlet 102a, the second anode side inlet 102b and the third anode side inlet 102c) and the outlet (for example, the second anode side) One outlet 102d and the anode-side second outlet 102e) are provided in an offset manner to equalize the pressure loss of the gas flowing through the plurality of flow channels, and to disperse the variation of each gas flowing through the plurality of flow channels. It can be suppressed. That is, the unit structure of fuel cell 100 is such that the amount of gas supplied to the end of power generation cell 101M (for example, the portion facing auxiliary flow paths T11 and T12) and the central portion of power generation cell 101M (for example, main flow path S11) The amount of gas supplied to the part) can be made uniform. Therefore, the unit structure of fuel cell 100 can sufficiently improve the power generation efficiency.
 燃料電池100のユニット構造において、調整部200を複数の発電セル101Mを同一平面上に対向して配置することでこれら複数の発電セル101Mの対向面間に補助流路T11およびT12を形成することが好ましい。 In the unit structure of the fuel cell 100, the auxiliary flow paths T11 and T12 are formed between the facing surfaces of the plurality of power generation cells 101M by arranging the plurality of power generation cells 101M in the same plane on the adjustment unit 200. Is preferred.
 かかる燃料電池100のユニット構造によれば、簡便な構成によって、複数の発電セル101Mの対向面間に補助流路T11およびT12を形成することができる。 According to the unit structure of the fuel cell 100, the auxiliary flow paths T11 and T12 can be formed between the facing surfaces of the plurality of power generation cells 101M with a simple configuration.
 燃料電池100のユニット構造において、調整部200を少なくとも一方の発電セル101Mの非対向面とセルフレーム101W端部との間に補助流路T12を形成することが好ましい。 In the unit structure of the fuel cell 100, it is preferable to form an auxiliary flow passage T12 between the non-facing surface of at least one of the power generation cells 101M and the end portion of the cell frame 101W.
 かかる燃料電池100のユニット構造によれば、発電セル101Mの非対向面とセルフレーム101W端部との間の補助流路T12に供給するガスの量を調整して、発電セル101Mの発電に十分に寄与する中央部(例えば主流路S11と対向する部分)にガスを過不足なく供給することができる。したがって、燃料電池100のユニット構造は、発電効率を十分に向上させることができる。 According to the unit structure of the fuel cell 100, the amount of gas supplied to the auxiliary flow passage T12 between the non-facing surface of the power generation cell 101M and the end of the cell frame 101W is adjusted to be sufficient for power generation of the power generation cell 101M. Gas can be supplied to the central portion (for example, the portion facing the main flow path S11) contributing to the Therefore, the unit structure of fuel cell 100 can sufficiently improve the power generation efficiency.
 燃料電池100のユニット構造において、調整部200は、複数並べて配置した発電セルに流れるガスの量をそれぞれ調整することが好ましい。 In the unit structure of the fuel cell 100, the adjusting unit 200 preferably adjusts the amount of gas flowing to the plurality of power generation cells arranged side by side.
 かかる燃料電池100のユニット構造によれば、アクティブエリアを小さく区切って(必要となるアクティブエリアを複数の発電セル101Mを用いて構成)、そのアクティブエリア毎にガスのばらつきを抑制することができる。したがって、燃料電池100のユニット構造は、発電効率を十分に向上させることができる。 According to the unit structure of the fuel cell 100, the active area can be divided into smaller sections (the required active area is configured using the plurality of power generation cells 101M), and the variation in gas can be suppressed for each active area. Therefore, the unit structure of fuel cell 100 can sufficiently improve the power generation efficiency.
 燃料電池100のユニット構造において、調整部200は、隣り合う発電セルの間を流れるガスの量を調整することが好ましい。 In the unit structure of fuel cell 100, adjustment unit 200 preferably adjusts the amount of gas flowing between adjacent power generation cells.
 また、燃料電池100のユニット構造において、調整部200は、隣り合う発電セルの少なくとも一側方を流れるガスの量を調整することが好ましい。 In addition, in the unit structure of fuel cell 100, adjustment unit 200 preferably adjusts the amount of gas flowing on at least one side of adjacent power generation cells.
 かかる燃料電池100のユニット構造によれば、例えば、発電セル101Mの端部(例えば補助流路T11およびT12と対向する部分)に供給するガスの量を調整して、発電セル101Mの発電に十分に寄与する発電セル101Mの中央部にガスを過不足なく供給することができる。したがって、燃料電池100のユニット構造は、発電効率を十分に向上させることができる。 According to the unit structure of the fuel cell 100, for example, the amount of gas supplied to the end of the power generation cell 101M (for example, the portion facing the auxiliary flow paths T11 and T12) is adjusted to be sufficient for power generation of the power generation cell 101M. Gas can be supplied to the central portion of the power generation cell 101M contributing to the Therefore, the unit structure of fuel cell 100 can sufficiently improve the power generation efficiency.
 (第2実施形態)
 第2実施形態の燃料電池は、図19~図24Bに示す調整部201~203によってアクティブエリアの領域のガスの流れを制御する。
Second Embodiment
In the fuel cell of the second embodiment, the flow of gas in the area of the active area is controlled by the adjustment units 201 to 203 shown in FIGS. 19 to 24B.
 (調整部201~203を用いたガスの流れの制御)
 図19は、セパレータ102の主流路S11におけるガスの流れと補助流路T11およびT12におけるガスの流れをカソード側から模式的に示す上面図である。図20は、セパレータ102の主流路S11におけるガスの流れと補助流路T11およびT12におけるガスの流れをアノード側から模式的に示す上面図である。
(Control of gas flow using adjustment units 201 to 203)
FIG. 19 is a top view schematically showing the flow of gas in the main flow path S11 of the separator 102 and the flow of gas in the auxiliary flow paths T11 and T12 from the cathode side. FIG. 20 is a top view schematically showing the flow of gas in the main flow path S11 of the separator 102 and the flow of gas in the auxiliary flow paths T11 and T12 from the anode side.
 セパレータ102の一対の流路部102Lは、図19および図20に示すように、一対の発電セル101M(不図示)に対向する主流路S11と補助流路T11およびT12を、それぞれ設けている。 As shown in FIGS. 19 and 20, the pair of flow path portions 102L of the separator 102 respectively have a main flow path S11 and auxiliary flow paths T11 and T12 facing the pair of power generation cells 101M (not shown).
 図19の一対の流路部102Lの中央に位置する各々の主流路S11は、一対の発電セル101Mの各々の中央部に対向する流路に相当する。 Each main flow passage S11 located at the center of the pair of flow passage portions 102L in FIG. 19 corresponds to a flow passage facing the central portion of each of the pair of power generation cells 101M.
 図19の左側の流路部102Lの右端に位置する補助流路T11は、対応する発電セル101Mの端部(右端)に対向する流路であって、アノード側第2流入口102bやカソード側第2流出口102iに相対的に近い流路に相当する。図19の左側の流路部102Lの左端に位置する補助流路T12は、対応する発電セル101Mの端部(左端)に対向する流路であって、アノード側第3流入口102cやカソード側第3流出口102jに相対的に近い流路に相当する。 The auxiliary flow path T11 positioned at the right end of the flow path portion 102L on the left side of FIG. 19 is a flow path facing the end (right end) of the corresponding power generation cell 101M, and is the anode side second inflow port 102b or the cathode side. It corresponds to a flow path relatively close to the second outlet 102i. The auxiliary flow passage T12 positioned at the left end of the flow passage portion 102L on the left side of FIG. 19 is a flow passage facing the end (left end) of the corresponding power generation cell 101M, and is the anode side third inlet 102c or the cathode side It corresponds to a flow path relatively close to the third outlet 102 j.
 図19の右側の流路部102Lの右端に位置する補助流路T12は、対応する発電セル101Mの端部(右端)に対向する流路であって、アノード側第1流入口102aやカソード側第1流出口102hに相対的に近い流路に相当する。図19の右側の流路部102Lの左端に位置する補助流路T11は、対応する発電セル101Mの端部(左端)に対向する流路であって、アノード側第2流入口102bやカソード側第2流出口102iに相対的に近い流路に相当する。 The auxiliary flow path T12 positioned at the right end of the flow path portion 102L on the right side of FIG. 19 is a flow path facing the end (right end) of the corresponding power generation cell 101M, and is the anode side first inflow port 102a or the cathode side. It corresponds to a flow path relatively close to the first outlet 102 h. The auxiliary flow passage T11 positioned at the left end of the flow passage portion 102L on the right side of FIG. 19 is a flow passage facing the end (left end) of the corresponding power generation cell 101M, and is the anode side second inflow port 102b or the cathode side It corresponds to a flow path relatively close to the second outlet 102i.
 図21Aは、第2実施形態の燃料電池に関して、補助流路T11およびT12に設けた調整部201の例1を示す斜視図である。図21Bは、補助流路T11およびT12に設けた調整部201の例1を示す断面図である。図22Aは、補助流路T11およびT12に設けた調整部202の例2を示す斜視図である。図22Bは、補助流路T11およびT12に設けた調整部202の例2を示す断面図である。図23Aは、補助流路T11およびT12に設けた調整部203の例3を示す斜視図である。図23Bは、補助流路T11およびT12に設けた調整部203の例3を示す断面図である。図24Aおよび図24Bは、調整部201~203を補助流路T11およびT12の特定の部分に設けた構成を模式的に示す上面図である。 FIG. 21A is a perspective view showing Example 1 of the adjustment unit 201 provided in the auxiliary flow paths T11 and T12 in the fuel cell of the second embodiment. FIG. 21B is a cross-sectional view showing Example 1 of the adjustment unit 201 provided in the auxiliary flow paths T11 and T12. FIG. 22A is a perspective view showing an example 2 of the adjustment unit 202 provided in the auxiliary flow paths T11 and T12. FIG. 22B is a cross-sectional view showing Example 2 of the adjustment unit 202 provided in the auxiliary flow paths T11 and T12. FIG. 23A is a perspective view showing Example 3 of the adjustment unit 203 provided in the auxiliary flow paths T11 and T12. FIG. 23B is a cross-sectional view showing Example 3 of the adjustment unit 203 provided in the auxiliary flow paths T11 and T12. FIGS. 24A and 24B are top views schematically showing a configuration in which the adjustment units 201 to 203 are provided in specific portions of the auxiliary flow paths T11 and T12.
 調整部201~203は、例えば図21A~図23Bに示す構成からなり、複数の流路を流れるガスの量を調整する。調整部201~203は複数のガス流入口間または複数のガス流出口間に形成される流路部の圧力損失を調整することによって複数の流路間の流れのばらつきを低下させる。 The adjusting units 201 to 203 have, for example, the configurations shown in FIGS. 21A to 23B, and adjust the amount of gas flowing through the plurality of flow paths. The adjustment units 201 to 203 reduce the variation in flow among the plurality of flow paths by adjusting the pressure loss of the flow path portion formed between the plurality of gas inlets or the plurality of gas outlets.
 調整部201~203は、図19等に示すように、流路部102Lの補助流路T11およびT12に設けている。調整部201~203は、補助流路T11およびT12を流れるガスの量を調整して、主流路S11を流れるガスの量と、補助流路T11およびT12を流れるガスの量を均等にする。 The adjustment units 201 to 203 are provided in the auxiliary flow paths T11 and T12 of the flow path portion 102L, as shown in FIG. The adjustment units 201 to 203 adjust the amount of gas flowing through the auxiliary flow passages T11 and T12 to equalize the amount of gas flowing through the main flow passage S11 and the amount of gas flowing through the auxiliary flow passages T11 and T12.
 図21Aおよび図21Bに、調整部201の例1を示す。調整部201は、セパレータ102の流路部102Lの補助流路T11およびT12の領域に設けている。調整部201は、補助流路T11およびT12の領域において、アノード側突起102yをガスの流れの方向と直交した方向(長手方向Y)に沿って延長することによって、発電セル101Mのアノード101Tの側の流路の断面積を部分的に減らしている。このようにして、調整部201は、補助流路T11およびT12におけるアノード側の流路の断面積を調整している。調整部201は、アノード側突起102yと発電セル101Mのカソード101Uとの隙間にシール材113を設けることによって、発電セル101Mのカソード101Uの側の流路の断面積を部分的に増減させている。シール材113は、例えば、流路に沿って細長く形成したサーミキュライトからなる。このようにして、調整部201は、補助流路T11およびT12におけるカソード側の流路の断面積を調整している。これらの調整によって、調整部201は、セパレータ102の流路部102Lにおいて、主流路S11を流れるガスの量と、補助流路T11およびT12を流れるガスの量を均等にする。 21A and 21B show an example 1 of the adjustment unit 201. FIG. The adjustment unit 201 is provided in the region of the auxiliary flow passages T11 and T12 of the flow passage portion 102L of the separator 102. The adjustment unit 201 extends the anode side protrusion 102y in the direction of the gas flow in the region of the auxiliary flow paths T11 and T12 along the direction (longitudinal direction Y) orthogonal to the gas flow direction, thereby the anode 101T side of the power generation cell 101M. Partially reduce the cross-sectional area of the flow path. Thus, the adjustment unit 201 adjusts the cross-sectional area of the flow path on the anode side in the auxiliary flow paths T11 and T12. The adjustment unit 201 partially increases or decreases the cross-sectional area of the flow path on the cathode 101U side of the power generation cell 101M by providing the sealing material 113 in the gap between the anode side protrusion 102y and the cathode 101U of the power generation cell 101M. . The sealing material 113 is made of, for example, thermiculite elongated along the flow path. Thus, the adjustment unit 201 adjusts the cross-sectional area of the flow path on the cathode side in the auxiliary flow paths T11 and T12. By these adjustments, the adjustment unit 201 equalizes the amount of gas flowing through the main flow passage S11 and the amount of gas flowing through the auxiliary flow passages T11 and T12 in the flow passage portion 102L of the separator 102.
 図22Aおよび図22Bに、調整部202の例2を示す。調整部202は、セパレータ102の流路部102Lの補助流路T11およびT12の領域に設けている。調整部202は、補助流路T11およびT12の領域において、アノード側突起102yを形成せずに平坦部102xを延長した上で、その平坦部102xと発電セル101Mのアノード101Tとの隙間にシール材114を設けることによって、発電セル101Mのアノード101Tの側の流路の断面積を部分的に減らしている。シール材114は、例えば、流路に沿って細長く形成したサーミキュライトからなる。このようにして、調整部202は、補助流路T11およびT12におけるアノード側の流路の断面積を調整している。調整部202は、上記の平坦部102xと発電セル101Mのカソード101Uとの隙間にシール材115を設けることによって、発電セル101Mのカソード101Uの側の流路の断面積を部分的に増減させている。シール材115は、例えば、流路に沿って細長く形成したサーミキュライトからなる。このようにして、調整部202は、補助流路T11およびT12におけるカソード側の流路の断面積を調整している。これらの調整によって、調整部202は、セパレータ102の流路部102Lにおいて、主流路S11を流れるガスの量と、補助流路T11およびT12を流れるガスの量を均等にする。 22A and 22B show an example 2 of the adjustment unit 202. FIG. The adjustment unit 202 is provided in the region of the auxiliary flow passages T11 and T12 of the flow passage portion 102L of the separator 102. The adjusting portion 202 extends the flat portion 102x without forming the anode-side protrusion 102y in the region of the auxiliary flow paths T11 and T12, and then seals the gap between the flat portion 102x and the anode 101T of the power generation cell 101M. By providing 114, the cross-sectional area of the flow path on the anode 101T side of the power generation cell 101M is partially reduced. The sealing material 114 is made of, for example, thermiculite elongated along the flow path. In this manner, the adjustment unit 202 adjusts the cross-sectional area of the flow paths on the anode side in the auxiliary flow paths T11 and T12. The adjustment unit 202 partially increases or decreases the cross-sectional area of the flow passage on the cathode 101U side of the power generation cell 101M by providing the sealing material 115 in the gap between the flat portion 102x and the cathode 101U of the power generation cell 101M. There is. The sealing material 115 is made of, for example, thermiculite elongated along the flow path. In this manner, the adjustment unit 202 adjusts the cross-sectional area of the flow path on the cathode side in the auxiliary flow paths T11 and T12. By these adjustments, the adjustment unit 202 equalizes the amount of gas flowing through the main flow passage S11 and the amount of gas flowing through the auxiliary flow passages T11 and T12 in the flow passage portion 102L of the separator 102.
 図23Aおよび図23Bに、調整部203の例3を示す。調整部203は、セパレータ102の流路部102Lの補助流路T11およびT12の領域に設けている。調整部203は、補助流路T11およびT12の領域において、カソード側突起102zを形成せずに平坦部102xを延長した上で、その平坦部102xと発電セル101Mのカソード101Uとの隙間にバネ部材116を設けることによって、発電セル101Mのカソード101Uの側の流路の断面積を部分的に増減させている。バネ部材116は、薄板状の金属からなる。バネ部材116は、平坦な基材116aと、その基材116aから片持ち梁となるように起立させて形成し弾性変形可能な複数の起立片116bによって構成している。調整部203は、バネ部材116の起立片116bの形状および間隔を設定して、カソード側の流路の断面積を調整する。このようにして、調整部203は、補助流路T11およびT12におけるカソード側の流路の断面積を調整している。これらの調整によって、調整部203は、セパレータ102の流路部102Lにおいて、主流路S11を流れるガスの量と、補助流路T11およびT12を流れるガスの量を均等にする。 An example 3 of the adjustment unit 203 is shown in FIGS. 23A and 23B. The adjustment unit 203 is provided in the region of the auxiliary flow passages T11 and T12 of the flow passage portion 102L of the separator 102. The adjustment portion 203 extends the flat portion 102x without forming the cathode side protrusion 102z in the region of the auxiliary flow paths T11 and T12, and then a spring member in the gap between the flat portion 102x and the cathode 101U of the power generation cell 101M. By providing 116, the cross-sectional area of the flow path on the cathode 101U side of the power generation cell 101M is partially increased or decreased. The spring member 116 is made of a thin plate metal. The spring member 116 is composed of a flat base material 116a and a plurality of elastically deformable upright pieces 116b which are formed so as to be cantilevered from the base material 116a. The adjusting unit 203 sets the shape and distance of the rising pieces 116 b of the spring member 116 to adjust the cross-sectional area of the flow path on the cathode side. In this manner, the adjustment unit 203 adjusts the cross-sectional area of the flow path on the cathode side in the auxiliary flow paths T11 and T12. By these adjustments, the adjustment unit 203 equalizes the amount of gas flowing through the main flow passage S11 and the amount of gas flowing through the auxiliary flow passages T11 and T12 in the flow passage portion 102L of the separator 102.
 調整部201~203は、セパレータ102の補助流路T11およびT12において、ガスの圧力損失が所期の値になるように、設ける範囲を決定する。 The adjustment units 201 to 203 determine the range provided in the auxiliary flow paths T11 and T12 of the separator 102 so that the pressure loss of the gas becomes a desired value.
 図24Aに示すように、調整部201~203は、セパレータ102の補助流路T11およびT12の全部(上流から下流まで)に設けることができる。このような構成は、セパレータ102の補助流路T11およびT12において、ガスの圧力損失を相対的に大きくする必要が有る場合に適用する。 As shown in FIG. 24A, the adjustment units 201 to 203 can be provided in all of the auxiliary flow paths T11 and T12 of the separator 102 (from the upstream side to the downstream side). Such a configuration is applied when it is necessary to relatively increase the pressure loss of the gas in the auxiliary flow paths T11 and T12 of the separator 102.
 図24Bに示すように、調整部201~203は、セパレータ102の補助流路T11およびT12の一部(上流と下流、上流のみ、または下流のみ)に設けることができる。このような構成は、セパレータ102の補助流路T11およびT12において、ガスの圧力損失を相対的に大きくする必要が有る場合に適用する。 As shown in FIG. 24B, the adjustment units 201 to 203 can be provided in a part (upstream and downstream, only upstream or only downstream) of the auxiliary flow paths T11 and T12 of the separator 102. Such a configuration is applied when it is necessary to relatively increase the pressure loss of the gas in the auxiliary flow paths T11 and T12 of the separator 102.
 以上説明した第2実施形態の作用効果を説明する。 The operation and effect of the second embodiment described above will be described.
 燃料電池100のユニット構造において、調整部201~203は、補助流路T11およびT12のガスの量を調整する別体の制御機構を備えた。 In the unit structure of the fuel cell 100, the adjustment units 201 to 203 are provided with separate control mechanisms for adjusting the amount of gas in the auxiliary flow passages T11 and T12.
 制御機構は、補助流路T11およびT12におけるガスの圧力損失を増加または減少させるようにしてガスを制御する。 The control mechanism controls the gas in such a way as to increase or decrease the pressure loss of the gas in the auxiliary flow passages T11 and T12.
 かかる燃料電池100のユニット構造によれば、燃料電池100を構成する別体の部材を用いて、補助流路T11およびT12におけるガスの量を任意に制御することが非常に容易となる。調整部201~203は、一例であって、様々な形態の制御機構を構成することができる。 According to the unit structure of the fuel cell 100, it is extremely easy to arbitrarily control the amount of gas in the auxiliary flow paths T11 and T12 using separate members constituting the fuel cell 100. The adjustment units 201 to 203 are one example, and can constitute various control mechanisms.
 燃料電池100のユニット構造において、調整部201~203を、発電セル101Mのガスの流れに沿った端部に設けることが好ましい。 In the unit structure of the fuel cell 100, it is preferable to provide the adjustment units 201 to 203 at the end along the gas flow of the power generation cell 101M.
 かかる燃料電池100のユニット構造によれば、例えば、発電セル101Mの端部(例えば補助流路T11およびT12と対向する部分)に供給するガスの量を調整して、発電セル101Mの発電に十分に寄与する中央部(例えば主流路S11と対向する部分)にガスを過不足なく供給することができる。したがって、燃料電池100のユニット構造は、発電効率を十分に向上させることができる。 According to the unit structure of the fuel cell 100, for example, the amount of gas supplied to the end of the power generation cell 101M (for example, the portion facing the auxiliary flow paths T11 and T12) is adjusted to be sufficient for power generation of the power generation cell 101M. Gas can be supplied to the central portion (for example, the portion facing the main flow path S11) contributing to the Therefore, the unit structure of fuel cell 100 can sufficiently improve the power generation efficiency.
 燃料電池100のユニット構造において、調整部201~203は、発電セル101Mのアノード101Tに対向する複数の流路のうち、少なくとも流入口(例えば、アノード側第1流入口102a、アノード側第2流入口102bおよびアノード側第3流入口102c)に相対的に近い一部の流路(補助流路T11およびT12)を流れるガスの圧力損失が、それ以外の流路(主流路S11)を流れるガスの圧力損失よりも大きくなるように構成することが好ましい。 In the unit structure of the fuel cell 100, the adjusting units 201 to 203 include at least an inlet (for example, an anode-side first inlet 102a, an anode-side second stream) among a plurality of channels facing the anode 101T of the power generation cell 101M. The pressure loss of the gas flowing in a part of the flow paths (auxiliary flow paths T11 and T12) relatively close to the inlet 102b and the anode side third inflow port 102c) is the gas flowing in the other flow paths (main flow path S11) It is preferable to configure so as to be larger than the pressure loss of
 かかる燃料電池100のユニット構造によれば、発電セル101Mの端部(例えば補助流路T11およびT12と対向する部分)に供給するガスの量が過剰にならないように調整して、発電セル101Mの中央部(例えば主流路S11と対向する部分)と発電セル101Mの端部(例えば補助流路T11およびT12と対向する部分)に対してガスを均等に供給することができる。したがって、燃料電池100のユニット構造は、発電効率を十分に向上させることができる。 According to the unit structure of the fuel cell 100, the amount of gas supplied to the end of the power generation cell 101M (for example, the portion facing the auxiliary flow paths T11 and T12) is adjusted so as not to become excessive. The gas can be uniformly supplied to the central portion (for example, the portion facing the main flow path S11) and the end portion of the power generation cell 101M (for example, the portion facing the auxiliary flow paths T11 and T12). Therefore, the unit structure of fuel cell 100 can sufficiently improve the power generation efficiency.
 燃料電池100のユニット構造において、調整部201~203は、少なくとも流入口(例えば、アノード側第1流入口102a、アノード側第2流入口102bおよびアノード側第3流入口102c)に相対的に近い一部の流路(補助流路T11およびT12)の断面積が、それ以外の流路(主流路S11)の断面積よりも小さくなるように構成することが好ましい。 In the unit structure of the fuel cell 100, the adjusting units 201 to 203 are relatively close to at least the inlets (for example, the first anode side inlet 102a, the second anode side inlet 102b, and the third inlet side 102c). Preferably, the cross sectional area of a part of the flow paths (auxiliary flow paths T11 and T12) is smaller than the cross sectional area of the other flow paths (main flow path S11).
 かかる燃料電池100のユニット構造によれば、流路の断面積を調整する非常に簡便な構成によって、発電セル101Mの端部(例えば補助流路T11およびT12と対向する部分)に供給するガスの量が過剰にならないように調整して、発電セル101Mの中央部(例えば主流路S11と対向する部分)と発電セル101Mの端部(例えば補助流路T11およびT12と対向する部分)に対してガスを均等に供給することができる。したがって、燃料電池100のユニット構造は、発電効率を十分に向上させることができる。 According to the unit structure of the fuel cell 100, the gas supplied to the end of the power generation cell 101M (for example, the portion facing the auxiliary flow paths T11 and T12) is very easy to adjust the cross-sectional area of the flow path. The amount is adjusted so as not to be excessive, for the central portion of the power generation cell 101M (for example, the portion facing the main flow path S11) and the end of the power generation cell 101M (for example, the portion facing the auxiliary flow paths T11 and T12) Gas can be supplied evenly. Therefore, the unit structure of fuel cell 100 can sufficiently improve the power generation efficiency.
 (第3実施形態)
 第3実施形態の燃料電池は、図25A~図25Dに示す調整部401~404によって、発電セル101Mの領域に相当するアクティブエリアから離れた領域のガスの流れを制御する点において、上述した第2実施形態の燃料電池と相違する。上述した第2実施形態では、図21A~図23Bに示す調整部201~203によって、アクティブエリアの領域のガスの流れを制御していた。
Third Embodiment
The fuel cell according to the third embodiment is different from the fuel cell according to the third embodiment in that the flow of gas in the area away from the active area corresponding to the area of the power generation cell 101M is controlled by the adjustment units 401 to 404 shown in FIGS. It differs from the fuel cell of the second embodiment. In the second embodiment described above, the flow of gas in the region of the active area is controlled by the adjustment units 201 to 203 shown in FIGS. 21A to 23B.
 図25A~図25Dに示す調整部401~404は、セパレータ301の一対の流路部301Lの間に位置する領域(図26Aおよび図26Bに示す補助流路T63~T93)に、凸状部301s~304sを設けることによって構成している。すなわち、調整部401~404は、セパレータ301~304において発電セル101Mと対向しない部分に設けている。図26Aおよび図26Bに示す補助流路T63~T93は、発電セル101Mのカソード101Uに対向する複数の流路のうち、少なくとも流入口(例えばカソード側第1流入口およびカソード側第2流入口)に相対的に近い一部の流路に相当する。調整部401~404は、発電セル101Mが存在するアクティブエリアから離れた領域である図26Aおよび図26Bに示す補助流路T63~T93において、主にカソードガスCGの流れを制御する。 The adjustment units 401 to 404 shown in FIGS. 25A to 25D are convex portions 301s in regions located between the pair of flow passage portions 301L of the separator 301 (auxiliary flow passages T63 to T93 shown in FIGS. 26A and 26B). It comprises by providing ~ 304s. That is, the adjustment units 401 to 404 are provided in portions of the separators 301 to 304 not facing the power generation cell 101M. The auxiliary flow paths T63 to T93 shown in FIGS. 26A and 26B are at least an inlet (for example, a cathode side first inlet and a cathode side second inlet) among a plurality of flow paths facing the cathode 101U of the power generation cell 101M. Corresponds to a part of the flow path relatively close to the The adjustment units 401 to 404 mainly control the flow of the cathode gas CG in the auxiliary flow paths T63 to T93 shown in FIGS. 26A and 26B, which are areas separated from the active area where the power generation cells 101M exist.
 図25Aに、セパレータ301の補助流路T63に設けた調整部401の例1を示す。調整部401は、セパレータ301の一対の流路部301Lの間に位置する領域(補助流路T63)に形成した凸状部301sによって構成している。凸状部301sは、ガスの流れの方向(短手方向X)に沿った貫通孔を有する矩形状の突起を、ガスの流れの方向と直交した方向(長手方向Y)に沿って半ピッチずつ互い違いにずらしながら、短手方向Xに沿って連ねて形成している。凸状部301sは、ガスの流れの方向と直交した方向(長手方向Y)に沿って一対設けている。凸状部301sは、形状を調整することによって、補助流路T63におけるガスの圧力損失を任意に設定することができる。調整部401は、凸状部301sを、セパレータ301と別体の部材として構成し、セパレータ301の補助流路T63に接合してもよい。 25A shows an example 1 of the adjustment unit 401 provided in the auxiliary flow passage T63 of the separator 301. FIG. The adjustment unit 401 is configured of a convex portion 301 s formed in a region (auxiliary flow passage T 63) located between the pair of flow passage portions 301 L of the separator 301. The convex portion 301s has a rectangular protrusion having a through hole along the gas flow direction (the short direction X), each half pitch along the direction (longitudinal direction Y) orthogonal to the gas flow direction. They are formed in a row along the short direction X while being alternately shifted. The convex portions 301s are provided in a pair along the direction (longitudinal direction Y) orthogonal to the direction of gas flow. By adjusting the shape of the convex portion 301s, the pressure loss of the gas in the auxiliary flow passage T63 can be arbitrarily set. The adjusting unit 401 may configure the convex portion 301 s as a member separate from the separator 301, and may be joined to the auxiliary flow path T 63 of the separator 301.
 図25Bに、セパレータ302の補助流路T73に設けた調整部402の例2を示す。調整部402は、セパレータ302の一対の流路部302Lの間に位置する領域(補助流路T73)に形成した凸状部302sによって構成している。凸状部302sは、ガスの流れの方向(短手方向X)に沿って長細い長方体形状からなる。凸状部302sは、形状を調整することによって、補助流路T73におけるガスの圧力損失を任意に設定することができる。凸状部302sは、セパレータ302に対してプレス加工等によって成形し易い。調整部402は、凸状部302sを、セパレータ302と別体の部材として構成し、セパレータ302の補助流路T73に接合してもよい。 FIG. 25B illustrates an example 2 of the adjustment unit 402 provided in the auxiliary flow passage T73 of the separator 302. The adjustment unit 402 is configured of a convex portion 302 s formed in a region (auxiliary flow passage T 73) located between the pair of flow passage portions 302 L of the separator 302. The convex portion 302s is in the shape of an elongated rectangular solid along the direction of gas flow (the short direction X). The convex portion 302 s can arbitrarily set the pressure loss of the gas in the auxiliary flow passage T 73 by adjusting the shape. The convex portion 302s is easily formed on the separator 302 by press processing or the like. The adjusting unit 402 may configure the convex portion 302 s as a member separate from the separator 302 and may be joined to the auxiliary flow passage T 73 of the separator 302.
 図25Cに、セパレータ303の補助流路T83に設けた調整部403の例3を示す。調整部403は、セパレータ303の一対の流路部303Lの間に位置する領域(補助流路T83)に形成した凸状部303sによって構成している。凸状部303sは、ガスの流れの方向と直交した方向(長手方向Y)に沿って長細い長方体形状からなる。凸状部303sは、ガスの流れの方向(短手方向X)に沿って一定の間隔で複数設けている。凸状部303sは、個数、間隔および形状を調整することによって、補助流路T83におけるガスの圧力損失を任意に設定することができる。凸状部303sは、セパレータ303が高温になったときに形状を保ちやすい。調整部403は、凸状部303sを、セパレータ303と別体の部材として構成し、セパレータ303の補助流路T83に接合してもよい。 FIG. 25C shows Example 3 of the adjustment unit 403 provided in the auxiliary flow passage T83 of the separator 303. The adjustment unit 403 is configured by a convex portion 303 s formed in a region (auxiliary flow passage T 83) located between the pair of flow passage portions 303 L of the separator 303. The convex portion 303 s has a rectangular shape elongated along the direction (longitudinal direction Y) orthogonal to the direction of the gas flow. A plurality of convex portions 303 s are provided at regular intervals along the gas flow direction (short direction X). The convex portion 303s can arbitrarily set the pressure loss of the gas in the auxiliary flow passage T83 by adjusting the number, the interval, and the shape. The convex portion 303s can easily maintain its shape when the temperature of the separator 303 becomes high. The adjusting unit 403 may constitute the convex portion 303 s as a member separate from the separator 303 and may be joined to the auxiliary flow passage T 83 of the separator 303.
 図25Dに、セパレータ304の補助流路T93に設けた調整部404の例4を示す。調整部404は、セパレータ304の一対の流路部304Lの間に位置する領域(補助流路T93)に形成した凸状部304sによって構成している。凸状部304sは、円柱形状からなる。凸状部304sは、ガスの流れの方向(短手方向X)に沿って格子状に複数形成している。凸状部304sは、個数、間隔および形状を調整することによって、補助流路T93におけるガスの圧力損失を任意に設定することができる。凸状部304sは、セパレータ304が高温になったときに高温時に形状を保ちやすい。凸状部304sは、セパレータ304のアノード側とカソード側に異なる構成(個数、間隔および形状)によって形成し易い。調整部404は、凸状部304sを、セパレータ304と別体の部材として構成し、セパレータ304の補助流路T93に接合してもよい。 FIG. 25D shows an example 4 of the adjusting unit 404 provided in the auxiliary flow passage T93 of the separator 304. The adjustment unit 404 is configured by a convex portion 304 s formed in a region (auxiliary flow passage T 93) located between the pair of flow passage portions 304 L of the separator 304. The convex portion 304s has a cylindrical shape. A plurality of convex portions 304s are formed in a lattice shape along the direction of the gas flow (the short direction X). The convex portion 304s can arbitrarily set the pressure loss of the gas in the auxiliary flow passage T93 by adjusting the number, the interval, and the shape. The convex portion 304 s can easily maintain its shape when the temperature of the separator 304 is high. The convex portions 304 s can be easily formed with different configurations (number, interval, and shape) on the anode side and the cathode side of the separator 304. The adjustment unit 404 may configure the convex portion 304 s as a member separate from the separator 304, and may be joined to the auxiliary flow path T 93 of the separator 304.
 図25A~図25Dに示す調整部401~404は、セパレータ301~304の補助流路T63、T73、T83およびT93において、ガスの圧力損失が所期の値になるように、設ける範囲を決定する。 The adjustment units 401 to 404 shown in FIGS. 25A to 25D determine the ranges provided in the auxiliary flow paths T63, T73, T83, and T93 of the separators 301 to 304 so that the pressure loss of the gas becomes a desired value. .
 図26Aに示すように、調整部401~404は、セパレータ301~304の補助流路T63、T73、T83およびT93の全部(上流から下流まで)に設けることができる。このような構成は、セパレータ301~304の補助流路T63、T73、T83およびT93において、ガスの圧力損失を相対的に大きくする必要が有る場合に適用する。 As shown in FIG. 26A, the adjustment units 401 to 404 can be provided in all of the auxiliary flow paths T63, T73, T83 and T93 of the separators 301 to 304 (from the upstream side to the downstream side). Such a configuration is applied when there is a need to relatively increase the pressure loss of gas in the auxiliary flow paths T63, T73, T83 and T93 of the separators 301 to 304.
 図26Bに示すように、調整部401~404は、セパレータ301~304の補助流路T63、T73、T83およびT93の一部(上流と下流、上流のみ、または下流のみ)に設けることができる。このような構成は、セパレータ301~304の補助流路T63、T73、T83およびT93において、ガスの圧力損失を相対的に小さくする必要が有る場合に適用する。 As shown in FIG. 26B, the adjusting units 401 to 404 can be provided in part (upstream and downstream, only upstream or only downstream) of the auxiliary flow paths T63, T73, T83 and T93 of the separators 301 to 304. Such a configuration is applied when it is necessary to relatively reduce the pressure loss of the gas in the auxiliary flow paths T63, T73, T83 and T93 of the separators 301 to 304.
 以上説明した第3実施形態の作用効果を説明する。 The operation and effect of the third embodiment described above will be described.
 燃料電池のユニット構造は、例えばセパレータ301において、発電セル101Mのカソード101Uに対向する複数の流路のうち、少なくとも流入口(例えばカソード側第1流入口およびカソード側第2流入口)に相対的に近い一部の流路(補助流路T63)を流れるガスの圧力損失が、それ以外の流路(主流路)を流れるガスの圧力損失よりも大きい場合、例えば調整部401を、次のように構成することが好ましい。すなわち、調整部401は、少なくとも流入口(例えばカソード側第1流入口およびカソード側第2流入口)に相対的に近い一部の流路(補助流路T63)の断面積を、それ以外の流路(主流路)を流れるガスの断面積よりも大きくする。 The unit structure of the fuel cell is, for example, relative to at least the inlets (for example, the cathode side first inlet and the cathode side second inlet) among the plurality of flow paths facing the cathode 101U of the power generation cell 101M in the separator 301, for example. If the pressure loss of the gas flowing in a part of the flow path (auxiliary flow path T63) close to the flow path is larger than the pressure loss of the gas flowing in the other flow paths (main flow path), It is preferable to construct in That is, the adjusting unit 401 is configured to control the cross-sectional area of at least a part of the flow paths (auxiliary flow path T63) relatively close to the inflow ports (for example, the first cathode side inlet and the second cathode side inlet). The cross sectional area of the gas flowing in the flow path (main flow path) is made larger.
 かかる燃料電池のユニット構造によれば、発電セル101Mのカソード101Uの端部に供給するカソードガスCGの量を、発電セル101Mのカソード101Uの中央部に供給するカソードガスCGの量を均等にすることができる。このため、燃料電池のユニット構造は、発電セル101Mのカソード101Uに供給するカソードガスCGを加熱して急速起動(暖気)するときに、発電セル101Mのカソード101Uの端部におけるカソードガスCGの温度勾配を緩和する(過度な熱応力の発生を防ぐ)ことができる。したがって、燃料電池のユニット構造は、暖気に伴う構成部材への熱応力の影響を抑制しつつ効率良く急速起動(暖気)するとともに、発電効率を十分に向上させることができる。 According to the unit structure of the fuel cell, the amount of the cathode gas CG supplied to the end of the cathode 101U of the power generation cell 101M is equalized to the amount of the cathode gas CG supplied to the central portion of the cathode 101U of the power generation cell 101M. be able to. Therefore, the unit structure of the fuel cell heats the cathode gas CG supplied to the cathode 101U of the power generation cell 101M and rapidly starts (warms up) the temperature of the cathode gas CG at the end of the cathode 101U of the power generation cell 101M. The gradient can be relaxed (preventing excessive thermal stress). Therefore, the unit structure of the fuel cell can efficiently start up (warm air) efficiently while suppressing the influence of the thermal stress on the components involved in the warm air, and sufficiently improve the power generation efficiency.
 燃料電池のユニット構造は、例えばセパレータ301において、発電セル101Mのカソード101Uに対向する複数の流路のうち、少なくとも流入口(例えばカソード側第1流入口およびカソード側第2流入口)に相対的に近い一部の流路(補助流路T63)を流れるガスの圧力損失が、それ以外の流路(主流路)を流れるガスの圧力損失よりも小さい場合、例えば調整部401を、次のように構成することが好ましい。すなわち、調整部401は、少なくとも流入口(例えばカソード側第1流入口およびカソード側第2流入口)に相対的に近い一部の流路(補助流路T63)の圧力損失を、それ以外の流路(主流路)を流れるガスの圧力損失よりも大きくする。 The unit structure of the fuel cell is, for example, relative to at least the inlets (for example, the cathode side first inlet and the cathode side second inlet) among the plurality of flow paths facing the cathode 101U of the power generation cell 101M in the separator 301, for example. If the pressure loss of the gas flowing in a part of the flow path (auxiliary flow path T63) close to the current flow path is smaller than the pressure loss of the gas flowing in the other flow paths (main flow path), It is preferable to construct in That is, the adjustment unit 401 is configured to reduce the pressure loss of at least a part of the flow paths (auxiliary flow path T63) relatively close to the inflow ports (for example, the first cathode side inlet and the second cathode side inlet). Make it larger than the pressure loss of the gas flowing in the flow path (main flow path).
 かかる燃料電池のユニット構造によれば、発電セル101Mのカソード101Uの端部に供給するカソードガスCGの量と、発電セル101Mのカソード101Uの中央部に供給するカソードガスCGの量を均等にすることができる。したがって、燃料電池のユニット構造は、暖気に伴う構成部材への熱応力の影響を抑制しつつ効率良く急速起動(暖気)するとともに、発電効率を十分に向上させることができる。 According to the unit structure of the fuel cell, the amount of the cathode gas CG supplied to the end of the cathode 101U of the power generation cell 101M and the amount of the cathode gas CG supplied to the central portion of the cathode 101U of the power generation cell 101M are equalized. be able to. Therefore, the unit structure of the fuel cell can efficiently start up (warm air) efficiently while suppressing the influence of the thermal stress on the components involved in the warm air, and sufficiently improve the power generation efficiency.
 (第4実施形態)
 第4実施形態の燃料電池のユニット構造は、セパレータに設けた流路部と供給部(流入口および流出口)の配置を、上述した第1および第3実施形態の燃料電池と異ならせている。
Fourth Embodiment
The unit structure of the fuel cell according to the fourth embodiment is different from the fuel cells according to the first and third embodiments described above in the arrangement of the flow path portion and the supply portion (inlet and outlet) provided in the separator. .
 図27Aに、セパレータ501に設けた流路部501Lと供給部(流入口および流出口)との配置例1を示す。図27Aの構成では、左右に並んだ2組の流路部501L(それぞれ図示せぬ発電セル101Mに対向)の上流側に、4つのアノード側流入口501rと3つのカソード側流入口501tを交互に設けている。また、左右に並んだ2組の流路部501Lの下流側に、4つのカソード側流出口501uと3つのアノード側流出口501sを交互に設けている。セパレータ501は、アノード側流出口501sの数を奇数として、アノード側流入口501rの数を偶数として構成している。セパレータ501において、一の発電セル101Mのアノード101Tに対応するアノード側流入口501rおよびアノード側流出口501sと、他の発電セル101Mのカソード101Uに対応するカソード側流入口501tおよびカソード側流出口501uとを、流路部501Lを隔てて交互に隣り合わせて設けている。 27A shows an arrangement example 1 of the flow path portion 501L provided in the separator 501 and the supply portion (inlet and outlet). In the configuration of FIG. 27A, four anode side inlets 501r and three cathode side inlets 501t are alternately arranged on the upstream side of two pairs of flow path portions 501L (each facing the power generation cell 101M not shown) arranged side by side. Provided in Further, four cathode side outlets 501 u and three anode side outlets 501 s are alternately provided on the downstream side of the two sets of flow path portions 501 L arranged in the left and right direction. The separator 501 is configured such that the number of anode side outlets 501s is an odd number and the number of anode side inlets 501r is an even number. In the separator 501, an anode side inlet 501r and an anode side outlet 501s corresponding to the anode 101T of one power generation cell 101M, and a cathode side inlet 501t and a cathode side outlet 501u corresponding to the cathode 101U of the other power generation cell 101M. Are alternately provided adjacent to each other across the flow path portion 501L.
 図27Bに、セパレータ502に設けた流路部502Lと供給部(流入口および流出口)との配置例2を示す。図27Bの構成では、左右に並んだ3組の流路部502L(それぞれ図示せぬ発電セル101Mに対向)の上流側に、4つのアノード側流入口502rと3つのカソード側流入口502tを交互に設けている。また、左右に並んだ3組の流路部502Lの下流側に、4つのカソード側流出口502uと3つのアノード側流出口502sを交互に設けている。セパレータ502は、セパレータ501と外形が同一である。セパレータ502の流路部502Lは、セパレータ501の流路部501Lと比較して、長手方向Yの幅を短縮している。 27B shows an arrangement example 2 of the flow path portion 502L provided in the separator 502 and the supply portion (inlet and outlet). In the configuration of FIG. 27B, four anode side inlets 502r and three cathode side inlets 502t are alternately arranged on the upstream side of three pairs of flow path portions 502L (each facing the power generation cell 101M not shown) arranged side by side. Provided in Further, four cathode side outlets 502 u and three anode side outlets 502 s are alternately provided on the downstream side of the three sets of flow path portions 502 L aligned in the left and right direction. The separator 502 has the same outer shape as the separator 501. The width of the flow path portion 502L of the separator 502 is smaller than the width of the flow path portion 501L of the separator 501 in the longitudinal direction Y.
 以上説明した第4実施形態の作用効果を説明する。 The operation and effect of the fourth embodiment described above will be described.
 燃料電池のユニット構造において、例えばセパレータ501に設けた供給部は、例えばアノード側において、アノード側流入口501rとアノード側流出口501sの一方(アノード側流出口501s)の数を奇数として、アノード側流入口501rとアノード側流出口501sの他方(アノード側流入口501r)の数を偶数とすることが好ましい。 In the unit structure of the fuel cell, for example, the supply unit provided in the separator 501 is, for example, on the anode side, with the number of one of the anode side inlet 501r and the anode side outlet 501s (anode side outlet 501s) being an odd number. It is preferable to set the number of the other of the inflow port 501r and the anode side outflow port 501s (anode side inflow port 501r) to an even number.
 かかる燃料電池のユニット構造によれば、例えばアノード側流入口501rとアノード側流出口501sを流路部501Lを隔てて交互に設けることによって、複数の流路を流れるガスの圧力損失を均等にして、複数の流路を流れる各々のガスのばらつきを抑制することができる。すなわち、燃料電池のユニット構造は、発電セル101Mの端部に供給するガスの量と、発電セル101Mの中央部に供給するガスの量を、均等にすることができる。したがって、燃料電池のユニット構造は、発電効率を十分に向上させることができる。 According to the unit structure of the fuel cell, for example, by alternately providing the anode side inlet 501 r and the anode side outlet 501 s with the flow path portion 501 L interposed, pressure loss of the gas flowing through the plurality of flow paths is equalized. The variations in the respective gases flowing through the plurality of flow paths can be suppressed. That is, the unit structure of the fuel cell can equalize the amount of gas supplied to the end of the power generation cell 101M and the amount of gas supplied to the central portion of the power generation cell 101M. Therefore, the unit structure of the fuel cell can sufficiently improve the power generation efficiency.
 燃料電池のユニット構造において、例えばセパレータ501では、一の発電セル101Mのアノード101Tに対応する供給部のアノード側流入口501rおよびアノード側流出口501sと、他の発電セル101Mのカソード101Uに対応する供給部のカソード側流入口501tおよびカソード側流出口501uとを、交互に隣り合わせることが好ましい。 In the unit structure of the fuel cell, for example, the separator 501 corresponds to the anode side inlet 501r and the anode side outlet 501s of the supply unit corresponding to the anode 101T of one power generation cell 101M and the cathode 101U of the other power generation cell 101M. Preferably, the cathode side inlet 501 t and the cathode side outlet 501 u of the supply unit are alternately adjacent to each other.
 かかる燃料電池のユニット構造によれば、アノード側とカソード側の流入口および流出口を交互に設けることによって、複数の流路を流れるガスの圧力損失を均等にして、複数の流路を流れる各々のガスのばらつきを抑制することができる。すなわち、燃料電池のユニット構造は、発電セル101Mの端部に供給するガスの量と、発電セル101Mの中央部に供給するガスの量を、均等にすることができる。したがって、燃料電池のユニット構造は、発電効率を十分に向上させることができる。 According to the unit structure of the fuel cell, by alternately providing the inlet and the outlet on the anode side and the cathode side, the pressure loss of the gas flowing through the plurality of flow paths is equalized, and each flowing through the plurality of flow paths Can be suppressed. That is, the unit structure of the fuel cell can equalize the amount of gas supplied to the end of the power generation cell 101M and the amount of gas supplied to the central portion of the power generation cell 101M. Therefore, the unit structure of the fuel cell can sufficiently improve the power generation efficiency.
 (第5実施形態)
 第5実施形態の燃料電池のユニット構造は、セパレータに設けた流路部と供給部(流入口および流出口)の配置を、上述した第1~第4実施形態の燃料電池と異ならせている。
Fifth Embodiment
The unit structure of the fuel cell according to the fifth embodiment is different from the fuel cells according to the first to fourth embodiments described above in the arrangement of the flow path part and the supply part (inlet and outlet) provided in the separator. .
 調整部201~203は、図28A~図28Dに示すように、流路部と供給部(流入口と流出口)を様々な配置によって構成したセパレータに適用することができる。 As shown in FIGS. 28A to 28D, the adjustment units 201 to 203 can be applied to separators in which the flow path unit and the supply unit (inflow port and outflow port) are configured by various arrangements.
 図28Aに、セパレータ602における流路部602Lと供給部(流入口602pと流出口602q)の配置例1を示す。流入口602pと流出口602qは、流路部602Lの流路を延長した領域に含まれ、流路部602Lの上流側と下流側の対角線上に設けている。図28Aに、配置例1における主流路S21と補助流路T21およびT22を示す。調整部は、複数の流路のうち、流入口602pおよび流出口602qに相対的に近い一部の流路(補助流路T21およびT22)を流れるガスの量を調整して、各々の流路を流れるガスのばらつきを抑制する。 28A shows an arrangement example 1 of the flow path portion 602L and the supply portion (inflow port 602p and outflow port 602q) in the separator 602. FIG. The inflow port 602p and the outflow port 602q are included in a region where the flow path of the flow path portion 602L is extended, and are provided diagonally on the upstream side and the downstream side of the flow path portion 602L. FIG. 28A shows the main flow path S21 and the auxiliary flow paths T21 and T22 in the first arrangement example. The adjustment unit adjusts the amount of gas flowing in a part of the flow paths (auxiliary flow paths T21 and T22) relatively close to the inflow port 602p and the outflow port 602q among the plurality of flow paths, and the respective flow paths are adjusted. Control the variation of the gas flowing through the
 図28Bに、セパレータ612における流路部612Lと供給部(流入口612pと流出口612q)の配置例2を示す。流入口612pと流出口612qは、流路部612Lの流路を延長した領域から離間した状態で、流路部612Lの上流側と下流側の対角線上に設けている。図28Bに、配置例2における主流路S31と補助流路T31およびT32を示す。調整部は、複数の流路のうち、流入口612pおよび流出口612qに相対的に近い一部の流路(補助流路T31およびT32)を流れるガスの量を調整して、各々の流路を流れるガスのばらつきを抑制する。 28B shows an arrangement example 2 of the flow path portion 612L and the supply portion (the inlet 612p and the outlet 612q) in the separator 612. FIG. The inlet 612p and the outlet 612q are provided diagonally on the upstream side and the downstream side of the flow passage portion 612L in a state of being separated from the region where the flow passage of the flow passage portion 612L is extended. FIG. 28B shows the main flow path S31 and the auxiliary flow paths T31 and T32 in the arrangement example 2. The adjustment unit adjusts the amount of gas flowing in a part of the flow paths (auxiliary flow paths T31 and T32) relatively close to the inflow port 612p and the outflow port 612q among the plurality of flow paths, and the respective flow paths are adjusted. Control the variation of the gas flowing through the
 図28Cに、セパレータ622における流路部622Lと供給部(一対の流入口622pと流出口622q)の配置例3を示す。一対の流入口622pは、流路部622Lの流路を延長した領域に含まれ、流路部622Lの上流側の両端に設けている。流出口622qは、流路部622Lにおける流路の延長した領域に含まれ、流路部622Lの下流側の中央に設けている。図28Cに、配置例3における主流路S41と補助流路T41およびT42を示す。調整部は、複数の流路のうち、一対の流入口622pに相対的に近い一部の流路(補助流路T41およびT42)を流れるガスの量を調整して、各々の流路を流れるガスのばらつきを抑制する。 FIG. 28C shows an arrangement example 3 of the flow path portion 622L and the supply portion (a pair of inlets 622p and outlets 622q) in the separator 622. The pair of inflow ports 622p is included in a region where the flow path of the flow path portion 622L is extended, and is provided at both upstream sides of the flow path portion 622L. The outlet 622 q is included in an extended region of the flow path in the flow path portion 622 L, and is provided at the center on the downstream side of the flow path portion 622 L. FIG. 28C shows the main flow path S41 and the auxiliary flow paths T41 and T42 in the arrangement example 3. The adjustment unit adjusts the amount of gas flowing in a part of the flow paths (auxiliary flow paths T41 and T42) relatively close to the pair of inflow ports 622p among the flow paths, and flows in each flow path Reduce the variation of gas.
 図28Dに、セパレータ632に設ける流路部632Lと供給部(一対の流入口632pと流出口632q)の配置例4を示す。一対の流入口632pは、流路部632Lの流路の延長した領域から離間した状態で、流路部632Lの上流側の両端に設けている。流出口632qは、流路部632Lの流路の延長した領域に含まれ、流路部632Lの下流側の中央に設けている。図28Dに、配置例4における主流路S51と補助流路T51およびT52を示す。調整部は、複数の流路のうち、一対の流入口632pに相対的に近い一部の流路(補助流路T51およびT52)を流れるガスの量を調整して、各々の流路を流れるガスのばらつきを抑制する。 FIG. 28D shows an arrangement example 4 of the flow path portion 632L and the supply portion (a pair of inlet 632p and outlet 632q) provided in the separator 632. The pair of inlets 632p are provided at both upstream ends of the flow path portion 632L in a state of being separated from the extended region of the flow path of the flow path portion 632L. The outlet 632 q is included in an extended region of the flow path of the flow path portion 632 L, and is provided at the center on the downstream side of the flow path portion 632 L. FIG. 28D shows the main flow path S51 and the auxiliary flow paths T51 and T52 in the arrangement example 4. The adjustment unit adjusts the amount of gas flowing in a part of the flow paths (auxiliary flow paths T51 and T52) relatively close to the pair of inflow ports 632p among the plurality of flow paths, and flows in each flow path Reduce the variation of gas.
 以上説明した第5実施形態の燃料電池のユニット構造は、図28A、図28B、図28Cおよび図28Dに示すような様々な構成に適用可能である。 The unit structure of the fuel cell of the fifth embodiment described above is applicable to various configurations as shown in FIG. 28A, FIG. 28B, FIG. 28C and FIG. 28D.
 そのほか、本発明は、特許請求の範囲に記載された構成に基づき様々な改変が可能であり、それらについても本発明の範疇である。 Besides, the present invention can be variously modified based on the configuration described in the claims, and they are also within the scope of the present invention.
 第1~第5実施形態において、燃料電池のユニット構造は、固体酸化物形燃料電池(SOFC、Solid Oxide Fuel Cell)に適用するユニット構造として説明したが、固体高分子膜形燃料電池(PEMFC、Polymer Electrolyte Membrane Fuel Cell)、リン酸形燃料電池(PAFC、Phosphoric Acid Fuel Cell)または溶融炭酸塩形燃料電池(MCFC、Molten Carbonate Fuel Cell)に適用するユニット構造として構成してもよい。すなわち、燃料電池のユニット構造は、固体酸化物形燃料電池(SOFC)に加えて、固体高分子膜形燃料電池(PEMFC)、リン酸形燃料電池(PAFC)または溶融炭酸塩形燃料電池(MCFC)のユニット構造に適用することができる。 In the first to fifth embodiments, the unit structure of the fuel cell has been described as a unit structure applied to a solid oxide fuel cell (SOFC), but a polymer electrolyte membrane fuel cell (PEMFC, It may be configured as a unit structure applied to Polymer Electrolyte Membrane Fuel Cell), phosphoric acid fuel cell (PAFC, Phosphoric Acid Fuel Cell), or molten carbonate fuel cell (MCFC, Molten Carbonate Fuel Cell). That is, the unit structure of the fuel cell is, in addition to a solid oxide fuel cell (SOFC), a solid polymer membrane fuel cell (PEMFC), a phosphoric acid fuel cell (PAFC), or a molten carbonate fuel cell (MCFC) Can be applied to the unit structure of
 第1~第5実施形態において、流路部に設けた複数の流路は、各々の流路を凹凸形状によって物理的に仕切った複数の空間として説明したが、各々の流路を物理的に仕切らず1つの空間として構成してもよい。 In the first to fifth embodiments, although the plurality of flow paths provided in the flow path portion have been described as a plurality of spaces obtained by physically dividing each flow path by the concavo-convex shape, each flow path is physically separated. You may comprise as one space, without dividing.
 第1~第5実施形態において、カソード側の供給部は、燃料電池の中で開放している構成として説明したが、アノード側の供給部のように構成してもよい。 In the first to fifth embodiments, the supply unit on the cathode side has been described as being open in the fuel cell, but may be configured as a supply unit on the anode side.
 燃料電池のユニット構造は、第1~第5実施形態の仕様を適宜組み合わせて構成してもよい。 The unit structure of the fuel cell may be configured by appropriately combining the specifications of the first to fifth embodiments.
100  燃料電池、
100M セルスタックアッセンブリー、
100S スタック、
100T セルユニット、
100U 接合体、
100P 上部モジュールユニット、
100Q 中部モジュールユニット、
100R 下部モジュールユニット、
100U ユニット、
101  メタルサポートセルアッセンブリー、
101M 発電セル、
101N メタルサポートセル、
101S 電解質、
101T アノード(燃料極)、
101U カソード(酸化剤極)、
101V サポートメタル、
101W セルフレーム、
101k 開口部、
101p 第1延在部、
101q 第2延在部、
101r 第3延在部、
101s 第4延在部、
101t 第5延在部、
102  セパレータ、
102L 流路部、
102p 外縁、
102q 溝、
102x 平坦部、
102y アノード側突起、
102z カソード側突起、
103  集電補助層、
104  封止部材、
105  モジュールエンド、
106  上部集電板、
107  下部集電板、
108  下部エンドプレート、
109  上部エンドプレート、
110  エアーシェルター、
111  外部マニホールド、
101a,102a,105a,107a,108a,111a アノード側第1流入口、
101b,102b,105b,107b,111b,108b アノード側第2流入口、
101c,102c,105c,107c,111c,108c アノード側第3流入口、
101d,102d,108d,107d,111d,105d アノード側第1流出口、
101e,102e,105e,107e,111e,108e アノード側第2流出口、
101f,108f,102f,105f,107f,111f カソード側第1流入口、
101g,102g,105g,107g,108g,111g カソード側第2流入口、
101h,102h,111h,105h,107h,108h カソード側第1流出口、
101i,102i,105i,107i,108i,111i カソード側第2流出口、
101j,102j,105j,107j,108j,111j カソード側第3流出口、
112  カバー、
113,114,115 シール材、
116  バネ部材、
116a 基材、
116b 起立片、
200,201,202,203 調整部、
301,302,303,304 セパレータ、
301L,302L,303L,304L 流路部、
301s,302s,303s,304s 凸状部、
401,402,403,404 調整部、
501,502 セパレータ、
501L,502L 流路部、
501r,502r アノード側流入口、
501s,502s アノード側流出口、
501t,502t カソード側流入口、
501u,502u カソード側流出口、
602,612,622,632 セパレータ、
602L,612L,622L,632L 流路部、
602p,612p,622p,632p 流入口、
602q,612q,622q,632q 流出口、
S11,S21,S31,S41,S51 主流路、
T11,T12,T21,T22,T31,T32,T41,T42,T51,T52,T63,T73,T83,T93 補助流路、
V    接合ライン、
AG   アノードガス、
CG   カソードガス、
X    (燃料電池の)短手方向、
Y    (燃料電池の)長手方向、
Z    (燃料電池の)積層方向。
100 fuel cells,
100M cell stack assembly,
100S stack,
100T cell unit,
100U conjugate,
100P upper module unit,
100Q central module unit,
100R lower module unit,
100 U units,
101 Metal support cell assembly,
101M power generation cell,
101N metal support cell,
101S electrolyte,
101T anode (fuel electrode),
101U cathode (oxidizer electrode),
101V support metal,
101 W cell frame,
101k opening,
101p first extension,
101 q second extension portion,
101r third extension,
101s fourth extension,
101t fifth extension,
102 separators,
102 L channel part,
102p outer edge,
102q groove,
102x flat area,
102y anode side projection,
102z cathode side projection,
103 current collection auxiliary layer,
104 sealing member,
105 module ends,
106 upper collector plate,
107 lower collector plate,
108 lower end plate,
109 upper end plate,
110 air shelters,
111 external manifold,
101a, 102a, 105a, 107a, 108a, 111a first anode side inlet,
101b, 102b, 105b, 107b, 111b, 108b anode side second inlet,
101c, 102c, 105c, 107c, 111c, 108c anode side third inlet,
101d, 102d, 108d, 107d, 111d, 105d anode side first outlet,
101e, 102e, 105e, 107e, 111e, 108e anode side second outlet,
101f, 108f, 102f, 105f, 107f, 111f cathode side first inlet,
101 g, 102 g, 105 g, 107 g, 108 g, 111 g cathode side second inlet,
101h, 102h, 111h, 105h, 107h, 108h cathode side first outlet,
101i, 102i, 105i, 107i, 108i, 111i cathode side second outlet,
101j, 102j, 105j, 107j, 108j, 111j cathode side third outlet,
112 cover,
113, 114, 115 Sealant,
116 spring member,
116a base material,
116b standing piece,
200, 201, 202, 203 adjustment unit,
301, 302, 303, 304 separators,
301L, 302L, 303L, 304L flow path portion,
301s, 302s, 303s, 304s convex portions,
401, 402, 403, 404 Adjustment unit,
501,502 separators,
501L, 502L flow path part,
501r, 502r anode side inlet,
501s, 502s anode side outlet,
501t, 502t cathode side inlet,
501u, 502u cathode side outlet,
602, 612, 622, 632 separators,
602L, 612L, 622L, 632L flow path portion,
602p, 612p, 622p, 632p inlets,
602q, 612q, 622q, 632q outlet,
S11, S21, S31, S41, S51 main flow path,
T11, T12, T21, T22, T31, T32, T41, T42, T51, T52, T63, T73, T83, T93 Auxiliary flow path,
V junction line,
AG anode gas,
CG cathode gas,
X (for fuel cell) short direction,
Y (for fuel cell) longitudinal direction,
Z Stacking direction (for fuel cells).

Claims (9)

  1.  電解質を燃料極と酸化剤極とで挟み供給されたガスによって発電する発電セルと、
     前記発電セルと前記発電セルとの間に設け、隣り合う前記発電セルを隔てるセパレータと、
     前記セパレータと前記セパレータとの間に形成され前記発電セルに前記ガスを供給する複数の流路からなる流路部と、
     前記流路部に前記ガスを流入させる複数のガス流入口と、
     前記流路部から前記ガスを流出させる複数のガス流出口と、
     複数の前記流路を流れる前記ガスの量を調整する調整部と、を有し、
     前記調整部は複数のガス流入口間または複数のガス流出口間に形成される前記流路部の圧力損失を調整することによって複数の前記流路間の流れのばらつきを低下させる、燃料電池のユニット構造。
    A power generation cell that generates electricity from gas supplied by sandwiching an electrolyte between a fuel electrode and an oxidant electrode;
    A separator which is provided between the power generation cell and the power generation cell and which separates the adjacent power generation cells;
    A flow path portion formed of a plurality of flow paths formed between the separator and the separator and supplying the gas to the power generation cell;
    A plurality of gas inlets for causing the gas to flow into the flow passage;
    A plurality of gas outlets for discharging the gas from the flow passage;
    An adjusting unit that adjusts the amount of the gas flowing through the plurality of flow paths,
    In the fuel cell, the adjustment unit reduces variation in flow among the plurality of flow paths by adjusting pressure loss in the flow path portion formed between the plurality of gas inlets or between the plurality of gas outlets. Unit structure.
  2.  複数の前記ガス流入口と複数の前記ガス流出口との数とを異ならせた、請求項1に記載の燃料電池のユニット構造。 The unit structure of a fuel cell according to claim 1, wherein a plurality of said gas inlets and a plurality of said gas outlets are made different.
  3.  前記調整部を複数の前記発電セルを同一平面上に対向して配置することでこれら複数の前記発電セルの対向面間に補助流路を形成した、請求項1または2に記載の燃料電池のユニット構造。 3. The fuel cell according to claim 1, wherein an auxiliary flow path is formed between opposing surfaces of the plurality of power generation cells by arranging the plurality of power generation cells so as to face each other on the same plane. Unit structure.
  4.  前記調整部を少なくとも一方の前記発電セルの非対向面とセルフレーム端部との間に補助流路を形成した、請求項3に記載の燃料電池のユニット構造。 The unit structure of a fuel cell according to claim 3, wherein an auxiliary flow path is formed between the non-opposing surface of at least one of the power generation cells and the cell frame end of the adjustment unit.
  5.  前記調整部は、補助流路の前記ガスの量を調整する別体の制御機構を備えた、請求項1~4のいずれか1項に記載の燃料電池のユニット構造。 The unit structure of a fuel cell according to any one of claims 1 to 4, wherein the adjustment unit comprises a separate control mechanism for adjusting the amount of the gas in the auxiliary flow passage.
  6.  前記制御機構は、前記ガスの圧力損失を増加または減少させるようにして前記ガスを制御する、請求項5に記載の燃料電池のユニット構造。 The unit structure of a fuel cell according to claim 5, wherein the control mechanism controls the gas so as to increase or decrease the pressure loss of the gas.
  7.  前記ガス流入口と前記ガス流出口の一方の数を奇数として、前記ガス流入口と前記ガス流出口の他方の数を偶数とした、請求項1~6のいずれか1項に記載の燃料電池のユニット構造。 The fuel cell according to any one of claims 1 to 6, wherein one of the gas inlet and the gas outlet is an odd number, and the other of the gas inlet and the gas outlet is an even number. Unit structure.
  8.  一の前記発電セルの前記燃料極に対応する前記ガス流入口および前記ガス流出口と、他の前記発電セルの前記酸化剤極に対応する前記ガス流入口および前記ガス流出口とを、交互に隣り合わせた、請求項1~7のいずれか1項に記載の燃料電池のユニット構造。 The gas inlet and the gas outlet corresponding to the fuel electrode of one of the power generation cells, and the gas inlet and the gas outlet corresponding to the oxidant electrode of the other power generation cell are alternately arranged. The unit structure of a fuel cell according to any one of claims 1 to 7, which is adjacent to each other.
  9.  セパレータの間に狭持された発電セルにガス流入口からガスを前記セパレータに形成した流路部に供給し、前記ガスをガス流出口から排出して発電する燃料電池のユニット構造の制御方法であって、
     前記ガス流入口から供給される前記ガスの流れを、前記発電セルの同一平面内において、前記セパレータの前記流路部を流れる主流れと、複数の前記発電セルの間を流れる補助流れの少なくとも2つの流れに分割し、前記補助流れにおける前記ガスの圧力損失を調整して、前記主流れにおける同一平面内での前記ガスの分配を均一にする、燃料電池のユニット構造の制御方法。
    A control method of a unit structure of a fuel cell which supplies gas from a gas inlet to a flow passage formed in the separator to a power generation cell sandwiched between separators, and discharges the gas from the gas outlet to generate electric power. There,
    In the same plane of the power generation cell, the flow of the gas supplied from the gas inlet is at least two of a main flow flowing through the flow passage portion of the separator and an auxiliary flow flowing between the plurality of power generation cells. A control method of a unit structure of a fuel cell, comprising dividing into two streams and adjusting a pressure loss of the gas in the auxiliary stream to make the distribution of the gas in the same plane in the main stream uniform.
PCT/JP2017/029207 2017-08-10 2017-08-10 Fuel cell unit structure, and method for controlling fuel cell unit structure WO2019030919A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US16/637,001 US11316181B2 (en) 2017-08-10 2017-08-10 Fuel cell unit structure and method of controlling fuel cell unit structure
EP17920632.1A EP3667786B1 (en) 2017-08-10 2017-08-10 Fuel cell unit structure, and method for controlling fuel cell unit structure
PCT/JP2017/029207 WO2019030919A1 (en) 2017-08-10 2017-08-10 Fuel cell unit structure, and method for controlling fuel cell unit structure
CN201780093814.6A CN110998940B (en) 2017-08-10 2017-08-10 Fuel cell unit structure and fuel cell unit structure control method
JP2019535558A JP6870739B2 (en) 2017-08-10 2017-08-10 Fuel cell unit structure and fuel cell unit structure control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/029207 WO2019030919A1 (en) 2017-08-10 2017-08-10 Fuel cell unit structure, and method for controlling fuel cell unit structure

Publications (1)

Publication Number Publication Date
WO2019030919A1 true WO2019030919A1 (en) 2019-02-14

Family

ID=65271089

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/029207 WO2019030919A1 (en) 2017-08-10 2017-08-10 Fuel cell unit structure, and method for controlling fuel cell unit structure

Country Status (5)

Country Link
US (1) US11316181B2 (en)
EP (1) EP3667786B1 (en)
JP (1) JP6870739B2 (en)
CN (1) CN110998940B (en)
WO (1) WO2019030919A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019186119A (en) * 2018-04-13 2019-10-24 日産自動車株式会社 Fuel cell stack

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210143447A1 (en) * 2019-11-12 2021-05-13 Bryan M. Blackburn Stack configurations for solid oxide electrochemical cells
DE102021129384A1 (en) * 2021-11-11 2023-05-11 MTU Aero Engines AG FUEL CELL FOR A FUEL CELL STACK

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07192739A (en) * 1993-12-24 1995-07-28 Toshiba Corp Fuel cell
JP2001052723A (en) * 1999-08-13 2001-02-23 Honda Motor Co Ltd Fuel cell stack
JP2002260688A (en) * 2001-02-28 2002-09-13 Mitsubishi Heavy Ind Ltd Separator of fuel cell
JP2014086263A (en) * 2012-10-24 2014-05-12 Honda Motor Co Ltd Fuel cell module
JP2015109225A (en) 2013-12-05 2015-06-11 株式会社日本自動車部品総合研究所 Sealing structure for fuel cell
JP2016506048A (en) * 2012-12-24 2016-02-25 ポスコ Separation plate for fuel cell and fuel cell including the same

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3520005B2 (en) * 1999-12-10 2004-04-19 大阪瓦斯株式会社 Fuel cell
US20030096147A1 (en) * 2001-11-21 2003-05-22 Badding Michael E. Solid oxide fuel cell stack and packet designs
US20040265666A1 (en) * 2003-06-27 2004-12-30 Weil K. Scott Solid oxide fuel cell frames and method of manufacture
US20080138684A1 (en) * 2006-12-06 2008-06-12 3M Innovative Properties Company Compact fuel cell stack with uniform depth flow fields
JP2009048945A (en) * 2007-08-22 2009-03-05 Honda Motor Co Ltd Fuel cell system
WO2010047694A1 (en) * 2008-10-22 2010-04-29 Utc Power Corporation Fuel cell repeater unit
CN103053057B (en) * 2010-07-15 2016-09-14 丰田自动车株式会社 Fuel cell
US11211616B2 (en) * 2015-08-31 2021-12-28 Sustainable Innovations, Inc. Modular electrochemical cell components, stacks, systems, and method of manufacture

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07192739A (en) * 1993-12-24 1995-07-28 Toshiba Corp Fuel cell
JP2001052723A (en) * 1999-08-13 2001-02-23 Honda Motor Co Ltd Fuel cell stack
JP2002260688A (en) * 2001-02-28 2002-09-13 Mitsubishi Heavy Ind Ltd Separator of fuel cell
JP2014086263A (en) * 2012-10-24 2014-05-12 Honda Motor Co Ltd Fuel cell module
JP2016506048A (en) * 2012-12-24 2016-02-25 ポスコ Separation plate for fuel cell and fuel cell including the same
JP2015109225A (en) 2013-12-05 2015-06-11 株式会社日本自動車部品総合研究所 Sealing structure for fuel cell

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3667786A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019186119A (en) * 2018-04-13 2019-10-24 日産自動車株式会社 Fuel cell stack
JP7087616B2 (en) 2018-04-13 2022-06-21 日産自動車株式会社 Fuel cell stack

Also Published As

Publication number Publication date
JPWO2019030919A1 (en) 2020-03-19
EP3667786A4 (en) 2020-09-09
CN110998940B (en) 2023-02-03
US11316181B2 (en) 2022-04-26
US20200203740A1 (en) 2020-06-25
EP3667786B1 (en) 2021-10-06
CN110998940A (en) 2020-04-10
EP3667786A1 (en) 2020-06-17
JP6870739B2 (en) 2021-05-19

Similar Documents

Publication Publication Date Title
US8110319B2 (en) Fuel cell stack components
EP3279989B1 (en) Flat plate type fuel cell
JP6360794B2 (en) Fuel cell
JP6870739B2 (en) Fuel cell unit structure and fuel cell unit structure control method
US20190036146A1 (en) Flat plate type fuel cell
JP6933040B2 (en) Fuel cell stack
JP7035367B2 (en) Fuel cell unit, fuel cell stack and fuel cell
US11069915B2 (en) Spring member, fuel cell unit, and fuel cell stack
JP6806256B2 (en) Fuel cell stack
JP6927309B2 (en) Fuel cell stack structure and thermal strain absorption method for fuel cell stack
JP5665900B2 (en) Fuel cell separator
JP5840983B2 (en) Solid oxide fuel cell and fuel cell unit
JP2017123249A (en) Separator for solid polymer type fuel battery
WO2019146101A1 (en) Cell unit
WO2019030918A1 (en) Cell structure for fuel cell and fuel cell system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17920632

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019535558

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017920632

Country of ref document: EP

Effective date: 20200310