WO2019030917A1 - User device and frequency offset estimation method - Google Patents

User device and frequency offset estimation method Download PDF

Info

Publication number
WO2019030917A1
WO2019030917A1 PCT/JP2017/029205 JP2017029205W WO2019030917A1 WO 2019030917 A1 WO2019030917 A1 WO 2019030917A1 JP 2017029205 W JP2017029205 W JP 2017029205W WO 2019030917 A1 WO2019030917 A1 WO 2019030917A1
Authority
WO
WIPO (PCT)
Prior art keywords
user apparatus
unit
frequency offset
dmrs
signal
Prior art date
Application number
PCT/JP2017/029205
Other languages
French (fr)
Japanese (ja)
Inventor
真平 安川
聡 永田
ホワン ワン
ギョウリン コウ
シュウフェイ ジェン
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to PCT/JP2017/029205 priority Critical patent/WO2019030917A1/en
Publication of WO2019030917A1 publication Critical patent/WO2019030917A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station

Definitions

  • the present invention relates to a user equipment in a wireless communication system.
  • LTE Long Term Evolution
  • LTE-A Long Term Evolution-Advanced
  • NR New Radio
  • D2D Device to Device
  • D2D reduces traffic between a user apparatus and a base station, and enables communication between user apparatuses even when the base station becomes incapable of communication in a disaster or the like.
  • D2D is D2D discovery (also referred to as D2D discovery, also referred to as D2D discovery) for finding another user apparatus that can communicate, and D2D communication for direct communication between user apparatuses (D2D direct communication, D2D communication, direct communication between terminals) It is divided roughly into () and so on.
  • D2D communication, D2D discovery and the like are simply referred to as D2D when not distinguished from each other.
  • a signal transmitted / received by D2D is called a D2D signal.
  • D2D Downlink
  • sidelink the more general term D2D is used in this specification.
  • sidelink is also used as needed.
  • V2X Vehicle to Everything
  • V2XI Vehicle to Infrastructure
  • RSU Road-Side Unit
  • V2N Vehicle to Infrastructure
  • V2P Vehicle to Pedestrian
  • Mode 3 and Mode 4 are defined for resource allocation for V2X communication to the user apparatus.
  • transmission resources are dynamically allocated by DCI (Downlink Control Information) sent from the base station to the user apparatus.
  • DCI Downlink Control Information
  • SPS Semi Persistent Scheduling
  • the user apparatus autonomously selects transmission resources from the resource pool.
  • the transmit diversity scheme includes precoding vector switching (PVS) that switches a precoding vector in the time domain, cyclic delay diversity (CDD) that gives a cyclic shift amount to a transmission signal, and the like.
  • PVS precoding vector switching
  • CDD cyclic delay diversity
  • CFO carrier frequency offset
  • Non-Patent Document 2 a CFO estimation method using DMRSs received in a single symbol (that is, a single DMRS symbol) without using the correlation between a plurality of DMRS symbols.
  • DMRS symbols may be transmitted from a plurality of antenna ports, for example, CFO using a single DMRS symbol when multiplexed by applying different cyclic shifts between ports.
  • the estimation method can not be applied.
  • a user equipment used in a wireless communication system supporting D2D communication using transmit diversity A receiver configured to receive a reference signal transmitted from one antenna port among a plurality of antenna ports of a transmitting user apparatus in one or more first unit time intervals within a predetermined time interval; A frequency offset estimation unit that estimates a frequency offset based on the received reference signal; A user device is provided.
  • FIG. 7 is a diagram showing a functional configuration relating to signal transmission in a specific example 1;
  • FIG. 7 is a diagram showing a subframe configuration in a specific example 1.
  • FIG. 7 is a diagram showing a functional configuration relating to signal reception in a first specific example.
  • FIG. 18 is a diagram showing a functional configuration relating to signal transmission in a second specific example. It is a figure which shows the relationship between the moving speed of the user apparatus UE, and the transmission diversity system applied.
  • LTE corresponds not only to a communication method corresponding to Release 8 or 9 of 3GPP, but also to Release 10, 11, 12, 13, or Release 14 or later of 3GPP. It is used in a broad sense including the 5th generation (5G, NR) communication method.
  • 5G, NR 5th generation
  • the present embodiment mainly targets V2X
  • the technology according to the present embodiment is not limited to V2X, and can be widely applied to D2D in general.
  • D2D includes V2X as its meaning.
  • the term “D2D” is not limited to LTE, but refers to communication between terminals in general.
  • the present embodiment mainly targets “D2D communication”, the present invention is applicable not only to “D2D communication” but also to “D2D discovery”.
  • the "D2D signal” may be a data signal, an SCI, a discovery signal, or a combination of an SCI and a data signal. .
  • D2D is a basic technology
  • V2X V2X
  • D2D is broadly divided into “D2D discovery” and “D2D communication”.
  • D2D discovery as shown in FIG. 2A, a resource pool for a Discovery message is secured for each Discovery period, and the user apparatus transmits a Discovery message (discovery signal) in the resource pool.
  • Discovery message discovery signal
  • Type 1 the user apparatus autonomously selects a transmission resource from the resource pool.
  • Type 2b semi-static resources are allocated by higher layer signaling (for example, RRC signaling).
  • D2D communication As shown in FIG. 2B, resource pools for SCI (Sidelink Control Information) / data transmission are periodically secured.
  • the user apparatus on the transmission side notifies the reception side of a data transmission resource (PSSCH resource pool) or the like by the SCI using a resource selected from the Control resource pool (PSCCH resource pool), and transmits data using the data transmission resource.
  • PSSCH resource pool a data transmission resource
  • PSCCH resource pool a resource selected from the Control resource pool
  • Mode 1 and Mode 2 in more detail about “D2D communication”.
  • resources are dynamically allocated by (E) PDCCH sent from the base station to the user apparatus.
  • Mode 2 the user apparatus autonomously selects transmission resources from the resource pool.
  • the resource pool is notified by SIB or a predefined resource pool is used.
  • Rel-14 has Mode 3 and Mode 4 in addition to Mode 1 and Mode 2.
  • SCI may be called SA (Scheduling Assignment).
  • PSDCH Physical Sidelink Discovery Channel
  • PSCCH Physical Sidelink Control Channel
  • PSSCH Physical Sidelink Shared Channel
  • PSCCH and PSSCH have a PUSCH-based structure, and are structured such that DMRS (Demodulation Reference Signal) is inserted.
  • FIG. 3 is a diagram showing an example of configuration of a wireless communication system according to the present embodiment.
  • the wireless communication system according to the present embodiment includes a base station 10, a user apparatus UE1, and a user apparatus UE2.
  • the user apparatus UE1 intends the transmitting side and the user apparatus UE2 intends the receiving side
  • both the user apparatus UE1 and the user apparatus UE2 have both the transmitting function and the receiving function.
  • the user apparatus UE1 and the user apparatus UE2 will be simply described as "the user apparatus UE" when not particularly distinguished.
  • the user apparatus UE1 and the user apparatus UE2 illustrated in FIG. 3 respectively have the functions of cellular communication as the user apparatus UE in LTE (LTE in a meaning including 5G and NR in addition to existing LTE, and so on), and the above It has D2D functions including signal transmission and reception on the selected channel. Further, the user apparatus UE1 and the user apparatus UE2 have a function of executing the operation described in the present embodiment.
  • the user apparatus UE may be any apparatus having the D2D function, but for example, the user apparatus UE may be a vehicle, a terminal held by a pedestrian, an RSU (UE type RSU having the UE function, etc.), etc. is there.
  • the user apparatus UE may be a vehicle, a terminal held by a pedestrian, an RSU (UE type RSU having the UE function, etc.), etc. is there.
  • the signal waveform used by the user apparatus UE may be CP-OFDM (a waveform used in the existing LTE downlink) or DFT-S-OFDM (DFT-Spreading-OFDM) (a waveform used in the existing LTE uplink) Or other signal waveforms.
  • CP-OFDM a waveform used in the existing LTE downlink
  • DFT-S-OFDM DFT-Spreading-OFDM
  • the processing content of D2D transmission of the user apparatus UE is fundamentally the same as the processing content of uplink transmission in LTE (non-patent document 3).
  • PVS Precoding Vector Switching
  • the user apparatus UE scrambles and modulates a codeword of transmission data to generate complex-valued symbols, and the complex-valued symbols (transmission) are performed. Precoding is performed on the signal) while switching the precoding vector in the time domain. Then, precoded complex-valued symbols are mapped to resource elements, a transmission signal (eg, complex-valued time-domain SC-FDMA signal) is generated, and transmitted from each antenna port.
  • a transmission signal eg, complex-valued time-domain SC-FDMA signal
  • precoding a signal with a precoding vector means multiplying the signal by the precoding vector, whereby a transmission beam can be formed.
  • switching the precoding vector according to the passage of time corresponds to switching the direction of the transmission beam according to the passage of time.
  • the PVS in the present embodiment is a PVS in the time domain.
  • the antenna port is a logical antenna port corresponding to one or more antenna elements.
  • precoding vector may be referred to as "precoding matrix”.
  • the "precoding vector” is a type of "precoding matrix”.
  • the user apparatus UE scrambles and modulates the codeword of transmission data to generate complex-valued symbols, and the complex-valued symbols A different amount of cyclic shift is given to (transmission signal) for each antenna port. Then, the transmission signal given the cyclic shift amount is mapped to a resource element, a transmission signal (eg, complex-valued time-domain SC-FDMA signal) is generated, and transmitted from each antenna port.
  • the “cyclic shift amount” may be referred to as “delay value”.
  • base station 10 For base station 10, a function of cellular communication as base station 10 in LTE, and a function for enabling communication of user apparatus UE in the present embodiment (setting of DMRS mapping pattern, setting of transmission diversity scheme, etc. )have. Further, the base station 10 may be an RSU (eNB type RSUs having an eNB function).
  • RSU eNB type RSUs having an eNB function
  • the transmitting user apparatus UE1 transmits a DMRS for CFO estimation from one antenna port among a plurality of antenna ports, and the receiving user apparatus UE2 estimates a CFO based on the DMRS for CFO estimation will be described. Do.
  • the transmitting user apparatus UE1 applies CDDs with small delay values to transmit DMRS from a plurality of antenna ports, and the receiving user apparatus UE2 transmits small DMDSs.
  • CDDs with small delay values to transmit DMRS from a plurality of antenna ports
  • the receiving user apparatus UE2 transmits small DMDSs.
  • Example 3 an example will be described in which a CFO estimated based on DMRS transmitted together with SA is used as a CFO for a data signal.
  • FIG. 4 is a diagram showing a functional unit (a functional unit included in the signal transmission unit 101 described later) regarding signal transmission of the transmission side user apparatus UE1 in the specific example 1.
  • the user apparatus UE1 in the specific example 1 applies transmission diversity and transmits data signals (PSSCH) from a plurality of antenna ports.
  • PSSCH data signals
  • the technique applied to the data signal in the first embodiment may be applied to the control signal or the discovery signal.
  • the functional unit includes a transmission diversity unit 11 and antenna ports 12 and 13.
  • a precoder that precodes a transmission signal (multiplies a precoding vector) may be used.
  • each antenna port corresponds to one antenna element (physical antenna element) in specific example 1 (the same applies to specific examples 2 to 3)
  • each antenna port corresponds to a plurality of antenna elements. It may be done.
  • the number of antenna ports is not limited to two, and any number of antenna ports may be used.
  • the horizontal length of the horizontal rectangle for which the signal mapping is shown in FIG. 4 is one subframe (this may be called a slot or may be called a TTI), and the vertical length is one sub-frame. It is a career. Note that the length in the vertical direction may be a plurality of subcarriers or may be a transmission bandwidth.
  • one subframe has 14 symbols, and the data signal and the DMRS are mapped as shown.
  • One subframe is an example of “predetermined time interval”, and one symbol is an example of “unit time interval”.
  • one subframe is used as the “predetermined time period”, and one symbol is used as the “unit time period”, but these are examples.
  • a time interval longer (or shorter) than one subframe is used as the "predetermined time interval”
  • a time interval longer than (or shorter than one symbol) is used as the "unit time interval”. You may
  • the transmitting user equipment UE1 transmits part of the DMRS from one antenna port 12;
  • the other DMRS is transmitted from the two antenna ports 12, 13.
  • the receiving user apparatus UE2 can estimate CFO using the DMRS transmitted from one antenna port.
  • DMRS transmitted from one antenna port is called "DMRS for CFO estimation" in order to make DMRS special from other antennas
  • DMRS for CFO estimation is transmitted except from one antenna port, The same signal as other DMRS may be used.
  • One CFO estimation DMRS may be included in one subframe, and a plurality of CFO estimation DMRSs may be included.
  • the symbol position of the CFO estimation DMRS may be determined in advance according to specifications or the like, may be set from the base station 10, or may be previously set.
  • the transmission diversity unit 11 receives a data signal and a DMRS as a transmission signal, and these signals are precoded and transmitted as radio signals from each antenna port.
  • DMRS is a Zadoff-Chu sequence like LTE, and cyclic shift can generate a plurality of orthogonal DMRSs. The same applies to a non-precoded RS (reference signal) described later.
  • the transmission diversity unit 11 in specific example 1 multiplies the CFO estimation DMRS by a precoding vector determined in advance.
  • the precoding vector to be multiplied by the CFO estimation DMRS may be predetermined according to the specification or the like, may be set from the base station 10, or may be preset.
  • precoding vector [1, 0] may be multiplied to transmit DMRS for CFO estimation from antenna port 12
  • precoding vector [0] may be transmitted to transmit DMRS for CFO estimation from antenna port 13.
  • DMRS may be transmitted from the antenna port 12 with the number of antenna ports set to one.
  • the precoding vector (eg, [1, -1] / ⁇ (2), [ ⁇ 1, 1] / ⁇ (2), etc.) to transmit from multiple antenna ports Do.
  • the same precoding vector as PSCCH or PSSCH may be applied.
  • the CFO estimation DMRS may be transmitted when transmission diversity is applied and may not be transmitted when transmission diversity is not applied. Also, the CFO estimation DMRS may be transmitted when transmission diversity is applied and when a predetermined condition is satisfied.
  • the CFO estimation DMRS may be transmitted when transmission diversity is applied and when the transmitting user apparatus UE1 explicitly instructs the receiving user apparatus UE2 by the SA.
  • the CFO estimation DMRS may be transmitted according to the moving speed of the transmitting user apparatus UE1 or the receiving user apparatus UE2 when transmission diversity is applied. For example, when the moving speed is equal to or less than the threshold, the CFO estimation DMRS may not be transmitted, and the receiving user apparatus UE2 may estimate the CFO using the correlation among a plurality of DMRS symbols. On the other hand, when the moving speed is higher than the threshold, the CFO estimation DMRS may be transmitted, and the receiving user apparatus UE2 may estimate the CFO based on the CFO estimation DMRS.
  • CFO estimation DMRS may be transmitted according to a modulation and coding scheme (MCS) of a data signal.
  • MCS modulation and coding scheme
  • the CFO estimation DMRS may not be transmitted, and the receiving user apparatus UE2 may estimate the CFO using the correlation among a plurality of DMRS symbols.
  • the MCS is higher than the predetermined MCS, the CFO estimation DMRS may be transmitted, and the receiving user apparatus UE2 may estimate the CFO based on the CFO estimation DMRS.
  • the CFO estimation DMRS may be transmitted according to the applied transmission diversity when the transmission diversity is applied. For example, when a small delay CDD is applied, the CFO estimation DMRS may not be transmitted.
  • the receiving user apparatus UE2 regards DMRSs transmitted at the same timing from a plurality of antenna ports as a single DMRS and receives the DMRS in a single symbol, as described in the second embodiment described later.
  • the CFO estimation method using can be applied.
  • the transmission diversity unit 11 includes a predetermined number of data symbols before and after the CFO estimation DMRS (referred to as “peripheral data symbol”) and a predetermined number of data symbols before and after another DMRS.
  • peripheral data symbol a predetermined number of data symbols before and after the CFO estimation DMRS
  • non-peripheral data symbols a predetermined number of data symbols before and after another DMRS.
  • Different transmission diversity schemes may be applied to the peripheral data symbols and the non-peripheral data symbols (hereinafter referred to as “non-peripheral data symbols”).
  • the transmission diversity unit 11 may apply different parameters of the same transmission diversity scheme to the peripheral data symbol and the non-peripheral data symbol. Which data symbol is used as the peripheral data symbol and which data symbol is used as the non-peripheral data symbol may be determined in advance according to the specification, etc., may be set from the base station 10, or may be previously set.
  • the user apparatus may optionally select and notify the receiving user apparatus using PSCCH or the like. Also, parameters of the transmit diversity scheme or the transmit diversity scheme applied to the peripheral data symbol and the non-peripheral data symbol may be determined in advance according to the specification, etc., or may be set from the base station 10 or are preset. It is also good.
  • the transmission diversity unit 11 may multiply the peripheral data symbols by the precoding vector to be applied to the CFO estimation DMRS, and may multiply the non-peripheral data symbols by the precoding vector to be applied to other DMRSs. .
  • the transmission diversity unit 11 may change the delay value of CDD applied to peripheral data symbols and the delay value of CDD applied to non-peripheral data symbols.
  • the transmission diversity unit 11 may apply SFBC to non-peripheral data symbols without applying SFBC (Space Frequency Block Coding) to neighboring data symbols.
  • SFBC Space Frequency Block Coding
  • FIG. 6 is a diagram illustrating a functional unit (functional unit included in the signal receiving unit 102 described later) regarding signal reception and CFO estimation of the reception-side user apparatus UE2 in the specific example 1.
  • the user apparatus UE2 in the present embodiment receives the CFO estimation DMRS transmitted by the transmitting user apparatus UE1 as described above, and estimates the CFO based on the CFO estimation DMRS.
  • the received signal is converted from the time domain to the frequency domain by DFT (Discrete Fourier Transform) 21, and the signal separation unit 22 extracts a signal addressed to the own user apparatus UE 2.
  • DFT Discrete Fourier Transform
  • the frequency offset estimation unit 23 estimates the CFO based on the CFO estimation DMRS.
  • the frequency offset estimation unit 23 can estimate CFO using the correlation between a plurality of DMRS symbols in one subframe.
  • the frequency offset compensation unit 24 compensates for the CFO estimated in the frequency offset estimation unit 23, and the demodulation and decoding unit 25 performs channel estimation based on the DMRS to demodulate and decode the original data signal.
  • the demodulation and decoding unit 25 When different transmission diversity schemes or different parameters of the same transmission diversity scheme are used for the peripheral data symbol and the non-peripheral data symbol, the demodulation and decoding unit 25 also uses the CFO estimation DMRS as data according to the applicable transmission diversity scheme. It can be used for demodulation.
  • the demodulation and decoding unit 25 calculates the peripheral data symbol.
  • DMRSs four DMRSs in FIG. 5 including DMRSs for CFO estimation can be used.
  • the demodulation and decoding unit 25 can use DMRSs (three DMRSs in FIG. 5) excluding the CFO estimation DMRSs.
  • the demodulation and decoding unit 25 performs DMRS for CFO estimation at the time of demodulation of peripheral data symbols. Can be used.
  • the demodulation and decoding unit 25 can use DMRSs (three DMRSs in FIG. 5) excluding the CFO estimation DMRSs.
  • the unit 25 can use DMRSs (four DMRSs in FIG. 5) including DMRSs for CFO estimation when demodulating peripheral data symbols.
  • the demodulation and decoding unit 25 can use DMRSs (three DMRSs in FIG. 5) excluding the CFO estimation DMRSs.
  • FIG. 7 is a diagram showing a functional unit (a functional unit included in the signal transmission unit 101 described later) related to signal transmission of the transmission side user apparatus UE1 in the specific example 2.
  • the user apparatus UE1 in the specific example 2 transmits a data signal (PSSCH) from a plurality of antenna ports using CDD as a transmission diversity scheme.
  • PSSCH data signal
  • the technique applied to the data signal in the second embodiment may be applied to the control signal or the discovery signal.
  • the transmitting user equipment UE1 applies a CDD with small delay value to the DMRS with two antennas Transmit from ports 12 and 13.
  • the small delay value is set within the range [0, x] (y> x) smaller than the range [0, y] of the delay value of CDD used for normal data communication including communication with a base station. Mean the delayed value. Alternatively, it may be a specific delay value x. The upper limits x and y of the delay value may be determined in advance according to specifications, etc., may be set from the base station 10, or may be set in advance.
  • the receiving side user apparatus UE2 may apply a CFO estimation method using DMRSs received in a single symbol, regarding multiple DMRSs transmitted from the multiple antenna ports at the same timing as a single DMRS. it can.
  • a small delay value in the range [0, x] may be used when a predetermined condition is satisfied, and a delay value in the range [0, y] is used when the predetermined condition is not satisfied. It is also good.
  • small delay values in the range [0, x] may be used according to the moving speed of the transmitting user apparatus UE1 or the receiving user apparatus UE2.
  • a delay value in the range [0, y] may be used, and the receiving user apparatus UE2 estimates CFO using correlation among a plurality of DMRS symbols. It is also good.
  • a small delay value in the range [0, x] may be used, and the receiving user apparatus UE2 estimates the CFO using DMRS received in a single symbol.
  • the CFO may be estimated according to
  • small delay values in the range [0, x] may be used depending on the MCS of the data signal. For example, when the MCS is equal to or less than a predetermined MCS, delay values in the range [0, y] may be used, and the receiving user apparatus UE2 estimates CFO using correlations between multiple DMRS symbols. May be For example, when the MCS is higher than a predetermined MCS, a small delay value in the range [0, x] may be used, and the receiving user apparatus UE2 estimates CFO using DMRS received in a single symbol. The CFO may be estimated according to the method.
  • the receiving user apparatus UE2 determines whether the receiving user apparatus UE2 estimates the CFO using the correlation between a plurality of DMRS symbols or the CRS using the DMRS received in a single symbol. And may be instructed by the SA from the transmitting user equipment UE1.
  • the functional unit of the reception-side user apparatus UE2 is configured as in FIG.
  • the received signal is converted from the time domain to the frequency domain by the DFT 21, and the signal separation unit 22 extracts a signal addressed to the own user apparatus UE 2.
  • the frequency offset estimation unit 23 regards a plurality of DMRSs transmitted at the same timing from a plurality of antenna ports as a single DMRS,
  • the CFO is estimated according to the CFO estimation method using DMRS received in a single symbol.
  • the frequency offset estimation unit 23 may estimate CFO using the correlation between a plurality of DMRS symbols in one subframe. .
  • the frequency offset compensation unit 24 compensates for the CFO estimated in the frequency offset estimation unit 23, and the demodulation and decoding unit 25 performs channel estimation based on the DMRS to demodulate and decode the original data signal.
  • Example 3 The transmission side user apparatus UE1 in the specific example 3 applies transmission diversity to transmit SAs from a plurality of antenna ports.
  • the application of transmission diversity in the transmitting user apparatus UE1 and the SFO estimation in the receiving user apparatus UE2 can be performed in the same manner as in the first example or the second example.
  • the receiving user apparatus UE2 also uses the SFO estimated at SA as a CFO for the data signal.
  • the SFO estimated in SA may be applied to the data signal associated with the SA as shown in FIG. 2B, and may be applied to the data signal in a predetermined period after receiving the SA. .
  • small delay values in the range [0, x] may be used for SFO estimation in SA.
  • the range [0,0 Delay values within y] may be used.
  • the PSD (Power Spectral Density) of the data signal is equal to the PSD of SA and the MCS of the data signal is less than or equal to the MCS of SA, then for SFO estimation in SA, within the range [0, y].
  • a delay value of may be used.
  • the predetermined condition of whether a small delay value in the range [0, x] is used or a delay value in the range [0, y] is used may be determined in advance by a specification or the like, and is set from the base station 10 It may be done or it may be preset.
  • SFO estimation in SA may be applied to data signals.
  • the indication in SA may be an explicit indication or an implicit indication. For example, if a small delay value in the range [0, x] is used in SA, SFO estimation in SA may be treated as applying to the data signal as well. For example, if the PSD of the data signal is equal to the PSD of the SA and the MCS of the data signal is less than or equal to the MCS of the SA, then the SFO estimation in the SA may be treated as applying to the data signal.
  • the receiving user apparatus UE2 may estimate CFO using the correlation among a plurality of DMRS symbols, for example, when the MCS of the data signal is equal to or less than a predetermined MCS. It is not necessary to apply the SFO estimate at SA to the data signal as it can.
  • FIG. 8 is a diagram showing the relationship between the moving speed of the user apparatus UE and the transmission diversity scheme to be applied.
  • Example # 1 when the moving speed of the user apparatus UE is higher than the threshold, transmission diversity may not be applied.
  • transmission diversity scheme # 1 or transmission diversity scheme # 2 when the moving speed of the user apparatus UE is equal to or less than the threshold value, transmission diversity scheme # 1 or transmission diversity scheme # 2 may be applied, and transmission diversity may not be applied.
  • transmission diversity scheme # 1 or transmission diversity scheme # 2 may be applied, and transmission diversity may not be applied.
  • the moving speed threshold whether or not to apply transmission diversity, and the type of transmission diversity when applied may be determined by the specification, etc., may be set by the base station 10, or may be preset. Good. Also, a plurality of patterns such as example # 1 and example # 2 shown in FIG. 8 may be determined by the specification or the like, may be set by the base station 10, or may be preset.
  • the user apparatus UE1 may notify the user apparatus UE2 of the presence / absence of application of transmission diversity to the data signal (PSSCH) using SCI (PSCCH).
  • PSSCH data signal
  • PSCCH SCI
  • the user apparatus UE and the base station 10 may have all the functions of Example 1, Example 2, Example 3, and others, or may have the function of any one or more of the examples. Good.
  • FIG. 9 is a diagram illustrating an example of a functional configuration of the user apparatus UE.
  • the user apparatus UE includes a signal transmission unit 101, a signal reception unit 102, and a setting information storage unit 103.
  • the functional configuration shown in FIG. 9 is merely an example. As long as the operation according to the present embodiment can be performed, the names of the function classifications and the function parts may be any names.
  • the signal transmission unit 101 creates a transmission from transmission data, and wirelessly transmits the transmission signal.
  • the signal reception unit 102 wirelessly receives various signals, and acquires higher layer signals from the received physical layer signals.
  • the signal transmission unit 101 and the signal reception unit 102 both include a D2D function and a cellular communication function.
  • the signal transmission unit 101 includes the function of executing the signal transmission operation described in the specific examples 1 to 3 and the others, and the signal reception unit 102 performs the signal reception operation described in the specific examples 1 to 3 and the others. Including features.
  • the setting information storage unit 103 stores various setting information received from the base station 10 by the signal receiving unit 102 and setting information set in advance.
  • the setting information storage unit 103 is configured to store the setting of the DMRS mapping pattern, the setting of the transmission diversity scheme, and the like.
  • the signal transmission unit 101 is configured to apply transmission diversity to the D2D signal and transmit the D2D signal.
  • the signal transmission unit 101 may transmit the DMRS for CFO estimation from one antenna port, and may transmit the DMRS from a plurality of antenna ports by applying CDD with a small delay value.
  • the signal transmission unit 101 may transmit control information including information used for transmission diversity of the D2D signal.
  • the signal receiving unit 102 is configured to receive the D2D signal and estimate and compensate for the CFO. For example, when receiving the CFO estimation DMRS, the signal receiving unit 102 may estimate the CFO using the CFO estimation DMRS received in a single symbol. For example, when receiving a DMRS to which a CDD with a small delay value is applied, the signal reception unit 102 may estimate the CFO using the DMRS received in a single symbol. Also, the signal receiving unit 102 can estimate CFO using correlations between multiple DMRS symbols.
  • FIG. 10 is a diagram showing an example of a functional configuration of the base station 10.
  • the base station 10 includes a signal transmission unit 201, a signal reception unit 202, a setting information storage unit 203, and an NW communication unit 204.
  • the functional configuration shown in FIG. 10 is merely an example. As long as the operation according to the present embodiment can be performed, the names of the function classifications and the function parts may be any names.
  • the signal transmission unit 201 includes a function of generating a signal to be transmitted to the user apparatus UE side and wirelessly transmitting the signal.
  • the signal receiving unit 202 includes a function of receiving various signals transmitted from the user apparatus UE and acquiring, for example, higher layer information from the received signals.
  • the signal transmission unit 201 includes the function of executing the operation of transmitting a signal (eg, setting information) to the user apparatus UE described in the specific examples 1 to 3 and others.
  • a signal eg, setting information
  • the setting information storage unit 203 stores various setting information to be transmitted to the user apparatus UE, various setting information received from the user apparatus UE, and setting information set in advance.
  • the NW communication unit 204 executes, for example, information communication between base stations.
  • each functional block may be realized by one device physically and / or logically connected to a plurality of elements, or directly and two or more physically and / or logically separated devices. And / or indirectly (for example, wired and / or wirelessly) connected, and may be realized by the plurality of devices.
  • both the user apparatus UE and the base station 10 in an embodiment of the present invention may function as a computer that performs the process according to the present embodiment.
  • FIG. 11 is a diagram showing an example of the hardware configuration of the user apparatus UE and the base station 10 according to the present embodiment. Even if the above-mentioned user apparatus UE and base station 10 are physically configured as a computer apparatus including processor 1001, memory 1002, storage 1003, communication apparatus 1004, input apparatus 1005, output apparatus 1006, bus 1007, etc. Good.
  • the term “device” can be read as a circuit, a device, a unit, or the like.
  • the hardware configurations of the user apparatus UE and the base station 10 may be configured to include one or more devices indicated by 1001 to 1006 shown in the figure, or may be configured without including some devices. May be
  • Each function in the user apparatus UE and the base station 10 causes the processor 1001 to perform an operation by reading predetermined software (program) on hardware such as the processor 1001, the memory 1002, and the like, and communication by the communication apparatus 1004; And by controlling the reading and / or writing of data in the storage 1003.
  • predetermined software program
  • the processor 1001 operates, for example, an operating system to control the entire computer.
  • the processor 1001 may be configured by a central processing unit (CPU: Central Processing Unit) including an interface with a peripheral device, a control device, an arithmetic device, a register, and the like.
  • CPU Central Processing Unit
  • the processor 1001 reads a program (program code), a software module or data from the storage 1003 and / or the communication device 1004 to the memory 1002, and executes various processing according to these.
  • a program a program that causes a computer to execute at least a part of the operations described in the above embodiments is used.
  • the signal transmission unit 101, the signal reception unit 102, and the setting information storage unit 103 of the user apparatus UE illustrated in FIG. 9 may be realized by a control program stored in the memory 1002 and operated by the processor 1001. Further, for example, the signal transmission unit 201, the signal reception unit 202, the setting information storage unit 203, and the NW communication unit 204 of the base station 10 shown in FIG.
  • the processor 10 are stored in the memory 1002 and controlled by the processor 1001. It may be realized by a program. The various processes described above have been described to be executed by one processor 1001, but may be executed simultaneously or sequentially by two or more processors 1001. The processor 1001 may be implemented by one or more chips. The program may be transmitted from the network via a telecommunication line.
  • the memory 1002 is a computer readable recording medium, and includes, for example, at least one of a ROM (Read Only Memory), an EPROM (Erasable Programmable ROM), an EEPROM (Electrically Erasable Programmable ROM), and a RAM (Random Access Memory). It may be done.
  • the memory 1002 may be called a register, a cache, a main memory (main storage device) or the like.
  • the memory 1002 can store a program (program code), a software module, and the like that can be executed to execute the process according to the embodiment of the present invention.
  • the storage 1003 is a computer readable recording medium, and for example, an optical disc such as a CD-ROM (Compact Disc ROM), a hard disc drive, a flexible disc, a magneto-optical disc (eg, a compact disc, a digital versatile disc, a Blu-ray A (registered trademark) disk, a smart card, a flash memory (for example, a card, a stick, a key drive), a floppy (registered trademark) disk, a magnetic strip, and the like may be used.
  • the storage 1003 may be called an auxiliary storage device.
  • the above-mentioned storage medium may be, for example, a database including the memory 1002 and / or the storage 1003, a server or any other suitable medium.
  • the communication device 1004 is hardware (transmission / reception device) for performing communication between computers via a wired and / or wireless network, and is also called, for example, a network device, a network controller, a network card, a communication module, or the like.
  • the signal transmission unit 101 and the signal reception unit 102 of the user apparatus UE may be realized by the communication apparatus 1004.
  • the signal transmission unit 201, the signal reception unit 202, and the NW communication unit 204 of the base station 10 may be realized by the communication device 1004.
  • the input device 1005 is an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, and the like) that receives an input from the outside.
  • the output device 1006 is an output device (for example, a display, a speaker, an LED lamp, etc.) that performs output to the outside.
  • the input device 1005 and the output device 1006 may be integrated (for example, a touch panel).
  • each device such as the processor 1001 and the memory 1002 is connected by a bus 1007 for communicating information.
  • the bus 1007 may be configured by a single bus or may be configured by different buses among the devices.
  • each of the user apparatus UE and the base station 10 includes a microprocessor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a programmable logic device (PLD), a field programmable gate array (FPGA), etc. It may be configured to include hardware, and part or all of each functional block may be realized by the hardware. For example, processor 1001 may be implemented in at least one of these hardware.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • PLD programmable logic device
  • FPGA field programmable gate array
  • a user apparatus used in a wireless communication system supporting D2D communication using transmit diversity which is one or more than a plurality of A receiver configured to receive a reference signal transmitted from one of a plurality of antenna ports of a transmitting user apparatus in one unit time interval, and a frequency offset to estimate a frequency offset based on the received reference signal
  • a user device having an estimation unit.
  • the above user equipment can receive DMRS for CFO estimation from one antenna port even when transmission diversity is used, the accuracy of CFO estimation can be improved between terminals moving at high speed. it can.
  • the accuracy of CFO estimation can be improved between terminals moving at high speed. it can.
  • other DMRSs other than the CFO estimation DMRS diversity gain can be obtained, and communication quality and reliability can be improved.
  • the CFO estimation DMRS may be transmitted when transmission diversity is applied and / or when a predetermined condition is satisfied.
  • DMRSs are transmitted from the multiple antenna ports at the same timing.
  • the diversity gain can be increased.
  • the receiving unit may further receive reference signals transmitted from a plurality of antenna ports of the transmitting user apparatus in one or more second unit time intervals within the predetermined time interval. Transmission diversity different between predetermined number of unit time intervals before and after the one or more first unit time intervals and predetermined number of unit time intervals before and after the one or more second unit time intervals Schemes, or different parameters of the same transmit diversity scheme may be used.
  • data symbols can be received in the same manner as in the CFO estimation DMRS in time intervals before and after the CFO estimation DMRS, and diversity gain can be obtained in time intervals before and after another DMRS. Can.
  • the user equipment used in a wireless communication system supporting D2D communication using cyclic delay diversity in one or more unit time intervals within a predetermined time interval, A receiver for receiving reference signals transmitted from a plurality of antenna ports of a transmitting user apparatus, and a frequency offset estimation unit for estimating a frequency offset based on the reference signals, and a cyclic circuit used for the reference signals
  • a user apparatus is provided, characterized in that the upper limit of the delay value for delay diversity is smaller than the delay value for cyclic delay diversity used for communication with the base station or the upper limit thereof.
  • the above user equipment can regard multiple DMRSs transmitted at the same timing from multiple antenna ports as a single DMRS, in order to receive the DMRS to which the CDD with small delay value is applied. Therefore, the CFO estimation method using DMRS received in a single symbol can be applied to improve the accuracy of CFO estimation between terminals moving at high speed. There is a possibility that diversity gain may be reduced by reducing the delay value of CDD, but the same DMRS can be used in one subframe even if transmission diversity is used or transmission diversity is not used. An arrangement can be used.
  • the frequency offset estimation unit may use a frequency offset estimated based on a reference signal transmitted together with control information as a frequency offset for the data signal.
  • the above user equipment can simplify CFO estimation by applying the CFO estimated in the control information also to the data signal. Further, even when transmission diversity is used or transmission diversity is not used, the same DMRS arrangement can be used in one subframe in which a data signal is transmitted.
  • the operations of multiple functional units may be physically performed by one component, or the operations of one functional unit may be physically performed by multiple components.
  • the order of processing may be changed as long as there is no contradiction.
  • the user apparatus UE and the base station 10 have been described using functional block diagrams for the convenience of the processing description, such an apparatus may be realized in hardware, software or a combination thereof.
  • the software operated by the processor of the user apparatus UE according to the embodiment of the present invention and the software operated by the processor of the base station 10 according to the embodiment of the present invention are random access memory (RAM), flash memory, read only It may be stored in memory (ROM), EPROM, EEPROM, register, hard disk (HDD), removable disk, CD-ROM, database, server or any other suitable storage medium.
  • notification of information is not limited to the aspect / embodiment described herein, and may be performed by other methods.
  • notification of information may be physical layer signaling (for example, Downlink Control Information (DCI), Uplink Control Information (UCI)), upper layer signaling (for example, Radio Resource Control (RRC) signaling, Medium Access Control (MAC) signaling, It may be implemented by broadcast information (MIB (Master Information Block), SIB (System Information Block), other signals, or a combination thereof.
  • RRC signaling may be called an RRC message, for example, RRC Connection setup (RRC Con ection Setup) message, RRC connection reconfiguration (it may be a RRC Connection Reconfiguration) message.
  • Each aspect / embodiment described in the present specification is LTE (Long Term Evolution), LTE-A (LTE-Advanced), SUPER 3G, IMT-Advanced, 4G, 5G, FRA (Future Radio Access), W-CDMA (Registered trademark), GSM (registered trademark), CDMA2000, UMB (Ultra Mobile Broadband), IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802.20, UWB (Ultra-Wide Band),
  • the present invention may be applied to a system utilizing Bluetooth (registered trademark), other appropriate systems, and / or an advanced next-generation system based on these.
  • the specific operation supposed to be performed by the base station 10 in this specification may be performed by the upper node in some cases.
  • various operations performed for communication with the user apparatus UE may be performed by the base station 10 and / or the base station 10 other than the base station 10. It will be clear that it may be performed by other network nodes, such as but not limited to MME or S-GW etc.
  • MME Mobility Management Entity
  • S-GW Serving Mobility Management Entity
  • the user equipment UE may be a subscriber station, a mobile unit, a subscriber unit, a wireless unit, a remote unit, a mobile device, a wireless device, a wireless communication device, a remote communication device, a mobile subscriber station, an access terminal, a mobile terminal, by a person skilled in the art. It may also be called a wireless terminal, a remote terminal, a handset, a user agent, a mobile client, a client, or some other suitable term.
  • Base station 10 may also be referred to by those skilled in the art with NB (Node B), eNB (enhanced Node B), Base Station, gNB, or some other suitable terminology.
  • NB Node B
  • eNB enhanced Node B
  • Base Station gNB
  • determining may encompass a wide variety of operations.
  • “Judgment”, “decision” are, for example, judging, calculating, calculating, processing, processing, deriving, investigating, looking up (for example, a table) (Searching in a database or another data structure), ascertaining may be regarded as “decision”, “decision”, etc.
  • “determination” and “determination” are receiving (e.g. receiving information), transmitting (e.g. transmitting information), input (input), output (output), access (Accessing) (for example, accessing data in a memory) may be regarded as “judged” or “decided”.
  • the phrase “based on” does not mean “based only on,” unless expressly stated otherwise. In other words, the phrase “based on” means both “based only on” and “based at least on.”

Abstract

This user device, which is used in a wireless communication system that supports D2D communication using transmission diversity, comprises: a receiving unit which receives a reference signal transmitted from one of a plurality of antenna ports of a transmission-side user device, in one or a plurality of first unit time sections within a predetermined time section; and a frequency offset estimation unit which estimates frequency offset on the basis of the reference signal received.

Description

ユーザ装置及び周波数オフセット推定方法User apparatus and frequency offset estimation method
 本発明は、無線通信システムにおけるユーザ装置に関連する。 The present invention relates to a user equipment in a wireless communication system.
 LTE(Long Term Evolution)及びLTEの後継システム(例えば、LTE-A(LTE-Advanced)、NR(New Radio)(5Gとも呼ぶ))では、ユーザ装置同士が無線基地局を介さないで直接通信を行うD2D(Device to Device)技術が検討されている。 In LTE (Long Term Evolution) and LTE's successor systems (for example, LTE-A (LTE-Advanced), NR (New Radio) (also referred to as 5G)), user apparatuses communicate directly with each other without passing through a radio base station. A D2D (Device to Device) technique to be performed is being studied.
 D2Dは、ユーザ装置と基地局との間のトラフィックを軽減したり、災害時などに基地局が通信不能になった場合でもユーザ装置間の通信を可能とする。 D2D reduces traffic between a user apparatus and a base station, and enables communication between user apparatuses even when the base station becomes incapable of communication in a disaster or the like.
 D2Dは、通信可能な他のユーザ装置を見つけ出すためのD2Dディスカバリ(D2D discovery、D2D発見ともいう)と、ユーザ装置間で直接通信するためのD2Dコミュニケーション(D2D direct communication、D2D通信、端末間直接通信などともいう)と、に大別される。以下では、D2Dコミュニケーション、D2Dディスカバリなどを特に区別しないときは、単にD2Dと呼ぶ。また、D2Dで送受信される信号を、D2D信号と呼ぶ。 D2D is D2D discovery (also referred to as D2D discovery, also referred to as D2D discovery) for finding another user apparatus that can communicate, and D2D communication for direct communication between user apparatuses (D2D direct communication, D2D communication, direct communication between terminals) It is divided roughly into () and so on. In the following, D2D communication, D2D discovery and the like are simply referred to as D2D when not distinguished from each other. Further, a signal transmitted / received by D2D is called a D2D signal.
 なお、3GPP(3rd Generation Partnership Project)では、D2Dを「サイドリンク(sidelink)」と称しているが、本明細書では、より一般的な用語であるD2Dを使用する。ただし、後述する実施の形態の説明では必要に応じてsidelinkも使用している。 Although 3GPP (3rd Generation Partnership Project) refers to D2D as "sidelink", the more general term D2D is used in this specification. However, in the description of the embodiment described later, sidelink is also used as needed.
 また、3GPPでは、上記のD2D機能を拡張することでV2X(Vehicle to Everything)を実現することが検討され、仕様化が進められている。ここで、V2Xとは、ITS(Intelligent Transport Systems)の一部であり、図1に示すように、自動車間で行われる通信形態を意味するV2V(Vehicle to Vehicle)、自動車と道路脇に設置される路側機(RSU:Road-Side Unit)との間で行われる通信形態を意味するV2I(Vehicle to Infrastructure)、自動車とドライバーのモバイル端末との間で行われる通信形態を意味するV2N(Vehicle to Nomadic device)、及び、自動車と歩行者のモバイル端末との間で行われる通信形態を意味するV2P(Vehicle to Pedestrian)の総称である。 Further, in 3GPP, it is studied to realize V2X (Vehicle to Everything) by extending the above-mentioned D2D function, and specification is advanced. Here, V2X is a part of ITS (Intelligent Transport Systems), and as shown in FIG. 1, V2V (Vehicle to Vehicle), which means a form of communication performed between vehicles, is installed at the side of vehicles and roads. V2I (Vehicle to Infrastructure), which means the form of communication performed with the Road-Side Unit (RSU), V2N (Vehicle to Infrastructure, means the form of communication performed between the car and the mobile terminal of the driver. It is a generic name of V2P (Vehicle to Pedestrian) which means a form of communication performed between a Nomadic device and a mobile terminal between a car and a pedestrian.
 LTEのRel-14において、V2Xの幾つかの機能に関する仕様化がなされている(例えば非特許文献1)。当該仕様では、ユーザ装置へのV2X通信用のリソース割当に関してMode3とMode4が規定されている。Mode3では、基地局からユーザ装置に送られるDCI(Downlink Control Information)によりダイナミックに送信リソースが割り当てられる。また、Mode3ではSPS(Semi Persistent Scheduling)も可能である。Mode4では、ユーザ装置はリソースプールから自律的に送信リソースを選択する。 In Rel-14 of LTE, specifications regarding some functions of V2X are made (eg, Non-Patent Document 1). In the specifications, Mode 3 and Mode 4 are defined for resource allocation for V2X communication to the user apparatus. In Mode 3, transmission resources are dynamically allocated by DCI (Downlink Control Information) sent from the base station to the user apparatus. In Mode 3, SPS (Semi Persistent Scheduling) is also possible. In Mode 4, the user apparatus autonomously selects transmission resources from the resource pool.
 高速に移動する端末間でのD2D通信が行われることが想定されるV2X(特にV2V)では、ユーザ装置が送信ダイバーシチを適用して送信を行うことで、通信の質及び信頼性を向上させることが検討されている。送信ダイバーシチ方式には、時間領域でプリコーディングベクトルを切り替えるプリコーディングベクトルスイッチ(PVS:Precoding Vector Switching)、送信信号に巡回シフト量を与える巡回遅延ダイバーシチ(CDD:Cyclic Delay Diversity)等が含まれる。 In V2X (especially V2V) where it is assumed that D2D communication between terminals moving at high speed is performed, the user equipment applies transmission diversity and performs transmission to improve the quality and reliability of communication. Is being considered. The transmit diversity scheme includes precoding vector switching (PVS) that switches a precoding vector in the time domain, cyclic delay diversity (CDD) that gives a cyclic shift amount to a transmission signal, and the like.
 また、通信の質及び信頼性の向上のためには、キャリア周波数オフセット(CFO:Carrier Frequency Offset)推定の精度を高めることも求められる。通常では、CFO推定には、複数の復調参照信号(DMRS:Demodulation Reference Signal)シンボル間の相関が用いられる。しかしながら、高速に移動する端末間では、複数のDMRSシンボル間の相関を用いたCFO推定の精度が低下する可能性がある。 Further, in order to improve communication quality and reliability, it is also required to improve the accuracy of carrier frequency offset (CFO) estimation. Usually, the correlation between a plurality of demodulation reference signal (DMRS) symbols is used for CFO estimation. However, among terminals moving at high speed, the accuracy of CFO estimation using correlations between multiple DMRS symbols may be reduced.
 そこで、複数のDMRSシンボル間の相関を用いず、単一のシンボル内で受信したDMRS(すなわち、単一のDMRSシンボル)を用いたCFO推定方法が提案されている(例えば非特許文献2)。しかしながら、送信ダイバーシチが適用される場合には、複数のアンテナポートからDMRSシンボルが送信され得るため、例えばポート間で異なるCyclic shiftを適用して多重された場合に単一のDMRSシンボルを用いたCFO推定方法を適用することができない。 Therefore, there has been proposed a CFO estimation method using DMRSs received in a single symbol (that is, a single DMRS symbol) without using the correlation between a plurality of DMRS symbols (for example, Non-Patent Document 2). However, when transmit diversity is applied, DMRS symbols may be transmitted from a plurality of antenna ports, for example, CFO using a single DMRS symbol when multiplexed by applying different cyclic shifts between ports. The estimation method can not be applied.
 本発明は上記の点に鑑みて、送信ダイバーシチを用いたD2D通信をサポートする無線通信システムにおいて、CFO推定の精度を向上させることを目的とする。 In view of the above, it is an object of the present invention to improve the accuracy of CFO estimation in a wireless communication system supporting D2D communication using transmit diversity.
 開示の技術によれば、送信ダイバーシチを用いたD2D通信をサポートする無線通信システムにおいて使用されるユーザ装置であって、
 所定の時間区間内の1つ又は複数の第1の単位時間区間において、送信側ユーザ装置の複数のアンテナポートのうち1つのアンテナポートから送信された参照信号を受信する受信部と、
 前記受信した参照信号に基づいて周波数オフセットを推定する周波数オフセット推定部と、
 を有するユーザ装置が提供される。
According to the disclosed technology, a user equipment used in a wireless communication system supporting D2D communication using transmit diversity,
A receiver configured to receive a reference signal transmitted from one antenna port among a plurality of antenna ports of a transmitting user apparatus in one or more first unit time intervals within a predetermined time interval;
A frequency offset estimation unit that estimates a frequency offset based on the received reference signal;
A user device is provided.
 開示の技術によれば、送信ダイバーシチを用いたD2D通信をサポートする無線通信システムにおいて、CFO推定の精度を向上させることが可能になる。 According to the disclosed technology, it is possible to improve the accuracy of CFO estimation in a wireless communication system that supports D2D communication using transmit diversity.
V2Xを説明するための図である。It is a figure for demonstrating V2X. D2Dを説明するための図である。It is a figure for demonstrating D2D. D2Dを説明するための図である。It is a figure for demonstrating D2D. 実施の形態に係る無線通信システムの構成例を示す図である。It is a figure which shows the structural example of the radio | wireless communications system which concerns on embodiment. 具体例1における信号送信に係る機能構成を示す図である。FIG. 7 is a diagram showing a functional configuration relating to signal transmission in a specific example 1; 具体例1におけるサブフレーム構成を示す図である。FIG. 7 is a diagram showing a subframe configuration in a specific example 1. 具体例1における信号受信に係る機能構成を示す図である。FIG. 7 is a diagram showing a functional configuration relating to signal reception in a first specific example. 具体例2における信号送信に係る機能構成を示す図である。FIG. 18 is a diagram showing a functional configuration relating to signal transmission in a second specific example. ユーザ装置UEの移動速度と適用される送信ダイバーシチ方式との関係を示す図である。It is a figure which shows the relationship between the moving speed of the user apparatus UE, and the transmission diversity system applied. 実施の形態に係るユーザ装置UEの機能構成の一例を示す図である。It is a figure which shows an example of a function structure of the user apparatus UE which concerns on embodiment. 実施の形態に係る基地局10の機能構成の一例を示す図である。It is a figure which shows an example of a function structure of base station 10 which concerns on embodiment. 実施の形態に係る基地局10及びユーザ装置UEのハードウェア構成の一例を示す図である。It is a figure which shows an example of the hardware constitutions of the base station 10 which concerns on embodiment, and the user apparatus UE.
 以下、図面を参照して本発明の実施の形態を説明する。なお、以下で説明する実施の形態は一例に過ぎず、本発明が適用される実施の形態は、以下の実施の形態に限られるわけではない。例えば、本実施の形態に係る無線通信システムはLTEに準拠した方式のシステムを想定しているが、本発明はLTEに限定されるわけではなく、他の方式にも適用可能である。なお、本明細書及び請求の範囲において、「LTE」は、3GPPのリリース8、又は9に対応する通信方式のみならず、3GPPのリリース10、11、12、13、又はリリース14以降に対応する第5世代(5G、NR)の通信方式も含む広い意味で使用する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the embodiments described below are merely examples, and the embodiments to which the present invention is applied are not limited to the following embodiments. For example, although the radio communication system according to the present embodiment assumes a system based on LTE, the present invention is not limited to LTE, and is applicable to other systems. In the present specification and claims, “LTE” corresponds not only to a communication method corresponding to Release 8 or 9 of 3GPP, but also to Release 10, 11, 12, 13, or Release 14 or later of 3GPP. It is used in a broad sense including the 5th generation (5G, NR) communication method.
 また、本実施の形態は、主にV2Xを対象としているが、本実施の形態に係る技術は、V2Xに限らず、広くD2D全般に適用可能である。また、「D2D」はその意味としてV2Xを含む。また、「D2D」の用語は、LTEに限定されず、端末間通信全般を指す。また、本実施の形態は、主に「D2Dコミュニケーション」を対象としているが、本発明は、「D2Dコミュニケーション」のみならず、「D2Dディスカバリ」にも適用可能である。 In addition, although the present embodiment mainly targets V2X, the technology according to the present embodiment is not limited to V2X, and can be widely applied to D2D in general. Also, "D2D" includes V2X as its meaning. Moreover, the term "D2D" is not limited to LTE, but refers to communication between terminals in general. In addition, although the present embodiment mainly targets “D2D communication”, the present invention is applicable not only to “D2D communication” but also to “D2D discovery”.
 また、特に断らない限り、「D2D信号」は、データ信号であってもよいし、SCIであってもよいし、ディスカバリ信号であってもよいし、SCIとデータ信号の組であってもよい。 Also, unless otherwise specified, the "D2D signal" may be a data signal, an SCI, a discovery signal, or a combination of an SCI and a data signal. .
 <D2Dの概要>
 本実施の形態では、D2Dを基本技術とすることから、まず、LTEで規定されているD2Dの概要について説明する。なお、V2Xにおいても、ここで説明するD2Dの技術を使用することは可能であり、本実施の形態におけるユーザ装置は、当該技術によるD2D信号の送受信を行うことができる。
<Overview of D2D>
In the present embodiment, since D2D is a basic technology, first, an outline of D2D defined in LTE will be described. Also in V2X, it is possible to use the D2D technology described here, and the user apparatus in the present embodiment can transmit and receive D2D signals according to the technology.
 既に説明したように、D2Dには、大きく分けて「D2Dディスカバリ」と「D2Dコミュニケーション」がある。「D2Dディスカバリ」については、図2Aに示すように、Discovery period毎に、Discoveryメッセージ用のリソースプールが確保され、ユーザ装置はそのリソースプール内でDiscoveryメッセージ(発見信号)を送信する。より詳細にはType1、Type2bがある。Type1では、ユーザ装置が自律的にリソースプールから送信リソースを選択する。Type2bでは、上位レイヤシグナリング(例えばRRC信号)により準静的なリソースが割り当てられる。 As described above, D2D is broadly divided into "D2D discovery" and "D2D communication". For “D2D discovery”, as shown in FIG. 2A, a resource pool for a Discovery message is secured for each Discovery period, and the user apparatus transmits a Discovery message (discovery signal) in the resource pool. There are Type 1 and Type 2b in more detail. In Type 1, the user apparatus autonomously selects a transmission resource from the resource pool. In Type 2b, semi-static resources are allocated by higher layer signaling (for example, RRC signaling).
 「D2Dコミュニケーション」についても、図2Bに示すように、SCI(Sidelink Control Information)/データ送信用のリソースプールが周期的に確保される。送信側のユーザ装置はControlリソースプール(PSCCHリソースプール)から選択されたリソースでSCIによりデータ送信用リソース(PSSCHリソースプール)等を受信側に通知し、当該データ送信用リソースでデータを送信する。「D2Dコミュニケーション」について、より詳細には、Mode1とMode2がある。Mode1では、基地局からユーザ装置に送られる(E)PDCCHによりダイナミックにリソースが割り当てられる。Mode2では、ユーザ装置はリソースプールから自律的に送信リソースを選択する。リソースプールについては、SIBで通知されたり、予め定義されたリソースプールが使用される。 Also in “D2D communication”, as shown in FIG. 2B, resource pools for SCI (Sidelink Control Information) / data transmission are periodically secured. The user apparatus on the transmission side notifies the reception side of a data transmission resource (PSSCH resource pool) or the like by the SCI using a resource selected from the Control resource pool (PSCCH resource pool), and transmits data using the data transmission resource. There are Mode 1 and Mode 2 in more detail about "D2D communication". In Mode 1, resources are dynamically allocated by (E) PDCCH sent from the base station to the user apparatus. In Mode 2, the user apparatus autonomously selects transmission resources from the resource pool. The resource pool is notified by SIB or a predefined resource pool is used.
 また、既に説明したとおり、Rel-14では、Mode1とMode2に加えて、Mode3とMode4がある。Rel-14では、SCIとデータとを同時に(1サブフレームで)、周波数方向に隣接したリソースブロックで送信することが可能である。なお、SCIをSA(Scheduling Assignment)と呼んでもよい。 Also, as described above, Rel-14 has Mode 3 and Mode 4 in addition to Mode 1 and Mode 2. In Rel-14, it is possible to transmit SCI and data simultaneously (in one subframe) in resource blocks adjacent in the frequency direction. The SCI may be called SA (Scheduling Assignment).
 LTEにおいて、「D2Dディスカバリ」に用いられるチャネルはPSDCH(Physical Sidelink Discovery Channel)と称され、「D2Dコミュニケーション」におけるSCI等の制御情報を送信するチャネルはPSCCH(Physical Sidelink Control Channel)と称され、データを送信するチャネルはPSSCH(Physical Sidelink Shared Channel)と称される。また、PSCCHとPSSCHはPUSCHベースの構造を有し、DMRS(Demodulation Reference Signal、復調参照信号)が挿入される構造になっている。 In LTE, a channel used for "D2D discovery" is called PSDCH (Physical Sidelink Discovery Channel), and a channel for transmitting control information such as SCI in "D2D communication" is called PSCCH (Physical Sidelink Control Channel), and data The channel that transmits the channel is called PSSCH (Physical Sidelink Shared Channel). Also, PSCCH and PSSCH have a PUSCH-based structure, and are structured such that DMRS (Demodulation Reference Signal) is inserted.
 <システム構成>
 図3は、本実施の形態に係る無線通信システムの構成例を示す図である。図3に示すように、本実施の形態に係る無線通信システムは、基地局10、ユーザ装置UE1、及びユーザ装置UE2を有する。図3において、ユーザ装置UE1は送信側、ユーザ装置UE2は受信側を意図しているが、ユーザ装置UE1とユーザ装置UE2はいずれも送信機能と受信機能の両方を備える。以下、ユーザ装置UE1とユーザ装置UE2を特に区別しない場合、単に「ユーザ装置UE」と記述する。
<System configuration>
FIG. 3 is a diagram showing an example of configuration of a wireless communication system according to the present embodiment. As shown in FIG. 3, the wireless communication system according to the present embodiment includes a base station 10, a user apparatus UE1, and a user apparatus UE2. In FIG. 3, although the user apparatus UE1 intends the transmitting side and the user apparatus UE2 intends the receiving side, both the user apparatus UE1 and the user apparatus UE2 have both the transmitting function and the receiving function. Hereinafter, the user apparatus UE1 and the user apparatus UE2 will be simply described as "the user apparatus UE" when not particularly distinguished.
 図3に示すユーザ装置UE1及びユーザ装置UE2は、それぞれ、LTE(既存のLTEに加え、5G、NRを含む意味でのLTE、以下同様)におけるユーザ装置UEとしてのセルラ通信の機能、及び、上述したチャネルでの信号送受信を含むD2D機能を有している。また、ユーザ装置UE1、ユーザ装置UE2は、本実施の形態で説明する動作を実行する機能を有している。 The user apparatus UE1 and the user apparatus UE2 illustrated in FIG. 3 respectively have the functions of cellular communication as the user apparatus UE in LTE (LTE in a meaning including 5G and NR in addition to existing LTE, and so on), and the above It has D2D functions including signal transmission and reception on the selected channel. Further, the user apparatus UE1 and the user apparatus UE2 have a function of executing the operation described in the present embodiment.
 また、ユーザ装置UEは、D2Dの機能を有するいかなる装置であってもよいが、例えば、ユーザ装置UEは、車両、歩行者が保持する端末、RSU(UEの機能を有するUEタイプRSU)等である。 Also, the user apparatus UE may be any apparatus having the D2D function, but for example, the user apparatus UE may be a vehicle, a terminal held by a pedestrian, an RSU (UE type RSU having the UE function, etc.), etc. is there.
 ユーザ装置UEが使用する信号波形は、CP-OFDM(既存のLTEの下りで使用する波形)でもよいし、DFT-S-OFDM(DFT-Spreading-OFDM)(既存のLTEの上りで使用する波形)でもよいし、その他の信号波形でもよい。 The signal waveform used by the user apparatus UE may be CP-OFDM (a waveform used in the existing LTE downlink) or DFT-S-OFDM (DFT-Spreading-OFDM) (a waveform used in the existing LTE uplink) Or other signal waveforms.
 また、ユーザ装置UEのD2Dの送信の処理内容は基本的には、LTEでの上り送信の処理内容と同様である(非特許文献3)。例えば、送信ダイバーシチとしてPVS(Precoding Vector Switching)が用いられる場合には、ユーザ装置UEは、送信データのコードワードをスクランブルし、変調してcomplex-valued symbolsを生成し、当該complex-valued symbols(送信信号)に対して、時間領域でプリコーディングベクトルを切り替えつつプリコーディングを行う。そして、precoded complex-valued symbolsをリソースエレメントにマッピングして、送信信号(例:complex-valued time-domain SC-FDMA signal)を生成し、各アンテナポートから送信する。 Moreover, the processing content of D2D transmission of the user apparatus UE is fundamentally the same as the processing content of uplink transmission in LTE (non-patent document 3). For example, when PVS (Precoding Vector Switching) is used as transmission diversity, the user apparatus UE scrambles and modulates a codeword of transmission data to generate complex-valued symbols, and the complex-valued symbols (transmission) are performed. Precoding is performed on the signal) while switching the precoding vector in the time domain. Then, precoded complex-valued symbols are mapped to resource elements, a transmission signal (eg, complex-valued time-domain SC-FDMA signal) is generated, and transmitted from each antenna port.
 なお、プリコーディングベクトルで信号をプリコードするとは、信号にプリコーディングベクトルを乗算することであり、これにより、送信ビームを形成できる。時間領域のPVSのように、時間の経過に応じてプリコーディングベクトルを切り替えることは、時間の経過に応じて送信ビームの方向を切り替えることに相当する。本実施の形態におけるPVSは時間領域のPVSである。また、アンテナポートとは、1つ又は複数のアンテナエレメントに対応する論理アンテナポートである。また、「プリコーディングベクトル」を「プリコーディング行列」と呼んでもよい。「プリコーディングベクトル」は「プリコーディング行列」の一種である。 Note that precoding a signal with a precoding vector means multiplying the signal by the precoding vector, whereby a transmission beam can be formed. As in the time domain PVS, switching the precoding vector according to the passage of time corresponds to switching the direction of the transmission beam according to the passage of time. The PVS in the present embodiment is a PVS in the time domain. Also, the antenna port is a logical antenna port corresponding to one or more antenna elements. Also, "precoding vector" may be referred to as "precoding matrix". The "precoding vector" is a type of "precoding matrix".
 また、例えば、送信ダイバーシチとしてCDD(Cyclic Delay Diversity)が用いられる場合には、ユーザ装置UEは、送信データのコードワードをスクランブルし、変調してcomplex-valued symbolsを生成し、当該complex-valued symbols(送信信号)に対して、アンテナポート毎に異なる巡回シフト量を与える。そして、巡回シフト量を与えた送信信号をリソースエレメントにマッピングして、送信信号(例:complex-valued time-domain SC-FDMA signal)を生成し、各アンテナポートから送信する。なお、「巡回シフト量」を「遅延値」と呼んでもよい。 Also, for example, when CDD (Cyclic Delay Diversity) is used as transmission diversity, the user apparatus UE scrambles and modulates the codeword of transmission data to generate complex-valued symbols, and the complex-valued symbols A different amount of cyclic shift is given to (transmission signal) for each antenna port. Then, the transmission signal given the cyclic shift amount is mapped to a resource element, a transmission signal (eg, complex-valued time-domain SC-FDMA signal) is generated, and transmitted from each antenna port. The “cyclic shift amount” may be referred to as “delay value”.
 基地局10については、LTEにおける基地局10としてのセルラ通信の機能、及び、本実施の形態におけるユーザ装置UEの通信を可能とするための機能(DMRSマッピングパターンの設定、送信ダイバーシチ方式の設定等)を有している。また、基地局10は、RSU(eNBの機能を有するeNBタイプRSU)であってもよい。 For base station 10, a function of cellular communication as base station 10 in LTE, and a function for enabling communication of user apparatus UE in the present embodiment (setting of DMRS mapping pattern, setting of transmission diversity scheme, etc. )have. Further, the base station 10 may be an RSU (eNB type RSUs having an eNB function).
 本実施の形態では、ユーザ装置UEが送信ダイバーシチを用いてD2D通信を行うときにCFO推定の精度を高めるための手法(具体例1~具体例3)を説明する。 In this embodiment, a method (specific example 1 to specific example 3) for improving the accuracy of CFO estimation when the user apparatus UE performs D2D communication using transmission diversity will be described.
 具体例1では、送信側ユーザ装置UE1が複数のアンテナポートのうち1つのアンテナポートからCFO推定用DMRSを送信し、受信側ユーザ装置UE2がCFO推定用DMRSに基づいてCFOを推定する例について説明する。 In the first specific example, an example in which the transmitting user apparatus UE1 transmits a DMRS for CFO estimation from one antenna port among a plurality of antenna ports, and the receiving user apparatus UE2 estimates a CFO based on the DMRS for CFO estimation will be described. Do.
 具体例2では、送信ダイバーシチとしてCDDが用いられる場合、送信側ユーザ装置UE1が複数のアンテナポートから、小さい遅延値のCDDを適用してDMRSを送信し、受信側ユーザ装置UE2が小さい遅延値のCDDを適用したDMRSに基づいてCFOを推定する例について説明する。 In the second embodiment, when CDD is used as transmission diversity, the transmitting user apparatus UE1 applies CDDs with small delay values to transmit DMRS from a plurality of antenna ports, and the receiving user apparatus UE2 transmits small DMDSs. An example of estimating CFO based on DMRS to which CDD is applied will be described.
 具体例3では、SAと共に送信されるDMRSに基づいて推定されたCFOを、データ信号に対するCFOとして用いる例について説明する。 In Example 3, an example will be described in which a CFO estimated based on DMRS transmitted together with SA is used as a CFO for a data signal.
 以下、それぞれの具体例について更に詳細に説明する。 Hereinafter, each specific example will be described in more detail.
 <具体例1>
 図4は、具体例1における送信側ユーザ装置UE1の信号送信に関する機能部(後述する信号送信部101に含まれる機能部)を示す図である。具体例1におけるユーザ装置UE1は送信ダイバーシチを適用して、複数のアンテナポートからデータ信号(PSSCH)を送信する。なお、具体例1においてデータ信号に適用される技術を、制御信号又はディスカバリ信号に適用してもよい。
<Specific example 1>
FIG. 4 is a diagram showing a functional unit (a functional unit included in the signal transmission unit 101 described later) regarding signal transmission of the transmission side user apparatus UE1 in the specific example 1. The user apparatus UE1 in the specific example 1 applies transmission diversity and transmits data signals (PSSCH) from a plurality of antenna ports. The technique applied to the data signal in the first embodiment may be applied to the control signal or the discovery signal.
 図4に示すように、当該機能部は、送信ダイバーシチ部11と、アンテナポート12、13を有する。送信ダイバーシチ部11の例として、送信信号をプリコードする(プリコーディングベクトルを乗算する)プリコーダが用いられてもよい。具体例1(具体例2~3も同様)では、各アンテナポートは、1つのアンテナエレメント(物理アンテナ素子)に対応することを想定しているが、各アンテナポートが、複数のアンテナエレメントに対応していてもよい。また、アンテナポートの数は2つに限定されず、如何なる数のアンテナポートが用いられてもよい。 As shown in FIG. 4, the functional unit includes a transmission diversity unit 11 and antenna ports 12 and 13. As an example of the transmission diversity unit 11, a precoder that precodes a transmission signal (multiplies a precoding vector) may be used. Although it is assumed that each antenna port corresponds to one antenna element (physical antenna element) in specific example 1 (the same applies to specific examples 2 to 3), each antenna port corresponds to a plurality of antenna elements. It may be done. Also, the number of antenna ports is not limited to two, and any number of antenna ports may be used.
 図4において信号のマッピングが示される横長の長方形の横方向の長さは1サブフレーム(これをスロットと呼んでもよいし、TTIと呼んでもよい)であり、縦方向の長さは、1サブキャリアである。なお、縦方向の長さは、複数サブキャリアであってもよいし、送信帯域幅であってもよい。図4において、1サブフレームは14シンボルを有し、図示されるように、データ信号とDMRSがマッピングされる。なお、1サブフレームは「所定の時間区間」の例であり、1シンボルは「単位時間区間」の例である。本実施の形態では、「所定の時間区間」として1サブフレームを使用し、「単位時間区間」として1シンボルを使用するが、これらは例である。例えば、本実施の形態において、「所定の時間区間」として1サブフレームよりも長い(あるいは短い)時間区間を使用し、「単位時間区間」として1シンボルよりも長い(あるいは短い)時間区間を使用してもよい。 The horizontal length of the horizontal rectangle for which the signal mapping is shown in FIG. 4 is one subframe (this may be called a slot or may be called a TTI), and the vertical length is one sub-frame. It is a career. Note that the length in the vertical direction may be a plurality of subcarriers or may be a transmission bandwidth. In FIG. 4, one subframe has 14 symbols, and the data signal and the DMRS are mapped as shown. One subframe is an example of “predetermined time interval”, and one symbol is an example of “unit time interval”. In the present embodiment, one subframe is used as the “predetermined time period”, and one symbol is used as the “unit time period”, but these are examples. For example, in the present embodiment, a time interval longer (or shorter) than one subframe is used as the "predetermined time interval", and a time interval longer than (or shorter than one symbol) is used as the "unit time interval". You may
 受信側ユーザ装置UE2が単一のシンボル内で受信したDMRSを用いてCFOを推定することを可能にするため、送信側ユーザ装置UE1は、DMRSの一部を1つのアンテナポート12から送信し、他のDMRSを2つのアンテナポート12、13から送信する。受信側ユーザ装置UE2は、1つのアンテナポートから送信されたDMRSを用いてCFOを推定することができる。このように、1つのアンテナポートから送信されるDMRSを他のDMRS特別するために、「CFO推定用DMRS」と呼ぶが、CFO推定用DMRSは、1つのアンテナポートから送信される点を除き、他のDMRSと同じ信号が用いられてもよい。1サブフレーム内に1つのCFO推定用DMRSが含まれてもよく、複数のCFO推定用DMRSが含まれてもよい。CFO推定用DMRSのシンボル位置は、仕様等によって予め決められてもよく、基地局10から設定されてもよいし、事前設定されてもよい。 In order to enable the receiving user equipment UE2 to estimate the CFO using the DMRS received in a single symbol, the transmitting user equipment UE1 transmits part of the DMRS from one antenna port 12; The other DMRS is transmitted from the two antenna ports 12, 13. The receiving user apparatus UE2 can estimate CFO using the DMRS transmitted from one antenna port. Thus, although DMRS transmitted from one antenna port is called "DMRS for CFO estimation" in order to make DMRS special from other antennas, DMRS for CFO estimation is transmitted except from one antenna port, The same signal as other DMRS may be used. One CFO estimation DMRS may be included in one subframe, and a plurality of CFO estimation DMRSs may be included. The symbol position of the CFO estimation DMRS may be determined in advance according to specifications or the like, may be set from the base station 10, or may be previously set.
 送信ダイバーシチ部11には、送信信号としてデータ信号とDMRSが入力され、これらの信号がプリコードされて、各アンテナポートから無線信号として送信される。一例として、DMRSは、LTEと同様に、Zadoff-Chu系列であり、サイクリックシフトにより、複数の直交するDMRSを生成できる。後述するプリコードされないRS(reference signal)も同様である。 The transmission diversity unit 11 receives a data signal and a DMRS as a transmission signal, and these signals are precoded and transmitted as radio signals from each antenna port. As an example, DMRS is a Zadoff-Chu sequence like LTE, and cyclic shift can generate a plurality of orthogonal DMRSs. The same applies to a non-precoded RS (reference signal) described later.
 具体例1における送信ダイバーシチ部11は、CFO推定用DMRSに対して、予め決められたプリコーディングベクトルを乗算する。CFO推定用DMRSに乗算されるプリコーディングベクトルは、仕様等によって予め決められてもよく、基地局10から設定されてもよいし、事前設定されてもよい。例えば、CFO推定用DMRSをアンテナポート12から送信するために、プリコーディングベクトル[1,0]を乗算してもよく、CFO推定用DMRSをアンテナポート13から送信するために、プリコーディングベクトル[0,1]を乗算してもよい。また、アンテナポート数を1として、DMRSをアンテナポート12から送信してもよい。他のDMRSに対しては、複数のアンテナポートから送信するためのプリコーディングベクトル(例えば、[1,-1]/√(2)、[-1,1]/√(2)等)を乗算する。また、PSCCHやPSSCHと同じプリコーディングベクトルを適用するとしてもよい。 The transmission diversity unit 11 in specific example 1 multiplies the CFO estimation DMRS by a precoding vector determined in advance. The precoding vector to be multiplied by the CFO estimation DMRS may be predetermined according to the specification or the like, may be set from the base station 10, or may be preset. For example, precoding vector [1, 0] may be multiplied to transmit DMRS for CFO estimation from antenna port 12, and precoding vector [0] may be transmitted to transmit DMRS for CFO estimation from antenna port 13. , 1] may be multiplied. Alternatively, DMRS may be transmitted from the antenna port 12 with the number of antenna ports set to one. For other DMRSs, multiply the precoding vector (eg, [1, -1] / √ (2), [−1, 1] / √ (2), etc.) to transmit from multiple antenna ports Do. Also, the same precoding vector as PSCCH or PSSCH may be applied.
 CFO推定用DMRSは、送信ダイバーシチが適用される場合に送信され、送信ダイバーシチが適用されない場合に送信されなくてもよい。また、CFO推定用DMRSは、送信ダイバーシチが適用される場合、且つ、所定の条件を満たす場合に送信されてもよい。 The CFO estimation DMRS may be transmitted when transmission diversity is applied and may not be transmitted when transmission diversity is not applied. Also, the CFO estimation DMRS may be transmitted when transmission diversity is applied and when a predetermined condition is satisfied.
 例えば、CFO推定用DMRSは、送信ダイバーシチが適用される場合、且つ、送信側ユーザ装置UE1が受信側ユーザ装置UE2に対してSAによって明示的に指示した場合に送信されてもよい。 For example, the CFO estimation DMRS may be transmitted when transmission diversity is applied and when the transmitting user apparatus UE1 explicitly instructs the receiving user apparatus UE2 by the SA.
 例えば、CFO推定用DMRSは、送信ダイバーシチが適用される場合、送信側ユーザ装置UE1又は受信側ユーザ装置UE2の移動速度に応じて送信されてもよい。例えば、移動速度が閾値以下である場合、CFO推定用DMRSは送信されなくてもよく、受信側ユーザ装置UE2は、複数のDMRSシンボル間の相関を用いてCFOを推定してもよい。一方、移動速度が閾値より高い場合、CFO推定用DMRSが送信されてもよく、受信側ユーザ装置UE2は、CFO推定用DMRSに基づいてCFOを推定してもよい。 For example, the CFO estimation DMRS may be transmitted according to the moving speed of the transmitting user apparatus UE1 or the receiving user apparatus UE2 when transmission diversity is applied. For example, when the moving speed is equal to or less than the threshold, the CFO estimation DMRS may not be transmitted, and the receiving user apparatus UE2 may estimate the CFO using the correlation among a plurality of DMRS symbols. On the other hand, when the moving speed is higher than the threshold, the CFO estimation DMRS may be transmitted, and the receiving user apparatus UE2 may estimate the CFO based on the CFO estimation DMRS.
 例えば、CFO推定用DMRSは、送信ダイバーシチが適用される場合、データ信号の変調符号化方式(MCS:Modulation and Coding Scheme)に応じて送信されてもよい。例えば、MCSが所定のMCS以下である場合、CFO推定用DMRSは送信されなくてもよく、受信側ユーザ装置UE2は、複数のDMRSシンボル間の相関を用いてCFOを推定してもよい。一方、MCSが所定のMCSより高い場合、CFO推定用DMRSが送信されてもよく、受信側ユーザ装置UE2は、CFO推定用DMRSに基づいてCFOを推定してもよい。 For example, when transmit diversity is applied, CFO estimation DMRS may be transmitted according to a modulation and coding scheme (MCS) of a data signal. For example, when the MCS is equal to or less than a predetermined MCS, the CFO estimation DMRS may not be transmitted, and the receiving user apparatus UE2 may estimate the CFO using the correlation among a plurality of DMRS symbols. On the other hand, when the MCS is higher than the predetermined MCS, the CFO estimation DMRS may be transmitted, and the receiving user apparatus UE2 may estimate the CFO based on the CFO estimation DMRS.
 例えば、CFO推定用DMRSは、送信ダイバーシチが適用される場合、適用される送信ダイバーシチに応じて送信されてもよい。例えば、小さい遅延値のCDDが適用される場合、CFO推定用DMRSは送信されなくてもよい。受信側ユーザ装置UE2は、後述の具体例2において説明するように、複数のアンテナポートから同じタイミングで送信された複数のDMRSを単一のDMRSとみなして、単一のシンボル内で受信したDMRSを用いたCFO推定方法を適用することができる。 For example, the CFO estimation DMRS may be transmitted according to the applied transmission diversity when the transmission diversity is applied. For example, when a small delay CDD is applied, the CFO estimation DMRS may not be transmitted. The receiving user apparatus UE2 regards DMRSs transmitted at the same timing from a plurality of antenna ports as a single DMRS and receives the DMRS in a single symbol, as described in the second embodiment described later. The CFO estimation method using can be applied.
 また、送信ダイバーシチ部11は、図5に示すように、CFO推定用DMRSの前後の所定数のデータシンボル(「周辺データシンボル」と呼ぶ)と、他のDMRSの前後の所定数のデータシンボル(「非周辺データシンボル」と呼ぶ)とに分け、周辺データシンボルと非周辺データシンボルに異なる送信ダイバーシチ方式を適用してもよい。また、送信ダイバーシチ部11は、周辺データシンボルと非周辺データシンボルに同じ送信ダイバーシチ方式の異なるパラメータを適用してもよい。どのデータシンボルを周辺データシンボルとし、どのデータシンボルを非周辺データシンボルとするかは、仕様等によって予め決められてもよく、基地局10から設定されてもよいし、事前設定されてもよいし、ユーザ装置が任意に選択してPSCCHなどを用いて受信側ユーザ装置に通知してもよい。また、周辺データシンボル及び非周辺データシンボルに適用される送信ダイバーシチ方式又は送信ダイバーシチ方式のパラメータは、仕様等によって予め決められてもよく、基地局10から設定されてもよいし、事前設定されてもよい。 In addition, as shown in FIG. 5, the transmission diversity unit 11 includes a predetermined number of data symbols before and after the CFO estimation DMRS (referred to as “peripheral data symbol”) and a predetermined number of data symbols before and after another DMRS. Different transmission diversity schemes may be applied to the peripheral data symbols and the non-peripheral data symbols (hereinafter referred to as “non-peripheral data symbols”). In addition, the transmission diversity unit 11 may apply different parameters of the same transmission diversity scheme to the peripheral data symbol and the non-peripheral data symbol. Which data symbol is used as the peripheral data symbol and which data symbol is used as the non-peripheral data symbol may be determined in advance according to the specification, etc., may be set from the base station 10, or may be previously set. The user apparatus may optionally select and notify the receiving user apparatus using PSCCH or the like. Also, parameters of the transmit diversity scheme or the transmit diversity scheme applied to the peripheral data symbol and the non-peripheral data symbol may be determined in advance according to the specification, etc., or may be set from the base station 10 or are preset. It is also good.
 例えば、送信ダイバーシチ部11は、周辺データシンボルに対してCFO推定用DMRSに適用するプリコーディングベクトルを乗算し、非周辺データシンボルに対して他のDMRSに適用するプリコーディングベクトルを乗算してもよい。 For example, the transmission diversity unit 11 may multiply the peripheral data symbols by the precoding vector to be applied to the CFO estimation DMRS, and may multiply the non-peripheral data symbols by the precoding vector to be applied to other DMRSs. .
 例えば、送信ダイバーシチ部11は、周辺データシンボルに適用するCDDの遅延値と非周辺データシンボルに適用するCDDの遅延値を変えてもよい。 For example, the transmission diversity unit 11 may change the delay value of CDD applied to peripheral data symbols and the delay value of CDD applied to non-peripheral data symbols.
 例えば、送信ダイバーシチ部11は、周辺データシンボルに対してSFBC(Space Frequency Block Coding)を適用せず、非周辺データシンボルに対してSFBCを適用してもよい。 For example, the transmission diversity unit 11 may apply SFBC to non-peripheral data symbols without applying SFBC (Space Frequency Block Coding) to neighboring data symbols.
 図6は、具体例1における受信側ユーザ装置UE2の信号受信及びCFO推定に関する機能部(後述する信号受信部102に含まれる機能部)を示す図である。本実施の形態におけるユーザ装置UE2は上記のように送信側ユーザ装置UE1により送信されたCFO推定用DMRSを受信し、CFO推定用DMRSに基づいてCFOを推定する。 FIG. 6 is a diagram illustrating a functional unit (functional unit included in the signal receiving unit 102 described later) regarding signal reception and CFO estimation of the reception-side user apparatus UE2 in the specific example 1. The user apparatus UE2 in the present embodiment receives the CFO estimation DMRS transmitted by the transmitting user apparatus UE1 as described above, and estimates the CFO based on the CFO estimation DMRS.
 受信信号は、DFT(Discrete Fourier Transform)21によって時間領域から周波数領域に変換され、信号分離部22において、自ユーザ装置UE2宛の信号が抽出される。周波数オフセット推定部23は、CFO推定用DMRSを受信した場合には、CFO推定用DMRSに基づいてCFOを推定する。上記のように、送信ダイバーシチが適用されない場合、又は所定の条件を満たさない場合には、CFO推定用DMRSは送信されない場合がある。この場合、周波数オフセット推定部23は、1サブフレーム内の複数のDMRSシンボル間の相関を用いてCFOを推定することができる。周波数オフセット補償部24は、周波数オフセット推定部23において推定されたCFOを補償し、復調及び復号部25は、DMRSに基づいてチャネル推定を行い、元のデータ信号を復調及び復号する。 The received signal is converted from the time domain to the frequency domain by DFT (Discrete Fourier Transform) 21, and the signal separation unit 22 extracts a signal addressed to the own user apparatus UE 2. When the frequency offset estimation unit 23 receives the CFO estimation DMRS, the frequency offset estimation unit 23 estimates the CFO based on the CFO estimation DMRS. As described above, when transmission diversity is not applied or when a predetermined condition is not satisfied, the CFO estimation DMRS may not be transmitted. In this case, the frequency offset estimation unit 23 can estimate CFO using the correlation between a plurality of DMRS symbols in one subframe. The frequency offset compensation unit 24 compensates for the CFO estimated in the frequency offset estimation unit 23, and the demodulation and decoding unit 25 performs channel estimation based on the DMRS to demodulate and decode the original data signal.
 なお、周辺データシンボル及び非周辺データシンボルに異なる送信ダイバーシチ方式、又は同じ送信ダイバーシチ方式の異なるパラメータが用いられる場合、復調及び復号部25は、適用される送信ダイバーシチ方式によって、CFO推定用DMRSもデータ復調のために利用することができる。 When different transmission diversity schemes or different parameters of the same transmission diversity scheme are used for the peripheral data symbol and the non-peripheral data symbol, the demodulation and decoding unit 25 also uses the CFO estimation DMRS as data according to the applicable transmission diversity scheme. It can be used for demodulation.
 例えば、周辺データシンボルと非周辺データシンボルに異なるプリコーディングベクトルが乗算されており、CFO推定用DMRSを除くDMRSにプリコードされないRSが用いられている場合、復調及び復号部25は、周辺データシンボルの復調のときに、CFO推定用DMRSを含むDMRS(図5における4つのDMRS)を利用することができる。また、非周辺データシンボルの復調のときには、復調及び復号部25は、CFO推定用DMRSを除くDMRS(図5における3つのDMRS)を利用することができる。 For example, when different precoding vectors are multiplied to the peripheral data symbol and the non-peripheral data symbol, and the RS that is not precoded to the DMRS except for the DMRS for CFO estimation is used, the demodulation and decoding unit 25 calculates the peripheral data symbol. At the time of demodulation, DMRSs (four DMRSs in FIG. 5) including DMRSs for CFO estimation can be used. In addition, at the time of demodulation of non-peripheral data symbols, the demodulation and decoding unit 25 can use DMRSs (three DMRSs in FIG. 5) excluding the CFO estimation DMRSs.
 例えば、周辺データシンボルに適用するCDDの遅延値と非周辺データシンボルに適用するCDDの遅延値を変えている場合、復調及び復号部25は、周辺データシンボルの復調のときに、CFO推定用DMRSを利用することができる。また、非周辺データシンボルの復調のときには、復調及び復号部25は、CFO推定用DMRSを除くDMRS(図5における3つのDMRS)を利用することができる。 For example, when the delay value of CDD applied to peripheral data symbols and the delay value of CDD applied to non-peripheral data symbols are changed, the demodulation and decoding unit 25 performs DMRS for CFO estimation at the time of demodulation of peripheral data symbols. Can be used. In addition, at the time of demodulation of non-peripheral data symbols, the demodulation and decoding unit 25 can use DMRSs (three DMRSs in FIG. 5) excluding the CFO estimation DMRSs.
 例えば、周辺データシンボルに対してSFBCが適用されず、非周辺データシンボルに対してSFBCが適用されており、CFO推定用DMRSを除くDMRSにプリコードされないRSが用いられている場合、復調及び復号部25は、周辺データシンボルの復調のときに、CFO推定用DMRSを含むDMRS(図5における4つのDMRS)を利用することができる。また、非周辺データシンボルの復調のときには、復調及び復号部25は、CFO推定用DMRSを除くDMRS(図5における3つのDMRS)を利用することができる。 For example, when SFBC is not applied to neighboring data symbols, SFBC is applied to non-neighboring data symbols, and RSs not precoded in DMRS other than DMRS for CFO estimation are used for demodulation and decoding. The unit 25 can use DMRSs (four DMRSs in FIG. 5) including DMRSs for CFO estimation when demodulating peripheral data symbols. In addition, at the time of demodulation of non-peripheral data symbols, the demodulation and decoding unit 25 can use DMRSs (three DMRSs in FIG. 5) excluding the CFO estimation DMRSs.
 <具体例2>
 図7は、具体例2における送信側ユーザ装置UE1の信号送信に関する機能部(後述する信号送信部101に含まれる機能部)を示す図である。具体例2におけるユーザ装置UE1は、送信ダイバーシチ方式としてCDDを用い、複数のアンテナポートからデータ信号(PSSCH)を送信する。なお、具体例2においてデータ信号に適用される技術を、制御信号又はディスカバリ信号に適用してもよい。
<Specific example 2>
FIG. 7 is a diagram showing a functional unit (a functional unit included in the signal transmission unit 101 described later) related to signal transmission of the transmission side user apparatus UE1 in the specific example 2. The user apparatus UE1 in the specific example 2 transmits a data signal (PSSCH) from a plurality of antenna ports using CDD as a transmission diversity scheme. The technique applied to the data signal in the second embodiment may be applied to the control signal or the discovery signal.
 受信側ユーザ装置UE2が単一のシンボル内で受信したDMRSを用いてCFOを推定することを可能にするため、送信側ユーザ装置UE1は、小さい遅延値のCDDを適用してDMRSを2つのアンテナポート12、13から送信する。なお、小さい遅延値とは、基地局との通信を含む通常のデータ通信に用いられるCDDの遅延値の範囲[0,y]よりも小さい範囲[0,x](y>x)内で設定された遅延値を意味する。あるいは、特定の遅延値xであってもよい。遅延値の上限x及びyは、仕様等によって予め決められてもよく、基地局10から設定されてもよいし、事前設定されてもよい。受信側ユーザ装置UE2は、複数のアンテナポートから同じタイミングで送信された複数のDMRSを単一のDMRSとみなして、単一のシンボル内で受信したDMRSを用いたCFO推定方法を適用することができる。 In order to enable the receiving user equipment UE2 to estimate the CFO using the DMRS received in a single symbol, the transmitting user equipment UE1 applies a CDD with small delay value to the DMRS with two antennas Transmit from ports 12 and 13. The small delay value is set within the range [0, x] (y> x) smaller than the range [0, y] of the delay value of CDD used for normal data communication including communication with a base station. Mean the delayed value. Alternatively, it may be a specific delay value x. The upper limits x and y of the delay value may be determined in advance according to specifications, etc., may be set from the base station 10, or may be set in advance. The receiving side user apparatus UE2 may apply a CFO estimation method using DMRSs received in a single symbol, regarding multiple DMRSs transmitted from the multiple antenna ports at the same timing as a single DMRS. it can.
 範囲[0,x]内の小さい遅延値は、所定の条件を満たす場合に用いられてもよく、所定の条件を満たさない場合には、範囲[0,y]内の遅延値が用いられてもよい。 A small delay value in the range [0, x] may be used when a predetermined condition is satisfied, and a delay value in the range [0, y] is used when the predetermined condition is not satisfied. It is also good.
 例えば、範囲[0,x]内の小さい遅延値は、送信側ユーザ装置UE1又は受信側ユーザ装置UE2の移動速度に応じて用いられてもよい。例えば、移動速度が閾値以下である場合、範囲[0,y]内の遅延値が用いられてもよく、受信側ユーザ装置UE2は、複数のDMRSシンボル間の相関を用いてCFOを推定してもよい。例えば、移動速度が閾値より高い場合、範囲[0,x]内の小さい遅延値が用いられてもよく、受信側ユーザ装置UE2は、単一のシンボル内で受信したDMRSを用いたCFO推定方法に従ってCFOを推定してもよい。 For example, small delay values in the range [0, x] may be used according to the moving speed of the transmitting user apparatus UE1 or the receiving user apparatus UE2. For example, when the moving speed is equal to or less than the threshold, a delay value in the range [0, y] may be used, and the receiving user apparatus UE2 estimates CFO using correlation among a plurality of DMRS symbols. It is also good. For example, when the moving speed is higher than the threshold, a small delay value in the range [0, x] may be used, and the receiving user apparatus UE2 estimates the CFO using DMRS received in a single symbol. The CFO may be estimated according to
 例えば、範囲[0,x]内の小さい遅延値は、データ信号のMCSに応じて用いられてもよい。例えば、MCSが所定のMCS以下である場合、範囲[0,y]内の遅延値が用いられてもよく、受信側ユーザ装置UE2は、複数のDMRSシンボル間の相関を用いてCFOを推定してもよい。例えば、MCSが所定のMCSより高い場合、範囲[0,x]内の小さい遅延値が用いられてもよく、受信側ユーザ装置UE2は、単一のシンボル内で受信したDMRSを用いたCFO推定方法に従ってCFOを推定してもよい。 For example, small delay values in the range [0, x] may be used depending on the MCS of the data signal. For example, when the MCS is equal to or less than a predetermined MCS, delay values in the range [0, y] may be used, and the receiving user apparatus UE2 estimates CFO using correlations between multiple DMRS symbols. May be For example, when the MCS is higher than a predetermined MCS, a small delay value in the range [0, x] may be used, and the receiving user apparatus UE2 estimates CFO using DMRS received in a single symbol. The CFO may be estimated according to the method.
 なお、受信側ユーザ装置UE2が複数のDMRSシンボル間の相関を用いてCFOを推定するか、単一のシンボル内で受信したDMRSを用いてCFOを推定するかは、受信側ユーザ装置UE2の判断に依存してもよく、送信側ユーザ装置UE1からのSAによって指示されてもよい。 In addition, it is determined by the receiving user apparatus UE2 whether the receiving user apparatus UE2 estimates the CFO using the correlation between a plurality of DMRS symbols or the CRS using the DMRS received in a single symbol. And may be instructed by the SA from the transmitting user equipment UE1.
 受信側ユーザ装置UE2の機能部は、図6と同様に構成される。受信信号は、DFT21によって時間領域から周波数領域に変換され、信号分離部22において、自ユーザ装置UE2宛の信号が抽出される。周波数オフセット推定部23は、範囲[0,x]内の小さい遅延値が用いられている場合には、複数のアンテナポートから同じタイミングで送信された複数のDMRSを単一のDMRSとみなして、単一のシンボル内で受信したDMRSを用いたCFO推定方法に従ってCFOを推定する。例えば、移動速度が閾値以下である場合又はMCSが所定のMCS以下である場合、周波数オフセット推定部23は、1サブフレーム内の複数のDMRSシンボル間の相関を用いてCFOを推定してもよい。周波数オフセット補償部24は、周波数オフセット推定部23において推定されたCFOを補償し、復調及び復号部25は、DMRSに基づいてチャネル推定を行い、元のデータ信号を復調及び復号する。 The functional unit of the reception-side user apparatus UE2 is configured as in FIG. The received signal is converted from the time domain to the frequency domain by the DFT 21, and the signal separation unit 22 extracts a signal addressed to the own user apparatus UE 2. When a small delay value in the range [0, x] is used, the frequency offset estimation unit 23 regards a plurality of DMRSs transmitted at the same timing from a plurality of antenna ports as a single DMRS, The CFO is estimated according to the CFO estimation method using DMRS received in a single symbol. For example, if the moving speed is equal to or less than a threshold or if the MCS is equal to or less than a predetermined MCS, the frequency offset estimation unit 23 may estimate CFO using the correlation between a plurality of DMRS symbols in one subframe. . The frequency offset compensation unit 24 compensates for the CFO estimated in the frequency offset estimation unit 23, and the demodulation and decoding unit 25 performs channel estimation based on the DMRS to demodulate and decode the original data signal.
 <具体例3>
 具体例3における送信側ユーザ装置UE1は送信ダイバーシチを適用して、複数のアンテナポートからSAを送信する。送信側ユーザ装置UE1における送信ダイバーシチの適用及び受信側ユーザ装置UE2におけるSFO推定は、具体例1又は具体例2と同様に行うことができる。受信側ユーザ装置UE2は、SAにおいて推定されたSFOを、データ信号に対するCFOとしても用いる。SAにおいて推定されたSFOは、図2Bに示すように当該SAに紐付くデータ信号に適用されてもよく、当該SAを受信した後の予め決められた期間中のデータ信号に適用されてもよい。
Example 3
The transmission side user apparatus UE1 in the specific example 3 applies transmission diversity to transmit SAs from a plurality of antenna ports. The application of transmission diversity in the transmitting user apparatus UE1 and the SFO estimation in the receiving user apparatus UE2 can be performed in the same manner as in the first example or the second example. The receiving user apparatus UE2 also uses the SFO estimated at SA as a CFO for the data signal. The SFO estimated in SA may be applied to the data signal associated with the SA as shown in FIG. 2B, and may be applied to the data signal in a predetermined period after receiving the SA. .
 例えば、具体例2のように、SAにおけるSFO推定のために、範囲[0,x]内の小さい遅延値が用いられてもよい。また、具体例2に示すような所定の条件を満たす場合(例えば、移動速度が閾値以下である場合、MCSが所定のMCS以下である場合)、SAにおけるSFO推定のために、範囲[0,y]内の遅延値が用いられてもよい。さらに、例えば、データ信号のPSD(Power Spectral Density)がSAのPSDと同等であり、データ信号のMCSがSAのMCS以下である場合、SAにおけるSFO推定のために、範囲[0,y]内の遅延値が用いられてもよい。範囲[0,x]内の小さい遅延値が用いられるか範囲[0,y]内の遅延値が用いられるかの所定の条件は、仕様等によって予め決められてもよく、基地局10から設定されてもよいし、事前設定されてもよい。 For example, as in Example 2, small delay values in the range [0, x] may be used for SFO estimation in SA. Further, when the predetermined condition as shown in the specific example 2 is satisfied (for example, when the moving speed is equal to or less than the threshold, the MCS is equal to or less than the predetermined MCS), the range [0,0 Delay values within y] may be used. Furthermore, for example, if the PSD (Power Spectral Density) of the data signal is equal to the PSD of SA and the MCS of the data signal is less than or equal to the MCS of SA, then for SFO estimation in SA, within the range [0, y]. A delay value of may be used. The predetermined condition of whether a small delay value in the range [0, x] is used or a delay value in the range [0, y] is used may be determined in advance by a specification or the like, and is set from the base station 10 It may be done or it may be preset.
 また、例えば、送信ダイバーシチが適用される場合、且つ、送信側ユーザ装置UE1がSAにおいて指示した場合、SAにおけるSFO推定を、データ信号にも適用してもよい。SAにおける指示は、明示的な指示でもよく、暗示的な指示でもよい。例えば、SAにおいて範囲[0,x]内の小さい遅延値が用いられている場合には、SAにおけるSFO推定を、データ信号にも適用すると扱われてもよい。例えば、データ信号のPSDがSAのPSDと同等であり、データ信号のMCSがSAのMCS以下である場合には、SAにおけるSFO推定を、データ信号にも適用すると扱われてもよい。ただし、移動速度が閾値以下である場合、データ信号のMCSが所定のMCS以下である場合等には、受信側ユーザ装置UE2は、複数のDMRSシンボル間の相関を用いてCFOを推定することができるため、SAにおけるSFO推定を、データ信号に適用しなくてもよい。 Also, for example, when transmission diversity is applied, and when the transmitting user apparatus UE1 instructs in SA, SFO estimation in SA may be applied to data signals. The indication in SA may be an explicit indication or an implicit indication. For example, if a small delay value in the range [0, x] is used in SA, SFO estimation in SA may be treated as applying to the data signal as well. For example, if the PSD of the data signal is equal to the PSD of the SA and the MCS of the data signal is less than or equal to the MCS of the SA, then the SFO estimation in the SA may be treated as applying to the data signal. However, when the moving speed is equal to or less than the threshold, the receiving user apparatus UE2 may estimate CFO using the correlation among a plurality of DMRS symbols, for example, when the MCS of the data signal is equal to or less than a predetermined MCS. It is not necessary to apply the SFO estimate at SA to the data signal as it can.
 <その他>
 具体例1~3のそれぞれにおいて、送信ダイバーシチを適用するか否か、及び適用する場合の送信ダイバーシチの種類は、ユーザ装置UEの移動速度に応じて決められてもよい。
<Others>
In each of the specific examples 1 to 3, whether or not to apply transmission diversity and the type of transmission diversity in the case of application may be determined according to the moving speed of the user apparatus UE.
 図8は、ユーザ装置UEの移動速度と適用される送信ダイバーシチ方式との関係を示す図である。例えば、例#1に示すように、ユーザ装置UEの移動速度が閾値より高い場合、送信ダイバーシチは適用されなくてもよい。ユーザ装置UEの移動速度が閾値以下である場合、送信ダイバーシチ方式#1又は送信ダイバーシチ方式#2が適用されてもよく、送信ダイバーシチが適用されなくてもよい。また、例えば、例#2に示すように、ユーザ装置UEの移動速度が閾値より高い場合、送信ダイバーシチ方式#1が適用されてもよく、送信ダイバーシチは適用されなくてもよい。ユーザ装置UEの移動速度が閾値以下である場合、送信ダイバーシチ方式#1又は送信ダイバーシチ方式#2が適用されてもよく、送信ダイバーシチが適用されなくてもよい。 FIG. 8 is a diagram showing the relationship between the moving speed of the user apparatus UE and the transmission diversity scheme to be applied. For example, as shown in Example # 1, when the moving speed of the user apparatus UE is higher than the threshold, transmission diversity may not be applied. When the moving speed of the user apparatus UE is equal to or less than the threshold value, transmission diversity scheme # 1 or transmission diversity scheme # 2 may be applied, and transmission diversity may not be applied. Also, for example, as shown in Example # 2, when the moving speed of the user apparatus UE is higher than the threshold, transmission diversity scheme # 1 may be applied, and transmission diversity may not be applied. When the moving speed of the user apparatus UE is equal to or less than the threshold value, transmission diversity scheme # 1 or transmission diversity scheme # 2 may be applied, and transmission diversity may not be applied.
 移動速度の閾値、送信ダイバーシチを適用するか否か、及び適用する場合の送信ダイバーシチの種類は、仕様等によって決められてもよく、基地局10により設定されてもよいし、事前設定されてもよい。また、図8に示す例#1及び例#2のような複数のパターンが仕様等によって決められてもよく、基地局10により設定されてもよいし、事前設定されてもよい。 The moving speed threshold, whether or not to apply transmission diversity, and the type of transmission diversity when applied may be determined by the specification, etc., may be set by the base station 10, or may be preset. Good. Also, a plurality of patterns such as example # 1 and example # 2 shown in FIG. 8 may be determined by the specification or the like, may be set by the base station 10, or may be preset.
 さらに、具体例1~3のそれぞれにおいて、ユーザ装置UE1は、データ信号(PSSCH)への送信ダイバーシチの適用有無をSCI(PSCCH)でユーザ装置UE2に通知してもよい。 Furthermore, in each of the specific examples 1 to 3, the user apparatus UE1 may notify the user apparatus UE2 of the presence / absence of application of transmission diversity to the data signal (PSSCH) using SCI (PSCCH).
 <装置構成>
 次に、これまでに説明した処理動作を実行するユーザ装置UE及び基地局10の機能構成例を説明する。ユーザ装置UE及び基地局10は、具体例1、具体例2、具体例3、その他、の全ての機能を備えてもよいし、いずれかの1つ又は複数の具体例の機能を備えてもよい。
<Device configuration>
Next, a functional configuration example of the user apparatus UE and the base station 10 that execute the processing operations described above will be described. The user apparatus UE and the base station 10 may have all the functions of Example 1, Example 2, Example 3, and others, or may have the function of any one or more of the examples. Good.
 <ユーザ装置>
 図9は、ユーザ装置UEの機能構成の一例を示す図である。図9に示すように、ユーザ装置UEは、信号送信部101と、信号受信部102と、設定情報格納部103とを有する。図9に示す機能構成は一例に過ぎない。本実施の形態に係る動作を実行できるのであれば、機能区分及び機能部の名称はどのような名称でもよい。
<User device>
FIG. 9 is a diagram illustrating an example of a functional configuration of the user apparatus UE. As shown in FIG. 9, the user apparatus UE includes a signal transmission unit 101, a signal reception unit 102, and a setting information storage unit 103. The functional configuration shown in FIG. 9 is merely an example. As long as the operation according to the present embodiment can be performed, the names of the function classifications and the function parts may be any names.
 信号送信部101は、送信データから送信を作成し、当該送信信号を無線で送信する。信号受信部102は、各種の信号を無線受信し、受信した物理レイヤの信号からより上位のレイヤの信号を取得する。信号送信部101と信号受信部102は、いずれもD2D機能とセルラ通信機能を含む。信号送信部101は、具体例1~3、その他で説明した信号送信の動作を実行する機能を含み、信号受信部102は、具体例1~3、その他で説明した信号受信の動作を実行する機能を含む。 The signal transmission unit 101 creates a transmission from transmission data, and wirelessly transmits the transmission signal. The signal reception unit 102 wirelessly receives various signals, and acquires higher layer signals from the received physical layer signals. The signal transmission unit 101 and the signal reception unit 102 both include a D2D function and a cellular communication function. The signal transmission unit 101 includes the function of executing the signal transmission operation described in the specific examples 1 to 3 and the others, and the signal reception unit 102 performs the signal reception operation described in the specific examples 1 to 3 and the others. Including features.
 設定情報格納部103は、信号受信部102により基地局10から受信した各種の設定情報、及び、予め設定される設定情報を格納する。例えば、設定情報格納部103は、DMRSマッピングパターンの設定、送信ダイバーシチ方式の設定等を格納するように構成される。 The setting information storage unit 103 stores various setting information received from the base station 10 by the signal receiving unit 102 and setting information set in advance. For example, the setting information storage unit 103 is configured to store the setting of the DMRS mapping pattern, the setting of the transmission diversity scheme, and the like.
 信号送信部101は、D2D信号に送信ダイバーシチを適用し、D2D信号を送信するように構成される。例えば、信号送信部101は、1つのアンテナポートからCFO推定用DMRSを送信してもよく、複数のアンテナポートから、小さい遅延値のCDDを適用してDMRSを送信してもよい。信号送信部101は、前記D2D信号の送信ダイバーシチに使用した情報を含む制御情報を送信することとしてもよい。 The signal transmission unit 101 is configured to apply transmission diversity to the D2D signal and transmit the D2D signal. For example, the signal transmission unit 101 may transmit the DMRS for CFO estimation from one antenna port, and may transmit the DMRS from a plurality of antenna ports by applying CDD with a small delay value. The signal transmission unit 101 may transmit control information including information used for transmission diversity of the D2D signal.
 信号受信部102は、D2D信号を受信し、CFOを推定及び補償するように構成される。例えば、信号受信部102は、CFO推定用DMRSを受信した場合、単一のシンボル内で受信したCFO推定用DMRSを用いてCFOを推定してもよい。例えば、信号受信部102は、小さい遅延値のCDDを適用したDMRSを受信した場合、単一のシンボル内で受信したDMRSを用いてCFOを推定してもよい。また、信号受信部102は、複数のDMRSシンボル間の相関を用いてCFOを推定することもできる。 The signal receiving unit 102 is configured to receive the D2D signal and estimate and compensate for the CFO. For example, when receiving the CFO estimation DMRS, the signal receiving unit 102 may estimate the CFO using the CFO estimation DMRS received in a single symbol. For example, when receiving a DMRS to which a CDD with a small delay value is applied, the signal reception unit 102 may estimate the CFO using the DMRS received in a single symbol. Also, the signal receiving unit 102 can estimate CFO using correlations between multiple DMRS symbols.
 <基地局10>
 図10は、基地局10の機能構成の一例を示す図である。図10に示すように、基地局10は、信号送信部201と、信号受信部202と、設定情報格納部203と、NW通信部204とを有する。図10に示す機能構成は一例に過ぎない。本実施の形態に係る動作を実行できるのであれば、機能区分及び機能部の名称はどのような名称でもよい。
<Base station 10>
FIG. 10 is a diagram showing an example of a functional configuration of the base station 10. As shown in FIG. As shown in FIG. 10, the base station 10 includes a signal transmission unit 201, a signal reception unit 202, a setting information storage unit 203, and an NW communication unit 204. The functional configuration shown in FIG. 10 is merely an example. As long as the operation according to the present embodiment can be performed, the names of the function classifications and the function parts may be any names.
 信号送信部201は、ユーザ装置UE側に送信する信号を生成し、当該信号を無線で送信する機能を含む。信号受信部202は、ユーザ装置UEから送信された各種の信号を受信し、受信した信号から、例えばより上位のレイヤの情報を取得する機能を含む。 The signal transmission unit 201 includes a function of generating a signal to be transmitted to the user apparatus UE side and wirelessly transmitting the signal. The signal receiving unit 202 includes a function of receiving various signals transmitted from the user apparatus UE and acquiring, for example, higher layer information from the received signals.
 信号送信部201は、具体例1~3、その他で説明した、ユーザ装置UEへの信号(例:設定情報)送信の動作を実行する機能を含む。 The signal transmission unit 201 includes the function of executing the operation of transmitting a signal (eg, setting information) to the user apparatus UE described in the specific examples 1 to 3 and others.
 設定情報格納部203は、ユーザ装置UEに送信する各種の設定情報、ユーザ装置UEから受信する各種の設定情報、及び、予め設定される設定情報を格納する。NW通信部204は、例えば、基地局間の情報通信を実行する。 The setting information storage unit 203 stores various setting information to be transmitted to the user apparatus UE, various setting information received from the user apparatus UE, and setting information set in advance. The NW communication unit 204 executes, for example, information communication between base stations.
 <ハードウェア構成>
 上記実施の形態の説明に用いたブロック図(図9~図10)は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及び/又はソフトウェアの任意の組み合わせによって実現される。また、各機能ブロックの実現手段は特に限定されない。すなわち、各機能ブロックは、物理的及び/又は論理的に複数要素が結合した1つの装置により実現されてもよいし、物理的及び/又は論理的に分離した2つ以上の装置を直接的及び/又は間接的に(例えば、有線及び/又は無線)で接続し、これら複数の装置により実現されてもよい。
<Hardware configuration>
The block diagrams (FIGS. 9 to 10) used in the description of the above embodiment show blocks in functional units. These functional blocks (components) are realized by any combination of hardware and / or software. Moreover, the implementation means of each functional block is not particularly limited. That is, each functional block may be realized by one device physically and / or logically connected to a plurality of elements, or directly and two or more physically and / or logically separated devices. And / or indirectly (for example, wired and / or wirelessly) connected, and may be realized by the plurality of devices.
 また、例えば、本発明の一実施の形態におけるユーザ装置UEと基地局10はいずれも、本実施の形態に係る処理を行うコンピュータとして機能してもよい。図11は、本実施の形態に係るユーザ装置UEと基地局10のハードウェア構成の一例を示す図である。上述のユーザ装置UEと基地局10はそれぞれ、物理的には、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。 Also, for example, both the user apparatus UE and the base station 10 in an embodiment of the present invention may function as a computer that performs the process according to the present embodiment. FIG. 11 is a diagram showing an example of the hardware configuration of the user apparatus UE and the base station 10 according to the present embodiment. Even if the above-mentioned user apparatus UE and base station 10 are physically configured as a computer apparatus including processor 1001, memory 1002, storage 1003, communication apparatus 1004, input apparatus 1005, output apparatus 1006, bus 1007, etc. Good.
 なお、以下の説明では、「装置」という文言は、回路、デバイス、ユニットなどに読み替えることができる。ユーザ装置UEと基地局10のハードウェア構成は、図に示した1001~1006で示される各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。 In the following description, the term "device" can be read as a circuit, a device, a unit, or the like. The hardware configurations of the user apparatus UE and the base station 10 may be configured to include one or more devices indicated by 1001 to 1006 shown in the figure, or may be configured without including some devices. May be
 ユーザ装置UEと基地局10における各機能は、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることで、プロセッサ1001が演算を行い、通信装置1004による通信、メモリ1002及びストレージ1003におけるデータの読み出し及び/又は書き込みを制御することで実現される。 Each function in the user apparatus UE and the base station 10 causes the processor 1001 to perform an operation by reading predetermined software (program) on hardware such as the processor 1001, the memory 1002, and the like, and communication by the communication apparatus 1004; And by controlling the reading and / or writing of data in the storage 1003.
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインターフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(CPU:Central Processing Unit)で構成されてもよい。 The processor 1001 operates, for example, an operating system to control the entire computer. The processor 1001 may be configured by a central processing unit (CPU: Central Processing Unit) including an interface with a peripheral device, a control device, an arithmetic device, a register, and the like.
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール又はデータを、ストレージ1003及び/又は通信装置1004からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施の形態で説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、図9に示したユーザ装置UEの信号送信部101、信号受信部102、設定情報格納部103は、メモリ1002に格納され、プロセッサ1001で動作する制御プログラムによって実現されてもよい。また、例えば、図10に示した基地局10の信号送信部201と、信号受信部202と、設定情報格納部203と、NW通信部204は、メモリ1002に格納され、プロセッサ1001で動作する制御プログラムによって実現されてもよい。上述の各種処理は、1つのプロセッサ1001で実行される旨を説明してきたが、2以上のプロセッサ1001により同時又は逐次に実行されてもよい。プロセッサ1001は、1以上のチップで実装されてもよい。なお、プログラムは、電気通信回線を介してネットワークから送信されても良い。 Also, the processor 1001 reads a program (program code), a software module or data from the storage 1003 and / or the communication device 1004 to the memory 1002, and executes various processing according to these. As a program, a program that causes a computer to execute at least a part of the operations described in the above embodiments is used. For example, the signal transmission unit 101, the signal reception unit 102, and the setting information storage unit 103 of the user apparatus UE illustrated in FIG. 9 may be realized by a control program stored in the memory 1002 and operated by the processor 1001. Further, for example, the signal transmission unit 201, the signal reception unit 202, the setting information storage unit 203, and the NW communication unit 204 of the base station 10 shown in FIG. 10 are stored in the memory 1002 and controlled by the processor 1001. It may be realized by a program. The various processes described above have been described to be executed by one processor 1001, but may be executed simultaneously or sequentially by two or more processors 1001. The processor 1001 may be implemented by one or more chips. The program may be transmitted from the network via a telecommunication line.
 メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、ROM(Read Only Memory)、EPROM(Erasable Programmable ROM)、EEPROM(Electrically Erasable Programmable ROM)、RAM(Random Access Memory)などの少なくとも1つで構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本発明の一実施の形態に係る処理を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。 The memory 1002 is a computer readable recording medium, and includes, for example, at least one of a ROM (Read Only Memory), an EPROM (Erasable Programmable ROM), an EEPROM (Electrically Erasable Programmable ROM), and a RAM (Random Access Memory). It may be done. The memory 1002 may be called a register, a cache, a main memory (main storage device) or the like. The memory 1002 can store a program (program code), a software module, and the like that can be executed to execute the process according to the embodiment of the present invention.
 ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、CD-ROM(Compact Disc ROM)などの光ディスク、ハードディスクドライブ、フレキシブルディスク、光磁気ディスク(例えば、コンパクトディスク、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、スマートカード、フラッシュメモリ(例えば、カード、スティック、キードライブ)、フロッピー(登録商標)ディスク、磁気ストリップなどの少なくとも1つで構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。上述の記憶媒体は、例えば、メモリ1002及び/又はストレージ1003を含むデータベース、サーバその他の適切な媒体であってもよい。 The storage 1003 is a computer readable recording medium, and for example, an optical disc such as a CD-ROM (Compact Disc ROM), a hard disc drive, a flexible disc, a magneto-optical disc (eg, a compact disc, a digital versatile disc, a Blu-ray A (registered trademark) disk, a smart card, a flash memory (for example, a card, a stick, a key drive), a floppy (registered trademark) disk, a magnetic strip, and the like may be used. The storage 1003 may be called an auxiliary storage device. The above-mentioned storage medium may be, for example, a database including the memory 1002 and / or the storage 1003, a server or any other suitable medium.
 通信装置1004は、有線及び/又は無線ネットワークを介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。例えば、ユーザ装置UEの信号送信部101及び信号受信部102は、通信装置1004で実現されてもよい。また、基地局10の信号送信部201及び信号受信部202、NW通信部204は、通信装置1004で実現されてもよい。 The communication device 1004 is hardware (transmission / reception device) for performing communication between computers via a wired and / or wireless network, and is also called, for example, a network device, a network controller, a network card, a communication module, or the like. For example, the signal transmission unit 101 and the signal reception unit 102 of the user apparatus UE may be realized by the communication apparatus 1004. Also, the signal transmission unit 201, the signal reception unit 202, and the NW communication unit 204 of the base station 10 may be realized by the communication device 1004.
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LEDランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。 The input device 1005 is an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, and the like) that receives an input from the outside. The output device 1006 is an output device (for example, a display, a speaker, an LED lamp, etc.) that performs output to the outside. The input device 1005 and the output device 1006 may be integrated (for example, a touch panel).
 また、プロセッサ1001及びメモリ1002などの各装置は、情報を通信するためのバス1007で接続される。バス1007は、単一のバスで構成されてもよいし、装置間で異なるバスで構成されてもよい。 Also, each device such as the processor 1001 and the memory 1002 is connected by a bus 1007 for communicating information. The bus 1007 may be configured by a single bus or may be configured by different buses among the devices.
 また、ユーザ装置UEと基地局10はそれぞれ、マイクロプロセッサ、デジタル信号プロセッサ(DSP:Digital Signal Processor)、ASIC(Application Specific Integrated Circuit)、PLD(Programmable Logic Device)、FPGA(Field Programmable Gate Array)などのハードウェアを含んで構成されてもよく、当該ハードウェアにより、各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つで実装されてもよい。 Also, each of the user apparatus UE and the base station 10 includes a microprocessor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a programmable logic device (PLD), a field programmable gate array (FPGA), etc. It may be configured to include hardware, and part or all of each functional block may be realized by the hardware. For example, processor 1001 may be implemented in at least one of these hardware.
 <実施の形態のまとめ>
 以上、説明したように、本実施の形態によれば、送信ダイバーシチを用いたD2D通信をサポートする無線通信システムにおいて使用されるユーザ装置であって、所定の時間区間内の1つ又は複数の第1の単位時間区間において、送信側ユーザ装置の複数のアンテナポートのうち1つのアンテナポートから送信された参照信号を受信する受信部と、前記受信した参照信号に基づいて周波数オフセットを推定する周波数オフセット推定部と、を有するユーザ装置が提供される。
<Summary of Embodiment>
As described above, according to the present embodiment, a user apparatus used in a wireless communication system supporting D2D communication using transmit diversity, which is one or more than a plurality of A receiver configured to receive a reference signal transmitted from one of a plurality of antenna ports of a transmitting user apparatus in one unit time interval, and a frequency offset to estimate a frequency offset based on the received reference signal A user device is provided having an estimation unit.
 上記のユーザ装置は、送信ダイバーシチが用いられる場合であっても、1つのアンテナポートからCFO推定用DMRSを受信することができるため、高速に移動する端末間においてCFO推定の精度を向上させることができる。また、CFO推定用DMRS以外の他のDMRSにおいては、ダイバーシチ利得を得ることができ、通信の質及び信頼性を向上させることができる。 Since the above user equipment can receive DMRS for CFO estimation from one antenna port even when transmission diversity is used, the accuracy of CFO estimation can be improved between terminals moving at high speed. it can. In addition, in other DMRSs other than the CFO estimation DMRS, diversity gain can be obtained, and communication quality and reliability can be improved.
 また、CFO推定用DMRSは送信ダイバーシチが適用される場合、及び/又は、所定の条件を満たす場合に送信されてもよい。言い換えると、送信ダイバーシチが適用されない場合、及び/又は、所定の条件を満たさない場合、複数のアンテナポートから同じタイミングでDMRSが送信される。したがって、ダイバーシチ利得を高めることができる。 Also, the CFO estimation DMRS may be transmitted when transmission diversity is applied and / or when a predetermined condition is satisfied. In other words, when transmission diversity is not applied and / or when predetermined conditions are not satisfied, DMRSs are transmitted from the multiple antenna ports at the same timing. Thus, the diversity gain can be increased.
 また、前記受信部は、前記所定の時間区間内の1つ又は複数の第2の単位時間区間において、前記送信側ユーザ装置の複数のアンテナポートから送信された参照信号を更に受信してもよく、前記1つ又は複数の第1の単位時間区間の前後の所定数の単位時間区間と、前記1つ又は複数の第2の単位時間区間の前後の所定数の単位時間区間に、異なる送信ダイバーシチ方式、又は同じ送信ダイバーシチ方式の異なるパラメータが用いられてもよい。 Further, the receiving unit may further receive reference signals transmitted from a plurality of antenna ports of the transmitting user apparatus in one or more second unit time intervals within the predetermined time interval. Transmission diversity different between predetermined number of unit time intervals before and after the one or more first unit time intervals and predetermined number of unit time intervals before and after the one or more second unit time intervals Schemes, or different parameters of the same transmit diversity scheme may be used.
 上記の構成によれば、CFO推定用DMRSの前後の時間区間において、CFO推定用DMRSと同じ方式でデータシンボルを受信することができ、他のDMRSの前後の時間区間において、ダイバーシチ利得を得ることができる。 According to the above configuration, data symbols can be received in the same manner as in the CFO estimation DMRS in time intervals before and after the CFO estimation DMRS, and diversity gain can be obtained in time intervals before and after another DMRS. Can.
 また、本実施の形態によれば、巡回遅延ダイバーシチを用いたD2D通信をサポートする無線通信システムにおいて使用されるユーザ装置であって、所定の時間区間内の1つ又は複数の単位時間区間において、送信側ユーザ装置の複数のアンテナポートから送信された参照信号を受信する受信部と、前記参照信号に基づいて周波数オフセットを推定する周波数オフセット推定部と、を有し、前記参照信号に用いられる巡回遅延ダイバーシチのための遅延値の上限は、基地局との通信に用いられる巡回遅延ダイバーシチのための遅延値またはその上限よりも小さいことを特徴とするユーザ装置が提供される。 Further, according to the present embodiment, the user equipment used in a wireless communication system supporting D2D communication using cyclic delay diversity, in one or more unit time intervals within a predetermined time interval, A receiver for receiving reference signals transmitted from a plurality of antenna ports of a transmitting user apparatus, and a frequency offset estimation unit for estimating a frequency offset based on the reference signals, and a cyclic circuit used for the reference signals A user apparatus is provided, characterized in that the upper limit of the delay value for delay diversity is smaller than the delay value for cyclic delay diversity used for communication with the base station or the upper limit thereof.
 上記のユーザ装置は、小さい遅延値のCDDが適用されたDMRSを受信するため、複数のアンテナポートから同じタイミングで送信された複数のDMRSを単一のDMRSとみなすことができる。したがって、単一のシンボル内で受信したDMRSを用いたCFO推定方法を適用して、高速に移動する端末間においてCFO推定の精度を向上させることができる。CDDの遅延値を小さくすることでダイバーシチ利得が小さくなる可能性があるが、送信ダイバーシチが用いられる場合であっても送信ダイバーシチが用いられない場合であっても、1サブフレーム内において同じDMRSの配置を用いることができる。 The above user equipment can regard multiple DMRSs transmitted at the same timing from multiple antenna ports as a single DMRS, in order to receive the DMRS to which the CDD with small delay value is applied. Therefore, the CFO estimation method using DMRS received in a single symbol can be applied to improve the accuracy of CFO estimation between terminals moving at high speed. There is a possibility that diversity gain may be reduced by reducing the delay value of CDD, but the same DMRS can be used in one subframe even if transmission diversity is used or transmission diversity is not used. An arrangement can be used.
 また、前記周波数オフセット推定部は、制御情報と共に送信される参照信号に基づいて推定された周波数オフセットを、データ信号に対する周波数オフセットとして用いてもよい。 The frequency offset estimation unit may use a frequency offset estimated based on a reference signal transmitted together with control information as a frequency offset for the data signal.
 上記のユーザ装置は、制御情報において推定されたCFOをデータ信号にも適用することにより、CFO推定を簡略化することができる。また、送信ダイバーシチが用いられる場合であっても送信ダイバーシチが用いられない場合であっても、データ信号が送信される1サブフレーム内において同じDMRSの配置を用いることができる。 The above user equipment can simplify CFO estimation by applying the CFO estimated in the control information also to the data signal. Further, even when transmission diversity is used or transmission diversity is not used, the same DMRS arrangement can be used in one subframe in which a data signal is transmitted.
 <実施形態の補足>
 以上、本発明の実施の形態を説明してきたが、開示される発明はそのような実施形態に限定されず、当業者は様々な変形例、修正例、代替例、置換例等を理解するであろう。発明の理解を促すため具体的な数値例を用いて説明がなされたが、特に断りのない限り、それらの数値は単なる一例に過ぎず適切な如何なる値が使用されてもよい。上記の説明における項目の区分けは本発明に本質的ではなく、2以上の項目に記載された事項が必要に応じて組み合わせて使用されてよいし、ある項目に記載された事項が、別の項目に記載された事項に(矛盾しない限り)適用されてよい。機能ブロック図における機能部又は処理部の境界は必ずしも物理的な部品の境界に対応するとは限らない。複数の機能部の動作が物理的には1つの部品で行われてもよいし、あるいは1つの機能部の動作が物理的には複数の部品により行われてもよい。実施の形態で述べた処理手順については、矛盾の無い限り処理の順序を入れ替えてもよい。処理説明の便宜上、ユーザ装置UEと基地局10は機能的なブロック図を用いて説明されたが、そのような装置はハードウェアで、ソフトウェアで又はそれらの組み合わせで実現されてもよい。本発明の実施の形態に従ってユーザ装置UEが有するプロセッサにより動作するソフトウェア及び本発明の実施の形態に従って基地局10が有するプロセッサにより動作するソフトウェアはそれぞれ、ランダムアクセスメモリ(RAM)、フラッシュメモリ、読み取り専用メモリ(ROM)、EPROM、EEPROM、レジスタ、ハードディスク(HDD)、リムーバブルディスク、CD-ROM、データベース、サーバその他の適切な如何なる記憶媒体に保存されてもよい。
<Supplement of embodiment>
Although the embodiments of the present invention have been described above, the disclosed invention is not limited to such embodiments, and those skilled in the art should understand various modifications, modifications, alternatives, replacements, and the like. I will. Although specific numerical examples are used to facilitate understanding of the invention, unless otherwise noted, those numerical values are merely examples and any appropriate values may be used. The division of items in the above description is not essential to the present invention, and the items described in two or more items may be used in combination as necessary, and the items described in one item may be used in another item. It may be applied to the matters described in (unless contradictory). The boundaries of the functional units or processing units in the functional block diagram do not necessarily correspond to the boundaries of physical parts. The operations of multiple functional units may be physically performed by one component, or the operations of one functional unit may be physically performed by multiple components. With regard to the processing procedures described in the embodiment, the order of processing may be changed as long as there is no contradiction. Although the user apparatus UE and the base station 10 have been described using functional block diagrams for the convenience of the processing description, such an apparatus may be realized in hardware, software or a combination thereof. The software operated by the processor of the user apparatus UE according to the embodiment of the present invention and the software operated by the processor of the base station 10 according to the embodiment of the present invention are random access memory (RAM), flash memory, read only It may be stored in memory (ROM), EPROM, EEPROM, register, hard disk (HDD), removable disk, CD-ROM, database, server or any other suitable storage medium.
 また、情報の通知は、本明細書で説明した態様/実施形態に限られず、他の方法で行われてもよい。例えば、情報の通知は、物理レイヤシグナリング(例えば、DCI(Downlink Control Information)、UCI(Uplink Control Information))、上位レイヤシグナリング(例えば、RRC(Radio Resource Control)シグナリング、MAC(Medium Access Control)シグナリング、ブロードキャスト情報(MIB(Master Information Block)、SIB(System Information Block))、その他の信号又はこれらの組み合わせによって実施されてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージなどであってもよい。 In addition, notification of information is not limited to the aspect / embodiment described herein, and may be performed by other methods. For example, notification of information may be physical layer signaling (for example, Downlink Control Information (DCI), Uplink Control Information (UCI)), upper layer signaling (for example, Radio Resource Control (RRC) signaling, Medium Access Control (MAC) signaling, It may be implemented by broadcast information (MIB (Master Information Block), SIB (System Information Block), other signals, or a combination thereof. Also, RRC signaling may be called an RRC message, for example, RRC Connection setup (RRC Con ection Setup) message, RRC connection reconfiguration (it may be a RRC Connection Reconfiguration) message.
 本明細書で説明した各態様/実施形態は、LTE(Long Term Evolution)、LTE-A(LTE-Advanced)、SUPER 3G、IMT-Advanced、4G、5G、FRA(Future Radio Access)、W-CDMA(登録商標)、GSM(登録商標)、CDMA2000、UMB(Ultra Mobile Broadband)、IEEE 802.11(Wi-Fi)、IEEE 802.16(WiMAX)、IEEE 802.20、UWB(Ultra-WideBand)、Bluetooth(登録商標)、その他の適切なシステムを利用するシステム及び/又はこれらに基づいて拡張された次世代システムに適用されてもよい。 Each aspect / embodiment described in the present specification is LTE (Long Term Evolution), LTE-A (LTE-Advanced), SUPER 3G, IMT-Advanced, 4G, 5G, FRA (Future Radio Access), W-CDMA (Registered trademark), GSM (registered trademark), CDMA2000, UMB (Ultra Mobile Broadband), IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802.20, UWB (Ultra-Wide Band), The present invention may be applied to a system utilizing Bluetooth (registered trademark), other appropriate systems, and / or an advanced next-generation system based on these.
 本明細書で説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本明細書で説明した方法については、例示的な順序で様々なステップの要素を提示しており、提示した特定の順序に限定されない。 As long as there is no contradiction, the processing procedure, sequence, flow chart, etc. of each aspect / embodiment described in this specification may be reversed. For example, for the methods described herein, elements of the various steps are presented in an exemplary order and are not limited to the particular order presented.
 本明細書において基地局10によって行われるとした特定動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局10を有する1つまたは複数のネットワークノード(network nodes)で構成されるネットワークにおいて、ユーザ装置UEとの通信のために行われる様々な動作は、基地局10および/または基地局10以外の他のネットワークノード(例えば、MMEまたはS-GWなどが考えられるが、これらに限られない)によって行われ得ることは明らかである。上記において基地局10以外の他のネットワークノードが1つである場合を例示したが、複数の他のネットワークノードの組み合わせ(例えば、MMEおよびS-GW)であってもよい。 The specific operation supposed to be performed by the base station 10 in this specification may be performed by the upper node in some cases. In a network configured of one or more network nodes having a base station 10, various operations performed for communication with the user apparatus UE may be performed by the base station 10 and / or the base station 10 other than the base station 10. It will be clear that it may be performed by other network nodes, such as but not limited to MME or S-GW etc. Although the case where one network node other than the base station 10 has been described above is illustrated, it may be a combination of a plurality of other network nodes (for example, MME and S-GW).
 本明細書で説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。 Each aspect / embodiment described in this specification may be used alone, may be used in combination, and may be switched and used along with execution.
 ユーザ装置UEは、当業者によって、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント、またはいくつかの他の適切な用語で呼ばれる場合もある。 The user equipment UE may be a subscriber station, a mobile unit, a subscriber unit, a wireless unit, a remote unit, a mobile device, a wireless device, a wireless communication device, a remote communication device, a mobile subscriber station, an access terminal, a mobile terminal, by a person skilled in the art. It may also be called a wireless terminal, a remote terminal, a handset, a user agent, a mobile client, a client, or some other suitable term.
 基地局10は、当業者によって、NB(NodeB)、eNB(enhanced NodeB)、ベースステーション(Base Station)、gNB、またはいくつかの他の適切な用語で呼ばれる場合もある。 Base station 10 may also be referred to by those skilled in the art with NB (Node B), eNB (enhanced Node B), Base Station, gNB, or some other suitable terminology.
 本明細書で使用する「判断(determining)」、「決定(determining)」という用語は、多種多様な動作を包含する場合がある。「判断」、「決定」は、例えば、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up)(例えば、テーブル、データベースまたは別のデータ構造での探索)、確認(ascertaining)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などした事を「判断」「決定」したとみなす事を含み得る。つまり、「判断」「決定」は、何らかの動作を「判断」「決定」したとみなす事を含み得る。 The terms "determining", "determining" as used herein may encompass a wide variety of operations. "Judgment", "decision" are, for example, judging, calculating, calculating, processing, processing, deriving, investigating, looking up (for example, a table) (Searching in a database or another data structure), ascertaining may be regarded as “decision”, “decision”, etc. Also, "determination" and "determination" are receiving (e.g. receiving information), transmitting (e.g. transmitting information), input (input), output (output), access (Accessing) (for example, accessing data in a memory) may be regarded as “judged” or “decided”. Also, "judgement" and "decision" are to be considered as "judgement" and "decision" that they have resolved (resolving), selecting (selecting), choosing (choosing), establishing (establishing), etc. May be included. That is, "judgment" "decision" may include considering that some action is "judged" "decision".
 本明細書で使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。 As used herein, the phrase "based on" does not mean "based only on," unless expressly stated otherwise. In other words, the phrase "based on" means both "based only on" and "based at least on."
 「含む(include)」、「含んでいる(including)」、およびそれらの変形が、本明細書あるいは請求の範囲で使用されている限り、これら用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本明細書あるいは請求の範囲において使用されている用語「または(or)」は、排他的論理和ではないことが意図される。 As long as "include", "including", and variations thereof are used in the present specification or claims, these terms are as used in the term "comprising". It is intended to be comprehensive. Further, it is intended that the term "or" as used herein or in the claims is not an exclusive OR.
 本開示の全体において、例えば、英語でのa,an,及びtheのように、翻訳により冠詞が追加された場合、これらの冠詞は、文脈から明らかにそうではないことが示されていなければ、複数を含み得る。 Throughout the present disclosure, when articles are added by translation, such as, for example, a, an, and the in English, these articles are not clearly indicated by the context: May contain more than one.
 以上、本発明について詳細に説明したが、当業者にとっては、本発明が本明細書中に説明した実施形態に限定されないということは明らかである。本発明は、請求の範囲の記載により定まる本発明の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本明細書の記載は、例示説明を目的としており、本発明に対して何ら制限的な意味を有さない。 Although the present invention has been described above in detail, it is obvious for those skilled in the art that the present invention is not limited to the embodiments described herein. The present invention can be implemented as modifications and changes without departing from the spirit and scope of the present invention defined by the description of the claims. Therefore, the description in the present specification is for the purpose of illustration and does not have any limiting meaning on the present invention.
UE ユーザ装置
101 信号送信部
102 信号受信部
103 設定情報格納部
10 基地局
201 信号送信部
202 信号受信部
203 設定情報格納部
204 NW通信部
1001 プロセッサ
1002 メモリ
1003 ストレージ
1004 通信装置
1005 入力装置
1006 出力装置
UE User Equipment 101 Signal Transmission Unit 102 Signal Reception Unit 103 Configuration Information Storage Unit 10 Base Station 201 Signal Transmission Unit 202 Signal Reception Unit 203 Configuration Information Storage Unit 204 NW Communication Unit 1001 Processor 1002 Memory 1003 Storage 1003 Storage Device 1005 Communication Device 1005 Input Device 1006 Output apparatus

Claims (5)

  1.  送信ダイバーシチを用いたD2D通信をサポートする無線通信システムにおいて使用されるユーザ装置であって、
     所定の時間区間内の1つ又は複数の第1の単位時間区間において、送信側ユーザ装置の複数のアンテナポートのうち1つのアンテナポートから送信された参照信号を受信する受信部と、
     前記受信した参照信号に基づいて周波数オフセットを推定する周波数オフセット推定部と、
     を有するユーザ装置。
    A user equipment for use in a wireless communication system supporting D2D communication using transmit diversity, comprising:
    A receiver configured to receive a reference signal transmitted from one antenna port among a plurality of antenna ports of a transmitting user apparatus in one or more first unit time intervals within a predetermined time interval;
    A frequency offset estimation unit that estimates a frequency offset based on the received reference signal;
    User equipment having
  2.  前記受信部は、前記所定の時間区間内の1つ又は複数の第2の単位時間区間において、前記送信側ユーザ装置の複数のアンテナポートから送信された参照信号を更に受信し、
     前記1つ又は複数の第1の単位時間区間の前後の所定数の単位時間区間と、前記1つ又は複数の第2の単位時間区間の前後の所定数の単位時間区間に、異なる送信ダイバーシチ方式、又は同じ送信ダイバーシチ方式の異なるパラメータが用いられることを特徴とする、請求項1に記載のユーザ装置。
    The receiving unit further receives reference signals transmitted from a plurality of antenna ports of the transmitting user apparatus in one or more second unit time intervals within the predetermined time interval,
    Different transmission diversity schemes in a predetermined number of unit time intervals before and after the one or more first unit time intervals and a predetermined number of unit time intervals before and after the one or more second unit time intervals The user equipment according to claim 1, characterized in that different parameters of the same or a same transmit diversity scheme are used.
  3.  巡回遅延ダイバーシチを用いたD2D通信をサポートする無線通信システムにおいて使用されるユーザ装置であって、
     所定の時間区間内の1つ又は複数の単位時間区間において、送信側ユーザ装置の複数のアンテナポートから送信された参照信号を受信する受信部と、
     前記参照信号に基づいて周波数オフセットを推定する周波数オフセット推定部と、
     を有し、
     前記参照信号に用いられる巡回遅延ダイバーシチのための遅延値の上限は、基地局との通信に用いられる巡回遅延ダイバーシチのための遅延値の上限よりも小さいことを特徴とするユーザ装置。
    A user equipment for use in a wireless communication system supporting D2D communication using cyclic delay diversity, comprising:
    A receiver configured to receive reference signals transmitted from a plurality of antenna ports of a transmitting user apparatus in one or more unit time intervals within a predetermined time interval;
    A frequency offset estimation unit that estimates a frequency offset based on the reference signal;
    Have
    A user apparatus characterized in that an upper limit of a delay value for cyclic delay diversity used for the reference signal is smaller than an upper limit of a delay value for cyclic delay diversity used for communication with a base station.
  4.  前記周波数オフセット推定部は、制御情報と共に送信される参照信号に基づいて推定された周波数オフセットを、データ信号に対する周波数オフセットとして用いることを特徴とする、請求項1乃至3のうちいずれか1項に記載のユーザ装置。 The said frequency offset estimation part uses the frequency offset estimated based on the reference signal transmitted with control information as a frequency offset with respect to a data signal, It is characterized by the above-mentioned. User equipment as described.
  5.  送信ダイバーシチを用いたD2D通信をサポートする無線通信システムにおいて使用されるユーザ装置における周波数オフセット推定方法であって、
     所定の時間区間内の1つ又は複数の第1の単位時間区間において、送信側ユーザ装置の複数のアンテナポートのうち1つのアンテナポートから送信された参照信号を受信するステップと、
     前記受信した参照信号に基づいて周波数オフセットを推定するステップと、
     を有する周波数オフセット推定方法。
    A method for frequency offset estimation in a user equipment used in a wireless communication system supporting D2D communication using transmit diversity, comprising:
    Receiving a reference signal transmitted from one antenna port among a plurality of antenna ports of the transmitting user apparatus in one or more first unit time intervals within a predetermined time interval;
    Estimating a frequency offset based on the received reference signal;
    Method of estimating frequency offset with
PCT/JP2017/029205 2017-08-10 2017-08-10 User device and frequency offset estimation method WO2019030917A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/029205 WO2019030917A1 (en) 2017-08-10 2017-08-10 User device and frequency offset estimation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/029205 WO2019030917A1 (en) 2017-08-10 2017-08-10 User device and frequency offset estimation method

Publications (1)

Publication Number Publication Date
WO2019030917A1 true WO2019030917A1 (en) 2019-02-14

Family

ID=65271929

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/029205 WO2019030917A1 (en) 2017-08-10 2017-08-10 User device and frequency offset estimation method

Country Status (1)

Country Link
WO (1) WO2019030917A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012519986A (en) * 2009-03-06 2012-08-30 テレフオンアクチーボラゲット エル エム エリクソン(パブル) Method and apparatus for compensating for carrier frequency offset in orthogonal frequency division multiplexing wireless communication system
JP2015507437A (en) * 2012-01-30 2015-03-05 アルカテル−ルーセント Signaling method and apparatus for supporting flexible reference signal configuration
US20170187503A1 (en) * 2014-02-26 2017-06-29 Lg Electronics Inc. Method and device for transceiving device-to-device terminal signal in wireless communication system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012519986A (en) * 2009-03-06 2012-08-30 テレフオンアクチーボラゲット エル エム エリクソン(パブル) Method and apparatus for compensating for carrier frequency offset in orthogonal frequency division multiplexing wireless communication system
JP2015507437A (en) * 2012-01-30 2015-03-05 アルカテル−ルーセント Signaling method and apparatus for supporting flexible reference signal configuration
US20170187503A1 (en) * 2014-02-26 2017-06-29 Lg Electronics Inc. Method and device for transceiving device-to-device terminal signal in wireless communication system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HUAWEI ET AL.: "Transmit diversity solutions for R15 sidelink", 3GPP TSG RAN WG1 MEETING #89 R1-1707003, 19 May 2017 (2017-05-19), XP051261617 *

Similar Documents

Publication Publication Date Title
JP6413021B2 (en) User device, signal transmission method and signal reception method
KR20230160217A (en) Method and for apparatus for transmitting data in direct device to device communication
US11917595B2 (en) Communication device and base station
JP7132334B2 (en) Terminal and communication method
US20200195317A1 (en) User apparatus and communication method
JP6133863B2 (en) Flexible transmission of messages in wireless communication systems with multiple transmit antennas
US20220272682A1 (en) Method and apparatus for transmission and reception of sidelink control information in communication system
WO2017169589A1 (en) User device and communications method
WO2020055841A1 (en) Modulation and coding scheme table design for power efficiency
US11903055B2 (en) Terminal and communication method for controlling transmission based on transmission density
CN115152188B (en) Distortion exploration reference signal
CN112292893B (en) Communication device
JP5969609B2 (en) Flexible transmission of messages in wireless communication systems
CN115804164A (en) Indication of Doppler precompensation in multi-transmit receive point communications
CN116830539A (en) Synchronization signal block and control resource set multiplexing in wireless communication
KR102017823B1 (en) Method and apparatus for estimating channel in terminal for narrow band Internet of things
CN117859277A (en) Techniques for an increased number of orthogonal DMRS ports
WO2019087371A1 (en) User device, and control information transmission method
US10355884B2 (en) Robust channel estimation for vehicular applications
WO2019030917A1 (en) User device and frequency offset estimation method
WO2020263931A1 (en) Opportunistic transmission for sidelink communications
WO2019229907A1 (en) Communication device
WO2022246726A1 (en) Channel information exchange for user equipment cooperation
WO2023070626A1 (en) Concurrent multi-panel transmissions
KR102607062B1 (en) Method and for apparatus for transmitting data in direct device to device communication

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17921416

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17921416

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP