WO2019028895A1 - Resource element of control resource - Google Patents

Resource element of control resource Download PDF

Info

Publication number
WO2019028895A1
WO2019028895A1 PCT/CN2017/097242 CN2017097242W WO2019028895A1 WO 2019028895 A1 WO2019028895 A1 WO 2019028895A1 CN 2017097242 W CN2017097242 W CN 2017097242W WO 2019028895 A1 WO2019028895 A1 WO 2019028895A1
Authority
WO
WIPO (PCT)
Prior art keywords
resource
control
control signal
resource elements
coreset
Prior art date
Application number
PCT/CN2017/097242
Other languages
French (fr)
Inventor
Chenchen Zhang
Peng Hao
Original Assignee
Zte Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zte Corporation filed Critical Zte Corporation
Priority to CN201780093683.1A priority Critical patent/CN110999457A/en
Priority to PCT/CN2017/097242 priority patent/WO2019028895A1/en
Publication of WO2019028895A1 publication Critical patent/WO2019028895A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • a communication link between wireless nodes may be facilitated using one or more channels.
  • the BS may transmit data to the UE, and/or the UE may transmit data to the BS.
  • a scheduling process may be used prior to transmitting data to and/or from the BS and/or the UE, and may involve providing information from the BS to the UE using resources. However, resources used to provide the information may prevent some resource blocks from being used by the BS and/or the UE to transmit and/or receive data.
  • a first control signal may be generated, and may indicate one or more resource elements that can be used for transmitting data via a second communication channel.
  • the one or more resource elements may comprise a first one or more resource elements of a first control resource comprising a plurality of resource elements.
  • the one or more resource elements may comprise a second one or more resource elements of a second control resource comprising a plurality of resource elements.
  • the first control resource and the second control resource may be used for transmitting data via a first communication channel.
  • the first control signal may be transmitted to a wireless communication device.
  • a first control signal may be generated.
  • the first control signal may indicate at least one resource element of a control resource can be used for transmitting data via a second communication channel.
  • the control resource may comprise a plurality of resource elements.
  • a payload of the first control signal may be determined based upon the number of resource elements of the at least one resource element of the control resource.
  • a second control signal indicative of the payload of the first control signal may be generated. The first control signal and the second control signal may be transmitted to a wireless communication device.
  • a first control signal may be received from a wireless communication device.
  • the first control signal may indicate one or more resource elements that can be used for transmitting data via a second communication channel.
  • the one or more resource elements may comprise a first one or more resource elements of a first control resource comprising a plurality of resource elements.
  • the one or more resource elements may comprise a second one or more resource elements of a second control resource comprising a plurality of resource elements.
  • the first control resource and the second control resource may be used for transmitting data via a first communication channel. Based upon the first control signal, data may be transmitted via the second communication channel using the first one or more resource elements in the first control resource and the second one or more resource elements in the second control resource.
  • a first control signal may be received.
  • the first control signal may indicate at least one resource element of a control resource can be used for transmitting data via a second communication channel.
  • the control resource may comprise a plurality of resource elements.
  • a second control signal indicative of a payload of the first control signal may be received. Based upon the first control signal and the second control signal, a resource allocation of the at least one resource element may be determined.
  • a first control resource may be determined based upon an overlap between the first control resource and a resource allocation of a second communication channel.
  • a second control resource may be determined based upon an overlap between the second control resource and the resource allocation of the second communication channel.
  • Fig. 1 is a diagram illustrating an example system for facilitating use of one or more control resources.
  • Fig. 2 is a diagram illustrating an example system for facilitating use of one or more control resources.
  • Fig. 3 is a diagram illustrating an example system for facilitating use of one or more control resources.
  • Fig. 4 is a diagram illustrating an example system for facilitating use of one or more control resources.
  • Fig. 5 is a diagram illustrating an example system for facilitating use of one or more control resources.
  • Fig. 6 is a diagram illustrating an example system for facilitating use of one or more control resources.
  • Fig. 7A is a flow chart illustrating an example method for facilitating use of one or more control resources.
  • Fig. 7B is a flow chart illustrating an example method for facilitating use of one or more control resources.
  • Fig. 8A is a flow chart illustrating an example method for facilitating use of one or more control resources.
  • Fig. 8B is a flow chart illustrating an example method for facilitating use of one or more control resources.
  • Fig. 8C is a flow chart illustrating an example method for facilitating use of one or more control resources.
  • Fig. 9 is an illustration of a scenario involving an example configuration of a base station (BS) that may utilize and/or implement at least a portion of the techniques presented herein.
  • BS base station
  • Fig. 10 is an illustration of a scenario involving an example configuration of a user equipment (UE) that may utilize and/or implement at least a portion of the techniques presented herein.
  • UE user equipment
  • FIG. 11 is an illustration of a scenario featuring an example non-transitory computer readable medium in accordance with one or more of the provisions set forth herein.
  • a user equipment may connect to a (e.g., wireless communication) network via a base station (BS) of the network.
  • the UE may use one or more control resources for data transmission to and/or from the BS and/or the network, and/or vice versa. To do so, the UE may (e.g., need to) determine which control resources to use. However, the UE may not have a precise understanding of control resources and/or parts of the control resources that are available and/or allocated for use by the UE.
  • a signal indicative of resource elements of control resources may be used to facilitate use of one or more control resources which may result in improved success rates and/or speeds of access, data rates, efficiency, etc.
  • a scheduling process may be performed before the BS actually transmits the data to the UE or receives the data from the UE.
  • Such a scheduling process typically provides some control information (e.g., downlink control information (DCI) ) that is transmitted through one or more physical channels (e.g., a physical downlink control channel (PDCCH) ) to the UE.
  • DCI downlink control information
  • PDCCH physical downlink control channel
  • control information comprises various specified parameters that the UE may use for receiving and transmitting the data such as, for example, downlink (i.e., from the BS to the UE) scheduling commands, uplink (i.e., from the UE to the BS) scheduling grants, uplink power control commands, etc.
  • downlink i.e., from the BS to the UE
  • uplink i.e., from the UE to the BS
  • uplink power control commands etc.
  • the legacy PDCCH is pre-coded with transmit diversity on 1/2/4 cell-specific reference signal (CRS) antenna ports, and cross-interleaved with other PDCCHs, such that the legacy PDCCH is distributed over an entire system bandwidth in a control region within a subframe.
  • resources e.g., resource blocks
  • resources allocated in the legacy PDCCH, used to transmit the above-mentioned DCI cannot be used in other channels that are used to transmit data (e.g., a physical downlink shared channel (PDSCH) ) .
  • PDSCH physical downlink shared channel
  • the resource blocks in the legacy PDCCH consumes the entire system bandwidth, and even though remaining resource blocks in the legacy PDCCH are present, such remaining resource blocks cannot be used for transmitting data on other channels.
  • Fig. 1 illustrates an exemplary wireless communication network 100 in which techniques disclosed herein may be implemented, in accordance with an embodiment of the present disclosure.
  • the exemplary communication network 100 includes a base station 102 (hereinafter “BS 102” ) and a user equipment device 104 (hereinafter “UE 104” ) that can communicate with each other via a communication link 110 (e.g., a wireless communication channel) , and a cluster of notional cells 126, 130, 132, 134, 136, 138 and 140 overlaying a geographical area 101.
  • a communication link 110 e.g., a wireless communication channel
  • the BS 102 and UE 104 are contained within the geographic boundary of cell 126.
  • Each of the other cells 130, 132, 134, 136, 138 and 140 may include at least one base station operating at its allocated bandwidth to provide adequate radio coverage to its intended users.
  • the base station 102 may operate at an allocated channel transmission bandwidth to provide adequate coverage to the UE 104.
  • the base station 102 and the UE 104 may communicate via a downlink radio frame 118, and an uplink radio frame 124 respectively.
  • Each radio frame 118/124 may be further divided into sub-frames 120/126 which may include data symbols 122/128.
  • the BS 102 and UE 104 are described herein as non-limiting examples of “communication nodes, ” generally, which can practice the methods disclosed herein. Such communication nodes may be capable of wireless and/or wired communications, in accordance with various embodiments of the invention.
  • a scheduling process may be performed before the BS actually transmits and receives the data from the UE 104.
  • control information such as, for example, DCI may be transmitted from the BS 102 to the UE 104 via one or more physical channels, e.g., a PDCCH.
  • the BS 102 may use one or more control resource sets (hereinafter “CORESETs” ) to transmit the DCI via the PDCCH.
  • CORESET is a subset of resource blocks within which the UE 104 attempts to blindly decode the DCI so as to retrieve information contained in the DCI.
  • one CORESET is a subset of resource blocks selected from respective resource blocks occupied by the PDCCH.
  • the “resource block” as used herein is referred to as a resource unit that spans across respective time range (e.g., symbols) and frequency range (e.g., sub-carrier channels) .
  • each CORESET as discussed herein may span across respective time and frequency ranges.
  • the BS 102 may include a filed in the DCI to indicate which of the one or more CORESETs can be used by other channels (e.g., a PDSCH) for the BS 102 to transmit data.
  • the BS 102 may transmit another DCI indicating that in the CORESET that can be used to transmit data, which of respective resource blocks can be used to transmit the data.
  • Fig. 2A illustrates a scenario where a signal carrying the DCI 200 (hereinafter “DCI signal 200” ) indicates that one of two exemplary CORESETs 202 and 204 can be used to transmit data.
  • a BS may assign two CORESETs 202 and 204 on the PDCCH to a UE.
  • Each of the CORESETs 202 and 204 may be distributed across a respective time-frequency area (i.e., spanning across a respective resource blocks) .
  • the CORESET 202 may extend across two symbols (e.g., OFDM symbols) along a time domain (i.e., “t” in Fig.
  • the CORESET 204 may extend across one symbol (e.g., an OFDM symbol) along the time domain and extend across a frequency range 205 along the frequency domain.
  • the symbol may be a unit of a resource block in the time domain.
  • such configurations of the CORESETs 202 and 204 may be predefined by a protocol of a network, in which the BS and UE are located, for example, a radio resource control (RRC) protocol or be predefined by Master Information Block (MIB) .
  • RRC radio resource control
  • MIB Master Information Block
  • the BS may use the CORESET 202 to transmit the DCI signal 200 to the UE.
  • the DCI signal 200 may include various information such as, for example, respective resource blocks, which includes respective time and frequency ranges, to be used by the PDSCH.
  • the PDSCH extends across 1 time slot along the time domain and across a frequency range 208 along the frequency domain.
  • the DCI signal 200 may include a field to indicate which of the CORESETs 202 and 204 can be used by the PDSCH (i.e., which of respective resource blocks of the CORESETs 202 and 204 can be used to transmit data on the PDSCH) based on the resource block configurations of the CORESETs 202 and 204, which may be predefined as mentioned above, and respective “overlapped” relations with the PDSCH in terms of the resource blocks.
  • the CORESET 202 overlaps the PDSCH by resource blocks extending across a frequency range 214 and across the same time duration of the CORESET 202 (2 symbols in the current example)
  • the CORESET 204 overlaps the PDSCH by resource blocks extending across a frequency range 210 and across the same time duration of the CORESET 204 (1 symbol in the current example) .
  • the BS may determine that only CORESET 202 can be used by the PDSCH.
  • a field within the DCI signal 200 may indicate that the resource blocks overlapped by the CORESET 202 and the PDSCH can be used by the BS to transmit data on the PDSCH, and the resource blocks overlapped by the CORESET 204 and the PDSCH cannot be used by the BS to transmit data on the PDSCH.
  • such a field in the DCI may be implemented by various techniques such as, for example, a bitmap.
  • a bitmap with a length of 2 bits may be used, which is determined based on a number of CORESETs in accordance with some embodiments.
  • the bitmap may indicate a value of “01; ” and when only the CORESET 204 is chosen to be used by the PDSCH, the bitmap may indicate a value of “10, ” for example.
  • the resource blocks overlapped by the CORESET 202 and the PDSCH can be used by the BS to transmit data on the PDSCH; and when the bitmap indicates 10, the resource blocks overlapped by the CORESET 204 and the PDSCH can be used by the BS to transmit data on the PDSCH.
  • the DCI signal 200 may include a second field or another independent PDCCH (e.g., which may be a DCI or not a DCI) to indicate which of a plurality of first resource elements of the CORESET 202 can be used by the PDSCH, and/or which of a plurality of second resource elements of the CORESET 204 can be used by the PDSCH.
  • the field may comprise information that is at a first level of granularity (e.g., control resource level)
  • the second field or another independent PDCCH may comprise information that is at a second (e.g., higher) level of granularity (e.g., resource element level) .
  • the field and/or the second field may comprise one or more logical indexes.
  • the field and/or the second field e.g., and/or another independent PDCCH
  • the BS may send a first level indication (e.g., of a control resource) to the UE in the DCI.
  • the first level indication may comprise and/or correspond to the field.
  • the UE may be able to determine, based upon the first level indication, that the CORESET 202 and/or CORESET 204 may be used for PDSCH transmission.
  • the BS may inform the UE of the same by RRC signaling semi-static, for example.
  • a candidate aggregation level of UE-specific DCI is a value of ⁇ AL1 ⁇
  • the UE may determine a number of indications to receive based upon a type of the UE. For example, if the UE-specific DCI of the UE is a value within one or more (e.g., all) candidate aggregation levels, the UE may need to receive the first level indication and the second level indication (e.g., of a resource element of the control resource) .
  • the second level indication may comprise and/or correspond to the second field (e.g., and/or another independent PDCCH) .
  • the UE may need to receive the first level indication and the second level indication. It may be appreciated that in some examples, the UE may be determined to need to receive more than two (e.g., three, four, etc. ) indications (e.g., with progressively higher levels of granularity) .
  • a resource range indicated by the second level indication may indicate the time-frequency resource of the overlapped portion of the CORESET and PDSCH resource allocation in the first level indication, that is, the resources in the virtual box 220 in Fig. 2A.
  • the second resource element indicated by the second level indication may be one or more Candidate, CCE, REG Bundle, REG, RB, RBG and/or other PDSCH resource allocation unit. It may be appreciated that the second resource element may correspond to an increased level of granularity relative to a resource indicated by the first level indication (e.g., and/or that the resource may be associated with two or more resource elements, and that each resource element may be associated with two or more resource sub elements, etc. ) , and that one or more resource elements may have an increased level of granularity relative to the second resource element.
  • the second resource element may be specifically configured by RRC signaling semi-static configuration associated with the UE.
  • the plurality of second resource elements corresponding to the shaded portions in the virtual frame may be the resources multiplexed for the PDSCH transmission to the UE in the second level indication.
  • the second level indication contains a number of bits indicating which of the second resource elements (e.g., of a control resource) in the virtual frame 220 of Fig. 2A are multiplexed to the PDSCH transmission.
  • Fig. 2B illustrates five second resource elements.
  • the indexes of the five second resource elements in CORESET 204 may be a0, a1, a2, a3, a4, a0 -a4 and/or 0 and/or a positive integer, which can be a continuous integer or a non-contiguous integer.
  • the logical index 0--4 may correspond to a0 -a4, respectively.
  • the second field e.g., and/or another independent PDCCH
  • ⁇ a0 a2 a4 ⁇ may be the second resource element for multiplexing to terminal 1 for PDSCH transmission.
  • these second resource elements may be complete or incomplete.
  • the UE may determine which second resource elements are complete and which second resource elements are based on the range of the virtual frame 220 in Fig. 2A and thus are associated with a granularity that is not complete.
  • Some of the resource indication methods mentioned here can be some kind of PDSCH resource allocation method, or other resource allocation method.
  • Fig. 3A illustrates a scenario where a signal carrying DCI 300 (hereinafter “DCI signal 300” ) indicates that both of two exemplary CORESETs 302 and 304 can be used to transmit data.
  • a BS may assign two CORESETs 302 and 304 on the PDCCH to a UE.
  • Each of the CORESETs 302 and 304 may be distributed across a respective time-frequency area (i.e., spanning across respective resource blocks) .
  • the CORESET 302 may extend across two symbols (e.g., OFDM symbols) along a time domain (i.e., “t” in Fig.
  • the CORESET 304 may also extend across two symbols (e.g., OFDM symbols) along the time domain and extend across a respective frequency range 305 along the frequency domain.
  • a PDSCH extends across 1 time slot in the time domain and across a frequency range 308 along the frequency domain.
  • the DCI signal 300 may include a field to indicate which of the CORESETs 302 and 304 can be used by the PDSCH based on the resource block configurations of the CORESETs 302 and 304, which may be predefined as mentioned above, and respective “overlapped” relations with the PDSCH in terms of the resource blocks.
  • the CORESET 302 overlaps the PDSCH by resource blocks extending across a frequency range 314 and across a time duration (e.g., 1 symbol in the current example)
  • the CORESET 304 overlaps the PDSCH by resource blocks extending across a frequency range 310 and across the same time duration (e.g., 1 symbol in the current example) .
  • the BS may determine that both CORESETs 302 and 304 can be used by the PDSCH.
  • the field of the DCI signal 300 may indicate that the resource blocks overlapped by the CORESET 302 and the PDSCH, which includes resource blocks across the frequency range 310 and 1 symbol, can be used by the BS to transmit data on the PDSCH, and, in addition, the resource blocks overlapped by the CORESET 304 and the PDSCH, which includes resource blocks across the frequency range 314 and 1 symbol, can be used by the BS to transmit data on the PDSCH.
  • the field of the DCI signal 300 can be implemented by the bitmap described with respect to Fig. 3A. In the example of Fig. 3A, the bitmap may be present as “11. ”
  • the DCI signal 300 may include a second field (e.g., and/or another independent PDCCH) to indicate which of a plurality of first resource elements of the CORESET 302 can be used by the PDSCH, and/or which of a plurality of second resource elements of the CORESET 304 can be used by the PDSCH.
  • the field may comprise information that is at a first level of granularity (e.g., control resource level)
  • the second field e.g., and/or another independent PDCCH
  • the second field may comprise information that is at a second (e.g., higher) level of granularity (e.g., resource element level) .
  • the BS may send a first level indication to the terminal in the DCI, the first multiplexed resource unit in the first level indication is CORESET, and the UE, according to the first level indication, may determine that the CORESET 302 and CORESET 304 are multiplexed with the PDSCH transmission.
  • the BS may inform the UE by RRC signaling of a need to receive the first level indication and/or the second level indication.
  • the resource range indicated by the second level indication of the base station to the terminal may be the time-frequency resource of the overlapped CORESETs and PDSCH resource allocation overlap in the first level indication, such as the resource in the virtual boxes 320 and 322 in Fig. 3A.
  • the second resource element indicated by the second level indication may be one or more candidates, CCE, REG Bundle, REG, RB, RBG and/or other PDSCH resource allocation unit, which may be configured by protocol and/or RRC signaling.
  • the second resource element may correspond to an increased level of granularity relative to a resource indicated by the first level indication (e.g., and/or that the resource may be associated with two or more resource elements, and that each resource element may be associated with two or more resource sub elements, etc. ) , and that one or more resource elements may have an increased level of granularity relative to the second resource element.
  • the second resource element size of each of the two control resources, CORESET 302 and CORESET 304 may be the same or different.
  • the UE may configure the REG Bundle as the second resource element, and if the REG Bundle size of CORESET 302 is different than the REG Bundle size of CORESET 304, then the CORESET 302 may be associated with a different PDSCH resource allocation size than the CORESET 304.
  • the plurality of resource elements corresponding to the shaded portions in the virtual frame 321 are the resources multiplexed for the PDSCH transmission for the UE in the second level indication.
  • the second level indication may comprise a number of bits indicating which of the resource elements in the virtual frames 320 and/or 322 of Fig. 3A are multiplexed to the PDSCH transmission.
  • the CORESET 304 and PDSCH resource allocation overlapping portions (within the frequency domain 310) contain five second resource elements.
  • the indexes of the five resource elements in CORESET 304 may be a0, a1, a2, a3, a4, and a0 -a4 may be 0 and/or a positive integer, which may be a continuous integer or a discontinuous integer.
  • the overlapping portions between CORESET 302 and the PDSCH resource allocation contains three resource elements, the three resource elements in CORESET 302 index may be b0, b1, b2, and/or b0 -b2 may be 0 and/or a positive integer, which can be a continuous integer or a non-contiguous integer.
  • a first CORESET index order may be determined for b0 -b2, a0 -a4 resource allocation after the combination of logical index 0 -7, which may be based upon a determination that an index of CORESET 302 is lower than an index for CORESET 304.
  • 0-2 may correspond to b0 -b2
  • 3 -7 may correspond to a0 -a4.
  • a0 -a4 may reflect and/or indicate that the size of a first resource element is different than the size of a second resource element corresponding to b0 -b2. In some applications, regardless of whether the two second resource elements are the same or different sizes, there is not an impact on their association and/or the determination of logical indexes.
  • a field may indicate that the logical index ⁇ 0 1 3 5 7 ⁇ corresponding to a resource element ⁇ b0 b1 a0 a2 a4 ⁇ may be multiplexed to the UE for the PDSCH (e.g., according to a resource indication method transmission of the resource element) .
  • Some of the resource indication methods mentioned here can be some kind of PDSCH resource allocation method, or other resource allocation method.
  • one or more control resources and/or resource elements will be determined based upon a resource element size in CORESET 302.
  • one or more control resources and/or resource elements will be determined based upon a resource element size in CORESET 304.
  • these resource elements and/or control resources may be complete or incomplete, and the UE may determine which resource elements and/or control resources are complete and which resource elements and/or control resources are not complete based on the range of the virtual frames 320 and/or 322 in FIG. 3A and/or the granularity of one or more indications of each resource element.
  • the terminal may make the determination based upon the order and/or location that the different CORESETs occupy along the time domain and /or frequency domain. If the time domain start symbol of different CORESETs are different, the CORESET with smaller time domain start symbol may be ordered before the CORESET with the larger time domain start symbol. If the time domain start symbols of different CORESETs is the same, then the CORESET with the smaller frequency domain start PRB may be ordered before the CORESET with the larger frequency domain start PRB.
  • Fig. 4A illustrates a scenario where a signal carrying DCI 400 (hereinafter “DCI signal 400” ) indicates that one or more of three exemplary CORESETs 402, 404 and 406 can be used to transmit data.
  • a BS may assign three CORESETs 402, 404 and 406 on the PDCCH to a UE.
  • Each of the CORESETs 402, 404 and 406 may be distributed across a respective time-frequency area (i.e., spanning across respective resource blocks) .
  • the CORESET 402 may extend across two symbols (e.g., OFDM symbols) along a time domain (i.e., “t” in Fig.
  • the CORESET 404 may also extend across two symbols (e.g., OFDM symbols) along the time domain and extend across a respective frequency range 405 along the frequency domain; and/or the CORESET 406 may also extend across two symbols (e.g., OFDM symbols) along the time domain and extend across a respective frequency range 407 along the frequency domain.
  • the BS sends a first level indication to the UE in the DCI.
  • the first level indication may identify one or more CORESETs, and the UE may determine that among the CORESET 410, CORESET 402, CORESET 404, and CORESET 406, CORESET 402, CORESET 404, and/or CORESET 406 are used for PDSCH transmission.
  • the BS informs the UE (e.g., by RRC signaling) of a need to receive the first level indication and the second level indication.
  • the resource range indicated by the second level indication of the BS to the UE corresponds to the time-frequency resource of overlaps between the CORESET (s) and PDSCH resource allocation, such as the resource elements in the virtual frames 420, 422 and/or 424 in Fig. 4A.
  • the resource elements indicated by the second level indication may be one or more candidate, CCE, REG Bundle, REG, RB, RBG and/or other PDSCH resource allocation units, which may be configured by protocol or RRC signaling.
  • the resource elements may correspond to an increased level of granularity relative to a resource indicated by the first level indication (e.g., and/or that the resource may be associated with two or more resource elements, and that each resource element may be associated with two or more resource sub elements, etc. ) , and that one or more resource elements may have an increased level of granularity relative to the second resource element.
  • the resource element sizes of CORESET 402, CORESET 404, and/or CORESET 406 may be the same or different.
  • the notification UE may configure the REG Bundle as the resource elements, but the REG Bundle size of CORESET 402, CORESET 404, and CORESET 406 may be different.
  • the PDCH resource allocation may also extend along a time domain of a slot along the time domain and extend across a respective frequency range along the frequency domain.
  • the resource elements of CORESET 402 and PDSCH resource allocation may overlap in a region (time domain t1, frequency domain f1 part time frequency resource) and the resource elements of the CORESET 404 and PDSCH resource allocation may overlap in a region (time domain t1, frequency domain f2 part time-frequency resource) .
  • CORESET 406 and PDSCH resource allocation may overlap in a region (time domain t2, frequency domain f3 part Frequency resource) .
  • the plurality of resource elements corresponding to the shaded portions in the virtual frame 421 are the resources multiplexed for the PDSCH transmission for the UE in the second level indication.
  • the second level indication contains a number of bits indicating which of the resource elements in the virtual frames 420, 422 and/or 424 of Fig. 4A are multiplexed to the PDSCH transmission.
  • the overlapping portions between CORESET 402 and PDSCH resource allocation (time domain t1, frequency domain f1 partial time-frequency resource) contain three resource elements.
  • the indexes of the three resource elements in CORESET 402 are a0, a1, and a2, and a0 -a2 may be 0 or a positive integer, and can be a continuous integer or a discontinuous integer.
  • the overlapping portions between CORESET 404 and the PDSCH resource allocation (time domain t1, frequency domain f2 part time frequency resource) contains five resource elements.
  • the five resource elements in the index corresponding to CORESET 404 are b0, b1, b2, b3, and b4, and b0 -b4 is 0 or a positive integer, which can be a continuous integer or a discontinuous integer.
  • the overlapping portions between CORESET 406 and the PDSCH resource allocation contains four resource elements.
  • the four resource elements in the index corresponding to CORESET 406 are c0, c1, c2, and c3, and c0 -c3 is 0 or a positive integer, and can be a continuous integer or a discontinuous integer.
  • the second level indication may specify a need for CORESET 402, CORESET 404 and/or CORESET 406, in particular, the resource elements of the virtual boxes 420, 422 and/or 424 in a joint instruction.
  • the resource elements may be ordered according to a CORESET index order, for the resource elements corresponding to a0 -a2, b0 -b4, and/or c0 -c3.
  • the index of CORESET 402 is lower than the index of CORESET 404, and the index of CORESET 404 is lower than the index of CORESET 406, and thus 0-2 corresponds to a0 -a2, 3 -7 corresponds to b0 -b4, and/or 8 -11 corresponds to c0 -c3.
  • a first resource element size may correspond to a0 -a2
  • a second resource element size may correspond to b0 -b4
  • a third resource element size may correspond to c0 -c3, where the first resource element size, the second resource element size and/or the third resource element size may be different.
  • the determination of joint instructions and/or logical index (es) may be performed in a same manner regardless of whether the resource element sizes are the same or not.
  • the second indicator field indicates via a logic index ⁇ 0 1 3 5 7 8 10 ⁇ that the corresponding resource element ⁇ a0 a1 b0 b2 b4 c0 c2 ⁇ may be used for the UE to perform the PDSCH transmission.
  • the UE After the UE receives the second level indication, for a0, a1, it will act according to the size of the resource element in CORESET 402. For b0, b2 and b4, it will act according to the size of the resource element in CORESET 404, and/or for c0 c2, according to the size of the resource element of the CORESET 406. Note that these resource elements may be complete or incomplete, and the UE may determine which second resources are complete and which second resources are not complete based on the range of the virtual boxes 420, 422 and/or 424 in FIG. 4A and the granularity of the second level indication.
  • the UE can also occupy the time domain and /or frequency domain resource index’s order in accordance with one or more of the different CORESETs. If the beginning of a time domain symbol is different between a first CORESET and a second CORESET, the CORESET with a smaller time domain start symbol may be ordered first, while the CORESET with a larger time domain start symbol may be ordered next.
  • the resource elements of the different CORESETs in the virtual boxes may together be used to determine the logical index.
  • the CORESET with the frequency domain start PRB that is smaller may be ordered first, and the CORESET with the frequency domain start PRB that is larger may be ordered next.
  • the first level indication may not be sent and/or the UE cannot be assured that the first-level indication can be received reliably.
  • the UE may be required to determine the multiplexed resources only based on the second-level indication.
  • the UE may identify and/or select a first control resource according to the overlapping portions between candidate control resources (e.g., one or more resource elements of the first control resource) and the PDSCH resource allocation.
  • the candidate control resources may comprise ⁇ CORESET 410, CORESET 402, CORESET 404, CORESET 406 ⁇ .
  • the first control resource e.g., one or more of the CORESETs, or a portion of one or more of the CORESETs
  • the second level indication may correspond to the time-frequency range of the first (e.g., multiplexed) control resource and/or may indicate which resource elements (e.g., of the first control resource) are multiplexed into the PDSCH transmission in the first multiplexed resource.
  • the second level indication indicates a payload. It may be appreciated that the length of the payload can be dynamically changed. After determining the resource element, according to the time zone resource range of the virtual frame 320 and/or 322 in Fig. 3A, the second level indication may indicate that the payload (e.g., length) will change dynamically. When the virtual frame 320 and/or 322 contains more than the resource elements, the payload will be longer. Alternatively and/or additionally, when the virtual frame 320 and/or 322 contains less than the resource elements, the payload will be shorter.
  • the payload e.g., length
  • Various DCI may have various DCI format payloads, such as DCI format with length of 40 bits, DCI format with length of 50 bits, DCI format with length of 60 bits, etc.
  • the DCI format of a secondary DCI can be determined according to the PDSCH resource allocation and/or the first level indication, and the payload can be determined based upon the second level indication.
  • the corresponding DCI format payload may be used to detect the secondary DCI.
  • the variable-length second-level indication may not increase the complexity associated with detection for the secondary DCI.
  • the second-level indication When the second-level indication is sent via the PDSCH, it can be restricted to a fixed location of the PDSCH resource allocation. After detecting and/or decoding the UE-specific DCI (e.g., a first level DCI) , the payload of the second level indication can be determined so based upon the fixed location of the PDSCH resource allocation. The reception bit length may be based upon the second level indication of the corresponding payload.
  • the UE-specific DCI e.g., a first level DCI
  • the length of the payload can be dynamically changed in the DCI, which may indicate the second level (e.g., in association with the higher level of granularity) of the payload.
  • the UE may determine, according to the DCI instructions and/or the payload, the need to receive and/or carry the second level indication and/or a number of bits to receive.
  • the UE may determine the size and /or resource allocation of the corresponding resource element (s) based on the size of the first (e.g., multiplexed) control resource (e.g., a CORESET) and the payload indicated by the corresponding second level indication. For example, the UE determines the time-frequency range of the first (e.g., multiplexed) control resource to include 10 REG Bundles when a REG Bundle is the resource element and/or 5 CCEs when a CCE is the resource element.
  • the first (e.g., multiplexed) control resource e.g., a CORESET
  • the UE may default to the resource element being a different type. For example, when the DCI dynamically indicates that the payload is 10 bits, the UE may default to the resource element being the REG Bundle; when the DCI dynamically indicates that the payload is 5 bits, the UE may default to the resource element being the CCE; and/or when the DCI dynamically indicates that the payload is 3 bits, the UE may default to the resource element being a Candidate.
  • the UE may default to processing the resource element using a different resource allocation method. For example, when the DCI dynamically indicates that the payload is 10 bits, the UE may default to processing the second level indication based on a first resource allocation method; when the DCI dynamically indicates that the payload is 8 bits, the UE may default to processing the second level indication based on a second resource Allocation method, and/or when the DCI dynamically indicates that the payload is 5 bits, the UE may default to processing the second level indication based on a third resource allocation method.
  • the first resource allocation method may be a bitmap-based method, and each bit corresponds to a second multiplexed resource unit or a second multiplexed resource unit group.
  • the second resource allocation method may be based on a method of continuous resource indication by indicating the number of the second multiplexed resource unit or the second multiplexed resource unit group that can be calculated from the start of the second multiplexed resource unit index and the continuous allocation.
  • the third resource allocation method may divide the first multiplexed resource into a plurality of resource blocks based on the block resource indication method, and the resource block index can be determined by indicating the multiplexed resource block index and the second multiplexed resource block Resource unit index.
  • the length of the payload can be a fixed value or determined based upon an RRC signaling semi-static configuration value.
  • the payload cannot indicate some and/or all of the corresponding resource elements (e.g., in virtual frames 320 and/or 322 in Fig. 3A)
  • the resource element with a larger index value may be discarded.
  • the virtual frames 320 and/or 322 in Fig. 3A may contain the time-frequency resource range and/or the payload.
  • the BS and the UE may dynamically adapt the size and /or resource allocation method of the corresponding resource element (s) accordingly.
  • the UE may determine the size of the second (e.g., multiplexed) resource element and/or the method of resource allocation based upon the payload and/or the size of the first (e.g., multiplexed) control resource. For example, the UE determines the time-frequency range of the first (e.g., multiplexed) control resource to include 10 REG Bundles when REG Bundle is the resource element, 5 CCEs when CCE is the resource element, and/or 3 Candidates when Candidate is the resource element.
  • the UE may default to processing the resource element using a different resource allocation method. For example, when the second level indication, the fixed configuration and/or the semi-static configuration indicates that the payload is 10 bits, the UE may defaults to processing and/or generating the second level indication based on the first resource allocation method; when the payload is 8 bits, the UE may default to processing and/or generating the second level indication based on the second resource allocation method; and/or when the payload is 5 bits, the UE may default to the second level indication based on the third resource allocation method.
  • the second level indication the fixed configuration and/or the semi-static configuration indicates that the payload is 10 bits
  • the UE may defaults to processing and/or generating the second level indication based on the first resource allocation method
  • the payload is 8 bits
  • the UE may default to processing and/or generating the second level indication based on the second resource allocation method
  • the payload is 5 bits
  • the UE may default to the second level indication based on the third resource allocation method.
  • Fig. 5 illustrates a scenario where a signal carrying DCI 500 (hereinafter “DCI signal 500” ) indicates that both of two exemplary CORESETs 502 and 504 can be used to transmit data.
  • a BS may assign two CORESETs 502 and 504 on the PDCCH to a UE.
  • Each of the CORESETs 502 and 504 may be distributed across a respective time-frequency area (i.e., spanning across respective resource blocks) .
  • the CORESET 502 may extend across two symbols (e.g., OFDM symbols) along a time domain (i.e., “t” in Fig.
  • the CORESET 504 may also extend across two symbols (e.g., OFDM symbols) along the time domain and extend across a respective frequency range 505 along the frequency domain.
  • the PDSCH resource allocation may extend along a time domain of a slot except for a number (e.g., two) symbols (e.g., OFDM symbols) along the time domain and extend across a respective frequency range along the frequency domain.
  • the resource range indicated by the second level indication of the BS to the UE may be the time-frequency resource of the overlapped CORESETs and PDSCH resource allocation overlap in the first level indication, such as the resource in the virtual boxes 520 and 522 in Fig. 5.
  • the overlap may correspond to an extension of PDSCH resource allocation with the CORESETs.
  • the second resource element indicated by the second level indication may be one or more candidate, CCE, REG Bundle, REG, RB, RBG and/or other PDSCH resource allocation unit, which may be configured by protocol and/or RRC signaling.
  • the second resource element may correspond to an increased level of granularity relative to a resource indicated by the first level indication (e.g., and/or that the resource may be associated with two or more resource elements, and that each resource element may be associated with two or more resource sub elements, etc. ) , and that one or more resource elements may have an increased level of granularity relative to the second resource element.
  • the second resource element size of each of the two control resources, CORESET 502 and CORESET 504 may be the same or different.
  • the UE may configure the REG Bundle as the second resource element, and if the REG Bundle size of CORESET 502 is different than the REG Bundle size of CORESET 504, then the CORESET 502 may be associated with a different PDSCH resource allocation size than the CORESET 504.
  • one or more of the CORESETs may have an overlapping area that extends with the PDSCH resource allocation along the time domain, as illustrated in Fig. 5.
  • Fig. 6 illustrates a scenario where a signal carrying DCI 600 (hereinafter “DCI signal 600” ) is similar to DCI signal 500 in Fig. 5. However, in Fig. 6, the one or more of the CORESETs may have an overlapping area that extends with the PDSCH resource allocation along the frequency domain.
  • DCI signal 600 a signal carrying DCI 600
  • the one or more of the CORESETs may have an overlapping area that extends with the PDSCH resource allocation along the frequency domain.
  • a BS may assign a set of CORESETs to a UE that can be used by a respective PDSCH, as illustrated and discussed above. Further, respective resource blocks of each of the CORESETs may be determined based on various characteristics of the UE and/or respective characteristics of the CORESETs.
  • the BS has a system bandwidth of about 100 MHz while the UE has a relatively smaller bandwidth of about 20 MHz. As such, the BS may assign a total “M” number of CORESETs over the 100 MHz, and assign a total “N” number of CORESETs to the UE, wherein N ⁇ M, and those N CORESETs are located within a respective frequency range of the UE’s 20 MHz bandwidth.
  • the BS may assign the set of CORESETs based on a designation type of the CORESET, e.g., whether each of the set of CORESETs is a UE-specific CORESET or a common CORESET. For example, a total number of 6 CORESETs (e.g., 1 st, 2nd, 3rd, 4th, 5th, and 6th) are available to be used by the UE to transmit data on a respective PDSCH, 2 of which (e.g., 1 st, and 2nd) are common CORESETs and 4 of which (e.g., 3rd, 4th, 5th, and 6th) are UE-specific CORESETs.
  • a designation type of the CORESET e.g., whether each of the set of CORESETs is a UE-specific CORESET or a common CORESET.
  • a total number of 6 CORESETs e.g., 1 st, 2nd, 3rd, 4
  • only the UE-specific CORESETs (3rd, 4th, 5th, and 6th) can be used by the UE.
  • the BS may send a DCI signal containing a field of 4 bits to indicate that only the 3rd, 4th, 5th, and 6th CORESETs can be used by the UE to transmit data on the respective PDSCH.
  • the BS may assign the set of CORESETs based on a transmission mode of the CORESET, e.g., whether each of the set of CORESETs is a localized CORESET or distributed CORESET. For example, a total number of 7 CORESETs (e.g., 1st, 2nd, 3rd, 4th, 5th, 6th, and 7th) are available to be used by the UE to transmit data on a respective PDSCH, 2 of which (e.g., 1st, and 2nd) are localized CORESETs and 5 of which (e.g., 3rd, 4th, 5th, 6th, and 7th) are distributed CORESETs.
  • 7 CORESETs e.g., 1st, 2nd, 3rd, 4th, 5th, 6th, and 7th
  • only the localized CORESETs (1st and 2nd) can be used by the UE.
  • the BS may send a DCI signal containing a field of 2 bits to indicate that only the 1st and 2nd CORESETs can be used by the UE to transmit data on the respective PDSCH.
  • a BS may assign a respective set of CORESETs to each of a plurality of UEs that can be used by a respective PDSCH. For example, the BS may determine a total number of 6 CORESETs, 3 of which (e.g., 1st, 2nd, and 3rd) are assigned to a first UE to transmit PDCCH or to blindly decode PDCCH, and 3 of which (e.g., 4th, 5th, and 6th) are assigned to a second UE to transmit PDCCH or to blindly decode PDCCH.
  • 3 of which e.g., 1st, 2nd, and 3rd
  • 3 of which e.g., 4th, 5th, and 6th
  • respective configurations of such 6 CORESETs may be predefined through the RRC as mentioned above, so that both the first and second UE’s know respective resource block configurations of these 6 CORESETs.
  • the BS may use a DCI signal containing a field of 3 bits to indicate whether three transmitting PDCCH’s CORESETs can be used to transmit data on the respective PDSCH.
  • the DCI signal indicates 1st, 2nd, and 3rd CORESETs
  • the DCI signal indicates 4th, 5th, and 6th CORESETs.
  • the BS may use a DCI signal (different form the DCI signal above) to indicate that all 1st, 2nd, 3rd, 4th, 5th, and 6th CORESETs can be used by the first UE to transmit data on the respective PDSCH, and all 1st, 2nd, 3rd, 4th, 5th, and 6th CORESETs can be used by the second UE to transmit data on the respective PDSCH, in this case, the DCI signal is 6 bits length.
  • the DCI signal can be included in a UE-specific PDCCH, or a common PDCCH, or a group-common PDCCH. In some examples, one bit may defer to multiple CORESETs.
  • eNB send a signal with 4 bits
  • the first three bits refer to the 1st, 2 nd and 3 rd CORESET
  • the fourth bit refer to all the 4th, 5th, and 6th CORESETs, so as to reduce the overhead from 6bits to 4bits.
  • a UE may assign which of respective CORESETs (or in a different term) , sent on a physical uplink control channel (PUCCH) , can be used to transmit data to a BS on a physical uplink shared channel (PUSCH) .
  • PUCCH physical uplink control channel
  • FIG. 7A An example 700A of facilitating use of one or more control resources, such as between a first wireless communication device and a second wireless communication device, is illustrated in Fig. 7A.
  • the first wireless communication device may be a network and/or BS and the second wireless communication device may be a UE, or vice versa.
  • the first wireless communication device may generate a first control signal indicating one or more resource elements.
  • the first control signal may be indicative of one or more resource elements that can be used for transmitting data via a second communication channel.
  • the second communication channel may, for example, be a PDSCH, or a PUSCH.
  • the one or more resource elements indicated by the first control signal may comprise a first one or more resource elements of a first control resource (e.g., a CORESET) .
  • the first control resource may comprise a plurality of resource elements (e.g., including one or more resource elements other than the ones indicated by the first control signal) .
  • the one or more resource elements indicated by the first control signal may comprise a second one or more resource elements of a second control resource (e.g., a second CORESET) .
  • the second control resource may comprise a plurality of resource elements (e.g., including one or more resource elements other than the ones indicated by the first control signal) .
  • the first control resource may be usable to transmit data via a first communication channel.
  • the first communication channel may, for example, be a PDCCH and/or a PUCCH.
  • the second control resource may be usable to transmit data via the first communication channel.
  • the first control signal may comprise a (e.g., joint) logical index corresponding to the first one or more resource elements and/or the second one or more resource elements.
  • a payload of the first control signal may be associated with a dynamic length, wherein the payload is a number of bits.
  • a payload of the first control signal may be associated with a fixed length, wherein the payload is a number of bits and wherein the fixed length is semi-statically configured by a transmitting node.
  • the first wireless communication device may transmit the first control signal to the second wireless communication device.
  • the first control signal may be transmitted via the second communication channel.
  • the first control signal may be transmitted using a control resource via the first communication channel.
  • the control resource may be the same or different than the first control resource and/or the second control resource.
  • the first wireless communication device may generate a second control signal.
  • the second control signal may indicate that the first control resource and the second control resource can be used for transmitting data via the second communication channel.
  • the first wireless communication device may transmit the second control signal to the second wireless communication device.
  • FIG. 7B An example 700B of facilitating use of one or more control resources, such as between a first wireless communication device and a second wireless communication device, is illustrated in Fig. 7B.
  • the first wireless communication device may be a network and/or BS and the second wireless communication device may be a UE, or vice versa.
  • the first wireless communication device may generate a first control signal indicating that at least one resource element of a control resource can be used for transmitting data via a second communication channel.
  • the second communication channel may, for example, be a PDSCH, or a PUSCH.
  • a payload of the first control signal may be determined based upon the number of resource elements of the at least one resource element of the control resource.
  • a second control signal may be generated based upon the payload.
  • the second control signal may be indicative of the payload of the first control signal.
  • the second control signal may be a DCI signal, for example.
  • the first wireless communication device may transmit the first control signal and/or the second control signal to the second wireless communication device.
  • the first control signal and/or the second control signal may be transmitted via the second communication channel.
  • the first control signal and/or the second control signal may be transmitted using a control resource via a first communication channel.
  • FIG. 8A An example 800A of facilitating use of one or more control resources, such as between a first wireless communication device and a second wireless communication device, is illustrated in Fig. 8A.
  • the first wireless communication device may be a network and/or BS and the second wireless communication device may be a UE, or vice versa.
  • the second wireless communication device may receive a first control signal indicating one or more resource elements from the first wireless communication device.
  • the first control signal may be indicative of one or more resource elements that can be used for transmitting data via a second communication channel.
  • the second communication channel may, for example, be a PDSCH, or a PUSCH.
  • the one or more resource elements indicated by the first control signal may comprise a first one or more resource elements of a first control resource (e.g., a CORESET) .
  • the first control resource may comprise a plurality of resource elements (e.g., including one or more resource elements other than the ones indicated by the first control signal) .
  • the one or more resource elements indicated by the first control signal may comprise a second one or more resource elements of a second control resource (e.g., a second CORESET) .
  • the second control resource may comprise a plurality of resource elements (e.g., including one or more resource elements other than the ones indicated by the first control signal) .
  • the first control resource may be usable to transmit data via a first communication channel.
  • the first communication channel may, for example, be a PDCCH.
  • the second control resource may be usable to transmit data via the first communication channel.
  • the first control signal may comprise a (e.g., joint) logical index corresponding to the first one or more resource elements and/or the second one or more resource elements.
  • a payload of the first control signal may be associated with a dynamic length, wherein the payload is a number of bits.
  • a payload of the first control signal may be associated with a fixed length, wherein the payload is a number of bits and wherein the fixed length is semi-statically configured by a transmitting node.
  • the second wireless communication device may transmit data (e.g., to the first wireless communication device) based upon the first control signal.
  • the data may be transmitted using the first one or more resource elements and/or the second one or more resource elements.
  • the data may be transmitted via the second communication channel.
  • the first control signal may be transmitted using a control resource via the first communication channel.
  • the control resource may be the same or different than the first control resource and/or the second control resource.
  • the second wireless communication device may receive a second control signal (e.g., from the first wireless communication device) .
  • the second control signal may indicate that the first control resource and the second control resource can be used for transmitting data via the second communication channel.
  • FIG. 8B An example 800B of facilitating use of one or more control resources, such as between a first wireless communication device and a second wireless communication device, is illustrated in Fig. 8B.
  • the first wireless communication device may be a network and/or BS and the second wireless communication device may be a UE, or vice versa.
  • the second wireless communication device may receive a first control signal from the first wireless communication device.
  • the first control signal may indicate that at least one resource element of a control resource can be used for transmitting data via a second communication channel.
  • the second communication channel may, for example, be a PDSCH, or a physical uplink shared channel (PUSCH) .
  • a second control signal may be received from the first wireless communication device and/or by the second wireless communication device.
  • the second control signal may be indicative of a payload of the first control signal.
  • the second control signal may be a DCI signal, for example.
  • the payload of the first control signal may be determined based upon the second control signal.
  • the payload may correspond to the number of resource elements of the at least one resource element of the control resource.
  • the second wireless communication device may determine a resource allocation of the at least one resource element and/or of the control resource.
  • the second wireless communication device may transmit and/or receive data based upon the first control signal and/or the second control signal and/or the resource allocation. For example, the second wireless communication device may use the resource element and/or the control resource to transmit and/or receive data.
  • FIG. 8C An example 800C of facilitating use of one or more control resources, such as between a first wireless communication device and a second wireless communication device, is illustrated in Fig. 8C.
  • the first wireless communication device may be a network and/or BS and the second wireless communication device may be a UE, or vice versa.
  • the second wireless communication device may determine a first control resource based upon an overlap between the first control resource and a resource allocation of a first communication channel.
  • the second wireless communication device may determine a second control resource based upon an overlap between the second control resource and the resource allocation of the first communication channel.
  • a control resource may comprise one control resource set, or part of one control resource set, or several control resource sets.
  • the second wireless communication device may transmit and/or receive data based upon the first control resource and/or the second control resource. For example, the second wireless communication device may use a first resource element of the first control resource and/or a second resource element of the second control resource to transmit and/or receive data.
  • Fig. 9 presents a schematic architecture diagram 900 of a base station 950 (e.g., a node) that may utilize at least a portion of the techniques provided herein.
  • a base station 950 e.g., a node
  • Such a base station 950 may vary widely in configuration and/or capabilities, alone or in conjunction with other base stations, nodes, end units and/or servers, etc. in order to provide a service, such as at least some of one or more of the other disclosed techniques, scenarios, etc.
  • the base station 950 may connect one or more user equipment (UE) to a (e.g., wireless) network (e.g., which may be connected and/or include one or more other base stations) , such as Code Division Multiple Access (CDMA) networks, Time Division Multiple Access (TDMA) networks, Frequency Division Multiple Access (FDMA) networks, Orthogonal FDMA (OFDMA) networks, Single-Carrier FDMA (SC-FDMA) networks, etc.
  • the network may implement a radio technology, such as Universal Terrestrial Radio Access (UTRA) , CDMA13000, Global System for Mobile Communications (GSM) , Evolved UTRA (E-UTRA) , IEEE 802.11, IEEE 802.16, IEEE 802.20, Flash-OFDM, etc.
  • the base station 950 and/or the network may communicate using a standard, such as Long-Term Evolution (LTE) .
  • LTE Long-Term Evolution
  • the base station 950 may comprise one or more (e.g., hardware) processors 910 that process instructions.
  • the one or more processors 910 may optionally include a plurality of cores; one or more coprocessors, such as a mathematics coprocessor or an integrated graphical processing unit (GPU) ; and/or one or more layers of local cache memory.
  • the base station 950 may comprise memory 902 storing various forms of applications, such as an operating system 904; one or more base station applications 906; and/or various forms of data, such as a database 908 and/or a file system, etc.
  • the base station 950 may comprise a variety of peripheral components, such as a wired and/or wireless network adapter 914 connectible to a local area network and/or wide area network; one or more storage components 916, such as a hard disk drive, a solid-state storage device (SSD) , a flash memory device, and/or a magnetic and/or optical disk reader; and/or other peripheral components.
  • peripheral components such as a wired and/or wireless network adapter 914 connectible to a local area network and/or wide area network; one or more storage components 916, such as a hard disk drive, a solid-state storage device (SSD) , a flash memory device, and/or a magnetic and/or optical disk reader; and/or other peripheral components.
  • the base station 950 may comprise a mainboard featuring one or more communication buses 912 that interconnect the processor 910, the memory 902, and/or various peripherals, using a variety of bus technologies, such as a variant of a serial or parallel AT Attachment (ATA) bus protocol; a Uniform Serial Bus (USB) protocol; and/or Small Computer System Interface (SCI) bus protocol.
  • a communication bus 912 may interconnect the base station 950 with at least one other server.
  • Other components that may optionally be included with the base station 950 (though not shown in the schematic diagram 900 of Fig.
  • 9) include a display; a display adapter, such as a graphical processing unit (GPU) ; input peripherals, such as a keyboard and/or mouse; and/or a flash memory device that may store a basic input/output system (BIOS) routine that facilitates booting the base station 950 to a state of readiness, etc.
  • a display adapter such as a graphical processing unit (GPU)
  • input peripherals such as a keyboard and/or mouse
  • BIOS basic input/output system
  • the base station 950 may operate in various physical enclosures, such as a desktop or tower, and/or may be integrated with a display as an “all-in-one” device.
  • the base station 950 may be mounted horizontally and/or in a cabinet or rack, and/or may simply comprise an interconnected set of components.
  • the base station 950 may comprise a dedicated and/or shared power supply 918 that supplies and/or regulates power for the other components.
  • the base station 950 may provide power to and/or receive power from another base station and/or server and/or other devices.
  • the base station 950 may comprise a shared and/or dedicated climate control unit 920 that regulates climate properties, such as temperature, humidity, and/or airflow. Many such base stations 950 may be configured and/or adapted to utilize at least a portion of the techniques presented herein.
  • Fig. 10 presents a schematic architecture diagram 1000 of a user equipment (UE) 1050 (e.g., a node) whereupon at least a portion of the techniques presented herein may be implemented.
  • UE user equipment
  • Such a UE 1050 may vary widely in configuration and/or capabilities, in order to provide a variety of functionality to a user.
  • the UE 1050 may be provided in a variety of form factors, such as a mobile phone (e.g., a smartphone) ; a desktop or tower workstation; an “all-in-one” device integrated with a display 1008; a laptop, tablet, convertible tablet, or palmtop device; a wearable device, such as mountable in a headset, eyeglass, earpiece, and/or wristwatch, and/or integrated with an article of clothing; and/or a component of a piece of furniture, such as a tabletop, and/or of another device, such as a vehicle or residence.
  • the UE 1050 may serve the user in a variety of roles, such as a telephone, a workstation, kiosk, media player, gaming device, and/or appliance.
  • the UE 1050 may comprise one or more (e.g., hardware) processors 1010 that process instructions.
  • the one or more processors 1010 may optionally include a plurality of cores; one or more coprocessors, such as a mathematics coprocessor or an integrated graphical processing unit (GPU) ; and/or one or more layers of local cache memory.
  • the UE 1050 may comprise memory 1001 storing various forms of applications, such as an operating system 1003; one or more user applications 1002, such as document applications, media applications, file and/or data access applications, communication applications, such as web browsers and/or email clients, utilities, and/or games; and/or drivers for various peripherals.
  • the UE 1050 may comprise a variety of peripheral components, such as a wired and/or wireless network adapter 1006 connectible to a local area network and/or wide area network; one or more output components, such as a display 1008 coupled with a display adapter (optionally including a graphical processing unit (GPU) ) , a sound adapter coupled with a speaker, and/or a printer; input devices for receiving input from the user, such as a keyboard 1011, a mouse, a microphone, a camera, and/or a touch-sensitive component of the display 1008; and/or environmental sensors, such as a GPS receiver 1019 that detects the location, velocity, and/or acceleration of the UE 1050, a compass, accelerometer, and/or gyroscope that detects a physical orientation of the UE 1050.
  • peripheral components such as a wired and/or wireless network adapter 1006 connectible to a local area network and/or wide area network
  • one or more output components such as a display
  • Other components that may optionally be included with the UE 1050 include one or more storage components, such as a hard disk drive, a solid-state storage device (SSD) , a flash memory device, and/or a magnetic and/or optical disk reader; a flash memory device that may store a basic input/output system (BIOS) routine that facilitates booting the UE 1050 to a state of readiness; and/or a climate control unit that regulates climate properties, such as temperature, humidity, and airflow, etc.
  • storage components such as a hard disk drive, a solid-state storage device (SSD) , a flash memory device, and/or a magnetic and/or optical disk reader; a flash memory device that may store a basic input/output system (BIOS) routine that facilitates booting the UE 1050 to a state of readiness; and/or a climate control unit that regulates climate properties, such as temperature, humidity, and airflow, etc.
  • BIOS basic input/output system
  • the UE 1050 may comprise a mainboard featuring one or more communication buses 1012 that interconnect the processor 1010, the memory 1001, and/or various peripherals, using a variety of bus technologies, such as a variant of a serial or parallel AT Attachment (ATA) bus protocol; the Uniform Serial Bus (USB) protocol; and/or the Small Computer System Interface (SCI) bus protocol.
  • the UE 1050 may comprise a dedicated and/or shared power supply 1018 that supplies and/or regulates power for other components, and/or a battery 1004 that stores power for use while the UE 1050 is not connected to a power source via the power supply 1018.
  • the UE 1050 may provide power to and/or receive power from other client devices.
  • Fig. 11 is an illustration of a scenario 1100 involving an example non-transitory computer readable medium 1102.
  • the non-transitory computer readable medium 1102 may comprise processor-executable instructions 1112 that when executed by a processor 1116 cause performance (e.g., by the processor 1116) of at least some of the provisions herein (e.g., embodiment 1114) .
  • the non-transitory computer readable medium 1102 may comprise a memory semiconductor (e.g., a semiconductor utilizing static random access memory (SRAM) , dynamic random access memory (DRAM) , and/or synchronous dynamic random access memory (SDRAM) technologies) , a platter of a hard disk drives, a flash memory device, or a magnetic or optical disc (such as a compact disc (CD) , digital versatile disc (DVD) , and/or floppy disk) .
  • a memory semiconductor e.g., a semiconductor utilizing static random access memory (SRAM) , dynamic random access memory (DRAM) , and/or synchronous dynamic random access memory (SDRAM) technologies
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • SDRAM synchronous dynamic random access memory
  • CD compact disc
  • DVD digital versatile disc
  • floppy disk floppy disk
  • the example non-transitory computer readable medium 1102 stores computer-readable data 1104 that, when subjected to reading 1106 by a reader 1110 of a device 1108 (e.g., a read head of a hard disk drive, or a read operation invoked on a solid-state storage device) , express the processor-executable instructions 1112.
  • the processor-executable instructions 1112 when executed, cause performance of operations, such as at least some of the example method 700A of Fig. 7A, the example method 700B of Fig. 7B, the example method 800A of Fig. 8A, the example method 800B of Fig. 8B, and/or the example method 800C of Fig. 8C, for example.
  • the processor-executable instructions 1112 are configured to cause implementation of a system and/or scenario, such as at least some of the example system 100 of Fig. 1, the example system 200 of Fig. 2, the example system 300 of Fig. 3, the example system 400 of Fig. 4, the example system 500 of Fig. 5, and/or the example system 600 of Fig. 6, for example.
  • ком ⁇ онент As used in this application, "component, “ “module, “ “system” , “interface” , and/or the like are generally intended to refer to a computer-related entity, either hardware, a combination of hardware and software, software, or software in execution.
  • a component may be, but is not limited to being, a process running on a processor, a processor, an object, an executable, a thread of execution, a program, and/or a computer.
  • an application running on a controller and the controller can be a component.
  • One or more components may reside within a process and/or thread of execution and a component may be localized on one computer and/or distributed between two or more computers (e.g., nodes (s) ) .
  • first, ” “second, ” and/or the like are not intended to imply a temporal aspect, a spatial aspect, an ordering, etc. Rather, such terms are merely used as identifiers, names, etc. for features, elements, items, etc.
  • a first object and a second object generally correspond to object A and object B or two different or two identical objects or the same object.
  • example is used herein to mean serving as an instance, illustration, etc., and not necessarily as advantageous.
  • “or” is intended to mean an inclusive “or” rather than an exclusive “or” .
  • “a” and “an” as used in this application are generally be construed to mean “one or more” unless specified otherwise or clear from context to be directed to a singular form.
  • at least one of A and B and/or the like generally means A or B or both A and B.
  • the claimed subject matter may be implemented as a method, apparatus, or article of manufacture using standard programming and/or engineering techniques to produce software, firmware, hardware, or any combination thereof to control a computer (e.g., node) to implement the disclosed subject matter.
  • a computer e.g., node
  • article of manufacture is intended to encompass a computer program accessible from any computer-readable device, carrier, or media.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

One or more devices, systems, and/or methods facilitating use of one or more control resources are provided. A control signal indicative of one or more resource elements that can be used for transmitting data may be generated. The control signal may be transmitted to a wireless communication device.

Description

RESOURCE ELEMENT OF CONTROL RESOURCE BACKGROUND
A communication link between wireless nodes (e.g., communication devices) , such as between a user equipment (UE) and a base station (BS) , may be facilitated using one or more channels. For example, the BS may transmit data to the UE, and/or the UE may transmit data to the BS. A scheduling process may be used prior to transmitting data to and/or from the BS and/or the UE, and may involve providing information from the BS to the UE using resources. However, resources used to provide the information may prevent some resource blocks from being used by the BS and/or the UE to transmit and/or receive data.
SUMMARY
In accordance with the present disclosure, one or more devices and/or methods for facilitating use of one or more control resources are provided. In an example, a first control signal may be generated, and may indicate one or more resource elements that can be used for transmitting data via a second communication channel. The one or more resource elements may comprise a first one or more resource elements of a first control resource comprising a plurality of resource elements. The one or more resource elements may comprise a second one or more resource elements of a second control resource comprising a plurality of resource elements. The first control resource and the second control resource may be used for transmitting data via a first communication channel. The first control signal may be transmitted to a wireless communication device.
In an example, a first control signal may be generated. The first control signal may indicate at least one resource element of a control resource can be used for transmitting data via a second communication channel. The control resource may comprise a plurality of resource elements. A payload of the first control signal may be determined based upon the number of resource  elements of the at least one resource element of the control resource. A second control signal indicative of the payload of the first control signal may be generated. The first control signal and the second control signal may be transmitted to a wireless communication device.
In an example, a first control signal may be received from a wireless communication device. The first control signal may indicate one or more resource elements that can be used for transmitting data via a second communication channel. The one or more resource elements may comprise a first one or more resource elements of a first control resource comprising a plurality of resource elements. The one or more resource elements may comprise a second one or more resource elements of a second control resource comprising a plurality of resource elements. The first control resource and the second control resource may be used for transmitting data via a first communication channel. Based upon the first control signal, data may be transmitted via the second communication channel using the first one or more resource elements in the first control resource and the second one or more resource elements in the second control resource.
In an example, a first control signal may be received. The first control signal may indicate at least one resource element of a control resource can be used for transmitting data via a second communication channel. The control resource may comprise a plurality of resource elements. A second control signal indicative of a payload of the first control signal may be received. Based upon the first control signal and the second control signal, a resource allocation of the at least one resource element may be determined.
In an example, a first control resource may be determined based upon an overlap between the first control resource and a resource allocation of a second communication channel. A second control resource may be determined based upon an overlap between the second control resource and the resource allocation of the second communication channel.
DESCRIPTION OF THE DRAWINGS
While the techniques presented herein may be embodied in alternative forms, the particular embodiments illustrated in the drawings are only a few examples that are supplemental of the description provided herein. These embodiments are not to be interpreted in a limiting manner, such as limiting the claims appended hereto.
Fig. 1 is a diagram illustrating an example system for facilitating use of one or more control resources.
Fig. 2 is a diagram illustrating an example system for facilitating use of one or more control resources.
Fig. 3 is a diagram illustrating an example system for facilitating use of one or more control resources.
Fig. 4 is a diagram illustrating an example system for facilitating use of one or more control resources.
Fig. 5 is a diagram illustrating an example system for facilitating use of one or more control resources.
Fig. 6 is a diagram illustrating an example system for facilitating use of one or more control resources.
Fig. 7A is a flow chart illustrating an example method for facilitating use of one or more control resources.
Fig. 7B is a flow chart illustrating an example method for facilitating use of one or more control resources.
Fig. 8A is a flow chart illustrating an example method for facilitating use of one or more control resources.
Fig. 8B is a flow chart illustrating an example method for facilitating use of one or more control resources.
Fig. 8C is a flow chart illustrating an example method for facilitating use of one or more control resources.
Fig. 9 is an illustration of a scenario involving an example configuration of a base station (BS) that may utilize and/or implement at least a portion of the techniques presented herein.
Fig. 10 is an illustration of a scenario involving an example configuration of a user equipment (UE) that may utilize and/or implement at least a portion of the techniques presented herein.
Fig. 11 is an illustration of a scenario featuring an example non-transitory computer readable medium in accordance with one or more of the provisions set forth herein.
DETAILED DESCRIPTION
Subject matter will now be described more fully hereinafter with reference to the accompanying drawings, which form a part hereof, and which show, by way of illustration, specific example embodiments. This description is not intended as an extensive or detailed discussion of known concepts. Details that are known generally to those of ordinary skill in the relevant art may have been omitted, or may be handled in summary fashion.
The following subject matter may be embodied in a variety of different forms, such as methods, devices, components, and/or systems. Accordingly, this subject matter is not intended to be construed as limited to any example embodiments set forth herein. Rather, example embodiments are provided merely to be illustrative. Such embodiments may, for example, take the form of hardware, software, firmware or any combination thereof.
One or more computing devices and/or techniques for facilitating use of one or more control resources are provided. For example, a user equipment (UE) may connect to a (e.g., wireless communication) network via a base station (BS) of the network. The UE may use one or more control resources for data transmission to and/or from the BS and/or the network, and/or vice versa. To do so, the UE may (e.g., need to) determine which control resources to use. However, the UE may not have a precise understanding of control resources and/or parts of the control resources that are available and/or allocated for use by the UE. Systems that are not able to precisely indicate, to the UE, which control resources and/or parts of the control resources are available may thus be limited with redundant efforts,  wasted resource blocks, failed attempts to use control resources, (e.g., low) data rates, (e.g., lack of) efficiency, etc. Thus, in accordance with one or more of the techniques presented herein, a signal indicative of resource elements of control resources may be used to facilitate use of one or more control resources which may result in improved success rates and/or speeds of access, data rates, efficiency, etc.
In wireless communications, when a base station (BS) is preparing to transmit data to a user equipment device (UE) or to receive data from a user equipment device (UE) , a scheduling process may be performed before the BS actually transmits the data to the UE or receives the data from the UE. Such a scheduling process typically provides some control information (e.g., downlink control information (DCI) ) that is transmitted through one or more physical channels (e.g., a physical downlink control channel (PDCCH) ) to the UE. In particular, the control information comprises various specified parameters that the UE may use for receiving and transmitting the data such as, for example, downlink (i.e., from the BS to the UE) scheduling commands, uplink (i.e., from the UE to the BS) scheduling grants, uplink power control commands, etc.
In the Long Term Evolution (LTE) network, the legacy PDCCH is pre-coded with transmit diversity on 1/2/4 cell-specific reference signal (CRS) antenna ports, and cross-interleaved with other PDCCHs, such that the legacy PDCCH is distributed over an entire system bandwidth in a control region within a subframe. Further, resources (e.g., resource blocks) allocated in the legacy PDCCH, used to transmit the above-mentioned DCI, cannot be used in other channels that are used to transmit data (e.g., a physical downlink shared channel (PDSCH) ) . Alternatively stated, the resource blocks in the legacy PDCCH consumes the entire system bandwidth, and even though remaining resource blocks in the legacy PDCCH are present, such remaining resource blocks cannot be used for transmitting data on other channels.
Such an inflexible use on the resource blocks in the legacy PDCCH may disadvantageously waste valuable resource blocks. Therefore, existing  techniques for allocating resource blocks in the legacy PDCCH are not satisfactory.
Fig. 1 illustrates an exemplary wireless communication network 100 in which techniques disclosed herein may be implemented, in accordance with an embodiment of the present disclosure. The exemplary communication network 100 includes a base station 102 (hereinafter “BS 102” ) and a user equipment device 104 (hereinafter “UE 104” ) that can communicate with each other via a communication link 110 (e.g., a wireless communication channel) , and a cluster of  notional cells  126, 130, 132, 134, 136, 138 and 140 overlaying a geographical area 101. In Fig. 1, the BS 102 and UE 104 are contained within the geographic boundary of cell 126. Each of the  other cells  130, 132, 134, 136, 138 and 140 may include at least one base station operating at its allocated bandwidth to provide adequate radio coverage to its intended users. For example, the base station 102 may operate at an allocated channel transmission bandwidth to provide adequate coverage to the UE 104. The base station 102 and the UE 104 may communicate via a downlink radio frame 118, and an uplink radio frame 124 respectively. Each radio frame 118/124 may be further divided into sub-frames 120/126 which may include data symbols 122/128. In the present disclosure, the BS 102 and UE 104 are described herein as non-limiting examples of “communication nodes, ” generally, which can practice the methods disclosed herein. Such communication nodes may be capable of wireless and/or wired communications, in accordance with various embodiments of the invention.
When the BS 102 is preparing to transmit data to the UE 104, a scheduling process may be performed before the BS actually transmits and receives the data from the UE 104. During such a scheduling process, control information such as, for example, DCI may be transmitted from the BS 102 to the UE 104 via one or more physical channels, e.g., a PDCCH.
In some embodiments, the BS 102 may use one or more control resource sets (hereinafter “CORESETs” ) to transmit the DCI via the PDCCH. In particular, such a CORESET is a subset of resource blocks within which the  UE 104 attempts to blindly decode the DCI so as to retrieve information contained in the DCI. In other words, one CORESET is a subset of resource blocks selected from respective resource blocks occupied by the PDCCH. According to some embodiments of the present disclosure, the “resource block” as used herein is referred to as a resource unit that spans across respective time range (e.g., symbols) and frequency range (e.g., sub-carrier channels) . As such, each CORESET as discussed herein may span across respective time and frequency ranges. In accordance with some embodiments, when the BS 102 uses such one or more CORESETs to transmit the DCI, the BS 102 may include a filed in the DCI to indicate which of the one or more CORESETs can be used by other channels (e.g., a PDSCH) for the BS 102 to transmit data. In a further embodiment, the BS 102 may transmit another DCI indicating that in the CORESET that can be used to transmit data, which of respective resource blocks can be used to transmit the data.
Fig. 2A illustrates a scenario where a signal carrying the DCI 200 (hereinafter “DCI signal 200” ) indicates that one of two  exemplary CORESETs  202 and 204 can be used to transmit data. In some embodiments, a BS may assign two  CORESETs  202 and 204 on the PDCCH to a UE. Each of the  CORESETs  202 and 204 may be distributed across a respective time-frequency area (i.e., spanning across a respective resource blocks) . In the illustrated embodiment of Fig. 2A, the CORESET 202 may extend across two symbols (e.g., OFDM symbols) along a time domain (i.e., “t” in Fig. 2A) and extend across a frequency range 203 along a frequency domain ( “i.e., “f” in Fig. 2A) ; and the CORESET 204 may extend across one symbol (e.g., an OFDM symbol) along the time domain and extend across a frequency range 205 along the frequency domain. The symbol may be a unit of a resource block in the time domain. Thus, it is noted that such symbols along the time domain are not shown for clarity of illustration. In some embodiments, such configurations of the  CORESETs  202 and 204 may be predefined by a protocol of a network, in which the BS and UE are located, for example, a radio resource control (RRC) protocol or be predefined by Master Information Block (MIB) .
In some embodiments, the BS may use the CORESET 202 to transmit the DCI signal 200 to the UE. As mentioned above, the DCI signal 200 may include various information such as, for example, respective resource blocks, which includes respective time and frequency ranges, to be used by the PDSCH. In Fig. 2A, the PDSCH extends across 1 time slot along the time domain and across a frequency range 208 along the frequency domain. Moreover, in some embodiments, the DCI signal 200 may include a field to indicate which of the  CORESETs  202 and 204 can be used by the PDSCH (i.e., which of respective resource blocks of the  CORESETs  202 and 204 can be used to transmit data on the PDSCH) based on the resource block configurations of the  CORESETs  202 and 204, which may be predefined as mentioned above, and respective “overlapped” relations with the PDSCH in terms of the resource blocks.
For example, in Fig. 2A, the CORESET 202 overlaps the PDSCH by resource blocks extending across a frequency range 214 and across the same time duration of the CORESET 202 (2 symbols in the current example) , and the CORESET 204 overlaps the PDSCH by resource blocks extending across a frequency range 210 and across the same time duration of the CORESET 204 (1 symbol in the current example) . Based on such resource blocks configurations and respective usages of the  CORESETs  202 and 204, the BS may determine that only CORESET 202 can be used by the PDSCH. In some embodiments, a field within the DCI signal 200 may indicate that the resource blocks overlapped by the CORESET 202 and the PDSCH can be used by the BS to transmit data on the PDSCH, and the resource blocks overlapped by the CORESET 204 and the PDSCH cannot be used by the BS to transmit data on the PDSCH.
In some embodiments, such a field in the DCI may be implemented by various techniques such as, for example, a bitmap. In the example of Fig. 2A, a bitmap with a length of 2 bits may be used, which is determined based on a number of CORESETs in accordance with some embodiments. When only the CORESET 202 is chosen to be used by the PDSCH, the bitmap may indicate a value of “01; ” and when only the CORESET 204 is chosen to be  used by the PDSCH, the bitmap may indicate a value of “10, ” for example. More specifically, when the bitmap indicates 01, the resource blocks overlapped by the CORESET 202 and the PDSCH can be used by the BS to transmit data on the PDSCH; and when the bitmap indicates 10, the resource blocks overlapped by the CORESET 204 and the PDSCH can be used by the BS to transmit data on the PDSCH.
In some examples, the DCI signal 200 (e.g., and/or a different signal) may include a second field or another independent PDCCH (e.g., which may be a DCI or not a DCI) to indicate which of a plurality of first resource elements of the CORESET 202 can be used by the PDSCH, and/or which of a plurality of second resource elements of the CORESET 204 can be used by the PDSCH. In some examples, the field may comprise information that is at a first level of granularity (e.g., control resource level) , while the second field or another independent PDCCH may comprise information that is at a second (e.g., higher) level of granularity (e.g., resource element level) .
The field and/or the second field (e.g., and/or another independent PDCCH) may comprise one or more logical indexes. For example, the field and/or the second field (e.g., and/or another independent PDCCH) may comprise a logical index with one or more values (e.g., a range) that correspond to a first resource element of the plurality first resource elements and/or a second resource element of the plurality of second resource elements.
In some examples, the BS may send a first level indication (e.g., of a control resource) to the UE in the DCI. The first level indication may comprise and/or correspond to the field. The UE may be able to determine, based upon the first level indication, that the CORESET 202 and/or CORESET 204 may be used for PDSCH transmission. The BS may inform the UE of the same by RRC signaling semi-static, for example.
If a candidate aggregation level of UE-specific DCI is a value of {AL1} , the UE may (e.g., only) receive the first level indication, which may be AL1 = {4 8} , or AL1 = {8} , or other higher candidate aggregation level (s) .
The UE may determine a number of indications to receive based upon a type of the UE. For example, if the UE-specific DCI of the UE is a value within one or more (e.g., all) candidate aggregation levels, the UE may need to receive the first level indication and the second level indication (e.g., of a resource element of the control resource) . The second level indication may comprise and/or correspond to the second field (e.g., and/or another independent PDCCH) .
In some examples, if the aggregation level of the UE-specific DCI corresponds to a second value (e.g. {AL2} , AL2 = {1 2} or AL2 = {1} , or other lower candidate aggregation level (s) ) , the UE may need to receive the first level indication and the second level indication. It may be appreciated that in some examples, the UE may be determined to need to receive more than two (e.g., three, four, etc. ) indications (e.g., with progressively higher levels of granularity) .
A resource range indicated by the second level indication may indicate the time-frequency resource of the overlapped portion of the CORESET and PDSCH resource allocation in the first level indication, that is, the resources in the virtual box 220 in Fig. 2A. The second resource element indicated by the second level indication may be one or more Candidate, CCE, REG Bundle, REG, RB, RBG and/or other PDSCH resource allocation unit. It may be appreciated that the second resource element may correspond to an increased level of granularity relative to a resource indicated by the first level indication (e.g., and/or that the resource may be associated with two or more resource elements, and that each resource element may be associated with two or more resource sub elements, etc. ) , and that one or more resource elements may have an increased level of granularity relative to the second resource element. The second resource element may be specifically configured by RRC signaling semi-static configuration associated with the UE.
As shown in Fig. 2B, the plurality of second resource elements corresponding to the shaded portions in the virtual frame may be the resources multiplexed for the PDSCH transmission to the UE in the second  level indication. The second level indication contains a number of bits indicating which of the second resource elements (e.g., of a control resource) in the virtual frame 220 of Fig. 2A are multiplexed to the PDSCH transmission.
Fig. 2B illustrates five second resource elements. The indexes of the five second resource elements in CORESET 204 may be a0, a1, a2, a3, a4, a0 -a4 and/or 0 and/or a positive integer, which can be a continuous integer or a non-contiguous integer. In the second level indication, the logical index 0--4 may correspond to a0 -a4, respectively. In some examples, the second field (e.g., and/or another independent PDCCH) may indicate the logical index {0 2 4} corresponding to the second resource element. For example, {a0 a2 a4} may be the second resource element for multiplexing to terminal 1 for PDSCH transmission. Note that these second resource elements may be complete or incomplete. For example, the UE may determine which second resource elements are complete and which second resource elements are based on the range of the virtual frame 220 in Fig. 2A and thus are associated with a granularity that is not complete. Some of the resource indication methods mentioned here can be some kind of PDSCH resource allocation method, or other resource allocation method.
Fig. 3A illustrates a scenario where a signal carrying DCI 300 (hereinafter “DCI signal 300” ) indicates that both of two  exemplary CORESETs  302 and 304 can be used to transmit data. In some embodiments, a BS may assign two  CORESETs  302 and 304 on the PDCCH to a UE. Each of the  CORESETs  302 and 304 may be distributed across a respective time-frequency area (i.e., spanning across respective resource blocks) . In the illustrated embodiment of Fig. 3A, the CORESET 302 may extend across two symbols (e.g., OFDM symbols) along a time domain (i.e., “t” in Fig. 3A) and extend across a frequency range 303 along a frequency domain ( “i.e., “f” in Fig. 3A) ; and the CORESET 304 may also extend across two symbols (e.g., OFDM symbols) along the time domain and extend across a respective frequency range 305 along the frequency domain.
In Fig. 3A, a PDSCH, assigned by the DCI signal 300, extends across 1 time slot in the time domain and across a frequency range 308 along the frequency domain. Similarly, in some embodiments, the DCI signal 300 may include a field to indicate which of the  CORESETs  302 and 304 can be used by the PDSCH based on the resource block configurations of the  CORESETs  302 and 304, which may be predefined as mentioned above, and respective “overlapped” relations with the PDSCH in terms of the resource blocks.
For example, in Fig. 3A, the CORESET 302 overlaps the PDSCH by resource blocks extending across a frequency range 314 and across a time duration (e.g., 1 symbol in the current example) , and the CORESET 304 overlaps the PDSCH by resource blocks extending across a frequency range 310 and across the same time duration (e.g., 1 symbol in the current example) . Based on such resource blocks configurations and respective usages of the  CORESETs  302 and 304, the BS may determine that both  CORESETs  302 and 304 can be used by the PDSCH. In other words, the field of the DCI signal 300 may indicate that the resource blocks overlapped by the CORESET 302 and the PDSCH, which includes resource blocks across the frequency range 310 and 1 symbol, can be used by the BS to transmit data on the PDSCH, and, in addition, the resource blocks overlapped by the CORESET 304 and the PDSCH, which includes resource blocks across the frequency range 314 and 1 symbol, can be used by the BS to transmit data on the PDSCH. Similarly, the field of the DCI signal 300 can be implemented by the bitmap described with respect to Fig. 3A. In the example of Fig. 3A, the bitmap may be present as “11. ”
In some examples, the DCI signal 300 (e.g., and/or a different signal) may include a second field (e.g., and/or another independent PDCCH) to indicate which of a plurality of first resource elements of the CORESET 302 can be used by the PDSCH, and/or which of a plurality of second resource elements of the CORESET 304 can be used by the PDSCH. In some examples, the field may comprise information that is at a first level of granularity (e.g., control resource level) , while the second field (e.g., and/or  another independent PDCCH) may comprise information that is at a second (e.g., higher) level of granularity (e.g., resource element level) .
As shown in Fig. 3A, the BS may send a first level indication to the terminal in the DCI, the first multiplexed resource unit in the first level indication is CORESET, and the UE, according to the first level indication, may determine that the CORESET 302 and CORESET 304 are multiplexed with the PDSCH transmission. The BS may inform the UE by RRC signaling of a need to receive the first level indication and/or the second level indication.
The resource range indicated by the second level indication of the base station to the terminal may be the time-frequency resource of the overlapped CORESETs and PDSCH resource allocation overlap in the first level indication, such as the resource in the  virtual boxes  320 and 322 in Fig. 3A. The second resource element indicated by the second level indication may be one or more candidates, CCE, REG Bundle, REG, RB, RBG and/or other PDSCH resource allocation unit, which may be configured by protocol and/or RRC signaling. It may be appreciated that the second resource element may correspond to an increased level of granularity relative to a resource indicated by the first level indication (e.g., and/or that the resource may be associated with two or more resource elements, and that each resource element may be associated with two or more resource sub elements, etc. ) , and that one or more resource elements may have an increased level of granularity relative to the second resource element. The second resource element size of each of the two control resources, CORESET 302 and CORESET 304, may be the same or different. For example, the UE may configure the REG Bundle as the second resource element, and if the REG Bundle size of CORESET 302 is different than the REG Bundle size of CORESET 304, then the CORESET 302 may be associated with a different PDSCH resource allocation size than the CORESET 304.
As shown in Fig. 3B, the plurality of resource elements corresponding to the shaded portions in the virtual frame 321 are the resources multiplexed for the PDSCH transmission for the UE in the second  level indication. The second level indication may comprise a number of bits indicating which of the resource elements in the virtual frames 320 and/or 322 of Fig. 3A are multiplexed to the PDSCH transmission.
In Fig. 3B, the CORESET 304 and PDSCH resource allocation overlapping portions (within the frequency domain 310) contain five second resource elements. The indexes of the five resource elements in CORESET 304 may be a0, a1, a2, a3, a4, and a0 -a4 may be 0 and/or a positive integer, which may be a continuous integer or a discontinuous integer. The overlapping portions between CORESET 302 and the PDSCH resource allocation (frequency range 314 range) contains three resource elements, the three resource elements in CORESET 302 index may be b0, b1, b2, and/or b0 -b2 may be 0 and/or a positive integer, which can be a continuous integer or a non-contiguous integer.
In the second level indication, there may be a need to identify portions of CORESET 302 and CORESET 304 in the virtual boxes 320 and/or 322. A first CORESET index order may be determined for b0 -b2, a0 -a4 resource allocation after the combination of logical index 0 -7, which may be based upon a determination that an index of CORESET 302 is lower than an index for CORESET 304. Thus, 0-2 may correspond to b0 -b2, and/or 3 -7 may correspond to a0 -a4. In this embodiment, a0 -a4 may reflect and/or indicate that the size of a first resource element is different than the size of a second resource element corresponding to b0 -b2. In some applications, regardless of whether the two second resource elements are the same or different sizes, there is not an impact on their association and/or the determination of logical indexes.
In the second level indication, a field may indicate that the logical index {0 1 3 5 7} corresponding to a resource element {b0 b1 a0 a2 a4} may be multiplexed to the UE for the PDSCH (e.g., according to a resource indication method transmission of the resource element) . Some of the resource indication methods mentioned here can be some kind of PDSCH resource allocation method, or other resource allocation method.
After the UE receives the second level indication, for b0, b1, one or more control resources and/or resource elements will be determined based upon a resource element size in CORESET 302. For a0, a2 and a4, one or more control resources and/or resource elements will be determined based upon a resource element size in CORESET 304. Note that these resource elements and/or control resources may be complete or incomplete, and the UE may determine which resource elements and/or control resources are complete and which resource elements and/or control resources are not complete based on the range of the virtual frames 320 and/or 322 in FIG. 3A and/or the granularity of one or more indications of each resource element.
When the UE determines the combined logical index for b0 -b2 and a0 -a4, the terminal may make the determination based upon the order and/or location that the different CORESETs occupy along the time domain and /or frequency domain. If the time domain start symbol of different CORESETs are different, the CORESET with smaller time domain start symbol may be ordered before the CORESET with the larger time domain start symbol. If the time domain start symbols of different CORESETs is the same, then the CORESET with the smaller frequency domain start PRB may be ordered before the CORESET with the larger frequency domain start PRB.
Fig. 4A illustrates a scenario where a signal carrying DCI 400 (hereinafter “DCI signal 400” ) indicates that one or more of three  exemplary CORESETs  402, 404 and 406 can be used to transmit data. In some embodiments, a BS may assign three  CORESETs  402, 404 and 406 on the PDCCH to a UE. Each of the  CORESETs  402, 404 and 406 may be distributed across a respective time-frequency area (i.e., spanning across respective resource blocks) . In the illustrated embodiment of Fig. 4A, the CORESET 402 may extend across two symbols (e.g., OFDM symbols) along a time domain (i.e., “t” in Fig. 4A) and extend across a frequency range 403 along a frequency domain ( “i.e., “f” in Fig. 4A) ; the CORESET 404 may also extend across two symbols (e.g., OFDM symbols) along the time domain and extend across a respective frequency range 405 along the frequency domain; and/or the CORESET 406 may also extend across two symbols (e.g., OFDM  symbols) along the time domain and extend across a respective frequency range 407 along the frequency domain.
As shown in Fig. 4A, the BS sends a first level indication to the UE in the DCI. The first level indication may identify one or more CORESETs, and the UE may determine that among the CORESET 410, CORESET 402, CORESET 404, and CORESET 406, CORESET 402, CORESET 404, and/or CORESET 406 are used for PDSCH transmission. The BS informs the UE (e.g., by RRC signaling) of a need to receive the first level indication and the second level indication.
The resource range indicated by the second level indication of the BS to the UE corresponds to the time-frequency resource of overlaps between the CORESET (s) and PDSCH resource allocation, such as the resource elements in the  virtual frames  420, 422 and/or 424 in Fig. 4A. In the present embodiment, the resource elements indicated by the second level indication may be one or more candidate, CCE, REG Bundle, REG, RB, RBG and/or other PDSCH resource allocation units, which may be configured by protocol or RRC signaling. It may be appreciated that the resource elements may correspond to an increased level of granularity relative to a resource indicated by the first level indication (e.g., and/or that the resource may be associated with two or more resource elements, and that each resource element may be associated with two or more resource sub elements, etc. ) , and that one or more resource elements may have an increased level of granularity relative to the second resource element.
The resource element sizes of CORESET 402, CORESET 404, and/or CORESET 406 may be the same or different. For example, the notification UE may configure the REG Bundle as the resource elements, but the REG Bundle size of CORESET 402, CORESET 404, and CORESET 406 may be different. In some examples, the PDCH resource allocation may also extend along a time domain of a slot along the time domain and extend across a respective frequency range along the frequency domain. The resource elements of CORESET 402 and PDSCH resource allocation may overlap in a  region (time domain t1, frequency domain f1 part time frequency resource) and the resource elements of the CORESET 404 and PDSCH resource allocation may overlap in a region (time domain t1, frequency domain f2 part time-frequency resource) . CORESET 406 and PDSCH resource allocation may overlap in a region (time domain t2, frequency domain f3 part Frequency resource) .
As shown in Fig. 4B, the plurality of resource elements corresponding to the shaded portions in the virtual frame 421 are the resources multiplexed for the PDSCH transmission for the UE in the second level indication. The second level indication contains a number of bits indicating which of the resource elements in the  virtual frames  420, 422 and/or 424 of Fig. 4A are multiplexed to the PDSCH transmission.
In Fig. 4B, the overlapping portions between CORESET 402 and PDSCH resource allocation (time domain t1, frequency domain f1 partial time-frequency resource) contain three resource elements. The indexes of the three resource elements in CORESET 402 are a0, a1, and a2, and a0 -a2 may be 0 or a positive integer, and can be a continuous integer or a discontinuous integer. The overlapping portions between CORESET 404 and the PDSCH resource allocation (time domain t1, frequency domain f2 part time frequency resource) contains five resource elements. The five resource elements in the index corresponding to CORESET 404 are b0, b1, b2, b3, and b4, and b0 -b4 is 0 or a positive integer, which can be a continuous integer or a discontinuous integer. The overlapping portions between CORESET 406 and the PDSCH resource allocation (time domain t2, frequency domain f3 part time frequency resource) contains four resource elements. The four resource elements in the index corresponding to CORESET 406 are c0, c1, c2, and c3, and c0 -c3 is 0 or a positive integer, and can be a continuous integer or a discontinuous integer.
The second level indication may specify a need for CORESET 402, CORESET 404 and/or CORESET 406, in particular, the resource elements of the  virtual boxes  420, 422 and/or 424 in a joint instruction. The resource  elements may be ordered according to a CORESET index order, for the resource elements corresponding to a0 -a2, b0 -b4, and/or c0 -c3. The index of CORESET 402 is lower than the index of CORESET 404, and the index of CORESET 404 is lower than the index of CORESET 406, and thus 0-2 corresponds to a0 -a2, 3 -7 corresponds to b0 -b4, and/or 8 -11 corresponds to c0 -c3. In this embodiment, a first resource element size may correspond to a0 -a2, a second resource element size may correspond to b0 -b4 and/or a third resource element size may correspond to c0 -c3, where the first resource element size, the second resource element size and/or the third resource element size may be different. In some examples, the determination of joint instructions and/or logical index (es) may be performed in a same manner regardless of whether the resource element sizes are the same or not.
In the second level indication, the second indicator field indicates via a logic index {0 1 3 5 7 8 10} that the corresponding resource element {a0 a1 b0 b2 b4 c0 c2} may be used for the UE to perform the PDSCH transmission.
After the UE receives the second level indication, for a0, a1, it will act according to the size of the resource element in CORESET 402. For b0, b2 and b4, it will act according to the size of the resource element in CORESET 404, and/or for c0 c2, according to the size of the resource element of the CORESET 406. Note that these resource elements may be complete or incomplete, and the UE may determine which second resources are complete and which second resources are not complete based on the range of the  virtual boxes  420, 422 and/or 424 in FIG. 4A and the granularity of the second level indication.
When the UE determines the (e.g., combined) logical index for a0 -a2, b0 -b4, and/or c0 -c3, the UE can also occupy the time domain and /or frequency domain resource index’s order in accordance with one or more of the different CORESETs. If the beginning of a time domain symbol is different between a first CORESET and a second CORESET, the CORESET with a  smaller time domain start symbol may be ordered first, while the CORESET with a larger time domain start symbol may be ordered next. The resource elements of the different CORESETs in the virtual boxes may together be used to determine the logical index. If the time domain start symbol of the first CORESET is the same as that of the second CORESET, then the CORESET with the frequency domain start PRB that is smaller may be ordered first, and the CORESET with the frequency domain start PRB that is larger may be ordered next.
In some situations, the first level indication may not be sent and/or the UE cannot be assured that the first-level indication can be received reliably. Thus, the UE may be required to determine the multiplexed resources only based on the second-level indication.
In such situations, the UE may identify and/or select a first control resource according to the overlapping portions between candidate control resources (e.g., one or more resource elements of the first control resource) and the PDSCH resource allocation. In the example of Fig. 4A, the candidate control resources may comprise {CORESET 410, CORESET 402, CORESET 404, CORESET 406} . Based upon the overlapping resources of the PDSCH resource allocation and the candidate control resources, it may be possible to determine the first control resource (e.g., one or more of the CORESETs, or a portion of one or more of the CORESETs) as shown in Fig. 4A.
The second level indication may correspond to the time-frequency range of the first (e.g., multiplexed) control resource and/or may indicate which resource elements (e.g., of the first control resource) are multiplexed into the PDSCH transmission in the first multiplexed resource.
In some examples, the second level indication indicates a payload. It may be appreciated that the length of the payload can be dynamically changed. After determining the resource element, according to the time zone resource range of the virtual frame 320 and/or 322 in Fig. 3A, the second level indication may indicate that the payload (e.g., length) will change dynamically. When the virtual frame 320 and/or 322 contains more than the resource  elements, the payload will be longer. Alternatively and/or additionally, when the virtual frame 320 and/or 322 contains less than the resource elements, the payload will be shorter.
Various DCI may have various DCI format payloads, such as DCI format with length of 40 bits, DCI format with length of 50 bits, DCI format with length of 60 bits, etc. After decoding the UE-specific DCI (e.g., a first level DCI) , the DCI format of a secondary DCI can be determined according to the PDSCH resource allocation and/or the first level indication, and the payload can be determined based upon the second level indication. The corresponding DCI format payload may be used to detect the secondary DCI. Thus, the variable-length second-level indication may not increase the complexity associated with detection for the secondary DCI.
When the second-level indication is sent via the PDSCH, it can be restricted to a fixed location of the PDSCH resource allocation. After detecting and/or decoding the UE-specific DCI (e.g., a first level DCI) , the payload of the second level indication can be determined so based upon the fixed location of the PDSCH resource allocation. The reception bit length may be based upon the second level indication of the corresponding payload.
In some examples, the length of the payload can be dynamically changed in the DCI, which may indicate the second level (e.g., in association with the higher level of granularity) of the payload. The UE may determine, according to the DCI instructions and/or the payload, the need to receive and/or carry the second level indication and/or a number of bits to receive.
After determining the payload, the UE may determine the size and /or resource allocation of the corresponding resource element (s) based on the size of the first (e.g., multiplexed) control resource (e.g., a CORESET) and the payload indicated by the corresponding second level indication. For example, the UE determines the time-frequency range of the first (e.g., multiplexed) control resource to include 10 REG Bundles when a REG Bundle is the resource element and/or 5 CCEs when a CCE is the resource element.
Depending upon the payload, the UE may default to the resource element being a different type. For example, when the DCI dynamically indicates that the payload is 10 bits, the UE may default to the resource element being the REG Bundle; when the DCI dynamically indicates that the payload is 5 bits, the UE may default to the resource element being the CCE; and/or when the DCI dynamically indicates that the payload is 3 bits, the UE may default to the resource element being a Candidate.
Depending upon the payload, the UE may default to processing the resource element using a different resource allocation method. For example, when the DCI dynamically indicates that the payload is 10 bits, the UE may default to processing the second level indication based on a first resource allocation method; when the DCI dynamically indicates that the payload is 8 bits, the UE may default to processing the second level indication based on a second resource Allocation method, and/or when the DCI dynamically indicates that the payload is 5 bits, the UE may default to processing the second level indication based on a third resource allocation method.
For example, the first resource allocation method may be a bitmap-based method, and each bit corresponds to a second multiplexed resource unit or a second multiplexed resource unit group. The second resource allocation method may be based on a method of continuous resource indication by indicating the number of the second multiplexed resource unit or the second multiplexed resource unit group that can be calculated from the start of the second multiplexed resource unit index and the continuous allocation. The third resource allocation method may divide the first multiplexed resource into a plurality of resource blocks based on the block resource indication method, and the resource block index can be determined by indicating the multiplexed resource block index and the second multiplexed resource block Resource unit index.
In some examples, the length of the payload can be a fixed value or determined based upon an RRC signaling semi-static configuration value. When a determination is made that the payload cannot indicate some and/or  all of the corresponding resource elements (e.g., in virtual frames 320 and/or 322 in Fig. 3A) , the resource element with a larger index value may be discarded.
In some examples, the virtual frames 320 and/or 322 in Fig. 3A may contain the time-frequency resource range and/or the payload. The BS and the UE may dynamically adapt the size and /or resource allocation method of the corresponding resource element (s) accordingly.
The UE may determine the size of the second (e.g., multiplexed) resource element and/or the method of resource allocation based upon the payload and/or the size of the first (e.g., multiplexed) control resource. For example, the UE determines the time-frequency range of the first (e.g., multiplexed) control resource to include 10 REG Bundles when REG Bundle is the resource element, 5 CCEs when CCE is the resource element, and/or 3 Candidates when Candidate is the resource element.
Depending upon the payload, the UE may default to processing the resource element using a different resource allocation method. For example, when the second level indication, the fixed configuration and/or the semi-static configuration indicates that the payload is 10 bits, the UE may defaults to processing and/or generating the second level indication based on the first resource allocation method; when the payload is 8 bits, the UE may default to processing and/or generating the second level indication based on the second resource allocation method; and/or when the payload is 5 bits, the UE may default to the second level indication based on the third resource allocation method.
Fig. 5 illustrates a scenario where a signal carrying DCI 500 (hereinafter “DCI signal 500” ) indicates that both of two  exemplary CORESETs  502 and 504 can be used to transmit data. In some embodiments, a BS may assign two  CORESETs  502 and 504 on the PDCCH to a UE. Each of the  CORESETs  502 and 504 may be distributed across a respective time-frequency area (i.e., spanning across respective resource blocks) . In the illustrated embodiment of Fig. 5, the CORESET 502 may  extend across two symbols (e.g., OFDM symbols) along a time domain (i.e., “t” in Fig. 5) and extend across a frequency range 503 along a frequency domain ( “i.e., “f” in Fig. 5) ; and the CORESET 504 may also extend across two symbols (e.g., OFDM symbols) along the time domain and extend across a respective frequency range 505 along the frequency domain. In some examples, the PDSCH resource allocation may extend along a time domain of a slot except for a number (e.g., two) symbols (e.g., OFDM symbols) along the time domain and extend across a respective frequency range along the frequency domain.
The resource range indicated by the second level indication of the BS to the UE may be the time-frequency resource of the overlapped CORESETs and PDSCH resource allocation overlap in the first level indication, such as the resource in the  virtual boxes  520 and 522 in Fig. 5. In some examples, the overlap may correspond to an extension of PDSCH resource allocation with the CORESETs. The second resource element indicated by the second level indication may be one or more candidate, CCE, REG Bundle, REG, RB, RBG and/or other PDSCH resource allocation unit, which may be configured by protocol and/or RRC signaling. It may be appreciated that the second resource element may correspond to an increased level of granularity relative to a resource indicated by the first level indication (e.g., and/or that the resource may be associated with two or more resource elements, and that each resource element may be associated with two or more resource sub elements, etc. ) , and that one or more resource elements may have an increased level of granularity relative to the second resource element. The second resource element size of each of the two control resources, CORESET 502 and CORESET 504, may be the same or different. For example, the UE may configure the REG Bundle as the second resource element, and if the REG Bundle size of CORESET 502 is different than the REG Bundle size of CORESET 504, then the CORESET 502 may be associated with a different PDSCH resource allocation size than the CORESET 504.
It may be appreciated that one or more of the CORESETs may have an overlapping area that extends with the PDSCH resource allocation along the time domain, as illustrated in Fig. 5.
Fig. 6 illustrates a scenario where a signal carrying DCI 600 (hereinafter “DCI signal 600” ) is similar to DCI signal 500 in Fig. 5. However, in Fig. 6, the one or more of the CORESETs may have an overlapping area that extends with the PDSCH resource allocation along the frequency domain.
In some embodiments, a BS may assign a set of CORESETs to a UE that can be used by a respective PDSCH, as illustrated and discussed above. Further, respective resource blocks of each of the CORESETs may be determined based on various characteristics of the UE and/or respective characteristics of the CORESETs. In an embodiment, the BS has a system bandwidth of about 100 MHz while the UE has a relatively smaller bandwidth of about 20 MHz. As such, the BS may assign a total “M” number of CORESETs over the 100 MHz, and assign a total “N” number of CORESETs to the UE, wherein N < M, and those N CORESETs are located within a respective frequency range of the UE’s 20 MHz bandwidth.
In another embodiment, the BS may assign the set of CORESETs based on a designation type of the CORESET, e.g., whether each of the set of CORESETs is a UE-specific CORESET or a common CORESET. For example, a total number of 6 CORESETs (e.g., 1 st, 2nd, 3rd, 4th, 5th, and 6th) are available to be used by the UE to transmit data on a respective PDSCH, 2 of which (e.g., 1 st, and 2nd) are common CORESETs and 4 of which (e.g., 3rd, 4th, 5th, and 6th) are UE-specific CORESETs. In some cases, based on a pre-defined protocol (e.g., RRC) , only the UE-specific CORESETs (3rd, 4th, 5th, and 6th) can be used by the UE. The BS may send a DCI signal containing a field of 4 bits to indicate that only the 3rd, 4th, 5th, and 6th CORESETs can be used by the UE to transmit data on the respective PDSCH.
Yet in another embodiment, the BS may assign the set of CORESETs based on a transmission mode of the CORESET, e.g., whether each of the set of CORESETs is a localized CORESET or distributed  CORESET. For example, a total number of 7 CORESETs (e.g., 1st, 2nd, 3rd, 4th, 5th, 6th, and 7th) are available to be used by the UE to transmit data on a respective PDSCH, 2 of which (e.g., 1st, and 2nd) are localized CORESETs and 5 of which (e.g., 3rd, 4th, 5th, 6th, and 7th) are distributed CORESETs. In some cases, based on a pre-defined protocol (e.g., RRC) , only the localized CORESETs (1st and 2nd) can be used by the UE. The BS may send a DCI signal containing a field of 2 bits to indicate that only the 1st and 2nd CORESETs can be used by the UE to transmit data on the respective PDSCH.
In some embodiments, a BS may assign a respective set of CORESETs to each of a plurality of UEs that can be used by a respective PDSCH. For example, the BS may determine a total number of 6 CORESETs, 3 of which (e.g., 1st, 2nd, and 3rd) are assigned to a first UE to transmit PDCCH or to blindly decode PDCCH, and 3 of which (e.g., 4th, 5th, and 6th) are assigned to a second UE to transmit PDCCH or to blindly decode PDCCH. In an embodiment, respective configurations of such 6 CORESETs may be predefined through the RRC as mentioned above, so that both the first and second UE’s know respective resource block configurations of these 6 CORESETs. As such, the BS may use a DCI signal containing a field of 3 bits to indicate whether three transmitting PDCCH’s CORESETs can be used to transmit data on the respective PDSCH. For the first UE, the DCI signal indicates 1st, 2nd, and 3rd CORESETs, and for the second UE, the DCI signal indicates 4th, 5th, and 6th CORESETs. In an alternative embodiment, the BS may use a DCI signal (different form the DCI signal above) to indicate that all 1st, 2nd, 3rd, 4th, 5th, and 6th CORESETs can be used by the first UE to transmit data on the respective PDSCH, and all 1st, 2nd, 3rd, 4th, 5th, and 6th CORESETs can be used by the second UE to transmit data on the respective PDSCH, in this case, the DCI signal is 6 bits length. The DCI signal can be included in a UE-specific PDCCH, or a common PDCCH, or a group-common PDCCH. In some examples, one bit may defer to multiple CORESETs. For example, for the first UE, eNB send a signal with 4 bits, the first three bits refer to the 1st, 2nd and 3rd CORESET, and the fourth bit refer to  all the 4th, 5th, and 6th CORESETs, so as to reduce the overhead from 6bits to 4bits.
Although the above-discussed system and method are directed to allocating one or more CORESETs sent on the PDCCH to be used for transmitting data on the PDSCH (i.e., downlink communication) , it is noted that the disclosed system and method can also be used for uplink communication while remaining within the scope of the present disclosure. For example, a UE may assign which of respective CORESETs (or in a different term) , sent on a physical uplink control channel (PUCCH) , can be used to transmit data to a BS on a physical uplink shared channel (PUSCH) .
An example 700A of facilitating use of one or more control resources, such as between a first wireless communication device and a second wireless communication device, is illustrated in Fig. 7A. The first wireless communication device may be a network and/or BS and the second wireless communication device may be a UE, or vice versa.
At 705A, the first wireless communication device may generate a first control signal indicating one or more resource elements. The first control signal may be indicative of one or more resource elements that can be used for transmitting data via a second communication channel. The second communication channel may, for example, be a PDSCH, or a PUSCH.
The one or more resource elements indicated by the first control signal may comprise a first one or more resource elements of a first control resource (e.g., a CORESET) . The first control resource may comprise a plurality of resource elements (e.g., including one or more resource elements other than the ones indicated by the first control signal) . The one or more resource elements indicated by the first control signal may comprise a second one or more resource elements of a second control resource (e.g., a second CORESET) . The second control resource may comprise a plurality of resource elements (e.g., including one or more resource elements other than the ones indicated by the first control signal) .
The first control resource may be usable to transmit data via a first communication channel. The first communication channel may, for example, be a PDCCH and/or a PUCCH. Alternatively and/or additionally, the second control resource may be usable to transmit data via the first communication channel.
The first control signal may comprise a (e.g., joint) logical index corresponding to the first one or more resource elements and/or the second one or more resource elements. A payload of the first control signal may be associated with a dynamic length, wherein the payload is a number of bits. Alternatively and/or additionally, a payload of the first control signal may be associated with a fixed length, wherein the payload is a number of bits and wherein the fixed length is semi-statically configured by a transmitting node.
At 710A, the first wireless communication device may transmit the first control signal to the second wireless communication device. In some examples, the first control signal may be transmitted via the second communication channel. Alternatively and/or additionally, the first control signal may be transmitted using a control resource via the first communication channel. The control resource may be the same or different than the first control resource and/or the second control resource.
In some examples, the first wireless communication device may generate a second control signal. The second control signal may indicate that the first control resource and the second control resource can be used for transmitting data via the second communication channel. The first wireless communication device may transmit the second control signal to the second wireless communication device.
An example 700B of facilitating use of one or more control resources, such as between a first wireless communication device and a second wireless communication device, is illustrated in Fig. 7B. The first wireless communication device may be a network and/or BS and the second wireless communication device may be a UE, or vice versa.
At 705B, the first wireless communication device may generate a first control signal indicating that at least one resource element of a control resource can be used for transmitting data via a second communication channel. The second communication channel may, for example, be a PDSCH, or a PUSCH.
At 710B, a payload of the first control signal may be determined based upon the number of resource elements of the at least one resource element of the control resource.
At 715B, a second control signal may be generated based upon the payload. For example, the second control signal may be indicative of the payload of the first control signal. The second control signal may be a DCI signal, for example.
At 720B, the first wireless communication device may transmit the first control signal and/or the second control signal to the second wireless communication device. In some examples, the first control signal and/or the second control signal may be transmitted via the second communication channel. Alternatively and/or additionally, the first control signal and/or the second control signal may be transmitted using a control resource via a first communication channel.
An example 800A of facilitating use of one or more control resources, such as between a first wireless communication device and a second wireless communication device, is illustrated in Fig. 8A. The first wireless communication device may be a network and/or BS and the second wireless communication device may be a UE, or vice versa.
At 805A, the second wireless communication device may receive a first control signal indicating one or more resource elements from the first wireless communication device. The first control signal may be indicative of one or more resource elements that can be used for transmitting data via a second communication channel. The second communication channel may, for example, be a PDSCH, or a PUSCH.
The one or more resource elements indicated by the first control signal may comprise a first one or more resource elements of a first control resource (e.g., a CORESET) . The first control resource may comprise a plurality of resource elements (e.g., including one or more resource elements other than the ones indicated by the first control signal) . The one or more resource elements indicated by the first control signal may comprise a second one or more resource elements of a second control resource (e.g., a second CORESET) . The second control resource may comprise a plurality of resource elements (e.g., including one or more resource elements other than the ones indicated by the first control signal) .
The first control resource may be usable to transmit data via a first communication channel. The first communication channel may, for example, be a PDCCH. Alternatively and/or additionally, the second control resource may be usable to transmit data via the first communication channel.
The first control signal may comprise a (e.g., joint) logical index corresponding to the first one or more resource elements and/or the second one or more resource elements. A payload of the first control signal may be associated with a dynamic length, wherein the payload is a number of bits. Alternatively and/or additionally, a payload of the first control signal may be associated with a fixed length, wherein the payload is a number of bits and wherein the fixed length is semi-statically configured by a transmitting node.
At 810A, the second wireless communication device may transmit data (e.g., to the first wireless communication device) based upon the first control signal. For example, the data may be transmitted using the first one or more resource elements and/or the second one or more resource elements. In some examples, the data may be transmitted via the second communication channel. Alternatively and/or additionally, the first control signal may be transmitted using a control resource via the first communication channel. The control resource may be the same or different than the first control resource and/or the second control resource.
In some examples, the second wireless communication device may receive a second control signal (e.g., from the first wireless communication device) . The second control signal may indicate that the first control resource and the second control resource can be used for transmitting data via the second communication channel.
An example 800B of facilitating use of one or more control resources, such as between a first wireless communication device and a second wireless communication device, is illustrated in Fig. 8B. The first wireless communication device may be a network and/or BS and the second wireless communication device may be a UE, or vice versa.
At 805B, the second wireless communication device may receive a first control signal from the first wireless communication device. The first control signal may indicate that at least one resource element of a control resource can be used for transmitting data via a second communication channel. The second communication channel may, for example, be a PDSCH, or a physical uplink shared channel (PUSCH) .
At 810B, a second control signal may be received from the first wireless communication device and/or by the second wireless communication device. For example, the second control signal may be indicative of a payload of the first control signal. The second control signal may be a DCI signal, for example.
The payload of the first control signal may be determined based upon the second control signal. The payload may correspond to the number of resource elements of the at least one resource element of the control resource.
At 815B, the second wireless communication device may determine a resource allocation of the at least one resource element and/or of the control resource.
In some examples, the second wireless communication device may transmit and/or receive data based upon the first control signal and/or the second control signal and/or the resource allocation. For example, the second wireless communication device may use the resource element and/or the control resource to transmit and/or receive data.
An example 800C of facilitating use of one or more control resources, such as between a first wireless communication device and a second wireless communication device, is illustrated in Fig. 8C. The first wireless communication device may be a network and/or BS and the second wireless communication device may be a UE, or vice versa.
At 805C, the second wireless communication device may determine a first control resource based upon an overlap between the first control resource and a resource allocation of a first communication channel.
At 810C, the second wireless communication device may determine a second control resource based upon an overlap between the second control resource and the resource allocation of the first communication channel.
It may be appreciated that a (e.g., first, second, etc. ) control resource may comprise one control resource set, or part of one control resource set, or several control resource sets.
It may be appreciated that techniques and/or actions disclosed herein may be used for downlink multiplexing and/or uplink multiplexing.
In some examples, the second wireless communication device may transmit and/or receive data based upon the first control resource and/or the second control resource. For example, the second wireless communication device may use a first resource element of the first control resource and/or a second resource element of the second control resource to transmit and/or receive data.
It may be appreciated that while some examples described herein may specify the use of a device such as a BS, a UE, etc., performance of actions described herein by alternative devices are contemplated as well.
Fig. 9 presents a schematic architecture diagram 900 of a base station 950 (e.g., a node) that may utilize at least a portion of the techniques provided herein. Such a base station 950 may vary widely in configuration and/or capabilities, alone or in conjunction with other base stations, nodes, end units and/or servers, etc. in order to provide a service, such as at least some of one or more of the other disclosed techniques, scenarios, etc. For example, the base station 950 may connect one or more user equipment (UE) to a (e.g., wireless) network (e.g., which may be connected and/or include one or more other base stations) , such as Code Division Multiple Access (CDMA) networks, Time Division Multiple Access (TDMA) networks, Frequency Division Multiple Access (FDMA) networks, Orthogonal FDMA (OFDMA) networks, Single-Carrier FDMA (SC-FDMA) networks, etc. The network may implement a radio technology, such as Universal Terrestrial Radio Access (UTRA) , CDMA13000, Global System for Mobile Communications (GSM) , Evolved UTRA (E-UTRA) , IEEE 802.11, IEEE 802.16, IEEE 802.20, Flash-OFDM, etc. The base station 950 and/or the network may communicate using a standard, such as Long-Term Evolution (LTE) .
The base station 950 may comprise one or more (e.g., hardware) processors 910 that process instructions. The one or more processors 910 may optionally include a plurality of cores; one or more coprocessors, such as a mathematics coprocessor or an integrated graphical processing unit (GPU) ; and/or one or more layers of local cache memory. The base station 950 may comprise memory 902 storing various forms of applications, such as an operating system 904; one or more base station applications 906; and/or various forms of data, such as a database 908 and/or a file system, etc. The base station 950 may comprise a variety of peripheral components, such as a wired and/or wireless network adapter 914 connectible to a local area network and/or wide area network; one or more storage components 916, such as a hard disk drive, a solid-state storage device (SSD) , a flash memory device,  and/or a magnetic and/or optical disk reader; and/or other peripheral components.
The base station 950 may comprise a mainboard featuring one or more communication buses 912 that interconnect the processor 910, the memory 902, and/or various peripherals, using a variety of bus technologies, such as a variant of a serial or parallel AT Attachment (ATA) bus protocol; a Uniform Serial Bus (USB) protocol; and/or Small Computer System Interface (SCI) bus protocol. In a multibus scenario, a communication bus 912 may interconnect the base station 950 with at least one other server. Other components that may optionally be included with the base station 950 (though not shown in the schematic diagram 900 of Fig. 9) include a display; a display adapter, such as a graphical processing unit (GPU) ; input peripherals, such as a keyboard and/or mouse; and/or a flash memory device that may store a basic input/output system (BIOS) routine that facilitates booting the base station 950 to a state of readiness, etc.
The base station 950 may operate in various physical enclosures, such as a desktop or tower, and/or may be integrated with a display as an “all-in-one” device. The base station 950 may be mounted horizontally and/or in a cabinet or rack, and/or may simply comprise an interconnected set of components. The base station 950 may comprise a dedicated and/or shared power supply 918 that supplies and/or regulates power for the other components. The base station 950 may provide power to and/or receive power from another base station and/or server and/or other devices. The base station 950 may comprise a shared and/or dedicated climate control unit 920 that regulates climate properties, such as temperature, humidity, and/or airflow. Many such base stations 950 may be configured and/or adapted to utilize at least a portion of the techniques presented herein.
Fig. 10 presents a schematic architecture diagram 1000 of a user equipment (UE) 1050 (e.g., a node) whereupon at least a portion of the techniques presented herein may be implemented. Such a UE 1050 may vary widely in configuration and/or capabilities, in order to provide a variety of  functionality to a user. The UE 1050 may be provided in a variety of form factors, such as a mobile phone (e.g., a smartphone) ; a desktop or tower workstation; an “all-in-one” device integrated with a display 1008; a laptop, tablet, convertible tablet, or palmtop device; a wearable device, such as mountable in a headset, eyeglass, earpiece, and/or wristwatch, and/or integrated with an article of clothing; and/or a component of a piece of furniture, such as a tabletop, and/or of another device, such as a vehicle or residence. The UE 1050 may serve the user in a variety of roles, such as a telephone, a workstation, kiosk, media player, gaming device, and/or appliance.
The UE 1050 may comprise one or more (e.g., hardware) processors 1010 that process instructions. The one or more processors 1010 may optionally include a plurality of cores; one or more coprocessors, such as a mathematics coprocessor or an integrated graphical processing unit (GPU) ; and/or one or more layers of local cache memory. The UE 1050 may comprise memory 1001 storing various forms of applications, such as an operating system 1003; one or more user applications 1002, such as document applications, media applications, file and/or data access applications, communication applications, such as web browsers and/or email clients, utilities, and/or games; and/or drivers for various peripherals. The UE 1050 may comprise a variety of peripheral components, such as a wired and/or wireless network adapter 1006 connectible to a local area network and/or wide area network; one or more output components, such as a display 1008 coupled with a display adapter (optionally including a graphical processing unit (GPU) ) , a sound adapter coupled with a speaker, and/or a printer; input devices for receiving input from the user, such as a keyboard 1011, a mouse, a microphone, a camera, and/or a touch-sensitive component of the display 1008; and/or environmental sensors, such as a GPS receiver 1019 that detects the location, velocity, and/or acceleration of the UE 1050, a compass, accelerometer, and/or gyroscope that detects a physical orientation of the UE 1050. Other components that may optionally be included with the UE 1050 (though not shown in the schematic architecture diagram 1000 of Fig. 10) include one or more storage components, such as a hard disk drive, a  solid-state storage device (SSD) , a flash memory device, and/or a magnetic and/or optical disk reader; a flash memory device that may store a basic input/output system (BIOS) routine that facilitates booting the UE 1050 to a state of readiness; and/or a climate control unit that regulates climate properties, such as temperature, humidity, and airflow, etc.
The UE 1050 may comprise a mainboard featuring one or more communication buses 1012 that interconnect the processor 1010, the memory 1001, and/or various peripherals, using a variety of bus technologies, such as a variant of a serial or parallel AT Attachment (ATA) bus protocol; the Uniform Serial Bus (USB) protocol; and/or the Small Computer System Interface (SCI) bus protocol. The UE 1050 may comprise a dedicated and/or shared power supply 1018 that supplies and/or regulates power for other components, and/or a battery 1004 that stores power for use while the UE 1050 is not connected to a power source via the power supply 1018. The UE 1050 may provide power to and/or receive power from other client devices.
Fig. 11 is an illustration of a scenario 1100 involving an example non-transitory computer readable medium 1102. The non-transitory computer readable medium 1102 may comprise processor-executable instructions 1112 that when executed by a processor 1116 cause performance (e.g., by the processor 1116) of at least some of the provisions herein (e.g., embodiment 1114) . The non-transitory computer readable medium 1102 may comprise a memory semiconductor (e.g., a semiconductor utilizing static random access memory (SRAM) , dynamic random access memory (DRAM) , and/or synchronous dynamic random access memory (SDRAM) technologies) , a platter of a hard disk drives, a flash memory device, or a magnetic or optical disc (such as a compact disc (CD) , digital versatile disc (DVD) , and/or floppy disk) . The example non-transitory computer readable medium 1102 stores computer-readable data 1104 that, when subjected to reading 1106 by a reader 1110 of a device 1108 (e.g., a read head of a hard disk drive, or a read operation invoked on a solid-state storage device) , express the processor-executable instructions 1112. In some embodiments, the processor-executable instructions 1112, when executed, cause performance of  operations, such as at least some of the example method 700A of Fig. 7A, the example method 700B of Fig. 7B, the example method 800A of Fig. 8A, the example method 800B of Fig. 8B, and/or the example method 800C of Fig. 8C, for example. In some embodiments, the processor-executable instructions 1112 are configured to cause implementation of a system and/or scenario, such as at least some of the example system 100 of Fig. 1, the example system 200 of Fig. 2, the example system 300 of Fig. 3, the example system 400 of Fig. 4, the example system 500 of Fig. 5, and/or the example system 600 of Fig. 6, for example.
As used in this application, "component, " "module, " "system" , "interface" , and/or the like are generally intended to refer to a computer-related entity, either hardware, a combination of hardware and software, software, or software in execution. For example, a component may be, but is not limited to being, a process running on a processor, a processor, an object, an executable, a thread of execution, a program, and/or a computer. By way of illustration, both an application running on a controller and the controller can be a component. One or more components may reside within a process and/or thread of execution and a component may be localized on one computer and/or distributed between two or more computers (e.g., nodes (s) ) .
Unless specified otherwise, “first, ” “second, ” and/or the like are not intended to imply a temporal aspect, a spatial aspect, an ordering, etc. Rather, such terms are merely used as identifiers, names, etc. for features, elements, items, etc. For example, a first object and a second object generally correspond to object A and object B or two different or two identical objects or the same object.
Moreover, "example" is used herein to mean serving as an instance, illustration, etc., and not necessarily as advantageous. As used herein, "or" is intended to mean an inclusive "or" rather than an exclusive "or" . In addition, "a" and "an" as used in this application are generally be construed to mean "one or more" unless specified otherwise or clear from context to be directed to a singular form. Also, at least one of A and B and/or the like  generally means A or B or both A and B. Furthermore, to the extent that "includes" , "having" , "has" , "with" , and/or variants thereof are used in either the detailed description or the claims, such terms are intended to be inclusive in a manner similar to the term "comprising” .
Although the subject matter has been described in language specific to structural features and/or methodological acts, it is to be understood that the subject matter defined in the appended claims is not necessarily limited to the specific features or acts described above. Rather, the specific features and acts described above are disclosed as example forms of implementing at least some of the claims.
Furthermore, the claimed subject matter may be implemented as a method, apparatus, or article of manufacture using standard programming and/or engineering techniques to produce software, firmware, hardware, or any combination thereof to control a computer (e.g., node) to implement the disclosed subject matter. The term "article of manufacture" as used herein is intended to encompass a computer program accessible from any computer-readable device, carrier, or media. Of course, many modifications may be made to this configuration without departing from the scope or spirit of the claimed subject matter.
Various operations of embodiments and/or examples are provided herein. The order in which some or all of the operations are described herein should not be construed as to imply that these operations are necessarily order dependent. Alternative ordering will be appreciated by one skilled in the art having the benefit of this description. Further, it will be understood that not all operations are necessarily present in each embodiment and/or example provided herein. Also, it will be understood that not all operations are necessary in some embodiments and/or examples.
Also, although the disclosure has been shown and described with respect to one or more implementations, equivalent alterations and modifications will occur to others skilled in the art based upon a reading and understanding of this specification and the annexed drawings. The disclosure  includes all such modifications and alterations and is limited only by the scope of the following claims. In particular regard to the various functions performed by the above described components (e.g., elements, resources, etc. ) , the terms used to describe such components are intended to correspond, unless otherwise indicated, to any component which performs the specified function of the described component (e.g., that is functionally equivalent) , even though not structurally equivalent to the disclosed structure. In addition, while a particular feature of the disclosure may have been disclosed with respect to only one of several implementations, such feature may be combined with one or more other features of the other implementations as may be desired and advantageous for any given or particular application.

Claims (20)

  1. A method comprising:
    generating a first control signal indicating one or more resource elements that can be used for transmitting data via a second communication channel, wherein the one or more resource elements comprise:
    a first one or more resource elements of a first control resource comprising a plurality of resource elements, and
    a second one or more resource elements of a second control resource comprising a plurality of resource elements,
    wherein the first control resource and the second control resource are used for transmitting data via a first communication channel; and
    transmitting the first control signal to a wireless communication device.
  2. The method of claim 1,
    the first control signal comprising a logical index corresponding to the first one or more resource elements and the second one or more resource elements.
  3. The method of claim 1,
    the first control signal transmitted via the second communication channel.
  4. The method of claim 1,
    the first control signal transmitted using a control resource via the first communication channel.
  5. The method of claim 1, comprising:
    generating a second control signal indicating the first control resource and the second control resource can be used for transmitting data via the second communication channel; and
    transmitting the second control signal to a wireless communication device.
  6. The method of claim 1,
    a payload of the first control signal associated with a dynamic length, wherein the payload is a number of bits.
  7. The method of claim 1,
    a payload of the first control signal associated with a fixed length, wherein the payload is a number of bits and wherein the fixed length is semi-statically configured by a transmitting node.
  8. A method comprising:
    generating a first control signal indicating at least one resource element of a control resource can be used for transmitting data via a second communication channel, wherein the control resource comprises a plurality of resource elements;
    determining a payload of the first control signal based upon the number of resource elements of the at least one resource element of the control resource;
    generating a second control signal indicative of the payload of the first control signal; and
    transmitting the first control signal and the second control to a wireless communication device.
  9. A method comprising:
    receiving, from a wireless communication device, a first control signal indicating one or more resource elements that can be used for transmitting data via a second communication channel, wherein the one or more resource elements comprise:
    a first one or more resource elements of a first control resource comprising a plurality of resource elements, and
    a second one or more resource elements of a second control resource comprising a plurality of resource elements,
    wherein the first control resource and the second control resource are used for transmitting data via a first communication channel; and
    based upon the first control signal, transmitting data via the second communication channel using the first one or more resource elements and the second one or more resource elements.
  10. The method of claim 9,
    the first control signal comprising a logical index corresponding to the first one or more resource elements and the second one or more resource elements.
  11. The method of claim 9,
    the first control signal received via the second communication channel.
  12. The method of claim 9,
    the first control signal received using a control resource via the first communication channel.
  13. The method of claim 9, comprising:
    receiving a second control signal indicating the first control resource and the second control resource can be used for transmitting data via the second communication channel; and
    based upon the second control signal, transmitting data via the second communication channel.
  14. The method of claim 9,
    a payload of the first control signal associated with a dynamic length, wherein the payload is a number of bits.
  15. The method of claim 9,
    a payload of the first control signal associated with a fixed length, wherein the payload is a number of bits and wherein the fixed length is semi-statically configured by a transmitting node.
  16. A method comprising:
    receiving a first control signal indicating at least one resource element of a control resource can be used for transmitting data via a second communication channel, wherein the control resource comprises a plurality of resource elements;
    receiving a second control signal indicative of a payload of the first control signal; and
    based upon the first control signal and the second control signal, determining a resource allocation of the at least one resource element.
  17. A method comprising:
    determining a first control resource based upon an overlap between the first control resource and a resource allocation of a first communication channel; and
    determining a second control resource based upon an overlap between the second control resource and the resource allocation of the first communication channel.
  18. The method of claim 17, comprising:
    receiving data via a second communication channel using a first resource element of the first control resource and a second resource element of the second control resource.
  19. A communication device comprising:
    a processor; and
    memory comprising processor-executable instructions that when executed by the processor cause performance of a method recited in any of claims 1 to 18.
  20. A non-transitory computer readable medium having stored thereon processor-executable instructions that when executed cause performance of a method recited in any of claims 1 to 18.
PCT/CN2017/097242 2017-08-11 2017-08-11 Resource element of control resource WO2019028895A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201780093683.1A CN110999457A (en) 2017-08-11 2017-08-11 Controlling resource elements of a resource
PCT/CN2017/097242 WO2019028895A1 (en) 2017-08-11 2017-08-11 Resource element of control resource

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/097242 WO2019028895A1 (en) 2017-08-11 2017-08-11 Resource element of control resource

Publications (1)

Publication Number Publication Date
WO2019028895A1 true WO2019028895A1 (en) 2019-02-14

Family

ID=65272814

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/097242 WO2019028895A1 (en) 2017-08-11 2017-08-11 Resource element of control resource

Country Status (2)

Country Link
CN (1) CN110999457A (en)
WO (1) WO2019028895A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021167518A1 (en) * 2020-02-20 2021-08-26 Telefonaktiebolaget Lm Ericsson (Publ) Frame structure for wireless communication

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013168901A1 (en) * 2012-05-11 2013-11-14 주식회사 팬택 Method for indicating pucch resource location, method for allocating pucch resource, and apparatus for same
WO2016099196A1 (en) * 2014-12-18 2016-06-23 엘지전자 주식회사 Method for allocating transmission resources in wireless communication system supporting device-to-device (d2d) communication

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013115502A1 (en) * 2012-01-30 2013-08-08 엘지전자 주식회사 Method for resource allocation for downlink control channel in wireless communication system and apparatus therefor
US20130286966A1 (en) * 2012-04-27 2013-10-31 Electronics And Telecommunications Research Institute Method of allocating radio resources for control channel and method for receiving the control channel

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013168901A1 (en) * 2012-05-11 2013-11-14 주식회사 팬택 Method for indicating pucch resource location, method for allocating pucch resource, and apparatus for same
WO2016099196A1 (en) * 2014-12-18 2016-06-23 엘지전자 주식회사 Method for allocating transmission resources in wireless communication system supporting device-to-device (d2d) communication

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ZTE ET AL.: "Resource sharing between PDCCH and PDSCH", 3GPP TSG RAN WG1 MEETING #88BIS RL-1704371, 7 April 2017 (2017-04-07), XP051242519 *
ZTE: "Resource sharing between PDCCH and PDSCH", 3GPP TSG RAN WG1 MEETING #89 R1-1707161, 19 May 2017 (2017-05-19) *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021167518A1 (en) * 2020-02-20 2021-08-26 Telefonaktiebolaget Lm Ericsson (Publ) Frame structure for wireless communication

Also Published As

Publication number Publication date
CN110999457A (en) 2020-04-10

Similar Documents

Publication Publication Date Title
TWI688296B (en) Method, terminal and network side equipment for determining resource configuration and indicating resource configuration
KR101904594B1 (en) Reference signal generation and determining reference signal resource allocation
US11497013B2 (en) Downlink control information DCI sending method and apparatus
WO2019028847A1 (en) Resource allocation
US11166264B2 (en) Multiplexing of short physical downlink control channel and data in mobile communications
WO2019080815A1 (en) Channel transmission method and apparatus, and computer storage medium
JP2016201825A (en) Determination of multiple enhanced physical downlink control channel candidates in wireless communication network, cross-reference to related application
US11601874B2 (en) Uplink carrier access
US20220272683A1 (en) Techniques for managing multiple resource element groups
EP3665796A1 (en) Communication of common control blocks
WO2016045011A1 (en) Method and bs for scheduling ue, and method and ue for transmitting harq
KR20200056977A (en) Method for indicating channel resource set, terminal device and network device
WO2022048199A1 (en) Nr pdcch resource allocation method and apparatus under spectrum sharing
KR102481938B1 (en) Method for notifying available resources for PDSCH, method for determining available resources for PDSCH, base station and user equipment
WO2019028895A1 (en) Resource element of control resource
WO2018126965A1 (en) Method and apparatus for determining resource for reference signal, and device
WO2018227616A1 (en) Channel state information report transmission

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17920836

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 17/07/2020)

122 Ep: pct application non-entry in european phase

Ref document number: 17920836

Country of ref document: EP

Kind code of ref document: A1