WO2019030800A1 - Target tracking device - Google Patents

Target tracking device Download PDF

Info

Publication number
WO2019030800A1
WO2019030800A1 PCT/JP2017/028590 JP2017028590W WO2019030800A1 WO 2019030800 A1 WO2019030800 A1 WO 2019030800A1 JP 2017028590 W JP2017028590 W JP 2017028590W WO 2019030800 A1 WO2019030800 A1 WO 2019030800A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
target tracking
target
value
observation
Prior art date
Application number
PCT/JP2017/028590
Other languages
French (fr)
Japanese (ja)
Inventor
将成 中村
哲太郎 山田
小幡 康
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2017/028590 priority Critical patent/WO2019030800A1/en
Priority to JP2019531835A priority patent/JP6641534B2/en
Publication of WO2019030800A1 publication Critical patent/WO2019030800A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/66Radar-tracking systems; Analogous systems

Definitions

  • the present invention relates to a target tracking device that tracks a plurality of targets.
  • Patent Document 1 Conventionally, as a technique for coping with such a problem, for example, there is one shown in Patent Document 1.
  • the angle measurement is performed by the MUSIC method. Since the target number is required to measure in the MUSIC method, the target number is generally estimated using the eigenvalues of the correlation matrix.
  • the observation value may degenerate if the target number is incorrectly estimated. Therefore, in the technique described in Patent Document 1, the observation value can be obtained by giving the target number estimated using the track to the MUSIC method. To prevent the degeneracy of
  • Patent Document 1 it is premised that the correlation of incoming waves is low, and when the correlation between incoming waves is high, it is difficult to avoid degeneration of observed values.
  • the present invention has been made to solve such a problem, and it is an object of the present invention to provide a target tracking device capable of avoiding degeneration of observed values even when the correlation between incoming waves is high.
  • the target tracking device includes a sensor processing unit that acquires observation signals of a plurality of targets, an observation value extraction unit that generates observation values from the observation signals acquired by the sensor processing unit, and an observation value extraction unit
  • a multi-target tracking processing unit that obtains position specification estimates of a plurality of targets using the set position estimation method using the acquired observation values, and determines presence / absence of degeneration of the observation from the position specification estimates; When it is determined by the multi-target tracking processing unit that there is a degeneracy of the observed values, the position specification of the multiple targets using the position estimation method in which the target estimation is performed based on the multi-target predicted values for one observed value.
  • the degeneracy cancellation unit is provided with a degeneracy cancellation unit for obtaining an estimated value, and when the multi-target tracking processing unit determines that there is degeneracy of the observation value, the degeneracy cancellation unit determines the track of the correlation hypothesis determined to be degeneracy of the observation value. To be updated with the estimated position specification That.
  • the target tracking device is a position estimation method that performs target estimation based on predicted values of multiple targets with respect to one observed value when the multiple targets tracking processing unit determines that the observed values are degenerated.
  • the multi-target tracking processing unit updates the track determined to have degeneration of the observed value with the position specification estimated value obtained by the degeneration cancellation unit. It is intended to Thereby, even when the correlation between the arriving waves is high and degeneration of the observed value occurs, the influence can be avoided.
  • FIG. 1 is a block diagram showing a target tracking device according to the present embodiment.
  • the target tracking device includes a sensor processing unit 10, an observation value extraction unit 20, and a tracking processing unit 30.
  • the sensor processing unit 10 is a processing unit that acquires a target observation signal, and includes a receiving antenna unit 11 and a receiving circuit 12.
  • the receiving antenna unit 11 is an antenna for receiving radio waves from a target, and includes a plurality of antennas for performing super resolution angle measurement.
  • the receiving circuit 12 is a circuit that converts an analog signal from the receiving antenna unit 11 into a digital signal and outputs the digital signal.
  • the observation value extraction unit 20 is a processing unit that generates an observation value from the observation signal output from the reception circuit 12.
  • the tracking processing unit 30 includes a multi-target tracking processing unit 40 and a degeneration cancellation unit 50.
  • the multi-target tracking processing unit 40 is a processing unit that manages position specification estimated values of a plurality of targets using the observation values obtained by the observation value extraction unit 20, and includes a correlation hypothesis generation unit 41 and an observation value degeneracy determination unit 42. , A correlation hypothesis evaluation unit 43, a track update unit 44, a correlation hypothesis storage unit 45, and a track determination unit 46.
  • the correlation hypothesis generation unit 41 is a processing unit that generates a new correlation hypothesis based on the observation value from the observation value extraction unit 20 and the correlation hypothesis from the correlation hypothesis storage unit 45.
  • the observed value degeneracy determination unit 42 determines whether or not the observed value is degenerated in the correlation hypothesis generated by the correlation hypothesis generation unit 41, and associates the determined correlation hypothesis with the determination result of the correlation hypothesis. It is a processing unit that outputs.
  • the correlation hypothesis evaluation unit 43 acquires the correlation hypothesis from the observation value degeneration determination unit 42 or the correlation hypothesis update unit 52 of the degeneration cancellation unit 50, evaluates the likelihood of the correlation hypothesis, and updates the evaluation value included in the correlation hypothesis And a processing unit that outputs a correlation hypothesis in which the evaluation value is updated.
  • the track update unit 44 is a processing unit that acquires the correlation hypothesis from the correlation hypothesis evaluation unit 43, and updates each track included in the correlation hypothesis using correlated observation values.
  • the correlation hypothesis storage unit 45 is a storage unit for storing all correlation hypotheses output from the track update unit 44.
  • the track determination unit 46 is a processing unit that outputs the track included in the correlation hypothesis having the highest evaluation value among all the correlation hypotheses output from the track update unit 44 as a target track.
  • the degeneracy elimination unit 50 is a processing unit that obtains an observation value without degeneracy as a position specification estimated value using a position estimation method that performs target estimation on one observation value based on multi-target prediction values, A super resolution angle measuring unit 51 and a correlation hypothesis updating unit 52 are provided.
  • the super-resolution angle measurement unit 51 receives the correlation hypothesis and acquires a digital signal from the reception circuit 12 and the digital signal Super-resolution angle measurement, which is a position estimation method that performs target estimation based on predicted values of multiple targets for one observation value, using a track including signals and correlation hypotheses, the super-resolution angle measurement results and observation
  • This processing unit outputs the correlation hypothesis from the value degeneration determination unit 42.
  • the correlation hypothesis updating unit 52 generates a correlation hypothesis by replacing the observation value included in the correlation hypothesis acquired from the super-resolution angle measuring unit 51 with the observation value calculated from the angle measurement result acquired from the super-resolution angle measuring unit 51 It is a processing unit that outputs the generated correlation hypothesis to the multi-target tracking processing unit 40.
  • FIG. 2 is a diagram showing a hardware configuration for realizing the observation value extraction unit 20 and the tracking processing unit 30 in the target tracking device of the present embodiment.
  • the observation value extraction unit 20 and the tracking processing unit 30 in the target tracking device are configured of a processor 101, a memory 102, an input / output I / F (input / output interface) 103, a storage 104, and a bus 105.
  • the processor 101 is a processor for realizing the observation value extracting unit 20 and the tracking processing unit 30 by executing programs corresponding to the functions of the observation value extracting unit 20 and the tracking processing unit 30.
  • the memory 102 is a storage unit such as a program memory for storing various programs and a ROM and a RAM used as a work memory used when the processor 101 performs data processing.
  • the input / output I / F 103 is a communication interface for performing input / output with the outside such as inputting an observation signal from the sensor processing unit 10 or outputting the processing result of the multi-target tracking processing unit 40 to the outside.
  • the storage 104 is a storage device for storing various data and programs corresponding to the functions of the observation value extraction unit 20 and the tracking processing unit 30.
  • the bus 105 is a communication path for connecting the processor 101 to the storage 104 to one another.
  • the processing performed by the observation value extraction unit 20 and the tracking processing unit 30 in FIG. 1 is performed by the processor 101 developing the program stored in the storage 104 on the memory 102 and executing the program.
  • the digital signal output from the reception circuit 12 of the sensor processing unit 10 is stored in the memory 102 or the storage 104 via the input / output I / F 103. Further, the processing result of the tracking processing unit 30 is stored in the storage 104 as necessary, and is output to the outside via the input / output I / F 103.
  • the receiving antenna unit 11 receives a radio wave signal output from a target for use in communication and the like, and outputs an analog signal corresponding to the received radio wave signal.
  • the receiving circuit 12 converts an analog signal acquired from the receiving antenna unit 11 into a digital signal, and outputs the digital signal to the observed value extracting unit 20 and the super-resolution angle measuring unit 51 of the degeneration eliminating unit 50.
  • the observation value extraction unit 20 calculates an angle measurement value using the digital signal input from the reception circuit 12 and outputs the estimated position of the target on the coordinate.
  • the estimated position is hereinafter referred to as the observed value.
  • the observation values are represented by vectors.
  • FIG. 3 is a flowchart showing processing of the tracking processing unit 30 according to the first embodiment of the present invention.
  • FIG. 3 shows the process flow at time k.
  • the correlation hypothesis generation unit 41 acquires all correlation hypotheses at time k-1 from the correlation hypothesis storage unit 45. Also, the observation value extraction unit 20 acquires an observation value at time k.
  • the correlation hypothesis comprises the track, the observed value, and the evaluation value of the correlation hypothesis.
  • a track is an estimate of the position and velocity of a target at each time, and is represented using a vector.
  • each input correlation hypothesis is called a parent correlation hypothesis.
  • the correlation hypothesis generation unit 41 performs the following processing for each parent correlation hypothesis.
  • the track is extracted from a certain parent correlation hypothesis, and the observation value input from the observation value extraction unit 20 is assigned to each track.
  • the observation value input from the observation value extraction unit 20 is assigned to each track.
  • N new correlation hypotheses are generated using evaluation values of each assignment method and the parent correlation hypothesis. This correlation hypothesis is called a child correlation hypothesis.
  • the processing of the following steps ST2 to ST6 is performed for each of the correlation hypotheses output from the correlation hypothesis generation unit 41.
  • the observed value degeneracy determination unit 42 determines whether or not the observed value is degenerated in the correlation hypothesis acquired from the correlation hypothesis generation unit 41, and outputs the determined correlation hypothesis and the determination result of the correlation hypothesis in association with each other. (Step ST2). For example, when the same observation value is assigned to a plurality of tracks, the determination result that the observation value is degenerated is output (step ST2-with degeneration). Otherwise, the determination result that the observed value is not degenerated is output (step ST2-no degeneration).
  • the super-resolution angle measurement unit 51 in the degeneration cancellation unit 50 acquires the correlation hypothesis from the observed value degeneration determination unit 42, when the determination result output from the observed value degeneration determination unit 42 indicates degeneration of the observed value, A digital signal is obtained from the receiving circuit 12.
  • the super-resolution angle measurement unit 51 performs super-resolution angle measurement using the acquired digital signal and the track included in the acquired correlation hypothesis, and outputs the measurement result and the correlation hypothesis input from the observed value degeneration determination unit 42. (Step ST3).
  • the likelihood function of azimuth is expressed as follows, for example.
  • the measurement by the maximum likelihood method is performed by searching the azimuth angle vector ⁇ k so as to maximize the likelihood function.
  • a search method for example, there is an EM (Expectation Maximization) algorithm.
  • FIG. 4 shows the case where the number of tracks included in the correlation hypothesis is 2 (track 401, track 402), and in this figure, for the sake of explanation, it is assumed that the target exists in two dimensions of x and y. There is.
  • the axis orthogonal to this plane is an axis that represents the likelihood of azimuth, and here, as an example, the likelihood function of the maximum likelihood method is represented by the solid line 403, and the likelihood function of the FB-SSP MUSIC method is represented by the dotted line 404. ing.
  • a peak portion of the likelihood function is a candidate for angle measurement values.
  • the likelihood function of the FB-SSP MUSIC method in FIG. 4 reduces the correlation between the signals of each target by the spatial averaging method when the signals output from each target have high correlation and they are close to each other. An example of the case where it can not be shown. From FIG. 4, when angle measurement is performed by the FB-SSP MUSIC method, since the shape of the likelihood function is single-peaked, the obtained angle value becomes one (in FIG. 4, mark 405) and the observed value is degenerated. I know what to do. In addition, when the search is started from around the azimuth that is a local solution by the maximum likelihood method, it is understood that the maximum likelihood method outputs the local solution ( ⁇ mark 406 in FIG. 4) as an angle value.
  • the azimuth angle of the predicted position of the track is set to the initial value 411, 412 and the maximum value of the likelihood function is searched.
  • angle values 409 and 410 corresponding to the global solutions of the likelihood function of the maximum likelihood method are obtained, and it is considered that the observed values are not degenerated.
  • ⁇ marks 415 and 416 indicate convergence values of the search.
  • the maximum likelihood method using the sample as the initial value for each sample sampled a plurality of times from the distribution of the track prediction may be performed according to the method described above, and the value with the highest likelihood among the angle measurement values may be used as the angle measurement result of the super-resolution angle measurement unit 51.
  • the correlation hypothesis updating unit 52 replaces the correlation hypothesis in which the observation value included in the correlation hypothesis input from the super resolution angle measurement unit 51 is replaced with the observation value calculated from the angle measurement result input from the super resolution angle measurement unit 51.
  • the generated correlation hypothesis is generated and output (step ST4).
  • the correlation method of the observation value and the track for example, determines the observation value to be assigned to each track by storing the track used as the initial value for each of the angle measurement values obtained by the super-resolution angle measuring unit 51 How to do
  • the correlation hypothesis evaluation unit 43 acquires the correlation hypothesis from the observed value degeneracy determination unit 42 or the correlation hypothesis update unit 52, evaluates the likelihood of the correlation hypothesis, updates the evaluation value included in the correlation hypothesis, and evaluates the evaluation value.
  • the updated correlation hypothesis is output (step ST5).
  • the evaluation of the correlation hypothesis is described, for example, in the documents: B. T. Vo and B. N. Vo, “Labeled Random Finite Set and Multi-Object Conjugate Priors”, IEEE Trans. On Signal Processing, vol. 61, no. It can be performed in the same manner as the multi-target tracking algorithm of pp. 3460-3475, 2013.
  • the track update unit 44 acquires the correlation hypothesis from the correlation hypothesis evaluation unit 43, and updates each track included in the correlation hypothesis using the correlated observation value (step ST6). For example, it is possible to update the track using a Kalman filter as in the following equation (3).
  • the above steps ST2 to ST6 are performed for each correlation hypothesis.
  • the correlation hypothesis storage unit 45 receives all correlation hypotheses output from the track updating unit 44, and performs a process of outputting these to a memory or the like (step ST7).
  • the track determination unit 46 receives all correlation hypotheses output from the track update unit 44, and outputs the track included in the correlation hypothesis having the highest evaluation value as the target track at time k (step ST8).
  • the output track is output, for example, as a display track to a display or the like (not shown).
  • the target tracking device performs the super-resolution angle measurement on the hypothesis that the observed value is considered to be degenerate and updates the correlation hypothesis, thereby degenerating even when the correlation between the arriving waves is high. Since it is possible to update the track using unobserved observation values, it is possible to reduce the estimation error of the position and velocity of the target. As a result, since occurrence of a false navigation can be prevented, estimation errors of the target number can be reduced.
  • a sensor processing unit that acquires observation signals of a plurality of targets, and an observation value extraction unit that generates observation values from the observation signals acquired by the sensor processing unit Using the observation value generated by the observation value extraction unit to obtain position specification estimated values of a plurality of targets using the set position estimation method, and determine the presence or absence of degeneration of the observation from the position specification estimations If it is determined that the observed values are degenerated by the multi-target tracking processing unit and the multi-target tracking processing unit, a position estimation method for performing target estimation based on the multi-target predicted values for one observed value is used.
  • a degeneracy eliminating unit for obtaining estimated values of position specifications of a plurality of targets, and the multi-target tracking processing unit determines that there is degeneracy of the observed values when it is determined that there is degeneracy of the observed values.
  • the track is a position specification estimate obtained by the degeneracy cancellation unit Since so new to, when the correlation of the incoming waves is higher, it is possible to track updates using the observed values does not degenerate, hence, it is possible to reduce the estimation error of the target position and velocity. As a result, the occurrence of a false navigation can be prevented, and the estimation error of the target number can be reduced.
  • the multi-target tracking processing unit generates a correlation hypothesis in which a plurality of tracks correlates to a single observation value for the observation value and the track input from the observation value extraction unit. Since the degeneration cancellation unit updates the observation value using the track included in the correlation hypothesis generated by the multi-target tracking processing unit, the degeneration of the observation value is performed even when the correlation between the incoming waves is high. It can be avoided.
  • the degeneration elimination unit updates the observation value using the expected value of the track prediction input from the multi-target tracking processing unit. Even when the correlation is high, degeneration of the observed values can be avoided.
  • the degeneration cancellation unit samples a plurality of times from the distribution of track predictions input from the multi-target tracking processing unit, and performs the process of updating observation values for each sample.
  • the update processing results since the probable observation value is output as the observation value after the update, degeneration of the observation value can be avoided even when the correlation between the incoming waves is high.
  • the position estimation method for performing target estimation based on predicted values of multiple targets for one observed value is superresolution angle measurement, so Even when the correlation of is high, the degeneracy of the observation value can be avoided.
  • the target tracking device of the first embodiment since the super-resolution angle measurement is performed by the maximum likelihood method, degeneration of observed values can be avoided even when the correlation between incoming waves is high.
  • the first embodiment is an example in which a signal output from the target itself is received and tracking of the target is performed.
  • the sensor processing unit has a transmitting unit, emits a signal to the target, and the target reflected from the signal reflected by the target May be performed, and this example is shown as a second embodiment below.
  • FIG. 5 is a block diagram of a target tracking device according to a second embodiment.
  • the sensor processing unit 10 a according to the second embodiment includes a transmitting unit 14 and a receiving unit 13.
  • the transmission unit 14 includes a transmission antenna unit 15 and a transmission circuit 16.
  • the transmission antenna unit 15 is an antenna that converts an analog signal generated by the transmission circuit 16 into a radio wave and radiates it into space.
  • the transmission circuit 16 is a circuit that generates an analog signal of a radio wave radiated from the transmission antenna unit 15 into space.
  • the receiving unit 13 includes a receiving antenna unit 11 and a receiving circuit 12.
  • the receiving antenna unit 11 and the receiving circuit 12 have the same configuration as that of the first embodiment.
  • the configurations of the observation value extraction unit 20 and the tracking processing unit 30 are the same as in the first embodiment, so the corresponding parts are denoted by the same reference numerals and the description thereof will be omitted.
  • a program corresponding to the function of the transmission circuit 16 is stored in the storage 104, and the processor 101 reads it into the memory 102.
  • the second embodiment is the same as the first embodiment except that it is configured to realize the function of the transmission circuit 16 by being executed.
  • the transmission circuit 16 generates an analog signal for irradiating the target, and the transmission antenna unit 15 converts the analog signal into a radio wave and radiates it into space.
  • the receiver circuit 12 of the receiver unit 13 detects a portion corresponding to the radio wave reflected by the target from the digital signal generated by the receiver circuit 12 by referring to the signal generated by the transmitter circuit 16. , Output only the detected signal.
  • a radio wave signal output from a target for use in communication or the like may be output.
  • the observation value extraction unit 20 calculates the distance measurement value and the angle measurement value using the digital signal input from the reception circuit 12, and outputs the estimated position of the target on the coordinate.
  • the operation of the tracking processing unit 30 is the same as that of the first embodiment, and thus the description thereof is omitted here.
  • the sensor processing unit includes the transmission unit that outputs the signal to be irradiated to the target, and observes the signal that is output from the transmission unit and reflected from the target. Since it was made to be a signal, a signal is transmitted from the target tracking device, and this signal receives the signal reflected by the target and performs tracking of the target, so even if the target itself does not output a signal It can be performed.
  • FIG. 6 is a block diagram of a target tracking device according to the third embodiment.
  • the multi-target tracking processing unit 40 a of the tracking processing unit 30 a according to the third embodiment includes a correlation hypothesis selecting unit 47.
  • the correlation hypothesis selection unit 47 is configured to select a correlation hypothesis to be stored in the correlation hypothesis storage unit 45 based on the evaluation value of the correlation hypothesis.
  • the other configuration in the multi-target tracking processing unit 40a and the configurations of the sensor processing unit 10, the observation value extraction unit 20, and the degeneration elimination unit 50 are the same as the configuration of the first embodiment shown in FIG.
  • the same reference numerals are given to corresponding parts and the description thereof is omitted.
  • a program corresponding to the function of the correlation hypothesis selecting unit 47 is stored in the storage 104, and the processor 101 stores it in the memory 102.
  • the configuration is the same as that of the first embodiment except that the function of the correlation hypothesis selection unit 47 is realized by reading and executing.
  • the correlation hypothesis selecting unit 47 of the third embodiment selects the correlation hypothesis stored in the correlation hypothesis storage unit 45 using the evaluation value for each correlation hypothesis output from the track updating unit 44. For example, an operation is performed such that only correlation hypotheses having evaluation values exceeding a threshold value determined in advance based on simulation or the like are selected. Thereby, only the correlation hypothesis selected by the correlation hypothesis selection unit 47 is stored in the correlation hypothesis storage unit 45, and the correlation hypothesis generation unit 41 performs an operation based on the correlation hypothesis stored in the correlation hypothesis storage unit 45. .
  • the other operations are the same as in the first embodiment, and thus the description thereof is omitted.
  • the correlation hypothesis selection unit 47 is applied to the configuration of the first embodiment, but may be applied to the configuration of the second embodiment.
  • the multi-target tracking processing unit selects the correlation hypothesis selection unit that selects the correlation hypothesis to be stored based on the evaluation value of the correlation hypothesis, and the selected correlation
  • the correlation hypothesis generation unit generates a new correlation hypothesis using a hypothesis and an observation value, and the presence or absence of observation value degeneration is determined based on the correlation hypothesis generated by the correlation hypothesis generation unit.
  • the capacity of memory for storing hypotheses can be reduced.
  • the calculation load can be reduced.
  • FIG. 7 is a block diagram of a target tracking device according to the fourth embodiment.
  • the super-resolution angle measuring unit 51 and the correlation hypothesis updating unit 52 of the degeneration eliminating unit 50 in FIG. 1 are replaced with the degeneration hypothesis track updating unit 53 to form a degeneration eliminating unit 50 a.
  • the track of the degeneration hypothesis is updated using the particle filter that is a non-linear filter. It is a processing unit. That is, in the fourth embodiment, a particle filter is used as a position estimation method for performing target estimation based on multi-target prediction values for one observation value, and the degeneration elimination unit 50a is updated as a position specification estimation value. Output the track that was Further, as a result, the correlation hypothesis evaluation unit 43a is configured to evaluate the correlation hypothesis using the likelihood calculation result of the degeneration hypothesis track update unit 53.
  • the other configurations of the sensor processing unit 10 and the observation value extraction unit 20 are the same as in the first embodiment, and thus the description thereof is omitted.
  • a program corresponding to the function of the correlation hypothesis evaluation unit 43a of the degeneration elimination unit 50a and the multi-target tracking processing unit 40b is a storage
  • the configuration is the same as that of the first embodiment except that it is stored in 104 and configured to implement the functions of the degeneration elimination unit 50a and the correlation hypothesis evaluation unit 43a by reading and executing this in the memory 102 by the processor 101.
  • FIG. 8 is a flowchart showing the operation of the tracking processing unit 30b of the fourth embodiment.
  • step ST1 to step ST2 without degeneration
  • step ST5 to step ST6 to step ST7 to step ST8 are the same as in the first embodiment. That is, when the degeneration of the observed value does not occur, the operation is the same as that of the tracking processing unit 30 of the first embodiment.
  • the trajectory of the degeneration hypothesis is updated using the particle filter in order to correspond to the observation process of nonlinear degeneration, the trajectory is accurately measured for the observed value determined to be degenerate. It can be estimated. Further, since the track update of the hypothesis in which the observed value is not degenerated has the same configuration as that of the first embodiment, the calculation time can be suppressed.
  • the degeneration eliminating unit 50a is applied to the configuration of the first embodiment is shown in the above example, the configuration may be applied to the configuration of the second embodiment or the third embodiment.
  • the particle filter is used as the position estimation method for performing target estimation based on predicted values of multiple targets for one observed value, so Even when the correlation is high, it is possible to update the track by the non-linear filter corresponding to the degeneration, and therefore it is possible to reduce the estimation error of the position and velocity of the target. As a result, the occurrence of a false navigation can be prevented, and the estimation error of the target number can be reduced.
  • the present invention allows free combination of each embodiment, or modification of any component of each embodiment, or omission of any component in each embodiment. .
  • the target tracking device relates to a configuration that switches the position estimation method of the target according to the presence or absence of degeneration of the observation value, and is suitable for tracking a plurality of targets.
  • Reference Signs List 10 10a sensor processing unit, 11 reception antenna unit, 12 reception circuit, 13 reception unit, 14 transmission unit, 15 transmission antenna unit, 16 transmission circuit, 20 observation value extraction unit, 30, 30a, 30b tracking processing unit, 40, 40a, 40b multi-target tracking processing unit, 41 correlation hypothesis generation unit, 42 observed value degeneration determination unit, 43, 43a correlation hypothesis evaluation unit, 44 wake update unit, 45 correlation hypothesis storage unit, 46 wake determination unit, 47 correlation hypothesis selection Part, 50, 50a Degeneration cancellation part, 51 super resolution angle measurement part, 52 correlation hypothesis update part, 53 degeneration hypothesis track update part.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

In the present invention, a multiple-target-tracking processing unit (40) uses observed values generated by an observed value extraction unit (20) to determine estimated position characteristic values for a plurality of targets using a set position estimation method. Further, the multiple-target-tracking processing unit (40) determines whether there is degeneration in the observed values on the basis of the estimated position characteristic values. If the multiple-target-tracking processing unit (40) determines that there is degeneration in the observed values, a degeneration resolution unit (50) determines estimated position characteristic values for the plurality of targets by using a position estimation method in which a target for a single observed value is estimated on the basis of predicted values for the plurality of targets. The multiple-target-tracking processing unit (40) uses the estimated position characteristic values determined by the degeneration resolution unit (50) to update the path of a correlation hypothesis determined to have observed value degeneration.

Description

目標追尾装置Target tracking device
 本発明は、複数の目標を追尾する目標追尾装置に関するものである。 The present invention relates to a target tracking device that tracks a plurality of targets.
 高分解能測角による複数目標の測角において、目標から到来した到来波が高い相関をもち、なおかつ各目標が近接している場合、複数目標が1個の観測値として表現されるという問題がある。これを以下では観測値の縮退と呼ぶ。縮退した観測値を用いて追尾処理を行うと、目標の位置推定値や速度推定値の誤差の増大や、誤航跡の生成が発生する。さらに、これにより航跡の個数、すなわち目標数の推定を誤るという問題がある。従って目標追尾装置において観測値の縮退の解決は重要な課題である。 There is a problem that multiple targets are represented as one observation value when the arrival wave from a target has high correlation and each target is close in the angle measurement of multiple targets by high resolution angle measurement . This is referred to below as the degeneracy of the observed value. When tracking processing is performed using degenerated observation values, errors in target position estimation value and velocity estimation value increase and generation of erroneous navigation occurs. Furthermore, there is a problem that the number of tracks, that is, the number of targets is incorrectly estimated. Therefore, the solution of the degeneracy of the observation value in the target tracking device is an important issue.
 従来、このような課題に対処する技術として、例えば特許文献1に示すものがあった。特許文献1に記載の技術ではMUSIC法で測角を行う。MUSIC法で測角を行うには目標数が必要であるため、一般に相関行列の固有値を用いて目標数を推定する。MUSIC法による測角では目標数の推定を誤ると観測値が縮退する場合があることから、特許文献1に記載の技術では航跡を用いて推定した目標数をMUSIC法に与えることで、観測値の縮退を防止している。 Conventionally, as a technique for coping with such a problem, for example, there is one shown in Patent Document 1. In the technique described in Patent Document 1, the angle measurement is performed by the MUSIC method. Since the target number is required to measure in the MUSIC method, the target number is generally estimated using the eigenvalues of the correlation matrix. In the angle measurement by the MUSIC method, the observation value may degenerate if the target number is incorrectly estimated. Therefore, in the technique described in Patent Document 1, the observation value can be obtained by giving the target number estimated using the track to the MUSIC method. To prevent the degeneracy of
特開2004-309209号公報JP, 2004-309209, A
 しかしながら、上記特許文献1に記載された従来の技術では、到来波の相関が低いことを前提としており、到来波間の相関が高い場合には観測値の縮退を避けることは困難であった。 However, in the prior art described in Patent Document 1, it is premised that the correlation of incoming waves is low, and when the correlation between incoming waves is high, it is difficult to avoid degeneration of observed values.
 この発明は、かかる問題を解決するためになされたもので、到来波間の相関が高い場合でも観測値の縮退を避けることのできる目標追尾装置を提供することを目的とする。 The present invention has been made to solve such a problem, and it is an object of the present invention to provide a target tracking device capable of avoiding degeneration of observed values even when the correlation between incoming waves is high.
 この発明に係る目標追尾装置は、複数目標の観測信号を取得するセンサ処理部と、センサ処理部で取得された観測信号から観測値を生成する観測値抽出部と、観測値抽出部で生成された観測値を用いて、設定された位置推定手法を用いて複数目標の位置諸元推定値を求めると共に、位置諸元推定値から観測値の縮退の有無を判定する多目標追尾処理部と、多目標追尾処理部で観測値の縮退があると判定された場合は、一つの観測値に対して多目標の予測値を基に目標推定を行う位置推定手法を用いて複数目標の位置諸元推定値を求める縮退解消部とを備え、多目標追尾処理部は、観測値の縮退があると判定した場合は、観測値の縮退があると判定した相関仮説の航跡を、縮退解消部で求められた位置諸元推定値で更新するようにしたものである。 The target tracking device according to the present invention includes a sensor processing unit that acquires observation signals of a plurality of targets, an observation value extraction unit that generates observation values from the observation signals acquired by the sensor processing unit, and an observation value extraction unit A multi-target tracking processing unit that obtains position specification estimates of a plurality of targets using the set position estimation method using the acquired observation values, and determines presence / absence of degeneration of the observation from the position specification estimates; When it is determined by the multi-target tracking processing unit that there is a degeneracy of the observed values, the position specification of the multiple targets using the position estimation method in which the target estimation is performed based on the multi-target predicted values for one observed value. The degeneracy cancellation unit is provided with a degeneracy cancellation unit for obtaining an estimated value, and when the multi-target tracking processing unit determines that there is degeneracy of the observation value, the degeneracy cancellation unit determines the track of the correlation hypothesis determined to be degeneracy of the observation value. To be updated with the estimated position specification That.
 この発明に係る目標追尾装置は、多目標追尾処理部が観測値の縮退があると判定した場合に、一つの観測値に対して多目標の予測値を基に目標推定を行う位置推定手法を用いて複数目標の位置諸元推定値を求める縮退解消部を備え、多目標追尾処理部は、観測値の縮退があると判定した航跡を縮退解消部で求められた位置諸元推定値で更新するようにしたものである。これにより、到来波間の相関が高く観測値の縮退が生じる場合でも、その影響を避けることができる。 The target tracking device according to the present invention is a position estimation method that performs target estimation based on predicted values of multiple targets with respect to one observed value when the multiple targets tracking processing unit determines that the observed values are degenerated. The multi-target tracking processing unit updates the track determined to have degeneration of the observed value with the position specification estimated value obtained by the degeneration cancellation unit. It is intended to Thereby, even when the correlation between the arriving waves is high and degeneration of the observed value occurs, the influence can be avoided.
この発明の実施の形態1の目標追尾装置を示す構成図である。It is a block diagram which shows the target tracking device of Embodiment 1 of this invention. この発明の実施の形態1の目標追尾装置のハードウェア構成図である。It is a hardware block diagram of the target tracking apparatus of Embodiment 1 of this invention. この発明の実施の形態1の目標追尾装置における追尾処理部の動作を示すフローチャートである。It is a flowchart which shows operation | movement of the tracking process part in the target tracking apparatus of Embodiment 1 of this invention. この発明の実施の形態1の目標追尾装置の最尤法を示す説明図である。It is explanatory drawing which shows the maximum likelihood method of the target tracking apparatus of Embodiment 1 of this invention. この発明の実施の形態2の目標追尾装置を示す構成図である。It is a block diagram which shows the target tracking apparatus of Embodiment 2 of this invention. この発明の実施の形態3の目標追尾装置を示す構成図である。It is a block diagram which shows the target tracking apparatus of Embodiment 3 of this invention. この発明の実施の形態4の目標追尾装置を示す構成図である。It is a block diagram which shows the target tracking apparatus of Embodiment 4 of this invention. この発明の実施の形態4の目標追尾装置における追尾処理部の動作を示すフローチャートである。It is a flowchart which shows operation | movement of the tracking process part in the target tracking apparatus of Embodiment 4 of this invention.
 以下、この発明をより詳細に説明するために、この発明を実施するための形態について、添付の図面に従って説明する。
実施の形態1.
 図1は、本実施の形態による目標追尾装置を示す構成図である。
 本実施の形態による目標追尾装置は、センサ処理部10と観測値抽出部20と追尾処理部30とを備える。センサ処理部10は、目標の観測信号を取得する処理部であり、受信アンテナ部11と受信回路12とを備える。受信アンテナ部11は、目標からの電波を受信するためのアンテナであり、超分解能測角を行うために複数のアンテナを備えている。受信回路12は受信アンテナ部11からのアナログ信号をデジタル信号に変換して出力する回路である。観測値抽出部20は、受信回路12から出力された観測信号から観測値を生成する処理部である。追尾処理部30は、多目標追尾処理部40と縮退解消部50からなる。多目標追尾処理部40は、観測値抽出部20で求められた観測値を用いて複数目標の位置諸元推定値を管理する処理部であり、相関仮説生成部41、観測値縮退判定部42、相関仮説評価部43、航跡更新部44、相関仮説保存部45、航跡決定部46を備えている。
Hereinafter, in order to explain the present invention in more detail, a mode for carrying out the present invention will be described according to the attached drawings.
Embodiment 1
FIG. 1 is a block diagram showing a target tracking device according to the present embodiment.
The target tracking device according to the present embodiment includes a sensor processing unit 10, an observation value extraction unit 20, and a tracking processing unit 30. The sensor processing unit 10 is a processing unit that acquires a target observation signal, and includes a receiving antenna unit 11 and a receiving circuit 12. The receiving antenna unit 11 is an antenna for receiving radio waves from a target, and includes a plurality of antennas for performing super resolution angle measurement. The receiving circuit 12 is a circuit that converts an analog signal from the receiving antenna unit 11 into a digital signal and outputs the digital signal. The observation value extraction unit 20 is a processing unit that generates an observation value from the observation signal output from the reception circuit 12. The tracking processing unit 30 includes a multi-target tracking processing unit 40 and a degeneration cancellation unit 50. The multi-target tracking processing unit 40 is a processing unit that manages position specification estimated values of a plurality of targets using the observation values obtained by the observation value extraction unit 20, and includes a correlation hypothesis generation unit 41 and an observation value degeneracy determination unit 42. , A correlation hypothesis evaluation unit 43, a track update unit 44, a correlation hypothesis storage unit 45, and a track determination unit 46.
 相関仮説生成部41は、観測値抽出部20からの観測値と相関仮説保存部45からの相関仮説とに基づいて、新たな相関仮説を生成する処理部である。観測値縮退判定部42は、相関仮説生成部41で生成された相関仮説において、観測値が縮退しているか否かを判定し、判定した相関仮説とその相関仮説の判定結果とを対応付けて出力する処理部である。相関仮説評価部43は、観測値縮退判定部42または縮退解消部50の相関仮説更新部52から相関仮説を取得し、相関仮説の尤もらしさについて評価を行い、相関仮説に含まれる評価値を更新し、評価値を更新した相関仮説を出力する処理部である。航跡更新部44は、相関仮説評価部43から相関仮説を取得し、相関仮説に含まれる各航跡を、相関する観測値を用いて更新する処理部である。相関仮説保存部45は、航跡更新部44から出力された全ての相関仮説を保存するための記憶部である。航跡決定部46は、航跡更新部44から出力された全ての相関仮説のうち、最も高い評価値をもつ相関仮説に含まれる航跡を目標の航跡として出力する処理部である。 The correlation hypothesis generation unit 41 is a processing unit that generates a new correlation hypothesis based on the observation value from the observation value extraction unit 20 and the correlation hypothesis from the correlation hypothesis storage unit 45. The observed value degeneracy determination unit 42 determines whether or not the observed value is degenerated in the correlation hypothesis generated by the correlation hypothesis generation unit 41, and associates the determined correlation hypothesis with the determination result of the correlation hypothesis. It is a processing unit that outputs. The correlation hypothesis evaluation unit 43 acquires the correlation hypothesis from the observation value degeneration determination unit 42 or the correlation hypothesis update unit 52 of the degeneration cancellation unit 50, evaluates the likelihood of the correlation hypothesis, and updates the evaluation value included in the correlation hypothesis And a processing unit that outputs a correlation hypothesis in which the evaluation value is updated. The track update unit 44 is a processing unit that acquires the correlation hypothesis from the correlation hypothesis evaluation unit 43, and updates each track included in the correlation hypothesis using correlated observation values. The correlation hypothesis storage unit 45 is a storage unit for storing all correlation hypotheses output from the track update unit 44. The track determination unit 46 is a processing unit that outputs the track included in the correlation hypothesis having the highest evaluation value among all the correlation hypotheses output from the track update unit 44 as a target track.
 縮退解消部50は、一つの観測値に対して多目標の予測値を基に目標推定を行う位置推定手法を用いて、位置諸元推定値として縮退のない観測値を求める処理部であり、超分解能測角部51、相関仮説更新部52を備えている。超分解能測角部51は、観測値縮退判定部42から判定した相関仮説とその相関仮説の判定結果とが出力された場合、これを受けて受信回路12からのデジタル信号を取得し、このデジタル信号と相関仮説が含む航跡を用いて、一つの観測値に対して多目標の予測値を基に目標推定を行う位置推定手法である超分解能測角を行い、その超分解能測角結果と観測値縮退判定部42からの相関仮説を出力する処理部である。相関仮説更新部52は、超分解能測角部51から取得した相関仮説に含まれる観測値を、超分解能測角部51から取得した測角結果から算出した観測値で置き換えた相関仮説を生成し、生成した相関仮説を多目標追尾処理部40に出力する処理部である。 The degeneracy elimination unit 50 is a processing unit that obtains an observation value without degeneracy as a position specification estimated value using a position estimation method that performs target estimation on one observation value based on multi-target prediction values, A super resolution angle measuring unit 51 and a correlation hypothesis updating unit 52 are provided. When the correlation hypothesis determined by the observed value degeneracy determination unit 42 and the determination result of the correlation hypothesis are output, the super-resolution angle measurement unit 51 receives the correlation hypothesis and acquires a digital signal from the reception circuit 12 and the digital signal Super-resolution angle measurement, which is a position estimation method that performs target estimation based on predicted values of multiple targets for one observation value, using a track including signals and correlation hypotheses, the super-resolution angle measurement results and observation This processing unit outputs the correlation hypothesis from the value degeneration determination unit 42. The correlation hypothesis updating unit 52 generates a correlation hypothesis by replacing the observation value included in the correlation hypothesis acquired from the super-resolution angle measuring unit 51 with the observation value calculated from the angle measurement result acquired from the super-resolution angle measuring unit 51 It is a processing unit that outputs the generated correlation hypothesis to the multi-target tracking processing unit 40.
 図2は、本実施の形態の目標追尾装置における観測値抽出部20と追尾処理部30とを実現するためのハードウェア構成を示す図である。
 目標追尾装置における観測値抽出部20と追尾処理部30は、プロセッサ101、メモリ102、入出力I/F(入出力インタフェース)103、ストレージ104、バス105で構成される。プロセッサ101は、観測値抽出部20と追尾処理部30の機能に対応したプログラムを実行することにより、これら観測値抽出部20と追尾処理部30を実現するためのプロセッサである。メモリ102は、各種のプログラムを記憶するプログラムメモリ及びプロセッサ101がデータ処理を行う際に使用するワークメモリ等として使用するROM及びRAM等の記憶部である。入出力I/F103は、センサ処理部10からの観測信号を入力したり、多目標追尾処理部40の処理結果を外部に出力するといった外部との入出力を行うための通信インタフェースである。ストレージ104は、各種データや観測値抽出部20と追尾処理部30の機能に対応したプログラムを格納するための記憶装置である。バス105は、プロセッサ101~ストレージ104を相互に接続するための通信路である。
FIG. 2 is a diagram showing a hardware configuration for realizing the observation value extraction unit 20 and the tracking processing unit 30 in the target tracking device of the present embodiment.
The observation value extraction unit 20 and the tracking processing unit 30 in the target tracking device are configured of a processor 101, a memory 102, an input / output I / F (input / output interface) 103, a storage 104, and a bus 105. The processor 101 is a processor for realizing the observation value extracting unit 20 and the tracking processing unit 30 by executing programs corresponding to the functions of the observation value extracting unit 20 and the tracking processing unit 30. The memory 102 is a storage unit such as a program memory for storing various programs and a ROM and a RAM used as a work memory used when the processor 101 performs data processing. The input / output I / F 103 is a communication interface for performing input / output with the outside such as inputting an observation signal from the sensor processing unit 10 or outputting the processing result of the multi-target tracking processing unit 40 to the outside. The storage 104 is a storage device for storing various data and programs corresponding to the functions of the observation value extraction unit 20 and the tracking processing unit 30. The bus 105 is a communication path for connecting the processor 101 to the storage 104 to one another.
 図1における観測値抽出部20と追尾処理部30が行う処理は、ストレージ104に格納されたプログラムをプロセッサ101がメモリ102上に展開して実行することにより行われる。センサ処理部10の受信回路12から出力されるデジタル信号は入出力I/F103を介してメモリ102またはストレージ104に格納される。また、追尾処理部30の処理結果は、必要に応じてストレージ104に格納し、入出力I/F103を介して外部に出力される。 The processing performed by the observation value extraction unit 20 and the tracking processing unit 30 in FIG. 1 is performed by the processor 101 developing the program stored in the storage 104 on the memory 102 and executing the program. The digital signal output from the reception circuit 12 of the sensor processing unit 10 is stored in the memory 102 or the storage 104 via the input / output I / F 103. Further, the processing result of the tracking processing unit 30 is stored in the storage 104 as necessary, and is output to the outside via the input / output I / F 103.
 次に、実施の形態1の目標追尾装置の動作について説明する。
 受信アンテナ部11は、目標から通信などの用途で出力された電波信号を受信し、受信した電波信号に対応したアナログ信号を出力する。受信回路12は、受信アンテナ部11から取得したアナログ信号をデジタル信号に変換して、デジタル信号を観測値抽出部20と縮退解消部50の超分解能測角部51へ出力する。
 観測値抽出部20は受信回路12から入力されたデジタル信号を用いて測角値を算出し、座標上での目標の推定位置を出力する。この推定位置のことを以下では観測値と呼ぶ。観測値はベクトルで表されるものとする。
Next, the operation of the target tracking device according to the first embodiment will be described.
The receiving antenna unit 11 receives a radio wave signal output from a target for use in communication and the like, and outputs an analog signal corresponding to the received radio wave signal. The receiving circuit 12 converts an analog signal acquired from the receiving antenna unit 11 into a digital signal, and outputs the digital signal to the observed value extracting unit 20 and the super-resolution angle measuring unit 51 of the degeneration eliminating unit 50.
The observation value extraction unit 20 calculates an angle measurement value using the digital signal input from the reception circuit 12 and outputs the estimated position of the target on the coordinate. The estimated position is hereinafter referred to as the observed value. The observation values are represented by vectors.
 次に追尾処理部30の処理について説明する。図3は、この発明の実施の形態1の追尾処理部30の処理を示すフローチャートである。図3は時刻kにおける処理フローを表している。
 相関仮説生成部41は、相関仮説保存部45から時刻k-1における全ての相関仮説を取得する。また、観測値抽出部20から、時刻kにおける観測値を取得する。相関仮説は、航跡と観測値と相関仮説の評価値とを備える。航跡とは、各時刻における目標の位置と速度の推定値であり、ベクトルを用いて表される。相関仮説生成部41において、入力された個々の相関仮説を親相関仮説と呼ぶ。相関仮説生成部41では、親相関仮説毎に次の処理を行う。すなわち、ある親相関仮説から航跡を抽出し、観測値抽出部20から入力された観測値を各航跡に割り当てる。このとき、観測値を割り当てない航跡や、同一の観測値に割り当てられる複数の航跡があってもよい。
Next, processing of the tracking processing unit 30 will be described. FIG. 3 is a flowchart showing processing of the tracking processing unit 30 according to the first embodiment of the present invention. FIG. 3 shows the process flow at time k.
The correlation hypothesis generation unit 41 acquires all correlation hypotheses at time k-1 from the correlation hypothesis storage unit 45. Also, the observation value extraction unit 20 acquires an observation value at time k. The correlation hypothesis comprises the track, the observed value, and the evaluation value of the correlation hypothesis. A track is an estimate of the position and velocity of a target at each time, and is represented using a vector. In the correlation hypothesis generation unit 41, each input correlation hypothesis is called a parent correlation hypothesis. The correlation hypothesis generation unit 41 performs the following processing for each parent correlation hypothesis. That is, the track is extracted from a certain parent correlation hypothesis, and the observation value input from the observation value extraction unit 20 is assigned to each track. At this time, there may be a track to which no observation value is assigned, or a plurality of tracks to be assigned to the same observation value.
 上記の航跡と観測値の割り当て方は複数通り存在する。割り当て方の個数がN個であるとき、各割り当て方と親相関仮説の評価値を用いて、N個の新たな相関仮説を生成する。この相関仮説を子相関仮説と呼ぶ。
Figure JPOXMLDOC01-appb-I000001
 相関仮説生成部41から出力された相関仮説毎に次のステップST2~ステップST6の処理を行う。
There are multiple ways of assigning the above track and observation value. When the number of assignment methods is N, N new correlation hypotheses are generated using evaluation values of each assignment method and the parent correlation hypothesis. This correlation hypothesis is called a child correlation hypothesis.
Figure JPOXMLDOC01-appb-I000001
The processing of the following steps ST2 to ST6 is performed for each of the correlation hypotheses output from the correlation hypothesis generation unit 41.
 観測値縮退判定部42は、相関仮説生成部41から取得した相関仮説において観測値が縮退しているか否かを判定し、判定した相関仮説とその相関仮説の判定結果とを対応付けて出力する(ステップST2)。例えば、複数の航跡に同一の観測値が割り当てられている場合、観測値が縮退したとの判定結果を出力する(ステップST2-縮退あり)。そうでない場合、観測値が縮退していないとの判定結果を出力する(ステップST2-縮退なし)。
 縮退解消部50における超分解能測角部51は、観測値縮退判定部42から出力された判定結果が観測値の縮退を示している場合に、観測値縮退判定部42から相関仮説を取得し、受信回路12からデジタル信号を取得する。超分解能測角部51は、取得したデジタル信号と、取得した相関仮説が含む航跡を用いて超分解能測角を行い、測角結果と観測値縮退判定部42から入力された相関仮説を出力する(ステップST3)。
The observed value degeneracy determination unit 42 determines whether or not the observed value is degenerated in the correlation hypothesis acquired from the correlation hypothesis generation unit 41, and outputs the determined correlation hypothesis and the determination result of the correlation hypothesis in association with each other. (Step ST2). For example, when the same observation value is assigned to a plurality of tracks, the determination result that the observation value is degenerated is output (step ST2-with degeneration). Otherwise, the determination result that the observed value is not degenerated is output (step ST2-no degeneration).
The super-resolution angle measurement unit 51 in the degeneration cancellation unit 50 acquires the correlation hypothesis from the observed value degeneration determination unit 42, when the determination result output from the observed value degeneration determination unit 42 indicates degeneration of the observed value, A digital signal is obtained from the receiving circuit 12. The super-resolution angle measurement unit 51 performs super-resolution angle measurement using the acquired digital signal and the track included in the acquired correlation hypothesis, and outputs the measurement result and the correlation hypothesis input from the observed value degeneration determination unit 42. (Step ST3).
Figure JPOXMLDOC01-appb-I000002

Figure JPOXMLDOC01-appb-I000003

Figure JPOXMLDOC01-appb-I000004
 方位角の尤度関数は例えば次のように表現される。
Figure JPOXMLDOC01-appb-I000005

Figure JPOXMLDOC01-appb-I000006
 最尤法による測角は、尤度関数を最大とするような方位角ベクトルθの探索によって行われる。探索方法としては、例えばEM(Expectation Maximization)アルゴリズムがある。
Figure JPOXMLDOC01-appb-I000002

Figure JPOXMLDOC01-appb-I000003

Figure JPOXMLDOC01-appb-I000004
The likelihood function of azimuth is expressed as follows, for example.
Figure JPOXMLDOC01-appb-I000005

Figure JPOXMLDOC01-appb-I000006
The measurement by the maximum likelihood method is performed by searching the azimuth angle vector θ k so as to maximize the likelihood function. As a search method, for example, there is an EM (Expectation Maximization) algorithm.
 航跡の予測位置の期待値の方位角を用いた最尤法のイメージを図4に示す。図4では、相関仮説に含まれる航跡数が2である場合を示しており(航跡401、航跡402)、この図では説明のために目標がx,yの2次元に存在する場合を考えている。この平面に直交する軸は、方位角の尤度を表す軸であり、ここでは一例として、最尤法の尤度関数を実線403で、FB-SSP MUSIC法の尤度関数を点線404で表している。各測角方式において、尤度関数の山となる部分が測角値の候補となる。図4のFB-SSP MUSIC法の尤度関数は、各目標の出力した信号が高い相関をもち、かつこれらが近接している場合等の、空間平均法によって各目標の信号間の相関を低減できない場合の例を示している。図4から、FB-SSP MUSIC法で測角を行う場合、尤度関数の形状が単峰であるから、得られる測角値は1個(図4の■印405)となり、観測値が縮退することがわかる。また、最尤法で局所解となる方位角付近から探索を始めた場合、最尤法はその局所解(図4の▲印406)を測角値として出力してしまうことがわかる。ここで、航跡の予測位置407,408が大域解(図4の★印409,410)に十分近い場合、航跡の予測位置の方位角を初期値411,412として尤度関数の最大値を探索する(矢印413,414)ことで、最尤法の尤度関数の大域解にあたる測角値409,410が得られ、観測値が縮退しないと考えられる。図中、○印415,416が探索の収束値を示している。 An image of the maximum likelihood method using the azimuth angle of the expected value of the predicted position of the track is shown in FIG. FIG. 4 shows the case where the number of tracks included in the correlation hypothesis is 2 (track 401, track 402), and in this figure, for the sake of explanation, it is assumed that the target exists in two dimensions of x and y. There is. The axis orthogonal to this plane is an axis that represents the likelihood of azimuth, and here, as an example, the likelihood function of the maximum likelihood method is represented by the solid line 403, and the likelihood function of the FB-SSP MUSIC method is represented by the dotted line 404. ing. In each angle measurement system, a peak portion of the likelihood function is a candidate for angle measurement values. The likelihood function of the FB-SSP MUSIC method in FIG. 4 reduces the correlation between the signals of each target by the spatial averaging method when the signals output from each target have high correlation and they are close to each other. An example of the case where it can not be shown. From FIG. 4, when angle measurement is performed by the FB-SSP MUSIC method, since the shape of the likelihood function is single-peaked, the obtained angle value becomes one (in FIG. 4, mark 405) and the observed value is degenerated. I know what to do. In addition, when the search is started from around the azimuth that is a local solution by the maximum likelihood method, it is understood that the maximum likelihood method outputs the local solution (▲ mark 406 in FIG. 4) as an angle value. Here, when the predicted position 407, 408 of the track is sufficiently close to the global solution ( marks 409, 410 in FIG. 4), the azimuth angle of the predicted position of the track is set to the initial value 411, 412 and the maximum value of the likelihood function is searched. By performing (arrows 413 and 414), angle values 409 and 410 corresponding to the global solutions of the likelihood function of the maximum likelihood method are obtained, and it is considered that the observed values are not degenerated. In the figure, 印 marks 415 and 416 indicate convergence values of the search.
 以上では最尤法の初期値として航跡の予測位置の期待値の方位角を用いる方法を説明したが、航跡の予測の分布から複数回サンプリングしたサンプル毎に、サンプルを初期値とした最尤法による測角を行い、測角値のなかで最も尤度が高くなる値を超分解能測角部51の測角結果とする方式を用いてもよい。 Although the method of using the azimuth of the expected value of the predicted position of the track as the initial value of the maximum likelihood method has been described above, the maximum likelihood method using the sample as the initial value for each sample sampled a plurality of times from the distribution of the track prediction. The angle measurement may be performed according to the method described above, and the value with the highest likelihood among the angle measurement values may be used as the angle measurement result of the super-resolution angle measurement unit 51.
 相関仮説更新部52では、超分解能測角部51から入力された相関仮説に含まれる観測値を、超分解能測角部51から入力された測角結果から算出した観測値で置き換えた相関仮説を生成し、生成した相関仮説を出力する(ステップST4)。観測値と航跡の相関方法は、例えば超分解能測角部51で得られた測角値毎に、それぞれの初期値として用いた航跡を記憶しておくことで、各航跡に割り当てる観測値を決定する方法が考えられる。 The correlation hypothesis updating unit 52 replaces the correlation hypothesis in which the observation value included in the correlation hypothesis input from the super resolution angle measurement unit 51 is replaced with the observation value calculated from the angle measurement result input from the super resolution angle measurement unit 51. The generated correlation hypothesis is generated and output (step ST4). The correlation method of the observation value and the track, for example, determines the observation value to be assigned to each track by storing the track used as the initial value for each of the angle measurement values obtained by the super-resolution angle measuring unit 51 How to do
 相関仮説評価部43は、観測値縮退判定部42または相関仮説更新部52から相関仮説を取得し、相関仮説の尤もらしさについて評価を行い、相関仮説に含まれる評価値を更新し、評価値を更新した相関仮説を出力する(ステップST5)。相関仮説の評価は、例えば、文献:B. T. Vo and B. N. Vo, “Labeled Random Finite Set and Multi-Object Conjugate Priors”, IEEE Trans. on Signal Processing, vol. 61, no. 13, pp. 3460-3475, 2013.の多目標追尾アルゴリズムと同様に行うことができる。 The correlation hypothesis evaluation unit 43 acquires the correlation hypothesis from the observed value degeneracy determination unit 42 or the correlation hypothesis update unit 52, evaluates the likelihood of the correlation hypothesis, updates the evaluation value included in the correlation hypothesis, and evaluates the evaluation value. The updated correlation hypothesis is output (step ST5). The evaluation of the correlation hypothesis is described, for example, in the documents: B. T. Vo and B. N. Vo, “Labeled Random Finite Set and Multi-Object Conjugate Priors”, IEEE Trans. On Signal Processing, vol. 61, no. It can be performed in the same manner as the multi-target tracking algorithm of pp. 3460-3475, 2013.
 航跡更新部44は、相関仮説評価部43から相関仮説を取得し、相関仮説に含まれる各航跡を、相関する観測値を用いて更新する(ステップST6)。例えば、次式(3)のように、カルマンフィルタを用いて航跡を更新することが可能である。
Figure JPOXMLDOC01-appb-I000007

Figure JPOXMLDOC01-appb-I000008
The track update unit 44 acquires the correlation hypothesis from the correlation hypothesis evaluation unit 43, and updates each track included in the correlation hypothesis using the correlated observation value (step ST6). For example, it is possible to update the track using a Kalman filter as in the following equation (3).
Figure JPOXMLDOC01-appb-I000007

Figure JPOXMLDOC01-appb-I000008
 以上のステップST2~ステップST6を相関仮説毎に行う。
 相関仮説保存部45は、航跡更新部44から出力された全ての相関仮説が入力され、これらをメモリ等に出力する処理を行う(ステップST7)。
 航跡決定部46は、航跡更新部44から出力された全ての相関仮説が入力され、そのなかで最も高い評価値をもつ相関仮説に含まれる航跡を時刻kでの目標の航跡として出力する(ステップST8)。出力された航跡は、例えば表示用航跡として図示しない表示器等に出力される。
The above steps ST2 to ST6 are performed for each correlation hypothesis.
The correlation hypothesis storage unit 45 receives all correlation hypotheses output from the track updating unit 44, and performs a process of outputting these to a memory or the like (step ST7).
The track determination unit 46 receives all correlation hypotheses output from the track update unit 44, and outputs the track included in the correlation hypothesis having the highest evaluation value as the target track at time k (step ST8). The output track is output, for example, as a display track to a display or the like (not shown).
 このように、実施の形態1における目標追尾装置は、観測値が縮退したと考える仮説において超分解能測角を行い、相関仮説を更新することで、到来波間の相関が高い場合においても、縮退していない観測値を用いた航跡更新が可能となるため、目標の位置と速度の推定誤差を低減できる。これにより誤航跡の発生を防ぐことができるため、目標数の推定誤差を低減できる。 As described above, the target tracking device according to the first embodiment performs the super-resolution angle measurement on the hypothesis that the observed value is considered to be degenerate and updates the correlation hypothesis, thereby degenerating even when the correlation between the arriving waves is high. Since it is possible to update the track using unobserved observation values, it is possible to reduce the estimation error of the position and velocity of the target. As a result, since occurrence of a false navigation can be prevented, estimation errors of the target number can be reduced.
 以上説明したように実施の形態1の目標追尾装置によれば、複数目標の観測信号を取得するセンサ処理部と、センサ処理部で取得された観測信号から観測値を生成する観測値抽出部と、観測値抽出部で生成された観測値を用いて、設定された位置推定手法を用いて複数目標の位置諸元推定値を求めると共に、位置諸元推定値から観測値の縮退の有無を判定する多目標追尾処理部と、多目標追尾処理部で観測値の縮退があると判定された場合は、一つの観測値に対して多目標の予測値を基に目標推定を行う位置推定手法を用いて複数目標の位置諸元推定値を求める縮退解消部とを備え、多目標追尾処理部は、観測値の縮退があると判定した場合は、観測値の縮退があると判定した相関仮説の航跡を、縮退解消部で求められた位置諸元推定値で更新するようにしたので、到来波間の相関が高い場合においても、縮退していない観測値を用いた航跡更新が可能となり、従って、目標の位置と速度の推定誤差を低減することができる。これにより、誤航跡の発生を防ぐことができ、目標数の推定誤差を低減することができる。 As described above, according to the target tracking device of the first embodiment, a sensor processing unit that acquires observation signals of a plurality of targets, and an observation value extraction unit that generates observation values from the observation signals acquired by the sensor processing unit Using the observation value generated by the observation value extraction unit to obtain position specification estimated values of a plurality of targets using the set position estimation method, and determine the presence or absence of degeneration of the observation from the position specification estimations If it is determined that the observed values are degenerated by the multi-target tracking processing unit and the multi-target tracking processing unit, a position estimation method for performing target estimation based on the multi-target predicted values for one observed value is used. And a degeneracy eliminating unit for obtaining estimated values of position specifications of a plurality of targets, and the multi-target tracking processing unit determines that there is degeneracy of the observed values when it is determined that there is degeneracy of the observed values. The track is a position specification estimate obtained by the degeneracy cancellation unit Since so new to, when the correlation of the incoming waves is higher, it is possible to track updates using the observed values does not degenerate, hence, it is possible to reduce the estimation error of the target position and velocity. As a result, the occurrence of a false navigation can be prevented, and the estimation error of the target number can be reduced.
 また、実施の形態1の目標追尾装置によれば、多目標追尾処理部は、観測値抽出部から入力された観測値と航跡について、複数の航跡が単一の観測値に相関する相関仮説を生成し、縮退解消部は、多目標追尾処理部で生成された相関仮説に含まれる航跡を用いて観測値の更新を行うようにしたので、到来波間の相関が高い場合でも観測値の縮退を避けることができる。 Further, according to the target tracking device of the first embodiment, the multi-target tracking processing unit generates a correlation hypothesis in which a plurality of tracks correlates to a single observation value for the observation value and the track input from the observation value extraction unit. Since the degeneration cancellation unit updates the observation value using the track included in the correlation hypothesis generated by the multi-target tracking processing unit, the degeneration of the observation value is performed even when the correlation between the incoming waves is high. It can be avoided.
 また、実施の形態1の目標追尾装置によれば、縮退解消部は、多目標追尾処理部から入力された航跡の予測の期待値を用いて観測値を更新するようにしたので、到来波間の相関が高い場合でも観測値の縮退を避けることができる。 Further, according to the target tracking device of the first embodiment, the degeneration elimination unit updates the observation value using the expected value of the track prediction input from the multi-target tracking processing unit. Even when the correlation is high, degeneration of the observed values can be avoided.
 また、実施の形態1の目標追尾装置によれば、縮退解消部は、多目標追尾処理部から入力された航跡の予測の分布から複数回サンプリングし、サンプル毎に観測値の更新処理を行い、更新処理結果のなかで、尤もらしい観測値を更新後の観測値として出力するようにしたので、到来波間の相関が高い場合でも観測値の縮退を避けることができる。 Further, according to the target tracking device of the first embodiment, the degeneration cancellation unit samples a plurality of times from the distribution of track predictions input from the multi-target tracking processing unit, and performs the process of updating observation values for each sample. Among the update processing results, since the probable observation value is output as the observation value after the update, degeneration of the observation value can be avoided even when the correlation between the incoming waves is high.
 また、実施の形態1の目標追尾装置によれば、一つの観測値に対して多目標の予測値を基に目標推定を行う位置推定手法は超分解能測角であるようにしたので、到来波間の相関が高い場合でも観測値の縮退を避けることができる。 Further, according to the target tracking device according to the first embodiment, the position estimation method for performing target estimation based on predicted values of multiple targets for one observed value is superresolution angle measurement, so Even when the correlation of is high, the degeneracy of the observation value can be avoided.
 また、実施の形態1の目標追尾装置によれば、超分解能測角を最尤法による測角としたので、到来波間の相関が高い場合でも観測値の縮退を避けることができる。 Further, according to the target tracking device of the first embodiment, since the super-resolution angle measurement is performed by the maximum likelihood method, degeneration of observed values can be avoided even when the correlation between incoming waves is high.
実施の形態2.
 実施の形態1では、目標自体が出力する信号を受信して目標の追尾を行う例であるが、センサ処理部が送信部を持ち、目標に信号を照射し、目標で反射された信号から目標の追尾を行うようにしても良く、この例を実施の形態2として次に示す。
 図5は、実施の形態2の目標追尾装置の構成図である。実施の形態2におけるセンサ処理部10aは、送信部14と受信部13を備える。送信部14は送信アンテナ部15と送信回路16とを備える。送信アンテナ部15は、送信回路16で生成されたアナログ信号を電波に変換し、空間に放射するアンテナである。送信回路16は、送信アンテナ部15から空間に放射する電波のアナログ信号を生成する回路である。受信部13は、受信アンテナ部11と受信回路12を備え、これら受信アンテナ部11及び受信回路12は実施の形態1と同様の構成である。観測値抽出部20と追尾処理部30の構成は実施の形態1と同様であるため、対応する部分に同一符号を付してその説明を省略する。また、実施の形態2の目標追尾装置のハードウェア構成については、図2のハードウェア構成において、送信回路16の機能に対応したプログラムがストレージ104に格納され、プロセッサ101がこれをメモリ102に読み込んで実行することで送信回路16の機能を実現するよう構成されている他は実施の形態1と同様である。
Second Embodiment
The first embodiment is an example in which a signal output from the target itself is received and tracking of the target is performed. However, the sensor processing unit has a transmitting unit, emits a signal to the target, and the target reflected from the signal reflected by the target May be performed, and this example is shown as a second embodiment below.
FIG. 5 is a block diagram of a target tracking device according to a second embodiment. The sensor processing unit 10 a according to the second embodiment includes a transmitting unit 14 and a receiving unit 13. The transmission unit 14 includes a transmission antenna unit 15 and a transmission circuit 16. The transmission antenna unit 15 is an antenna that converts an analog signal generated by the transmission circuit 16 into a radio wave and radiates it into space. The transmission circuit 16 is a circuit that generates an analog signal of a radio wave radiated from the transmission antenna unit 15 into space. The receiving unit 13 includes a receiving antenna unit 11 and a receiving circuit 12. The receiving antenna unit 11 and the receiving circuit 12 have the same configuration as that of the first embodiment. The configurations of the observation value extraction unit 20 and the tracking processing unit 30 are the same as in the first embodiment, so the corresponding parts are denoted by the same reference numerals and the description thereof will be omitted. Further, regarding the hardware configuration of the target tracking device according to the second embodiment, in the hardware configuration of FIG. 2, a program corresponding to the function of the transmission circuit 16 is stored in the storage 104, and the processor 101 reads it into the memory 102. The second embodiment is the same as the first embodiment except that it is configured to realize the function of the transmission circuit 16 by being executed.
 次に、実施の形態2の目標追尾装置の動作について説明する。
 送信回路16は、目標に対して照射するためのアナログ信号を生成し、送信アンテナ部15はこのアナログ信号を電波に変換し、空間に放射する。実施の形態2では、受信部13の受信回路12において、送信回路16で生成された信号を参照することで、受信回路12で生成したデジタル信号から目標で反射した電波に対応する部分を検出し、検出した信号のみを出力する。なお、実施の形態1の受信回路12と同様、実施の形態2においても、目標から通信などの用途で出力された電波信号も出力するようにしても良い。
 観測値抽出部20は受信回路12から入力されたデジタル信号を用いて測距値と測角値を算出し、座標上での目標の推定位置を出力する。追尾処理部30の動作は実施の形態1と同様であるため、ここでの説明は省略する。
Next, the operation of the target tracking device according to the second embodiment will be described.
The transmission circuit 16 generates an analog signal for irradiating the target, and the transmission antenna unit 15 converts the analog signal into a radio wave and radiates it into space. In the second embodiment, the receiver circuit 12 of the receiver unit 13 detects a portion corresponding to the radio wave reflected by the target from the digital signal generated by the receiver circuit 12 by referring to the signal generated by the transmitter circuit 16. , Output only the detected signal. As in the case of the receiving circuit 12 of the first embodiment, also in the second embodiment, a radio wave signal output from a target for use in communication or the like may be output.
The observation value extraction unit 20 calculates the distance measurement value and the angle measurement value using the digital signal input from the reception circuit 12, and outputs the estimated position of the target on the coordinate. The operation of the tracking processing unit 30 is the same as that of the first embodiment, and thus the description thereof is omitted here.
 以上説明したように、実施の形態2の目標追尾装置によれば、センサ処理部は、目標に照射する信号を出力する送信部を備え、送信部から出力されて目標から反射された信号を観測信号とするようにしたので、目標追尾装置から信号を送信し、この信号が目標で反射された信号を受信して目標の追尾を行うことから、目標自身が信号を出力していない場合でも追尾を行うことができる。 As described above, according to the target tracking device of the second embodiment, the sensor processing unit includes the transmission unit that outputs the signal to be irradiated to the target, and observes the signal that is output from the transmission unit and reflected from the target. Since it was made to be a signal, a signal is transmitted from the target tracking device, and this signal receives the signal reflected by the target and performs tracking of the target, so even if the target itself does not output a signal It can be performed.
実施の形態3.
 実施の形態1及び実施の形態2では、全ての相関仮説を相関仮説保存部45で記憶するようにしたものであったが、一部の相関仮説のみを保存するようにしてもよく、これを実施の形態3として以下に示す。
Third Embodiment
In the first embodiment and the second embodiment, all correlation hypotheses are stored in the correlation hypothesis storage unit 45. However, only some correlation hypotheses may be stored. A third embodiment will be described below.
 図6は、実施の形態3の目標追尾装置の構成図である。実施の形態3における追尾処理部30aの多目標追尾処理部40aが相関仮説選択部47を備えている。この相関仮説選択部47は、相関仮説の評価値に基づいて相関仮説保存部45に保存する相関仮説を選択するよう構成されている。これ以外の多目標追尾処理部40a内の構成と、センサ処理部10、観測値抽出部20及びの縮退解消部50の構成は図1に示した実施の形態1の構成と同様であるため、対応する部分に同一符号を付してその説明を省略する。 FIG. 6 is a block diagram of a target tracking device according to the third embodiment. The multi-target tracking processing unit 40 a of the tracking processing unit 30 a according to the third embodiment includes a correlation hypothesis selecting unit 47. The correlation hypothesis selection unit 47 is configured to select a correlation hypothesis to be stored in the correlation hypothesis storage unit 45 based on the evaluation value of the correlation hypothesis. The other configuration in the multi-target tracking processing unit 40a and the configurations of the sensor processing unit 10, the observation value extraction unit 20, and the degeneration elimination unit 50 are the same as the configuration of the first embodiment shown in FIG. The same reference numerals are given to corresponding parts and the description thereof is omitted.
 また、実施の形態3の目標追尾装置におけるハードウェア構成は、図2のハードウェア構成において、相関仮説選択部47の機能に対応したプログラムがストレージ104に格納され、プロセッサ101がこれをメモリ102に読み込んで実行することで相関仮説選択部47の機能を実現するよう構成されている他は実施の形態1と同様である。 In the hardware configuration of the target tracking apparatus according to the third embodiment, in the hardware configuration of FIG. 2, a program corresponding to the function of the correlation hypothesis selecting unit 47 is stored in the storage 104, and the processor 101 stores it in the memory 102. The configuration is the same as that of the first embodiment except that the function of the correlation hypothesis selection unit 47 is realized by reading and executing.
 実施の形態3の相関仮説選択部47は、航跡更新部44から出力された相関仮説毎の評価値を用いて、相関仮説保存部45に記憶する相関仮説を選択する。例えば、シミュレーション等を元に事前に決定した閾値を上回る評価値をもつ相関仮説のみを選択する、といった動作を行う。これにより、相関仮説保存部45には相関仮説選択部47で選択された相関仮説のみが保存され、相関仮説生成部41は、相関仮説保存部45に保存された相関仮説に基づいて動作を行う。これ以外の動作については実施の形態1と同様であるため、ここでの説明は省略する。 The correlation hypothesis selecting unit 47 of the third embodiment selects the correlation hypothesis stored in the correlation hypothesis storage unit 45 using the evaluation value for each correlation hypothesis output from the track updating unit 44. For example, an operation is performed such that only correlation hypotheses having evaluation values exceeding a threshold value determined in advance based on simulation or the like are selected. Thereby, only the correlation hypothesis selected by the correlation hypothesis selection unit 47 is stored in the correlation hypothesis storage unit 45, and the correlation hypothesis generation unit 41 performs an operation based on the correlation hypothesis stored in the correlation hypothesis storage unit 45. . The other operations are the same as in the first embodiment, and thus the description thereof is omitted.
 なお、上記例では、実施の形態1の構成に対して相関仮説選択部47を適用した例を示したが、実施の形態2の構成に対して適用してもよい。 In the above example, the correlation hypothesis selection unit 47 is applied to the configuration of the first embodiment, but may be applied to the configuration of the second embodiment.
 以上説明したように、実施の形態3の目標追尾装置によれば、多目標追尾処理部は、相関仮説の評価値に基づいて保存する相関仮説を選択する相関仮説選択部と、選択された相関仮説と観測値を用いて新たな相関仮説を生成する相関仮説生成部とを備え、相関仮説生成部で生成された相関仮説に基づいて観測値の縮退の有無を判定するようにしたので、相関仮説を保存するためのメモリの容量を小さくすることができる。また、各時刻に目標追尾装置で処理する相関仮説の個数も減少させることができるため、計算負荷を低減することができる。 As described above, according to the target tracking device of the third embodiment, the multi-target tracking processing unit selects the correlation hypothesis selection unit that selects the correlation hypothesis to be stored based on the evaluation value of the correlation hypothesis, and the selected correlation The correlation hypothesis generation unit generates a new correlation hypothesis using a hypothesis and an observation value, and the presence or absence of observation value degeneration is determined based on the correlation hypothesis generated by the correlation hypothesis generation unit. The capacity of memory for storing hypotheses can be reduced. In addition, since the number of correlation hypotheses processed by the target tracking device at each time can be reduced, the calculation load can be reduced.
実施の形態4.
 実施の形態1~3では、航跡の更新に観測値と航跡の1対1相関を前提としてカルマンフィルタを用いた更新を行うが、1対多相関を実現する航跡の更新方法として粒子フィルタを用いた例を実施の形態4として以下に示す。
 図7は実施の形態4の目標追尾装置の構成図である。
 図7は図1の縮退解消部50の超分解能測角部51と相関仮説更新部52を縮退仮説航跡更新部53に置き換えて、縮退解消部50aとしたものである。縮退仮説航跡更新部53では、多目標追尾処理部40bの観測値縮退判定部42で観測値の縮退が発生したと判定した場合、非線形フィルタである粒子フィルタを用いて縮退仮説の航跡を更新する処理部である。すなわち、実施の形態4では、一つの観測値に対して多目標の予測値を基に目標推定を行う位置推定手法として粒子フィルタを用いており、縮退解消部50aは位置諸元推定値として更新された航跡を出力する。また、これにより、相関仮説評価部43aは、縮退仮説航跡更新部53の尤度計算結果を用いて相関仮説の評価を行うよう構成されている。これ以外のセンサ処理部10と観測値抽出部20の構成は実施の形態1と同様であるため、ここでの説明は省略する。
Fourth Embodiment
In the first to third embodiments, updating of tracks is performed using Kalman filter on the premise of one-to-one correlation between observed values and tracks, but particle filters are used as a method of updating tracks to realize one-to-many correlation. An example is shown below as Embodiment 4.
FIG. 7 is a block diagram of a target tracking device according to the fourth embodiment.
In FIG. 7, the super-resolution angle measuring unit 51 and the correlation hypothesis updating unit 52 of the degeneration eliminating unit 50 in FIG. 1 are replaced with the degeneration hypothesis track updating unit 53 to form a degeneration eliminating unit 50 a. In the degeneration hypothesis track update unit 53, when the observation value degeneration determination unit 42 of the multi-target tracking processing unit 40b determines that degeneration of the observation value occurs, the track of the degeneration hypothesis is updated using the particle filter that is a non-linear filter. It is a processing unit. That is, in the fourth embodiment, a particle filter is used as a position estimation method for performing target estimation based on multi-target prediction values for one observation value, and the degeneration elimination unit 50a is updated as a position specification estimation value. Output the track that was Further, as a result, the correlation hypothesis evaluation unit 43a is configured to evaluate the correlation hypothesis using the likelihood calculation result of the degeneration hypothesis track update unit 53. The other configurations of the sensor processing unit 10 and the observation value extraction unit 20 are the same as in the first embodiment, and thus the description thereof is omitted.
 また、実施の形態4の目標追尾装置のハードウェア構成については、図2のハードウェア構成において、縮退解消部50aと多目標追尾処理部40bの相関仮説評価部43aの機能に対応したプログラムがストレージ104に格納され、プロセッサ101がこれをメモリ102に読み込んで実行することで縮退解消部50aと相関仮説評価部43aの機能を実現するよう構成されている他は実施の形態1と同様である。 Further, regarding the hardware configuration of the target tracking device according to the fourth embodiment, in the hardware configuration of FIG. 2, a program corresponding to the function of the correlation hypothesis evaluation unit 43a of the degeneration elimination unit 50a and the multi-target tracking processing unit 40b is a storage The configuration is the same as that of the first embodiment except that it is stored in 104 and configured to implement the functions of the degeneration elimination unit 50a and the correlation hypothesis evaluation unit 43a by reading and executing this in the memory 102 by the processor 101.
 次に実施の形態4の目標追尾装置の動作について説明する。センサ処理部10及び観測値抽出部20の動作は実施の形態1と同様であるため、ここでの説明は省略し、追尾処理部30bの動作について説明する。図8は、実施の形態4の追尾処理部30bの動作を示すフローチャートである。先ず、ステップST1~ステップST2(縮退なし)~ステップST5~ステップST6~ステップST7~ステップST8の動作については実施の形態1と同様である。すなわち、観測値の縮退が起こらない場合は実施の形態1の追尾処理部30の動作と同様である。 Next, the operation of the target tracking device according to the fourth embodiment will be described. The operations of the sensor processing unit 10 and the observation value extraction unit 20 are the same as in the first embodiment, and thus the description thereof will be omitted, and the operation of the tracking processing unit 30b will be described. FIG. 8 is a flowchart showing the operation of the tracking processing unit 30b of the fourth embodiment. First, the operations of step ST1 to step ST2 (without degeneration) to step ST5 to step ST6 to step ST7 to step ST8 are the same as in the first embodiment. That is, when the degeneration of the observed value does not occur, the operation is the same as that of the tracking processing unit 30 of the first embodiment.
Figure JPOXMLDOC01-appb-I000009
Figure JPOXMLDOC01-appb-I000009
Figure JPOXMLDOC01-appb-I000010

Figure JPOXMLDOC01-appb-I000011

Figure JPOXMLDOC01-appb-I000012

Figure JPOXMLDOC01-appb-I000013

Figure JPOXMLDOC01-appb-I000014
Figure JPOXMLDOC01-appb-I000010

Figure JPOXMLDOC01-appb-I000011

Figure JPOXMLDOC01-appb-I000012

Figure JPOXMLDOC01-appb-I000013

Figure JPOXMLDOC01-appb-I000014
Figure JPOXMLDOC01-appb-I000015
Figure JPOXMLDOC01-appb-I000015
 このように、実施の形態4では非線形な縮退の観測過程に対応するため、粒子フィルタを用いて縮退仮説の航跡の更新を行うため、縮退ありと判定された観測値に対して精度良く航跡を推定できる。また、観測値が縮退しない仮説の航跡更新は実施の形態1と同様の構成としたため、計算時間を抑えることができる。
 なお、上記例では、実施の形態1の構成に対して縮退解消部50aを適用した例を示したが、実施の形態2または実施の形態3の構成に対して適用してもよい。
As described above, in the fourth embodiment, since the trajectory of the degeneration hypothesis is updated using the particle filter in order to correspond to the observation process of nonlinear degeneration, the trajectory is accurately measured for the observed value determined to be degenerate. It can be estimated. Further, since the track update of the hypothesis in which the observed value is not degenerated has the same configuration as that of the first embodiment, the calculation time can be suppressed.
Although the example in which the degeneration eliminating unit 50a is applied to the configuration of the first embodiment is shown in the above example, the configuration may be applied to the configuration of the second embodiment or the third embodiment.
 以上説明したように、実施の形態4の目標追尾装置によれば、一つの観測値に対して多目標の予測値を基に目標推定を行う位置推定手法を粒子フィルタとしたので、到来波間の相関が高い場合においても、縮退に対応した非線形フィルタによる航跡更新が可能となり、従って、目標の位置と速度の推定誤差を低減することができる。これにより、誤航跡の発生を防ぐことができ、目標数の推定誤差を低減することができる。 As described above, according to the target tracking device of the fourth embodiment, the particle filter is used as the position estimation method for performing target estimation based on predicted values of multiple targets for one observed value, so Even when the correlation is high, it is possible to update the track by the non-linear filter corresponding to the degeneration, and therefore it is possible to reduce the estimation error of the position and velocity of the target. As a result, the occurrence of a false navigation can be prevented, and the estimation error of the target number can be reduced.
 なお、本願発明はその発明の範囲内において、各実施の形態の自由な組み合わせ、あるいは各実施の形態の任意の構成要素の変形、もしくは各実施の形態において任意の構成要素の省略が可能である。 In the scope of the invention, the present invention allows free combination of each embodiment, or modification of any component of each embodiment, or omission of any component in each embodiment. .
 以上のように、この発明に係る目標追尾装置は、観測値の縮退の有無に応じて目標の位置推定手法を切り替える構成に関するものであり、複数の目標を追尾するのに適している。 As described above, the target tracking device according to the present invention relates to a configuration that switches the position estimation method of the target according to the presence or absence of degeneration of the observation value, and is suitable for tracking a plurality of targets.
 10,10a センサ処理部、11 受信アンテナ部、12 受信回路、13 受信部、14 送信部、15 送信アンテナ部、16 送信回路、20 観測値抽出部、30,30a,30b 追尾処理部、40,40a,40b 多目標追尾処理部、41 相関仮説生成部、42 観測値縮退判定部、43,43a 相関仮説評価部、44 航跡更新部、45 相関仮説保存部、46 航跡決定部、47 相関仮説選択部、50,50a 縮退解消部、51 超分解能測角部、52 相関仮説更新部、53 縮退仮説航跡更新部。 Reference Signs List 10, 10a sensor processing unit, 11 reception antenna unit, 12 reception circuit, 13 reception unit, 14 transmission unit, 15 transmission antenna unit, 16 transmission circuit, 20 observation value extraction unit, 30, 30a, 30b tracking processing unit, 40, 40a, 40b multi-target tracking processing unit, 41 correlation hypothesis generation unit, 42 observed value degeneration determination unit, 43, 43a correlation hypothesis evaluation unit, 44 wake update unit, 45 correlation hypothesis storage unit, 46 wake determination unit, 47 correlation hypothesis selection Part, 50, 50a Degeneration cancellation part, 51 super resolution angle measurement part, 52 correlation hypothesis update part, 53 degeneration hypothesis track update part.

Claims (9)

  1.  複数目標の観測信号を取得するセンサ処理部と、
     前記センサ処理部で取得された観測信号から観測値を生成する観測値抽出部と、
     前記観測値抽出部で生成された観測値を用いて、設定された位置推定手法を用いて複数目標の位置諸元推定値を求めると共に、当該位置諸元推定値から観測値の縮退の有無を判定する多目標追尾処理部と、
     前記多目標追尾処理部で観測値の縮退があると判定された場合は、一つの観測値に対して多目標の予測値を基に目標推定を行う位置推定手法を用いて複数目標の位置諸元推定値を求める縮退解消部とを備え、
     前記多目標追尾処理部は、前記観測値の縮退があると判定した場合は、当該観測値の縮退があると判定した相関仮説の航跡を、前記縮退解消部で求められた位置諸元推定値で更新することを特徴とする目標追尾装置。
    A sensor processing unit that acquires observation signals of multiple targets;
    An observation value extraction unit that generates an observation value from the observation signal acquired by the sensor processing unit;
    Based on the observation value generated by the observation value extraction unit, the position specification estimated value of a plurality of targets is determined using the set position estimation method, and the presence or absence of degeneration of the observation is calculated from the position specification estimation value. A multi-target tracking processing unit to determine
    If the multi-target tracking processing unit determines that the observed values are degenerated, the position estimation method of multiple targets is performed using target estimation based on predicted values of multiple targets for one observed value. And a degeneracy eliminating unit for obtaining an original estimated value,
    When the multi-target tracking processing unit determines that the observed value is degenerated, the track of the correlation hypothesis determined that the observed value is degenerated is the position specification estimated value determined by the degenerate cancellation unit. A target tracking device characterized by updating with
  2.  前記多目標追尾処理部は、前記観測値抽出部から入力された観測値と航跡について、複数の航跡が単一の観測値に相関する相関仮説を生成し、
     前記縮退解消部は、前記多目標追尾処理部で生成された相関仮説に含まれる航跡を用いて観測値の更新を行うことを特徴とする請求項1記載の目標追尾装置。
    The multi-target tracking processing unit generates a correlation hypothesis in which a plurality of tracks are correlated with a single observation value for the observation values and the tracks input from the observation value extraction unit,
    The target tracking device according to claim 1, wherein the degeneration cancellation unit updates the observation value using a track included in the correlation hypothesis generated by the multi-target tracking processing unit.
  3.  前記縮退解消部は、前記多目標追尾処理部から入力された航跡の予測の期待値を用いて観測値を更新することを特徴とする請求項1記載の目標追尾装置。 The target tracking device according to claim 1, wherein the degeneration cancellation unit updates the observation value using the expected value of the track prediction input from the multi-target tracking processing unit.
  4.  前記縮退解消部は、前記多目標追尾処理部から入力された航跡の予測の分布から複数回サンプリングし、サンプル毎に観測値の更新処理を行い、更新処理結果のなかで、尤もらしい観測値を更新後の観測値として出力することを特徴とする請求項1記載の目標追尾装置。 The degeneration cancellation unit samples a plurality of times from the distribution of track predictions input from the multi-target tracking processing unit, performs observation value update processing for each sample, and selects probable observation values among update processing results. The target tracking device according to claim 1, wherein the target tracking device outputs the updated observation value.
  5.  前記一つの観測値に対して多目標の予測値を基に目標推定を行う位置推定手法は超分解能測角であることを特徴とする請求項1記載の目標追尾装置。 The target tracking device according to claim 1, wherein the position estimation method for performing target estimation on the basis of predicted values of multiple targets for one observation value is super-resolution angle measurement.
  6.  超分解能測角は最尤法による測角であることを特徴とする請求項5記載の目標追尾装置。 The target tracking device according to claim 5, wherein the super-resolution angle measurement is a maximum likelihood method angle measurement.
  7.  前記センサ処理部は、目標に照射する信号を出力する送信部を備え、当該送信部から出力されて目標から反射された信号を前記観測信号とすることを特徴とする請求項1から請求項6のうちのいずれか1項記載の目標追尾装置。 The sensor processing unit includes a transmission unit that outputs a signal for irradiating a target, and the signal output from the transmission unit and reflected from the target is used as the observation signal. The target tracking device according to any one of the above.
  8.  前記多目標追尾処理部は、相関仮説の評価値に基づいて保存する相関仮説を選択する相関仮説選択部と、当該選択された相関仮説と前記観測値を用いて新たな相関仮説を生成する相関仮説生成部とを備え、当該相関仮説生成部で生成された相関仮説に基づいて観測値の縮退の有無を判定することを特徴とする請求項1から請求項6のうちのいずれか1項記載の目標追尾装置。 The multi-target tracking processing unit generates a new correlation hypothesis using the correlation hypothesis selection unit that selects a correlation hypothesis to be stored based on the evaluation value of the correlation hypothesis, and the selected correlation hypothesis and the observation value. The method according to any one of claims 1 to 6, further comprising: a hypothesis generation unit, and determining presence or absence of degeneration of the observation value based on the correlation hypothesis generated by the correlation hypothesis generation unit. Target tracking device.
  9.  前記一つの観測値に対して多目標の予測値を基に目標推定を行う位置推定手法は粒子フィルタであることを特徴とする請求項1記載の目標追尾装置。 The target tracking device according to claim 1, wherein the position estimation method for performing target estimation based on multi-target predicted values for one observation value is a particle filter.
PCT/JP2017/028590 2017-08-07 2017-08-07 Target tracking device WO2019030800A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2017/028590 WO2019030800A1 (en) 2017-08-07 2017-08-07 Target tracking device
JP2019531835A JP6641534B2 (en) 2017-08-07 2017-08-07 Target tracking device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/028590 WO2019030800A1 (en) 2017-08-07 2017-08-07 Target tracking device

Publications (1)

Publication Number Publication Date
WO2019030800A1 true WO2019030800A1 (en) 2019-02-14

Family

ID=65272113

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/028590 WO2019030800A1 (en) 2017-08-07 2017-08-07 Target tracking device

Country Status (2)

Country Link
JP (1) JP6641534B2 (en)
WO (1) WO2019030800A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000505201A (en) * 1996-11-14 2000-04-25 レイセオン・カンパニー Track tracking
JP2000147108A (en) * 1998-11-10 2000-05-26 Mitsubishi Electric Corp Apparatus and method for tracking
JP2003014843A (en) * 2001-07-02 2003-01-15 Mitsubishi Electric Corp Radar apparatus
JP2003149328A (en) * 2001-11-14 2003-05-21 Mitsubishi Electric Corp Target correlation device of radar
JP2011242182A (en) * 2010-05-17 2011-12-01 Mitsubishi Electric Corp Passive radar system and passive radar method
US20130076558A1 (en) * 2009-07-09 2013-03-28 Thales Multi-target data processing for multi-static and multi-channel passive radars
JP2014169865A (en) * 2013-03-01 2014-09-18 Hitachi Ltd Target tracking device, target tracking program and target tracking method
JP2016223834A (en) * 2015-05-28 2016-12-28 株式会社東芝 Target detection device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4488185B2 (en) * 2004-06-18 2010-06-23 三菱電機株式会社 Target tracking device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000505201A (en) * 1996-11-14 2000-04-25 レイセオン・カンパニー Track tracking
JP2000147108A (en) * 1998-11-10 2000-05-26 Mitsubishi Electric Corp Apparatus and method for tracking
JP2003014843A (en) * 2001-07-02 2003-01-15 Mitsubishi Electric Corp Radar apparatus
JP2003149328A (en) * 2001-11-14 2003-05-21 Mitsubishi Electric Corp Target correlation device of radar
US20130076558A1 (en) * 2009-07-09 2013-03-28 Thales Multi-target data processing for multi-static and multi-channel passive radars
JP2011242182A (en) * 2010-05-17 2011-12-01 Mitsubishi Electric Corp Passive radar system and passive radar method
JP2014169865A (en) * 2013-03-01 2014-09-18 Hitachi Ltd Target tracking device, target tracking program and target tracking method
JP2016223834A (en) * 2015-05-28 2016-12-28 株式会社東芝 Target detection device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
BEARD, MICHAEL ET AL.: "Bayesian Multi-Target Tracking With Merged Measurements Using Labelled Random Finite Sets", IEEE TRANSACTIONS ON SIGNAL PROCESSING, vol. 63, no. 6, 15 March 2015 (2015-03-15), pages 1433 - 1447, XP011573434, DOI: doi:10.1109/TSP.2015.2393843 *

Also Published As

Publication number Publication date
JP6641534B2 (en) 2020-02-05
JPWO2019030800A1 (en) 2019-11-07

Similar Documents

Publication Publication Date Title
US10175348B2 (en) Use of range-rate measurements in a fusion tracking system via projections
JP5778154B2 (en) Simultaneous radio transmitter mapping and mobile station positioning
Gostar et al. Robust multi-Bernoulli sensor selection for multi-target tracking in sensor networks
CN110088642B (en) System and method for detecting heading and speed of target object
US11061102B2 (en) Position estimating apparatus, position estimating method, and terminal apparatus
US8325086B2 (en) Methods and systems to diminish false-alarm rates in multi-hypothesis signal detection through combinatoric navigation
JP2014153874A (en) Target recognition device
CN111220960B (en) Target feature extraction method and device under multi-station radar
JP2008164545A (en) Moving target detecting device, moving target detection method, and moving target detection program
JP6084810B2 (en) Tracking processing apparatus and tracking processing method
US10247805B2 (en) Observation supporting apparatus and observation supporting method
KR20140138026A (en) Module, device and method for positioning
JP5179054B2 (en) Positioning method and positioning device
JP2016114468A (en) Target detection device
CN106575825B (en) Method for using mode antennas to find sense
JP2017151076A (en) Sound source survey device, sound source survey method, and program therefor
WO2018142629A1 (en) Object detection device, object detection method, and computer readable recording medium
WO2019030800A1 (en) Target tracking device
WO2019239524A1 (en) Path estimating device and portable information terminal
JP6735956B1 (en) Model parameter estimating device, state estimating system and model parameter estimating method
JP5023029B2 (en) Radar equipment
JP2003149328A (en) Target correlation device of radar
JP2012194044A (en) Radar system
JP2005308428A (en) Position estimation system
JP2005148013A (en) Radar device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17921121

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019531835

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17921121

Country of ref document: EP

Kind code of ref document: A1