WO2019029002A1 - 一种具有矫形功能的激光3d打印方法及其系统 - Google Patents

一种具有矫形功能的激光3d打印方法及其系统 Download PDF

Info

Publication number
WO2019029002A1
WO2019029002A1 PCT/CN2017/106246 CN2017106246W WO2019029002A1 WO 2019029002 A1 WO2019029002 A1 WO 2019029002A1 CN 2017106246 W CN2017106246 W CN 2017106246W WO 2019029002 A1 WO2019029002 A1 WO 2019029002A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
printing
powder
orthopedic
spot
Prior art date
Application number
PCT/CN2017/106246
Other languages
English (en)
French (fr)
Inventor
赵晓杰
陶沙
Original Assignee
英诺激光科技股份有限公司
江苏微纳激光应用技术研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 英诺激光科技股份有限公司, 江苏微纳激光应用技术研究院有限公司 filed Critical 英诺激光科技股份有限公司
Priority to US16/236,497 priority Critical patent/US11097470B2/en
Publication of WO2019029002A1 publication Critical patent/WO2019029002A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/141Processes of additive manufacturing using only solid materials
    • B29C64/153Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/264Arrangements for irradiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/35Cleaning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/386Data acquisition or data processing for additive manufacturing
    • B29C64/393Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y40/00Auxiliary operations or equipment, e.g. for material handling
    • B33Y40/20Post-treatment, e.g. curing, coating or polishing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • B33Y50/02Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes

Definitions

  • the present invention relates to the field of 3D printing technologies, and in particular, to a laser 3D printing method having an orthopedic function and a system thereof.
  • 3D Printing technology is a technique for constructing objects by layer-by-layer printing based on digital model files using adhesive materials such as powder or plastic. It eliminates the need for machining or any mold to create parts of any shape directly from computer graphics data, dramatically reducing product development cycles, increasing productivity and reducing production costs.
  • the laser sintering technology utilizes the principle that the powder material is sintered under laser irradiation, and is formed by computer controlled layer stacking.
  • Laser sintering technology can use a lot of powder materials and make finished products of corresponding materials.
  • Laser sintered products have good precision and high strength, and the final product strength is far superior to other 3D.
  • Printing technology In laser 3D printing, when the laser beam is scanned in a large-format 3D printing, the size of the focused spot is usually not fixed in the scanning plane, and the inconsistency of the spot size affects the 3D printing. Quality, so ensuring that the size of the focused spot is consistent across the scanning format is especially important for 3D printing.
  • a laser 3D printing method with orthopedic function according to the present invention comprises the following steps:
  • the first step is to measure the projection characteristics of the points in the scanning web to obtain the amount of the focused spot deformation at each point in the front of the orthopedic web;
  • the compensation amount of the spot correction device for each point in the web is set, so that the size of the focused spot at each point in the web is consistent;
  • the third step is to turn on the laser and dynamically perform the laser 3D printing with the orthopedic device and the scanning device.
  • the method further includes:
  • the fourth step is to perform 3D sintering of the powder by using a continuous laser or a pulsed laser;
  • the fifth step is to use a short pulse width laser to laser-induced shock shock on the 3D sintered component
  • the 3D sintered component is polished by a continuous laser or a pulsed laser.
  • a system for realizing a laser 3D printing method having an orthopedic function as described above comprising: an industrial computer; a pulse width adjustable laser, a beam expanding device, a spot orthodontic device, and a laser scanning device connected and controlled by the industrial computer; and And a powder box controlled by the industrial computer to receive scanning of the laser scanning device to perform 3D printing of the workpiece.
  • the spot orthopedic device comprises: a pair of cylindrical lenses that can be rotated and translated relative to each other.
  • the spot orthopedic device comprises: a cylindrical lens, and an imaging system located behind the cylindrical lens, the cylindrical lens being relatively rotatable and translatable relative to the imaging system.
  • the imaging system comprises: a pair of lenses.
  • the powder box is further provided with a powder supply device.
  • the powder box is further provided with a powder cleaning device and a powder collecting device.
  • the present invention can ensure the uniformity of the size of the focused spot in the scanning web by precisely controlling the amount of compensation of the spot orthodontic device, thereby ensuring the quality of 3D printing.
  • the degree of laser sintering is controlled by changing the width of the laser pulse, and the phenomenon of occurrence of voids, over-burning and spheroidization during printing is improved, and the density is increased.
  • FIG. 1 is a functional block diagram of a first embodiment of a laser 3D printing system having an orthopedic function of the present invention.
  • FIG. 2 is a functional block diagram of a second embodiment of a laser 3D printing system having an orthopedic function of the present invention.
  • FIG. 3 is a flow chart of a 3D printing method using a laser 3D printing system having an orthopedic function according to the present invention.
  • the laser 3D printing system with orthopedic function of the embodiment mainly includes an industrial computer, a laser, a laser scanning device and a powder box.
  • the industrial computer controls the laser scanning device laser to perform 3D printing on the powder placed in the powder box, wherein the laser scanning device includes a spot orthotic device for orthopedic the laser beam.
  • the industrial computer is connected with the laser scanning device and the powder box, and controls the laser scanning device and the powder box to perform 3D printing on the materials in the powder box.
  • the laser scanning device comprises: a laser 2 connected to the industrial computer 1 and adjusting the pulse width according to the control of the industrial computer 1, a beam expanding device 3 connected to the laser 2, a spot correction device 4 connected to the rear of the beam expanding device 3, and a powder
  • the cartridge 7 performs laser scanning of the galvanometer lens assembly, and the galvanometer assembly includes a galvanometer 5, and a lens 6 disposed behind the galvanometer 5, and a laser beam passing through the lens 6 acts on the powder cartridge 7.
  • the spot orthosis device 4 includes a pair of cylindrical lenses 41 and 42 which are relatively rotatable and translatable.
  • the powder container 7 is further provided with a powder supply device 71.
  • the powder cartridge 7 further includes a powder cleaning device 72 and a powder collecting device 73 connected to the powder cartridge 7 for collecting and cleaning the 3D printed powder.
  • the working principle of the spot orthopedic device is as follows: usually, the size of the spot in the focal plane (scanning plane) after the laser beam passes through the laser scanning device is inconsistent, for example, it is stretched in a certain direction to form an elliptical spot.
  • the orthopedic device can make a reverse compensation for each point in the focal plane so that the spot size within the focal plane is uniform.
  • the focused spot forms an elliptical spot at a certain point in the large plane due to stretching in the x direction (in fact, the projection characteristics of each point in the scanning web are known in advance)
  • the orthopedic device relative rotation and / Or translation
  • an ellipse that causes the laser beam incident on the scanning device to stretch in the y direction ie, back compensation
  • the amount of compensation of the orthopedic device it is ensured that the size of the focused spot is uniform.
  • the laser scanning device comprises: a laser 12 connected to the industrial computer 11 and adjusting the pulse width according to the control of the industrial computer 11, a beam expanding device 13 connected to the laser 12, a spot correction device 14 connected to the rear of the beam expanding device 13, and a powder
  • the box 17 device performs a laser scanning galvanometer lens assembly, and the galvanometer assembly includes a galvanometer 15 and a lens 16 disposed behind the galvanometer 15 through which a laser beam is applied to the powder cartridge 17.
  • the spot orthosis device 14 includes a cylindrical lens 141, and an imaging system located behind the cylindrical lens 141, the cylindrical lens 141 being relatively rotatable and translatable relative to the imaging system.
  • the imaging system includes a pair of lenses 142 and 143 that are relatively translatable.
  • the powder container 17 is further provided with a powder supply device 171.
  • the powder box 17 further includes a powder cleaning device 172 and a powder collecting device 173 connected to the powder box 17 for collecting and cleaning the 3D printed powder.
  • spot orthosis device 14 The working principle of the spot orthosis device 14 is the same as above, and will not be described herein.
  • the embodiment further discloses a 3D printing method using the above-described laser 3D printing system with orthopedic function, the method comprising the following steps:
  • the first step S1 measuring the projection characteristics of each point in the scanning web, and obtaining the amount of the focused spot deformation at each point in the front surface of the orthopedic shape;
  • the compensation amount of the spot correction device for each point in the web is set, so that the size of the focused spot at each point in the web is consistent;
  • the third step S3 turning on the laser, dynamically matching the orthopedic device with the scanning device for laser 3D printing.
  • the method further includes:
  • the fourth step S4 using a continuous laser or pulsed laser to 3D sintering the powder
  • the fifth step S5 using a short pulse width laser to laser-induced shock shock on the 3D sintered component
  • the 3D sintered component is polished by using a continuous laser or a pulsed laser.
  • the 3D printing system of the workpiece of the embodiment changes the energy absorbed by the powder by adjusting the pulse width of the laser beam, thereby changing the melting amount of the powder particles, thereby reducing the melt viscosity and surface tension, and increasing the depth and width of the molten pool.
  • the adhesion between the particles is increased, thereby increasing the density of the workpiece, and the orthopedic device is added to ensure that the size of the focused spot is uniform within the scanning web, thereby ensuring the quality of the 3D printing.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)

Abstract

一种具有矫形功能的激光3D打印方法,其包括以下步骤:第一步(S1)、测量扫描幅面内各点的投影特性,获得矫形前扫描幅面内各点的聚焦光斑变形量;第二步(S2)、根据第一步(S1)的测量结果设置光斑矫形装置(4)针对各点的补偿量,使扫描幅面内各点处的聚焦光斑大小具有一致性;第三步(S3)、开启激光器(2),动态配合矫形装置(4)与扫描装置进行激光3D打印。具有矫形功能的激光3D打印方法及其系统,在3D打印的过程中通过改变激光脉冲宽度来控制激光烧结的程度,改善在打印过程中出现孔隙、过烧及球化现象的情况,提高致密度,并且增加了矫形装置(4),通过精确控制光斑矫形装置(4)的补偿量可以确保聚焦光斑的大小在扫描幅面内具有一致性,从而确保3D打印的质量。

Description

一种具有矫形功能的激光3D打印方法及其系统
技术领域
本发明涉及3D打印技术领域,尤其涉及一种具有矫形功能的激光3D打印方法及其系统。
背景技术
3D 打印技术,是一种以数字模型文件为基础,运用粉末状或塑料等可粘合材料,通过逐层打印的方式来构造物体的技术。它无需机械加工或任何模具,就能直接从计算机图形数据中生成任何形状的零件,从而极大地缩短产品的研制周期,提高生产率和降低生产成本。
激光烧结技术利用粉末材料在激光照射下烧结的原理,由计算机控制层层堆结成型。激光烧结技术可以使用非常多的粉末材料,并制成相应材质的成品,激光烧结的成品精度好、强度高,最终成品的强度远远优于其他3D 打印技术。然而,在激光3D打印中,当激光光束以扫描方式做大幅面的3D打印时,聚焦光斑的大小在扫描幅面内通常不是固定不变的,而这种光斑大小的不一致性会影响3D打印的质量,因此确保聚焦光斑的大小在扫描幅面内具有一致性对3D打印尤为重要。
发明内容
本发明的目的在于提供一种具有矫形功能的激光3D打印方法及其系统,其解决了现有3D打印过程中光斑一致性的技术问题。
为达到上述目的,本发明所提出的技术方案为:
本发明的一种具有矫形功能的激光3D打印方法,其包括以下步骤:
第一步、测量扫描幅面内各点的投影特性,获得矫形前幅面内各点处的聚焦光斑变形量;
第二步、根据第一步的测量结果设置光斑矫形装置针对幅面内各点的补偿量,使得幅面内各点处的聚焦光斑大小具有一致性;
第三步、开启激光器,动态配合矫形装置与扫描装置进行激光3D打印。
进一步的,所述第三步之后还包括:
第四步、采用连续激光或脉冲激光对粉末进行3D烧结;
第五步、利用短脉宽激光对3D烧结的部件进行激光诱导的激波冲击;
第六步、采用连续激光或脉冲激光对3D烧结的部件进行抛光处理。
实现如上述具有矫形功能的激光3D打印方法的系统,其包括:工控机;连接并由所述工控机控制的脉宽可调的激光器、扩束装置、光斑矫形装置及激光扫描装置;以及连接并由所述工控机控制的、接受所述激光扫描装置的扫描以进行工件3D打印的粉末盒。
其中,所述的光斑矫形装置包括:一对可做相对旋转和平移的柱透镜。
其中,所述的光斑矫形装置包括:一柱透镜,以及位于所述柱透镜后方的成像系统,所述柱透镜可相对所述成像系统做相对旋转和平移。
其中,所述的成像系统包括:一对透镜。
其中,所述的粉末盒上还设有一粉末供给装置。
其中,所述的粉末盒还设有粉末清理装置和粉末收集装置。
与现有技术相比,本发明通过精确控制光斑矫形装置的补偿量可以确保聚焦光斑的大小在扫描幅面内具有一致性,从而确保3D打印的质量。同时,在3D打印的过程中通过改变激光脉冲宽度来控制激光烧结的程度,改善在打印过程中出现孔隙、过烧及球化现象的情况,提高致密度。
附图说明
图1为本发明的具有矫形功能的激光3D打印系统的第一实施例的功能模块框图。
图2为本发明的具有矫形功能的激光3D打印系统的第二实施例的功能模块框图。
图3为本发明的采用具有矫形功能的激光3D打印系统的3D打印方法流程图。
具体实施方式
以下参考附图,对本发明予以进一步地详尽阐述。
请参阅附图1,在本实施例中,请参照图1和附图2,本实施例的具有矫形功能的激光3D打印系统主要包括工控机,激光器,激光扫描装置及粉末盒。工控机控制激光扫描装置激光器对放置于粉末盒内的粉末进行3D打印,其中,所述激光扫描装置包括用于对激光光束进行矫形的光斑矫形装置。
其中,工控机与激光扫描装置及粉末盒连接,并控制激光扫描装置及粉末盒,对粉末盒内的材料进行3D打印。
请再次参阅附图1,在第一实施例中:
激光扫描装置包括:连接于工控机1并根据工控机1的控制调节脉宽的激光器2、连接于激光器2的扩束装置3,连接于扩束装置3后方的光斑矫形装置4,以及对粉末盒7进行激光扫描的振镜透镜组件,所述振镜组件包括振镜5,以及设于所述振镜5后方的透镜6,经所述透镜6后的激光光束作用于粉末盒7。
在本实施例中,光斑矫形装置4包括一对可做相对旋转和平移的柱透镜41和42。
其中,粉末盒7上还设有粉末供给装置71。
其中,上述粉末盒7还包括:连接于粉末盒7的粉末清理装置72和粉末收集装置73,用于对3D打印后的粉末进行收集和清理。
其中,光斑矫形装置的工作原理如下:通常激光光束通过激光扫描装置后在聚焦平面(扫描幅面)内的光斑大小是不一致的,例如会在某个方向上拉伸而形成椭圆光斑。矫形装置可以针对聚焦平面内的各点,做出反向的补偿从而使得聚焦平面内的光斑大小具有一致性。例如,当聚焦光斑在大幅面内某一点会因x方向拉伸而形成椭圆光斑时(事实上,扫描幅面内各点的投影特性都是预先可知的),通过控制矫形装置(相对旋转和/或平移)使得入射扫描装置的激光光束呈y方向拉伸的椭圆,即反向补偿,从而确保大幅面内的聚焦光斑始终呈圆形。通过精确的控制矫形装置的补偿量可以确保聚焦光斑的大小具有一致性。
请再次参阅附图2,在第二实施例中:
激光扫描装置包括:连接于工控机11并根据工控机11的控制调节脉宽的激光器12、连接于激光器12的扩束装置13,连接于扩束装置13后方的光斑矫形装置14,以及对粉末盒17装置进行激光扫描的振镜透镜组件,所述振镜组件包括振镜15,以及设于所述振镜15后方的透镜16,经所述透镜16后的激光光束作用于粉末盒17。
在本实施例中,光斑矫形装置14包括一柱透镜141,以及位于所述柱透镜141后方的成像系统,所述柱透镜141可相对所述成像系统做相对旋转和平移。所述成像系统包括一对可做相对平移的透镜142和143。
其中,粉末盒17上还设有粉末供给装置171。
其中,上述粉末盒17还包括:连接于粉末盒17的粉末清理装置172和粉末收集装置173,用于对3D打印后的粉末进行收集和清理。
该光斑矫形装置14的工作原理同上,在此不予以赘述。
请参阅附图3,本实施例还公开了一种采用上述具有矫形功能的激光3D打印系统的3D打印方法,该方法包括以下步骤:
第一步S1、测量扫描幅面内各点的投影特性,获得矫形前幅面内各点处的聚焦光斑变形量;
第二步S2、根据第一步的测量结果设置光斑矫形装置针对幅面内各点的补偿量,使幅面内各点处的聚焦光斑大小具有一致性;
第三步S3、开启激光器,动态配合矫形装置与扫描装置进行激光3D打印。
进一步的,所述第三步S3之后还包括:
第四步S4、采用连续激光或脉冲激光对粉末进行3D烧结;
第五步S5、利用短脉宽激光对3D烧结的部件进行激光诱导的激波冲击;
第六步S6、采用连续激光或脉冲激光对3D烧结的部件进行抛光处理。
此外,当3D打印涉及多种材料的粉末,如相邻层采用不同的材料(粉末),或同一层不同位置采用不同的材料(粉末),根据各材料(粉末)的光学特性选择合适的激光波长、脉冲能量和脉宽,应用上述工艺,实现功能梯度材料的打印、冲击和抛光。
本实施例的工件的3D打印系统通过对激光束的脉冲宽度进行调节来改变粉末吸收的能量,进而改变粉末的颗粒的熔化量,从而降低熔体粘度和表面张力,增加熔池深度和宽度,使得颗粒间的粘结力增加,进而增加工件的致密度,并且增加了矫形装置,确保聚焦光斑的大小在扫描幅面内具有一致性,从而确保3D打印的质量。
上述内容,仅为本发明的较佳实施例,并非用于限制本发明的实施方案,本领域普通技术人员根据本发明的主要构思和精神,可以十分方便地进行相应的变通或修改,故本发明的保护范围应以权利要求书所要求的保护范围为准。

Claims (8)

  1. 一种具有矫形功能的激光3D打印方法,其特征在于,包括以下步骤:
    第一步、测量扫描幅面内各点的投影特性,获得矫形前幅面内各点处的聚焦光斑变形量;
    第二步、根据第一步的测量结果设置光斑矫形装置针对各点的补偿量,使扫描幅面内各点处的聚焦光斑大小具有一致性;
    第三步、开启激光器,动态配合矫形装置与扫描装置进行激光3D打印。
  2. 如权利要求1所述的具有矫形功能的激光3D打印方法,其特征在于,所述第三步之后还包括:
    第四步、采用连续激光或脉冲激光对粉末进行3D烧结;
    第五步、利用短脉宽激光对3D烧结的部件进行激光诱导的激波冲击;
    第六步、采用连续激光或脉冲激光对3D烧结的部件进行抛光处理。
  3. 实现如权利要求1或2任意一项所述的具有矫形功能的激光3D打印方法的系统,其特征在于,包括:工控机;连接并由所述工控机控制的脉宽可调的激光器、扩束装置、光斑矫形装置及激光扫描装置;以及连接并由所述工控机控制的、接受所述激光扫描装置的扫描以进行工件3D打印的粉末盒。
  4. 如权利要求3所述的系统,其特征在于,所述的光斑矫形装置包括:一对可做相对旋转和平移的柱透镜。
  5. 如权利要求3所述的系统,其特征在于,所述的光斑矫形装置包括:一柱透镜,以及位于所述柱透镜后方的成像系统,所述柱透镜可相对所述成像系统做相对旋转和平移。
  6. 如权利要求5所述的系统,其特征在于,所述的成像系统包括:一对透镜。
  7. 如权利要求3所述的系统,其特征在于,所述的粉末盒上还设有一粉末供给装置。
  8. 如权利要求7所述的系统,其特征在于,所述的粉末盒还设有粉末清理装置和粉末收集装置。
PCT/CN2017/106246 2017-08-09 2017-10-16 一种具有矫形功能的激光3d打印方法及其系统 WO2019029002A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/236,497 US11097470B2 (en) 2017-08-09 2018-12-29 Laser 3D printing method and system thereof with orthopedic function

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710676679.X 2017-08-09
CN201710676679.XA CN107336440A (zh) 2017-08-09 2017-08-09 一种具有矫形功能的激光3d打印方法及其系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/236,497 Continuation US11097470B2 (en) 2017-08-09 2018-12-29 Laser 3D printing method and system thereof with orthopedic function

Publications (1)

Publication Number Publication Date
WO2019029002A1 true WO2019029002A1 (zh) 2019-02-14

Family

ID=60216910

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/106246 WO2019029002A1 (zh) 2017-08-09 2017-10-16 一种具有矫形功能的激光3d打印方法及其系统

Country Status (3)

Country Link
US (1) US11097470B2 (zh)
CN (1) CN107336440A (zh)
WO (1) WO2019029002A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107876968A (zh) * 2017-12-26 2018-04-06 英诺激光科技股份有限公司 一种用于平行加工的激光加工设备
CN108248026B (zh) * 2018-01-30 2020-06-05 深圳升华三维科技有限公司 投影式激光加热系统和3d打印机
CN108312504B (zh) * 2018-02-02 2024-01-16 上海联泰科技股份有限公司 标定系统、涂覆系统及3d打印设备
CN110465658B (zh) * 2018-05-10 2021-08-17 中国航发商用航空发动机有限责任公司 提高激光选区熔化成形复杂结构零件尺寸精度的方法
US11440099B2 (en) * 2018-07-03 2022-09-13 Purdue Research Foundation Processes and systems for double-pulse laser micro sintering
CN109513927A (zh) * 2018-12-26 2019-03-26 西安铂力特增材技术股份有限公司 一种slm大功率零件成形装置及成形方法
DE102019201474A1 (de) * 2019-02-06 2020-08-06 MTU Aero Engines AG Vorrichtung zum generativen aufbauen eines bauteils
CN113459678B (zh) * 2021-07-28 2022-06-07 杭州爱新凯科技有限公司 一种激光3d打印机边缘光斑面积补偿方法
CN114851549B (zh) * 2022-05-14 2024-01-26 重庆理工大学 一种选择性激光烧结成形的产品制造方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6426840B1 (en) * 2001-02-23 2002-07-30 3D Systems, Inc. Electronic spot light control
CN104029394A (zh) * 2014-06-24 2014-09-10 山东省科学院海洋仪器仪表研究所 一种提高激光扫描成像光固化快速成型效率的方法
CN104923606A (zh) * 2015-04-23 2015-09-23 上海交通大学 一种用于大型工件激光喷丸成形的光路装置及方法
CN105538728A (zh) * 2016-02-23 2016-05-04 中国科学院重庆绿色智能技术研究院 一种激光增减材复合制造的方法与装置
CN105945284A (zh) * 2016-07-14 2016-09-21 深圳英诺激光科技有限公司 激光3d打印金属工件的方法及装置
CN106180712A (zh) * 2016-07-19 2016-12-07 梁春永 一种双光源金属粉末三维打印系统及打印方法
CN205888079U (zh) * 2016-07-14 2017-01-18 深圳英诺激光科技有限公司 金属工件的激光3d打印系统

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7339712B2 (en) * 2005-03-22 2008-03-04 3D Systems, Inc. Laser scanning and power control in a rapid prototyping system
US9341467B2 (en) * 2014-08-20 2016-05-17 Arcam Ab Energy beam position verification
CN115351414A (zh) * 2014-11-14 2022-11-18 株式会社尼康 造形装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6426840B1 (en) * 2001-02-23 2002-07-30 3D Systems, Inc. Electronic spot light control
CN104029394A (zh) * 2014-06-24 2014-09-10 山东省科学院海洋仪器仪表研究所 一种提高激光扫描成像光固化快速成型效率的方法
CN104923606A (zh) * 2015-04-23 2015-09-23 上海交通大学 一种用于大型工件激光喷丸成形的光路装置及方法
CN105538728A (zh) * 2016-02-23 2016-05-04 中国科学院重庆绿色智能技术研究院 一种激光增减材复合制造的方法与装置
CN105945284A (zh) * 2016-07-14 2016-09-21 深圳英诺激光科技有限公司 激光3d打印金属工件的方法及装置
CN205888079U (zh) * 2016-07-14 2017-01-18 深圳英诺激光科技有限公司 金属工件的激光3d打印系统
CN106180712A (zh) * 2016-07-19 2016-12-07 梁春永 一种双光源金属粉末三维打印系统及打印方法

Also Published As

Publication number Publication date
US11097470B2 (en) 2021-08-24
US20190152138A1 (en) 2019-05-23
CN107336440A (zh) 2017-11-10

Similar Documents

Publication Publication Date Title
WO2019029002A1 (zh) 一种具有矫形功能的激光3d打印方法及其系统
US10695870B2 (en) Laser processing apparatus
US10766242B2 (en) System and methods for fabricating a component using a consolidating device
JP4556160B2 (ja) レーザークラッディングとレーザー金属加工技術において、映像撮影とイメージプロセッシングを用いて、クラッディング層高さをリアルタイムでモニタし、かつ制御する方法及びそのシステム
CN104669621A (zh) 光固化型3d打印设备及其成像系统
WO2018019002A1 (zh) 一种激光打标、漂白装置及其加工方法
JP2004532740A (ja) 電子回路基板を処理するためのレーザ装置の光学系を較正する方法
KR20010053500A (ko) 소재 처리용 레이저 처리 머신을 캘리브레이팅하기 위한방법 및 장치
CN106180712A (zh) 一种双光源金属粉末三维打印系统及打印方法
EP3737552A1 (en) Systems and methods for additive manufacturing calibration
KR20030039929A (ko) 레이저 클래딩과 직접 금속 조형기술에서 이미지 촬영과이미지 프로세싱을 이용한 클래딩 층 높이의 실시간모니터링 및 제어 방법 및 그 시스템
CN114211003B (zh) 一种用于增材制造设备的多激光系统搭接校正方法
US3788171A (en) Projection screen fabrication apparatus and method
US3765281A (en) Method and apparatus for fabricating radiation-redistributive devices
CN109513927A (zh) 一种slm大功率零件成形装置及成形方法
US11090861B2 (en) Systems and methods for lateral material transfer in additive manufacturing system
US10919115B2 (en) Systems and methods for finishing additive manufacturing faces with different orientations
CN209239279U (zh) 一种光束整形系统
CN104669622A (zh) 光固化型3d打印设备及其成像系统
CN114211114A (zh) 一种玻璃与玻璃之间的绿光超快激光焊接方法和系统
CN208141058U (zh) Slm设备的光学系统装置
JP3931817B2 (ja) レーザー溶着方法及び溶着装置
JP2018145522A (ja) 三次元の対象物の積層造形的な製造の為の方法
JPH08328374A (ja) 画像形成装置用現像ローラ及びその製造方法
TWI574121B (zh) 感測器、物件定位系統、微影裝置及器件製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17920845

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 29.06.2020)

122 Ep: pct application non-entry in european phase

Ref document number: 17920845

Country of ref document: EP

Kind code of ref document: A1